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THE "HEDONIC" MODEL USED IN THE ODPM'S HOUSE PRICE INDICES

A description of the regression model developed for the new ODPM House
Price Index that was launched in September 2003

The new monthly House Price Index published by ODPM is based on a multivariate
fixed effects regression model ("hedonic" model) of house prices. This paper
provides a technical description of the underlying model and how it may be used to
estimate average house prices, house price movements and the house price index.
For clarity of exposition, the paper contains the following sections:

1. Introduction
2. Specification of the Hedonic Regression Model
3. Estimation of the Expected House Price for a Cell
4. Estimation of the House Price Index
5. Weighted Regressions
Appendix - Estimation of Cumulants
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1. Introduction

The rationale for using the hedonic regression approach is that the number of "cells"
(that is, possible combinations of different sets of values for the main effects
considered) is so large that it is not possible to estimate accurately, or at all, average
house prices for each cell individually from the data available. We assume that the
influence of each main effect or interaction is the same across all cells and we
include in the model those main effects and interactions which "best" explain
variation in house prices. The concept of "best" is determined according to
Schwarz's Bayesian Criterion (see Schwarz, 1978 and Shi & Tsai, 2002).

The model used includes the following seven main effects:
- location (local authority district or London borough)
- local authority cluster (an ONS classification of local authorities)
- type of neighbourhood (ACORN)
- dwelling type
- number of habitable rooms (or bedrooms)
- old/new
- first-time buyer/former owner occupier (FTB/FOO)

and the following three interactions:
- ACORN × dwelling type
- ACORN × FTB/FOO
- dwelling type × old/new.

For ease of notation, we denote each cell by a single subscript i (or j). Associated
with each cell i is a vector xyi containing the values of the variables in the regression
model for cell i. The subscript y indicates the calendar year to which the data relate.
This is because the new house price index is annually chain-linked and we need to
allow for the possibility that the model may change at the January link months
(because more housing characteristics become available, for example).

Note that, because all the main effects in the model are categorical, they are
represented by dummy, dichotomous covariates and the vector xyi, contains only the
values 1 or 0, according to whether the relevant characteristic is present or not in the
cell. Note also that some elements of xyi are mutually associated (for example, a
dwelling type cannot be both detached and terraced) and all covariates must be
linearly independent, to ensure the validity of matrix inversion in estimation. Thus the
main effect old/new will be represented by a single covariate with the value (for
example) 0 for old and 1 for new.
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2. Specification of the Hedonic Regression Model

In month m of year y, we assume the following model for the price Pymik of dwelling k
in cell i:

( )ln 2.1    ymik ymik yi ym ymikL P ε′= = +x β

where: βym is a column vector of py unknown parameters which determine the
proportionate impact on the expected price of the py dichotomous covariates
included in the column vector xyi;

and the εymik are independent, identically distributed random variables with the
following properties:

20; ; , 0 2.2        for      ymik ymik ym ymik znjlE Var Cov ymik znjlε ε σ ε ε� � � � � �= = = ≠� � � � � �

We also assume that all the higher order central moments of εymik exist. This is a
necessary, but plausible, assumption to cater for the observed circumstance that the
εymik are not Normally distributed. In particular, we assume:

3 4 4
3 3 4 4; 3ymik ym ym ymik ym ym ymE Eε µ κ ε µ κ σ� � � �= = = = +� � � �

The expected price of a dwelling in cell i, in month m of year y is then:

( ) ( ) ( )exp exp expymi ymik ymik yi ym ymikP E P E L E ε� � � �′� �= = =� � � � � �x β

From the standard theory of moment generating functions (see, for example, chapter
3 of Stuart & Ord, 1987), we have, for random variable x and auxiliary variable t:

{ }( ) { }
1 1

ln exp exp exp
! !

That is: 2.3         
r r

r r

r r

t tE xt E xt
r r

κ κ∞ ∞

= =

� �
� � � �= = � �� � � �

	 

� �

where κr is the r
th

 cumulant of the distribution of x.

For the house price data and models examined, κ2=σ
2
≈0.15,  κ3≈0,  κ4≈0.03 . Higher

order cumulants are negligible and may be ignored.
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For x=εymik and t=1, we therefore have:

( )
2

3 4

2

3 4
2 2

exp exp 0
2! 3! 4!

exp
2

1
3 12

where 2.4

is an adjustment factor to correct for non-Normality. 

      

ym ym ym
ymik

ym ym

ym ym
ym

ym ym

E
σ κ κ

ε

γ σ

κ κ
γ

σ σ

� �
� � ≈ + + +� �� � � �

	 


� �
= � �� �

	 


= + +

Thus: ( )21
2exp 2.5    ymi ymik yi ym ym ymP E P γ σ′� �= = +� � x β
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3. Estimation of the Expected House Price for a Cell

In practice, the vector βym is not known and has to be estimated. For this purpose,
we use the following notation:

lym= column vector of all the nym elements  Lymik in month m of year y;

Xym= matrix of housing characteristics for the sample in month m of year y:
each row of the matrix is the row vector x'yi of housing characteristics for
the corresponding element in vector lym;

εym= column vector of all the nym random components εymik in month m of year
y.

Equation 2.1 above relates to a single dwelling. The nym equations for month m of

year y may be summarised in the matrix equation:   ym ym ym ym= +β εl X

with:  
2; 3.1        ym ym ymE Var σ� � � �= =� � � �ε ε0 I

Using ordinary least squares estimation, the estimator for βym is:

( )-1ˆ 3.2ym ym ym ym ym′ ′=β X X X l

with: ( ) ( )-12ˆ (for notational convenience) 3.3     ym ym ym ym ymVar σ ′= =β X X V

(see, for example, Johnston, 1972).

In practice, the regression model for the House Price Index uses weighted least
squares estimation in order to cater for missing values for some covariates. Section
5 below describes the reasons for this, the treatment applied, the impact on the

model and amended formulae for ( )ˆ ˆ and ym ymVarβ β
.

We may therefore consider the following estimator for Pymi :

( )21
2

ˆexp 3.4   ymi yi ym ym ymP γ σ′= +� x β

where the unknown vector βym is replaced by the estimator ˆ
ymβ  from equation

3.2.

However, because the vector 
ˆ
ymβ  is random, the expected value of ymiP�  is obtained

according to equation 2.3 above. We assume that the scalar random variable 
ˆ

yi ym′x β

is approximately Normal, because the number of parameters in 
ˆ
ymβ  is very much
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less than the number of observations on which the estimates are based. With this
approximation, only the first two cumulants are non-zero and we have:

( )
( )

21 1
2 2

21 1
2 2

ˆexp

exp 3.5    

ymi yi ym yi ym ym ym

yi ym yi ym yi ym ym

E P Var γ σ

γ σ

� �� � ′ ′= + +� � � �

′ ′= + +

� x x

x x V x

β β

β

The estimator ymiP�  is therefore biased upwards by the factor ( )1
2exp yi ym yi′x V x . An

approximately unbiased estimator is therefore:

( )21 1
2 2

ˆˆ exp 3.6    ymi yi ym yi ym yi ym ymP γ σ′ ′= − +x x V xβ

To estimate σ
2
ym, γym and Vym, we use sample estimates of σ

2
ym, κ3ym and κ4ym.

Because these variance and higher order cumulant terms are also estimated,
additional bias correction terms should also, in principle, be included. However,
these additional bias correction terms are of the order κ4ym/nym or less. In practice,
κ4ym itself is small and, since nym is about 20,000, the additional bias correction term

is negligible and may be ignored. Usually, ˆymγ  is of the order 1.01.

The appendix to this paper provides formulae, and their derivations, for estimating
κ3ym and κ4ym.
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4. Estimation of the House Price Index

To calculate the house price index, we calculate for each month a weighted average
price for the domain of interest, where the domain may be all dwellings covered by
the model or a subset of these dwellings, such as dwellings within a region, old or
new dwellings, dwellings of a specific type. We use the estimated mean price in each
cell from equation 3.6 and a set of weights {wDyi}, fixed for each calendar year and

with 
1Dyi

i D
w

∈

=�
, where D denotes the set of cells included within the domain of

interest. The weighted average price for domain D in month m of year y is then:

( )21 1
2 2

ˆˆ ˆ ˆ ˆexp 4.1     Dym Dyi ymi Dyi yi ym yi ym yi ym ym
i D i D

P w P w γ σ
∈ ∈

′ ′= = − +� � βx x V x

where we assume that 
2ˆ ˆ ˆ,  and ym ym ymγ σV  are sufficiently good estimators for Vym,

γym and σ
2
ym that no further bias correction is required (see the discussion after

equation 3.6).

The index movement within year y is 01Dym DyP P  and the index relative to February
2002, is:

1
, 1,130213 0313 0213 13

030202 0301 , 1,1 01 0202 01 01

100 ... 100 4.2     
y

D y Dym DymD D D Dz
Dym

zD D D y Dy D Dz Dy

P P PP P P P
I

P P P P P P P

−
−

=−

� �
= = � �

� �
∏

where month 13 of year y-1 = month 1 of year y .

The index may alternatively be expressed as:

1
, 2,13 , 1,130213 13

020202 0301 , 1,01 01 , 1,01 0202

1100 ... 100 4.3     
y

D y D y DymD Dz
Dym Dym

zD D D y Dy D z D

P P PP P
I P

P P P P P P

−
− −

=− +

� �
= = � �� �

� �
∏

The ratios 13 , 1,1Dz D zP P +  are link factors, which ensure continuity of the chain-linked
index by correcting for the change, at every January link month, in the weights and
model used in the index.

Note that the constraint 
1Dyi

i D
w

∈

=�
 is only necessary for the calculation of a weighted

average price. Equation 4.2 expresses the house price index as a product of ratios of
weighted averages. Each ratio contains the same weights in both numerator and
denominator. So, for the house price index, only the relative sizes of the weights are

important and the constraint 
1Dyi

i D
w

∈

=�
 is not necessary.
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5. Weighted Regressions

Sometimes, the data we receive from lenders are incomplete, with missing values for
some covariates. Values may be missing for all values of a covariate (or covariates)
from a single lender or only for a few observations. Rather than reject observations
with missing values, we have chosen to keep them in the regression analysis with a
special value for each covariate to indicate a missing value.

In doing so, we are assuming that, for a given set of known covariates, the missing
values are "missing at random". That is, the true values for the missing covariates
may be represented as a random realisation from the population distribution of these
covariates, for the given set of known covariates. This is equivalent to the more
general assumption that covariates not included in the model at all (for example:
garage; state of repair of the property) are "missing at random" and may be
represented by a random error term. Provided this assumption is valid, there is no
bias in the parameters estimated in this way.

However, the assumption of constant variance for the error terms is no longer valid
because, clearly, observations with missing values will have greater variance than
observations with complete covariate data.

To resolve this problem, we assume that the error variance for observations with
missing data is equal to the basic error variance σ

2
ym for observations with complete

data multiplied by a factor greater than 1. The non-uniform variances can then be
accommodated by applying a weighted regression, using observation weights equal
to the reciprocals of estimates of these factors.

For any given combination of missing covariates, we can estimate these weights,
which are less than or equal to 1, from regressions based on complete data only.
The estimated observation weight, for a given set of missing covariate values, is
calculated as the ratio of the mean squared error from the model including all
covariates to the mean squared error from the model including only the non-missing
covariates.

It may be desirable to re-calculate these weights every month, using the complete
data available for that month. However, this would be time-consuming, when the
main operational requirement is to validate the data and produce the current month's
index values. We believe that these weights will be stable over time and that small
errors in these weights would not have any noticeable impact on the estimated
indices. However, these observation weights will be re-assessed annually, to ensure
that long-term changes to the factors affecting house prices are picked up and to
accommodate any changes to the covariates included in the model.

Using weighted regressions, means that the analyses presented in sections 1 to 3
above need to be modified appropriately. There are no modifications to the
underlying principles, because weighted regressions can easily be accommodated
by appropriate transformations to the dependent variable and covariates. The
required modifications and transformations are covered in standard text books
(Johnson, 1972, for example).
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In summary, the following equations from sections 1 to 3 need to be modified as
shown, to accommodate the application of weighted regressions.

Sections 1 and 2

The original model in section 1 may be re-written as:

( )ln * 5.1 2.1a     ymik ymik yi ym ymikL P ε ≡′= = +βx

where the modified error terms have the properties:

2
* * *0; ; , 0* 5.2 2.2a         for      ym
ymik ymik ymik znjl

ymik

E Var Cov ymik znjl
σ

ε ε ε ε
λ

≡� � � � � �= = = ≠� � � � � �

with λymik being the appropriate weight for observation ymik.

It is possible to transform this model into a model whose error terms have constant
variance by transforming the dependent variable and covariates, as follows:

( )ln 5.3 2.1b     ymik ymik ymik ymik ymik yi ym ymikL Pλ λ λ ε ≡′= = +βx

so that the error term 
*

ymik ymik ymikε λ ε=  has the homoscedastic property of
equations 2.2 .

Section 3

* * 2 2 -1; 5.4 3.1a        ym ym ym ym ym ymE Var σ σ ≡� � � �= = =� � � �ε ε Ω0 W

where Wym is a diagonal matrix of the weights {λymik}.

Using weighted least squares estimation, the estimator for βym is:

 ( )-1ˆ 5.5 3.2a     ym ym ym ym ym ym ym ≡′ ′=β X W X X W l

with: ( ) ( )-12ˆ (for notational convenience) 5.6 3.3a      ym ym ym ym ymVar σ ≡′= =β X W X V

(see, for example, Johnston, 1972, chapter 7).
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Appendix

Estimation of Cumulants

1. Introduction
The model described in section 1 assumes that the error terms  are
independent and identically distributed but not that they are Normally
distributed. As discussed in section 2, the higher order moments, in the form
of cumulants, are relevant for the unbiased estimation of average house
prices. This appendix develops estimators for the third and fourth cumulants.

For clarity of exposition, the suffices relating to year, month and cell will be
omitted. Suffices will define only the observation number, out of n
observations using a model fitted to p parameters. For the House Price Index,
n≈20,000 and p≈200.

The weighted residual from the model for observation i is defined as:

( )ˆ ˆˆi i i i i i i i i ie r l lλ λ λ λ′ ′= = − = −β βx x

Standard regression theory states that the vector of residuals e may be
expressed as a linear function of the vector of independent, identically
distributed error terms ε (see, for example, Johnston, 1972):  e = (I - H)ε = Mε,
where I is the identity matrix and H is the so-called "hat" matrix  H = X(X'X)-

1
X'

In particular:

( )
1 1

n n

i ij j ij ij j
j j

e M I Hε ε
= =

= = −� �

Note that Iii = 1 , Iij = 0 for i≠j and (Iij)r = Iij  for all  i, j, r .

Also:

( ) 2

1 1
1, and       

n n

ii ii ij ii
i j

H tr H p H H
= =

≤ = = =� �H

because H is a symmetric, idempotent matrix of rank p (see, for example,
Cook & Weisberg, 1982).
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2. Estimating the Error Variance σ
2

We illustrate our approach to developing estimators for cumulants by applying
it to produce the standard unbiased estimator for the error variance σ

2
. We

have:

( )

( )

( )

( )

2

1 1 1 1

1 1 1

2 2

1 1

22

1 1

2 2

1 1

2

1

2

2

1 2

n n n n

i ij j ik k
i i j k

n n n

ij ik j k
i j k

n n

ij
i j

n n

ij ij
i j

n n

ij ij ij ij
i j

n

ii ii
i

E e E M M

M M E

M

I H

I I H H

H H

n p

ε ε

ε ε

σ

σ

σ

σ

σ

= = = =

= = =

= =

= =

= =

=

� �� � = � �� �
� � � �

� �= � �

=

= −

= − +

= − +

= −

� �� �

���

��

��

��

�

Hence we have the standard, unbiased estimator for the error variance:

( )

2

2 1ˆ

n

i
i
e

n p
σ ==

−

�

3. Estimating the Third Cumulant κ3

3

1 1 1 1 1

1 1 1 1

3
3

1 1

n n n n n

i ij j ik k il l
i i j k l

n n n n

ij ik il j k l
i j k l

n n

ij
i j

E e E M M M

M M M E

M

ε ε ε

ε ε ε

µ

= = = = =

= = = =

= =

� �� � = � �� �
� � � �

� �= � �

=

� �� � �

����

��

because the independence of the εi means that E[εjεkεl]=0 if any subscript j, k
or l is different from the other two.
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Hence, noting also that  µ3=κ3:

( )

( )

( )

( )

33
3

1 1 1

2 3
3

1 1

2 3
3

1 1 1

2 3
3

1 1 1

3 3

1 3 3

3 3

n n n

i ij ij
i i j

n n

ij ij ij ij ij ij
i j

n n n

ii ii ij
i i j

n n n

ii ij
i i j

E e I H

I I H I H H

H H H

n p H H

κ

κ

κ

κ

= = =

= =

= = =

= = =

� � = −� �
� �

= − + −

� �
= − + −	 


� �

� �
= − + −	 


� �

� ��

��

� ��

� ��

The mean value of Hii is p/n. If the absolute deviations of the Hii from the
mean p/n are mainly small (that is, there are not too many large values of Hii),

then each Hii will be of the order p/n and  

2
2

1

n

ii
i

p H p
n =

<≈ ≤�
. In practice, for the

house price data, 
2

1
4

n

ii
i
H

=
≈�

. This is very small relative to (n-3p) and may be
neglected.

Using the same reasoning, the mean value of H
2
ij (i≠j) is approximately

2

2 2

p p n p
n n n
− ≈

− . Again, if the deviations of |Hij| from the mean absolute value

(√p)/n are sufficiently small, we would expect 

1.5
3

1 1

n n

ij
i j

pH
n= =

≈��
. In fact, some of

the Hij may be negative and 
3

1 1

n n

ij
i j

H
= =
��

 will be smaller than this. So this term,
too, may be neglected.

We therefore have the following, approximately unbiased estimator for the
third cumulant:

3

1
3ˆ 3

n

i
i
e

n p
κ ==

−

�
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4. Estimating the Fourth Cumulant κ4

4

1 1 1 1 1 1

1 1 1 1 1

n n n n n n

i ij j ik k il l im m
i i j k l m

n n n n n

ij ik il im j k l m
i j k l m

E e E M M M M

M M M M E

ε ε ε ε

ε ε ε ε

= = = = = =

= = = = =

� �� � = � �� �
� � � �

� �= � �

� �� � � �

�����

The independence of the εi means that E[εjεkεlεm]=0 if any subscript j, k, l or m
is different from all the other three. So E[εjεkεlεm] is not zero only if pairs of
subscripts are equal, that is:

 j=k and l=m ( j≠l);  j=l and k=m ( j≠k);  j=m and k=l ( j≠k); or  j=k=l=m.

The first three conditions are equivalent, corresponding merely to rotation of
subscripts, so:

( )

4 4 4 2 2 2 2

1 1 1 1 1 1

4 2 2 2 2
4

1 1 1 1 1

4 4
4

1 1

3

3

3 3

(from the independence of and )   

j j

j j

n n n n n n

i ij ij ik k
i i j i j k

k j

n n n n n

ij ij ik k k
i j i j k

k j

n n

ij
i j

E e M E M M E

M M M E E

M M

ε ε ε

µ ε ε ε ε

κ σ

= = = = = =
≠

= = = = =
≠

= =

� � � � � �= +� � � � � �� �

� � � �= + � �� �

= + +

� �� ���

�� ���

��
2 2 4

1 1 1

4 2 2 4
4

1 1 1 1 1

2

4 2 4
4

1 1 1 1

3

3

n n n

ij ik
i j k

k j

n n n n n

ij ij ik
i j i j k

n n n n

ij ij
i j i j

M

M M M

M M

σ

κ σ

κ σ

= = =
≠

= = = = =

= = = =

= +

� �
= + 	 


� �

���

�� ���

�� � �
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Hence:

( ) ( )

( ) ( )

( )

2
4 24 4

4
1 1 1 1 1

2

2 3 4 4 2
4

1 1 1 1

2 3 4 4
4

1 1 1

3

4 6 4 3 2

1 4 6 4 3

n n n n n

i ij ij ij ij
i i j i j

n n n n

ij ij ij ij ij ij ij ij ij ij ij ij
i j i j

n n n

ii ii ii ij
i i j

E e I H I H

I I H I H I H H I I H H

H H H H

κ σ

κ σ

κ σ

= = = = =

= = = =

= = =

� �� � = − + −� �� �
	 
 � �

� �
= − + − + + − +� �

� �

� �
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Using the same arguments presented above for the third cumulant κ3, we may
ignore the summation terms in the line above to obtain the approximation:

{ } ( )4 4
4

1
4 3 2

n

i
i

E e n p n pκ σ
=

� � ≈ − + −� �
� �
�

from which we have the following, approximately unbiased estimator for the
fourth cumulant κ4:
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σ
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− −
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−
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Note that ( )24 2ˆ ˆσ σ=  is a biased estimator of σ
4
 but the bias is of the order κ4/n,

which is negligible to the degree of approximation used here.
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