

rs	Organ WQS i (Roun Monite	ics Exc n grour d 1 & 2 oring)	eedances idwater s Groundw	of amp ater	les		
	Ph TP	enol H	Borehold no excer identified Borehold WSP bu	es moni edances d es moni t no	tored bui s tored by	t	
	PA	н		inces id	entified		
	RID	Exceedances	of WQS in River	Тегтасе	Deposits		
	кс	Exceedances	of WQS in Kimm	eridge C	lay		
	RTD/KC	Exceedances of River Terrace [of WQS in Kimme Deposits	ridge Cla	ay and		
	Phas	e 2 Planning	Boundary				
	01 14/06/2018 F	IRST ISSUE		FW	AP	GF	
	HE Date D	computer		Diawit	Check	Approv	
	Site Northstowe Cambridgeshire	C Fr 2 i Lo SV	IICN / Building farahan Street MiP 4DF				
	Registered offit Arcadis House 24 York Way London N1 9AB www.arcadis.co TITLE		OF ORGA	esion & Con rnaturalar iilt assets	sultancy d		
	GR (A	EXCEE OUNDW RCADIS	DANCES I ATER SAM ROUND 1	N IPLE & 2)	S		
	Designed	Reg	14/06/2018 Date		Signed		
	Checked	Reg	14/06/2018 Date		Igned	-	
	Approved	Reg	Date 14/06/2018	5	ligned		
	Scale	See Layout	Datum:	,	AOD		
	Original Size	A3	Grid:		os		
	Suitability Code	S2	Project Number	er: I	UA00842	6	
	Suitability Description: PRELIMINARY						
the GIS User	Drawing Number:	NUTH	UCION STRUCTION		Re	vision:	
A Street B	Figure 7				© Copyright	U1	

Our ref: Your ref:

Date:

AC/2018/126885/05-L01 S/0926/18

25 June 2018

South Cambridgeshire District Council South Cambridgeshire Hall (6010) Cambourne Cambridge CB23 6EA

Dear Sir/Madam

DISCHARGE OF CONDITION 17 (GROUNDWATER AND CONTAMINATION) OF PLANNING PERMISSION S/2011/14/OL. NORTHSTOWE PHASE 2, LONGSTANTON, CB24 3EW -FURTHER DETAIL.

Thank you for consultation.

Environment Agency position.

Documents reviewed:

1. Memo on Northstowe – Remediation Method Statement, Arcadis ref: NOR-ARC-XX-XXX-RP-G-0144-P01, dated 14 June 2018.

Condition 17: Based on the information/details provided in the documentation referenced above, we can recommend the discharge of **Parts 1 to 3** of Condition 17.

Condition 17, parts 4 & 5 remain outstanding.

We are waiting to review the proposed environmental works at the site. The proposed environmental works (site investigation, remediation and verification and validation as necessary) should expand into the both deep soil and groundwater without limiting to shallow soils. Based on outcomes of these environmental works, associated risks to controlled waters should be revised and necessary mitigation measures should be implemented, if necessary, to manage unacceptable risks to controlled waters.

Yours faithfully

Direct e-mail planning.brampton@environment-agency.gov.uk

Please note - Our hourly charge for pre application assessments is now £100 + VAT per hour

Environment Agency, East Anglia Area (West), Bromholme Lane, Brampton, Huntingdon, Cambs. PE28 4NE.

www.gov.uk/environment-agency

Arcadis Consulting (UK) Limited

Level 1 2 Glass Wharf Temple Quay Bristol BS2 0FR T: +44 (0)117 372 1200

arcadis.com

NORTHSTOWE – PARCEL 2A

Ground Investigation Report

July 2018

CONTACTS

Reg. 13(1) Senior Consultant

m +44 (0) 7768 258375

e Reg. 13(1) arcadis.com

Arcadis. Ground Floor 10 Medawar Road The Surrey Research Park Guildford GU2 7AR United Kingdom

Arcadis Consulting (UK) Limited is a private limited company registered in England & Wales (registered number 02212959). Registered Office at Arcadis House, 34 York Way, London, N1 9AB. Part of the Arcadis Group of Companies along with other entities in the UK.

Northstowe – Parcel 2A

Ground Investigation Report

Authorised Signatures

Author	Reg. 13(1)	Reg. 13
Checker	Reg. 13(1)	
Approver	Reg. 13(1)	
Report No	UA00XXXX-AFS-GLR-G001	-
Date	July 2018	

Version control

01 July 2018 Reg. 13(1)	
02 July 2018 Reg. 13(1) Update as pe	r client's request

1

This report dated July 2018 has been prepared for Homes England (the "Client") in accordance with the terms and conditions of appointment dated 3rd of May, 2018 (the "Appointment") between the Client and Arcadis Consulting (UK) Limited ("Arcadis") for the purposes specified in the Appointment. For avoidance of doubt, no other person(s) may use or rely upon this report or its contents, and Arcadis accepts no responsibility for any such use or reliance thereon by any other third party.

CONTENTS

1	INTRODUCTION	.1
1.1	Limitations	.1
1.2	Proposed Development	.1
1.3	Existing Information	.1
2	SITE DETAILS	2
2.1	Site Location and Description	.2
2.2	Geology	.3
2.3	Hydrogeology and Hydrology	.4
3	FIELDWORK	5
3.1	General	.5
3.2	Exploratory Holes	.6
3.2.1	Exploratory Hole Locations	.6
3.2.2	Investigation Methodology	.6
3.2.3	Cable Percussive Boring	.7
3.2.4	Trial Pitting/Trial Trenches	.8
3.3	<i>In situ</i> Testing	.8
3.3.1	General	.8
3.3.2	Penetration Testing	.8
3.3.3	Strength and Deformation Testing	.9
3.3.4	Hydraulic Tests	10
3.3.5	VOC Head Space Screening	10
3.4	Installations and Post-fieldwork Monitoring	11
3.4.1	Installations	11
3.4.2	Post-fieldwork Monitoring	11
4	LABORATORY TESTING	2
4.1	General	12
4.2	Geotechnical Laboratory Testing	12
4.3	Geo-Environmental Laboratory Testing	12
5	REFERENCES1	4

FIGURES

Figure 2-1: Site Location	2
Figure 2-2: Geological Setting	3

TABLES

Table 2-1 Anticipated geological sequence	3
Table 3-1. Summary of scope of ground investigation	5
Table 3-2. Summary of completed exploratory holes; cable percussive	6
Table 3-3. Summary of completed exploratory holes; trial pitting	7
Table 3 4. Summary of TRL tests	9
Table 3-5 Summary of trial pit soakage tests	10
Table 3-6 Summary exploratory hole installations	11
Table 4-1 Summary of geotechnical test data	12
Table 4-2 Summary of geo-environmental test data – soil matrix	13
Table 4-3 Summary of geo-environmental test data – groundwater matrix	13

APPENDICES

APPENDIX A

DRAWINGS Drawing 10018973-GLR-EHP-0001: Exploratory Hole Location Plan

APPENDIX B STANDARD PROCEDURES

APPENDIX C EXPLORATORY HOLE LOGS

APPENDIX D CERTIFICATION OF FIELD APPARATUS

APPENDIX E MONITORING DATA

APPENDIX F GEOTECHNICAL LABORATORY TEST DATA

APPENDIX G

GEO-ENVIRONMENTAL LABORATORY TEST DATA

1 INTRODUCTION

Homes England propose to undertake a housing development at Northstowe, in the county of Cambridgeshire. This ground investigation was commissioned by Homes England, 'the Client', to provide information on the ground conditions at the specific site.

The scope of the ground investigation for Parcel 2A was determined by Arcadis Consulting (UK) Limited, and the work was instructed on the 3rd of May, 2018. This work is in addition to the previous investigations undertaken (by others) for a wider Phase 2 in 2007.

This report provides a summary of the investigation and factual account of the fieldwork. factual account of the fieldwork undertaken within Parcel 2A including engineering descriptions of the various strata encountered, results of *in situ* testing and the subsequent geotechnical and geo-environmental laboratory testing undertaken on samples obtained.

1.1 Limitations

This report has been prepared for the Client in accordance with the terms and conditions of appointment. Arcadis cannot accept any responsibility for any use of or reliance on the contents of this report by any third party. The copyright of this document, including the electronic format and any AGS data, shall remain the property of Arcadis.

Arcadis do not accept liability for any use of the information presented in this report unless it is signed by the author, checker and approver and marked as final.

It should be noted that ground conditions between exploratory holes may vary from those identified during this ground investigation; any design should take this into consideration. It should also be noted that groundwater levels may be subject to diurnal, tidal, seasonal, climatic variations and those recorded in this report are solely dependent on the time the ground investigation was carried out and the weather before and during the investigation.

1.2 Proposed Development

The wider Northstowe development comprises approximately 10,000 homes, a new town centre, schools, health centre and other supporting social infrastructure. Parcel 2A of Northstowe sits within Phase 2 which has received planning permission for up to 3,500 homes, a secondary school, 2 primary schools, a town centre and sports hub [2].

1.3 Existing Information

As part of the Parcel 2A scope of works, the following information and the ground conditions were made available to Arcadis prior to mobilisation to the site:

- a. Ground investigation Scope and Specification [1]; source: Arcadis Consulting (UK) Ltd.
- b. Previous Ground Investigation Report [2]; source: Arcadis Consulting (UK) Ltd. Arcadis Consulting. 2017. Ground Investigation Report for Northstowe Phase 2. Arcadis Consulting Report UA008426-AFS-GLR-G001. March 2017.
- c. WSP Environmental (UK) (2007) Northstowe Zone B Interim Factual Report (Report Number 12170626) [20]

2 SITE DETAILS

2.1 Site Location and Description

The investigated site was situated approximately 10 km northwest of Cambridge, 750m east of Longstanton and 3km north of Oakington, within the South Cambridgeshire District; at an approximate National Grid Reference (NGR) TL409657. Figure 2-1 shows the site location.

Figure 2-1: Site Location and Red line boundary plan.

The Parcel 2A development area is approximately 8.5 hectares and is generally flat. The Parcel 2A development area 'the site' included areas of hardstanding and open space associated with the former RAF Oakington Airfield and former barracks, farmlands and a section of Rampton Road.

Historically, a sewage treatment works was present to the north eastern corner of the site and the open space between this and the existing settlement of Rampton Drift supported the former bomb storage and associated infrastructure.

The area to the west of the site was the location of the main barrack buildings including the former living quarters and associated welfare / training facilities / offices / vehicle maintenance garages and fuel storage areas.

There were groups of trees throughout the former Oakington Barracks, including avenues of mature trees around the barracks complex and leading to the station headquarter building.

2.2 Geology

The published 1:50 000 scale British Geological Survey (BGS) maps of the area incorporating the site, Sheet 187 [3] and Sheet 188 [4], and the BGS online GeoIndex [16] indicate the site to be underlain by superficial deposits of River Terrace Deposits. The underlying bedrock geology consists of mudstone from the Kimmeridge Clay Formation and Ampthill Clay Formation. The general distribution of the strata at the site is shown in Figure 2-2. A summary of the anticipated geological sequence is shown in Table 2-1.

Figure 2-2: Geological Setting: Site location incoporates two different BGS sheets, Huntingdon (1975) displayed on the left and Cambridge (1981) on the right.

Period	Formation	Description
Quaternary	River Terrace Deposits	Sand and gravel, locally with lenses of silt, clay or peat.
Jurasic	Kimmeridge Clay Formation	Mudstone (calcareous or kerogen-rich or silty or sandy); thin siltstone and cementstone beds; locally sands and silts.
Jurasic	Ampthill Clay Formation	Mainly smooth or slightly slity, pale to medium grey with argillaceous limestone (cementstone) nodules; some rhythmic alternations of dark grey mudstone in the lower part; topmost beds are typically pale grey marls with cementstone.

Table 2-1 Anticipated geological sequence

There are no faults located on the site, according to the BGS mapping. The previous borehole/investigations, undertaken by the British Geological Survey between 1980's and 1990's, encountered between 0.2 m and 1.2 m of medium dense made ground overlying medium dense to dense River Terrace Sand and Gravel between 4 m and 6 m thick before proving the bedrock. The Coal Authority website [17] indicates that there is no evidence of coal outcrops or mining activities within the vicinity of the site.

2.3 Hydrogeology and Hydrology

The superficial deposits (River Terrace Deposits) on the site are classified as a Secondary A aquifer by the Environment Agency (EA). Secondary A aquifers are defined as "permeable layers capable of supporting water supplies at a local rather than strategic scale, and in some cases forming an important source of base flow to rivers" [19].

The bedrock (Kimmeridge Clay Formation and Ampthill Clay Formation) is classified as Unproductive Strata. Unproductive Strata is defined as "rock layers or drift deposits with low permeability that have negligible significance for water supply or river base flow" [19].

The superficial deposits are also classified as being in a minor aquifer intermediate groundwater vulnerability zone. The site is not situated within a groundwater source protection zone [18]. Flood risk zones, levels 3 are located to the inmediate north, east and south of the site. Flood risk zones, level 2 are also located to the east, south and west of the site [18]. The groundwater is used by multiple sources for spray irrigation and agriculture purposes.

The closest surface water feature is an unnamed pond located in the southwest corner of the former Oakington Barracks.

3 FIELDWORK

3.1 General

Ground investigation works within Parcel 2A were carried out in a single phase, between May 29th 2018 and June 5th 2018. The scope of the ground investigation including the location, scheduled depth and type of exploratory hole undertaken, determined by Arcadis Consulting (UK) Limited [1] and is summarised in table 3.1.

The ground investigation methods were undertaken in general accordance with the principles set out in BS EN 1997-2:2005 [10] and with the general practice described in BS5930:2015 [11]. The geo-environmental aspects of the ground investigation complied with the general requirements of BS 10175:2011 [12]. The investigation works were carried out under the supervision of a suitably experienced ground engineer who undertook the logging and reporting of the exploratory holes and in situ testing.

Location ID	Hole Type	Proposed Depth (m)	Comments
BH2A01	СР	10	Dual 50mm HDPE installations
BH2A02	СР	15	Dual 50mm HDPE installations
BH2A03	СР	15	Dual 50mm HDPE installations
BH2A04	СР	15	Dual 50mm HDPE installations
BH2A05	СР	15	Dual 50mm HDPE installations
BH2A06	СР	10	Dual 50mm HDPE installations
BH2A07	СР	10	Dual 50mm HDPE installations
TP2A01	ТР	3.5	
TP2A02	ТР	3.5	
TPSA2A03	ТР	3.5	Undertake Soakaway Test
TP2A04	ТР	3.5	
TP2A05	ТР	3.5	
TP2A06	ТР	3.5	
TPSA2A07	ТР	3.5	Undertake Soakaway Test
TP2A08	ТР	3.5	
TP2A09	ТР	3.5	
TP2A10	ТР	3.5	
TRL1	TRL probe	2.0	
TRL2	TRL probe	2.0	
TRL3	TRL probe	2.0	

Location ID	Hole Type	Proposed Depth (m)	Comments
TRL4	TRL probe	2.0	
TRL5	TRL probe	2.0	
TRL6	TRL probe	2.0	
TRL7	TRL probe	2.0	
TRL8	TRL probe	2.0	
TRL9	TRL probe	2.0	
TRL10	TRL probe	2.0	

Table 3-1. Summary of scope for ground investigation.

Notes

CP = cable percussive boring; TP = trial pitting: TRL = TRL Dynamic Cone Penetrometer Test.

3.2 Exploratory Holes

3.2.1 Exploratory Hole Locations

The co-ordinates and elevations of the exploratory hole locations were obtained by the Arcadis supervising engineer using a Trimble VRS NOW GPRS system; allowing an accuracy of +/-50 mm.

Drawing 10018973-GLR-EHP-0001 presented in Appendix A displays the as-constructed exploratory hole locations while the co-ordinates and elevation of the ground surface at each exploratory hole location are given on the individual logs.

3.2.2 Investigation Methodology

The following methods and techniques were undertaken to construct the exploratory holes at the site. The completed scope of investigation is summarised in Table 3-2 below.

Details of the methods of investigation, associated standards adopted and a key to the notation and symbols used on the logs are presented in Appendix B; the exploratory hole records are presented in Appendix C.

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason
BH2A01	CP	31/05/2018	01/06/2018	10.45	
BH2A02	CP	04/06/2018	05/06/2018	15.45	
BH2A03	CP	30/05/2018	31/05/2018	15.45	Targeted depth achieved.
BH2A04	CP	01/06/2018	04/06/2018	15.45	Borehole terminated with an SPT.
BH2A05	CP	05/06/2018	06/06/2018	15.45	
BH2A06	CP	30/05/2018	30/05/2018	10.45	

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason
BH2A07	СР	29/05/2018	29/05/2018	10.45	

Table 3-1. Summary of completed exploratory holes; cable percussive

Notes

CP = cable percussive boring.

Location ID	Hole Type	Start Date	End Date	Final depth (m)	Termination Reason
TP2A01	TP	01/06/2018	01/06/2018	2.00	Side wall collapse
TP2A02	TP	01/06/2018	01/06/2018	3.45	Hard strata
TPSA2A03	TP	31/05/2018	31/05/2018	1.30	Side wall collapse
TPSA2A03A	TP	31/05/2018	31/05/2018	0.50	Soakaway Test
TP2A04	TP	01/06/2018	01/06/2018	1.60	Side wall colapse
TP2A05	TP	30/05/2018	30/05/2018	1.51	Water ingress at 1.50mbgl making pit unstable
TP2A06	TP	30/05/2018	30/05/2018	3.30	Targeted depth achieved
TPSA2A07	TP	31/05/2018	31/05/2018	2.10	Water ingress at 2.00mbgl
TP2A08	TP	31/05/2018	31/05/2018	2.60	Hard strata
TP2A09	TP	01/06/2018	01/06/2018	1.80	Hard strata
TP2A010	TP	01/06/2018	01/06/2018	3.60	Targeted depth achieved

Table 3-3. Summary of completed exploratory holes; trial pitting

Notes TP = trial pitting.

3.2.3 Cable Percussive Boring

Cable percussive boring was completed using Dando 2000 drilling rig equipped with 150mm casing and tools to undertake boreholes up to 15 m bgl.

Samples of the material recovered in the boreholes were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was significant.

Where specified by Design Organisation, UT100 open drive tube samples were taken using thin-walled sampling apparatus from the relatively undisturbed material at the base of the borehole.

Standard penetration tests (SPT) were generally undertaken at 1.0 m until the termination depth of the hole. Where cohesive soils were encountered, the SPT interval became 1.5m and UT100 samples were taken from 0.5 m below the lower end of the SPT.

In addition, sampling requirements for contamination testing - consisting of 1 No. 1 litre plastic tub, 1 glass jar and 2 glass vials - typically comprised for each sample location as:

- 1 sample from the topsoil (if present), taken as close to the surface as possible i.e. just below the grass root zone for example at 0.05-0.25 m within the hand dug inspection pit;
- 2 samples from the top 1.0 m within Made Ground;
- 1 sample per metre of Made Ground thereafter or change in strata;
- 1 sample in each natural stratum; and,
- 1 sample of materials that may be of particular interest e.g. where there is strong visual or olfactory evidence of contamination.

3.2.4 Trial Pitting/Trial Trenches

Trial pits were undertaken using a JCB 3CX backhoe wheeled excavator. The trial pits were logged entirely surface and arisings obtained from the trial pits.

Samples of the material recovered in the trail pits were taken to enable representative laboratory testing. Generally small disturbed samples were taken at each change in stratum and at 0.5 m intervals thereafter in clay soils; and bulk samples were taken at 1 m intervals where the sand and gravel content of the soil was assessed as significant.

In addition, sampling requirements for contamination testing was the same as the schedule outlined in the cable percussive boring section

Photographic records of the trial pit elevation and arisings were taken and are presented with the associated trial pit log.

3.3 In situ Testing

3.3.1 General

In situ testing was carried out within the relevant exploratory hole or at a specified test location. Where tests were undertaken within or associated with a specific borehole or trial pit, the test data is presented on the relevant exploratory hole log or as additional sheets to that log. As such, the location details will be the same as the associated hole and its position will be the same as the exploratory hole with which it is associated.

Where *in situ* tests were carried at standalone location not directly associated with other exploratory holes, the tests results are presented as individual records and as such; their as-constructed locations are given on the test records and their positions are shown on drawing 10018973-GLR-EHP-0001.

3.3.2 Penetration Testing

3.3.2.1 Standard Penetration Tests

Standard penetration tests (SPT) were carried out as required in the investigation scope and in accordance with the methods given in the standard procedures presented within Appendix B. Generally tests were undertaken at regular intervals throughout the borehole to provide a profile of the soil's resistance with depth and a disturbed soil samples was recovered from the SPT split-spoon tool or a disturbed sample was taken over the range of the test interval.

The N-values as determined in the field are presented on the borehole logs as uncorrected values that do not take into account the energy losses or efficiency of the automatic trip hammer used to drive the test tool into the ground. The calibration certification for the test devices used in the investigation is presented in Appendix D.

3.3.2.2 TRL Dynamic Cone Penetrometer Test

The penetration resistance of the ground was determined by the TRL dynamic cone penetrometer at the locations specified in the ground investigation scope. Generally, the tests were undertaken adjacent to or as an extension of other exploratory holes to provide additional investigation depth or to provide a subjective record of the ground profile and therefore test results are presented with the associated exploratory hole record in Appendix C.

The TRL dynamic penetrometer is a hand-held test apparatus that uses a lightweight (8 kg) free-fall hammer to drive a 20 mm diameter 60° cone into the ground. The penetration of the cone is recorded after a set number of blows as millimetres per blow. The tests were undertaken in accordance with PR IN 277-04 [5], and the results have been assessed in terms of the CBR-value using the relationship proposed by Jones and Rolt [6] given as:

Location ID	Hole Type	Final Depth (m)	Comments
TRL1	TRL probe	1.1	Terminated on refusal.
TRL2	TRL probe	1.5	Terminated on refusal.
TRL3	TRL probe	0.7	Terminated on refusal.
TRL4	TRL probe	1.5	Terminated on refusal.
TRL5	TRL probe	1.4	Terminated on refusal.
TRL6	TRL probe	1.9	Terminated on refusal.
TRL7	TRL probe	2	Terminated at scheduled depth.
TRL8	TRL probe	2	Terminated at scheduled depth.
TRL9	TRL probe	2	Terminated at scheduled depth.
TRL10	TRL probe	1.9	Terminated on refusal.

 $Log (CBR) = 2.48 - 1.057. Log (\frac{mm}{hlow}).$

Table 3-4. Summary of TRL tests.

Notes

TRL = TRL Dynamic Cone Penetrometer Test.

3.3.3 Strength and Deformation Testing

3.3.3.1 Determination of undrained shear strength using Hand Vane apparatus

Hand shear vane tests were carried out using a Pilcon hand shear vane with a cruciform vane of 19 mm/33 mm diameter. The tests were made in the sides of trial pits/base of the exploratory hole/in the end of recovered thin wall samples of suitable Quality Class as appropriate.

The test was performed in general accordance with the manufacturer's instructions and the vane was inserted a minimum distance of 70 mm below the surface tested. The vane head was rotated slowly at a speed not greater than 1 revolution per minute until the soil failed in shear or the maximum reading of the device was achieved. For valid tests, the remoulded strength of the failed soil was determined by rapidly

rotating the vane head for five complete rotations and allowing a minimum rest period of 3 minutes before reapplying torque to the vane.

The undrained soil strength was read directly from the calibrated vane head in kPa. It should be noted that these values are based on an empirical relationship derived by Pilcon from undrained triaxial compression tests on samples of London Clay.

Where possible, four tests were made to provide an average value, however, it should be noted that where natural fissures or discontinuities are present the minimum values may provide a better representation of the mass consistency of the soil and may be significant.

Due to the nature of the samples tested, the results are indicative for assistance in determining soil consistency for logging purposes only and should not be used to classify soil strength.

3.3.4 Hydraulic Tests

3.3.4.1 Soakaway Tests

The soil infiltration rate was determined by conducting soakaway tests in accordance with the methodology described in BRE 365 [7]. The tests were conducted in trial pits dug to the anticipated soakaway depth. Summary information of the tests is presented Table 3-3 while detailed test sheets are presented with the relevant trial pit log in Appendix C.

Location ID	Depth of pit (m)	Time to empty (minutes)	Soil Infiltration Rate (<i>f</i> ms ⁻¹)	Comment/limitations
TPSA2A03A				
Test 1	1.3	41.5	2.55E-06	
Test 2	1.3	52	2.31E-06	
Test 3	1.2	60	1.69E-06	
TPSA2A07	2.1	N/A	N/A	Test pit filled only once due to excessive time to achieve infiltration. 75% not achieved.

Table 3-5 Summary of trial pit soakage tests

3.3.5 VOC Head Space Screening

The presence of Volatile Organic Compounds (VOC) within the ground and groundwater was determined using a photoionization detector (PID) to detect the 'headspace' vapours emitted by the compounds. The method is applicable to a wide range of compounds that have sufficiently high volatility to be effected liberated from the soil or water matrix in normal temperature and pressure ranges.

The headspace test was undertaken on the freshly extracted soil samples at regular intervals by placing a small amount of material into a screw-top glass jar so that the jar was not more than half-full. The jar opening was covered with an aluminium foil sheet and the lid screwed on to form an air-tight seal. The sample and jar were then shaken for about 15 seconds to break-up and disperse the soil before resting the sample for about 5 minutes.

The testing was undertaken using a GA5000 Landfill Gas Analyser. To assess the headspace vapour, the jar lid was removed and the PID inlet tube was inserted through the foil into the headspace area. The PID reading recorded was the highest response observed in the first 10 seconds. The screening results are presented on the relevant exploratory holes logs within Appendix C.

3.4 Installations and Post-fieldwork Monitoring

3.4.1 Installations

Installations to enable long term monitoring of the site were made in those boreholes selected by Arcadis Consulting UK (Ltd) and the details are summarised in Table 3-4 and are also provided on the relevant borehole logs.

Location ID	Installation Type	Response Zone Top m bgl	Response Zone Base m bgl	Comment/limitations				
BH2A01	SP50 slotted	0.50	2.50					
BH2A01	SP50 slotted	4.00	7.00					
BH2A02	SP50 slotted	0.50	2.20					
BH2A02	SP50 slotted	4.00	8.00					
BH2A03	SP50 slotted	1.00	5.00					
BH2A03	SP50 slotted	12.00	15.00					
BH2A04	SP50 slotted	0.50	3.00	borehole. One to target shallow soils				
BH2A04	SP50 slotted	12.00	15.00	deposits) and second to target				
BH2A05	SP50 slotted	0.50	2.50	groundwater in deep oldy.				
BH2A05	SP50 slotted	12.00	15.00					
BH2A06	SP50 slotted	0.50	2.50					
BH2A06	SP50 slotted	4.00	7.00					
BH2A07	SP50 slotted	0.50	3.00					
BH2A07	SP50 slotted	7.00	10.00					

Table 3-62 Summary exploratory hole installations

Notes

SP50 = standpipe piezometer

3.4.2 Post-fieldwork Monitoring

Post-field work monitoring was undertaken on separate visits on June 21st, June 29th, July 6th and July 13th In all, four visits to the site were made to record land gas emissions and groundwater levels. During the first monitoring visit, the well was purged by removing three well volumes of groundwater and in situ groundwater monitoring and sampling was undertaken. Where installations were purged dry, monitoring and sampling was conducted on groundwater recovered following recharging of groundwater in installations. Parameters measured during in situ monitoring were pH, dissolved oxygen, conductivity and redox potential. The results of the groundwater monitoring are presented within Appendix E.

4 LABORATORY TESTING

4.1 General

Geotechnical and geo-environmental chemical testing was undertaken on selected samples obtained from the exploratory holes. The testing was scheduled by the geotechnical and/or geo-environmental engineer and the testing was undertaken by an Arcadis approved testing laboratory.

4.2 Geotechnical Laboratory Testing

The geotechnical tests detailed in Table 4-1 were carried out in accordance with either BS1377:1990: Parts 1 to 9 [17]; BS EN ISO 17892: Parts 1 to 12 [18]; BRE SD 1:2005 [8]; or other methods as listed in Table 4-1. The complete results of the geotechnical laboratory testing are presented in Appendix F.

Test	Method	No of Determinations
Moisture content	BS 1377 : Part 2 : 3.2	55
4-point liquid and plastic limit	BS 1377 : Part 2 : 4.3 & 5.3	42
Particle Size Distribution - Wet sieving	BS 1377 : 1990 Part 2 : 9.2	10
Dry Den/MC (2.5kg Rammer Method 1 Litre Mould)	BS1377 : 1990 Part 4 : 3.3	5
CBR: Remoulded Specimen and tested at top only	BS1377 : 1990 Part 4 : 7	12*
Quick Undrained Triaxial Compression test - single specimen at one confining pressure	BS1377 : 1990 Part 7 : 8	28
pH, water soluble sulphate; total sulphate, total sulphur, chloride, nitrate, magnesium	BRE SD1 preferred methods	15

Table 4-1 Summary of geotechnical test data

*Notes: One CBR Test omitted due to anomalous test result.

4.3 Geo-Environmental Laboratory Testing

Geo-environmental tests were undertaken on soil, groundwater and prepared leachate specimens obtained from the samples collected from the site. Testing was carried out for the contaminants detailed inTable 4-2, Table 4-3 and Table 4-4. The results of the chemical laboratory testing are presented in Appendix G. Details of the test methodology is presented with the test results.

Test type	Method	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn),	Induced Coupled Plasma Optical Emission Spectroscopy (ICP-OES)	30

рН	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	30
Cyanide Free and Total	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	30
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	Gas Chromatography –Mass Spectrometry (GC-MS)	30
Total Petroleum Hydrocarbon Criteria Working Croup (TPH CWG)	Gas Chromatography – Flame Ionisation Detector (GC-FID)	15
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	GC-MS	15
Phenol (total), Cresol, Chlorinated Phenols	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	30
Total Organic Carbon	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests'"	6
Asbestos Screen and Identification	In house method based on HSG 248	1

Table 4-2 Summary of geo-environmental test data – soil matrix

Test type	Method	No of Determinations
Metals (As, B, Cr, Cd, Cu, Pb, Hg, Ni, Se, Zn),	ICP-OES	27
Speciated Polycyclic Aromatic Hydrocarbon compounds (PAH)	GC-MS	27
рН	In-house method based on BS1377 Part 3, 1990, Chemical and Electrochemical Tests	27
Cyanide Free and Total	In-house method based on Examination of Water and Wastewater 20th Edition: Clesceri, Greenberg & Eaton (Skalar)	27
TPH CWG	GC-FID	27

Table 4-3 Summary of geo-environmental test data – groundwater matrix

5 REFERENCES

General References

- 1. Arcadis Consulting. 2018. Northstowe Parcel 2A. Site Investigation Memo. May 2018.
- 2. Arcadis Consulting. 2017. Ground Investigation Report for Northstowe Phase 2. Arcadis Consulting Report UA008426-AFS-GLR-G001. March 2017.
- 3. British Geological Survey. 1975. Huntingdon. England and Wales Sheet 187. Drift Deposits. 1:50 000. BGS Keyworth, Nottingham.
- 4. British Geological Survey. 1981. Cambridge. England and Wales Sheet 188. Solid and Drift Deposits. 1:50 000. BGS Keyworth, Nottingham.
- 5. TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.
- 6. Jones C R and Rolt J. 1991. Operating instructions for the TRL dynamic cone penetrometer. 2nd Edition Information Note. Transport Research Laboratory, Crowthorne.
- 7. Building Research Establishment. 2016. Soakaway Design. BRE Digest DG365. BRE, Watford.
- 8. Building Research Establishment. 2005. Concrete in aggressive ground. BRE Special Digest 1. 3rd Edition. BRE, Watford.

National Standards

- 9. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- 10. BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 11.BS 5930. 2015. Code of practice for ground investigations. British Standards Institution.
- 12.BS 10175. 2011. Investigation of potentially contaminated sites Code of practice. British Standards Institution.
- 13.BS 1377. 1990. Method of test for soils for civil engineering purposes. Published in 9 Parts. British Standards Institution,
- 14.BS EN ISO 17892-1: Geotechnical investigation and testing Laboratory testing of soil Determination of water content. British Standards Institution.
- 15.BS EN ISO 17892-2: Geotechnical investigation and testing Laboratory testing of soil Determination of bulk density. British Standards Institution.

Internet References

- 16.British Geological Survey: http://www.bgs.ac.uk/data/mapViewers/home.html. Accessed June 2018.
- 17. Coal Authority: http://mapapps2.bgs.ac.uk/coalauthority/home.html. Accessed June 2018.
- 18.Gov.UK: https://flood-warning-information.service.gov.uk/long-term-flood-risk/map. Accessed June 2018.
- 19. MagicMap: http://magic.defra.gov.uk/MagicMap.aspx. Accessed June 2018.

Other References

20. WSP Environmental (UK) (2007) Northstowe Zone B - Interim Factual Report (Report Number 12170626)

Northstowe – pARCEL 2A

APPENDIX A

DRAWINGS

Drawing 10018973-GLR-EHP-0001: Exploratory Hole Location Plan

Northstowe – pARCEL 2A

APPENDIX B

STANDARD PROCEDURES

B0 General Principles

This ground investigation was undertaken in general accordance with the principles of BS EN 1997-1 [1] and BS EN 1997-2 [2] and the advice given in BS5930:2015 [8], which, provides complimentary guidance on the application of the primary standards. Where the requirements of the ground investigation specification differ from these primary standards, the investigation methodology was adapted as required and specific notes regarding methods and techniques employed were made in the appropriate report sections.

B1 Buried Services

Service clearance was undertaken in accordance with Arcadis' Safety, Health and Environment (SHE) Standard – Avoidance of Sub-Surface Hazards and Structures Standard. This document details the methods and safe working practices used to undertake excavations safely. Prior to breaking ground, services plans were consulted and the area scanned using a Cable Avoidance Tool (CAT) with detected signals marked on the ground. For all investigation positions, other than for machine excavated trial pits, hand excavated inspection pits are completed to 1.20 m bgl prior to the use of drilling and boring plant.

B2 Sampling requirements

The selection of sample types and sampling techniques has been chosen to take account of the soil fabric, size and quality of sample required based on whether the soils mass properties or the intact material properties of the ground are to be determined in subsequent laboratory tests. BS EN ISO 22475-1 [4] describes three generic sample groups that are:

- a. Sampling by drilling. Generally a disturbed sample recovered from the drilling tool or digging equipment, typically meeting Class 3 to Class 5 requirements, with the recovered material being stored in bulk bags or sealed jar or tub containers.
- b. Sampling by sampler. Typically referred to as open tube or drive sampling in which a tube with a sharp cutting edge is driven into the ground either by static thrust or dynamically driven to give a relatively undisturbed sample of Class 1 or Class 2 but may result in a Class 3 sample.
- c. Block sampling. Cylindrical large diameter samples or cuboid hand-cut samples usually relatively undisturbed Class 1 and Class 2.

The open-tube sampling equipment used on the site was of a type and design that conformed to BS EN ISO 22475-1. For the purpose of this ground investigation block sampling was not required.

Generally samples were assessed on site and any unexpected deterioration in sample quality was reported to the ground engineer by the lead drilling technician.

Sufficient and representative samples were taken to allow the geo-mechanical properties of the ground to be adequately characterised and to enable the sequence of soil strata to be described by an engineering geologist or geotechnical engineer.

Where samples have been taken for chemical tests the drilling method attempted to adopt dry drilling over the sampling range that generally was achieved by the use of drill casing to separate and isolate the upper soil layers and exclude groundwater. Cross-contamination was further reduced by regular cleaning of sampling tools. Sample integrity was maintained by sealing samples immediately on collection and storing the samples in a temperature controlled cool box. Samples were despatched from the site at the end of the shift on which they were collected or as

required in the project specification. Details of best practice storage, preservation and decontamination measures undertaken are given below:

Task	Soil	Groundwater	Ground Gas
Storage	Glass jars and vials supplied by the laboratory were used for the collection of soil samples to be analysed for volatile compounds. Plastic one-litre tubs were used to collect soil samples for metals analysis.	Glass vials supplied by the laboratory were used for the collection of samples to be analysed for volatile compounds. Samples to be analysed for lower volatility compounds were stored in laboratory prepared glass bottles.	1.4L Canisters supplied by the laboratory.
Preservation	Filling of sample containers as headspace and low storage te potential for volatilisation and b hydrocarbon compounds prior	far as practicable to minimise mperature to minimise the biodegradation of petroleum to analysis.	Not required.
Decontamination	Disposable gloves were worn and changed between sample collection to prevent cross-contamination.	Groundwater samples were collected using dedicated disposable tubing / bailers, that were changed between monitoring well locations in order to prevent cross- contamination.	Disposable gloves were worn and changed between sample collection to prevent cross contamination.
Transport	Samples stored in dedicated s and analytical requests were re with samples, prior to dispatch to the laboratory on the day of	ample boxes provided by the labo ecorded on the laboratory chain o ing to laboratory for analysis. Sar sampling.	oratory. Sample details f custody form included nples were dispatched

B3 Sample description

Sample description was undertaken by the Arcadis site geologist in accordance with BS 5930: 2015. The descriptions of the individual samples were used to identify the sequence of strata at the exploratory hole location and from which representative exploratory hole logs were drawn.

B4 In situ testing

In situ geotechnical tests were undertaken taking account of the investigation scope and requirement to attain the appropriate parameters required in the geotechnical design. The tests were undertaken in accordance with the requirements of the relevant parts of BS EN ISO 22476 [5, 6, 7] and other methods as follows:

Standard penetration testing

Standard penetration tests were carried out in accordance with BS EN ISO 22476-3, BS EN 1997-2 and the national Annex to BS EN 1997-2. The test records are presented on the borehole logs as blow counts for each increment with the N-value as the total number of blows of the four main test increments.

Where the N-value exceeds a total of 50 blows, the test reports the penetration in millimetres for the last test increment recorded, and the N value is indicated as greater than 50,

e.g. 4,5/12,14,18, 6 for 10 mm

indicates that the seating blows (4 and 5) were completed and that the test terminated in the 4th increment after penetrating 10 mm.

Where the seating blows exceeded 25 blows for less than 150 mm; the test was stopped and the rods remarked after which, the main drive was continued. The test is then reported as the number of blows in each seating drive for the recorded penetration with the results of the main drive given as above,

e.g. 14/11 for 45 mm/12,14,16, 8 for 10 mm.

In certain circumstances where groundwater in-flow may affect the test, particularly in fine sand or silt, low SPT blow counts may be recorded. Where the SPT blow count was very low, N values of 5 or less, the test was, at the discretion of the site engineer, continued for a further 300 mm, recording blows for each 75 mm increment. **This is not** a standard penetration test value, it does however give an indication of potential disturbance to the ground.

TRL Dynamic cone penetrometer

The TRL DCP is a device developed by the TRL to assess the California Bearing Ratio of road sub-base by correlation. As such the device was developed for use in a limited range of soil types. The test has no formal standard the test methodology and its use is discussed in TRL report PR IN 277-04 [11].

B5 Data transfer format

The data collated during the ground investigation has been organised and managed using the "AGS data format" that allows data transfer between different disciplines and organisations in accordance with BS 8574 [9].

B6 References

- 1. BS EN 1997-1. 2004. Eurocode 7: Geotechnical Design. Part 1 General Rules. British Standards Institution, 2013 (revised text).
- 2. BS EN 1997-2. 2007. Eurocode 7: Geotechnical Design. Part 2 Ground Investigation and testing. British Standards Institution, 2010 (revised text).
- 3. BS EN ISO 22282-1:2012. Geotechnical investigation and testing Geohydraulic testing. Part 1: General Rules. British Standards Institution.
- 4. BS EN ISO 22475-1. Geotechnical investigation and testing Sampling methods and groundwater measurements Part 1 Technical principles for execution.
- 5. BS EN ISO 22476-1:2015. Geotechnical investigation and testing Field testing Part 1: Electrical cone and piezocone test. British Standards Institution
- 6. BS EN ISO 22476-2. Geotechnical investigation and testing Field testing Part 2: Dynamic Probing. British Standards Institution
- 7. BS EN ISO 22476-3 2005. Geotechnical investigation and testing Field testing Part 3: Standard penetration test. British Standards Institution
- 8. BS 5930: 2015. Code of practice for ground investigation. British Standards Institution.
- 9. BS 8574. Code of practice for the management of geotechnical data for ground engineering projects.
- 10. BS 1377-9. 1990. Methods of test for soils for civil engineering purposes. Part 9: In-situ tests. British Standards Institution.
- 11. TRL. 2004. Dynamic cone penetrometer tests and analysis. TRL Technical Report PR IN 277-04. Transport Research Laboratory, Crowthorne, England.

B7 Exploratory Hole Key

Key to Exploratory Hole Symbols and Abbreviations

Environmental soil sample

SPT split spoon sample

Gas sample

Liner sample

L

SPT

Environmental water sample

U

UT

W

SAMPLE TYPES

В	Bu k disturbed sample	ES
С	Core sample	EW
CBR-D	Disturbed sample from CBR test area	G

- CBR-U Undisturbed sample from CBR test area
- D Small disturbed sample

IN-SITU TESTING

- SPTs Standard Penetration Test (using a split spoon sampler)
- SPTc Standard Penetration Test (using a solid 60 degree cone)
- N Recorded SPT 'N' Value *
- -/- Blows/Penetration (mm) after seating blows totalling 150 mm
- MX Mexi Probe Test (records CBR as %)
- HV Hand Shear Vane Test (undrained shear strength quoted in kPa)
- PP Pocket Penetrometer Test (kg/m³)
- () Denotes residual test value
- PID Photo Ionisation Detector (ppm) *
- Kf/Kr Permeability Test (f = falling head, r = rising head quoted in ms⁻¹)
- HPD High Pressure Dilatometer Test (pressure meter)
- PKR Packer / Lugeon Permeability Test
- CBR California Bearing Ratio Test

ROTARY CORE DETAILS

- TCR Total Core Recovery, %
- SCR Solid Core Recovery, %
- RQD Rock Quality Designation (% of intact core >100 mm)
- FI Fracture Spacing (average fracture spacing; in mm, over indicated length of core) * *
- NI Non-Intact Core
- AZCL Assumed Zone of Core Loss

GROUNDWATER

Groundwater strike

Standing water level after 20 minutes; 1st, 2nd etc (number denotes level order)

STRATA LEGENDS - Note: Composite strata types are shown by combining symbols

* Where a single value is quoted this is the uncorrected 'N' value for a full 300 mm test drive following a seating drive of 150mm. Where the full test drive penetration is not achieved the number of blows is quoted for the penetration below the test total of 300mm, e.g.: 50/75.

* * The minimum, average and maximum are shown e.g. 5/45/125

Undisturbed sample

Water sample

Undisturbed thin wall sample

STRATUM BOUNDARIES

Unit boundary

APPENDIX C

EXPLORATORY HOLE LOGS

ARCADIS Percussive Borehole Log

BH2A01

Project Northstowe - Parcel 2A ^{Client} Homes England				· Parcel 2A and						Project No. Ground Level (mAOD) 10018973 8.73 Easting (OS mE) Nothing (OS mN) 540803.00 266850.70				31/0 End E	Date)5/2018 Date)6/2018	Sca 1:3 St	of 2	
SAM	PLES		TE	STS		500	PROGR	RESS			ST	RATA				1.5		Instal
Depth	Type/	/ Depth	Type/	Resu	lts	Wate	Date Time	Casing	11.00.00.1	1.00	Descriptio	m	d		Legend	(Thickness)	Level	Backf
0.00 - 0.5 0.00 - 0.5 0.00 - 0.5 0.50 - 1.0 0.50 - 1.0 0.50 - 1.0	0 B1 0 D20 0 ES24 0 B2 0 D21 0 ES25						01/06/2018 07:00	0.00 Dry	Orangish brown SAND. Gravel is [RIVER TERRA	mottled lig subangu CE DEPO	ght grey cla lar to round SITS]	ayey grave led fine to	elly fine to coarse f	o coarse flint.		(1.00)		
1.20 - 1.5 1.20 - 1.5 1.20 - 1.5 1.20 - 2.0	0 B3 0 D22 0 ES26 0 B4	- 1.20	SPT(S)	N=7 (2,1/2,1,2	2,2)				Firm brown sligh Gravel is subang [RIVER TERRA	tly gravell gular roun CE DEPO	ly sandy Cl ded fine to SITS]	LAY. Sand coarse fli	l is fine to nt.	o coarse.		1.00	7.73	
1.50 - 2.0 1.50 - 2.0 -2.00 - 2.4	0 D23 0 ES27 5 U5					-	-		Stiff fissured dar spaced, random [KIMMERAGE C	k grey CL ly orientat LAY FOR	AY. Fissure ted, smooth MATION]	es are extr and mat	remely cl	osely		1.70	7.03	
- 2.50 - 3.0	0 86					\bigtriangledown												
-3.00 - 3.4	5 D7	3.00	SPT(S)	N=50 (3,18/24	4,16,7,3)				Siltstone band	l recovere	d as light g to ver	rey mottle / weak fine	d bluish g e grained	rey weak siltstone.			ļ	
-4.00 - 4.4	5 U9															(4.30)		11
4.50 - 5.0	0 D10								Siltstone band	i recovere	d as light g to ver	rey mottle / weak find	d bluish g e grained	rey weak siltstone.			ļ	
-5.00 - 5.5	0 D11	5.00	SPT(S)	N=34 (5,5/7,8	,9,10)													
5.50 - 6.0	0 812																Ī	
-6.00 - 6.4	5 U13								Very stiff fissure siltstone pockets randomly orienta	d dark gre Fissures ated, smoo	ey CLAY with s are extrements are extremented and main the second	th occasio mely close t.	onal light ely space	grey d,		6.00	2.73	
6.50 - 7.5	0 D14								(KIMMERAGE C	Lay for	(MATION]							
- 7.50 - 7.9 -8.00 - 9,0	5 D15 0 D16	7.50	SPT(S)	N=35 (5,5/7,8	,9,11)											(4.45)		
-9.00 - 9.4	5 U17																	
·9.50 - 10.	00 818																ļ	
40.00 - 10	45 D19	10.00	SPT(S)	N=35 (5,6/7,8	,9,11)												ŧ	14
From	To To	TECHNIC	QUE jype	Hard S From	HISELL I Strata To	NG Duratio	n Date/T	ime S	trike At Time Elapsed	Rise To	Casing Seal	ed Hole Dia	LE/CASI	NG DIAM Casing Dia.	Depth	From	R ADD)ED Volume (lt
0.00	1.20 10.45	Inspe Cable P	ction Pit Percussion	3.10 4.50	3.30 4.60	00:33 00:25	31/05/2018 31/05/2018	8 14:30 8 15:30	2.40 20 4.60 20	2.11 4.43	1.65 3.1 3.15	5 150	10.45	150	3.15			

ARCADIS Percussive Borehole Log

BH2A01

Project Norths Client Homes	Project Northstowe - Parcel 2A ^{Client} Homes England				hstowe - Parcel 2A Project No. Gro 10018973 8. Easting (OS mE) Nor 540803.00 26							Sround Level (mAOD) 3.73 Jorthing (OS mN) 266850.70			Start D 31/0 End Da 01/0	^{ate} 5/2018 te 6/2018	B 1:50 B Sheet 2 of 2				
SAM	IPLES		TE	STS		er es	PROGR	RESS			STR/	ATA				Denth		Install/			
Depth	Type/	Depth	Type/	Resu	lts	Wate	Date Time	Casing			Description	I			Legend	(Thickness)	Level	Backfill			
-	110.	-	110.					Mator	Very stiff fis	sured dark gr	ey CLAY with	occasiona	al light gre	әу			-	[]]]			
-		-					01/06/2018	3.15	randomly or	ientated, smo	ooth and mat.	ely closely	spaced,			10.45	-1.72	<u> </u> ,			
-		-					11:00	13.84		GE CLAY FO	RMATION]			/	(ļ				
-		-															-				
-		-															Ŧ				
-		-															ł				
-		_															÷				
-		-															+				
-		-															+				
-		-															Į				
-		-															Ì				
-		-															ł				
-		-															1				
-		-															ŧ				
-		-															ŧ				
_		_															Ŧ				
-		-															ļ				
-		-															+				
-		-															ļ				
-		-															ŧ				
E																	Ī				
		_															I				
-		-															÷				
-		-															ļ				
-		-															÷				
-		-															ŧ				
E		-															l				
-		-															ļ				
-		-															1				
-		-															ţ				
E		_															ł				
-		_															÷				
-		-															-				
-		-															1				
-		-															ţ				
E		_															l				
-		-															1				
-		-															1				
-		-															ţ				
-		-															ļ				
E		_															Ŧ				
-		_															1				
-		-															1				
-		-															-				
-		_															l				
-		_															-				
	DR LLING	I TECHNIQ	UE	C	HISELL	NG		<u>ا</u>	I VATER OBSE	RVATIONS		HOLE	/CASING	G DIAME	TER	WATE	RADD	ED			
From	To	Ty	/pe	Hard From	Strata To	Duration	Date/Ti	me 5	Strike At Time Ela	psed Rise To	Casing Sealed	Hole Dia.	Depth C	asing Dia.	Depth	From	To \	/olume (Itr)			
1.20	10.45	Cable Pe	ercussion	4.50	4.60	00:25	31/05/2018	3 15:30	4.60 20	4.43	3.15	100	10.10		0.10						
Remarks																					
PID resul	Its not inclu	uded as eq	uipment b	ecame mois	sture sen	sitive. E	xploratory h	nole terr	ninated at sch	eduled depth	of 10.45mbg	I.									
																Term	nination D	epth:			
																	10.4	5m			
AGS	rcadis Cymru House t Me Ions Business ark ardiff F3 0EY	Unless of Depth (r	otherwise n), Diame	stated ter (mm), T	ime (hhr	nm),	Equipme Dando	nt Used			Contractor Arcadis Co	onsulting	g (UK) It	d	Lo	gged By H	Check SH	ed By			
Project Northsto Client Homes E	we - Engla	Parcel 2 nd	2A						Project 100 Eastin 540	t No. 18973 ng (OS mE) 877.00		Ground L 8.75 Northing 26683	evel (m (OS mN 4.00	AOD) I)		Sta 04 En 05	art Date 4/06/ d Date 5/06/	2018 2018	Sca 1:	50 1eet 1	of 2
--	---------------	------------------	-------------------------	-------------------	------------------------	----------------	---------------------	--------------------	---------------------------------	--	----------------------	---------------------------------------	---------------------------	----------------	-----------	--------------------------	--------------------------------------	--------------	----------------------	--------------	----------------
SAMPL	ES		П	ESTS		500	PROGR	RESS	1.7				STRA	TA					1.50		Inch
Depth	Type	Depth	Type/	Resu	ults	Wate	Date Time	Casin	g		1	Desc	ription		-		1	egend	Depth (Thickness)	Level	Back
0.00 - 0.50	B1 D29	-		-					Ora	ngish brown	mottled Gravel is	white cl	ayey s	lightly g	ravelly f	ine to medium	1.5				
0.00 - 0.50	ES25	-							flint	/FR TFRR/	CE DEP	OSITSI	to out	ounder		meanam	1.1			ŧ	21
0.50 - 1.00	B2 D30	E							[.u.	Entread	OL DLI	00110]	_	Beco	ming ver	y gravell	y .		(1.20)	ŧ	~
0.50 - 1.00	LJZU	Ę		1.00													1.5	1		ŧ	• F]
1.20 - 1.50	83	- 1.20	SPT(S)	N=9 (2.2/3.2.	2.2)		04/06/2018	1.2									102		1.20	7.55	F.F.
1.20 - 1.50 1.20 - 1.50	D31 ES27	F					17:00 05/06/2018	0.7	7 Loo	se yellowish oarse. Grav	el is angu	layey ve	ery san ubroun	dy GRA	e to med	and is fin lium flint	e			ŧ	Ε
1.50 - 2.00	B4 D32	E					07:00	0.7	7 with san	d and grave	lly sand.	(50 - 10	(umm)	of sand	y gravel,	clayey			(1.00)	Ī	
1.50 - 2.00	2.520	200	SPT(S)	N-7 (23/22	12)				[Ray	ER TERRA	CE DEP	USITSJ								ŧ	. E
2.20 - 3.00	B5	-	0.1(0)	14-1 (2,012,2,	1,2/				Stiff	dark grou (2		2.20	6.55	H
2.20 - 3.00	D33	Ē							[KIN	IMERAGE	CLAY FO	RMATIC	[NC				1	E.		Į.	1/1
		Ę							1								F			ŧ	12
3.00 - 3.45	D6	- 3.00	SPT(S)	N=12 (1,2/2,3	3,3,4)												E			I	12
		Ē															1		1 - 1	ŧ	12
3.50 - 4.00	D7	È.															-			ŧ	12
		Ē				1 - 10 			5	Siltstone bar	d recover	ed as lig	ght grey	/ mottle	d bluish	grey wea	ık			ŧ	22
4.00 - 4.45	U8	-										to	very w	eak fine	e grained	d siltstone	e.			ŧ	
	D.	Ē				\sim														I	
4.50 - 5.00	D9	Ē							5	Siltstone ban	d recover	ed as lig	ght grey	mottle	d bluish	grey weat siltstone	ak e			Ŧ	
		Ę																	(5.30)	ŧ	
5.00 - 5.45	D10	- 5.00	SPT(S)	N=28 (5,5/6,6	6,7,9)														forcel	ŧ	2.
		ŧ		1													-			ŧ	
5.50 - 6.00	B11	Ē																		ŧ.	
	1	E																		ŧ	
-6.00 - 6.45	U12	F																		ŧ	
		E																	1.1.2	Ŧ	
6.50 - 7.50	D13	Ē															-			Ī	
		Ē																		ŧ	
		F		1.00																Ŧ	
7.50 - 7.95	D14	- 7.50	SPT(S)	N=26 (3.5/5.6	6.7.8)														7.50	1.25	
	1	Ę							[KIN	/ stiff dark g	CLAY FO	RMATIC	INC							1	
-8.00 - 9.00	D15	E		1000													-			Ŧ	
		E																		ŧ	11
		È.																		ŧ	11
		Ē															E			ŧ	11.
-9.00 - 9.45	U16	Ē																ĒŦ	-	ŧ	11
		Ē																		ŧ	11
9.50 - 10.50	B17	F																		ŧ	14
		Ē															E			I	12
		Ē	-			-							_								712
DF From	To	TECHNIC	QUE jype	C Hard From	HISELL Strata To	NG Duratio	on Date/T	ime	WATE Strike At	R OBSERV	Rise To	Casing	Sealed	HO Hole Dia	LE/CAS	Casing D	METE Dia. D	epth	From	R ADD	ED /olume (
0.00 1.20	1.20 15.45	Inspe Cable F	ction Pit Percussion	4.40 14.20	4.70 14.40	01:10 00:40	0 04/06/2010	8 16:30 8 08:30	0.80 4.20	20 20	0.77 3.96	2.60	2.60	150	15.45	150	2	2.60			
emarks ID results	not incl	uded as e	quipment	became moi	sture ser	isitive. E	Exploratory I	hole ter	rminate	d at schedu	iled depth	n of 15.4	l5mbgl			1	1		_	- ()	-
																			Term	ination D	epth:
																				15.4	5m
Arcad	s Cymru Hous	Unless	otherwis	e stated			Equipme	ent Used	2			Contrac	tor					Loo	aged By	Check	ed By

Project Northst	owe -	Parcel 2	Α						Project No. 1001897 Easting (OS	7 3	G 8 N	round Lo	evel (mA0	DD)		Start 04/	Date 06/2018	Sc 1:	^{ale} 50	
Homes	Engla	nd							540877.	00	2	6683	4.00			05/	06/2018	S	heet 2	of 2
SAMP	LES		TE Tema (ESTS		ater ikes	PROGF	RESS					STRATA	٩				Depth	Level	Install/
Depth	No.	^{e/} Depth	No.	Resu	lts	Sti	Date Time	Water		<u> </u>	<u></u>	Descr	ription				Legend	(Thickness		Backfill
E		-							[KIMMER	dark grey AGE CLA	AY FOR	MATIC	DN]				E		ŧ	
-10.50 - 10.9	95 D18	- 10.50	SPT(S)	N=31 (4,6/6,7	7,9,9)												<u> </u>	-	Ŧ	
		-																-	ŧ	
-11.00 - 12.0 -	0 D19	-																-	÷	
E																	F	-	Į	
																	E- <u>-</u> -		ţ	
	5 1100	-																	ł	
-	15 020	-																	Ţ	
-	0 021	-															_			
-	0 021	-															E	(7.95)	ţ	
_		-															<u> </u>	(1.55)	Ļ	
		-																	ł	
- -13.50 - 13.9	5 D22	- - 13.50	SPT(S)	N=35 (4,5/6,8	5,10,11)												F		÷	
																	F		Į	
- 14.00 - 15.0	00 B23	_															E- <u>-</u> -		ŧ	
-		-							Siltstor	ne band re	ecovere	d as lig	ht grey r	nottled I	oluish gr	ey weak	+	-	ļ	
												10_	very we	ak ine ç	grained s	sinstone.	-1	-	ŧ	
E																		-	ŧ	
-15.00 - 15.4 -	5 D24	-															E		÷	
		-					05/00/00/0												1	
-		-					13:00	11.83										15.45	-6.70	
Ę		-																	ļ	
-		-																	Ť	
-		-																	ł	
-		-																	Ţ	
-		-																	1 1	
-		-																	ł	
																			ļ	
-		-																	ŧ	
_		_																	ļ	
-		-																	Ì	
-		-																	÷	
-		-																	Į	
-		-																	+	
Ę																			Į	
		-																	ŧ	
-		-																	ţ	
F		-																	÷	
					HISFIIN	IG				SERVATI	ONS			HOIF	CASIN		ETER	 		ED
From	To	Ty	/pe	Hard From	Strata To	Duratio	n Date/T	ime	Strike At Time I	Elapsed R	tise To	Casing	Sealed H	Iole Dia.	Depth	Casing Dia.	Depth	From	To	Volume (Itr)
1.20	15.45	Cable Pe	ercussion	4.40	14.40	00:40	05/06/2018	8 08:30	4.20	20	3.96	2.60	2.00	130	10.40	150	2.00			
Remarks						I												[
PID results	s not inc	luded as eq	uipment	became mois	sture sen	sitive. E	xploratory I	hole terr	minated at s	cheduled	depth o	of 15.4	5mbgl.							
																		Terr	nination [Depth:
																			15.4	5m
Arca	dis Cymru Hou	. Unless	otherwis	e stated		-	Equipme	nt Used			(Contract	tor	-	-	-	Lc	gged By	Check	ked By

BH2A03

Project Norths Client Homes	towe Engl	- Parcel : and	2A						Project No. 10018973 Easting (OS mE) 540900.30	Ground Level (m 9.10 Northing (OS ml 266874.90	N)	Start D 30/0 End Da 31/0	ate 5/2018 ate 5/2018	Sca 1:4 Sh	ie 50 ieet 1	of 2
SAN	PLES	1	Т	ESTS		es	PROGR	RESS		STR/	ATA			Death		Inetal
Depth	Typ	e/ Depth	Type/ No.	Resu	ults	Vat	Date Time	Casing Water	1.00	Description		100	Legend	(Thickness)	Level	Backfi
0.00 - 0.	20 B3 20 D2 20 ES1 20 B6 20 D5	0.00	PD	<1ppm					Grass over soft to fi Sand is fine to coar to coarse flint. [TOPSOIL] Loose to dense ora	irm dark brown grav se. Gravel is suban inge brown clayey \$	velly very sandy agular to subrour SAND and GRAN	CLAY. nded fine /EL. Sand	ык. 	(0.20) 0.20	8.90	A. Y. A.
0.50 - 1.	00 ES4	-							is fine to coarse. Gr coarse flint. _IRIVER TERRACE	ravel is subangular DEPOSITS]	to subrounded f	ine to		1.00	8.10	
1.20 - 1. 1.20 - 1. 1.20 - 1.	50 B9 50 D8 50 ES7	1.20	SPT(C)	N=4 (3,1/1,1,	,1,1)				very soft grey mottl is fine to coarse. Gr coarse flint. [KIMMERAGE CLA	ed orange brown sa ravel is subangular Y FORMATION]	andy gravelly CL to subrounded f	AY. Sand ine to		(0.50)	7 60	
1.50 - 2. 1.50 - 2. 1.50 - 2.	0 D11 00 ES1	0							Firm grey mottled o siltstone bands. Gra coarse flint.	range brown slighti avel is subangular t	y gravelly CLAY o subrounded fir	with ne to				
-2.00 - 2.	IS D13	- 2.00 - 2.00 -	PD	N=12 (1,2/2,3 7.6ppm	3,3,4)					TORMATION				(1.50)	Ī	
2.50 - 3.	00 D14	2.50	PD	<1ppm											Ī	
-3.00 - 3.	15 UT1	5 -							Stiff grey brown CL [KIMMERAGE CLA	AY with frequent 10 Y FORMATION])-50mm bands o	f siltstone.		3.00 -	6.10	
3.45 - 4.	00 D16	3.45	PD	35.9ppm											ł	
-4.00 - 4.	15 D17	4.00	SPT(S) P D	N=18 (2,3/3,4 3.8ppm	4,5,6)		30/05/2018 18:30	1.65 Dry							ŧ	
-		Ē					07:30	Dry							ļ	
-5.00 - 5.	15 UT1	в -													ļ	
- 5.50 - 6.	00 819														ŧ	
-6.00 - 6.	15 D20	- - 6.00 - 6.00	SPT(S) P D	N=23 (3,4/4,5 2.6ppm	5,6,8)										ŧ	
														(10.50)	ļ	
-															ŧ	
7.50 - 8.	00 B21														ļ	
		8.00	SPT(C)	N=28 (10,13/	(8,8,6,6)										Į	
8.50 - 9.	00 D22	8.50	PD	5.1ppm											Į	11
-9.00 - 9.	15 D23	9.00	SPT(S) P D	N=28 (3,4/5,6 <1ppm	6,8,9)										ŧ	11
9.50 - 10	50 D24	- 9.50 -	PD	<1ppm												
			OUE		HIGELL	NG				ONS	HOLEICAS		TEP	WATE		
From	To	S ILVINI	Туре	Hard	Strata	Duratio	n Date/T	ime S	trike At Time Elapsed Ri	ise To Casing Sealed	Hole Dia. Depth	Casing Dia.	Depth	From	To \	/olume (ltr
0.00	15.45	Cable	Percussion ection Pit	3.50 4.60	3.70	00:50	31/05/2010	8 18:00	4.70 20 4	1.53 1.65	150 15.45	150	1.65			

Arcadis Consulting (UK) Itd

IT

SH

BH2A03

lient Homes E	we - P nglan	arcel 2 d	A					10018973 Easting (OS mE) 540900.30	9.10 Northing (26687	OS mN) 4.90	30/ End 31/	05/2018 Date 05/2018	1: Si	50 neet 2	of 2
SAMPL	ES		T	STS		PROG	RESS	1.		STRATA			1.4.5.		
Depth	Type/	Depth	Type/	Results	Wate	Date Time	Casing		Descr	iption		Legend	Depth (Thickness)	Level	Backfi
SAMPLI Depth 10.50 - 10.95 11.00 - 12.00 12.00 - 12.45	ES Type/ No. UT25 B26 D27 D27 D28 D29 D30	Depth	TI Type/ No. SPT(S) PD PD PD PD	ESTS Results N=30 (3,4/5,7,8, 1.6ppm 46.5ppm 46.5ppm	10)	PROGI Date Time 31/05/2018 13:30	ESS Casing Water 1.65 13.87	Stiff grey brown C [KIMMERAGE CI Very stiff grey CL [KIMMERAGE CI	Descr LAY with freque AY FORMATIC	STRATA iption ent 10-50mm I N]	bands of siltstone.		Depth (Thickness) 13.50 (1.95)	-4.40	Install Backfi
	LLING To 5.45 .20	TECHNIC TCable P Inspe	QUE ype ercussion ction Pit	CHI Hard Str. From 3.60 4.60 13.70	SELL NG Ha To Durat 3.70 00: 4.70 00: 13.80 00:3	ion Date/7 0 31/05/201	V ime \$ 8 18:00	VATER OBSERVAT Strike At Time Elapsed 4.70 20	10NS Rise To Casing 4.53 1.65	HOI Sealed Hole Dia. 150	E/CASING DIAM Depth Casing Dia 15.45 150	ETER Depth 1.85	WATE		ED Volume (It
temarks Exploratory h	hole terr	minated a	t schedule	ed depth of 15.4	45mbgl.								Term	ination [Depth:
						Fauines	et Llood	_						10.4	

Depth (m), Diameter (mm), Time (hhmm), Thickness (m), Level (mOD).

SH

BH2A04

SMALES USIS Mage Products STRAIA Depth Mode	B VALEE CONSERVATIONS HOLE CONSERVATIONS Lower Instruction Instruction NUMEE VALEE CONSERVATIONS HOLE CONSERVATIONS 100	roject Vorthst lient Iomes	owe - Engla	Parcel 2 nd	2A						Project No. 10018973 Easting (OS mE) 540773.70	Ground Lev 8.58 Northing (O 266950.	el (mAOD) 6 mN) 60		Start D 01/0 End Da 04/0	ate 6/2018 ate 6/2018	Sca 1: Sh	^{le} 50 leet 1	of 2
Depth Tipe/ Depth Depth Tipe/ No. Depth Tipe/ No. Depth Tipe/ No. Depth Lagend State State 000-100 000-100 000-100 000-100 000-100 000-100 000-100 Tipe/ Depth Tipe/ No. Tipe/ Depth Tipe/ Depth Tipe/ Depth Lagend Tipe/ Depth Lagend Tipe/ Depth Lagend Tipe/ Depth	B Date Time Carrier Control Level II and Description Level II and Description Level II and Description Carrier Time MADE CROUND: Time to still carrier	SAMF	PLES		П	ESTS		500	PROGE	RESS		S	TRATA				1.50	1.71	Inst
DB 705 07 B1 DB 705 07 B1<	Image: Second	Depth	Type	Depth	Type/ No	Resu	ults	Vate	Date Time	Casing)	Descrip	tion			Legend	(Thickness)	Level	Back
Base 1:00 Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dist Dis Dist Dist	300mm pockets of firm dark gray clay 0,00 7,78 0,000 to 100 130 0,00 1,778 0,000 to 100 130 0,00 1,778 0,000 to 100 1,30 1,30 1,30 0,000 to 100 1,30 1,30 1,559 0,000 to 100 1,30 1,30 1,559 0,000 to 100 1,30 1,559 1,00 0,000 to 100 1,30 1,559 1,00 0,000 to 100 1,00 1,00 1,00 1,00 1,000 to 100 1,000 1,000 1,000 1,000 1,000 1,000 to 100 1,000 1,000 1,000 1,000 1,000 1,000 1,000 to 100 1,000 1,000 1,000 1,000 1,000 1,000 <td>0.00 - 0.50 0.00 - 0.50 0.00 - 0.50</td> <td>D B1 D D32 D ES28</td> <td>Ē</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>MADE GROUND: and white slightly Gravel is subangu</td> <td>Firm to stiff oran gravelly sandy C lar to subrounde</td> <td>gish brown r LAY with 10r d fine to mee</td> <td>nottled bl nm pocke dium flint.</td> <td>uish grey ets of silt.</td> <td></td> <td>(0.80)</td> <td></td> <td>4</td>	0.00 - 0.50 0.00 - 0.50 0.00 - 0.50	D B1 D D32 D ES28	Ē					-		MADE GROUND: and white slightly Gravel is subangu	Firm to stiff oran gravelly sandy C lar to subrounde	gish brown r LAY with 10r d fine to mee	nottled bl nm pocke dium flint.	uish grey ets of silt.		(0.80)		4
Chi Chi <td>0160218 1.30 020010 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.50</td> <td>0.50 - 1.00 0.50 - 1.00 0.50 - 1.00</td> <td>B2 D33 ES29</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>30mm</td> <td>pockets of fi</td> <td>rm dark g</td> <td>rey clay.</td> <td></td> <td>0.80</td> <td>7.78</td> <td></td>	0160218 1.30 020010 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.30 0200170 1.50	0.50 - 1.00 0.50 - 1.00 0.50 - 1.00	B2 D33 ES29	-								30mm	pockets of fi	rm dark g	rey clay.		0.80	7.78	
259-300 D7 - - 3.00 3.01 - - 3.00 - 3.00 - 3.00 - 3.00 - 3.00 - - 3.00 - <	Very stiff grey slightly sandy CLAY with pockets and bands of alt and slitblore. [KIMMERAGE CLAY FORMATION] 3.00 5.59 Sittsione band recovered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and recovered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and recovered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and recovered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covered as light grey motified bluish grey weak to very weak fine grained slistone. 1 1 Immediately and the covere grey weak fine grained slistone. 1 1 1 1 Immediately and to the covere grey weak fine grained slistone.	1.20 - 1.50 1.20 - 1.50 1.20 - 1.50 1.20 - 1.61 1.50 - 2.00 1.50 - 2.00 1.50 - 2.00 2.00 - 2.41) 84) D34) ES30 5 D3) 85) D35) ES31 5 U6	- 1.20	SPT(S)	N=6 (1,1/1,1,	2,2)		01/06/2018 12:00 04/06/2018 07:00	1.20 Drg 1.20 Drg	Firm blush grey n pockets and band [KIMMERAGE CL	nottled orangish I s of silt and siltst AY FORMATION	rown slightly one. 	y sandy C	LAY with		(2.20)		
3.00 - 3.45 08 - 3.00 SPT(S) N-19 (3.34,4.5.6) Very still grey slightly sandy CLAY with pockets and bands of still 3.00 3.50 - 4.40 09 -	Very stiff grey slightly sandy CLAY with pockets and bands of sit and sitstone. [KIMMERAGE CLAY FORMATION] 3.00 5.50 Sittstone band recovered as light grey motified bluish grey weak to very weak fine grained sitstone. 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1	2.50 - 3.0/	70 07															ļ	
108 - 345 00 - 3.00 SPT(S) N=19 (0.344.5.6) 3.00 3.50 - 400 09 -	Very stiff grey slightly sandy CLAY with pockets and bands of sit 3.00 5.58 1 and sitistore. [KMMERAGE CLAY FORMATION] 1 1 1 1 Stitstone band recovered as light grey motified bluish grey weak to very weak fine grained sitistone. 1 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 1 Imm elongated light grey motified bluish grey weak fine grained sitistone. 1 1 1 1 Imm elongated light grey pockets, Possible bloturbation 1 1 1 1 1 Imm elongated light grey blockets, Possible bloturbation 1 1 1 1 1 Imm elongated light grey blockets, Possible bloturbation 1 1 1 1 1 1 Imm elongated light grey blockets, Possible bloturbation 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			Ē		A										122		ł	E
Aug. 4.4.5 U10 Stitistone band recovered as light grey motified bluich grey weak file grained sitistone. 4.00 - 4.45 U10 Stitistone band recovered as light grey motified bluich grey weak file grained sitistone. 5.00 - 5.45 D12 5.00 SPT(S) 5.00 - 5.45 D12 5.00 SPT(S) 5.00 - 5.45 D12 5.00 SPT(S) 5.00 - 5.45 D13 Imm elongated light grey pockets, Possible biolurbation 6.00 - 6.45 U14 Imm elongated light grey pockets, Possible biolurbation 6.00 - 6.45 U14 Imm elongated light grey pockets, Possible biolurbation 7.50 - 7.50 D15 Imm elongated light grey pockets, Possible biolurbation 6.00 - 6.45 U14 Imm elongated light grey pockets, Possible biolurbation 6.00 - 6.45 U14 Imm elongated light grey pockets, Possible biolurbation 6.00 - 7.50 D15 Imm elongated light grey pockets, Possible biolurbation 6.01 - 7.50 SPT(S) N-29 (5.56, 6, 6, 9) Imm elongated light grey pockets, Possible filter 6.01 - 7.50 D14 Imm elongated light grey pockets, Possil shell fragments Imm elongated light grey pockets	Sittstone band recovered as light grey motiled bluish grey weak to very weak fine grained sittsone. Immediate a site of the second site of the s	3.00 - 3.45	5 D8	- 3.00	SPT(S)	N=19 (3,3/4,4	4,5,6)				Very stiff grey slig and siltstone. [KIMMERAGE CL	htly sandy CLAY AY FORMATION	with pockets	and ban	ds of silt		3.00	5.58	
4.50 - 5.00 B11 Sittstone band recovered as light grey motified bluich grey weak fine graned sittstone. 5.00 - 5.45 D12 - 5.00 SPT(S) N=32 (5.568.8,10) 5.00 - 5.45 D12 - 5.00 SPT(S) N=32 (5.568.8,10) 5.00 - 5.45 D13 6.00 - 6.45 U14 6.00 - 6.45 U14 6.00 - 6.45 U14 7.50 - 7.50 D15 8.00 - 9.00 D17 8.00 - 9.00 D18 9.00 - 9.45 U19 150 - 10.50 D20 DR LLING TECHNIQUE CHISELL NG WATER OBSERVATIONS HOLE/CASING DIAMETER WATER	Sitistone band recovered as light grey motiled bluish grey weak to very weak fine grained sitistone Imm elongated light grey pockets, Possible bioturbation Imm elongated light grey pockets, Possible bioturbation (12.45) Imm elongated light grey pockets, Possible bioturbation (12.45) Rare fossil shell fragments Imm elongated light grey pockets, Possible bioturbation WATER OBSERVATIONS HOLE/CASING DIAMETER WATER ADDED Jator Tume, State At Time Expended Res To Casing Sealed Hole Dia Depth Casing Dia Depth From To Velume field To Velume field Jator Tume, State At Time Expended Res To Casing Sealed Hole Dia Depth Casing Dia Depth To Velume field To Velume field	4.00 - 4.4	5 U10																
5.00 - 5.45 D12 - 5.00 SPT(S) N=32 (5,56,6,8,10) 5.50 - 5.45 D13 - - - 5.50 - 5.00 D13 - - - 5.50 - 5.00 D13 - - - - 5.50 - 5.00 D13 - - - - - 5.00 - 6.45 U14 - - - - - - 5.00 - 7.50 D15 - <td>Immedongated light grey pockets, Possible bioturbation. (12.45) Immedongated light grey pockets, Possible bioturbation. (12.45) Immedongategrey pockets, Possible</td> <td>4.50 - 5.0(</td> <td>D B11</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Siltstone band r</td> <td>recovered as light to ve</td> <td>grey mottled ery weak fine</td> <td>bluish gr grained s</td> <td>ey weak iltstone.</td> <td></td> <td></td> <td>ļ</td> <td></td>	Immedongated light grey pockets, Possible bioturbation. (12.45) Immedongategrey pockets, Possible	4.50 - 5.0(D B11								Siltstone band r	recovered as light to ve	grey mottled ery weak fine	bluish gr grained s	ey weak iltstone.			ļ	
530 - 6.00 D13 530 - 6.45 U14 530 - 6.45 U14 530 - 7.50 D15 7.50 - 7.50 D15 7.50 - 7.50 D15 7.50 - 7.50 D16 7.50 - 7.50 D15 1.00 - 9.00 B17 1.50 - 9.00 D16 1.50 - 9.00 D20 1.50 - 9.00 D20 1.50 - 9.00 D20 1.50 - 9.00 D16 1.50 - 9.00 D20 1.50 - 9.00 D20 DE LUING TECHNIQUE CHISELLING WATER OBSERVATIONS HOLE/CASING DIAMETER	Rare fossil shell fragments. (12.45) Rare fossil shell fragments. (12.45) Date/Time State At Time Expeed Reare for Casing State At Time Expeed Reare for Casing Sealed Hole Dia Depth From To Velume 150 04006201814.00 14.80 20 14.53 1.85 160 15.45 150 1.65 1	5.00 - 5.4	5 D12	5.00	SPT(S)	N=32 (5,5/6,8	8,8,10)				1mm elo	ngated light grey	oockets, Pos	sible biotu	irbation.				
6.00 - 6.45 U14	water observations	5.50 - 6.00	D 13															ļ	
6.50 - 7.50 D15 7.50 - 7.50 D16 7.50 SPT(S) N=29 (5,56,6,8,9) 8.00 - 9.00 B17 8.50 - 9.00 D18 8.50 - 9.00 D18 1.50 - 10.50 D20 DR LLING TECHNIQUE CHISELL NG WATER OBSERVATIONS HOLE/CASING DIAMETER WATER.	Rare fossii shell fragments. (12.45) Rare fossii shell fragments. 1 Bate/Time Shite At Time Elapsed Rese To 10 Date/Time Shite At Time Elapsed Rese To 130 240602218 14:00 14:53 1:56 1:50 1:85 1:50 1:85 1:0	6.00 - 6.45	5 U14	r L														ļ	
8.00 - 9.00 B17 Rare fossil shell fragments. 8.50 - 9.00 D18 9.00 - 9.45 U19 9.00 - 9.45 U19 1.50 - 10.50 D20 DR LLING TECHNIQUE CHISELLING WATER OBSERVATIONS HOLE/CASING DIAMETER	Rare fossil shell fragments. Rare fossil shell fragments. Image: Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. 100 Date/Time 130 04/06/2018 14:00 14.60 20 14.53 1.65	6.50 - 7.50 7.50 - 7.9	5 D16	7.50	SPT(S)	N=29 (5,5/6,1	5,8,9)										(12.45)		
8.50 - 9.00 D18 9.00 - 9.45 U19 3.50 - 10.50 D20 DR LLING TECHNIQUE CHISELLING WATER OBSERVATIONS HOLE/CASING DIAMETER WATER	water observations Hole/CASING DIAMETER Water Added ation Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole/CASING DIAMETER WATER Added 150 04/06/2018 14:00 14.60 20 14:53 1.55 150 1.65 1	8.00 - 9.00	B17									÷	Rare foss	il shell fra	gments.				
3.00 - 9.45 U19	water observations Hole/CASING DIAMETER Water Added ation Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia Depth From To Volume 150 04/06/2018 14.60 20 14.53 1.65 150 150 1.65 1 <td>3.50 - 9.OC</td> <td>D D18</td> <td></td> <td>ļ</td> <td>P</td>	3.50 - 9.OC	D D18															ļ	P
150 - 10.50 D20	WATER OBSERVATIONS HOLE/CASING DIAMETER WATER ADDED ation Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia Depth From To Volume 150 04/06/2018 14:00 14.60 20 14:53 1.85 150 150 1.85 1 <t< td=""><td>9.00 - 9.45</td><td>5 U19</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŧ</td><td>11</td></t<>	9.00 - 9.45	5 U19															Ŧ	11
DR LLING TECHNIQUE CHISELLING WATER OBSERVATIONS HOLE/CASING DIAMETER WATER	WATER OBSERVATIONS HOLE/CASING DIAMETER WATER ADDED ration Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 250 04/06/2018 14:00 14.60 20 14.53 1.65 150 15.45 150 1.65<	.50 - 10.5	0 D20															Į	11
DR LLING TECHNIQUE CHISELL NG WATER OBSERVATIONS HOLE/CASING DIAMETER WATER	WATER OBSERVATIONS HOLE/CASING DIAMETER WATER ADDED ration Date/Time Strike At Time Elapsed Rise To Casing Sealed HOLE/CASING DIAMETER WATER ADDED 330 Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To Volume 330 D4/06/2018 14:00 14.60 20 14.53 1.65 150 15.45 150 1.85 Image: Casing Dia. Depth From To Volume 560 .04/06/2018 14:00 14.60 20 14.53 1.65 150 150 1.85 Image: Casing Dia. Ima			F													-		11,
From To Type From To Duration Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia. Depth From To	0:30 04/08/2018 14:00 14:60 20 14:53 1.65 150 15.45 150 1.65 1:34	D	To	3 TECHNIC	QUE jype	C Hard From	HISELL Strata To	NG Duratio	on Date/T	ime	Strike At Time Elapsed	Rise To Casing Se	aled Hole Dia.	E/CASIN Depth	G DIAME Casing Dia.	Depth	From	R ADD	ED Volume
0.00 1.20 Inspection Pit 4.30 4.40 00:30 04/08/2018 14:30 14.60 20 14.53 1.65 150 15.45 150 1.85 1.20 15.45 Cable Percussion 4.40 00:30 04/08/2018 14:30 14.60 20 14.53 1.65 150 15.45 150 1.85		0.00 1.20	1.20 15.45	Inspe Cable F	ction Pit Percussion	4.30 4.40 14.30	4.40 4.60 14.40	00:30 00:50 00:34	0 04/06/2011	8 14:00	14.60 20	14.53 1.65	150	15.45	150	1.65			

Logged By Chec MT SH

Northsto Client Homes E	we - F Inglan	Parcel 2 nd	A					10018973 Easting (OS mE) 540773.70	8.58 Northing (OS m 266950.60	N)	01/0 End D 04/0	6/2018 ate 6/2018	1: 54	50 leet 2	of 2
SAMPL	ES		П	ESTS	50	PROG	RESS	1	STR	ATA			1.2.50		Install
Depth	Type/	Depth	Type/	Results	Wate	Date Time	Casing	La consecutor	Description	r in the second s	100	Legend	Depth (Thickness)	Level	Backfi
10.50 - 10.95 11.00 - 12.00	D21 D22	- 10.50	SPT(S)	N=31 (5,6/6,7,8,1	10)			Very stiff grey sligh and siltstone. [KIMMERAGE CLA	tly sandy CLAY wit	n pockets and band	ls of silt				
2.00 - 12.45 2.50 - 13.50	U23 B24														
3.50 - 13.95	D25	- 13.50	SPT(S)	N=35 (3,4/6,9,9,1	11)										
14.50 - 15.00 15.00 - 15.45	D26 D27		SPT(S)	N=45 (5,8/9,11,1	1,14)			Siltstone band re	ecovered as light gre to <u>very</u>	ey mottled bluish gre weak fine grained s	ey weak iltstone.				
						04/06/2018	1.65						15.45		
DR	LLING	TECHNIC	QUÉ	СНІЗ	ELL NG			NATER OBSERVATIO	DNS	HOLE/CASIN	g diame	TER	WATE	RADD	ED
From 0.00 1	To .20	Inspe	ype ction Pit	Hard Strat	To Duratio	on Date/1	ime S 8 14:00	Strike At Time Elapsed Ri 14.60 20 1	4.53 1.65 Sealer	Hole Dia. Depth 0 150 15.45	Casing Dia. 150	Depth 1.65	From	To	/olume (It
1.20 1 Remarks PID results r	not inclu	Cable P Ided as ec	quipment	became moistur	e sensitive. I	Exploratory	hole term	ninated at scheduled	depth of 15.45mbg	L .			Term	ination D	epth: 5m

BH2A05

Project Northsto Client Homes	owe - F Englan	arcel 2 d	A						Project No. 10018973 Easting (OS mE) 540851.50	Groun 8.91 Northi 266	nd Level (m ing (OS mN 949.30	AOD) I)		S C E C	5/06 5/06 and Date 6/06	te /2018 /2018	Sca 1:4 Sh	ie 50 ieet 1	of 2
SAMP	LES		T	STS		5 8	PROGR	RESS			STRA	TA					2.0	1	Inch
Depth	Type/	Depth	Type/	Result	ts	Wate	Date Time	Casing		De	escription			-	- 1	Legend	Depth (Thickness)	Level	Back
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 0.20 - 0.50	B1 D27 ES28 B2	-	NO.			C_145		valer	Firm to very stiff b frequent rootlets.	rownish gre Gravel is an	y sandy s gular to s	slightly g subroun	gravelly ded fine	CLAY we to med	vith lium	M82	(0.20) 0.20 (0.30)	8.71	8
0.20 - 0.50 0.20 - 0.50 0.50 - 0.70 0.50 - 0.70 0.50 - 0.70	D29 ES30 B3 D31 ES32	-							Brownish grey mo is subangular to si ironstone nodules	ttled bluish ubrounded f	grey clay fine to me	ey grav edium fl	elly SA int with	ND. Gra rare 5m	vel m		0.50 (0.70)	8.41	
1.20 - 1.50 1.20 - 1.50 1.20 - 1.50	B4 D33 ES34	- 1.20	SPT(S)	N=7 (1,2/1,2,2	!,2)	\mathbf{v}			Firm to stiff light b sandy gravelly CL subangular to rou	Town, bluish AY. Sand is nded fine with AY FORMA	grey, wh fine to co hite flint.	ite and barse. C	orangis Gravel is	sh brown			1.20	7.71	
1.50 - 2.00 1.50 - 2.00 1.50 - 2.00	85 D35 ES36	-							Soft to firm orangi slightly gravelly Cl subangular to sub	sh brown m AY. Sand is rounded fine AY FORMA	ottled blu s fine to c e flint. TIONI	ish grey oarse.	y slightl Gravel i	y sandy s			(0.60)	7.11	
-2.00 - 2.43	06	-							Firm dark grey slig light brown silt. [KIMMERAGE CL	htly sandy AY FORMA	CLAY with	h 1mm	pockets	s of very			(1.20)	F	Î Î Î Î
2.50 - 3.00	D7	-	aler the								Occasi	onal fos	sil shell	fragmen	nts.			ļ	1
-3.00 - 3.45	D8	- 3.00	SPT(S)	N=16 (2,2/3,4,	,4,5)				Stiff to very stiff bl [KIMMERAGE CL	uish grey m AY FORMA	ottled gre TION]	y and b	orown C	LAY.			3.00 -	- 5.91	11
3.50 - 4.00	D9	-																ļ	
-4.00 - 4.45	U10																(2.60)		11
4.50 - 5.00	B11				_		05/06/2018 17:00 06/06/2018 07:00	2.50 Dry 2.50 Dry											11
-5.00 - 5.45	D12	5.00	SPT(S)	N=34 (5,4/7,7,	8,12)	Į.												ŧ	11
5.50 - 6.00	D13					¥			Siltstone band r Stiff dark grey CL/	ecovered as	s light grey to very w	y mottle veak fin	d bluish e graine	grey we	eak ne.		5.60	3.31	1
-6.00 - 6.45	U14								[KIMMERAGE CL	ay forma	TIONJ						-	Į	11
6.50 - 7.50	D15																		
									Siltstone band r	ecovered as	light grey	v mottle	d bluist	drev we	ak			ļ	11
7.50 - 7.95	D16	- 7.50	SPT(S)	N=26 (3,4/5,6,	7,8)						to very w	veak fin	e graine	ed siltstor	ne.			ļ	
-8.00 - 9,00	B17																		
																		ļ	11
-9.00 - 9.45	U18																	ŧ	11
-9.50 - 10.5(D19																		1
•		-	-			-	_			-	_							-	11,
From	To R LLING	TECHNIC T	QUE ype	Hard S	IISELL N Strata	G Duratio	n Data	ime	Strike At Time Elapsed	ONS Rise To Casi	ng Sealed	Hole Dia	LE/CA	SING DI	Dia.	ER Depth	From	R ADD	ED /olume (
0.00 1.20	1.20 15.45	Inspe Cable P	ction Pit Percussion	4.30 5.40 7.40 14.60	4.60 5.60 7.50 14.80	01:00 00:33 00:25 00:33	05/06/2018 06/06/2018 06/06/2018	8 15:00 8 09:00 8 14:00	1.50 20 5.60 20 14.80 20	1.08 1.5 14.71 2.6 5.49 2.6	0 2.50 0 8.50 0	150	15.4	5 150)	2.60			
Remarks PID results	not inclu	ded as ec	quipment l	became moist	ture sens	sitive. E	xploratory I	hole ten	ninated at scheduled	I depth of 1	5.45mbgl						Term	ination D)epth: 5m

Logged By Chec MT SH

Northsto Client Homes	owe - I Englar	Parcel 2 nd	A						Project No. 10018973 Easting (OS mE) 540851.50		Ground L 8.91 Northing (26694	os mN) 9.30)	Star 05/ End 06/	Date 06/2018 Date 06/2018	5ca 1:1 Sh	50 seet 2	of 2
SAMP	LES		Т	ESTS		er	PROGR	RESS	1.			STRATA				Donth		Install
Depth	Type/ No.	Depth	Type/ No.	Resu	lts	Strik	Date Time	Casing Water		2.2.1	Descr	iption			Legend	(Thickness)	Level	Backfi
10.50 - 10.9 11.00 - 12.0	5 D20 D D21	- 10.50	SPT(S)	N=32 (5,5/6,8	,8,10)				Stiff dark grey ([KIMMERAGE (CLAY. CLAY FO	RMATIC	nj						
2.00 - 12.4 2.50 - 13.5	5 U22 0 B23															(9.85)		
13.50 - 13.9 14.00 - 15.0	5 D24 0 D25	- 13.50	SPT(S)	N=43 (6,7/9,1	0,11,13)													
15.00 - 15.4	5 D26		SPT(S)	N=49 (7,9/9,1	4,12,14)	×			Siltstone ban	d recover	ed as lig to	ht grey mo very weak	ttled bluish fine grained	grey weak 1 siltstone.				
DI From 0.00	R LLING To 1.20	TECHNIK	QUE ype ction Pit	Cl Hard From 4.30	HISELL I Strata To 4.80	NG Duratic 01:00	n Date/T	ime 3 15:00	WATER OBSERV/ Strike At Time Elapsed 150 20	ATIONS Rise To	Casing 1.50	Sealed Hok	HOLE/CAS Dia Depth 50 16.45	ING DIAM Casing Dia 150	ETER Depth 2.60	WATE	R ADDI	ED /olume (It
DI From 0.00 1.20 Remarks PID results	R LLING To 1.20 15.45 not incl	TECHNIC T Inspe Cable F	QUE ype ction Pit Percussion quipment	CH Hard From 4.30 5.40 7.40 14.60 became mois	HISELL I Strata To 4.60 5.60 7.50 14.80	NG Duratic 01:00 00:33 00:25 00:33	n <u>Date/T</u> 05/06/201 06/06/201 06/06/201	ime 3 15:00 3 09:00 3 14:00	WATER OBSERV/ Strike At Time Elapsed 1.50 20 14.80 20 minated at schedu	ATIONS Rise To 1.08 14.71 5.49 led depth	Casing 1.50 2.60 2.80	Sealed Hole 2.50 1 8.50 1 5mbgl.	HOLE/CAS Dia. Depth 50 15.45	ING DIAM Casing Dia 150	IETER Depth 2.60	WATE From	R ADD To	

BH2A06

lorthsto lient	owe - F Englar	Parcel 2 Id	A	-					Project No. 10018973 Easting (OS mE) 540959.20		Ground Level (9.37 Northing (OS m 266899.4(mAOD) IN)		Start I 30/0 End D 30/0	oate 5/2018 ate 5/2018	Sci 1: St	^{ile} 50 neet 1	of 2
SAMP	LES		TE	STS			PROGR	RESS	-		STR	ATA				Death	1.71	Ineta
Depth	Type/	Depth	Type/	Resu	ilts	Wate	Date Time	Casing	1.000		Description	n			Legend	(Thickness)	Level	Back
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 0.20 - 0.80 0.20 - 0.80	B3 D2 ES1 B6 D5	0.00 0.20	PD PD	<1ppm 2.8ppm			30/05/2018 08:00	0.00 Dry	Grass over soft occasional. Sar rounded fine to [TOPSOIL] MADE GROUN	dark brow d is fine t coarse fli	vn slightly gr o coarse. Gr nt and brick. brown slight	avelly san avel is su	dy CLAY bangular	with to		(0.20) 0.20 (0.60)	9.17	
0.20 - 0.80 0.80 - 1.20 0.80 - 1.20 0.80 - 1.20	E54 B9 D8 ES7	0.80	PD	<1ppm					coarse SAND.	Gravel is : orange b	subangular to	clayey S/	ded fine	to coarse	$\overset{\times\!\!\times\!\!\times}{}$	0.80	8.57	
1.20 - 1.50	B13	1.20	SPT(S)	N=5 (1,1/1,1,	1,2)				fine to coarse fl	is fine to int.	coarse. Grav	/el is suba	angular t	o rounded		1.20	8.17	. Ш
1.20 - 1.50 1.20 - 1.50 1.20 - 1.65	ES11 D10	1.50	PD	<1ppm					Soft brown mot subangular to s	CE DEP(ted grey : ubrounde CE DEP(<u>DSEES</u> slightly grave d fine flint. DSETS1	lly CLAY.	Gravel	s		(0.30) 1.50	7.87	
-2.00 - 2.45	UT14								Stiff light grey b	rown mot CLAY FO	tled orange b RMATION]	prown CL/	AY.			(1.00)	Ì	
2.50 - 3.00	B16	2.50	PD	1.1ppm					Stiff light brown	mottled g	rey CLAY wi	th occasio	onal grav	el. Gravel		2.50	6.87	H
	-	Ē	1.1	1.1					is subangular to [KIMMERAGE	Subroun	ded fine flint RMATION]				F==		ŧ	12
3.00 - 3.45	D17	- 3.00 - 3.00	SPT(S) P D	N=20 (2,2/3,3 <1ppm	3,5,9)											(1.00)	Ŧ	1
3.50 - 4.00	B19	- 3.50	PD	<1ppm					Stiff arou CLAV	with eilter	ono bando			_	-2-2	3.50	5.87	11
3.50 - 4.00	D18	Ē	1.0						[KIMMERAGE	CLAY FO	RMATION]				EEE		Ŧ	59
		-		1.0		V									F		t 1	11
	1.1	Ē				\sim									F==		Ŧ	
4.50 - 4.95	D20	- 4.50	SPT(S)	N=18 (7,6/5,4	1,4,5)												ŧ	-
4.50 - 5.00 4.50 - 5.00	B22 D21	4.50	PD	1.2ppm											E==		ŧ	
-5.00 - 6.00	B24	4.95	PD	<1ppm <1ppm													ŧ	2
5.00 - 6.00	D23	-	10	. PP-11											F =2		Ŧ	-
	10.3	È													2-2-		ŧ	
		Ē													133		Ŧ	
·6.00 - 6.45	UT25	È															ŧ	
	17.5	Ē															Ŧ	
6.50 - 7.50	B27	- 6.50	PD	<1ppm											FE		‡	
0.50 - 7.50	026	-		1.1											EE	(6.95)	Ŧ	
	1.1	E													22		ŧ	77
		Ē													EE:		Ŧ	11
7.50 - 7.95	D28	- 7.50	SPT(S)	N=26 (3,7/5,6	5,6,9)										122		ŧ	11
		- 7.50	PU	< tppm											EEE		Į	11
8.00 - 9.00	830	8.00	PD	<1ppm											122		ŧ	11
0.00 - 0.00	025	E.		1											E=		ŧ	11
		E													F2-2		ŧ	11
	1.8	È.															ŧ	11
9.00 - 9.45	UT31	Ē													E==		ŧ	11
		F		1.5													ŧ	11
9.50 - 10.00	B33	9.50	PD	<1ppm													ł	14
	502	Ē	-	1													ŧ	13
10.00 - 10.4	5 D34	- 10.00 - 10.00	SPT(S) P D	N=27 (3,4/5,6 <1ppm	5,7,9 <mark>)</mark>												Ŧ	272
Erom	R LLING	TECHNIC	QUE	Hard	HISELL	NG		V s	VATER OBSERV	ATIONS Rise To	Casing Seale	HOL d Hole Dia.	E/CASI	G DIAME	TER	WATE	R ADD	ED Volume (l
0.00	10.45 1.20	Cable F Inspe	Percussion ction Pit	3.40 4.30	3.60 4.40	00:34 00:34	30/05/2010	me 3 14:30	4.20 20	4.01	1.65	150	10.45	150	1.65			
lemarks		,				1.2												_
xploratory	hole ter	minated a	t schedule	ed depth of 1	0.45mbg	gl. Slight	l seepage a	t 4.20mł	gl.									
																Tern	ination D)epth:
			_	-							-						10.4	om

Project Norths	stowe -	Parcel 2	Α						Project No. 10018973		Ground Lev 9.37	vel (mAOD))	Start I 30/0	Date)5/2018	Sca 1:	^{ile} 50	
Home	s Engla	nd							540959.20		266899	.40		30/0)5/2018	Sh	neet 2	of 2
SAN	/IPLES		TES	STS		ter (es	PROGF	RESS			S	TRATA				Depth		Install/
Deptl	n Type No	e/ Depth	Type/ No.	Resul	ts	Wa Stril	Date Time	Casing Water			Descrip	otion			Legend	(Thickness)	Level	Backfill
-		-							Stiff grey CLAY [KIMMERAGE	with siltst	tone band RMATION	ls. I]					-	
-		-					30/05/2018 15:45	1.65 Dry								10.45	-1.08	<u>/.'//</u>
-		-															+	
E		-															ŧ	
-		-															ļ	
		-															ŧ	
-		-															ļ	
E		-															ŧ	
Ę		_															Į	
-		-															÷	
E		_															Ī	
-		-															-	
		-															İ	
-		-															+	
E		-															ŧ	
E		_															Ļ	
F		-															ŧ	
E		_															Į	
-		-															ŧ	
E		-															Ļ	
-		-															ļ	
E		-															İ	
-		-															ļ	
F		-															ŧ	
-		-															1	
-		-															+	
Ē		Ē															Ī	
-		-															ţ	
E		-															Ţ	
-		-															ł	
		_															Ī	
-		-															ţ	
E		-															Ť	
-		-															ţ	
E		_															Ť	
F		-															ļ	
-		-															+	
E		_															I	
-		-															÷	
E																	Į	
-		-														· ·	+	
-				CH	ISELL N	IG		L	VATER OBSERV	ATIONS			HOLE/CAS	ING DIAME	ETER	WATE	RADD	ED
From	To	Coblo B	/pe	Hard S From	trata To	Duratio	n Date/T	ime S	trike At Time Elapsed	Rise To	Casing S	ealed Hole	Dia. Depth	Casing Dia.	Depth	From	To	/olume (ltr)
0.00	1.20	Inspe	ction Pit	4.30	4.40	00:34	00/00/201	5 11.00			1.00			100	1.00			
Remarks Explorat	ory hole to	erminated a	t scheduled	d depth of 10).45mbg	I. Slight	seepage a	t 4.20mb	ogl.	1	ı — İ	I	I	1	I			
																Term	ination F	epth:
										_							10.4	5m
	Arcadis Cymru Hou St Me Ions Busines Park Cardiff	™ Unless Depth (otherwise m), Diamet	stated ter (mm), Ti	me (hhn	nm),	Equipme Dando	nt Used			Contractor	s Consu	ltina (UK) Itd	Lo IT	gged By	Check SH	ed By

BH2A07

TESTS ype/ Results P D <1ppm P D <1ppm	Water Strikes	PROGF Date Time 29/05/2018 08:00	RESS Casing Water 0.00 Dry	Grass over firm to sandy CLAY. Grave and brick with freq [TOPSOIL]	Desc stiff brownish el is angular to	STRATA ription grey slightly	mually alighth.	Legend	Depth (Thickness)	Level	Insta
Vpe/ No. Results P D <1ppm Vate	Date Time 29/05/2018 08:00	Casing Water 0.00 Dry	Grass over firm to sandy CLAY. Grave and brick with freq [TOPSOIL]	Desci stiff brownish el is angular to	ription grey slightly	www.olly.oliabit.	Legend	Depth (Thickness)	Level	Insta	
P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm P D <1ppm		29/05/2018 08:00	0.00 Dry	Grass over firm to sandy CLAY. Grave and brick with freq [TOPSOIL]	stiff brownish el is angular to	grey slightly	mayolly alight			1	Back
P D <1ppm PT(S) N=24 (1,3/8,8,4,4) P D <1ppm P D <1ppm P D <1ppm P D <1ppm				TOPSOIL	uent rootlets.	subrounded	fine to medium fli	nt XX	(0.20) 0.20	6.86	
PT(S) N=24 (1,3/8,8,4,4) P D <1ppm P D <1ppm (1ppm) P D <1ppm P D <1ppm				slightly gravelly CL subangular to subr rootlets and pocke	Soft to firm lig AY. Sand is fir ounded fine to ts of silty sand	ht greyish bro ne to coarse. o medium flin d.	wn slightly sandy Gravel is t with occasional		(1.20)	* * *	
PD <1ppm				Firm brownish grey occasional 20mm decayed vegetation	y mottled bluis pockets of ven n and 10mm e	h grey slight y light brown xtremely we	y sandy CLAY with silt. Rare semi- ak claystone band:		1.40 1.50	5.66 5.56	itti'
PD <1ppm				Firm light brown m 5-10mm pockets o	AY FORMATIC ottled bluish g f weak claysto	N] rey clayey Si ne recovered	LT with frequent t as bluish grey		2.00	5.06	
				KIMMERAGE CL/ Stiff to very stiff blu slightly gravelly CL medium sand. Gra	AY FORMATIC ish grey mottl AY with occas vel is subroun)N] ed orangish l ional 2mm b ded fine to m	prown slightly sand ands of fine to redium claystone.	iy		+	
PT(S) N=25 (3,4/8,7,6,4) P D <1ppm				KIMMERAGE CL/	AY FORMATIC	ואל				-	H
PD <1ppm									(3.00)		11
											1
PD <1ppm						Containing	2mm Mica crystals				11
PT(S) N=25 (17,8/7,5,6,7) P D <1ppm	2			Stiff to very stiff da [KIMMERAGE CL/	rk grey CLAY. AY FORMATIC	DN]			5.00 ·	2.06	11
PD <1ppm				Rare 4mm b	Rare 1mn	n light grey bi nnels with oc	Ammonite fossil casional to frequen				11
					foss	ils (shells and	I 10mm ammonite)	12		ļ	11
PD <1ppm											1/
PT(S) N=30 (4,6/6,7,8,9) P D <1ppm										ļ	
PD <1ppm									(5.45)		
										-	
PD <1ppm											
PT(S) N=28 (4,4/5,6,7,10) P D 2.2ppm										Ī	
PD <1ppm										ļ	
PT(S) N=29 (3,4/5,6,8,10) P D <1ppm											
CHISEI Hard Strata	L NG	on	V	VATER OBSERVATIO	ONS lise To Casing	Sealed Hole D	JLE/CASING DIA	AETER a. Deoth	From	R ADDE	D olume (
From To Pit 1.70 1.8 Ission 2.70 2.8 3.60 3.8	0 00:25 0 00:25 0 00:50	Date/T	ime S	nine AL Time Elapsed R	use to Casing	Sealed Hole D	10.45 150	1.50	riuti	.0 V	viume (
P C PT(P C Pit ssic	><1ppm	> <1ppm) <1ppm) <1ppm) <1ppm	(1ppm) S) N=29 (3,4/5,6,8,10) (1ppm) CHISELL NG WATER OBSERVATIONS Hard Stata From To Duration Date/Time Strike At Time Elapsed Rise To Casing 2.70 2.80 00:25 00:25 an 3.80 00:50 00:50	(1ppm) (34/5,6,8,10) S) (1ppm) CHISELL NG WATER OBSERVATIONS Hard Strata Duration From To 1000000000000000000000000000000000000	(1ppm) S) N=29 (3,4/5,6,8,10) (1ppm) CHISELL NG WATER OBSERVATIONS Hard Strata Duration From To Duration Date/Time Strike At Time Elapsed Rise To Casing Sealed Hole Dia. Depth Casing Dia 150 10.45	(1ppm)	(1ppm)	(1ppm)

Logged By Chec MT SH

Project Norths	towe -	Parcel 2	Α						Project No. 10018973	-	Ground Leve 7.06	el (mAOD)		Start 29/	Date)5/2018	Sca 1:	^{ile} 50	
Client Homes	s Engla	Ind							Easting (OS mE) 540996.80		Northing (OS 267100.	s mN) 20		End [29/	Date 05/2018	Sł	neet 2	of 2
SAM	IPLES		TE	STS		ter (es	PROGF	RESS			S	TRATA				Depth		Install/
Depth	I Type No	e/ Depth	Type/ No.	Resu	lts	Vat Strik	Date Time	Casing Water			Descript	tion			Legend	(Thickness)	Level	Backfill
-		-							Stiff to very stif [KIMMERAGE	f dark grey CLAY FOI	/ CLAY. RMATION]					-	
E		-					29/05/2018 16:00	1.50 Dry								10.45	-3.39	•••••••••••••••••••••••••••••••••••••••
Ę		Ē															Į	
E		-															ŧ	
-		-															ţ	
-		-															ŧ	
-		-															ŧ	
		-															ŧ	
-		-															ł	
		-															ŧ	
-		-															ļ	
		-															ŧ	
-		-															ł	
																	ŧ	
-		-															ł	
-		-															Ŧ	
E		-															ŧ	
-		-															ţ	
-		-															İ	
-		-															+	
-		-															İ	
-		-															ļ	
E		E															ŧ	
-		-															+	
		-															Į	
		-															ŧ	
-		-															I	
-		-															+	
Ę		E															Į	
E		-															İ	
-		-															ļ	
-		-															† I	
-		-															ţ	
-		_															Ť	
-		-															+	
-		-															Ī	
-		-															ļ	
		-															Ī	
-		-															ł	
-		-															Ī	
<u> </u>		G TECHNIQ	UE	Ch	HISELL I	NG		V	VATER OBSERV	ATIONS		н	IOLE/CAS	SING DIAM	ETER	WATE	RADD	ED
From 0.00	To 1.20	Inspec	/pe ction Pit	From 1.70 2.70	To 1.80 2.80	00:25	Date/T	me S	Strike At Time Elapse	1 Rise To	Casing Se	aled Hole I	Dia. Deptr 0 10.45	Casing Dia.	Depth 1.50	From	fo Y	Volume (Itr)
1.20	10.45	Cable P	ercussion	3.60	3.80	00:25												
Remarks	n pit exc	avated to 1 2	20mbal F	xploratory hr	ole termi	nated at	t required de	epth of 1	0.45mbal. No ar	oundwater	encounte	red.						
	- 1 570																	
																Term	ination D	Depth:
											Quert :						10.4	om
	rcadis Cymru Hou t Me Ions Busines ark ardiff	Depth (I	otherwise m), Diame	e stated eter (mm), Ti	ime (hhi	nm),	Equipme	2000			Arcadis	Consul	lting (UP	() Itd	Lo	yged By T	Check SH	еа Ву

TP2A01

Northstov	ve - Pa ngland	rcel 2A	1			Indext No. Strong Level (INACL) State 10018973 8.43 01 Easting (OS mE) Northing (OS mN) En 540754.90 266851.00 01	/06/2011 Date /06/2011	B 1 B S	:25 heet 1	of 1
SAMPL	ES		TESTS	5	5 8	STRATA		12.23	1	
Depth	Type/	Depth	Type/	Results	Wate	Description	Legend	Depth (Thickness)	Level	Instal Backf
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20	B1 D2 ES3		110.			Brownish grey silty gravelly fine to coarse SAND of quartz with frequent roots and rootlets. Gravel is angular to subrounded fine to medium flint. [TOPSOIL]	alle Ale	(0.30)		
0.30 - 0.40	B4	-0				Orangish brown very clayey gravelly fine to medium SAND. Gravel is subrounded	ella - Ve	0.30	8.13	
0.30 - 0.40	ES6	-				fine fint. [RIVER TERRACE DEPOSITS]		(0.30)	ŧ	
0.60 - 0.80	B10							0.60	7 83	
0.60 - 0.80 0.60 - 0.80	D11 ES12					Solit bluish grey motued orangish brown slightly sandy CLAT. Sand is line to coarse.			ł	
	17	Ē				In the eastern half of the trial pit the geology is split between a sloping discontinuity of sand & gravel (east) and clay (west). Please refer to attached sketch for greater		()	1	
-1.00 - 1.20	B7	<u> </u>			T	detail.			1	
1.00 - 1.20 1.00 - 1.20	D8 ES9	Ē						(0.95)	ŧ	
		Ē						(1.40)	ŧ	
		3						(1.40)	ŧ	
1.55 - 1.70	B13				1.1			1.55	+ 6.88	
1.55 - 1.70 1.55 - 1.70	D14 ES15	-				Yellowish brown and white tine to coarse SAND & GRAVEL. Gravel is subangular to subrounded fine to medium flint with 100mm bands of gravelly sand (see cross			1	
	1					sectional diagram). [RIVER TERRACE DEPOSITS]	E==	(0.45)	ŧ	
						of sand & gravel (east) and clay (west). Please refer to attached sketch for greater			ŧ	
-	1.1	-			1.1		1	2.00	6.43	
- 'LAN DETAI	LS	21		Long Axi	s Orientat	Remarks ion: Water strike at 1.0mbol. Trial Pit terminated due to side	wall collaps	se. Please re	efer to at	ttachec
T		2.1			- onemat	sketch for greater detail regarding discontinuity. PID res moisture sensitive.	ults not inc	luded as equ	uipment	becam
0.6				Shoring Stability:	/ Support: Poor	None				
				Groundw	vater (des	sription):		Tem	nination	Depth:
									2 00r	20

TP2A01 EAST FACE CROSS SECTION VIEW

TP2A02

Project Northstow Client Homes En	/e - Pa Igland	rcel 2A				Project N 10018 Easting (54075	lo. 973 OS mE) 94.00	Ground Level (mAOD) 8.56 Northing (OS mN) 266901.00	Start Date 01/06/2018 End Date 01/06/2018	s∝ 1: S	^{ale} 25 heet 1	of 1
SAMPLE	ES		TESTS		г s		5	STRATA		5 "		la stall/
Depth	Type/	Depth	Type/	Results	Wate		Descri	ption	Legend	Depth (Thickness)	Level	Backfill
0.00 - 0.10 0.00 - 0.10 0.00 - 0.10 0.10 - 0.30	NO. B1 D2 ES3 B4	-	NO.			Yellowish brown clayey ve subangular to subrounded [RIVER TERRACE DEPO:	ry sandy GRAVI fine to medium SITS]	EL. Sand is fine to coarse. Gravel is flint.		(0.10) 0.10	8.46	
- 0.10 - 0.30 - 0.10 - 0.30 - 0.10 - 0.30 - 0.10 - 0.30 - 0.20	D5 ES6 ES7 ES6	-			-	Yellowish brown silty SAN subangular to subrounded coarse sand. [RIVER TERRACE DEPO	D and GRAVEL. fine to medium SITS]	. Sand is fine to coarse. Gravel is flint with 100mm bands of fine to				≡ ≡ = ≡ ≡ ≡ ≡
-		-								(0.95)		≡ ≡ ≡ = = ≡ ≡ ≡ ≡ ≡ ≡
- - 1.10 - 1.30 - 1.10 - 1.30	B8 D9	- - - -				Firm to stiff dark grey mott [KIMMERAGE CLAY FOR	led brownish ora MATION]	ange CLAY.		1.05	7 51	
- 1.10 - 1.30 - - -	ES10	- - - -										
							Occ <u>a</u>	sional sea urchin spine fossils and she			- - - -	Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ Ξ
- 	D11	- - - - - -								(2.35)		== = = = = = =
- - - - - -		- - - - -										Ξ Ξ Ξ Ξ Ξ = = Ξ Ξ
- - 	D12	- - - - - -								-		= = = = = = = =
- - - 3.40 - 3.45	D13	-								3.40	5.16	= = = = = = =
- - - - -												
-		- - - - - -								-		
- - - -		- - - - -										
-		-										
-										-	+	
	_S	2.7		Long Axis	l Orientati	on:	Remarks Trial Pit termina	ated at 3.45mbgl due to hard strata, p	possibly siltstone	e band. Top	0 50m o	f soil
0.5				Shoring /	Support:	None	stripped by arcl equipment beca	naeologists exposing river terrace de ame moisture sensitive.	posits. PID rest	ແຮ not inclu	ued as	
				Stability: Groundwa	Good ater (desc	ription):				Term	ination [3.45m	Depth: 1
Arcadis	Cymru Ui	less other	wise stated:			Equipment Used	I	Contractor	Lo	gged By	Checke	d By

TPSA2A03

Project Northsto ^{Client} Homes E	we - Pa ngland	rcel 2A				Project N 10018 Easting (54080	lo. 973 OS mE) 93.10	Ground Level (mAOD) 8.52 Northing (OS mN) 266900.70	Start Date 31/05/201 End Date 31/05/201	18 1 18 S	^{cale} :25 heet 1	of 1
SAMP	LES		TEST	S	er		;	STRATA		Donth		Install/
Depth	Type/	Depth	Type/	Results	Strik		Descri	ption	Legen	(Thickness)	Level	Backfill
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 	B1 D2 ES3 B4 D5 ES6					Brownish yellow and white subangular to rounded fine sand and very sandy grav [RIVER TERRACE DEPO	e silty very grave e to medium flin el. SITS]	elly fine to coarse SAND. Gravel is twith 100mm bands of very grave	silly	(1.20)	- - - - - - - - - - - - - - - - - - -	E = = = = = = =
		- 1.20 - 1.20 - 1.20 - 1.20 - 1.20 	HV(1) HV(2) HV(3)	64(18)kPa 66(13)kPa 66(22)kPa		Firm to stiff dark grey CLA [KIMMERAGE CLAY FOR	Y. MATION]			1.20 - (0.10) - 1.30		
		-					Remarks					
		1.7		Long Axi Shoring J Stability:	s Orientat / Support: Poor	ion: None	Trial Pit termina made the pit ur named TPSA2/	ated due to side wall collapse. Wa isuitable for soakaway testing. Tri A03A. PID results not included as	ter strike at 0 85n al Pit backfilled a equipment beca	nbgl, and cla nd moved 3n me moisture	y at 1.2m n east an sensitive	nbgl .d Depth:
				Groundw		лірцон <i>ј</i> .					1.30n	n
Arcadi	s Cymru Ui	less other	wise stated	:		Equipment Used		Contractor	L	ogged By	Checke	ed By

ΜТ

TPSA2A03

Project Northstov Client Homes El	we - Pa ngland	rcel 2A				Project N 10018 Easting (54080	No. 3973 (OS mE))3.10	Ground Level (mAOD) 8.61 Northing (OS mN) 266900.70	Start 31/ End 31/	Date 05/2018 Date 05/2018	Sc 1: S	ale 25 neet 1	of 1
SAMPL	.ES		TESTS		ter <es< th=""><th></th><th>:</th><th>STRATA</th><th></th><th></th><th>Depth</th><th>Laural</th><th>Install/</th></es<>		:	STRATA			Depth	Laural	Install/
Depth	Type/ No.	Depth	Type/ No.	Results	Wa Stril		Descri	ption		Legend	(Thickness)	Levei	Backfill
- - 0.20 - 0.40 - 0.20 - 0.40 -	B1 D2	-				Yellowish brown slightly si subangular to subroundec [RIVER TERRACE DEPO	lty very gravelly I fine to medium SITS]	fine to coarse SAND. Gravel is flint.	5	× × × × × × × × × × ×	(0.50)		= = = = = = = = = = =
											-	- 0.11	
											-	· · · · · · · ·	
		- - - - - - - - - - - - - - - - - - -									-	· · · · · · ·	
- - - - - - - - - - - - - - - - - - -		- - - - - - - - - - - - - - - - - - -											
		- - - - - - - - - - - - - - - -										- - - - - - - - -	
-		-											
		-					Remarks				-	-	
		1.3			Support	ion:	Trial Pit termina of soil stripped included as equ	ated above clay at 0.50mbgl in by archaeologists at location e uipment became moisture sens	order to pre xposing rive sitive.	form soak er terrace c	away test. F leposits. Pli	Roughly D results	0.50m not
0.5				Shoring / Stability: Groundw	Support: Poor ater (deso	ivone sription):					Term	ination [0.50m	Depth:
Arcadis	Cymru	nloss other	vice stated:			Equipment Used	1	Contractor		Loc	ged By	Checke	d Bv

TP2A04

Project Northstov Client Homes Er	ve - Pa ngland	rcel 2A				Project N 10018 Easting 54088	No. 3973 (OS mE) 30.80	Ground Level (mAOD) 8.84 Northing (OS mN) 266775.60	Start Date 01/06/2 End Date 01/06/2	018 018	Sca 1:: Sł	ale 25 neet 1	of 1
SAMPL	ES		TEST	S	es es			STRATA			Dauth		Install/
Depth	Type/	Depth	Type/	Results	Strike		Desc	ription	Leg	end (TI	Depth hickness)	Level	Backfill
0.00 - 0.25 0.00 - 0.25 0.00 - 0.25	B1 D2 ES3	0.00	PID	<1ppm		Orangish brown very clay subangular to subrounded [RIVER TERRACE DEPO	ey very gravelly I fine to mediur SITS]	/ fine to coarse SAND. Gravel is n flint.			(0.25)		
- 0.25 - 0.40 0.25 - 0.40 0.25 - 0.40	B4 D5 ES8	- 0.25 	PID	1.5ppm		Yellowish brown and white Gravel is subangular to su [RIVER TERRACE DEPO	s slightly clayey brounded fine SITS]	very gravelly fine to coarse SAN to medium flint.			0.25	8 59	≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
- - - - - - - - - - - - - - - - - - -	B6 D7	- - - - - - - - - - - - - - - - - - -	PID HV(1)	<1ppm 78(20)kPa		Firm to stiff dark grey CLA	Y.				1.25	7 59	: = = = = = = = = = = = = =
-		- 1.25	HV(2) HV(3)	80(20)kPa 82(20)kPa		[KIMMERAGE CLAY FOR	(MATION				(0.35)		
-		-									(0.00)	-	
- - - - - - - - - - - - - - - - - - -	LS	24		Long Axi	s Orientat	Ion:	Remarks Trial Pit termin	nated at 1.60mbgl due to side wall	Is collapsing.				
2.0				Shoring Stability:	/ Support: Poor	None					-		
				Groundw	vater (deso	cription):					Ierm	ination I	Jepth:
	Cymru	nless other	wise state			Equipment Used		Contractor		Loaae	ed By	1.60n Checke	d By

Arcadis Consulting (UK) Ltd

TP2A05

Project Nort Client	hstow	ve - Pa	rcel 2A			•	Project N 10018 Easting	No. 3973 (OS mE)	Ground Level (mAOD) 9.14 Northing (OS mN)	Star 30 / End	t Date /05/2018 Date	Sc 1:	^{ale} 25	
Hom	les En	ngland					54084	49.50	266900.20	30/	05/2018	S S	heet 1	of 1
	SAMPLE	ES		TEST	6	er			STRATA			Denth		Install/
De	epth	Type/ No.	Depth	Type/ No.	Results	Wat Strik		Des	scription		Legend	(Thickness)	Level	Backfill
- 0.00 - 0.00 - 0.15 - 0.15 - 0.40 - 0.60 - 0.60 - 0.60 	- 0.15 - 0.15 - 0.15 - 0.30 - 0.30 - 0.30 - 0.60 - 0.70 - 0.80 - 0.80 - 0.80	B1 D2 ES3 B4 D5 ES6 B6 B3 B7 D8 ES9					Brownish grey silty gravel Gravel is angular to subro [TOPSOIL] MADE GROUND: Yellowis with low boulder and cobb coarse flint, brick and con Boulders are subangular o	ly fine to coar unded fine to sh brown sligj ole content. C crete. Cobble concrete.	rse SAND with frequent roc medium flint brick and cor htly silty very gravelly fine t Gravel is angular to subrour is are subangular brick and Local pockets of brown slig	ts and rootlets. ccrete. o coarse SAND nded fine to l concrete. htly sandy CLAY.		(0.15) 0.15 (1.36)	8 99	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
- 1.40 - 1.40 - 1.40 - 1.50 - 1.50 - 1.50 	- 1.50 - 1.50 - 1.50 - 1.51 - 1.51 - 1.51	B10 D11 ES12 B13 D14 ES15				▼						1.51	7 63	
													* * * * * * * * * * * * * * * * * * *	
													- - - - - - - - - - - - - - - - - - -	
- - - - - - - - - - - - - - - - - - -	DETAIL	_\$	- - - - - - - - - - -					Remarks				-		
0.5			3.3		Long Axis Shoring / Stability: Groundw	s Orientati Support: Poor ater (desc	ion: None cription):	Water strike unstable. Pl	at 1.5mbgl. Trial Pit termin D results not included as e	ated at 1 50mbgl (quipment became	due to wate moisture s	er ingress m sensitive.	ination [1.51n	t Depth: N

Contractor Arcadis Consulting (UK) Ltd

Accadis Cymru House St Mellons Business Park Cardiff CF3 0EY

te Cymru Unless otherwise stated: Equipment Used کال کی کی Depth (m), Diameter (mm), Time (hhmm), JCB 3CX شهر Thickness (m), Level (mOD).

Project Northstow Client Homes Er	ve - Pa ngland	rcel 2A				Project No. Ground Level (mAOD) S 10018973 9.13 3 Easting (OS mE) Northing (OS mN) E 540810.90 266956.40 3	tart Date 0/05/2018 nd Date 0/05/2018	Sca 1: SI	ale 25 neet 1	of 1
SAMPL	ES		TEST	S	L٥	STRATA				
Depth	Type/	Depth	Type/	Results	Wate	Description	Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.30 0.00 - 0.30 0.00 - 0.30	No. B2 D1 ES3	- - - -	No.		- 0	MADE GROUND: Soft brown slightly sandy gravelly CLAY with low to medium cobble content. Sand is fine to coarse. Gravel is subangular to subrounded fine to coarse flint, brick, and concrete. Cobbles are angular to subangular of brick and concrete.		(0.30)		
- 0.30 - 0.35 - 0.40 - 0.60 - 0.40 - 0.60 - 0.40 - 0.60	ES4 B6 D5 ES7	- - 0.40 - 0.40 - 0.40 	HV(1) HV(2) HV(3)	48(26)kPa 58(30)kPa 64(26)kPa		MADE GROUND: Soft to firm light brown mottled orange brown slightly gravelly sandy CLAY. Gravel is subangular to subrounded fine to coarse flint. Sand is fine to coarse. Black ash and coal present		0.30	8 83	
- - 0.80 - 1.00 - 0.80 - 1.00	B9 D8	-				Firm brown mottled orange brown and yellow brown slightly sandy CLAY. Sand is		0.80	8 33	
0.80 - 1.00	ES10	-				fine to medium. [KIMMERAGE CLAY FORMATION]		(0.20)		
- 1.20 - 1.50 - 1.20 - 1.50 - 1.20 - 1.50 - 1.20 - 1.50	B2 D1 ES3					Firm grey brown mottled orange brown slightly sandy slightly gravelly CLAY. Sand is fine to coarse. Gravel is subrounded fine flint. [KIMMERAGE CLAY FORMATION] Selenite crystals		1.00 -	- 8.13	 ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡
		- - - - - -				Fissured stiff to very stiff grey brown mottled orange brown CLAY. [KIMMERAGE CLAY FORMATION]		1.50 -	7 63	
2.00 - 2.50	D4	- - - - - - -							• • • • • •	
- 2.30 - 2.50 - - - - - - - - - -	В5	- - - - - 2.60 - 2.60 - 2.60	HV(4) HV(5) HV(6)	64(20)kPa 64(50)kPa 66(34)kPa				(1.80)	· · · · ·	= = = = = = = = = = = = =
- 2.90 - 3.00 	D6 B7	- - - - - - - - - -						3.30	5 83	
- - - - - - - - - - - - - - - - - - -	5					Remarks				
		2.5		Long Axis	s Orientat	Trial Pit terminated at required depth of 3.30mbgl. PID	results not in	cluded as e	quipmer	nt
I TÍ				— i						

0.5

Shoring / Support: None

Groundwater (description):

Stability: Unstable

Arcadis Consulting (UK) Ltd

Contractor

IT

ARCADIS	Trial Pit Photography	Sheet TP2A06
Project Northstowe - Parcel 2A	Job No Ground Lev 10018973 9.133	el (mAOD) Start Date 30/05/2018
Client Homes England	Easting (OS mE) Northing (O 540810.90 266956.	S mN) End Date 40 30/05/2018
		TP2A06 Trial Pit. Depth 3.3m
		TP2A06 Trial Pit Spoil
Arcadis Cymru Unless otherwise state	d: Equipment Used	Logged By Checked By

AGGS States vice stated: Equipment U: St Melons Cardiff

TPSA2A07

Project Northstow Client Homes Er	we - Pa ngland	rcel 2A				Project No. 10018973 Easting (OS mE) 541012.40	Ground Level (mAOD) 7.18 Northing (OS mN) 267071.80	Start Date 31/05/201 End Date 31/05/201	8 1 8 S	^{ale} :25 heet 1	of 1
SAMPL	ES	1	TEST	S	es		STRATA		Depth		Instal
Depth	Type/ No.	Depth	Type/ No.	Results	Strik	De	escription	Legend	(Thickness)	Level	Backf
0.00 - 0.15 0.00 - 0.15 0.00 - 0.15 0.15 - 0.50 0.15 - 0.50 0.15 - 0.50 0.15 - 0.50 - 0.50 - 0.70 0.50 - 0.70 0.50 - 0.70	81 D2 ES3 B4 D5 ES6 B7 D8 ES9	- 0.50 - 0.50 - 0.50	HV(1) HV(2) HV(3)	50(11)kPa 55(21)kPa 57(24)kPa		MADE GROUND: Stiff brownish grey frequent rootlets. Gravel is angular to MADE GROUND: Firm bluish grey mo gravelly CLAY with occasional roots. (subangular fine to medium flint and ch	slightly sandy slightly gravelly CLAY with subangular fine to medium flint and brick. ottled orangish brown slightly sandy slight fravel is subangular to subrounded to narcoal.	y W	(0.15) 0.15	7 03	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- 1.50 - 1.60 1.50 - 1.60	B10 D1		HV(4) HV(5) HV(6)	75(25)kPa 82(20)kPa 91(30)kPa					(1.95)		
									(0.60)		
	52	- 200 - 200 - 200 - 200 	HV(8) HV(9)	100(30)kPa 100(30)kPa 110(30)kPa		Firm to stiff bluish grey mottled orangi CLAY, Gravel is angular to subangula 20mm very light brown silts and fine to siltstone. [KIMMERAGE CLAY FORMATION]	sh brown slightly sandy slightly gravelly r fine Mica and siltstone. Rare pockets of o medium sand. Sand is extremely weak		2.10	5 08	
	LS	1.8		Long Ax Shoring Stability: Groundw	is Orientat / Support: : Good vater (desc	Remarks Water strik within expl None cription):	e at 2.00mbgl. Trial Pit terminated due to pratory hole. P D results not included as e	vater in base quipment bec	of pit. Soaka ame moistur Tem	way und e sensitiv	Depth

JCB3CX

Arcadis Consulting (UK) Ltd

Logged By Checked MT SH

^{s Cymru} Unless otherwise stated: Equipment Used ^{ons} SPark Depth (m), Diameter (mm), Time (hhmm), JCB 3CX _{S Vy} Thickness (m), Level (mOD).

TP2A08

					LUg						270	U
Project Northstow Client Homes En	ve - Pa ngland	rcel 2A				Project N 10018 Easting 54104	No. 3973 (OS mE) 47.10	Ground Level (mAOD) 6.89 Northing (OS mN) 267100.20	Start Date 31/05/2018 End Date 31/05/2018	s 1 S	cale :25 Sheet 1	of 1
SAMPLI	ES		TEST	S	er es			STRATA				la stall
Depth	Type/ No.	Depth	Type/ No.	Results	Wate		De	escription	Legend	(Thickness)	Level	Backfil
0.00 - 0.20 0.00 - 0.20 0.00 - 0.20 0.20 - 0.50 0.20 - 0.50 0.20 - 0.50	B1 D2 ES3 B4 D5 ES6	- - - 0.20 - 0.20 - 0.20	HV(1) HV(2) HV(3)	38(19)kPa 45(20)kPa 45(21)kPa		Stiff brownish grey slightly subrounded fine to mediu [TOPSOIL] Soft to firm orangish brow subangular to subrounded	v sandy sligh m flint and b n slightly sar d fine to med	tly gravelly CLAY. Gravel is subangular to rick. dy slightly gravelly CLAY. Gravel is ium flint (possibly reworked).		(0.20) 0.20	6 69	
- - - - 0.50 - 0.70 - 0.50 - 0.70 - - - - - - -	B7 D8 ES9	- - - - - - 0.50 - - - - - - - - - - - - - - - - - - -	HV(4) HV(5) HV(6)	104(35)kPa 114(30)kPa 96(30)kPa		[KIMMERAGE CLAY FOR Firm to stiff bluish grey mo 10mm pockets and bands extremely weak siltstone. [KIMMERAGE CLAY FOR	RMATION] ottled orangis of very light	sh brown slightly sandy CLAY. Occasiona brown fine to medium sand, sand is		(0.30) 0.50 (1.10)	6 39	₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩
- - - - - - - - - - - - - - - - - - -	B10 D11					Very light brown SILT with orangish brown clay. [KIMMERAGE CLAY FOR Stiff to very stiff bluish gre Occasional 10-100mm po	10-20mm p RMATION] y mottled ora ckets and ba	ockets of firm to stiff bluish brown mottled angish brown slightly sandy CLAY. ands of very light brown silt and firm to st		1.60 (0.15) 1.75	5 29 5.14	\\=\\=\\=\\=\\=\\=\\=\\=\\=\\=\\=\\=\\=
- - - - - - - - - - - - - - - - - - -	D12	- - - - - - - - - - - - - - -				bluish brown mottled oran [KIMMERAGE CLAY FOR	igish brown o	Jay.		(0.85)		
							Remarks			2.60		<u> </u>
0.4		2.8		Long Axis Shoring / Stability: Groundw	s Orientati Support: Good ater (desc	on: None ription):	Trial Pit terr became mo	ninated at 2.60mbgl due to hard strata. F bisture sensitive.	'ID results not in	ncluded as	equipme nination I 2.60n	ent Depth: N

Contractor Arcadis Consulting (UK) Ltd

TP2A09

Project Northstow Client Homes En	ve - Pa Igland	rcel 2A				Project N 10018 Easting (54110	lo. 8 973 OS mE) 0.30	Ground Level (mAOD) 6.09 Northing (OS mN) 267150.50	Start 01/ End 01/	Date 06/2018 Date 06/2018	8 1 8 S	:25 heet 1	of 1
SAMPLE	ES		TEST	S	Ľ۵		5	STRATA					
Depth	Type/ No.	Depth	Type/	Results	Wate Strike		Descri	ption		Legend	Depth (Thickness)	Level	Install/ Backfill
0.00 - 0.25 0.00 - 0.25 0.00 - 0.25	B3 D2 ES1	0.00	PID	20ppm		MADE GROUND: Stiff to v slightly gravelly CLAY. Sar fine flint.	very stiff brown n nd is fine to coar	nottled orange brown slightly sa se. Gravel is subangular to sub	indy rounded		(0.25)		
- 0.25 - 0.40 - 0.25 - 0.40 - 0.25 - 0.40	B6 D5 ES4	- 0.20 - 0.20 - 0.20 - 0.25	HV(1) HV(2) HV(3) PID	48(30)kPa 66(50)kPa 23ppm		MADE GROUND: Soft to f is fine to coarse. Gravel is	irm light brown r subangular to s	nottled grey sandy gravelly CLA ubrounded fine to medium flint.	AY. Sand		0.25 (0.15) 0.40	5 84	
- 0.50 - 0.60 - 0.50 - 0.60 - 0.50 - 0.60 	B9 D8 ES7	- 0.50 - 0.50 - 0.50 - 0.50 	PID HV(4) HV(5) HV(6)	20ppm 102(30)kPa 90(30)kPa 98(40)kPa		KIMMERAGE CLAY FOR	n oxidation. Sand MATION]	d is fine to medium.					
- 	B2 D1 ES10	- - - - - - -	PID	23ppm							(1.30)		
- - 1.50 - 1.60 - 1.50 - 1.60 - - -	B4 D3	- 1.50 	PID	21ppm							1.70	4 39	
	.S	2.7	I	Long Axis	Orientati	on:	Remarks Trial Pit termina	ted at 1.80mbgl due to hard str	ata.	1	<u> </u>	1	1
0.5				Shoring / Stability: : Groundwa	Support: Stable ater (desc	None ription):					Terr	nination I 1.80n	Depth: N

Contractor

10018973 5.72 Northing (OS mN) 01/06/2018 1:25 (OS mE) Homes England 541100.90 267189.90 01/06/2018 Sheet 1 of 1 SAMPLES TESTS STRATA Water Strikes Depth Install/ Level Type/ No. Type/ No. (Thickness Backfill Depth Depth Results Description Leaend 0.00 - 0.25 Firm to stiff brownish grey slightly sandy slightly gravelly CLAY with occasional rootlets. Gravel is subangular to subrounded fine to medium flint. B1 0.00 PID <1ppm 0.00 - 0.25 0.00 - 0.25 D2 ES3 516 (0.25)[TOPSOIL] 5.47 510 0.25 - 0.60 Β4 0.25 PID <1ppm 0.25 MADE GROUND: Firm light brown mottled bluish grey slightly sandy slightly 0 25 - 0 60 D5 0.25 - 0.60 gravelly CLAY. Gravel is subargular to subrounded fine to medium flint with 10mm pockets of very light brown silt and fine to coarse sand, sand is extremely ES6 (0.35) weak siltstone. Rare charcoal, brick and clay pipe (3inch). 0.60 - 1.20 0.60 - 1.20 0.60 - 1.20 0.60 0.60 0.60 0.60 <1ppm 80(20)kPa 82(30)kPa 86(32)kPa B7 PID 0.60 Stiff bluish grey mottled orangish brown slightly sandy CLAY. With 10mm pockets HV(1) HV(2) HV(3) D8 ES9 of very light brown silt and fine to coarse sand, sand is extremely weak siltstone. [KIMMERAGE CLAY FORMATION] (0.60) ≣∥≣ 1.20 - 1.60 1.20 - 1.60 B10 D11 1.20 PID <1ppm 1.20 Extremely weak S LTSTONE recovered as very light brown mottled orange SILT. Black staining - possible organics. Rare Ammonite fossil (0.40) 1.60 - 1.80 D12 1.60 PID 1.60 <1ppm Stiff to very stiff bluish grey mottled orangish brown CLAY with occasional partially decayed rootlets and vegetation (purple) and 10mm bands of fine to coarse sand and rare ironstone nodules [KIMMERAGE CLAY FORMATION] 1.90 1.90 1.90 HV(4) HV(5) Rare black staining - possible organics 110(37)kPa 92(36)kPa Becoming firm. HV(6) 94(34)kPa 2.20 - 2.30 D13 PID 2.20 <1ppm 2.40 - 2.50 B14 (2.00)3 20 - 3 30 D15 3 20 PID <1ppm 2.12 3.60 PLAN DETAILS Remarks Trial Pit terminated at required depth of 3.60mbal. PID results not included as equipment 2.7 Long Axis Orientation: became moisture sensitive Shoring / Support: None 0.5 Stability: Good Termination Depth:

Project No

Ground Level (mAOD)

Project Northstowe - Parcel 2A

St Mellons

AGS

Groundwater (description):

Contractor

3.60m

Scale

Start Date

AGS St Mellons Business Park Cr30EY

^{Cymu} Unless otherwise stated: Equipment Used ^{ms} Perk Depth (m), Diameter (mm), Time (hhmm), JCB 3CX Thickness (m), Level (mOD). Logged By **MT** Checked By

Trial Pit Soakaway Test

Based on BRE DG 365:2016

roject		N	lorthst	owe -	e - Parcel 2A						LOCAT	ON ID
roject	ID		1	.00189	73			CH	ECKED	Т	PSA2	A03A
rial P	it Details											
	Test 1	Test 2	Test 3		Groun	d Level	8.6	1 mAOD	Date Ex	cavated	31	/05/201
Dep	pth 1.30	1.30	1.20		Coor	dinates	540803.	.1 mE	Date	Tested	31	/05/201
Wie	dth 0.50	0.50	0.40				266900.	.7 mN				
Len	gth 0.50	0.50	0.50	-	_				_			
est 1												
Time	Depth to Water	Tes	t Paramet	ers				Elapsed	Time (mi	n)		
min	m bgl	7504				0	200	400	600	8	00	1000
0	0.11	75% esd	i (mbgi)	0.41		0.00		ĺ		• 1	est Data	
1	0.14	50% eso	i (mbgi)	0.71		0.20				••••• B	est Fit L	ine
2	0.15	25% eso	1 (mbgi)	1.00	bgl	0.40				7	5% ESD	
4.5	0.16	A	(m ⁻)	1.44	8	0.40	1. A. A. A. A. A. A. A. A. A. A. A. A. A.		1.222	2	5% ESD	
7.5	0.18	V _{p75}	₅₋₂₅ (m ⁻)	0.15	eve	0.60		100				_
16	0.23	t	75 (min)	68.9	erL	0.80		*********				
26	0.27	1	t ₂₅ (min)	743.8	Vat	0.00			********			
30	0.30	Dat	ta Fit R ²	0.945	>	1.00						-
34	0.32					1 20						
41.5	0.35	S				1120						
75. AP44	Infiltration rate	f (ms ⁻⁺)	2.558	-06			Total effect	tive storage d	epth (esd)	(m) 1.	19	
est 2												
Time	Depth to Water	Tes	t Paramet	ers				Elapsed	l Time (mi	n)		
min	m bgl					0	200	400	600	8	00	1000
0	0.09	75% esd	d (mbgl)	0.39		0.00				• 1	est Data	
1	0.10	50% esd	d (mbgl)	0.70		0.20				••••• B	est Fit L	ine
3.5	0.12	25% esd	d (mbgl)	1.00	bgl	0.40	·			7	5% ESD	
6	0.13	A	s ₅₀ (m ²)	1.46	ε	0.40	· · · · ·			2	5% ESD	
10	0.15	V _{p75}	₅₋₂₅ (m ³)	0.15	eve	0.60	1.11	These		_	-	-
15	0.17	t	75 (min)	92.8	er	0.80			·····			
18.5	0.19	1	t ₂₅ (min)	901.9	Vat	0.00				Treferana.		
26	0.22	Dat	ta Fit R ²	0.920	>	1.00					21214	-
33.5	0.25					1.20						
52	0.38					2.24						
-	Infiltration rate	f (ms ⁻¹)	2.138	-06			Total effectiv	ve storeage d	epth (esd)	(m) 1.	21	
est 3	k.											
Time	Depth to Water	Tes	t Paramet	ers				Flapsed	Time (mi	1)		
min	m bgl					0	200	400	600	800	1000	1200
0	0.09	75% esd	d (mbgl)	0.36		0.00			1	1		1
1	0.09	50% esd	d (mbgl)	0.64		0.10				I C	est Data	ne
2	0.10	25% esd	(mbgl)	0.92	00	0.20				7"	5% ESD	inc.
4	0.11	A	s50 (m ²)	1.20	m p	0.40				2	5% ESD	
7.5	0.12	V _{p75}	₅₋₂₅ (m ³)	0.11	vel	0.50	· · · · · · · · · · · · · · · · · · ·					
15	0.16	t	75 (min)	91.9	rLe	0.60	1444		-	-	-	-
30	0.21	1	t ₂₅ (min)	1007.2	'ate	0.70		**************************************	t	-		-
40	0.26	Dat	ta Fit R ²	0.942	3	0.80						-
54	0.33					0.90					54 s.	-
60	0.36					1.00						
	Infiltration rate	f (ms ⁻¹)	1.698	-06			Total effectiv	ve storeage d	epth (esd)	(m) 1.	11	
Trial Pit Soakaway Test

Based on BRE DG 365:2016

Project		Northstowe	Parcel 2A	Statu	IS	LOCATION ID	
Project ID		10018	973		CHECKED	Т	PSA2A07
Trial Pit Det	ails						
	Test 1		Ground Level	7.18 mAO	D Date Excav	/ated	31/05/2018
Depth	1.80		Coordinator	541012.4 mE	Date Tes	ted	31/05/2018
Width	0.50		Coordinates	267071.8 mN	110.12.14		
Length	2.10						
Test 1							
Time Dept	n to Water	Test Parameters					

Time min	Depth to Water m bgl	Test Parame	eters				Elaps	ed Ti	me (m	in)		
0	0.62	75% esd (mbgl)	0.92		-50-0.20 0	50) 1	00	150	200	250	300
1	0.63	50% esd (mbgl)	1.21		0.00	-		-			Test Dat	ta
4	0.63	25% esd (mbgl)	1.51	-	0.20	-			-		Best Fit	Line
9	0.63	$A = (m^2)$	4 12	q	0.40					1000	75% ESI)
15	0.63	V _{p75-25} (m ³)	0.62	evel m	0.60		• •	•	-		25% ESI	0
30	0.63	t ₇₅ (min)	N/A	r Le	0.80							
60	0.63	t ₂₅ (min)	N/A	/ate	1.00							
90	0.63	Data Fit R ²	N/A	5	1.20							
120	0.63				1.40							
240	0.63				1.60					_		
	Infiltration rate f	(ms ⁻¹) NO VAL	ID DATA		Total	effective	e storage	e dept	h (esd)	(m)	1.18	

Test 2

TEST NOT UNDERTAKEN

		TEST NOT UNDERTAKEN		
Carried out by Arcadis Consulting (UK) Ltd	Notes:	Test pit filled only once due to excessive time to achieve infiltration. No valid data obtained from infiltration rate because 75% has not been achieved.	Logged MT	Checked SH

Iob No	lorthstowe	e - Parcel 2	A	Date		- r	Grou	ind Level (m)	TRI	2004			
1	0018937			0	4/06/2918		8.662				2704			
Contractor				Co-ordina	ites		Initial Scale Reading (mm) 213			Sheet				
A	rcadis Co	nsulting (L	IK) Ltd	540899	.6 E 266814	4.9 N				2 of 2				
Fotal No. of Blows	Scale Reading (mm)	DCP (mm/blow)	Depth Below Ground Level (mm)	Log ₁₀ (mm/blow)	CBR (%)	1000	0	20	CBR (%) 40	60 80	100			
129	858	3.60	1071	0.56	77.98	1000								
134	875	3.40	1088	0.53	82.84									
139	894	3.80	1107	0.58	73.65									
144	911	3.40	1124	0.53	82.84									
149	926	3 00	1139	0.48	94 55									
154	940	2.80	1153	0.45	101.71	1100	1			1				
159	956	3.20	1169	0.51	88.32									
164	974	3 60	1187	0.56	77.98									
169	996	4 40	1209	0.64	63.08									
174	1006	2.00	1219	0.30	145.15									
179	1020	2.80	1233	0.45	101 71	1200	-							
184	1037	3.40	1250	0.53	82.84									
189	1053	3.20	1266	0.51	88.32									
104	1072	3.80	1285	0.58	73.65					<				
199	1089	3.40	1302	0.50	82.84						> .			
204	1112	4.60	1325	0.66	60.18	la inc								
201	1133	4 20	1346	0.62	66.26	1300	1							
200	1154	4.20	1367	0.02	66.26									
214	1170	5.00	1307	0.02	55 10									
213	1216	7.40	1420	0.70	26.41									
224	1347	26.20	1560	1.42	9.57									
220	1356	1.80	1569	0.26	162.25	1400	++-							
						1500		/			444			
			· · · · · · · · · · · · · · · · · · ·				(
						1600								
			-											
			-			1700	Щ							
Remarks	Test carried penetromete (mm/blow) de	out in accord r. CBR corre eveloped by	ance with the lation based TRL taken fro	operating in: on the relation on the Highw	structions for the structions for the structions for the structure of the	he TRL dyr CBR) = 2.48 terim Advic	namic o 3 - 1.05 e Note	cone 7 x Log ₁₀ 76-03 -	Checker: SH Approver:	Operator:	н			

Job No.	0018937	- Turbor 2		Date 0	4/06/2918		Grou	nd Level (r 8.8	n) 26		TRL2A05				
Contractor				Co-ordina	ites		Initial	Scale Rea	ading (mm)	Sheet					
A	rcadis Co	nsulting (U	IK) Ltd	54086	55 E 266803 N	1	100			2 of 2					
otal No. of Blows	Scale Reading (mm)	DCP (mm/blow)	Depth Below Ground Level (mm)	Log ₁₀ (mm/blow)	CBR (%)	800	0	20	CBR (% 40) 60	80	100			
40	800	8.00	900	0.90	33.53	800									
41	807	7.00	907	0.85	38.61										
42	815	8.00	915	0.90	33.53										
43	823	8.00	923	0.90	33.53										
44	827	4.00	927	0.60	69.76										
46	841	7.00	941	0.85	38.61	900	1		>						
48	855	7.00	955	0.85	38.61										
50	878	11.50	978	1.06	22.85				5						
52	880	1.00	980	0.00	302.00										
54	886	3.00	986	0.48	94.55							-			
56	896	5.00	996	0.70	55.10	1000	-								
58	908	6.00	1008	0.78	45.45										
60	921	6.50	1021	0.81	41.76										
62	929	4.00	1029	0.60	69.76										
64	936	3.50	1036	0.54	80.34										
66	944	4.00	1044	0.60	69.76	1100					-				
68	952	4.00	1052	0.60	69.76										
70	962	5.00	1062	0.70	55.10				5						
75	984	4.40	1084	0.64	63.08										
80	1001	3.40	1101	0.53	82.84										
85	1028	5.40	1128	0.73	50.80	4200									
90	1047	3.80	1147	0.58	73.65	1200									
95	1063	3.20	1163	0.51	88.32										
100	1077	2.80	1177	0.45	101.71										
105	1096	3.80	1196	0.58	73.65						4				
110	1113	3.40	1213	0.53	82.84										
115	1133	4.00	1233	0.60	69.76	1300									
120	1151	3.60	1251	0.56	77.98										
125	1169	3.60	1269	0.56	//.98										
130	1186	3.40	1286	0.53	82.84										
135	1198	2.40	1298	0.38	77.00										
140	1216	3.60	1316	0.56	04 55	1400	-								
145	1231	3.00	1331	0.48	94.00										
150	1245	2.80	1345	0.45	50.90										
100	12/2	0.40	13/2	0.73	60.19										
165	1290	4.00	1/11	0.00	89.32										
167	1220	3.20	1411	0.01	61.60	1500									
107	1320	4.00	1420	0.00	01.00	1300									
Remarks	Test carried penetromete (mm/blow) de	out in accord r. CBR corre eveloped by	ance with the lation based TRL taken fro	operating in: on the relation on the Highword	structions for the T Inship Log ₁₀ (CBR ays Agency Interir	TRL dyn R) = 2.48 m Advice	amic c - 1.05 e Note	one 7 x Log ₁₀ 76-03 -	Checker SH Approve	: Opera	ator: SH	1			

Project	lorthstowe	- Parcel 2	A						-		Positio	on ID		
Job No. 1	0018937			Date 0	5/06/2018	-	Groun	d Level (n 8.79	1) 98	1	IRL2	A08		
Contractor				Co-ordina	tes	-	Initial	Scale Rea	ding (mm)	Sheet				
A	rcadis Co	nsulting (U	IK) Ltd	54096	50 E 266918	N	410				2 of 2			
otal No. of Blows	Scale Reading (mm)	DCP (mm/blow)	Depth Below Ground Level (mm)	Log ₁₀ (mm/blow)	CBR (%)	0 20		CBR (%) 0 20 40		0 20			80	100
43	1010	20.00	1420	1 30	12.73	1400						TT		
44	1050	40.00	1460	1.60	6.12									
45	1095	45.00	1505	1.65	5.40									
46	1170	75.00	1580	1.88	3.15									
47	1230	60.00	1640	1.00	3.99	1500				++++	++++			
48	1275	45.00	1685	1.65	5.40									
49	1340	65.00	1750	1.81	3.66									
50	1410	70.00	1820	1.85	3.39									
51	1470	60.00	1880	1.78	3.99									
52	1520	50.00	1930	170	4 83	1600		++++						
53	1570	50.00	1980	1.70	4 83									
54	1625	55.00	2035	1.74	4.37									
55	1670	45.00	2080	1.65	540									
00	1010	40.00	2000	1.00	0.10	1.50								
				5		1700	T							
							H							
-						1800	1			_				
			(, I	10000									
	1			2 - S		1900	+++	1111			1111			
			(1 - N										
					h	2000	1							
				i	N	2000	T					TT		
					· · · · · · · · · · · · · · · · · · ·									
							1							
			-	()		2100	1FL							
				1 'ii		2100								
	1	·)	1										
		· · · · · · · · · · · · · · · · · · ·		1										
				· · · · · · · · · · · · · · · · · · ·		2200	111					10		
				2		and a state	_			_				
Remarks	Test carried	out in accord	ance with the	operating in	structions for the	TRI dun	amic co	ne	Checker	: Ope	rator:			
	penetromete	r. CBR corre	lation based	on the relation	nship Loan (CB	R) = 2.48	- 1.057	x Log.	SH					
	(mm/blow) d	eveloped by	TRL taken fro	m the Highw	ays Agency Inter	im Advice	Note	76-03 -	Approve	r.	M	г		
	Design Guid	e for Road Pa	avement Fou	ndations (200	6).				GW	14				

APPENDIX D

CERTIFICATION OF FIELD APPARATUS

Dynamic sampling uk Itd Unit 5-8 victory parkway victory road Derby DE24 8ZF

Instrumented Rod Data

Diameter d _r (mm):	54
Wall Thickness tr (mm):	6.9
Assumed Modulus E _a (GPa):	208
Accelerometer No.1:	6455
Accelerometer No.2:	6457

Hammer Energy Test Report

in accordance with BSEN ISO 22476-3:2005

Hammer Ref:	CJ03
Test Date:	02/08/2017
Report Date:	02/08/2017
File Name:	CJ03.spt
Test Operator:	TP

Hammer Information

Hammer Mass	m (kg):	63.5
Falling Height	h (mm):	760
String Length L	. (m):	15.0

Comments / Location

C.J. associates hammer tested at Dynamic samplings yard.

The recommended calibration interval is 12 months

APPENDIX E

MONITORING DATA

	CADIC	-	Project				-		Northst	owe - Parce	2A					Weather:		Ver	y warm / Dry
-/-			Job Number:			10018973		Date:	29/06/2018				Engineer:			RD			
Monitoring Point Reference	Date/ Time	Atm Press (mb	ios. sure bar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
	*. - *			-	Peak_7	Peak 0	Initial	0	0 0	0	21	0	0	1				-	1
							30	0	0 0	0.7	20.1	0	1	In come					
							60	0	0 0	0.8	19.7	0	1						
					1.1.1		90	0	0 0	0.8	19.5	0	0						
					Steady 7	Steady 0	120	0	0 0	0.9	19.5	0	1						
A	A						150	0	0 0	0.9	19.4	0	1						the second second second
BH2A01S	29/06/2018	10	25	1.	E com	1.5.15	180	0	0 0	0.9	19.4	0	1	· · · · · · · · · · · · · · · · · · ·			0.83	2.44	Measured from Ground Level
					Peak 5	Peak 0	Initial	0	0 0	0	20.8	0	1						The second second
1.000			_				30	0	0 0	0.2	20.5	0	3						1
					1000		60	0	0 0	0.2	20.5	0	3						
				1.00	1.17 T		90	0	0 0	0.2	20.5	0	3						
	1.00				Steady 5	Steady 0	120	0	0 0	0.2	20.5	0	2						
142.45			2.1				150	0	0 0	0.2	20.5	0	2	·			1.1.1.	1.5.5	
BH2A01D	29/06/2018	102	25				180	0	0 0	0.2	20.6	0	2				0.6	6.21	Measured from Ground Level
1.00	1.1		1.1	1.1	Peak 9	Peak 0	Initial	0	0 0	0.1	20.7	0	0				1.1	1	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A
							30	0	0 0	0.2	20.5	0	0		1				
							60	0	0 0	0.2	20.5	0	1						
						Look at	90	0	0 0	0.3	20.5	0	1						
					Steady 9	Steady 0	120	0	0 0	0.3	20.5	0	0						
50.000				1.0			150	0	0 0	0.3	20.5	0	1	-			0.0		Second Second Second
BH2A02S	29/06/2018	102	25				180	0	0 0	0.3	20.5	0	0				0.75	2.2	Measured from Ground Level
and the second second					Peak 3763	Peak 6.6	Initial	0	0 0	0.1	20.7	0	3				14.5		
N 100 1						100	30	0	0 0	0.2	20.5	0	4						
							60	0	0 0	0.2	20.5	0	4						
							90	0	0 0	0.2	20.5	0	4						
					Steady 3763	Steady 3.0	120	0	0 0	0.2	20.5	0	4						
							150	0	0 0	0.2	20.5	0	4						
BH2A02D	29/06/2018	10	25	1			180	0	0 0	0.2	20.5	0	4		-		0.56	7 88	Measured from Ground Level

PID readings have not been taken.

Ambient	Concentration
CH4	0
CO2	0.428571429
02	20.43015873
H2S	0.095238095
со	1.19047619

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

QA Checklist:				
Weather conditions logged for previous 24 hrs N		Instrument Details:	Serial No.	Hyder/other ref.
Gas monitor calibrated	Y	Landfill Gas Analyser		GA5000
All filters in place	Y	PID		
Flow reading stable and zeroed	Ŷ	Dip meter/ interface probe		

	CADI		oject:				Northsto	we - Parce	1 2A			Q. 1						
A	CADI		b Number:					10018973							Date:		29/06/20	18
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
-				Peak 12	Peak 0	Initial	0	0	0.1	20.8	0	0		-			r /	
				10.00		30	0	0	0.2	20.8	0	2	·					
						60	0	0	0.2	20.8	0	2	1					
				1.1-1		90	0	0	0.2	20.8	0	2						
				Steady 12	Steady 0	120	0	0	0.2	20.8	0	2						
· · · · · ·	1.500.21			1.111	1.7.8	150	0	0	0.2	20.8	0	2				1.1	1.0	Automation and the
BH2A03S	29/06/2018	1025		· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	180	0	0	0.2	20.8	0	2				1.11	3.04	Measured from Ground Lev
				Peak O	Peak 0	Initial	0	0	0.1	20.8	0	0	· · · · · ·				1.00	
				PT 1. 1		30	0	0	1.5	19.1	0	2						
						60	0	0	1.6	19	0	2	•					
				1. J. J.	A	90	0	0	1.6	19	0	2	1	-				
			Steady 0	Steady 0	120	0	0	1.6	19	0	2							
			training.	1.1	150	0	0	1.6	19	0	2						1	
BH2A03D	29/06/2018	1025		10 M I	1.1.1	180	0	0	1.6	19	0	2				1,1	5	Measured from Ground Lev
				Peak 3	Peak 0	Initial	0	0	0.1	20.9	0	0						
				17.1		30	0	0	0.5	20.7	1	0						
						60	0	0	0.5	20.7	1	0						
				1154.1		90	0	0	0.5	20.7	1	0	1					
	1.1.9.1			Steady 3	Steady 0	120	0	0	0.5	20.7	1	0						
1.22	10.00					150	0	0	0.5	20.7	1	0				1. A.T.		
BH2A04S	29/06/2018	1025	S. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.1		180	0	0	0.5	20.7	1	0				1.32	3.14	Measured from Ground Le
				Peak 15	Peak 0	Initial	0	0	0.1	21	0	0				1000		
				and the second second		30	0	0	0.1	21	0	0						
						60	0	0	0.1	21	0	0						
				1127		90	0	0	0.1	21	0	0						
				Steady 15	Steady 0	120	0	0	0.1	21	0	0						
	in the second second			1.0000	100	150	0	0	0.1	21	0	0				1	10	Contraction of the second
BH2A04D	29/06/2018	1025				180	0	0	0.1	21	0	0	1000			1.35	14.96	Measured from Ground Lev
1				Peak 0	Peak 0.1	Initial	0	0	0.1	20.9	0	0						
				1000	1.00	30	0	0	0.5	20.7	0	0						
						60	0	0	0.5	20.6	0	0						
				5.5.1	1.00	90	0	0	0.5	20.6	0	0						
				Steady 0	Steady 0.1	120	0	0	0.5	20.6	0	0			1			
	And the second second			100		150	0	0	0.5	20.6	0	0		_		1. Sugar	Acres 1	Second Second
BH2A05S	3H2A05S 29/06/2018 10	1025				180	0	0	0.5	20.6	0	0				1.3	2.94	Measured from Ground Lev

PID readings have not been taken.

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water drow in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

	CADIC	Pro	ject:					Northst	owe - Parce	1 2A				1.1	Weather:	-	Ver	y warm / Dry
-/46	CADIS	Job	Number:			10018973		Date:	te: 29/06/2018						Engineer:			RD
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
	*			Peak g	Peak 0	Initial	0) 0	0.1	20.9	0	1	1				-	
					-	30	0	0 0	0.2	20.8	0	1	in second					
						60	0	0 0	0.2	20.8	0	1						
				1.27	1.55	90	0	0 0	0.2	20.8	0	0						
				Steady 9	Steady 0	120	0	0 0	0.2	20.8	0	0						
						150	0	0 0	0.2	20.8	0	0				1.10	1.5	the state of the second states
BH2A05D	29/06/2018	1025		C C	14 C	180	0	0 0	0.2	20.8	0	0	· · · · · · · · · · · · · · · · · · ·	· · · · · ·		1.43	15.02	Measured from Ground Level
			111	Peak 9	Peak 0	Initial	0	0 0	0	20.9	0	1					1.000	
1 m - 1		111			30	0	0 0	1.7	20	0	0					1.1	-	
				1.000		60	0	0 0	1.7	19.9	0	0						
				1.1.1		90	0	0 0	1.6	19.9	0	0					1.1.1.1	
				steady 9	Zteady 0	120	0	0 0	1.6	19.9	0	0						
Sec. 2		1005				150	0	0 0	1.6	19.9	0	0		_		1.5.2		
BH2A06S	29/06/2018	1025	-	Parts 40	Durk D	180	0	0 0	1.6	19.9	0	0				1.6	2.36	Measured from Ground Level
			1111	Peak 10	Peak 0	Initial	0	0 0	0.1	20.8	0	1					1.1.1.1	
						30	0	0 0	0.4	20.6	0	2						
						60	0	0 0	0.4	20.5	0	2	-	_				
				Standy 10	Steady 0	90	0	0	0.4	20.5	0	2	-	-				
				SICOUY IN	ALCOUT O	120	0		0.4	20.5	0	1		_				1.0
DUDAOCD	20/05/2018	1005				190	0		0.4	20.5	0	1					7.05	
DIIZAUOD	29/00/2018	1025	-	Peak 10	Peak 0	Initial	0		0.4	20.3	0	1		-	-	1,0	7.00	Measured from Ground Level
	100000-011			100		20	0		01	20.0	0	0		-		1.0		
						50	0		0.1	20.0	0	0		-				
						90	0		0.1	20.7	0	0						
				Steady 10	Steady 0	120	0	0	0.1	20.7	0	0		-				
						150	0	0 0	0.1	20.7	0	0	-					
BH2A07S	29/06/2018	1025				180	0	0	0.1	20.7	0	0				0.56	2 67	Measured from Ground Level

PID readings have not been taken.

Amb	ient	Concentration
CH	4	0
CO	2	0.44
0	2	20.53939394
H2	s	0
C	0	0.689655172

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

QA Checklist:		1. 2	and the second sec	
Weather conditions logged for previous 24 hrs	N	Instrument Details:	Serial No.	Hyder/other ref.
Gas monitor calibrated	Y	Landfill Gas Analyser		GA5000
All filters in place	Y	PID		
Flow reading stable and zeroed	У	Dip meter/ interface probe		

AR	CADI	S	Projec Job Nu	t: umber:			_	Northsto	we - Parce 10018973	I 2A						Date:		29/06/20	018
Monitoring Point Reference	Date/ Time	Atm Press (mb	nos. sure par)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
				1	Peak 3	Peak 0	Initial	0	0	0	20.7	0	0					-	
					1.00		30	0	0	0.2	20.6	0	2	· · · · · · · ·					
							60	0	0	0.2	20.6	0	2	1			1		
						1.000	90	0	0	0.2	20.6	0	2						
	1.0.0				Steady 3	Steady 0	120	0	0	0.2	20.6	0	2						
1.000	1.1		1		· · · · · · · · ·		150	0	0	0.2	20.6	0	2					1.00	A company of the second
BH2A07D	29/06/2018	10	25				180	0	0	0.2	20.6	0	2				0.55	10.04	Measured from Ground Level

PID readings have not been taken.

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, adours, bubbles, etc.

GAD	CADIC	Proje	ect:	1	1.1.1.1.1			Northst	owe - Parce	A 2A	100				Weather:			Dry
AR		Job N	lumber:			10018973		Date: 06/07/2018				Engineer:	1.	RD				
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
			1	Peak_0	Peak O	Initial	0	0	0	20.8	0	0			0		(
						30	0	0	1.5	18.3	0	0			0.5		1.1	
						60	0	0	1.5	18.2	0	0			0.5			
					1977 and 1	90	0	0	1.5	18.2	0	0			0,5			
				Steady 0	Steady 0	120	0	0	1.5	18.2	0	0			0,5			
	1				1 2 1	150	0	0	1.5	18.2	0	0	C		0,5		1	the second second second second second second second second second second second second second second second se
BH2A01S	06/07/2018 11:15	1019	-		the second	180	0	0	1,5	18.2	0	0			0.5	0.85	2.44	Measured from Ground Level
				Peak 36	Peak 0.2	Initial	0	0	0	20.6	0	0			0			7
				1.0	÷	30	0	0	0.3	20.2	0	4	- 11		0.4		1.1	
						60	0	0	0.2	20.3	0	4			0.4			
					Sec. 4	90	0	0	0.2	20.3	0	3	-	1.1.	0.4			
	1		1.1	Steady 36	Steady 0	120	0	0	0.2	20.4	0	3	2		0,4		1.000	
	Sector Const				1 - 1	150	0	0	0.2	20.4	0	3		1.0	0,4		1.5.5.4	Market Street St
BH2A01D	06/07/2018 11:15	1019	· · · · · ·			180	0	0	0.2	20.5	0	2	-		0,4	0.64	6.21	Measured from Ground Level
		1	1	Peak O	Peak 0	Initial	0	0	0.1	20.6	0	0			0			
				1.1.1.1		30	0	0	0.3	20.4	0	0			0.7			
						60	0	0	0.3	20.4	0	0			0.7			
				1.0	12 Sec.	90	0	0	0.3	20.4	0	0			0.7			
			1.1.1	Steady 0	Steady 0	120	0	0	0.3	20.4	0	0			0.7			
	1. Sec. 1. 1. 1. 1.			1.1		150	0	0	0.3	20.4	0	0			0.7			
BH2A02S	06/07/2018 11:40	1019				180	0	0	0.3	20.4	0	0			0,7	0.73	2.2	Measured from Ground Level
		10.00		Peak 827	Peak 5.4	Initial	0	0	0	20.7	0	0			0.5			
				1.0	1 m m	30	0	0	0.4	20.1	0	6			0.7			
				1.2.4.4		60	0	0	0.4	20.1	0	8			1.1			1.1
					1.1.1	90	0	0	0.4	20.1	0	8	·	1.	1.1			1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
				Steady 827	Steady 1.2	120	0	0	0.4	20.1	0	8						Measured from Ground Level
				1	-	150	0	0	0.4	20.1	0	8		18		1	1.5.5	/ PID readings stopped at 120
BH2A02D	06/07/2018 11:40	1019				180	0	0	0.4	20.1	0	8		1	1	0.57	7.88	seconds due to a pump error.

	Ambient	Concentration
-	CH4	0
· · ·	CO2	0.668253968
	02	19.83333333
	H2S	0
	со	1.031746032
	H2S CO	0 1.031740

revious weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, wegetation stress, odours, bubbles, etc.

QA Checklist:			and the second second second second second second second second second second second second second second second	
Weather conditions logged for previous 24 hrs	N	Instrument Details:	Serial No.	Hyder/other ref.
Gas monitor calibrated	Y	Landfill Gas Analyser		GA5000
All filters in place	Y	PID		
Flow reading stable and zeroed	Y	Dip meter/ interface probe		

	CADIS	Proje	ect:				Northsto	we - Parce	I ZA						-		_	
1/-11		Job N	lumber:				14	10018973							Date:		06/07/20	018
Aonitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (l/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
				Peak 0	Peak 0	Initial	0	0	0.1	20.6	0	0		1	0.6	-	C	
				L S T		30	0	0	0.2	20.6	0	0		1	1.4			
						60	0	0	0.1	20.5	0	0			1.5			
				1.1		90	0	0	0.1	20.5	0	0			1.5	17		
				Steady 0	Steady 0	120	0	0	0.1	20.5	0	0			1.5	5		
	and the second second			1.00		150	0	0	0.1	20.5	0	0			1.5			1
BH2A03S	06/07/2018 09:10	1021		1.1	1	180	0	0	0.1	20.5	0	0		1.0.00	1.5	1.23	3.04	Measured from Ground Lev
	· · · · · · · · · · · · · · · · · · ·	-		Peak 0	Peak 0	Initial	0	0	0.1	20.5	0	0			0.7			
						30	0	0	3.4	17.3	0	0			0.8			
						60	0	0	3.6	16.9	0	0			1.3	.3 .3 .3 .3 .3		
				and the	12	90	0	0	3.7	16.8	0	0		10.00	1.3			
				Steady 0	Steady 0	120	0,1	0	3.7	16.8	0	0			1.3			
	A			1.1	100	150	0.1	0	3.7	16.8	0	0			1.3			and the stand of the
H2A03D	06/07/2018 09:10	1021	-			180	0.1	0	3.7	16.8	0	0				1.22	5	Measured from Ground Le
				Peak 3	Peak 0	Initial	0	0	0	20.4	0	0			0			
						30	0	0	0.4	20.3	0	0			0.1			1
						60	0	0	0.4	20.3	0	0			0.1			
				2.2		90	0	0	0.4	20.3	0	0			0.2			
				Steady 3	Steady 0	120	0	0	0.4	20.3	0	0			0.2			
	and a state of the second			100.00	1.1	150	0	0	0.4	20.3	0	0		_	0.2	in the		And the second second
SH2A04S	06/07/2018 10:50	1019	-		aut a	180	0	0	0.4	20.3	0	0			0.2	1.36	3.14	Measured from Ground Lev
	A second particular and a		100	Peak 2	Peak 0	Initial	0	0	0	20.5	0	0			0	1.1		
				10.00		30	0	0	0	20.4	0	0			0.1			
					U - 34	60	0	0	0	20.4	0	0		-	0.1			
				Standy 2	Standy 0	90	0	0	0	20.4	0	0		_	0.1			
				Steady 2	Sieady 0	120	0	0	0	20.4	0	0			0.1			
1000		1.114			1.4	150	0	0	0	20.4	0	0			0.1		12.52	in a state of the
H2A04D	06/07/2018 10:50	1019	-	Peak 1	Peak 0.1	180	0	0	0	20.4	0	0			0.1	1.34	14.96	Measured from Ground Le
				I CON A	reak v.z	Initial	0	0	0	20.5	0	0			0.4			
						30	0	0	0.4	20.2	0	0	_		2.5			
						00	0	0	0.4	20.2	0	0	_		26			
				Steady 1	Steady 0.0	120	0	0	0.4	20.2	0	0			2.0			
						150	0	0	0.4	20.2	0	0	_		2.7			
8424055	13/07/2018 10:30	1021	_			180	0	0	0.4	20.2	0	0	_		2.0	1 29	2.94	Measured from Ground Le
1124055	13/07/2010 10.50	1021	-	-		100			0.4	20.2	0	0			5	1,23	2,34	Measured from Ground Let

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

ARCADIS	Project: Job Number:			Project: Northstowe - Parcel 2A									Weather:			Dry		
AR		Job N	lumber:			10018973	Ê.	Date:	_		06/07/201	8			Engineer:	1.		RD
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (l/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
			-	Peak 2	Peak 0	Initial	0	0	0	20.5	0	1			0			
						30	0	0	0.1	20.4	0	0	- · · · ·	1.1.1	0.5	1		
						60	0	0	0.1	20.4	0	0			2.3			
					100 Aug.	90	0	0	0.1	20.4	0	0			2.2	1		
				Steady 2	Steady 0	120	0	0	0,1	20.4	0	0			2.5			
	the second second second second second second second second second second second second second second second s				Territ I	150	0	0	0.1	20.4	0	0			2.7			1000000000000
BH2A05D	06/07/2018 10:30	1021			-	180	0	0	0.1	20.4	0	0		1.	2,8	1.41	15.02	Measured from Ground Level
				Peak 1	<u>Peak 0</u>	Initial	0	0	0.1	20.4	0	0			1,9	1.0		
						30	0	0	0.9	20	0	0	-		5.1			
						60	0	0	0.9	19.9	0	0	·		10.3			
						90	0	0	0.9	19.9	0	0	-		12.6			
	1			Steady 1	Steady 0	120	0	0	0.9	19.9	0	0	_		12.7		1.00	
					11	150	0	0	0.9	19.9	0	0	-		12.5			
BHZAU65	06/07/2018 09:45	1021	-	Peak 0	Peak 0	180	0	0	1	19.9	0	0	-		12,4	1.74	2.30	Measured from Ground Level
						20	0	0	0.1	20.7	0	0			0.3	1000	1000	
						50	0	0	0.4	20.0	0	0			9.1			
					1 m 1 m 1	90	0	0	0.4	20.0	0	0			12.5			
			1.1	Steady 0	Steady 0	120	0	0	0.4	20.6	0	0			8.6			
				100		150	0	0	0.4	20.6	0	0			9.2		1.1.1	And a second second
BH2A06D	06/07/2018 09:45	1021		1.5		180	0	0	0.4	20.6	0	0			9.1	1.73	7.06	Measured from Ground Level
				Peak Q	Peak 0	Initial	0	0	0.1	20.7	0	0			0.4			
				1.12		30	0	0	0.1	20.7	0	0			0.3			
					1.000	60	0	0	0.1	20.7	0	0			0.4			
				1.0		90	0	0	0.1	20.7	0	0		1.5	0.3			
				Steady 0	Steady 0	120	0	0	0.1	20.7	0	0			0.4			
					- 1.1	150	0	0	0.1	20.7	0	0		1.	0.4		See.	1 1. S. J. J. J. W. P.
BH2A07S	06/07/2018 10:10	1021				180	0	0	0.1	20.7	0	0			0.4	0.59	2.67	Measured from Ground Level

Т	Ambient	Concentration
	CH4	0
	CO2	0.32
	02	20.43714286
	H2S	0
	CO	0.314285714

evious weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

QA Checklist:		· · · · · · · · · · · · · · · · · · ·		
Weather conditions logged for previous 24 hrs	N	Instrument Details:	Serial No.	Hyder/other ref.
Gas monitor calibrated	Y	Landfill Gas Analyser		GA5000
All filters in place	Y	PID		
Flow reading stable and zeroed	Y	Dip meter/ interface probe		

AA	ARCADIS Project: Job Number:					-	Northsto	we - Parce 10018973	12A						Date:		06/07/20	018
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
-		1.000		Peak 3	Peak 0	Initial	0	0	0.1	20.7	0	0			0.6			the second second second second second second second second second second second second second second second se
				L S. T	11-1-1	30	0	0	0.3	20.4	0	2		1.0	3.7			
						60	0	0	0,3	20.4	0	2			4.5			
						90	0	0	0.3	20.4	0	2			7.2			
			1.1.1	Steady 3	Steady 0	120	0	0	0.3	20.4	0	2	1		9.6			
					1.37	150	0	0	0.3	20.5	0	1			9,4		1.1	
BH2A07D	06/07/2018 10:10	1021			· · · · · · ·	180	0	0	0.2	20.5	0	1			9.5	0.53	10.04	Measured from Ground Level

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

		Pro	ject:					Northste	owe - Parce	al 2A					Weather:	(S	unny / Dry	
146	CADI	Job	Number:	1 =		10018973	2	Date:			13/07/201	8			Engineer:	2		RD	
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Cor (all reading datum heip	nments s from GL, note sht if different)
	1		4	Peak_0	Peak 0	Initial	0	0	0	20.5	0	0	1.	1	0	h.,			
				1.0	1 de 1	30	0	0	1.4	18.6	0	0		1	0.6				
						60	0	0	1.4	18.5	0	0			0.6				
				1.00	1.2.1	90	0	0	1.4	18.5	0	0			0.6				
				Steady_0	Steady 0	120	0	0	1.4	18.5	0	0	+	j	0.6				
	Sector and					150	0	0	1.4	18.4	0	0	1		0.6			1.000	
BH2A01S	13/07/2018	1021		· · · · · · · · · · · · · · · · · · ·	100 C	180	0	0	1.4	18,4	0	0	1			0.91	2.44	Measured fro	om Ground Lev
	1.		1 (1 - 1 ¹	Peak 75	Peak 0.4	Initial	0	0	0	20.6	0	0			0		11.00	1.	
	11		11111		1.1.1.1	30	0	0	0.3	20.1	0	4		-	1.2				
						60	0	0	0.3	20.1	0	4	-		1.2				
				Steady 75	Steady 0	90	0	0	0.3	20.1	0	4			1.2			A	
				Steady 75	Steady o	120	0	0	0.2	20.2	0	4			1.2				
	12/07/2019	1021				190	0	0	0.2	20.2	0	3		-	1.2	0.61	6.21	Manager	m Cround Law
DITZAULU	15/07/2018	1021	-	Peak 0	Peak 0	Initial	0	0	0.2	20.2	0	2		-	0	0.01	0.21	weasured in	om Ground Lev
						30	0	0	0.2	20.0	0	0			03		1.1		
						60	0	0	0.2	20.1	0	0			0.3				
						90	0	0	0.2	20.1	0	0			0.3				
				Steady 0	Steady 0	120	0	0	0.2	20.1	0	0	-		0.3				
				1.2		150	0	0	0.2	20.1	0	0			0.3				
BH2A02S	13/07/2018	1021		1.	1. Au 1.	180	0	0	0.2	20.1	0	0			0.3	0.79	2.2	Measured fro	om Ground Lev
				Peak 437	Peak 3.5	Initial	0	0	0	20.5	0	0			0				
	1.0-0-0					30	0	0	0.4	19.6	0	9			0.4		1.7		
						60	0	0	0.4	19.5	0	9							
				distant.	10 y 11	90	0	0	0.4	19.5	0	9				1		1.	
				Steady 437	Steady 0.5	120	0	0	0.4	19.5	0	9						Measured fro	om Ground Lev
				1.1	1.1	150	0	0	0.4	19.5	0	9	-					/ PID reading	gs stopped at 6
BH2A02D	13/07/2018	1021				180	0	0	0.4	19,5	0	9				0.57	7.88	seconds due	to a pump erro
otes:							-			-								Ambient (Concentration
																		CH4	0
																		CO2	0.66666666
																		02	19.8206349
																		H2S	0
																		co	1.19047619
vious weather co	nditions, Atmosphic pro	essure trend and ra	ite, flooding, soil	l moisture, water d	lraw in tube, wind di	irection/strength	, condition of moni	toring point, miss	ing/open tap, dat	tum level, vegetat	ion stress, odours,	bubbles, etc.						A	
Checklist:										2.7.	10.0								
eather condition	s logged for previous	24 hrs			N	Instrument D	etails:	11		Seria	al No.		1	Hyder	/other ref.		1		
is monitor calibr	ated				Y	Landfill Gas A	nalyser							G	A5000		1		
filters in place					Y	PID		- U							1.000		4		
w reading stabl	e and zeroed				Y	Dip meter/ int	terface probe	C	1										

AR	CADI	S Job	oject: o Number:				Northsto	we - Parce 10018973	I 2A						Date:		13/07/20	18
Monitoring Point Reference	Date/ Time	Atmos. Pressure (mbar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec <mark>)</mark>	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
			-	Peak 1	Peak 0	Initial	0	0	0.1	20.6	0	0			0			
						30	0	0	3.8	17.1	0	0	1		0.9			
						60	0	0	3.8	16.7	0	0			1.2			
						90	0	0	3.8	16.7	0	0		-	1.2			
				Steady 1	Steady 0	120	0	0	3.8	16.6	0	0	1		1.2			
	1.2.2			1.4		150	0	0	3.8	16.6	0	0			1.2			Section 20
BH2A03S	13/07/2018	1023				180	0	0	3.8	16.6	0	0		1	1.2	1.21	3.04	Measured from Ground Lev
			1.00	Peak 4	Peak 0	Initial	0	0	0	20.7	0	0	: (0		1.0	
	1.000		11111	12-11		30	0	0	0.2	20.5	0	0			1.8		11.1	
				1000		60	0	0	0.2	20.5	0	0	· · · · · · · · · · · · · · · · · · ·	÷	2			
				1.2.1.1		90	0	0	0.2	20.5	0	0			2.2			
				Steady 4	Steady 0	120	0	0	0.2	20.5	0	0			2.2			and the second
	Sec. al					150	0	0	0.2	20.5	0	0			2.2			And the second
BH2A03D	13/07/2018	1023	- 1			180	0	0	0.2	20.5	0	0	1		2.2	1.21	5	Measured from Ground Leve
	in the second second			Peak 5	Peak 0	Initial	0	0	0	20.7	0	0			0	1		
				1.1		30	0	0	0.4	20.5	0	0			1.2			
						60	0	0	0.4	20.5	0	0			1.2			
				1.000	1.1	90	0	0	0.4	20.5	0	0			1.2			
				Steady 5	Steady 0	120	0	0	0.4	20.5	0	0	1		1.2			
	1.			111.0		150	0	0	0.4	20.5	0	0			1.2			1000 C 1 1 1 1 1 1
BH2A04S	13/07/2018	1021	_	1.17		180	0	0	0.4	20.5	0	0	1		1.2	1.37	3.14	Measured from Ground Leve
				Peak 1	Peak 0	Initial	0	0	0	20.8	0	0			0			
				1000		30	0	0	0	20.8	0	0			1.3			
						60	0	0	0	20.8	0	0	1		1.3			
				1. 21		90	0	0	0	20.8	0	0			1.3			
				Steady 1	Steady 0	120	0	0	0	20.8	0	0	1		1.3			
				100	100	150	0	0	0	20.8	0	0	t t		1.3		1.5	a ser a ser a
BH2A04D	13/07/2018	1021				180	0	0	0	20.8	0	0				1.38	14.96	Measured from Ground Leve
				Peak 0	Peak 0.0	Initial	0	0	0	20.7	0	0			0			
				The second		30	0	0	0.3	20.4	0	0	L		0.6			
						60	0	0	0.3	20.4	0	0	1	1	0.6			
				1000		90	0	0	0.3	20.4	0	0	·		0.6			
				Steady 0	Steady 0.0	120	0	0	0.3	20.4	0	0			0.6			
				10.11		150	0	0	0.3	20.4	0	0	11 m l		0.6		1	March March 19
BH2A05S	13/07/2018	1023		12		180	0	0	0.3	20.4	0	0	1		0.6	1.3	2.94	Measured from Ground Leve

Overcast / Dry

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, odours, bubbles, etc.

	CADIO	P	roject:					Northst	owe - Parce	2A					Weather:	(S	unny / Dry	
AN	CADIS	, C	ob Number:			10018973	(Date:	1.0	-	13/07/201	8			Engineer:	2		RD	
Monitoring Point Reference	Date/ Time	Atmos Pressur (mbar	re (°С))	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	02 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to Water (m)	Depth to base (m)	Com (all readings datum heig	iments from GL, note ht if different)
	1			Peak 0	Peak 0	Initial	0	0	0	20.5	0	0		1	0	<u>}-</u>		-	
				1.1	-	30	0	0	0.1	20.3	0	0	1.000	1	1.5				
				1.00		60	0	0	0.1	20.3	0	0			2				
				1.55	1. 1.50	90	0	0	0.1	20.3	0	0	1		2				
				Steady 0	Steady 0	120	0	0	0.1	20.3	0	0			2				
	and and				1.00	150	0	0	0.1	20.3	0	0	1		2	1.00		A. Salaria	
BH2A05D	13/07/2018	1023	Report Present	100.000		180	0	0	0.1	20.3	0	0	1		2	1.41	15.02	Measured fro	m Ground Lev
	1.1			Peak 0	Peak 0	Initial	0	0	0	20.7	0	0			0		1		
	1.1			1.1		30	0	0	0.6	20.5	0	0			0.5				
						60	0	0	0.6	20.5	0	0	·		1.2				
					100	90	0	0	0.6	20.4	0	0			1.2		1.4		
				Steady 0	Steady 0	120	0	0	0.6	20.4	0	0	1000	1	1.2				
	a straight					150	0	0	0.6	20.4	0	0	i		1.5	1.1.1	Same		
BH2A06S	13/07/2018	1023				180	0	0	0.6	20.4	0	0			1.5	1.72	2.36	Measured fro	m Ground Leve
				Реак О	Peak D	Initial	0	0	0	20.5	0	0			0				
						30	0	0	0.3	20.3	0	0	ingeneration of the second sec		3.3				
						60	0	0	0.2	20.2	0	0			3.5				
				Standy 0	Standy D	90	0	0	0.2	20.2	0	0			3.3				
				Steady U	Steauv U	120	0	0	0.2	20.2	0	0			3.3				
	10100					150	0	0	0.2	20.2	0	0			3.3		7.05		
BH2A06D	13/0//2018	1023		Peak 1	Peak 0	180	0	0	0.2	20.2	0	0			3.3	1.65	7.06	Measured fro	m Ground Leve
	1.000			T Gun I	- Can b	Initial	0	0	0	20.5	0	0			20			1	
				1.2		30	0	0	0.3	20.2	0	0			2.8	0			
						60	0	0	0.3	20.2	0	0			3.0				
				Steady 1	Steady 0	120	0	0	0.3	20.2	0	0		-	3.0				
						150	0	0	0.3	20.2	0	0			5.0				
BH2A07S	13/07/2018	1023				180	0	0	0.3	20.2	0	0	-		-	0.69	2.67	Measured fro	m Ground Leve
lotes:				-														Ambient C	oncentration
																		CH4	0
																		CO2	0.26
																		02	20.2787878
																		H2S	0
																		со	0
revious weather co	onditions, Atmosphic pre	essure trend an	d rate, flooding, so	il moisture, water d	Iraw in tube, wind dir	ection/strength	n, condition of mon	itoring point, miss	ing/open tap, datu	ım level, vegetal	ion stress, odours,	bubbles, etc.							
A Checklist:		27.1			_		100								. 205.00				
Veather condition	ns logged for previous	24 hrs			N	Instrument D	etails:			Seri	al No.		1	Hyder	other ref.				
as monitor calibi	rated				Y	Landfill Gas A	nalyser						-	G	45000				
(tilters in place					IV I	riu													

Dip meter/ interface probe

Y

Flow reading stable and zeroed

AR	CADI	S	Projec Job N	t: umber:				Northsto	we - Parce 10018973	1 2A			1			Date:		13/07/20	018
Monitoring Point Reference	Date/ Time	Atn Pres (ml	nos. ssure bar)	Temp. (°C)	Well Pressure (Pa)	Flow Rate (I/h)	Time (sec)	CH4 (% v/v)	LEL (%)	CO2 (% v/v)	O2 (% v/v)	H2S (ppm)	CO (ppm)	Hex. (%)	PID cf	VOC (ppm)	Depth to water (m)	Depth to base (m)	Comments (all readings from GL, note datum height if different)
				1	Peak 10	Peak 0	Initial	0	0	0	20.5	0	0			0			
							30	0	0	0.3	20.1	0	0	1		1.8		1.0	1
							60	0	0	0.3	20.1	0	0	· · · · · · · · · · · · · · · · · · ·		1.9			
					1.0		90	0	0	0.3	20.1	0	0		-	1.9			
					Steady 10	Steady 0	120	0	0	0.3	20.1	0	0	·		1.9	1.000	1.00	1
					1.7	-	150	0	0	0.3	20.1	0	0			1.9			
BH2A07D	13/07/2018	10	023				180	0	0	0.3	20.1	0	0	1		1.9	0.66	10.04	Measured from Ground Level

Previous weather conditions, Atmosphic pressure trend and rate, flooding, soil moisture, water draw in tube, wind direction/strength, condition of monitoring point, missing/open tap, datum level, vegetation stress, adours, bubbles, etc.

Project:	1.1.1	Northstowe	- Parcel 2A		Position No:		BH2A	D1S .5 m 8 DO (mg) 1.17 0.71 0.71 0.71 0.49 0.4 0.4	
Project No:		10	018973		Sample Ref:		EW	015 .5 m 8 DO (mg) 1.17 0.71 0.71 0.49 0.49 0.4	
Engineer:			RD		Weather:		Wai	BH2A01S EW1.5 Warm 0.76 8 0(%) DO (mg) 11.7 1.17 7.2 0.71 7.1 0.7 5 0.49 4.1 0.4 Silty	
Date:		21/06/201	18						
Borehole Dept	h:	2	.44	Pre-Sampling	g Water Level	(m):	0.76		_
Standpipe Diar	meter (mm):	50	Total Purge	Volume (I)		1		
Single Purge Vo	olume (I):		2.6	(3 x Single P	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.76		7.31	1143	15	11.7	1.17	56.1
First Purge Volume	10	0.76	2.6	7.25	1131	15.8	7.2	0.71	35.2
Second Purge Volume	15	0.76	2.6	7.25	1127	16	7.1	0.7	35
Third Purge Volume	20	0.76	2.6	7.18	1095	16.4	5	0.49	34.6
Stable Reading	25	0.76	-	7.17	1081	16.5	4.1	0.4	32.3
Water Descript Start of Purgin; Clarity, Odour)	tion at g (Colour,		Silty		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Silty	
Comments:									

Project:	1	Northstowe	e - Parcel 2A		Position No:	· · · · · ·	BH2A	01D	
Project No:		10	018973		Sample Ref:		EW	01D 6 8 DO (mg) 0.72 0.46 0.49 0.49 0.87 Silty	
Engineer:			RD		Weather:	1			
Date:		21/06/201	18						
Borehole Depti	h:	6	5.21	Pre-Sampling	g Water Level	(m):	0.59		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)		-	8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.59	-	7.35	1222	13.4	6.9	0.72	10.8
First Purge Volume	10	0.59	2.6	7.36	1239	13.3	4.5	0.46	32.7
Second Purge Volume	15	0.59	2.6	7.36	1251	12.4	4.3	0.46	32.5
Third Purge Volume	20	0.59	2.6	7.39	1095	16.5	5	0.49	34.6
Stable Reading	25	0.59	-	7.4	1306	13.7	8.4	0.87	35
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Silty		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Silty	
Comments:									

Project:		Northstowe	e - Parcel 2A		Position No:	p	BH2A	025 6 8 DO (mg) 1.96 1.59 2.87 3.16 3.28	
Project No:		10	018973		Sample Ref:		EW	A02S V6 8 D0 (mg) 1.96 1.59 2.87 3.16 3.28	
Engineer:			RD		Weather:				
Date:		21/06/201	18						
Borehole Depti	h:		2.2	Pre-Samplin	g Water Level	(m):	0.68	· · · · · · · · · · · · · · · · · · ·	
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single P	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.68	-	6.95	832	15.5	20	1.96	73.5
First Purge Volume	10	0.68	2.6	6.92	809	15.6	16	1.59	80.8
Second Purge Volume	15	0.68	2.6	7.02	731	16	29.2	2.87	93.2
Third Purge Volume	20	0.68	2.6	7.07	698	15.8	32	3.16	98.4
Stable Reading	25	0.68	-	7.08	697	16	33.4	3.28	100.4
Water Descript Start of Purgin; Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	iption Purging ity, Odour)		Clear	
Comments:		6			1				

		Northstowe	e - Parcel 2A		Position No:	e1	BH2A	02D	
Project No:		10	018973		Sample Ref:		EW	/6	
Engineer:	_		RD		Weather:				
Date:		21/06/201	18		-				
Borehole Depth:	-	7	.88	Pre-Sampling	g Water Level	(m):	0.54		
Standpipe Diam	eter (mm):	50	Total Purge	Volume (I)		_		_
Single Purge Vol	lume (l):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.54	-	7.33	1360	13	28.7	2.98	5.6
First Purge Volume	10	0.54	2.6	7.28	1352	11.9	14.4	1.53	9.2
Second Purge Volume	15	0.54	2.6	7.21	1307	11.6	6.8	0.79	11.9
Third Purge Volume	20	0.54	2.6	7.2	1281	11.2	5.8	0.63	11.8
Stable Reading	25	0.54	-	7.2	1279	11.3	5.6	0.61	13.6
Water Descriptio Start of Purging Clarity, Odour)	on at (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ity, Odour)		Clear	

Project:	1 - 1	Northstowe	e - Parcel 2A		Position No:	et	BH2A	035			
Project No:	1	10	018973		Sample Ref:		EW	6			
Engineer:			RD		Weather:			EW6 1 8 (%) DO (mg) 36.8 3.87 37.5 3.95 19.6 2.09 19.6 2.11 21.7 2.31			
Date:		21/06/201	18								
Borehole Depti	h:	3	.04	Pre-Samplin	g Water Level	(m):	1				
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)						
Single Purge Vo	olume (I):		2.6	(3 x Single P	urge Volume)			8			
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)		
Start	5	1	1	7.17	908	13	36.8	3.87	C		
First Purge Volume	10	1	2.6	7.16	902	13	37.5	3.95	C		
Second Purge Volume	15	1	2.6	7.22	1338	12.2	19.6	2.09	14.1		
Third Purge Volume	20	1	2.6	7.16	1296	12.2	19.6	2.1	15.3		
Stable Reading	25	1	-	7.11	1128	12.3	21.7	2.31	15,5		
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Silty base		Water Descri During/After (Colour, Clari	ption Purging ity, Odour)		Clear			
Comments:	-		Silty base					Clear			

Project:	1	Northstowe	e - Parcel 2A		Position No:		BH2A	03D	
Project No:		10	018973		Sample Ref:		EW	6	
Engineer:			RD		Weather:	1			
Date:		21/06/201	18						
Borehole Depti	h:		5	Pre-Sampling	g Water Level	(m):	1.03		
Standpipe Dian	neter (mm):	50	Total Purge	/olume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	irge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	1.03	-	7.04	1322	14.5	15.8	1.52	55
First Purge Volume	10	1.03	2.6	7.02	1333	14.7	12.3	1.22	49.4
Second Purge Volume	15	1.03	2.6	7.01	1371	14.2	5.4	0.54	17.1
Third Purge Volume	20	1.03	2.6	7.01	1372	14.2	5.3	0.54	16.8
Stable Reading	25	1.03	÷	7.01	1371	14	4.6	0.45	12.8
Water Descript Start of Purgin Clarity, Odour)	tion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

mm) (1):	10 21/06/201 3	018973 RD 18 3.14	Pre-Sampling	Sample Ref: Weather: g Water Level	(m):	EW War	6 m		
mm) 1):	21/06/201 3	RD 18 3.14	Pre-Sampling	Weather:	(m):	War	m		
mm) (I):	21/06/201 3	18 3.14	Pre-Sampling	g Water Level	(m):	1.05			
mm) (1):		3.14	Pre-Sampling	g Water Level	(m):	1.05			
mm) 1):):	50				1.05			
(1):		50	Total Purge	/olume (I)			8		
		2.6	(3 x Single Pu	urge Volume)					
)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
5	1.05	-	7.33	1135	10.9	51.5	5.67	193.3	
15	1.05	2.6	7.07	1006	12.4	54.2	5.73	237.8	
20	1.05	2.6	7.15	1073	11.3	52.2	5.7	182.4	
25	1.05	2.6	7.22	1026	11.7	60.6	6.55	93.3	
30	1.05	-	7.22	1026	11.7	60.6	6.55	92.1	
ur,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
) 5 15 20 25 30) Water (m) 5 1.05 15 1.05 20 1.05 25 1.05 30 1.05 ur,	Water (m) Removed (l) 5 1.05 - 15 1.05 2.6 20 1.05 2.6 30 1.05 2.6 30 1.05 - Clear	Water (m) Removed (l) FT 5 1.05 - 7.33 15 1.05 - 7.33 15 1.05 2.6 7.07 20 1.05 2.6 7.15 25 1.05 2.6 7.22 30 1.05 - 7.22 Clear	Water (m) Removed (l) μ ¹¹ (μScm-1) 5 1.05 - 7.33 1135 15 1.05 2.6 7.07 1006 20 1.05 2.6 7.07 1006 20 1.05 2.6 7.15 1073 25 1.05 2.6 7.22 1026 30 1.05 - 7.22 1026 water Description 0.105 - 7.22 1026	Water (m) Removed (l) μm (μScm-1) Hump (s) 5 1.05 - 7.33 1135 10.9 15 1.05 2.6 7.07 1006 12.4 20 1.05 2.6 7.15 1073 11.3 25 1.05 2.6 7.22 1026 11.7 30 1.05 - 7.22 1026 11.7 wr,	Water (m) Removed (l) μm (μScm-1) Link (l, l) Link (l, l) 5 1.05 - 7.33 1135 10.9 51.5 15 1.05 2.6 7.07 1006 12.4 54.2 20 1.05 2.6 7.15 1073 11.3 52.2 25 1.05 2.6 7.22 1026 11.7 60.6 30 1.05 - 7.22 1026 11.7 60.6 Water Description ur,) Water (m) Removed (i) (JSC - 1) (JSC - 1) (JSC (-) (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	

(m): Temp. (°C) 12.4 12.1	EW War 1.095 DO (%) 54.2	/6 rm 8 DO (mg)	ORP (mV)
(m): Temp. (°C) 12.4 12.1	War 1.095 DO (%) 54.2	8 DO (mg)	ORP (mV)
(m): Temp. (°C) 12.4 12.1	1.095 DO (%) 54.2	8 DO (mg)	ORP (mV)
(m): Temp. (°C) 12.4 12.1	1.095 DO (%) 54.2	8 DO (mg)	ORP (mV)
Temp. (°C) 12.4 12.1	DO (%) 54.2	8 DO (mg)	ORP (mV)
Temp. (°C) 12.4 12.1	DO (%) 54.2	8 DO (mg)	ORP (mV)
Temp. (°C) 12.4 12.1	DO (%) 54.2	DO (mg)	ORP (mV)
12.4 12.1	54.2		
12.1		5.73	237.8
	49.2	5.28	209
12	49.3	5.29	181.4
12	49.2	5.28	181.8
11.9	45.3	4.91	186.5
otion Purging ry, Odour)		Clear	
	otion Purging y, Odour) pumping.	otion Purging y, Odour) pumping.	otion Purging y, Odour) Clear

Project:		Northstowe	e - Parcel 2A		Position No:		BH2A	055		
Project No:		10	018973		Sample Ref:		EW	6		
Engineer:). 		RD		Weather:		Warm			
Date:		21/06/201	18							
Borehole Deptl	h:	2	.94	Pre-Sampling	g Water Level	(m):	1.19	1.19		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Volume <mark>(</mark> I):			2.6	(3 x Single Pu	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	1.19	-	6.98	1708	14.9	45.4	4.44	89.7	
First Purge Volume	15	1.19	2.6	6.88	1500	14	10.1	1.03	94	
Second Purge Volume	20	1.19	2.6	6.87	1463	14	10.2	1.04	94.6	
Third Purge Volume	25	1.19	2.6	6.87	1459	14.1	10.3	1.07	9 <mark>4.6</mark>	
Stable Reading	30	1.19	÷	6.87	1454	14.2	10.2	1.04	94.7	
Water Descript Start of Purgin Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
Comments:										

Project:		Northstowe	- Parcel 2A		Position No:		BH2A	05D		
Project No:		10	018973		Sample Ref:		EW	6		
Engineer:			RD		Weather:	Warm				
Date:		21/06/201	18							
Borehole Depti	h:	1	5.02	Pre-Sampling	g Water Level	(m):	1.22	1.22		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	1.22	-	7.48	1953	12	14.5	1.48	67.8	
First Purge Volume	15	1.22	2.6	7.48	2063	11.6	7.4	0.8	94.5	
Second Purge Volume	20	1.22	2.6	7.42	2029	11.5	10.8	1.57	68.1	
Third Purge Volume	25	1.22	2.6	7.4	2025	11.5	11.4	1.23	59.2	
Stable Reading	30	1.22	-	7.39	2015	11.6	11.7	1.26	60.8	
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
Commente										

Project:	1	Northstowe	e - Parcel 2A		Position No:	e	BH2A	065		
Project No:		10	018973		Sample Ref:		EW	6		
Engineer:			RD		Weather:		Wai	m		
Date:		21/06/201	18							
Borehole Depti	h:	2	.36	Pre-Sampling	g Water Level	(m):	1.3	1.3		
Standpipe Dian	neter (mm):	50	Total Purge	/olume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)		8			
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start		1 - 1 - 1	1							
First Purge Volume	5	1.3	2.6	7.03	128	13.9	29	3	11.6	
Second Purge Volume	25	1.3	2.6	7.06	792	13.5	42.3	4.38	9.8	
Third Purge Volume	30	1.3	2.6	7.13	940	14.5	51.2	5.12	12.4	
Stable Reading			-							
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Description During/After Purging (Colour, Clarity, Odour)		Clear			
Comments:										

V1

Project:		Northstowe	e - Parcel 2A		Position No:		BH2A	06D		
Project No:		10	018973		Sample Ref:		EW	6		
Engineer:			RD		Weather:			Warm		
Date:		21/06/201	18							
Borehole Dept	h:	7	.06	Pre-Sampling	g Water Level	(m):	1.32	1.32		
Standpipe Diar	neter (mm):	50	Total Purge	/olume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)	-	8			
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start				11						
First Purge Volume	5	1.32	2.6	7.1	1814	13.1	7.1	0.75	3.3	
Second Purge Volume	25	1.32	2.6	7.08	1869	12	3.7	0.42	8.7	
Third Purge Volume	30	1.32	2.6	7.1	1879	12.5	3.7	0.47	12	
Stable Reading			-	-2.11				2.11		
Water Descript Start of Purgin; Clarity, Odour)	tion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ity, Odour)	Clear			

Project:	1.1.1	Northstowe	e - Parcel 2A		Position No:		BH2A	075		
Project No:		10	018973		Sample Ref:		EW	/6		
Engineer:			RD		Weather: Warm					
Date:		21/06/201	18							
Borehole Depti	h:	2	2.67	Pre-Sampling	g Water Level	(m):	0.52	0.52		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	0.52	-	6.96	4111	16.2	32.5	3.13	119	
First Purge Volume	10	0.52	2.6	6.97	4129	16.1	31.5	3.04	119.7	
Second Purge Volume	15	0.52	2.6	6.99	4136	16.2	26.5	2.57	118.9	
Third Purge Volume	20	0.52	2.6	7.01	4102	16.2	25.6	2.47	117.4	
Stable Reading	25	0.52	-	7.02	4093	16.2	25.4	2.45	116.8	
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ity, Odour)		Clear		
Comments:			Clear			1		Clear		

Project:		Northstowe	e - Parcel 2A		Position No:		BH2A	07D		
Project No:		10	018973		Sample Ref:		EW	/6		
Engineer:			RD		Weather:					
Date:		21/06/201	18							
Borehole Depti	h:	1	0.04	Pre-Samplin	g Water Level	(m):	0.54	0.54		
Standpipe Dian	neter (mm	ter (mm): 50 Total Purge Volume (I)								
Single Purge Vo	olume (I):		2.6	(3 x Single P	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	0.54	-	6.89	4396	14.6	10.5	1.05	14.6	
First Purge Volume	10	0.54	2.6	6.99	4360	14.4	10	1.01	14.6	
Second Purge Volume	15	0.54	2.6	6.97	4189	13.4	14.3	1.18	14.5	
Third Purge Volume	20	0.54	2.6	6.97	4068	13	17	1.77	14.5	
Stable Reading	25	0.54	-	6.97	4043	12.9	16.5	1.71	14.7	
Water Descript Start of Purgin Clarity, Odour)	Vater Description at art of Purging (Colour, arity, Odour) Cloar			Clear						
Comments:										

Project:		Northstowe	e - Parcel 2A		Position No:		BH10	03S		
Project No:		10	018973		Sample Ref:		EW	/6		
Engineer:). ——		RD		Weather:		Wai	m		
Date:		21/06/201	18		-					
Borehole Depti	h:	3	3.64	Pre-Sampling	g Water Level	(m):	0.92	0.92		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	0.92	-	6.95	1074	13.7	5.5	0.57	124.3	
First Purge Volume	15	0.92	2.6	6.95	1073	13.7	5.5	0.56	124.1	
Second Purge Volume	20	0.92	2.6	6.96	1072	13.7	5.2	0.55	123.8	
Third Purge Volume	25	0.92	2.6	6.97	1071	13.8	4.8	0.5	123	
Stable Reading	30	0.92	-	6.98	1068	13.8	4.9	0.5	122.4	
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
Comments:										

Project:	1.11	Northstowe	e - Parcel 2A		Position No:	e	BH10	03D			
Project No:		10	018973		Sample Ref:		EW	6			
Engineer:			RD		Weather:		Warm				
Date:		21/06/201	18								
Borehole Depti	h:	8	3.92	Pre-Sampling	g Water Level	(m):	0.92	0.92			
Standpipe Dian	neter (mm	(mm): 50 Total Purge Volume (I)									
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8			
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)		
Start	5	0.92	-	6.95	1075	13.6	5.6	0.58	1246		
First Purge Volume	15	0.92	2.6	7.07	2327	13.6	6.7	0.68	29.1		
Second Purge Volume	20	0.92	2.6	7.06	2308	13.7	6.4	0.65	48.6		
Third Purge Volume	25	0.92	2.6	7.07	2313	14	6.1	0.63	50.2		
Stable Reading	30	0.92	-	7.06	2308	14	6.2	0.63	75.8		
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	iption Purging ity, Odour)		Clear			
Comments:											

Project:		Northstowe	- Parcel 2A		Position No:		BH11	03D		
Project No:		10	018973		Sample Ref:		EW	6		
Engineer:			RD		Weather:		Warm			
Date:		21/06/20:	18							
Borehole Depti	h:	g	.34	Pre-Samplin	g Water Level	(m):	0.54			
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Purge Volume)				8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	0.54	-	7.17	710	12	77.2	7.57	21.8	
First Purge Volume	10	0.54	2.6	7.16	708	12	498.3	5.95	21.5	
Second Purge Volume	15	0.54	2.6	7.18	673	11.9	10.3	1.11	12.6	
Third Purge Volume	20	0.5 <mark>4</mark>	2.6	7.2	658	11.7	9.1	0.98	4	
Stable Reading	25	0.54	-	7.24	657	12.1	7.2	0.77	5.3	
Water Descript Start of Purgin Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
Comments:										

Project:		Northstowe	e - Parcel 2A		Position No:		BH11	108		
Project No:		10	018973		Sample Ref:		EW	/6		
Engineer:			RD		Weather: Warm					
Date:		21/06/201	18							
Borehole Depti	h:	5	.66	Pre-Sampling	g Water Level	(m):	1.35	1.35		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)					
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	1.35		7.06	506	15.2	15.5	1.55	2.1	
First Purge Volume	10	1.35	2.6	7.06	506	15.2	15.4	1.54	1.6	
Second Purge Volume	15	1.35	2.6	7.08	502	14.8	17.6	1.33	7.7	
Third Purge Volume	20	1.35	2.6	7.09	503	14.9	11	1.1	8.1	
Stable Reading	25	1.35	-	7.08	503	14.9	10.2	1.04	7.5	
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ity, Odour)		Clear		
Comments:										

Project:		Northstowe	e - Parcel 2A		Position No:		BH12	05S	
Project No:		10	018973		Sample Ref:		EW	6	
Engineer:			RD		Weather:		War	m	
Date:		22/06/201	18						
Borehole Depti	h:	3	3.84	Pre-Sampling	g Water Level	(m):	0.67		
Standpipe Dian	neter (mm):	50	Total Purge	/olume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)	-		8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.67	-	5.37	2223	13.9	12.3	1.25	66
First Purge Volume	10	0.67	2.6	5.36	2227	13.9	11.8	1.13	66
Second Purge Volume	15	0.67	2.6	5.44	2268	13.8	8.9	0.91	58.2
Third Purge Volume	20	0.67	2.6	5.36	2271	13.5	11.2	1.15	56.6
Stable Reading	25	0.67	-	5.32	2273	13.4	13.2	1.37	58.9
Water Descript Start of Purgin Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

Project:	1.11	Northstowe	- Parcel 2A		Position No:		BH12	05D	
Project No:		10	018973		Sample Ref:		EW6		
Engineer:			RD		Weather:		Wai	m	
Date:		22/06/201	18						
Borehole Depti	h:	1	9.77	Pre-Sampling	g Water Level	(m):	0.83		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.83	-	5.93	1953	11.7	10.5	1.09	1.2
First Purge Volume	10	0.83	2.6	5.93	1953	11.7	10.3	1.12	1.2
Second Purge Volume	15	0.83	2.6	5.94	1951	11.6	9.3	1	0
Third Purge Volume	20	0.83	2.6	5.95	1928	11.4	8.9	0.96	0.3
Stable Reading	25	0.83	-	5.97	1903	11.3	9.1	0.99	1.5
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

Project:	1.11	Northstowe	e - Parcel 2A		Position No:		BH60	BH601S		
Project No:		10	018973		Sample Ref:		EW6			
Engineer:			RD		Weather:		Wai	m		
Date:		22/06/201	18							
Borehole Depti	h:	3	.59	Pre-Sampling	g Water Level	(m):	0.94			
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)		7.00			
Single Purge Vo	olume (I):		2.6	(3 x Single P	urge Volume)	-		8		
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)	
Start	5	0.94	-	6.92	2832	13	54	5.61	44.1	
First Purge Volume	10	0.94	2.6	6.88	3127	12.7	32.6	3.38	18.1	
Second Purge Volume	15	0.94	2.6	6.84	3448	12.4	14.2	1.5	1.5	
Third Purge Volume	20	0.94	2.6	6.84	3527	12.4	11.5	1.22	13.5	
Stable Reading	25	0.94	-	6.84	3534	12.3	10.9	1.15	15.8	
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear		
Comments:										

Project:		Northstowe	e - Parcel 2A		Position No:		BH60)1D	
Project No:		10	018973		Sample Ref:		EW6		
Engineer:			RD		Weather:	Warm			
Date:		22/06/201	18						
Borehole Depti	h:	g	9.82	Pre-Sampling	g Water Level	(m):	0.92	£	
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	рН	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	0.92	1	7.18	2418	10.3	33.8	3.62	10.8
First Purge Volume	10	0.92	2.6	7.23	2371	10.9	18.7	1.98	9.6
Second Purge Volume	15	0.92	2.6	7.4	1832	10.8	10.3	1.13	33.9
Third Purge Volume	20	0.92	2.6	7.48	1438	10.6	8.6	0.96	39.5
Stable Reading	25	0.92	-	7.48	1354	10.4	8	0.89	40.9
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

Project:		Northstowe	- Parcel 2A		Position No:		BH60)4S	
Project No:		10	018973		Sample Ref:		EW6		
Engineer:	-		RD		Weather:		Wai	m	_
Date:		22/06/201	18						
Borehole Depti	h:	2	.95	Pre-Sampling	g Water Level	(m):	1.1		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start	5	1.1	-	7.12	2500	15.8	15.3	1.46	3.2
First Purge Volume	10	1.1	2.6	7.12	2489	15.8	14.4	1.4	2.9
Second Purge Volume	15	1.1	2.6	7.12	2482	15.7	14.2	1.33	2.6
Third Purge Volume	20	1.1	2.6	7.1	2301	15.7	10.1	0.99	14.8
Stable Reading	25	1.1	-	7.09	2278	15.8	10	0.97	12.4
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:								=	

r (mm) e (I):	10 22/06/201	018973 RD .8 7.8	Pre-Sampling	Sample Ref: Weather: g Water Level	(m):	EW War	76 m	
r (mm) e (I):	22/06/201	RD 18 7.8	Pre-Sampling	Weather:	(m):	War	m	
(mm) e (l):	22/06/201	7.8	Pre-Sampling	g Water Level	(m):		,	
• (mm) e (l):	:	7.8	Pre-Sampling	g Water Level	(m):			
r (mm) e (l):	:	50						
e (l):		50	Total Purge \	/olume (I)				
			(3 x Single Pu	irge Volume)			8	
me in)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
								1 - 1 - I
10			7.62	1934	11.4	11	1.17	14
15			7.72	1915	11.2	8.2	0.9	37.4
20			7.77	2010	12	27.2	2.96	28.9
it Iour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
	10 15 20	10 10 15 20 t our,	10 10 15 20 t our, Clear	10 7.62 15 7.72 20 7.77 tour, Clear	Inj Water (inj) Removed (i) (µ) 10 7.62 1934 15 7.72 1915 20 7.77 2010 20 7.77 2010 t Water Descri During/After (Colour, Clari	Initial of the indiced (i) Initial of the indiced (i) Initial of the indiced (i) 10 7.62 1934 11.4 15 7.72 1915 11.2 20 7.77 2010 12 20 7.77 2010 12 10 Water Description During/After Purging (Colour, Clarity, Odour) Clear Clear Clear	Ing Notice (in) Reinforce (i) (j) (j	Information Interference (in) Interference (in) Interference (in) Interference (in) 10 7.62 1934 11.4 11 1.17 15 7.72 1915 11.2 8.2 0.9 20 7.77 2010 12 27.2 2.96 20 7.77 2010 12 27.2 2.96 10 1 1 10 10 10 10 20 7.77 2010 12 27.2 2.96 10 1 10 10 10 10 10 20 7.77 2010 12 27.2 2.96 11 11 11.2 12 27.2 2.96 11 11 11 11.2 12 12 10 12 12 12 12 12 10 10 10 12 13 12 12 10 10 10 10 10 10 10 10 10 10 10 10 10

Project:		Northstowe	e - Parcel 2A		Position No:		BH60	065	
Project No:		10	018973		Sample Ref:		EW	/6	
Engineer:			RD		Weather:		Wai	m	
Date:		22/06/201	18						
Borehole Depti	h:	2	2.08	Pre-Sampling	g Water Level	(m):	1.41		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start		1.0.1					0.001		
First Purge Volume	15	1.41	2.6	7.09	735	16.5	15.4	1.53	15.1
Second Purge Volume	20	1.41	2.6	7.09	736	16.4	15.6	1.5	15.6
Third Purge Volume	25	1.41	2.6	7.1	733	16.5	15	1.48	9.8
Stable Reading	30	1.41	-	7.09	731	16.5	14.9	1.48	9.8
Water Descript Start of Purging Clarity, Odour)	tion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

Project:	1.1.1.1	Northstowe	e - Parcel 2A		Position No:	et	BH60	06D	
Project No:	1	10	018973		Sample Ref:		EW3.5		
Engineer:		RD			Weather:			m	_
Date:		22/06/201	18						
Borehole Depti	h:	4	.99	Pre-Sampling	g Water Level	(m):	1.29		
Standpipe Dian	neter (mm):	50	Total Purge	Volume (I)				
Single Purge Vo	olume (I):		2.6	(3 x Single Pu	urge Volume)			8	
Operations	Time (min)	Depth to Water (m)	Volume Removed (I)	pH	Cond. (µScm-1)	Temp. (°C)	DO (%)	DO (mg)	ORP (mV)
Start		1.01							
First Purge Volume	15	1.29	2.6	6.95	1514	12.2	7.4	0.78	82.4
Second Purge Volume	20	1.29	2.6	6.95	1517	12.2	7.9	0.84	79.5
Third Purge Volume	25	1.29	2.6	6.96	1506	12.4	5.6	0.59	86.7
Stable Reading	30	1,29	+	6.96	1504	12.4	5.5	0.59	86.1
Water Descript Start of Purging Clarity, Odour)	ion at g (Colour,		Clear		Water Descri During/After (Colour, Clari	ption Purging ty, Odour)		Clear	
Comments:									

APPENDIX F

GEOTECHNICAL LABORATORY TEST DATA

Contract Number: 39651

Client Ref: 10018973 Client PO: 14011884 Report Date: 10-07-2018

Client Arcadis Fortran Rd St Mellons Cardiff CF3 0EY

Contract Title: Northstowe - Parcel 2A For the attention of: Reg. 13(1)

Date Received: 15-06-2018 Date Commenced: 15-06-2018 Date Completed: 10-07-2018

Test D	Description	Qty
Mois BS 13	sture Content 77 : Part 2 : 3.2 - * UKAS	55
4 Po BS 13	int Liquid & Plastic Limit (LL/PL) 77 Part 2 : 4.3 & 5.3 - * UKAS	42
PSD BS 13	Wet Sieve method 77 : 1990 Part 2 : 9.2 - * UKAS	10
Dry I BS137	Den/MC (2.5kg Rammer Method 1 Litre Mould) 77 : 1990 Part 4 : 3.3 - * UKAS	5
CBR BS137	: Remoulded Specimen and tested at top only 77 : 1990 Part 4 : 7 - * UKAS	13
Quic 38m BS137	ek Undrained Triaxial Compression test - single specimen at one confining pressure (100mm or m diameter) 77 : 1990 Part 7 : 8 - * UKAS	28
Notes:	Observations and Interpretations are outside the UKAS Accreditation * - denotes test included in laboratory scope of accreditation # - denotes test carried out by approved contractor @ - denotes non accredited tests	
This cer relate or	tificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reporte nly to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of the terms of terms of the terms of the terms of terms of the terms of the terms of terms of terms of terms of the terms of te	d herein of the laborat

Approved Signatories:

Reg. 13(1) (Associate Director) - Reg. 13(1) (Contracts Manager) - Reg. 13(1) (Office Manager)

 Reg. 13(1)
 (Quality/Technical Manager) - Reg. 13(1)
 (Advanced Testing Manager) - Reg. 13(1)
 (Administrative/Accounts Assistant)

 Reg. 13(1)
 (Administrative/Quality Assistant)
 (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

Contract Number: 39651

Test Description	Qty
(GI) BRE Suite Total Sulphate, Aqueous Sulphate, Total Sulphur, Aqueous Nitrate, Aqueous Mag, Chloride, 1377 : 1990 Part 3 & BRE CP2/79 - @ Non Accredited Test	15

Disposal of Samples on Project

Laboratory Report

1

Notes: Observations and Interpretations are outside the UKAS Accreditation

- * denotes test included in laboratory scope of accreditation
- # denotes test carried out by approved contractor
- @ denotes non accredited tests

This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory. Approved Signatories:

Reg. 13(1) (Associate Director) - Reg. 13(1) (Contracts Manager) - Reg. 13(1) (Office Manager)

Reg. 13(1) (Quality/Technical Manager) - Reg. 13(1) (Advanced Testing Manager) - Reg. 13(1) (Administrative/Accounts Assistant) Reg. 13(1) (Administrative/Quality Assistant)

GEO Site & Testing Services Ltd Unit 3-4, Heol Aur, Dafen Ind Estate, Dafen, Llanelli, Carmarthenshire SA14 8QN Tel: 01554 784040 Fax: 01554 784041 info@gstl.co.uk gstl.co.uk

GSTL	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
Contract Number	39651	
Site Name	Northstowe - Parcel 2A	
		T

Hole Reference	Sample Number	Sample Type	D	epth (r	n)	Descriptions
BH2A01	5	U	2.00	-	2.45	Brown fine to medium gravelly silty CLAY
BH2A01	9	U	4.00	100	4.45	Brown silty CLAY
BH2A01	13	U	6.00	144	6.45	Brown silty CLAY
BH2A01	17	U	9.00	1.5	9.45	Grey silty CLAY
BH2A02	6	D	3.00	1.4	3.45	Brown silty CLAY
BH2A02	8	U	4.00	1.5	4.45	Brown silty CLAY
BH2A02	12	U	6.00	-	6.45	Brown silty CLAY
BH2A02	14	D	7.50	280	7.95	Brown silty CLAY
BH2A02	16	U	9.00	18	9.45	Brown silty CLAY
BH2A02	20	U	12.00	180	12.45	Brown silty CLAY
BH2A02	24	D	15.00		15.45	Brown silty CLAY
BH2A03	11	D	1.50	181	2.00	Brown fine to medium gravelly silty CLAY
BH2A03	15	U	3.00		3.45	Grey silty CLAY
BH2A03	18	U	5.00		5.45	Brown fine to medium gravelly silty CLAY
BH2A03	21	В	7.50	-	8.00	Brown silty CLAY
BH2A03	25	U	10.50	-	10.95	Brown silty CLAY
BH2A03	28	D	13.50	-	13.95	Grey slightly clayey fine to coarse GRAVEL
BH2A04	6	U	2.00	12.1	2.45	Brown silty CLAY
BH2A04	10	U	4.00	2	4.45	Brown silty CLAY
BH2A04	14	U	6.00	142	6.45	Brown silty CLAY
BH2A04	16	D	7.50	1.0	7.95	Brown fine to medium gravelly silty CLAY
BH2A04	19	U	9.00	-	9.45	Brown silty CLAY
BH2A04	23	U	12.00		12.45	Brown silty CLAY
BH2A04	27	D	15.00	8	15.45	Brown silty CLAY

Operators	Checked	08/07/2018	Reg. 13(1)	Reg. 13(1)	
RO/MH	Approved	09/07/2018	Reg. 13(1)		

GSTL	

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

Contract Number	39651	
Site Name	Northstowe - Parcel 2A	
		2 K S F S

Hole Reference	Sample Number	Sample Number	Sample Number	Sample Number	Sample Type	D	epth (r	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
BH2A01	5	U	2.00	1	2.45	30	60	17	43	94	CH High Plasticity			
BH2A01	9	U	4.00	24	4.45	27	78	25	53	100	CV Very High Plasticity			
BH2A01	13	U	6.00	1.41	6.45	25	66	25	41	100	CH High Plasticity			
BH2A01	17	U	9.00	1.1	9.45	87	59	21	38	100	CH High Plasticity			
BH2A02	6	D	3.00	14	3.45	29			1					
BH2A02	8	U	4.00		4.45	27	65	23	42	100	CH High Plasticity			
BH2A02	12	U	6.00	-	6.45	31	57	25	32	100	CH High Plasticity			
BH2A02	14	D	7.50	1.44	7.95	31								
BH2A02	16	U	9.00	18.1	9.45	32	67	26	41	100	CH High Plasticity			
BH2A02	20	U	12.00	181	12.45	28	65	24	41	100	CH High Plasticity			
BH2A02	24	D	15.00	1000	15.45	26			1	Q				
BH2A03	11	D	1.50	181	2.00	30	1			(
BH2A03	15	U	3.00	2-2	3.45	14	43	19	24	100	CI Intermediate Plasticity			
BH2A03	18	U	5.00	5.1	5.45	31	70	24	46	90	CH/V High/HighPlasticity			
BH2A03	21	В	7.50		8.00	33					· · · · · · · · · · · · · · · · · · ·			
BH2A03	25	U	10.50	-	10.95	26	73	23	50	100	CV Very High Plasticity			
BH2A03	28	D	13.50	-	13.95	8.2)				
BH2A04	6	U	2.00	121	2.45	34	62	24	38	100	CH High Plasticity			
BH2A04	10	U	4.00	248	4.45	25	57	18	39	100	CH High Plasticity			
BH2A04	14	U	6.00	161	6.45	24	65	24	41	100	CH High Plasticity			
BH2A04	16	D	7.50	1.00	7.95	24				0				
BH2A04	19	U	9.00	. <u>2</u> 1.	9.45	30	74	27	47	100	CV Very High Plasticity			
BH2A04	23	U	12.00	-	12.45	28	70	22	48	100	CH/V High/HighPlasticity			
BH2A04	27	D	15.00	181	15.45	23								

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION BS 5930:1999+A2:2010

LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS	
39651	
Northstowe - Parcel 2A	
	Τ
	LIQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5) DESCRIPTIONS 39651 Northstowe - Parcel 2A

Hole Reference	Sample Number	le Sample Depth (m) ler Type		Sample Type	Depth (m)			Descriptions
BH2A05	6	U	2.00	1	2.45	Brown slightly sandy silty CLAY		
BH2A05	10	U	4.00	1	4.45	Brown silty CLAY		
BH2A05	14	U	6.00	1.64	6.45	Brown silty CLAY		
BH2A05	16	D	7.50	1.50	7.95	Brown silty CLAY		
BH2A05	18	U	9.00	1.5	9.45	Brown silty CLAY		
BH2A05	22	U	12.00		12.45	Grey silty CLAY		
BH2A05	26	D	15.00	1.7	15.45	Brown silty CLAY		
BH2A06	2	D	0.00	(K.)	0.20	Brown fine to coarse gravelly silty CLAY with rootlets		
BH2A06	14	U	2.00	18	2.45	Brown silty CLAY		
BH2A06	17	D	3.00	181	3,45	Brown silty CLAY		
BH2A06	25	U	6.00	(∞)	6.45	Brown silty CLAY		
BH2A06	28	D	7.50	18.	7.95	Brown silty CLAY		
BH2A06	31	U	9.00		9.45	Brown silty CLAY		
BH2A07	31	D	0.20		0.50	Brown silty CLAY		
BH2A07	12	U	2.00	1.21	2.45	Brown silty CLAY		
BH2A07	17	U	4.00	-	4.45	Brown silty CLAY		
BH2A07	21	U	6.00	1	6.45	Brown silty CLAY		
BH2A07	25	U	8.00	121	8.45	Brown silty CLAY		
BH2A07	27	D	9.00	2-2	9.45	Brown silty CLAY		
TP2A02	9	D	1.10	. 47	1.30	Brown silty CLAY		
TP2A04	7 -	D	1.25	1.5	1.40	Brown silty CLAY		
TP2A06	1	D	0.00	-	0.30	Brown fine to coarse gravelly sandy CLAY		
TP2A06	8	D	0.80	1.1	1.00	Brown slightly sandy fine to medium gravelly silty CLAY		
TP2A06	4	D	2.00	8	2.50	Brown fine to medium gravelly silty CLAY		

Operators	Checked	08/07/2018	Reg. 13(1)	Reg. 13(1)	
RO/MH	Approved	09/07/2018	Reg. 13(1)		

GSTL	LIG

IQUID LIMIT, PLASTIC LIMIT AND PLASTICITY INDEX (BS 1377 : Part 2 : 1990 Method 5)

Contract Number	39651	
Site Name	Northstowe - Parcel 2A	
		2 K K

Hole Reference	Sample Number	Sample Number	Sample Number	Sample Number	Sample Type	D	epth (r	n)	Moisture Content %	Liquid Limit %	Plastic Limit %	Plasticity index %	Passing .425mm %	Remarks
BH2A05	6	U	2.00	1	2.45	36	76	29	47	100	CV Very High Plasticity			
BH2A05	10	U	4.00	1945	4.45	33	77	25	52	100	CV Very High Plasticity			
BH2A05	14	U	6.00	1.40	6.45	26	68	21	47	100	CH High Plasticity			
BH2A05	16	D	7.50	1.00	7.95	29	J			0				
BH2A05	18	U	9.00	1.5	9.45	31	83	28	55	100	CV Very High Plasticity			
BH2A05	22	U	12.00	-	12.45	15	51	16	35	100	CH High Plasticity			
BH2A05	26	D	15.00	1.7	15.45	25		1000	in the second second	1-2-3				
BH2A06	2	D	0.00	(K.)	0.20	11	42	17	25	69	CI Intermediate Plasticity			
BH2A06	14	U	2.00	6	2.45	34	82	26	56	100	CV Very High Plasticity			
BH2A06	17	D	3.00	10	3,45	34			Sec. 73					
BH2A06	25	U	6.00		6.45	28	66	21	45	100	CH High Plasticity			
BH2A06	28	D	7.50	181	7.95	28				[
BH2A06	31	U	9.00		9.45	32	83	28	55	100	CV Very High Plasticity			
BH2A07	31	D	0.20	12	0.50	30	70	26	44	100	CH/V High/HighPlasticity			
BH2A07	12	U	2.00	-	2.45	32	71	28	43	100	CV Very High Plasticity			
BH2A07	17	U	4.00	-	4.45	29	72	22	50	100	CV Very High Plasticity			
BH2A07	21	U	6.00	÷	6.45	32	82	28	54	100	CV Very High Plasticity			
BH2A07	25	U	8.00	12.1	8.45	30	57	19	38	100	CH High Plasticity			
BH2A07	27	D	9.00		9.45	30				()				
TP2A02	9	D	1.10	147	1.30	30	74	22	52	100	CV Very High Plasticity			
TP2A04	7	D	1.25		1.40	29	71	24	47	100	CV Very High Plasticity			
TP2A06	1	D	0.00	-	0.30	12	30	19	11	47	CL Low Plasticity			
TP2A06	8	D	0.80	-	1.00	30	66	24	42	89	CH High Plasticity			
TP2A06	4	D	2.00	1.80	2.50	31	72	25	47	92	CV Very High Plasticity			

: Liquid Limit and Plastic Limit Wet Sieved

PLASTICITY CHART FOR CASAGRANDE CLASSIFICATION

BS 5930:1999+A2:2010

GS	TL.	LIC	QUID LIN	MIT AND PLASTICITY INDEX 2 : 1990 Method 5) IPTIONS		
Contract Number					39	651
Site Name				17	Northstowe	- Parcel 2A
Hole Reference	Sample Number	Sample Type	C)epth (r	n)	Descriptions
TP2A08	2	D	0.00	12	0.20	Brown fine to coarse garvelly silty CLAY
TP2A08	11	D	1.60	1985	1.75	Brown fine to medium gravelly silty CLAY
TP2A09	2	D	0.00	1.64	0.25	Greyish brown fine to medium gravelly silty CLAY
TP2A09	8	D	0.50	1.57	0.60	Brown fine to medium gravelly silty CLAY
TP2A10	2	D	0.00	1.5	0.25	Brown fine to medium garvelly silty CLAY
TP2A10	11	D	1.20	1	1.60	Brown fine to medium gravelly silty CLAY
TPSA2A07	5	D	0.15	-	0.50	Brownish grey fine to medium gravelly clayey SILT
				(R)		
				18		
				8		
			_	1		
				1.2		
				1		
	-		-	1		
	-			-		
		-		-		
	-			-		

1 - - -

Operators	Checked	08/07/2018	Reg. 13(1)	Reg. 13(1)
RO/MH	Approved	09/07/2018	Reg. 13(1)	

Client Site Name		Certificate of Chemical Analysis (BRE BR 279) Arcadis Northstowe - Parcel 2A						Contract Number Client Reference Date Received Date Started Date Completed		39651 10018973		
										27/06/2018 09/07/2018		
		Hole Number	Sample Number	Sample Type	D	epth (r	n)	Acid Soluble	Aqueous Extract	Chloride Content	Ph Value	Total Sulphur
TP2410	8	D	0.60		1 20	Sulphate	Sulphate	NCP	7 70	0.11	-1	10.25
TPSA2A07	7	B	0.50		0.70	0.19	0.02	NCP	7.81	0.08	<1	25-50
BH2A03	22	D	8 50	-	9.00	0.10	0.02	NCP	7 54	0.00	<1	10-25
BH2A03	30	D	15.00	-	15.45	0.25	0.02	NCP	7.40	0.10	<1	<10
BH2A06	22	В	4.50	-	5.00	0.31	0.03	NCP	7.63	0.14	<1	<10
BH2A06	33	В	9.50	141	10.00	0.23	0.04	NCP	7.50	0.10	<1	<10
BH2A07	16	В	3.50	1.	4.00	0.21	0.03	NCP	7.37	0.09	<1	10-25
BH2A07	29	D	10.00	(\mathbf{p}_{i})	10.45	0.25	0.05	NCP	7.61	0.10	<1	<10
TP2A01	4	В	0.30	121	0.40	0.25	0.04	NCP	7.29	0.10	<1	<10
TP2A02	11	D	2.00	2-1	2.10	0.51	0.03	NCP	7.18	0.19	<1	<10
TP2A08	8	D	0.50	-	0.70	0.19	0.04	NCP	7.52	0.09	<1	10-25
BH2A01	6	В	2.50	9	3.00	0.29	0.04	NCP	7.75	0.12	<1	10-25
BH2A02	9	D	4.50		5.00	0.29	0.02	NCP	7.23	0.12	<1	10-25
BH2A04	7	D	2.50		3.00	0.23	0.03	NCP	7.15	0.10	<1	10-25
BH2A05	9	D	3.50		4.00	0.29	0.04	NCP	7.80	0.12	<1	<10
	1 [<u>(</u>)		
) - · · · · · ·			-		-			1	1		
	18 . N	6 - 1- j		2-9					4.02	1.1	1.1	
				-			_					1
								0		-		
				\sim		1				A		-
			_	-			_			_	_	_
	1	4	1	2=0	1		<u> </u>	· · · · · · ·	1	1 mar 1 m	21	
				-			-	-				_
			-									
		(-						-		
				-						-		
		1	-		-				-			_
	-		_	-	-		-					
Kev	·	Report	ted As		-			Rem	arks	-		J.
Acid Soluble	Sulphate	% 5	6O4	1			N	CP = No Ch	loride Prese	nt		
queous Extract Sulphate		q/I 5										
Chloride Content (Semi)		mg Cl/I										
PH Value		@ 25°										
Total Sulphur		% S		1								
Magnesium		g/I SO ₄										
Nitrate	Э	NO ₃	mg/l									
Test Operator		Checked and Authorised by						Red	a. 13	3(1)		
						Reg. 1	3(1)		9			

