
Published: February 2022

T Level Technical Qualification in Digital: Digital Production, Design and Development
The table below maps the content overlap between the T Level Qualification in Digital Production Design and Development, the BTEC
National In Computing, the BTEC Mathematics for IT Practitioners and the GCE AS and A level subject content for mathematics.

All the T Level content is mandatory. BTEC offers a mandatory and optional content structure.

T level students will need to undertake a variety of assessment types such as those that take place in Higher Education for Health related
courses including examinations and controlled assessments.

T Level Core assessment is an externally set written exam(s) and an employer set project: both sets of exams assess students’ knowledge,
understanding and application of contexts, theories and principles relating to the core content in the specification The written exams assess
route and pathway knowledge through ‘unseen’ examination (which samples content), meaning breadth can be assessed at appropriate level
3 depth, whilst limiting the overall duration of assessment. The written exam structure will provide students with relevant exam and revision
skills for HE. The employer set project: is a more substantial project based assessment set by employers through the awarding organisation,
and will develop their critical thinking and problem solving skills. The project will draw upon knowledge and understanding from across the
core content synoptically, and will allow learners to effectively respond to a ‘brief’. All science elements are assessed.

The occupational specialism (Section 2 below) is also externally assessed through a synoptic project.

BTEC assessment is external, internal and synoptic. External and internal assessment is linked to a specific unit.

 2

Mathematics/Computing Topics

Specification content areas Specification content by unit Unit content specification content by section

T Level1 BTEC in Computing2
BTEC in IT (QCF)3

Mathematics for IT
Practitioners

A Level4

1. Core Learning (M = mandatory, O = optional) (M = mandatory, O =
optional)

Sections/Overarching themes

Problem Solving

Computational Thinking

Top-down, bottom-up and
modularisation approaches to
solve problems

Problem decomposition

Pattern recognition
methodology

Abstraction methodologies

Algorithms for computer
programming

Principles of Computer
Science (U1 - M)

Computational thinking

Decomposition

Pattern recognition

Pattern generalisation and
abstraction

Algorithm design

Methods and techniques used
to develop algorithms

Mathematics for IT
Practitioners (Unit 26 – O)

Recursion: series eg
Fibonacci, factorial, natural
numbers; termination
condition; recursive algorithms
eg factorial, quicksort, binary
search

Calculating factorials and
using search and sort
programmes

Mathematical problem solving (A
Level OT 2)

Recognise mathematical structure in a
situation and simplify and abstract
appropriately to enable problems to be
solved

Concept of a mathematical problem-
solving cycle

Extract information from diagrams and
construct mathematical diagrams to
solve problems

1 T Level Technical Qualification in Digital Production, Design and Development delivered by Pearson (603/5832/4)
2 BTEC Nationals | Computing (2016) | Pearson qualifications
3 BTEC Nationals | Information Technology (2010) | Pearson qualifications
4 AS and A level maths - GOV.UK (www.gov.uk)

https://qualifications.pearson.com/en/qualifications/t-levels/digital-production-design-and-development.html
https://qualifications.pearson.com/en/qualifications/btec-nationals/computing-2016.html
https://qualifications.pearson.com/en/qualifications/btec-nationals/it-2010.html#%2Ftab-4
https://www.gov.uk/government/publications/gce-as-and-a-level-mathematics

 3

Definition of an algorithm

Express an algorithm using
flowcharts and pseudocode

Write algorithms that make use
of programming constructs
(sequence, selection, iteration)

Purposes of given algorithms

Determination of correct output

Identify and correct errors

Structured English
(pseudocode)

Flowcharts using standard
symbols

Common/standard algorithms

Sorting

Searching

Other standard algorithms

Stacks and queues

Pearson Further Mathematics option:
Decision 15

Implementation of an algorithm given by
a flow chart or text

The efficiency of an algorithm

The order of an algorithm i

Bin packing, bubble sort and quick sort

Algorithm for finding the critical path

Construction of Gantt (cascade) charts.

Programming:

Program data

Data types and use

Declare and use constants and
variables that use specific data
types

Data structures

Program variables

Operators

Programming (U1 – M)

Handling data within a program

Defining and declaring
constants and variables

Managing variables

Arithmetic operations

Mathematical operators: + – /
(DIV) *, %/MOD/modulo/rem

Relational operators (=,<, >, <=,
>=) Boolean operators (NOT,
AND, OR) Date/time

Mathematics for IT
Practitioners (Unit 26 – O)

Sequences and series and
probability

Sequences and series: nth
term of a sequence;
generation of recurrence
relationship; arithmetic and
geometric sequences and
series; sum to n terms of an
arithmetic and geometric
series; sum to infinity of a
geometric series; Σ notation

Mathematical Modelling (A Level OT 3)

Translate a situation in context into a
mathematical model

Use a mathematical model with suitable
inputs to engage with and explore
situations

Interpret the outputs of a mathematical
model in the context of the original
situation

Understand that a mathematical model
can be refined by considering its outputs

 4

Mathematical operators in
program code and algorithms
(add, subtract, divide,

multiply, integer division,
modulus)

Relational operators

Boolean operators

File Handling

Input and output of data using
text files

Program Structure

Sequence, selection
(branching) and iteration

Write, interpret, and debug
code that makes use of
sequence

Write, interpret and debug
code that makes use of
selection (branching) (IF,
THEN, ELSE, ELSEIF (ELIF),
CASE)

Write, interpret and debug
code that makes use of
iteration

Built-in functions (functions
provided within programming
languages to perform specific
tasks to process data)

Validating data

Control structures

Procedural programming

Structure

Control Structures

Object-orientated programming

Event driven programming

Coding for the web

Translation

Object-oriented programming
(U16 – O)

performance, safety and
security

Computational thinking
(mathematical and logical
processes that underpin the
design of object-oriented
programs e.g algorithms,
Boolean algebra)

Probability: events e.g. union,
intersection, complementary,
mutually exclusive,
independent; space diagrams
e.g. sum of scores when two
dice are thrown; visualising
events using Venn diagrams;
tree diagrams

Number Systems

Number systems: binary, octal,
denary and hexadecimal;
conversion between number
systems; basic operations e.g.
addition, division,
multiplication, subtraction on
number systems

Applications: e.g. ASCII code
(binary), MIME (hex), file
permissions in Unix (octal); IP
addressing v4 and v6; subnet
addressing; subnet masking;
class A, B and C addresses;
Classless Inter Domain
Routing (CIDR)

Software Design and
Development (U6 - O)

Programming languages

and simplifying assumptions; evaluate
whether the model is appropriate

 5

Call functions and procedures

Searching and sorting
algorithms

Built-in Functions

Analysis of pre-written code
(Python)

User-written code

Validation and Error Handling

Validation techniques

Testing

Testing procedures for all
system components

Quality assurance
methodologies

Automated and functional
testing tools

Root cause analysis

Test plan structuring

Designing object-oriented
programs

Developing object orientated
solutions using programming
languages, e.g. C++, Java®,
PythonTM, Ruby®

Constructs and techniques

Arithmetic operators: [+, –, *, /,
%]

Logical operators: [!=,<, <=, >,
>=, AND, OR, XOR, true, false]

Data types, e.g. char, string,
integer, real, Boolean

Testing

U14 Computer Games
Development(O)

U15 Website Development(O)

U17 Mobile Apps Development
(O)

All require development of a
product using programming
language(s), tools and/or
development environments

Features: sequence; selection
e.g. case, if … then … else;
iteration e.g. repeat – until,
while … do; variables e.g.
naming conventions, local and
global variables, logical
operators; assignment
statements; input statements;
output statements

Data types: text; integer;
floating point; byte; date;
Boolean; other e.g. char,
smallint

 6

Emerging Issues and Impact
of Digital

Legislation

Understand data and risk

Business Environment

Estimate, calculate and spot
errors

Understand data and risk

Communicate using
mathematics

Optimise work processes

Systems Analysis and Design
(U22-O)

software development models,
systems

analysis tools and techniques

and their suitability for

modelling business processes

Develop a design for a
computing system to meet an
organisation’s needs

Data

Data and information in
organisations

Differences and links between
data, information, and
knowledge

Data structures (U1 – M)

How data is represented by
computer systems (U2 – M)

Number systems

Text representation

Image representation

Mathematics for IT
Practitioners (Unit 26 – O)

Matrix Methods

Matrices to represent ordered
data; relationship with
computer program variable
arrays; index notation

Statistical sampling (A Level K)

Population and sample

Sampling techniques

Mathematical and statistical graphing
tools and spreadsheets

Large data set(s) in context

 7

Need for data and information
and how each is used

How data is generated

Data Formats

Data types (date, integer, real,
character, string, Boolean)

Common forms of data format
(JSON, fixed-width text file,
CSV,

ASCII, XML)

File-based and directory-based
structures

Data Systems

Features and functions of data
systems

Business information tools
(analysis)

Data models

Data Management

How data is gathered, entered

and maintained

Data analysis tools

How data is organised on
computer systems

Data structures

Indices and matrices

How data is transmitted by
computer systems

Concepts, processes and
implications of data
transmission in and between
computer systems

Error detection

Error correction

The use of logic and data flow
in computer systems

Boolean logic

Flow charts and system
diagrams

Relational Database
Development (U18-O)

Relational database
management systems
(Relational algebra sets)

Manipulating data structures
and data in

Operations: add, subtract,
scalar multiplication; multiply
two matrices; inverse;
transpose

Techniques: solving
simultaneous linear equations;
vector transformation and
rotation; maps and graphs

Representing data: comparing
data sets using back-to-back
stem and leaf diagrams, mean;
median; mode; interquartile
ranges; histograms; variance;
standard deviation Gathering
data: methods of gathering
quantity data e.g.
measurements,
questionnaires, surveys;
extraction of required
information from raw data;
limitations of data gathered
Interpreting data: e.g.
analysing summary data,
proving hypotheses, identifying
trends and patterns

Use of spreadsheets or specialist
statistical packages to explore data set(s)

Analyse a subset or features of data

Use data to investigate questions arising
in real contexts

Data presentation and interpretation
(A Level L)

Interpret diagrams/histograms

Scatter diagrams and regression lines

Correlation

Central tendency and variation

Recognise and interpret possible outliers
in data sets

Clean data, including dealing with
missing data, errors and outliers]

Statistical Distributions (A Level N)

Probability distributions

Statistical hypothesis testing (A Level
O)

Null hypothesis, alternative

hypothesis, significance level, test
statistic, 1-tail test, 2-tail test, critical

 8

Metadata classification

Data/access
entitlements/permissions

Management

Platforms to access and
manage data (API)

Concepts of data at rest, data
in use and data in motion

relational databases

Normalisation

Relational database design
techniques and processes

Design documentation

Reviewing and refining designs

Develop a relational database
solution to meet client
requirements

value, critical region, acceptance region,
p-value.

Correlation Coefficient

Level of significance

Statistical hypothesis test for mean of
normal distribution

Digital Environments

Physical Environments

Networks

Virtual Environments

Cloud Environments

Resilience of Environments

Use rules and formulae

Understand data and risk

Cost a project

Optimise work processes

Fundamentals of Computer
Systems (U2 -M)

Computer hardware in a
computer system

Computer software in a
computer system

Data processing by computer
systems

Computer architecture

Security Risks

Understand data and risk

 9

Core Project

(applies the above core
learning and is employer set)

Measure with precision

Estimate, calculate and spot
errors

Communicate using
mathematics

Cost a project

Optimise work processes

Process data

Interpret and represent with
mathematical diagrams

Gantt Charts

2. Occupational specialism
Digital production, design,
and development

Units Linked to Projects

A. Digitally based Project

1. Software development life
cycle

Research and familiarisation

Planning and requirement
analysis

Planning and Management of
Computing Projects (U3 – M)

Project management concepts

Costs and timescales

 10

Perform user analysis

Design a product

Develop and test the product

Deploy/implement the product

Maintenance

Roles and Responsibilities of
the Digital Team in the
software lifecycle

Project Methodologies (Agile,
Scaled Agile, Waterfall, RAD,
LEAN)

Impact of emerging
technologies

Personal training needs to
boost performance

2. Ethical principles, risk, legal

Requirements when
developing software

Legal and regulatory
considerations

Risk identification/software
development

3. Sources of Knowledge

Quality and deliverables

Risk

Benefits

Project lifecycle

Professionalism

Starting a Computer Project

Interpret the business case

Stakeholders

Identifying assumptions and
constraints

Project Initiation Document
(PID)

Project Planning

Scheduling and milestones

Resources and budgeting

Risk management strategy

Quality management

Communications

Executing and monitoring a
project

Waterfall model

 11

Find new sources, evaluate
reliability

Select and use techniques to
obtain qualitative and
quantitative data to be

able to evaluate software
solutions

4. Design

Common design approaches

Data flows

Test driven development

Data modelling

Platforms used for source code
and content management

Design a software solution

5. solutions in a social and
collaborative environment

Collaborative techniques

Technologies

6. Implement a solution using
at least two appropriate
languages

Monitoring and tracking
progress

Managing issues

Change management

Implementation strategy

Project closure and post-project
review

Closing a live project

Review of project success

Software Design and
Development Project (U4 – M)

Python (3.4 or a later version)
or C family programming
languages

Software development life cycle

Stages of software development

Flow chart and use of standard
symbol conventions

Structured English
(pseudocode)

Test data; tests and test data to
produce test plans for an
identified solution

 12

Front and back end solutions
(Python, C C# and C++,
Javascript frameworks
(Angular, React), Java, Go,
Ruby, PHP, SQL)

Interfaces that apply user
experience (UX) design
principles

Connect code to data sources
as part of a software project

Select and use deployment
methods for a software project

7. Test a software solution

Select and apply functional,
non-functional and front-end
testing

Select and apply testing
techniques

Select appropriate tests and
test data to test the
functionality of software

8. Change, maintain and
support software

Design concepts

Code readability

Handling data in a program

Arithmetic operations

Built-in functions

Validating data

Control structures

Data structures

Evaluating a software
development project; design,
testing, software,

Systems Methodology (U23-O)

Investigate the principles of
systems methodology and
systems techniques used to
solve computing problems

Apply systems methodology
tools and techniques to identify
and solve a computing problem

Review a solution to a
computing problem.

 13

Changing nature of digital
products and the factors that
drive change

Stages involved in the software
change management process

Maintain code as part of a
larger team

Support software users

3. Additional Content Additional Content

 U7 IT Systems Security and
Encryption (M)

 U8 Business Applications of
Social Media (M)

 U9 The Impact of Computing(M)

 U10 Human-computer
Interaction (O)

 U11 Digital Graphics and
Animation(O)

 U12 Digital Audio(O)

 U13 Digital Video(O)

 U19: Computer Networking

 U20: Managing and Supporting
Systems

 14

 U21: Virtualisation

 Proof (A Level A)

 Algebra and functions (A Level B)

 Coordinate geometry in the (x,y) plane (A
Level C)

 Sequences and series (A Level D)

 Trigonometry (A Level E)

 Exponentials and logarithms (A Level F)

 Differentiation (A Level G)

 Integration (A Level H)

 Numerical methods (A Level I)

 Vectors (A Level J)

 Probability (A Level M)

 Quantities and units in mechanics (A
Level P)

 Kinematics (A Level Q)

 Forces and Newton’s laws (A Level R)

 Moments (A Level S)

© Crown copyright 2022

