THE "HEDONIC" MODEL USED IN THE ODPM'S HOUSE PRICE INDICES

A description of the regression model developed for the new ODPM House
Price Index that was launched in September 2003 @
@

The new monthly House Price Index published by ODPM is based on a muIti@
fixed effects regression model ("hedonic" model) of house prices. T%\SJ per
provides a technical description of the underlying model and how it ma sed to
estimate average house prices, house price movements and the ho%ﬂe index.
For clarity of exposition, the paper contains the following sections: 0

1. Introduction O
Specification of the Hedonic Regression Model ¢ 6
Estimation of the Expected House Price for a@\
Estimation of the House Price Index %

Weighted Regressions @

Appendix - Estimation of Cumulants Q

&
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1. Introduction

The rationale for using the hedonic regression approach is that the number of "cells"
(that is, possible combinations of different sets of values for the main effects
considered) is so large that it is not possible to estimate accurately, or at all, averag
house prices for each cell individually from the data available. We assume that t
influence of each main effect or interaction is the same across all cells

include in the model those main effects and interactions which "best" w
variation in house prices. The concept of "best" is determined acéerd
Schwarz's Bayesian Criterion (see Schwarz, 1978 and Shi & Tsai, 2002)

The model used includes the following seven main effects: 0,\'
- location (local authority district or London borough) O
- local authority cluster (an ONS classification of b@uthorities)
- type of neighbourhood (ACORN) .5\\'

- dwelling type 6

- number of habitable rooms (or bedroo

- old/new

- first-time buyer/former owner a@ier (FTB/FOO)
and the following three interactions: &@

- ACORN x dwelling typ

- ACORN x FTB/F@

- dwelling type X@‘l W.

For ease of notation? \,@jenote each cell by a single subscript i (or j). Associated
with each cell i is ag rx, containing the values of the variables in the regression
u

model for cell bscript y indicates the calendar year to which the data relate.
This is becau new house price index is annually chain-linked and we need to
allow for ssibility that the model may change at the January link months
(becaus housing characteristics become available, for example).

ented by dummy, dichotomous covariates and the vector X, contains only the

es 1 or 0, according to whether the relevant characteristic is present or not in the
ceII Note also that some elements of X, are mutually associated (for example, a

dwelling type cannot be both detached and terraced) and all covariates must be
linearly independent, to ensure the validity of matrix inversion in estimation. Thus the
main effect old/new will be represented by a single covariate with the value (for
example) 0 for old and 1 for new.

Noh@%&t, because all the main effects in the model are categorical, they are
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2. Specification of the Hedonic Regression Model

In month m of year y, we assume the following model for the price Pyml.k of dwelling k
in cell i:
ln(P

’
ymik ) = xyi ym +€ 2.1

.2 <
. et rmé‘l&

where: ,Bym is a column vector of P, unknown parameters which d he
proportionate impact on the expected price of the P, dichotomouéariates
included in the column vector X, \

and the & mix are independent, identically distributed randon&bles with the
following properties:

'ymik =

*

E[gymik:lzo; Varl:gymik]zaz ; COV[Sym,-k,é‘ ]=. forSmik # znjl 2.2

ym?> znjl

We also assume that all the higher order centra@ents of g, exist. This is a

necessary, but plausible, assumption to cater for observed circumstance that the
€, mix are not Normally distributed. In particula;@sassume:

3 _ _ . 4 _ 4
E[gymik:l - lu3ym - K3ym > E[gymik @m - K4ym + 36ym

The expected price of a dwelling,j i, in month m of year y is then:
<

po {1 - - ol8. ol ]

From the standard th f moment generating functions (see, for example, chapter
3 of Stuart & Ord, 387}, we have, for random variable x and auxiliary variable t:

In(E e@?}]) = Z:: K’t'r Thatis: £ exp{xt}]= exp(i Krt' j 2.3

r! r=1
K. is the rth cumulant of the distribution of x.

o@e house price data and models examined, K2=02z0.15, k~0, x,~0.03 . Higher
r cumulants are negligible and may be ignored.



For x=¢ " and =1, we therefore have:

ym

2
E[exp(eymik )} ~exp| 0+ O;;" + K;y!m + sz!m J

2
o
=exp _7y’”2 ym j @
- ‘\b
where 7, :1+303_—yzm+ﬁ 24 O
ym ym

is an adjustment factor to correct for non-Normality. O0

9
. s\\\
,b‘b

Thus: B =E[P,, |=exp(xB,,+17,,0.,) 25



3. Estimation of the Expected House Price for a Cell

In practice, the vector ,Bym is not known and has to be estimated. For this purpose,
we use the following notation:

Iym= column vector of all the N elements Lyml.k in month m of year y; @

Xym= matrix of housing characteristics for the sample in month m of @
each row of the matrix is the row vector x'yl. of housing charac ris%for
the corresponding element in vector Iym; O

&= column vector of all the N random components €, mik ir@uth m of year
y.
Equation 2.1 above relates to a single dwelling. The n. ec@ions for month m of

. . . . ) +
year y may be summarised in the matrix equation: "¢ ’{ym ym ¥ Epm

s E[e,]=0: Var[e,]=an1 31 (06
Using ordinary least squares estimation, the ;%ator for ,Bym is:
B ym = (X;m Xym )-1 X;m lym 36&®

with: Var([)’ym ) = Gyzm (X;mX$Vym (for notational convenience) 3.3

Johr%ﬁ, 1972).

In practice, the re%?on model for the House Price Index uses weighted least
squares estim rder to cater for missing values for some covariates. Section
5 below desc@he reasons for this, the treatment applied, the impact on the

. S Varl B
model an(@nded formulae for B an ar(ﬂy’”).

We aQerefore consider the following estimator for Pyml. :
6 Pymi = eXp (x;iﬂym +%7/yma)2)m) 34

0\6
/® where the unknown vector ﬂym is replaced by the estimator ﬁym from equation
3.2.

(see, for example

*

A ~

However, because the vector B, is random, the expected value of B is obtained

A

’

according to equation 2.3 above. We assume that the scalar random variable By

B,

is approximately Normal, because the number of parameters in ~»" is very much



less than the number of observations on which the estimates are based. With this
approximation, only the first two cumulants are non-zero and we have:

E[i)ym,] = exp(x;i,Bym +%Var[x;i,3ym]+%7ym0'fm)

_ V4 1 ’ 1 2
- eXp(xyiﬁym +7xyiVymxyi +77/ymo-ym) 35

i ’
The estimator Boni is therefore biased upwards by the factor eXp(H%g(‘Q An

approximately unbiased estimator is therefore:

A

Pymi = eXp (x;/iﬁym _%x;iVymxyi +%7ymo-jm) 36 00

: 2 , 2

To estimate ¢, » and V _ we use sample estlmaté\%o , K, and x, .
ym’ ‘ym ym ym 3ym 4ym

Because these variance and higher order cumulant’@m are also estimated,

additional bias correction terms should also, in principle, be included. However,
these additional bias correction terms are of the é’ﬁym/”ym or less. In practice,
Kaym itself is small and, since n. is about 20,000, additional bias correction term

is negligible and may be ignored. Usually, A Q)f the order 1.01.

The appendix to this paper provides@lae, and their derivations, for estimating
Kaym and Kaym
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4. Estimation of the House Price Index

To calculate the house price index, we calculate for each month a weighted average
price for the domain of interest, where the domain may be all dwellings covered by
the model or a subset of these dwellings, such as dwellings within a region, old or

new dwellings, dwellings of a specific type. We use the estimated mean price in ea @
cell from equation 3.6 and a set of weights {wDy,.}, fixed for each calendar ye r&'

ZWD ;=1
with 0 , Where D denotes the set of cells included within the dgmain of
interest. The weighted average price for domain D in month m of year y i@en:

7D 1 o’ 15 )
Dym z WDyz ymi z WDyi eXp (xyi ym 2 xyi Vym X yi + 2 yym O-ym b@

ieD ieD

Vs Fy a0d 67, are sufficig Bsod estimators for V, ,

Yym and GZym that no further bias correction is re%r& (see the discussion after
equation 3.6).

where we assume that

2002, is:

7. =100 F D0313 PD,y—l,& — 100( _130213 i—[
Dym — Y ‘T -
' > Poosor . @ Pooaer =03

The index movement within year y is PDY@and the index relative to February

j DM 42
PDyOl

’EI 'ﬁl
"UI 'ﬁl

Dy01

where month 13 of @—1 = month 1 of year y .

The index may alternx%/ be expressed as:

P
Ly, 1@9 D13 DrB B =100

D0202 D0301

The r, DZ”/PD»Z“J are link factors, which ensure continuity of the chain-linked
in correcting for the change, at every January link month, in the weights and
used in the index.

ZWDW. =1

Note that the constraint <> is only necessary for the calculation of a weighted
average price. Equation 4.2 expresses the house price index as a product of ratios of
weighted averages. Each ratio contains the same weights in both numerator and
denominator. So, for the house price index, only the relative sizes of the weights are

Z WDyi =1

important and the constraint <> is not necessary.



5. Weighted Regressions

Sometimes, the data we receive from lenders are incomplete, with missing values for
some covariates. Values may be missing for all values of a covariate (or covariates)
from a single lender or only for a few observations. Rather than reject observations
with missing values, we have chosen to keep them in the regression analysis witl@
special value for each covariate to indicate a missing value.

values are "missing at random". That is, the true values for the missin variates
may be represented as a random realisation from the population distribu of these
covariates, for the given set of known covariates. This is equival to the more
general assumption that covariates not included in the model at or example:
garage; state of repair of the property) are "missing at rar@n and may be
represented by a random error term. Provided this assumpfieq is valid, there is no
bias in the parameters estimated in this way. \

In doing so, we are assuming that, for a given set of known covariates, t§ réing

L
However, the assumption of constant variance for th aior terms is no longer valid
because, clearly, observations with missing value have greater variance than
observations with complete covariate data.

To resolve this problem, we assume that t eror variance for observations with
. . . 2 . ,
missing data is equal to the basic error ceoc for observations with complete

data multiplied by a factor greater Q . The non-uniform variances can then be
accommodated by applying a wei regression, using observation weights equal
to the reciprocals of estimate§ @se factors.

For any given combinatio@ issing covariates, we can estimate these weights,
which are less than or equa® to 1, from regressions based on complete data only.
The estimated obseh%' weight, for a given set of missing covariate values, is
calculated as thesgtqi] of the mean squared error from the model including all
covariates to thng squared error from the model including only the non-missing
covariates. @

It may b irable to re-calculate these weights every month, using the complete
data awaifable for that month. However, this would be time-consuming, when the
main@rational requirement is to validate the data and produce the current month's
i (@values. We believe that these weights will be stable over time and that small
%rs in these weights would not have any noticeable impact on the estimated
indices. However, these observation weights will be re-assessed annually, to ensure
that long-term changes to the factors affecting house prices are picked up and to

/&Q\ accommodate any changes to the covariates included in the model.

Using weighted regressions, means that the analyses presented in sections 1 to 3
above need to be modified appropriately. There are no modifications to the
underlying principles, because weighted regressions can easily be accommodated
by appropriate transformations to the dependent variable and covariates. The
required modifications and transformations are covered in standard text books
(Johnson, 1972, for example).
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In summary, the following equations from sections 1 to 3 need to be modified as
shown, to accommodate the application of weighted regressions.

Sections 1 and 2

The original model in section 1 may be re-written as:

x<&
51=21a &b®
O
S
0.2
E[e* , ]:0; Var[ y,mk]—i; Cov[ ik Znﬂ] 0 forymsznjl 52=22a

* \\

with lyml.k being the appropriate weight for observation ymik.

’
Lymz'k = ln (Pymik ) = xy + gymzk

where the modified error terms have the properties:

‘ymik

It is possible to transform this model into a m e%ose error terms have constant
variance by transforming the dependent varighleand covariates, as follows:

it Lo = Ao 10 (P ) = M{@, o+ E 5.3=2.1b

*

so that the error term f& wmic it has the homoscedastic property of

equations 2.2 . $

Section 3 .
seons \

Ele, |=0; .&%ym} c2.2, =0, W 54=31a
whe&@s a diagonal matrix of the weights {ﬂ k)

@élghted least squares estimation, the estimator for [3

B, =(X.W,X, )X W I  55=32a

ym ym” ym

. 2 ’ -1 _ . . _
with: Var(ﬂym ) =0 (XymWmeym ) =V, (for notational convenience) 5.6 =3.3a

(see, for example, Johnston, 1972, chapter 7).
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Appendix

Estimation of Cumulants

1. Introduction

The model described in section 1 assumes that the error term
independent and identically distributed but not that they are N
distributed. As discussed in section 2, the higher order moments, i e orm

of cumulants, are relevant for the unbiased estimation of ave house
prices. This appendix develops estimators for the third and fou& lants.
For clarity of exposition, the suffices relating to year, m nd cell will be

observations using a model fitted to p parameters. P House Price Index,

omitted. Suffices will define only the observatio:pIlE ber, out of n
n=20,000 and p=200. . \

The weighted residual from the model for obs@tion i is defined as:

ef=ﬁ@=ﬁ(4—x;ﬁ)=ﬁ4—ﬁ1(@b
Standard regression theory sta &at the vector of residuals e may be

expressed as a linear fun tl% the vector of independent, identically
distributed error terms £ (s xample, Johnston, 1972): e = (I - H)e= Mg,

where I'is the identity m d H is the so-called "hat" matrix H = X(X 9()'1X !

In particular: $\
3 —ZI\K& (1,-H,)

Note @ =1, ljj=0for iz and (Ij)" = Iji forall i, j r

o

6() H, <1, tr(H)zZn:Hﬁ:p and Z":H;:
i=1 Jj=1

because H is a symmetric, idempotent matrix of rank p (see, for example,
Cook & Weisberg, 1982).



2. Estimating the Error Variance 02

We illustrate our approach to developing estimators for cumulants by applying
2

it to produce the standard unbiased estimator for the error variance ¢ . We
have:

<
E[ief}:E[iiMijgng%ek} s\béo\'

i=1 i=1 j=I

Hence we have the@hrd, unbiased estimator for the error variance:

3 ‘6
2
ei\
= 1:1

6t =

3. @q the Third Cumulant x,
600 E[Z ef:| = E[ZZ;MU.,S];M%S,{;MUS,
i= =l j= = —
.\6 = ZZZZMU.MikMﬂE[ejekelj
&Q i=1 j=l k=1 I=1
=22 M

i=l j=1

because the independence of the ¢ means that E[e;.gkel]=0 if any subscript j, k
or | is different from the other two.



Hence, noting also that u,=x«;:

E{Zd}: (1, - H,)

i=l j=1

i=l j=1

= K3Zn:Zn:(1,.j ~3I,H,+3I,H; -H,) bé@
K3{Zn:(l—3Hﬁ+3Hlf)—Zn: n H;} Os\

i=1 i=1 j=1

:zc3{(n—3p)+3ZH§—ZZH;} O0
i=1 i=1 j=1

*
The mean value of Hjj is p/n. If the absolute de@?bns of the Hjj from the
mean p/n are mainly small (that is, there are nat t}s many large values of Hj),

% n Hi? sp
then each Hjj will be of the order p/n arb i=1 . In practice, for the

Zn:Hé ~4
house price data, = T i@very small relative to (n-3p) and may be
neglected.

Using the same reas@the mean value of Hzij (i#) is approximately
p-p/n_p

2

n-n n ‘ @in, if the deviations of |H,| from the mean absolute value

X, Sl - 2

\p)/n arelgu¥iciently small, we would expect ! /! " In fact, some of
( y p

n

> >

th:%ay be negative and = /= will be smaller than this. So this term,

may be neglected.

60 We therefore have the following, approximately unbiased estimator for the
third cumulant:

n—=3p



4. Estimating the Fourth Cumulant K,

E[Zeﬁ} [ZZMU jZMikngMﬂg,ZMimgm}
i=l =1 m=1

i=l j=1

:Zn: y Zn"zﬂ:iMijMikMﬂMimE[gjgkelem] \0

i=l j=1 k=1 I=] m=l

The independence of the g means that E[ee g€ 1=0 if any subscript
is different from all the other three. So E[g g€, ] is not zero on pairs of
subscripts are equal, that is:

Jj=k and I=m ( j#l); j=I and k=m ( jzk); j=m and k=/ (@) or j=k=I=m
*

The first three conditions are equivalent, corres merely to rotation of
subscripts, so: p&

5] S5 uiele s g%@;‘?{gfg;}




‘ij

Hence:

i=1 i=1 j=1 =1 | j=1

f[Se x50 -m) v SfS 0 -n) |

oy (1, —41,H, +61 H; —4I,H} +H} )+30"" {Z
i i=1

Jj=1

=

i=l j=1

K‘4{ (1-4H, +6H? —4H) + ZZH4}+3O' Zil\'@

i=1 i=l j=1

=K, 4p+6z Z +ZZH4}+3Q“1 2H, +H;)

i=l j=1

n n n » \ n
=K, {n—4p+6zH§ ~4) H; +%‘§r}+3a4(n—2p+21{;j
i=1 i=1 i j i=1
Using the same arguments presentec{@@r the third cumulant «;, we may

ignore the summation terms in the li ove to obtain the approximation:

E{ieg‘}m{n—@}uc&@}y)

from which we have t owing, approximately unbiased estimator for the
fourth cumulant «;;

e
@ n—4p)

_ (a2}
Note ﬁ(a ) is a biased estimator of 04 but the bias is of the order zc4/n,

g&“@ negligible to the degree of approximation used here.

+H2}
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