

TIGRE TECHNOLOGIES LIMITED CS362

Feasibility Study: Integration of CCUS technology with a 200MW OCGT TiGRE™ Project located in the UK Southern North Sea

KKD1: Feasibility Study Report and Recommendations

Rob Hastings, CEO March 16th 2020

Executive summary

The feasibility study has assessed whether applying CCUS to a TiGRE project will provide the lowest cost of energy (LCOE) with CO2 captured and sequestered while maintaining flexible and dispatchable power generation, relative to any other gas power generation CCUS option currently under consideration within the UK. A TiGRE^m project offers full and in situ vertical integration of the gas production, power production, CO2 capture, and sequestration activities.

The study has shown that a TiGRE[™] gas to wires project does provide the lowest cost option to capture and sequester carbon while maintaining flexible and dispatchable power generation, relative to any other gas power generation CCUS option believed to be currently under consideration within the UK. TTL considered 3 possible options to capture, separate and sequester CO2: Option 1: Chemical separation Option 2: Post-combustion Cryogenic separation Option 2: Oxyfuel generation

Option 1 has been considered unviable when integrated into a TiGRE project and in an offshore environment due to its substantial weight and footprint, costly operations, low level of efficiencies and high latency of the overall system which does not lend itself to dispatchable and flexible power generation. Both Options 2 and 3 are considered both technically and commercially viable solutions and have been thoroughly assessed. Oxyfuel Power plants have a lower LCOE than a TiGRE^m OCGT power plant at load factors above 40%. This would suggest a TiGRE Oxyfuel power plant would not require CO2 subsidies to be competitive in the merchant power market for peaking plant. This suggests that the Oxyfuel concept has the highest investment returns even at relatively low load factors.

KKDs:

- 1. KKD1: The Feasibility Study Report and Recommendations [this report]
- 2. KKD2: The Basis of Design

KKD1:

This Report contains the final conclusions and recommendations of the Feasibility Study. Any follow-on work will be the subject of an additional work scope.

TiGRE Technologies Limited CS362 Feasibility Study Report and Recommendations March 16th 2020

16th March 2020

Date	16.03.2020	Version 1.0
Client	BEIS (Science & Innovation for Climate & Energy)	
Client Lead	Nick Bevan, Gordon Atkinson,	
Prepared by	TiGRE Technologies Ltd. (TTL) Harborough Innovation Centre Market Harborough LE16 7WB	

LEGAL DISCLAIMER - IMPORTANT NOTICE

The information in this Report, including its technical attachments, is intended solely for the use of the Client. It may be confidential and subject to legal professional privilege and it should not be disclosed to or used by anyone else.

Contents

Glossary of Terms
Context
High level summary
Introduction
OCGT Reference Base: OCGT without CCUS
Concept Option 2: Cryogenic Separation
Concept Option 3: Oxyfuel Generation
Conclusions and Key Findings
Appendices

Т	iG	B	Ε

Term	Description
BoD	Basis of Design
CAPEX	Capital Expenditure
ChemSep	Chemical Separation
CCUS	Carbon Capture and Underground Storage
CO2	Carbon dioxide
CVP	Commercial Value Proposition
EU ETS	European Union Energy Trading Scheme
EVP	Economic Value Proposition
GIIP	Gas Initially In Place. An estimate of Reservoir Gas at initial conditions prior to the start of any production
HAZID	Hazard Identification Study
H2O	Water
IRR	Internal Rate of Return
ITL	Indigo TiGRE Limted
LCOE	Levelised Cost of Energy

Term	Description
OCGT	Open Cycle Gas Turbine
OFGT	Oxyfuel Gas Turbine
0&M	Operations and Maintenance
OPEX	Operational Expenditure
Oxyfuel	The process of burning a fuel using pure oxygen instead of air as the primary oxidant
SEALS	Sequestered Emissions at Locational Source
SNS	Southern North Sea
TTL	TiGRE Technologies Ltd.
TIGRE	Transition to integrated Gas and Renewable Energy
TIGRESS	Transition to integrated Gas and Renewable Energy Simulation System

This presentation comprises the final report of the Feasibility Study: Integration of CCUS technology with a 200MW OCGT TiGRE™ Project located in the UK Southern North Sea.

It follows on from the reports and presentations forming the submissions for Milestone 1 [submitted on 18.07.19] and Milestone 2 [submitted on 17.12.19], comprising the following key reports:

- Desktop Study to identify the most suitable Carbon Capture Technologies for application to TiGRETM SEALS. Ref: CS362_CCUS Feasibility Study_METTL001/DS_MS1.0
- ➤ TiGRESS© Configuration and Analysis to incorporate TiGRE[™] SEALS CCUS System report. Ref: CS362_CCUS Feasibility Study_TIGTTL001_RH1.0
- Feasibility Study Completion of Reservoir Behavioural Characterisation & Analysis under TiGRE & CCUS Conditions dated 17 Dec 2019. Presentation slide pack prepared by Schlumberger: Ref: CCS_TiGRE_+Schlumberger+Report_17122019_Final(1).pdf
- Position Statement and Interpretation of the Schlumberger Report: Feasibility Study Completion of Reservoir Behavioural Characterisation & Analysis under TiGRE & CCUS Conditions. Report prepared by Martin Energy Ltd: Ref: ME_Position_Statement & Interpretation_171219.pdf
- TiGRE Technologies Ltd CS362 Milestone2 Submission Slidepack. Presentation slide pack prepared by TTL: Ref: TiGRE Technologies Ltd CS362 Milestone2 Submission Slidepack 171219 – 1.0ah.pdf
- Production of CCUS Feasibility Study Basis of Design. Ref: CS362_CCUS Feasibility Study_METTL001/BOD_MS2.0.pdf
- Production of final report prepared by TTL: TiGRE_Technologies_Ltd_CS362_Milestone_3_final_report_mar20_0.2ah.pdf

This Report refers to and relies on the information contained within the aforementioned reports, which should be used as reference to this Report. Information and data from the previous reports are generally not repeated throughout this Report.

The purpose of this Report is defined within Milestone #3 and is set out on page 12.

High level summary

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd

16th March 2020

This feasibility study has assessed whether applying CCUS to a TiGRE project will provide the lowest cost of energy (LCOE) with CO2 captured and sequestered while maintaining flexible and dispatchable power generation, relative to any other gas power generation CCUS option currently under consideration within the UK. A TiGRE[™] project offers full and in situ vertical integration of the gas production, power production, CO₂ capture, and sequestration activities.

<u>The study shows that a TiGRE[™] gas to wires project does provide the lowest cost option to capture and</u> <u>sequester carbon while maintaining flexible and dispatchable power generation, relative to any other gas</u> power generation CCUS option currently under consideration within the UK.

TTL considered 3 possible options to capture, separate and sequester CO2:

- Option 1: Chemical separation
- Option 2: Post-combustion Cryogenic separation
- Option 3: Oxyfuel generation

Option1 has been considered unviable when integrated into a TiGRE project and <u>in an offshore environment</u> due to its substantial weight and footprint, costly operations, low level of efficiencies and high latency of the overall system which does not lend itself to dispatchable and flexible power generation.

Both Options 2 and 3 are considered both technically and commercially viable solutions and have been thoroughly assessed.

Oxyfuel Power plants have a lower LCOE than a TiGRE[™] OCGT power plant at load factors above 40%. This would **suggest a TiGRE Oxyfuel power plant would not require CO2 subsidies to be competitive in the merchant power market for peaking plant**. This suggests that the OXYFuel concept has the highest investment returns even at relatively low load factors.

High Level Summary

Introduction

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd

16th March 2020

TIGRE[™] SEALS

Hydrocarbon Energy Extraction CO2 Closed Circuit

- TTL believe that a TiGRE[™] gas to wires project provides the lowest cost option to capture and sequester carbon. A TiGRE[™] project **provides a** unique opportunity to assess the feasibility of integrating conventional best-practice carbon capture and sequestration technology into a reallife integrated gas production and power station facility.
- TTL's propriety carbon capture and sequestration concept, **TiGRE SEALS[™]** (Transition to integrated Gas and Renewable Energy Sequestered Emissions at Locational Source) provides an enhancement to the TiGRE[™] power generation concept by adding CO2 capture and underground storage for the purposes of sequestering CO2 emissions from a TiGRE[™] project.
- A TiGRE[™] project offers full and in situ vertical integration of the gas production, power production, CO₂ capture, and sequestration activities.

Feasibility Study Objectives

The feasibility study is addressing whether it is technically feasible and commercially viable to integrate the TiGRE SEALS process into a generic TiGRE[™] development project and is focusing on:

- Characterisation of specifically targeted natural gas reservoirs with respect to CO2 storage in a natural gas reservoir during production and under conditions produced by complete hydrocarbon lifecycle management (slide 9).
- The design modification of the TiGRE[™] gas to wire concept to provide for the integrated SEALS process.
- TiGRE[™] plus CCUS concept optimisation focusing on LCOE for near zero carbon electricity generation within the constraints of the existing offshore gas assets and production facilities.
- Determination of the expected capex & opex of the TiGRE[™] SEALS plant required.
- Production of report and recommendation.

The aim of the feasibility study is to provide an answer to the hypothesis that applying CCUS to a TiGRE project will provide the lowest cost of energy (LCOE) with CO2 captured and sequestered while maintaining flexible and dispatchable power generation, relative to any other gas power generation CCUS option currently under consideration within the UK.

Completion of high-level conceptual designs, cost reviews and reporting phases:

- 1. Production of high-level conceptual designs to include:
 - Preliminary layout & footprint of selected CCS options
 - Preliminary layout design of offshore topside modules & foundation facilities
 - Development of layout scale up rules
 - Initial assessment of operational requirements including manning requirements, logistics and bulk material management, access
 - Overview of construction methodology
 - High level HAZID
- 2. Production of cost review to include:
 - Level2 Capex cost estimate
 - Preliminary O&M cost estimate
 - Economic Value Proposition (EVP) definition for concept selections
 - TiGRESS© analysis on integrated TiGRE SEALS project

Feasibility study report and recommendations

This slidepack focuses on the production of the EVP review for the carbon separation and capture technologies under consideration, and comprises the final report and recommendation. The high-level conceptual design is presented in the accompanying Basis of Design (BoD) report (ref. CS362_CCUS Feasibility Study_METTL001/BOD_MS2.0.pdf).

тере

Methodology used in Preparing the Report

This report presents the approach, analysis and findings of the economic and commercial characteristics of the technology options for CCUS with offshore power generation. The following methodology has been employed to deliver the Study objectives:

- TiGRE Technology Ltd's TiGRESS[™] offshore power plant commercial modelling system has been modified to include CCUS processes. With these modifications TiGRESS[™] has been used exclusively to construct the Economic Value Proposition and the Commercial Value Proposition for a fully integrated gas field production and electricity power station located offshore.
- A design case for a non CCUS, standard configuration 200MW TiGRE[™] OCGT power plant has been constructed for the purposes of providing the counterfactual reference for the economic evaluation of the CCUS Concept Options.
- Analysis undertaken using TiGRESS[™] includes market basedforecasting modelling and econometric analysis of the business model proposed by the concept.
- Econometric modelling undertaken using TiGRESS[™] relies on gas production data and CO2 storage data produced under the deliverables of Milestone #2 of the Feasibility Study.
- Aspen Tech Inc. Aspen Project Economic Analysis software has been used to inform and produce capex and weight estimates of the CCUS concept options considered in this report. The standard TiGRESS[™] capex modelling was used for the analysis of the TiGRE[™] OCGT power plant.
- Commercial risk analysis has been evaluated using the Monte Carlo probability and risk analysis tool within TiGRESS™ to produce risk weighted IRR and LCOE at P20, P50 and P80 levels.

CCUS Options considered

TiG

TIGRE

Option 1:

Combined Cycle Gas Turbine Turbogenerators with post combustion CO2 Chemical Absorption processes using Amine or Chilled Ammonia, and CO2 liquification, pumping and storage.

Option 2:

Combined Cycle with CO2 enrichment processes and post combustion cryogenic capture of CO2 in solid phase for liquification, pumping and storage.

Option 3:

Oxyfuel direct combustion and expansion through a gas turbine with H2O as supplemental working fluid to capture and store liquid CO2.

Note: See slidepack submitted for Milestone2 dated Feb17th 2020 presenting output from the dynamic simulation model based on OCGT exhaust gas composition, pressures, temps & volumes to capture/sequester CO2 and the overall PFD and H&M Balance for CCUS options under consideration, ref:

TiGRE_Technologies_Ltd_CS362_Milestone2_submission_slidepack_171219_1.2ah.pdf and the updated Basis of Design document, ref: CS362_CCUS Feasibility Study_METTL001/BOD_MS2.0.pdf

Concept Option 1: Chemical Separation

TiGRE SEALS[™] CCGT power generation with post combustion chemical separation & underground storage of CO2

Concept Description

The TiGRE SEALS Chemical CO2 separation concept uses amine-based solvents to strip CO2 from the systems exhaust gasses and thereby separate the CO2 from compression and storage. Amine based CO2 capture is a relatively well understood technology and has been deployed in a number of configurations for gas sweating. The TiGRE SEALS outline concept using chemical separation is as follows:

Process

- Natural Gas production system using existing wells and producing reservoir. Natural gas is to be
 produced down to 1bar pressures at the production well head, and compressed to pressures
 >60bar for injection into the gas turbine and reheat after burners
- The primary electrical energy generation plant is based on TiGRE Combined Cycle Gas Turbine (CCGT) concept outlined above. The amount of exhaust gas reheat energy is lower (fuel flow rate reduced to 1kg/s) than that to achieve maximum CO2 concentrations in exhaust fluids, and there is no recycling of the exhaust gases for this concept. The objective is to achieve an overall saturation of CO2 of around 8% by mass within the exhaust, which was determined as the practical optimum relative to amine volumes required through the absorption process.
- The Chemical CO2 removal process consists of absorber and regenerator processes. DEAmine
 was selected as the working solvent based on a literature review to match the specific duty of
 the TiGRE concept. In particular, the key determining criteria relate to reducing the size of the
 process columns, and minimising degradation of the solvent given the cost of providing makeup
 solvent in the offshore location. In addition the process by products can be reduced and
 therefore also reducing the overhead of sludge removal from the offshore location.
- The relatively dry CO2 product is received from the separation plant for compression and further dehydration to get it to liquid phase in preparation for injection into the reservoir through the injection well(s).
- CO2 is discharged into the same subsurface reservoir which is producing the fuel gas in dense phase which provides the necessary gravity head to permit CO2 injection. CO2 largely remains in dense phase and has the effect of increasing reservoir pressure of time which assists natural gas production through re-pressurisation of the reservoir.

Concept Option 1: Continued

The Feasibility Study Project has determined that Concept Option 1 - using chemical separation processes to capture CO2 - is considered non-viable when integrated into a TiGRE project in an <u>offshore environment.</u>

In summary, this conclusion arises from the following findings:

- Excessive weight and footprint and the resulting high capital cost and construction risk implications.
- High cost and risk of offshore operations and management of large volumes of working fluids and contaminates.
- Relatively low levels of net electrical efficiencies resulting from the CO2 capture and storage energy overheads.
- High operational latency of the overall system resulting in reduced dispatchable and flexible power generation that is required to maximise economic value relative to the target peaking power markets.

The remainder of this Report is therefore focused on Concept Option 2 and Concept Option 3 as providing the highest potential viability to deliver the specified EVP of the Feasibility Study.

Concept Option 2: Cryogenic Separation

TiGRE SEALS[™] CCGT power generation with post combustion cryogenic separation and underground storage of CO2

Concept Description

The TiGRE SEALS Post combustion cryogenic CO2 separation concept uses the TiGRE CCGT design configured to achieve maximum CO2 concentrations. The CO2 separation is achieved by cryogenic cooling of the exhaust gas stream to enable separation of CO2 in solid phase, followed by reheating to liquid phase at high pressure for reservoir storage through CO2 injection wells. As with the chemical separation process proposed above, this concept largely relies on conventional available technology, with the sole exception of the solid CO2 separator. Therefore the concept could be considered to be at above TRL7-8 apart from the single component for the separator which would be at TRL4.

The TiGRE SEALS outline concept using post combustion cryogenic separation is as follows (refer to cartoon diagram of the process on the following page):

Process (see slide 17)

- 1. Natural Gas production system using existing wells and producing reservoir. Natural gas can be produced down to 1bar pressures at the production well head and compressed to pressures >60bar for injection into the gas turbine and reheat after burners.
- 2. The primary electrical energy generation plant consists of the basic concept outlined above defining the TiGRE CCGT system. The amount of exhaust gas reheat energy is maximised to full oxygen depletion and to achieve maximum CO2 concentrations, and there is maximum recycling of the exhaust gases to achieve the same purpose. The objective is to reach the maximum achievable overall saturation of CO2 of above 16.5% by mass, thereby achieving the lowest possible exhaust gas mass flow rate with the highest concentration of CO2.
- 3. The CO2 separation process requires significant dehydration, chilling and refrigeration of the exhaust gas to achieve a target temperature of -120C. Under this condition and partial pressures of CO2, CO2 will achieve greater than 97% freeze out, for mechanical separation, reheat to liquid phase and repressurising to around 60bar for storage.
- 4. Liquid CO2 is received from the separation process and storage can be achieved by high efficiency pumping.
- 5. CO2 is discharged into the same subsurface reservoir which is producing the fuel gas in dense phase which provides the necessary gravity head to permit CO2 injection. CO2 largely remains in dense phase and has the effect of increasing reservoir pressure of time which assists natural gas production through re-pressurisation of the reservoir.

CO2 Sequestration With OxyFuel Combustion and Post Combustion Two Phase Separation

Concept Description

The TiGRE SEALS OxyFuel Direct Combustion concept uses cryogenic air separation to produce high purity oxygen for combustion with natural gas and steam as combustion temperature regulator and working fluid. The high-pressure high temperature exhaust gases are expanded through a turbine – generator to produce electrical power for export through a transmission system. A heat exchanger system extracts heat and condenses the low-pressure high temperature exhaust gases to allow water CO2 separation and heat recovery to preheat water to low temperature steam prior to recycling through the oxyfuel combustor. Produced CO2 is compressed to dense phase prior to injection into reworked natural gas production wells for the purpose of CO2 injection and storage.

Process (see slide 19)

- 1. Natural Gas production system using existing wells and producing reservoir. Natural gas can be produced down to 1bar pressures at the production well head, and compressed to pressures >30bar for injection feed to the Oxyfuel Combustor
- 2. Cryogenic air separation system produces oxygen through a fractionation process. Nitrogen, Argon and other trace gases ate released by to atmosphere after recovering cold heat for the process.
- An oxyfuel combustion process uses oxygen and natural gas as a combustion heat source mixed with low temperature high pressure steam as a temperature moderator and working fluid density increaser. Exhaust conditions are to be maintained below allowable Turbine inlet temperatures and fluid density & flow rates.
- 4. A multi-stage turbine expands the high pressure hot exhaust gas to low pressure producing work to drive an asynchronous, grid connected electrical generator.
- 5. A system of heat exchangers designed to extract heat from the exhaust gases to be used to preheat the returned condensed steam after CO2 has been separated from the steam/CO2 exhaust gas mix. Returned water is pumped to high pressure prior to preheating to vapour phase for reuse with the oxyfuel combustion process. Seawater cooling is used as the main cooling source for the exhaust gas condensed water prior to CO2/water prior to the separation process.
- 6. CO2 separation from water is managed through a first stage two phase separator followed by a second stage degasser process to extract remaining low concentrations of CO2 from the produced water prior to circulation back to the pumping and preheat cycle within the heat recuperation process. Excess produce water with less than 0.05% CO2 concentration is removed and discharged to maintain the design water mass flow in the recycled system.
- 7. Separated CO2 of concentrations of >98% from the process in (6) is compressed through a multi-stage process and cooled with seawater to drop into liquid phase. Compressors are electrically driven using power generated by the turbo-generators, and residual produced water is separated at each of the compression stages.
- 8. CO2 is discharged into the same subsurface reservoir which is producing the fuel gas in dense phase which provides the necessary gravity head to permit CO2 injection. CO2 largely remains in dense phase and has the effect of increasing reservoir pressure of time which assists natural gas production through re-pressurisation of the reservoir.

Concept Option 3: Oxyfuel Generation

Generic

Economic

Modelling

Assumptions

Future Power price curves are based on Jump Regression modelling using composite forecast data from:

- BEIS power and gas data
- National Grid power and gas data
- Elexon System power price data
- Historical market prices

Carbon price. Derived from Basic Regression model from: - Historic prices weighted with policy targets

Capacity Payment. Based on:

- Derived from simple regression of average values consistent with current market prices of awarded capacity payment contracts

Electrical Transmission use of system charges (TNUoS Payment). Based on discussions and agreements with National Grid as (GBSO) to set price based on CION and regulatory requirements derived from the Energy Act 2008 as amended.

Inflation. Assumed to be a flat rate @ 2.5%

Equity Investment rates of return (Internal Rate of Return) for invested capital is assumed to be commensurate with the current risk perception of offshore power projects at 15% (nominal)

Assumed interest rates for debt are commensurate with the perceived equity risk and assumed to be 6.5% at a LTV gearing of 50% or less.

Basic CVP model is to assume entry to gasfield at nominal cost value and inherit all decommissioning liabilities. i.e. value of gas is equal to cost of decommissioning. Gasfield can deliver 15mmscfd @ entry and is subeconomic to export

Cost of Opex is consolidated across both power station and gasfield operations

The economic analysis undertaken and presented in this report relies upon the reservoir characterisation and dynamic simulation modelling work undertaken by Schlumberger and presented in their report (ref. CCS_TiGRE+Schlumberger+Report_17122019_Final(1).pdf) submitted as part of Milestone #2.

A point of further clarification which arose from this study was regarding how well the generic reservoir modelling undertaken by Schlumberger reflected known Southern North Sea reservoir characteristics. A study of the latter is presented in the Appendices to this report.

OCGT Reference Base OCGT without CCUS

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd 16th 16th March 2020

Feasibility Study Reference Base

TiGRE Open Cycle Gas Turbine (OCGT) 200MW Power Plant

This Feasibility Study has used the standard TiGRE[™] Base Concept as a counterfactual comparison for the evaluation of Concept Option to include CCUS. The economic and technical key features of the Reference Case concept can be summarized as follows:

- Capital cost of £0.75m per MW of installed capacity compared to a more conventional onshore located F9H Combined Cycle Gas Turbine co-generation power plant (CCGT) of £1.1m/MW.
- Net thermal efficiency of approx. 42% compared to Combined Cycle Gas Turbine cogeneration power plant of of 35-60% depending on load factor.
- Fully dispatchable in response to market demand with system latency of less than 10mins to full load at maximum efficiency. Comparatively, a conventional CCGT system latency to full power and thermal efficiency is between 1 to 4 hours.
- Viable operating envelope of between 30% and 80% average annual Load Factor.
- Approximately 450g/kWh CO2 released, compared to CCGT at 250g/kWh at 100% load.
- LCOE range from £59.00/MWh to £60.50/MWh including full carbon costs at EU ETS rates across an economic load factor range of between 40% and 60%.

TiGRE[™] OCGT Typical Performance Characteristics

Power & Efficiency 200MW	OCGT Gener	ator
Total Power Produced	2.143e+005	kW
Therm Efficiency (e) LHV	43.80	%
Therm Efficiency (e) HHV	39.91	%
Total CO2 produced (kg/s)	26.46	
CO2 produced (g/kWh)	444.6	

Exhaust Gas	Out	
Temperature	405.1	С
Pressure	0.9807	bar
Mass Flow	575.8	kg/s
Master Comp Mass Flow (CO2)	95267.5661	kg/h
Master Comp Mass Flow (CO)	0.4984	kg/h
Master Comp Mass Flow (Nitrogen)	1.530062372e+06	kg/h
Master Comp Mass Flow (Oxygen)	333065.5901	kg/h
Master Comp Mass Flow (H2O)	89506.8313	kg/h
Master Comp Mass Flow (Argon)	25044.4599	kg/h
Master Comp Mass Frac (CO2)	0.0460	
Master Comp Mass Frac (CO)	0.0000	
Master Comp Mass Frac (Nitrogen)	0.7381	
Master Comp Mass Frac (Oxygen)	0.1607	
Master Comp Mass Frac (H2O)	0.0432	
Master Comp Mass Frac (Argon)	0.0121	

TiGRESS[™] Model Run Key Inputs & Assumptions

OCGT Reference Base

	TiGR	ESS™			Кеу	Input Sheet					_
Project Na Simulation	ame n Run Numb	Based on constrained gas supply	FIGRE S 3901.7	EALS '1213	0 Simulation Run Date		11/03/202	20 17:0	5	TIGRE SEALS	
Pr	roject Name	e	J		TIGRE SEALS				Project Sta	rt Reference Year	2018
Ga	is Price Scenari	io	2		Power Price Scenario		2	0.975	Apply Gas	Price Discount Taper	No
Со	nstrained Gas	Supply (Y/N)?	Ϋ́		Export Power Constrain	ned (Y/N)?	Yes		Gas Price D	Discount Taper start price	54
Ga	as supply price	discount on NBP	30.0%		Export Transmission ma	aximum capacity (MV	408		Gas Price E p/thm)	Discount Taper rate (% per	1.00%
Fix	ed gas price (Y	//N)?	Ν		3 x gas turbines	tance (km)	32		Zero disco	unt gas price	84
					selected for this	DFTO (MW)	0				
					model	its	1		OFTO		No
Nu	umber of GT's i	nstalled	3 🔺		Induer	MWh)	0		OFTO - Gei	nerator Build	Yes
Ca	pex Contingen	су	10%		Fixed off-take only		Ν		OFTO - OF	ГО Build	No
discount	mal efficient	mum OEM guarentee cy (%)	100%		Target load factor for re price (reference peakin	eference base fixed g price)	0%		Gearing on	Gen Build OFTO	80%
inst NBP gas	Scalar		0		Merchant trading prem	ium rate	0.0%		Interest ra	te on Gen Build OFTO	5.50%
e to reflect	/ Corporate	tax @ stnd rates?	Ν		Debt interest rates		6.5%		Private Wi	re Transmission	Yes
er cost of	/ Corporate	tax @ PRT rates	Ν		Development transfer of	charge £m	8.60		Gearing on	Private Wire Trans	60%
nroduction	able tax loss	sess	0		Derated Capacity Paym	ent (£/kW)	11.9		Interest ra	te on Private Wire	6.5%
al sumption)	ntegration o TiGRE	f gas field operations	Y		Balancing Power payme (£/MWh)	ent premium	7		Non Firm C derating fa	DFTO Capacity Charge ctor	50%
Sav	ve report (1=yes	, 0=no)	0		Reference Year for sime	ulation	2018		Wind Farm on max OF	Sub MV TEC charge Factor TO TEC charge	50%
					TiGRE debt gearing		50%				
To	tal Local Powe	r Demand (MW)	0					\backslash			
Lo	cal Power Price	e markup factor (%)	0%		Project Description						
Ne	et export powe	r (MW)	205.7		Simulation run for the a	a generic case GE LM9	000 based 20	OMW Ti	GRE Power	plant with EU ETS CO2 pricing	based on
					March 2020 prices Simulation Case for ave	rage fuel consumptio	n of 15mmsc	fd		Reference Year for the simulation run.	is
TiGRESS ^(™) - Т	Fransition to integra	ited Gas and Renewable Energy Sin	nulation System	m is trad	emark and copywrite of TiGRE Techno	blogies Ltd				<i>Montecarlo simulation uses datasets for 201 2018 inclusive</i>	4-

TiGRESS[™] Model Run Key Time Series Assumptions

OCGT Reference Base

TiGRESS™							٦	Time Se	eries D	ata									4			T		E
Project Name	TIGRE S	SEALS																TIG	RE SEA	ALS		02/01/		
Simulation Run Number	39	01.6802	31		Si	mulation	Run Date	11/03/	2020 16	5:19														
	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Gas Production					15	15	15	15	15	15	15	5 15	15	15	15	15	15	15	15	15	15	15	15	15
1 Current Net export Gas Production Forecast (mmscfd)	0	0	51.2	44.7	15	15	14	14	13	13	12	2 12	12	11	11	11	10	10	10	9	9	9	9	8
Compression Fuel Gas Recovery	0%	0%	0%	0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
19.25% Production Uplift					-	3.06	2.98	2.91	2.84	2.77	2.71	2.64	2.58	2.52	2.46	2.41	2.35	2.30	2.25	2.20	2.15	2.11	2.06	2.02
Oplifted production rates (mmscrd) Production Variation Compound Factor	<u> </u>				15.0	3.06	2 98	2 91	2.84	2 77	2 71	2 14.8	2 58	2 52	2.46	2 41	2 35	2 30	2 25	2 20	2 15	2 11	2.06	2.02
Production rate difference (%)					0.0%	17.4%	17.5%	17.5%	17.6%	17.7%	17.8%	5 17.9%	18.0%	18.1%	18.2%	18.3%	18.4%	18.6%	18.7%	18.8%	18.9%	19.1%	19.2%	19.4%
30% Gas Price Discount Rate (%)					30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%
											0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Power Production		$\square N$	et Ga	as Pr	oduct	ion R	ates	result	tina fr	om														
Number of GT	lowered wellhead pressures from increased 737 205.737 205.737 205.737 205.737 205.737														3	3	3	3	3	3	3	3		
Total Power Rating	lowered wellhead pressures from increased														205.737	205.737	205.737	205.737	205.737	205.737	205.737	205.737	205.737	
	L	H SI	uction	ı con	npres.	sion a	and a	dditio	nal ro	outine											<u> </u> '	<u> </u>		
Surplus gas sales from export	well interventions 3211 0.731042 0.740318 0.78755 0.78755 0.80														-55.0163	-55.8845	-56.7526	-57.6208	-58.4889	-59.3571	-60.2252	-61.0934	-61.0934	
Marginal cost for export	well interventions														0 806033	0 827107	0 947794	0 868070	0 800703	0.912971	0.935795	0.95919	0.98317	
Net sales value of gas exported					-18,1867	-17,1265	-16.7035	-16,2342	-15,7171	-15,1506	-14.5332	-13,8631	Gas	s Fore	cast	s nroi	duced	d by a	annua	lised	579	-3.86675	-2.49321	-1.02821
Fiscal Assumptions					1011007	1/11200	101/000	TOLEDIE	1017171	1011000	1110001	1010001		, , ,,,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		44000	y c				0100070	ETIDOEI	INCLOSES
Annual Interest rates (%)	0.25% 0.50% 0.75% 1.25% 1.50% <td< td=""><td>тр к</td><td>egres</td><td>ssion</td><td>1.50%</td><td>1.50%</td><td>1.50%</td></td<>														тр к	egres	ssion	1.50%	1.50%	1.50%				
2.50% Annual CPI Index (Base 2016)	1.00	1.00	1.00	1.00	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	ahe	adaa	as nri	res					52	1.56	1.60	1.64
													une	uu gu	10 pm	000								
Wholesale Day Ahead Gas Price Index (1/10/16)																								
LOW	28.68	36.12	36.37	36.62	36.87	37.12	37.37	37.62	37.87	38.12	38.37	38.62	38.87	39.12	39.37	39.62	39.87	40.12	40.37	40.62	40.87	41.12	41.37	41.37
2.50% CENTRAL	34.60	49.37	50.37	51.37	52.37	53.37	54.37	55.37	56.37	57.37	58.37	59.37	60.37	61.37	62.37	63.37	64.37	65.37	66.37	67.37	68.37	69.37	70.37	70.37
HIGH	43.95	54.77	56.07	57.37	58.67	59.97	61.27	62.57	63.87	65.17	66.47	67.77	69.07	70.37	71.67	72.97	74.27	75.57	76.87	78.17	79.47	80.77	82.07	82.07
When the state of the SCD index $(1/10/16 - 1)$																								
wholesale Electricity SSP index $(1/10/16 = 1)$	24 72	41.25	12 17	20.22	43 EG	42.90	20 72	20.01	44.10	40.10	46.06	45.26	45.01	AC 70	40 E1	42.26	42.25	43 57	40.79	10 OF	44.67	40.96	EO 49	50.48
	39.10	41.55	42.17	55.77	62.86	6/ 13	58.61	61.09	68 30	62.76	74 30	45.20	45.91	40.76	40.51	45.50	42.25	42.57	49.70	40.00 84.26	44.07	49.00 87.48	20.40 20.20	90.40 80.30
HIGH	41.67	62 70	65.02	59.88	67.72	69.29	63 50	66 38	74 51	68 55	81 36	79.42	81 57	84 15	88 31	79.85	78.71	80 18	94 78	94.00	86.86	97.48	100 14	100 14
ETS Carbon Price (£/tn. nominal base 1/1/16)		02.70	05.02	33.00	07.72	03.25	03.50	00.30	74.51	00.55	01.50	73.42	01.57	04.13	00.51	75.05	70.71	00.10	54.70	54.00	00.00	571.55	100.14	100.14
LOW	21.43	21.43	21.43	21.43	21.96	22.51	23.08	23.65	24.24	24.85	25.47	26.11	26.76	27.43	28.12	28.82	29.54	30.28	31.03	31.81	32.61	33.42	34.26	35.11
CENTRAL	21.43	21.43	21.43	21.43	21.96	22 51	23.08	23.65	24.24	24.85	25.47	26.11	26.76	27.43	28.12	28.82	29.54	30.28	31.03	31.81	32.61	33.42	34.26	35.11
HIGH	21.43	21.43	21.43	21.43	21.96	22.51	23.08	23.65	24.24	24.85	25.47	26.11	26.76	27.43	28.12	28.82	29.54	30.28	31.03	31.81	32.61	33.42	34.26	35.11
UK CPS (£/kWh gas, nominal base 1/1/16)																							5	
LOW	-	-	-	-	-	-	-	-	-	-	-	-	-	-	Powe	r Pric	e Foi	recas	sts pro	oduce	d by		-	-
CENTRAL		-		- ·	_									-		- 1:							-	-
HIGH	-		-	Carb	on Pr	ice fo	reca	st bas	sed or	า EU E	=TS		-		annua	allseo	aver	age (of Jun	пр Ке	gres	sion		
Eived Gas Price				with	otrain	ht lind	a lina	arev	tranol	ation					of NG	SSF	dav	ahea	d pov	ver pr	rices		_	
LOW	28.68	36.12	36.		siiaiyi				apoi	alion		38.62	38.62	38		551	aay		- 201	יק יידי			41.07	41.07
CENTRAL	34.60	49.37	50.	inde>	ked wi	ith inf	flatior	ו				59.37	59.37	59.37	64.37	64.37	64.37	64.37	64.37	69.17	69.17	69.17	69.17	69.17
HIGH	43.95	54.77	56.								•••••	67.77	67.77	67.77	74.27	74.27	74.27	74.27	74.27	80.51	80.51	80.51	80.51	80.51

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd

16th March 2020

TiGRESS[™] Model Run Key Inputs & Assumptions

OCGT Reference Base

	тс)=	IRR(p80)	12.8%	IRR(p50)	17.3%	Tigres	SS™ Simul	lation Ma	in Results	s Page	Total Iterations	100	Current Iteration	12		Simulation F Yea	Reference	2018		TiG			
TiGRESS ^(™) Simulation	P	roject	1	GRE SEA	LS						CONFIL	DENTIAL			Location:	SNS	Power Scenario Case	Central	Gas Scenario Case	Effe	ctive a	verage ulation	LCOE	al. itive
Scenario Number	Power Exp	ort Constrained?	Yes	OFTO Oversizing (MW)	-		44667	Total Initial Equ	iity Investment	£158.9 m	n or	£772.5	per kW	Gearing Applied:	50.0% Ir	ebt iterest Rat	е 6.50% Т	ax Treatment	No corp Ta	ax			TiGRE Techr	ssion of sologies Ltd
3901.680231	Power Export	max Capacity (MW)	408	Annual TNUOS Chrg(£m)	£6.32	Avg TNUOS rate (£/MWh)	£8.35	Avg Load Factor	42.0%	Gas Constrained?	Y	Gas Energy Value	40.00	MJ/sm3	20yr total gas vol. (bscf)	120.6	Avg Gas price paid £/thm	0.434	Avg Gas price £/MWh	£14.79	Gas Price Disc on Mkt Price	30.0%	PV (excl Decom)(£m)	£77.67
11/03/2020 16:19	Investor IRR & NPV (£m) (Current Scenario)	14.9%	£119.5	CapEx & DevEx (£k)	£150,335	£8,600	Capacity Payment per kW	£11.85	Discount rate	5 .0% A ir	vg debt nterest rate	6.50%	Corp Tax marginal Rate	N/A	Forecast 2 Duration (yrs)	<u>م</u>	Avg/Max PP captured (£/MWh)	£60.21	£476	Avg Power Sales (m/yr)	£58.68	Max/Min Power Sales (m/yr)	£65.82	£52.23
2	2018	4 2019	2020	2021	2022	2023	2024	2025	2026	12 2027	13 2028	14 2029	2030	2031	2032	18 1033	2034	20 2035	21 2036	2037	23 2038	24 2039	25 2040	26 2041
Power Rating (MW)					205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7	205.7
Number GI Minimum Capture Price	per MWb				3	3	3	3	0.87	3 £40.45	3 £42.44	£43.24	3 £44,31	3 £44 87	3 £45.65	£45		2			3 £50.09	3 £52,28	£13,37	3 £53.37
Dispatches per year					See	nario run	IRP /	nomina	2003	1783	2294	2241	2292	2374	2513		Gas Co	nsume	ed for t	total	250.05	232.20	2 3.37	200.07
Generated Power delive	ered to OFTO	substation (yr) (M)	Wh)		3691		חיוו (ו	noninia	1) 5,076	795,322	858,899	830,129	813,627	797,618	783,504	731,					G	as nroc	lucar N	IDV
Avg Power Sales Price Ca	aptured(£/MV	Vh) (real 2021)			04.02	£03./2	L00.17	E00.05	163.11	£59.26	£64.47	£61.92	£61.71	£62.02	£63.02	£57	simulati	ion per	100		G	as proc	ucer n	IF V
Max Power sales Price A	chieved(£/M)	Wh)			£335	£342	£312	£326	£364	£334	£396	£386	£395	£407	£426	£					ba	ised or	30%	discoun
Annual Power Sales Reve	enue after TN	UOS & trans Losses	s (£m)		£53.64	£61.47	£52.23	£55.12	£62.56	£54.66	£65.82	£62.63	£62.71	£63.32	£64.78	£56.79	£55.22	£55.06	£62.70	£58.56		1300 01	00700	iscouri
Load Factor Equiv Annua	al Hrs				3,973	4,463	3,918	4,043	4,258	3,866	4,175	4,035	3,955	3,877	3,808	3,555	3,411	3,336	3,474	3,243	of	aas pr	ice & fl	ull end d
Annual Running Hours (In Average Appual Load Eac	nci part load)				4,884	5,378	4,642	4,818	5,174	4,614	5,138	4,949	4,872	4,805	4,/61	4,352	4,126	4,043	4,405	4,133		900 000		
Average Thermal efficien	ncy (LHV)				41.35%	41 37%	44.72/0	40.13%	48.01%	44.13%	47.00%	40.00%	43.14%	44.20%	43.47%	40.38	% <u>41 39%</u>	41 39%	41 31%	41 30%	lite	e decor	nmıssı	oning
Average Operating Cost	per MWh exc	l fuel (£/MWh)			5.212	5.062	5.513	5.567	5.569	5.976	5.905	6.150	6.365	6.587	6.811	7.224	7.563	7.843	7.871	8.364	lia	L:1:1.		Ũ
Average Start/Stop cycle	s per day				7	4	4	4	5	5	6	6	6	7	7	6	5 6	6	7	7	lla	DIIITY		
Gas Price Discount again	st NBP (%)				30.00%	30.00%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.0%	30.09	% 30.0%	30.0%	30.0%	30.0%		-		
Average Gas Price (Yr) (£	/MWh) (HHV)			12.61	12.84	13.14	13.34	13.57	13.85	14.06	14.27	14.51	14.75	15.04	15.24	15.53	15.78	16.01	16.27	16.48	16.75	17.03	17.04
Annual gas consumed (m	nmscf)				6,514	7,315	6,419	6,625	6,980	6,334	6,845	6,615	6,484	6,357	6,246	5,827	7 5,590	5,467	5,699	5,319	5,070	5,189	4,912	4,757
Max Gas Flow (Yr) (mms	cfd)				31.46	31.46	31.46	31.46	31.46	31.46	31.46	31.46	31.46	31.46	21.46	31.46	3146	31.46	31.46	31.46	31.46	31.46	31.46	31.46
Annual gas cost (£m) (HF	HV)				£24.84	£28.40	£25.51	£26.73	£28.63	£26.52	£29.10	628.55	Tir	ma sar	ies outr	nut o	lata 🧯	£26.08	£27.59	£26.17	£25.26	£26.28	£25.29	£24.50
Unlifted Gas Prod Rate F	(mmscfd)				15.00	17.61	17 10	16.60	16.12	15.65	15.20	14.76		10 301	100 00lp	Julu		12.40	12.04	11 70	11 37	11.04	10 73	10.43
Average Gas Consumptio	on Rate (mms	cfd)		13.223	14.289	16.046	14.080	14.533	15.312	13.895	15.015	14.511	14.224	13.945	13.700	12.78	3 12.263	11.992	12.500	11.667	11.121	11.383	10.75	10.434
Gas Prod annual Shortfa	all against upl	fted production f/	c (%)		-19%	-17%	-3%	-11%	-23%	-13%	-28%	-28%	-29%	-31%	-32%	-265	% -25%	-26%	-36%	-30%	-27%	-36%	-31%	-31%
Operating costs (£k)																								
Fuel gas compressor driv	ve electricity	cost			£489	£560	£501	£526	£564	£521	£573	£563	£561	£560	£559	£530	£516	£513	£543	£514	£497	£516	£496	£480
O&M Costs (Fixed)					£2,040	£2,091	£2,144	£2,197	£2,252	£2,308	£2,366	£2,425	£2,486	£2,548	£2,612	£2,677	£2,744	£2,813	£2,883	£2,955	£3,029	£3,105	£3,182	£3,262
Power Transmission (inc	cl all TNUOS)	Costs			£2,220	£2,556	£2,500 £5,680	£2,453	£2,027	£2,444 £5.907	£2,706 £5,986	£2,080	£2,693	£2,706	£2,724 £6.323	£2,607	£2,504	£2,570	£2,743 £6,696	£2,624 £6,795	£2,305	£2,090	£2,610 £7,107	£2,390
ETS Carbon Charges (£k)					7,720	8,889	7,998	8,460	9,133	8,499	9,407	9,320	9,363	9,408	9,473	9,063	8,914	8,935	9,539	9,125	8,920	9,353	9,074	9,006
UK CPS Charges (£k)					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
CO2 Annual Production ((tn)				351,477	394,811	346,577	357,679	376,713	341,989	369,327	356,955	349,860	342,976	336,907	314,495	301,764	295,088	307,355	286,856	273,577	279,863	264,869	256,480
Wholesale Average Gas F	Price NBP (p/	thm)			52.38	53.38	54.38	55.38	56.38	57.38	58.38	59.38	60.38	61.38	62.38	63.38	64.38	65.38	66.38	67.38	68.38	69.38	70.38	70.38
Wholesale Average Powe	er Price (£/M	Wh)			62.78	64.05	58.53	61.01	68.30	62.68	74.20	72.27	74.05	76.22	79.82	72.03	3 70.85	72.04	85.00	84.15	77.61	87.36	89.18	89.18
Consumer Price Inflation	n Kate (%)				1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.25	1.28	1.31	1.34	1.38	1.41	1.45	1.48	1.52	1.56	1.60	1.64
GBP/Euro Exchange rate) - 1GBP is wo	rth			1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50	0 1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%
GBP/USS Exchange rate	- 1GBP is wor	th			1.20	1.20	1.20	1.20	1.20	1.23	1.20	1.20	1.20	1.20	1.20	1.2	3 1.20	1.20	1.20	1.20	1.20	1.20	1.20	1.20
Annual fuel gas compres	sion electricit	y demand (MWh)			9,342	10,490	9,205	9,501	10,011	9,084	9,817	9,487	9,299	9,117	8,957	8,357	8,017	7,840	8,172	7,628	7,271	7,442	7,045	6,822
Fixed Power Price		, , , , , , , , , , , , , , , , , , , ,			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Load Factor for Scenario

TiGRESS[™] Model Run Project Profit & Loss Statement

OCGT Reference Base

							Prin 1/2l	nary Ir hrly SS	ncome SP me	Strea rchan	am Deri It powei	ived fro r sales	om												
TGPE	2		Profit	& Loss	Staten	nent	Sup	pleme	entary	incon	ne from	Capa	city	l Gas and	Renew	vable En	ergy Sir	nulatior	n Systen	า			TIGE	SEALS	5
Project Name	TIGRE SEALS	s	Projec	t Descri	ption	Si	m pay	menta						r plant with	EU ETS CO	D2 pricing b	based on M	arch 2020	prices						
Simulation Run Number	3901.68023	1	Simul	ation Ru	Date 1	1/03/2020	16:19	Р	roject Case	2	Simulation	Case for av	erage fuel	consumptio	n of 15mm	nscfd									
		20	18 2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Incomo	70					65.63	75.20								77 47	70.26	60.48	67.56	67.27	76 71	71.65	CE 99	72.40	70.26	69.16
Power Sales - Export	1.00	×	/ .	-	-	53,636	61,468	Fue	laas	costs	based	on 309	% disc	ount	63,323	64,785	56,795	55,223	55,064	62,702	58,563	53,849	59,250	57,511	55,713
Power Sales - Local	0	0%				-	-		, gao	,	, ,		0 0.00	ount	-	-	-	-	-	-	-	-	-	-	-
Physical Balancing Power Premium (ba	as 7				-	- 5,722	6,421	Of I	VBP da	ay an	ead prid	ce			5,583	5,485	5,120	4,912	4,804	5,003	4,670	4,454	4,556	4,312	4,175
Other (Capacity Payment)		2,438 -	-	-	-	2,438	2,438	2,150	2,100	2,100	2,100	2,100	2,100	2,150	2,438	2,438	2,438	2,438	2,438	2,438	2,438	2,438	2,438	2,438	2,438
Total Income		-	-	-	-	61,796	70,334	60,309	63,379	71,130	62,660	74,272	70,876	70,840	71,345	72,707	64,352	62,574	62,305	70,144	65,671	60,741	66,244	64,261	62,326
Operating Expenses																									
Fuel gas costs	1	-	-	-	-	24,844	28,398	25,508	26,728	28,635	26,520	29,101	28,551	28,449	28,359	28,393	26,849	26,258	26,078	27,591	26,171	25,261	26,283	25,294	24,503
Purchased Power supplies	0					-	-	-	-								-	-	-	-	-	-	-	-	-
Startup & Fuel Gas Compression Powe	er Cost	-	-	-	-	502	588	539	581	63	Decon	nmissi	onina	reserve	char	ne to	712	712	724	786	763	757	805	793	787
O&M Costs (Variable)				-	-	2,091	2,686	2,308	2,686	2,97	Decon		onnig		, unung		506	3,534	3,631	3,973	3,896	3,904	4,042	4,172	4,244
Power Transmission Costs			-	-	-	2,769	2,804	5,680	5,754	5,92	the P&	21 — ba	ased o	n risino	fund	and	413	6,505	6,599	6,696	6,795	6,896	7,000	7,107	7,216
Subtotal Opex		-	-	-	-	32,482	36,673	36,512	38,174	40,62				in noing	rana	ana	081	40,791	41,006	43,221	42,012	41,426	43,127	42,453	42,095
											bond f	or bala	ance												
Total Admin Expenses		600 -			-	600	600	600 570	600 E10	600							600	600	600	600	600	600	600	600	600
Decommissioning provision costs	3	0.000				1 500	1 500	1 500	1 500	1 500	1 500	1 500	1 500	1 500	150	1 500	1 500 -	1 500 -	1 500 -	150 -	1 500	1 500 -	1 500 -	1 500 -	1 500
Total Operating Costs		-	-	-	-	35,272	39,403	39,182	40,784	43,172	41,033	44,226	43,895	44,078	44,287	44,641	43,211	42,861	43,016	45,171	43,902	43,256	44,897	44,163	43,745
EBITDA		-	-	•	-	26,524	30,930	21,126	22,595	27,958	21,628	30,046	26,981	26,761	27,058	28,066	21,142	19,713	19,289	24,972	21,770	17,485	21,348	20,098	18,581
Interest Charges			-	-	3,006	26.5 6,013	30.9 4,886	21.1 4,886	22.6 4,886	28.0 4,886	21.6 4,886	30.0 4,886	27.0 4,886	26.8 4,886	27.1 4,886	28.1 4,886	21.1 4,886	19.7 4,886	19.3 4,886	25.0 4,886	21.8 4,886	17.5 4,886	21.3 4,886	20.1 4,886	- 18.6
						7 700	,	7 000	, 	,	, 		, 	,	, ,,,,,,	, , , , , , , , , , , , , , , , , , , ,	,			0.500	0.425	,		0.074	0.005
Carbon taxes Depreciation				-	-	7,720 4,721	8,889 8,961	7,998 7,517	8,460 7,517	9,133 7,517	8,499 7,517	9,407 7,517	9,320 7,517	9,363 7,517	9,408 7,517	9,473 7,517	9,063 7,517	8,914 7,517	8,935 7,517	9,539 7,517	9,125 7,517	8,920 7,517	9,353 7,517	9,074 7,517	9,006 7,517
Net Operating Profit					3 006	8 070	8 195	726	1 732	6 477								1 604 -	2 048	3 031	242 -	3 838 -	408 -	1 378	2 059
T-u Allennan					75.167	5,67.5	0,200		-,	0,111	Car	∙hon ta	yes (n	nostlv c	leriver	d from	FU	2,001	2,010	0,001		0,000	100	_,	2,000
Tax Allowance		-	-	-	/5,16/	-		-		-								-	-	-	-	-	-	-	-
Net Taxable profits		-	-		78,174	8,070	8,195	726	1,/32	6,422		s char	gea be	low the	EBII	DA IIN	ie)	1,604 -	2,048	3,031	242 -	3,838 -	408 -	1,378	2,059
Tax Receivable/(payable)		0.0% -	-	-	-	-	-	-	-	-	but	are co	onsider	red an o	operat	ting co	st	-	-	-	-	-	-	-	-
Profit after Tax					3,006	8,070	8,195	726	1,732	6,422	whi	ch is ir	nclude	d in cas	sh flov	v		1,604 -	2,048	3,031	242 -	3,838 -	408 -	1,378	2,059
Deferred Tax Credit account			0 0	0	0	0	0	0	0	0	Ū	U	0	U	U	0	Ū	0	0	0	0	0	0	0	0
Tax refund against prior years tay paid			0 0	0	0	0	0	0	0	0	0	0	0	n	٥	٥	٥	0	0	0	0	0	0	0	0
Remaining prior years Tax Capacity		-	0 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
rax cash benefit recievable			0 0	U	U	U	U	U	U	0	U	U	U	U	U	U	U	U	U	U	U	U	U	U	U
Dividends			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
							confidential 8	commerically	sensitive. Copy	write of TiGR	E rechnologies Lt	a. Not to be cop	ied or publishe	a without the exp	ress permissio	n of LIGKE fech	noiogies Ltd								

TiGRESS[™] Model Run Project Cash Flow & Balance Sheet Statements **⊤i**□==

OCGT Reference Base

TEPE		Cash	Flo	w Sta	atem	ent			Tigri	ESS™ T	ransit	on to Integrated Gas and Renewable Energy Simulation System												TIGRE SEALS			
Project Name	TiGR	E SEALS	Pr	roject	Descri	ption	:	Simulatio	n run fo	• the a ge	eneric ca	se GE LM	9000 bas	ed 200M	<i>N</i> Tigre	Power p	lant with	EU ETS	CO2 prici	ng based	on March	h 2020 pri	ces				
Simulation Run Number	3901	.680231	s	Simula	tion Ru	un Date	11/03/2	020 16:19)	Project C	ase	Simulatio	on Case fo	or average	e fuel co	nsumptio	on of 15n	nmscfd									
		20	18	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041	
Cash In											Г								4 -	d	٦						
Cash received from operations Decommissioning Provision			0	0	0	0	26,524 1,500	30,930	21,126 1,500	22,595 1,500	27,9 1,9	Dec		issio	ning	i pro	visio	n cre	eale	u as	24,972 1,500	21,770 1,500	17,485 1,500	21,348 1,500	20,098 1,500	18,581 -28,500	
Net cash from Equity			0	0	0	49,796	28,329	-11,557	0	0		casi	11000								0	0	0	0	0	0	
Debt																										1	
Cash in from TiGRE debt			0	0	0	37,584	37,584	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Cash in from OFTO debt Asset Disposal (OFTO etc)						8,668 0	8,668 0	28,893	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Tax Receivable/(pavable)			0	0	0	0	0	0	0	0	_	^	-	0	-		<u></u>		0	-	0	0	0	0	0	0	
Prior year tax receivable			0	0	0	0	0	0	0	0		_									0	0	0	0	0	0	
Total Cash In			0	0	0	96,048	102,605	49,767	22,626	24,095	29,4	Equ	ity in	vestr	neni	t tim	e ph	asec	l aga	ainst	26,472	23,270	18,985	22,848	21,598	-9,919	
Cash Out											-	prim	ary c	apita	al inv	/esti	ment										
Capital expenditure			0	0	0	75,167	75,16	0	0	0			-	-							0	0	0	0	0	0	
OFIO Investment				0	0	19,262	9,631	0	0	0	0	0	0	0	0		0		0	0	0	0	0	0	0	0	
Interest charges			U .		0	3 006	6.013	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	4 886	0	
Carbon Taxes						3,000	7 720	8,889	7 998	8 460	9 1 3 3	8 499	9 407	9 320	9 363	9 408	9 473	9.063	8 914	8 935	9 5 3 9	9 1 2 5	8,920	9 353	9.074	9,006	
Total Cash out			0	0	0	97,436	98,531	13,774	12,884	13,346	14,019	13,384	14,293	14,205	14,249	14,294	14,358	13,949	13,800	13,821	14,425	14,011	13,806	14,239	13,959	9,006	
Dividends			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Net Cash Flow			0	0	0	-1,388	4,074	35,992	9,743	10,749	15,439	9,743	17,252	14,275	14,013	14,264	15,208	8,692	7,413	6,969	12,048	9,259	5,179	8,609	7,639	-18,925	
Cumulative CF			0	0	0	-1,388	2,685	38,677	48,420	59,169	74,607	84,350	101,603	115,878	129,891	144,155	159,363	168,056	175,469	182,437	194,485	203,744	208,922	217,531	225,169	206,245	

Confidential & Commerically Sensitive. Copywrite of TiGRE Technologies Ltd. Not to be copied or published without the express permission of TiGRE Technologies Ltd

тс	E	I	Balan	ce Sh	eet			TiG	RESS™ 1	ransit	ion to I	ntegrat	ed Gas	and Re	newal	ble Ene	gy Sin	nulatio	on Syst	em			TIGE		.s
Project Name	TIGRE SEAL	.s	Project	t Descr	iption		Simulatio	n run for	the a gene	eric case	GE LM900	00 based 2	00MW TiG	RE Powe	r plant w	ith EU ETS	CO2 pri	cing base	ed on Ma	rch 2020 j	orices				
Simulation Run Nun	nbe 3901.6802	31	Simu	lation I	Run Date	11/03/202	0 16:19		Project Ca	se	Simulatio	n Case for	average fu	iel consu	mption a	of 15mmsc	fd								
		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Assets																									
Net Book Value		0	0	0	94,430	174,507	136,652	129,135	121,618	114,102	106,585	99,068	91,551	84,035	76,518	69,001	61,485	53,968	46,451	38,934	31,418	23,901	16,384	8,867	1,351
Cash Debtors	-1,388	0	0	0	-1,388	1,185	18,341	26,584	35,833	49,771	58,014	73,767	86,542	99,055	111,819	125,527	132,720	138,632	144,101	154,649	162,408	166,086	173,195	179,333	113,741
Total Assets		0	0	0	93,041	175,692	154,993	155,719	157,451	163,873	164,599	172,835	178,094	183,090	188,337	194,528	194,204	192,600	190,552	193,583	193,825	189,987	189,579	188,201	115,092
Liabilities Short term																									
Long term total Liabilites		0	0	0	46,252 46,252	92,504 92,504	75,167 75,167	0																	
Net Assets		0	0	0	46,790	83,188	79,826	80,552	82,284	88,705	89,432	97,668	102,926	107,922	113,170	119,361	119,037	117,433	115,385	118,416	118,658	114,820	114,411	113,033	115,092
Shareholder funds																									
Equity		0	0	0	49,796	78,125	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567	66,567
Total		0	0	0	46,790	83,188	79,826	80,552	82,284	88,705	89,432	97,668	102,926	107,922	113,170	119,361	119,037	117,433	115,385	118,416	118,658	114,820	114,411	113,033	115,092
											,	,	,	,		.,				,	,		,		
chksum		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
						Confid	ential & Comme	erically Sensi	tive. Copywrite	of TIGRE Te	chnologies Lto	. Not to be cou	pied or publishe	d without th	e express pe	rmission of Tic	RE Technolo	gies Ltd							

TiGRESS[™] Model Run Levelised Cost of Energy

OCGT Reference Base

Full risk-based Monte Carlo Simulation to provide probabilistic determination (at P50) of the levelized cost of energy (LCEO) Key variables used for sensitivity analysis and risk profiles:

- Capex (range +30%; -10% of base Capex estimate)
- Opex (range <u>+</u>30%)
- Power & Gas Prices (Based on high/central/low spark spread range built into the Jump Regression model)
- Thermal Efficiency of GT's (range <u>+</u>30% of OEM HHV reported efficiency curves)
- Gas production performance (range +10%;-30% of operator predicted gas production forecast)

Core TiGRESS[™] functionality is to run multi scenarios for different economic bases (full trading year of 1/2hr trading periods). 100 scenarios simulations for each reference year between 2014-2018 created to produce a median of the five years as the model reference case.

Model results indicate that the LCOE is relatively independent of the Load Factor and based on the MC output the P50 LCOE is between £59.00/MWh and £60.5/MWh with an EVP to produce an equity investment return of 15%IRR.

TIGRE OCGT LCOE vs LOAD FACTOR

Concept Option 2 Cryogenic Separation

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd 16th 16th March 2020

TiGRE Post Combustion Cryogenic CO2 Separation & Storage 200MW Power Plant

The Feasibility Study has modelled and evaluated the concept option set out above which uses cryogenic separation of CO2 prior to underground storage. The economic and technical key features of the CryoSep concept option can be summarized as follows:

- Capital cost are 84% higher than OCGT Reference Case (RC).
- Net thermal efficiency is similar to OCGT(RC).
- System Latency is increased by less than 30mins over OCGT(RC) to full efficiency & therefore within 1/2hr trading period & fully dispatchable to market demand.
- CO2 emissions of 93% less than that of OCGT(RC).
- Viable operating envelope between 42% and 56% average annual Load Factor.
- LCOE range from £47/MWh (56%LF) to £77/MWh (42%LF).

Power & Efficiency Ca	lculator	
Efficiency (HHV)	41.24	%
Efficiency (LHV)	45.27	%
Total Net Power	2.030e+005	kW
% of CO2 captured	92.04	%
Net CO2 released to atm (kg/s)	2.022	
Net CO2 produced g/kWh(e)	35.86	

Fuel Gas Feed		
Temperature	15.00	С
Pressure	1.000	bar
Mass Flow	9.100	kg/s
Master Comp Mass Frac (Methane)	0.7735	
Master Comp Mass Frac (Ethane)	0.0878	
Master Comp Mass Frac (Propane)	0.0772	
Master Comp Mass Frac (i-Butane)	0.0307	
Master Comp Mass Frac (n-Butane)	0.0307	
Master Comp Mass Frac (Nitrogen)	0.0000	
Master Comp Mass Frac (CO2)	0.0000	

TiGRESS™		Key Input Shee	t			-
: Name tion Run Number	TIGRE SEALS 3900.455243 Sin	nulat Based on constrained gas	10/03/2	020 10:55	TIGRE SEALS	
Project Name	Tie	GRE SUPPLY		Project St	art Reference Year	2018
Gas Price Scenario	2 Por	wer Price Scenario	2	1.264 Apply Gas	Price Discount Taper	No
Constrained Gas Supply (Y/N)?	Y Exp	port Power Constrained (Y/N)?	Yes	Gas Price	Discount Taper start price	54
Gas supply price discount on NBP	100.0%	port Transmission man	408	Gas Price p/thm)	Discount Taper rate (% per	1.00%
Fixed gas price (Y/N)?		port Transmission dis Represer		Zero disco	unt gas price	154
Number of CTIs installed	Nu	mber of Export Circui	oower	OFTO	n overte v Duild	No
	FIX FIX	ed off-take only	N			No
Derating of maximum OEM guarentee Thermal efficiency (%)	100% Dri	rget load factor for reference base fi: ce (reference peaking price)	xed 0%	Gearing of	n Gen Build OFTO	80%
Opex Scalar Under the TiGRE	SEALS business	hant trading premium rate	0.0%	Interest ra	te on Gen Build OFTO	5.50%
Apply Corporate model, the gas field	ld asset is	interest rates	6.5%	Private W	re Transmission	Yes
Apply Corporate incorporated under	r the asset	lopment transfer charge £m	8.60	Gearing or	n Private Wire Trans	60%
Available tax lo:	earated project	ed Capacity Payment (£/kW)	11.9	Interest ra	te on Private Wire	6.5%
Full integration with TiGRE	as no longer	cing Power payment premium Wh)	7	Non Firm derating fa	OFTO Capacity Charge actor	50%
Save report (1=ye effective cost of ga	ased and the as is based on	ence Year for simulation	2018	Wind Farm on max Of	n Sub MV TEC charge Factor TO TEC charge	50%
the marginal cost Total Local Pow rather than the me	of production erchant price	debt gearing	50%		Reference Year for th	nis
	100 5	ct Description	• C		Mantacorla cimulatia	
ivet export power (IVIW)	Sin Sin Sin	nulation run for the FIGRE SEALS Pos th enhanced gas recovery TiGRE pow nulation Case for avearge Load Facto pnomic load factor	er plant rating a or of 441.7% max	ryogenic CO2 seper approx 200MW. kimum average gas i	uses datasets for 20 [°] 2018 inclusive	14- 14-

TiGRESS^{TM)} - Transition to integrated Gas and Renewable Energy Simulation System is trademark and copywrite of TiGRE Technologies Ltd

Feasibility Study Concept Option 2

The TiGRE™ CryoSep Power Plant Time series input data and assumptions to achieve a 42% Load Factor condition for the power plant

Pipet Num Pipet Num <t< th=""><th></th><th></th><th>TiGRESS™</th><th></th><th></th><th></th><th></th><th></th><th></th><th>т</th><th>ime Se</th><th>eries Da</th><th>ata</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>4</th><th></th><th></th><th>т</th><th>GR</th><th>E</th></t<>			TiGRESS™							т	ime Se	eries Da	ata									4			т	GR	E
Substituting Substituting from Face Data Substituting from Face Data Display Display Substituting from Face Data Display Display Display		Project Name		TiGRE S	SEALS																TIG	RE SEA	ALS				
Sector Solit Solit <t< td=""><td></td><td>Simulation Run</td><td>n Number</td><td>39</td><td>00.4552</td><td>43</td><td></td><td>Sir</td><td>mulation</td><td>Run Date</td><td>10/03/</td><td>2020 10</td><td>):55</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Simulation Run	n Number	39	00.4552	43		Sir	mulation	Run Date	10/03/	2020 10):55														
Gas handline Gas handline<																											
96 Original Strate Interact I		6.00	Draduation	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Bit State Bit State <t< td=""><td></td><td>0.85 Cu</td><td>rrent Net export Gas Production Forecast (mmscfd)</td><td>0</td><td>0</td><td>51.2</td><td>44.7</td><td>12.75</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>10</td><td>15</td><td>15</td><td>15</td><td>13</td><td>15</td><td>15</td><td>15</td><td>15</td><td>15</td><td>7</td><td>15</td></t<>		0.85 Cu	rrent Net export Gas Production Forecast (mmscfd)	0	0	51.2	44.7	12.75	15	15	15	15	15	15	15	10	15	15	15	13	15	15	15	15	15	7	15
11.39 Notice big (m) 1		Co	mpression Fuel Gas Recovery	0%	0%	0%	0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-
bit bit dependencies relation relation (relation company)		13.75% Pro	odcution Uplift from CO2 injection					-	2.01	1.96	1.92	1.88	2.30	1.98	2.12	2.09	2.44	2.42	2.40	2.77	3.15	3.55	3.56	3.56	3.56	3.57	3.57
Base for example Constrained		Up	lifted production rates (mmscfd)					12.8	14.4	14.0	13.6	13.2	13.3	12.6	12.4	12.1	12.1	11.8	11.5	11.6	11.7	11.9	11.6	11.4	11.2	10.9	10.7
Low Construction		Pro	oduction Variation Compound Factor			\frown		0.00	2.01	1.96	1.92	1.88	2.30	1.98	2.12	2.09	2.44	2.42	2.40	2.77	3.15	3.55	3.56	3.56	3.56	3.57	3.57
Case production profile reduced to reflect the 42% Load Factor fuel Gas production demand forecasts are in ince with the potential range for gas production as modelled by schumberger. Solution as modelled by schumberger. <td></td> <td>100% Ga</td> <td>s Price Discount Rate (%)</td> <td></td> <td></td> <td></td> <td></td> <td>100.0%</td>		100% Ga	s Price Discount Rate (%)					100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
University Univers								0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
Gas production profile reduced to reflect the 42% Load Factor fuel Gas requirement. These gas production demand forecasts are in the potential range for gas fuel and the potential range for gas fu		Pow	er Production																								
Class production proline reduced rols Proce space Diameter	Can production profile rodue	ad to	iber of GT					1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
reflect the 42% Load Factor fue tas also from export tas also from export <td>Gas production prome reduct</td> <td></td> <td>l Power Rating</td> <td>_</td> <td></td> <td></td> <td></td> <td>188.5</td>	Gas production prome reduct		l Power Rating	_				188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5	188.5
Case requirement. These gas production demand forecasts are in line with the potential range for gas production as modelled by schlumberger. a gas attrimeter (1) a los to require (1) a los to re	reflect the 42% Load Factor	fuel						(45.45)		17.000							50.00										
Gas requirement. These gas production demand forecasts are in line with the potential range for groduction as modelled by Schlumberger. Image for the source of the so			is gas sales from export					(45.47)	-46.3348	-47.203	-48.0711	-48.9393	-49.8074	-50.6756	-51.5437	-52.4119	-53.28	-54.1482	-55.0163	-55.8845	-56./526	-57.6208	-58.4889	-59.3571	-60.2252	-61.0934	-61.0934
production demand forecasts and forecasts an	Gas requirement. These gas		nal cost for export					0.6	0.63	0.646134	0.662288	0.678845	0.695816	0.713211	0.731042	0.749318	0.768051	0.787252	0.806933	0.827107	0.847784	0.868979	0.890703	0.912971	0.935795	0.95919	0.98317
Assumption Assumption <td>production demand forecasts</td> <td>s are in</td> <td>les value of gas exported</td> <td></td> <td></td> <td></td> <td></td> <td>-18.1867</td> <td>-17.1265</td> <td>-16.7035</td> <td>-16.2342</td> <td>-15.7171</td> <td>-15.1506</td> <td>-14.5332</td> <td>-13.8631</td> <td>-13.1387</td> <td>-12.3583</td> <td>-11.5199</td> <td>-10.6218</td> <td>-9.66206</td> <td>-8.63864</td> <td>-7.54954</td> <td>-6.39264</td> <td>-5.16579</td> <td>-3.86675</td> <td>-2.49321</td> <td>-1.02821</td>	production demand forecasts	s are in	les value of gas exported					-18.1867	-17.1265	-16.7035	-16.2342	-15.7171	-15.1506	-14.5332	-13.8631	-13.1387	-12.3583	-11.5199	-10.6218	-9.66206	-8.63864	-7.54954	-6.39264	-5.16579	-3.86675	-2.49321	-1.02821
Line with the potential range for gas production as modelled by Schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with the potential range for gas production as modelled by schlumberger. Line with with the potential range for gas production as model			Assumptions																								
production as modelled by Schlumberger. inclimate (ase 2016) 10 10 100 <td>line with the potential range f</td> <td>or gas</td> <td>ual Interest rates (%)</td> <td>0.25%</td> <td>0.50%</td> <td>0.75%</td> <td>1.25%</td> <td>1.50%</td>	line with the potential range f	or gas	ual Interest rates (%)	0.25%	0.50%	0.75%	1.25%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%
Image: production as modelined by service index (1/0/16 = 1) Beale Day Ahead Gas Price Index (1/0/16 = 1) 26.8 36.12 36.37 37.37 37.37 37.82 37.87 38.82 38.87 39.12 39.87 39.62 39.87 40.12 40.37 40.62 40.87 41.12 41.37 43.37 <t< td=""><td>production of modellad by</td><td>0</td><td>ual CPI Index (Base 2016)</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.00</td><td>1.03</td><td>1.05</td><td>1.08</td><td>1.10</td><td>1.13</td><td>1.16</td><td>1.19</td><td>1.22</td><td>1.25</td><td>1.28</td><td>1.31</td><td>1.34</td><td>1.38</td><td>1.41</td><td>1.45</td><td>1.48</td><td>1.52</td><td>1.56</td><td>1.60</td><td>1.64</td></t<>	production of modellad by	0	ual CPI Index (Base 2016)	1.00	1.00	1.00	1.00	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.25	1.28	1.31	1.34	1.38	1.41	1.45	1.48	1.52	1.56	1.60	1.64
Schlumberger. Deside Day Abead Gas Price Index (1/10/16 + 1) 26.6 36.7 36.7 37.0 37.6 37.7 37.6 37.7 38.12 38.7 39.2 39.37 39.6 39.87 40.12 40.37 40.67 41.12 41.37 </td <td>production as modelled by</td> <td></td>	production as modelled by																										
12.000 12.000 93.12 <	Schlumberger		plesale Day Ahead Gas Price Index (1/10/16)																								
Cert FAL 34.30 34.31 34.31 34.31 34.31 35.31 34.31 35.31 36.31 36.31 36.31 66.31 66.31 65.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31 67.31 66.31	e en la line en gen			28.68	36.12	36.37	36.62	36.87	37.12	37.37	37.62	37.87	38.12	38.37	38.62	38.87	39.12	39.37	39.62	39.87	40.12	40.37	40.62	40.87	41.12	41.37	41.37
Work		2.50% CL	GH	43.95	49.37	56.07	57.37	58.67	59.97	54.57 61.27	62.57	63.87	65 17	58.57 66.47	59.57	69.07	70.37	71.67	77 97	74.27	75.57	76.87	78 17	79.47	80.77	82.07	82.07
Wholesale Electricity SSP Index (1/10/16 = 1) 34.73 34.73 42.55 42.65 42.55				43.33	34.77	50.07	57.57	58.07	33.37	01.27	02.57	03.87	05.17	00.47	07.77	09.07	70.37	71.07	12.51	74.27	75.57	70.87	78.17	75.47	80.77	82.07	82.07
LOW 34.73 34.73 34.73 34.73 34.75 34.75 42.75 43.75 43.75 43.75 43.75 43.75 43.75 43.75 43.75 43.75 43.75 77.95 77.12 77.25 7		W	holesale Electricity SSP Index (1/10/16 = 1)																								
2.50% CENTRAL 39.0 71.44 73.83 67.78 76.04 77.95 71.23 74.25 83.12 76.28 90.30 87.95 97.13 87.66 86.23 87.67 103.44 102.40 94.65 106.32 108.54 108.52 HIGH 110 61.07 62.07 63.08 67.78 70.50 66.55 81.36 70.45 88.31 79.85 78.71 80.18 90.70 90.12 92.76 97.13 87.66 86.23 87.67 103.44 102.40 94.45 106.32 108.54 108.53 108.54 108.55 108.55 108.55 81.67 81.67 81.57 82.13 87.67 82.13 87.67 103.44 102.40 94.45 106.32 108.53 108.55 1		LO	W	34.73	41.35	42.17	38.23	42.56	42.89	38.73	39.91	44.18	40.10	46.96	45.26	45.91	46.78	48.51	43.36	42.25	42.57	49.78	48.85	44.67	49.86	50.48	50.48
HIGH 41.67 62.70 65.02 59.88 67.72 69.29 63.50 66.38 79.42 81.57 84.15 88.31 79.85 78.71 80.18 94.70 86.66 97.93 100.14 100.14 ETS Carbon Price (£/tn, nominal base 1/1/16) I <t< td=""><td></td><td>2.50% CE</td><td>NTRAL</td><td>39.10</td><td>71.44</td><td>73.83</td><td>67.78</td><td>76.40</td><td>77.95</td><td>71.23</td><td>74.25</td><td>83.12</td><td>76.28</td><td>90.30</td><td>87.95</td><td>90.12</td><td>92.76</td><td>97.13</td><td>87.66</td><td>86.23</td><td>87.67</td><td>103.44</td><td>102.40</td><td>94.45</td><td>106.32</td><td>108.54</td><td>108.54</td></t<>		2.50% CE	NTRAL	39.10	71.44	73.83	67.78	76.40	77.95	71.23	74.25	83.12	76.28	90.30	87.95	90.12	92.76	97.13	87.66	86.23	87.67	103.44	102.40	94.45	106.32	108.54	108.54
E1S Carbon Price (k/n, nominal base 1/1/16) <td< td=""><td></td><td>HI</td><td>GH</td><td>41.67</td><td>62.70</td><td>65.02</td><td>59.88</td><td>67.72</td><td>69.29</td><td>63.50</td><td>66.38</td><td>74.51</td><td>68.55</td><td>81.36</td><td>79.42</td><td>81.57</td><td>84.15</td><td>88.31</td><td>79.85</td><td>78.71</td><td>80.18</td><td>94.78</td><td>94.00</td><td>86.86</td><td>97.93</td><td>100.14</td><td>100.14</td></td<>		HI	GH	41.67	62.70	65.02	59.88	67.72	69.29	63.50	66.38	74.51	68.55	81.36	79.42	81.57	84.15	88.31	79.85	78.71	80.18	94.78	94.00	86.86	97.93	100.14	100.14
CeNTRAL - </td <td></td> <td>EI:</td> <td>S Carbon Price (±/th, hominal base 1/1/16)</td> <td></td>		EI:	S Carbon Price (±/th, hominal base 1/1/16)																								
HIGH UK CPS (£/kWh gas, nominal base 1/1/6) LOW CENTRAL HIGH HIGH HIGH HIGH HIGH HIGH HIGH HIG		CE	NTRAL		-	-		-	-			-		-	-	-			-	-		-			-		
UK CPS (k/Wh gas, nominal base 1/1/b) Image: Sign of the system of t		ню	GH	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
LOW .		UK	(CPS (f/kWh gas, nominal base 1/1/16)																								
CENTRAL I </td <td></td> <td>LO</td> <td>W</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>- </td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td></td> <td>-</td>		LO	W		-	-	-	-	-			-	-	-	-	-			-	-	-	-		-	-		-
HIGH 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		CE	NTRAL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		ню	GH	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-
Central 34.60 49.37 51.37 54.37 54.37 54.37 54.37 54.37 54.37 54.37 59.3		Fix	ed Gas Price	29.69	26.12	26.27	26.62	27.27	27 27	27 27	27 27	27 27	29.62	29.62	28.62	28.62	29.62	20.97	20.97	20.97	20.97	20.97	41.07	41.07	41.07	41.07	41.07
		Fix LC CFI	ed Gas Price DW NTRAL	28.68 34.60	36.12 49.37	36.37 50.37	36.62 51.37	37.37	37.37	37.37 54.37	37.37 54.37	37.37 54.37	38.62 59.37	38.62 59.37	38.62 59.37	38.62 59.37	38.62 59.37	39.87 64.37	39.87 64.37	39.87 64.37	39.87 64.37	39.87 64.37	41.07 69.17	41.07	41.07	41.07	41.07

The TiGRE[™] CryoSep Power Plant Time Model Results for a 42% Load Factor condition for the power plant

																				40			. / 0/01
	T		IRR(p80)	12.8%	IRR(p50)	17.3%	Tigres	S™ Simu	lation Ma	ain Result	ts Page	Total Iterations	100	Current Iteration	12		Simulation Ye	Reference ar	2018		unter	se i factual.	The
TiGRESS ^(™) Simulation		Project	T	iGRE SEA	LS					/	CONFIL	DENTIAL			Location:	SNS	Power Scenario Case	Central	Gas Scenario Case	ce LC	OE in	dicated	d here
Scenario Number	Power E	Export Constrained?	Yes	OFTO Oversizing (MW)	-		71183	Total Initial Eq	uity Investment	£291.1	m or	£1,544.4	per kW	Gearing Applied:	50.0%	Debt Interest Rate	6.50%	Tax Treatment	No Corp Tax		c powe	er price	e io ii set b
3900.455243	Power Exp	ort max Capacity (MW)	408	Annual TNUOS Chrg(£m)	£6.02	Avg TNUOS rate (£/MWh)	£8.74	Avg Load Factor	41.7%	Gas Constrained?	Y	Gas Energy Value	40.00	MJ/sm3	20yr total gas vol. (bscf)	111.5	Avg Gas price paid £/thm	#DIV/0!	Avg Gas price # £/MWh	^{□v/} ga	s fuell	ed gen	eratio
10/03/2020 10:55	Investor IF & NPV (£n (Current Scenario	ⁿ⁾ 15.3%	£78.7	CapEx & DevEx (£k)	£282,522	£8,600	Capacity Payment per kW	£11.85	Discount rate	6.0%	Avg debt interest rate	6.50%	Corp Tax marginal Rate	N/A	Forecast Duration (yrs)	20	Avg/Max PP captured (£/MWh)	£68.71	£578	Avg Sales Se	the m tters.	argina	l price
2	2018	2019	2020	2021	2022	2023	2024	10 2025	2026	12 2027	2028	2029	2030	2031	2032	18 2033	19 2034	20 2035	21 2036	2057	2030	2000	2040
Power Rating (MW) Number GT Minimum Capture Price	per MWh		$\overline{\}$		188.5 1 £5.01	188.5 1 £4.80	188.5 1 £5.03	188.5 1 £5.24	188.5 1 £5.46	188.5 1 £5.01	188.5 1 £5.56	188.5 1 £5.77	188.5 1 £7.20	188.5 1 £5.72	188.5 1 £7.76	188.5 1 £6.19	188.5 1 £6.93	188.5 1 £5.75	188.5 1 £6.79	188.5 1 £6.31	188.5 1 £6.20	188.5 1 £6.55	188.5 1 £7.67
Generated Power delive Avg Power Sales Price Ca Max Power sales Price A	ered to Of aptured(£ .chieved(£	Scenar	io mo	dellind	a is al	set ^{3.56}	788,944 £65.52 £380	766,055 £66.90 £396	743,882 £72.91 £443	745,839 £65.27 £406	712,818 £75.46 £481	700,073 £71.60 £469	681,681 £71.65 £480	682,121 £72.06 £494	664,779 £73.54 £518	647,503 £64.64 £467	Ga	as Cor mulatic	nsume n neri	d for to	otal or	627,155 £67.79 £566	614,376 £67.69 £578
Annual Power Sales Reve Load Factor Equiv Annua Annual Running Hours (i	enue afte al Hrs ncl part lo	to achie	eve ar	n equi	ty retu	1.88 ,248 ,507	£55.67 4,185 4,445	£56.57 4,064 4,318	£61.36 3,946 4,195	£56.45 3,957 4,206	£63.94 3,782 4,027	£61.08 3,714 3,955	£60.99 3,616 3,856	£62.92 3,619 3,858	£64.15 3,527 3,762	£56.29 3,435 3,668	th	is scer	nario it	is low	er	£66.31 3,327 3,557	£66.48 3,259 3,486
Average Annual Load Fac Average Thermal efficier Average Operating Cost	ctor (Yr) (ncy (LHV) per MWh	reflect t	he in	l) of 1 /estm	5% to ent ris	.49% .68% .274	47.78% 40.67% 22.068	46.39% 40.65% 23.168	45.05% 40.64% 24.324	45.17% 40.64% 24.879	43.17% 40.61% 26.469	42.40% 40.60% 27.538	41.28% 40.58% 28.858	41.31% 40.59% 29.563	40.26% 40.57% 30.960	39.21% 40.55% 32.442	th	en the raelv o	Refere	ence d ^{the}	ase	37.98% 40.53% 38.647	37.21% 40.52% 40.308
Gas Price Discount again Average Gas Price (Yr) (£ Appual gas consumed (m	st NBP (% E/MWh) (I	grade.	This	in effe	ct set	S .00%	- 6 383	100.0%	100	100.0%	8 100.0% - 5 775	Tim	e serie	es out	nut dai	ta	in	crease	efficie	ency o	f the	100.0% - 5.089	100.0% - 4 986
Max Gas Flow (Yr) (mms Annual gas cost (£m) (HF	cfd) HV)	the rela	tive b tion of	asis t f the L	or the .COE	8.58 0.00	28.58 £0.00	28.58 £0.00	28.58 £0.00	28.58 £0.00	28.58 £0.00	£0.00	£0.00	£0.00	£0.00	£0.00	pla	ant				28.58 £0.00	28.58 £0.00
Uplifted Gas Prod Rate F Average Gas Consumptio	/C (mmso on Rate (mr	mscfd)		12.233	12.622	4.37 14.206	13.96 14.002	13.56 13.600	13.17 13.210	13.25 13.244	12.60 12.667	12.42 12.441	12.09 12.120	12.13 12.126	11.82 11.822	11.52 11.520	11.62 11.615	11.74 11.735	11.88 11.876	11.63 11.631	11.39 11.394	11.16 11.163	10.94 10.938
Gas Prod annual Shortfa Operating costs (£k)	all against u	plifted production f/	'c (%)		-24%	-27%	-29%	-29%	-29%	-30%	-30%	-30%	-31%	-31%	-31%	-31%	-33%	-34%	-36%	-36%	-36%	-37%	-37%
Fuel gas compressor dri O&M costs (Fixed)	ive electrici	ty cost			£432 £13,438	£496 £13,774	£498 £14,118	£492 £14,471	£487 £14,833	£497 £15,204	£483 £15,584	£483 £15,974	£478 £16,373	£487 £16,782	£482 £17,202	£477 £17,632	£489 £18,073	£502 £18,524	£515 £18,987	£512 £19,462	£509 £19,949	£506 £20,447	£503 £20,959
Power Transmission (inc ETS Carbon Charges (£k)	cl all TNUO	S) Costs			£2,821 £5,276	£3,260 £5,343	£3,292 £5,411 -	£3,277 £5,482	£3,261 £5,554 -	£3,352 £5,627 -	£3,283 £5,703	£3,305 £5,780	£5,860 -	£3,384 £5,941 -	£6,024 -	£3,374 £6,110 -	£3,489 £6,197 -	£3,612 £6,287 -	£6,379 -	£3,761 £6,474 -	£3,776 £6,570 -	£6,669 -	£3,806 £6,771 -
UK CPS Charges (£k) CO2 Annual Production (Wholesale Average Gas I	(tn) Price NBP (p/thm)		1.09	- n/a 52.38	- n/a 53.38	- n/a 54.38	- n/a 55.38	- n/a 56.38	- n/a 57.38	- n/a 58.38	- n/a 59.38	- n/a 60.38	- n/a 61.38	- n/a 62.38	- n/a 63.38	- n/a 64.38	- n/a 65.38	- n/a r 66.38	- n/a 67.38	- n/a 68.38	- n/a n/ 69.38	- /a n 70.38
Wholesale Average Power Consumer Price Inflation	er Price (£/ Rate (%)	MWh)			76.30 1.03	77.85	71.13	74.15	83.02 1.13	76.18 1.16	90.18 1.19	87.83 1.22	90.00 1.25	92.64 1.28	97.01 1.31	87.54 1.34	86.12 1.38	87.56 1.41	103.30 1.45	102.27 1.48	94.33 1.52	106.18 1.56	108.39 1.60
GBP/Euro Exchange rate GBP/US\$ Exchange rate	- 1GBP is v - 1GBP is w	vorth			1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23	1.50% 1.20 1.23
Annual fuel gas compres Fixed Power Price	sion electri	icity demand (MWh)			8,252	9,287	9,155	8,891 0.00	8,636 0.00	8,659	8,281	8,134	7,924	7,928	7,729	7,531	7,594	7,672	7,764	7,604	7,449	7,298	7,151

By basing the economics of the investment on a common IRR, the model in effect creates a calculate LCOE relative is the уy n

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd

Load Factor for Scenario

ÌΕ

188.5 £7.12 2971 602,033 £65.97 £578 £65.08 3,194 3,418 36.46% 40.50% 42.033 100.0% 4,888 28.58 £0.00 10.72 10.722 -37% £493 £21,483 £3,823 £6,875

> 70.38 108.39 1.64 1.50% 1.20 1.23 7,010

0.00

The TiGRE[™] CryoSep Power Plant Time Model Financial Results for a 42% Load Factor condition for the power plant

⊤⋐₽₽	E	6	Profi	t & I	loss	Statem	ent			Т	GRESS™⊺	ransitio	on to Int	egrated	Gas an	d Renew	vable En	ergy Sin	nulation	System	ı			TIGP		;
Project Name	TIGRE SEALS		Proje	ect D	escrip	otion	s	imulation r	un for the	TiGRE SI						and under	groaund st	orage with	enhanced	gas recove	ery TiGRE p	ower plant	rating app	rox 200M	<i>N</i> .	
Simulation Run Number	3900.455243		Sim	ulatic	on Rui	n Date 1	0/03/2020	10:55	Р	roject Ca	Fuel	gas d	lirect o	costs	are	1.7% max	kimum avei	age gas pro	oduction o	f 15mmscf	d and maxi	mum econ	omic load	factor		
		2018	3 2019	9 20	020	2021	2022	2023	2024	2025	zero	for th	is sce	nario	as	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Income	86						75.99	87.12	78.38	79.65	460.0				uu	88.59	90.31	79.25	78.93	80.98	96.78	93.82	84.67	93.35	93.60	91.63
Power Sales - Export Power Sales - Local	1.00 0 0%	-	-		-		53,974	61,878	55,670	56,572	the g	as 15	esser	illally		62,922	64,147	56,292	56,061	57,521	68,739	66,639	60,135	66,306	66,479	65,079 -
Gas Export Sales Physical Balancing Power Premium (b	0 as 7						- 4,972	- 5,605	- 5,523	- 5,362	being	cost	ed at	the		- 4,775	- 4,653	- 4,533	- 4,572	4,618	- 4,674	4,577	- 4,483	- 4,390	- 4,301	- 4,214
Other (Capacity Payment) Total Income	2,234	-	-		-	-	2,234 61,179	2,234 69,717	2,234 63,426	2,234 64,168	mara	inal c	ost of	5		2,234 69,930	2,234 71,034	2,234 63,058	2,234 62,866	2,234 64,373	2,234 75,647	2,234 73,450	2,234 66,852	2,234 72,930	2,234 73,014	2,234 71,527
Operating Expenses											nrodu	iction		The												
Fuel gas costs Purchased Power supplies	0	-	-		-	-	-	-			prout				-	1	-	-	-	-	-	-	-	-	-	-
Startup & Fuel Gas Compression Powe	er Cost	-	-		-	-	443 13.774	521	536 15.204	544 15.974	gas p	rodu	ction (only r	ias	623 21.483	633 22.570	642 23.713	674 24.913	709 26.174	746 27.500	761 28.892	775 30.354	790 31.891	805 33,506	808 35,202
O&M Costs (Variable) Power Transmission Costs		-	-		-	-	2,892	3,425	3,545	3,617	value	beca	ause d	of the		4,331	4,435	4,538	4,809	5,104	5,428	5,584	5,746	5,912	6,084	6,264
Subtotal Opex		-	-		-	-	19,747	21,088	24,697	25,615	econ	omic	noten	tial fr	r	32,378	33,662	35,003	36,594	38,275	40,053	41,710	43,446	45,262	47,165	49,149
Total Admin Expenses Decommissioning provision costs	600	-	-		-	-	600 5.750	600 5.250	600 4.750	600 4.250	10000				"	600 1.250	600 750	600 250 -	600 250 -	600 750 -	600 1.250 -	600 1.750 -	600 2.250 -	600 2.750 -	600 3.250 -	600 3.750
Decommissioing provision	250,000						12,500	12,500	12,500	12,500	the g	as in	a ng	RE		12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500
Total Operating Costs			-		-	-	38,597	39,438	42,547	42,965	nowe	r nlar	nt			46,728	47,512	48,353	49,444	50,625	51,903	53,060	54,296	55,612	57,015	58,499
EBITDA							22,583	30,279	20,880	21,202	<i>p</i> 0110	, piai				23,203	23,522	14,705	13,423	13,748	23,744	20,391	12,557	17,318	15,998	13,028
Interest Charges		-	-	-		5,154	10,309	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	9,182	-
Carbon taxes							-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Depreciation			-		-	-	8,026	15,571	14,126	14,126	14,126	14,126	14,120	14,120	14,126	14,126	14,126	14,120	14,120	14,126	14,120	14,126	14,126	14,126	14,126	14,120
Net Operating Profit		•			• •	5,154	4,248	5,526 -	2,429 -	2,106	2,071 -	3,473	3,303 -	306 -	1,184 -	105	214 -	8,603 -	9,886 -	9,560	436 -	2,917 -	10,751 -	5,990 -	7,310 -	1,098
Tax Allowance			-			141,261	-	-				-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Net Taxable profits		-	-			146,415	4,248	5,526 -	2,429 -	2,106	2,071 -	3,473	3,303 -	306 -	1,184 -	105	214 -	8,603 -	9,886 -	9,560	436 -	2,917 -	10,751 -	5,990 -	7,310 -	1,098
Tax Receivable/(payable)	0.0%	-	-		-		-	-		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Profit after Tax			-			5,154	4,248	5,526 -	2,429 -	2,106	2,071 -	3,473	3,303 -	306 -	1,184 -	105	214 -	8,603 -	9,886 -	9,560	436 -	2,917 -	10,751 -	5,990 -	7,310 -	1,098
Deferred Tax Credit account		(0 0)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Tax refund against prior years tax paid Remaining prior years Tax Capacity Tax cash benefit recievable		())	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0
Dividends				-		-				-		-	-	-		-		-								-
								Confidential 8	& Commerically	Sensitive. Co	pywrite of TiGRE T	echnologies Ltd	. Not to be copie	ed or published	without the e	xpress permissio	n of TiGRE Tech	nologies Ltd								

Feasibility Study Concept Option 2 The TiGRE™ CryoSep Power Plant Time Model Financial Results for a 42% Load Factor condition for the power plant

TGPE		Cash F	low S	tatem	ent			TiGR	ESS™ Ti	ransiti	on to li	ntegrat	ed Ga	s and	Renew	able E	inergy S	Simulat	tion Sy	stem			TIGRI	A SEALS												
Project Name	TiGRE	SEALS	Projec	t Descri	ption		Simulatio approx 20	on run fo 00MW.	r the TiGF	E SEALS	Post Com	bustion (Cryogenio	CO2 se	peration	capture	and unde	rgroaund	storage v	vith enha	nced gas	recovery	TiGRE pov	ver plant ra	ting											
Simulation Run Number	3900.	455243	Simu	lation R	un Date	10/03/2	020 10:55	5	Project Ca	se S	Simulation	n Case for	avearge	Load Fa	ctor of 4	41.7% m	aximum a	iverage ga	as produc	tion of 15	mmscfd	and maxi	mum ecor	omic load f	acto											
		201	B 2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041											
Cash In																																				
Cash received from operations Decommissioning Provision		C	0	0	0	22,583 12,500	30,279 12,500	20,880 12,500	21,202 12,500	25,379 12,500	19,835 12,500	26,611 12,500	23,002 12,500	22,125 12,500	23,203 12,500	23,522 12,500	14,705 12,500	13,423 12,500	13,748 12,500	23,744 12,500	20,391 12,500	12,557 12,500	17,318 12,500	15,998 1 12,500 -23	3,028 7,500											
Net cash from Equity		C	0	0	96,061	48,157	-11,557	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Debt Cash in from TiGRE debt Cash in from OFTO debt		c	0	0	70,631 8,668	70,631 8,668	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Asset Disposal (OFTO etc)					0	0	28,893	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
Tax Receivable/(payable) Prior year tax receivable		0) O	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0											
otal Cash In		C	0	0	175,359	162,538	60,114	33,380	3:	(GRE	-		Baland	e Shee	t			TiG	RESS™	Transi	ition to	Integra	ated Gas	and Re	enewak	ole Enei	rgy Sin	nulatio	n Syste	em				<u></u>	_
Cash Out										6								Simulatio	on run fo	the TiGE	E SEALS	Post Com	bustion C	vogenic CC	2 seperat	ion cantu	re and un	dergroau	und stora	ge with e	nhanced	as recove	ry TiGRE r	ower plar	t rating a	
Capital expenditure OFTO Investment		C	0	0	141,261 19,262	141,261 9,631	0	0	Proje	ect Name	e	TIGRE SI	ALS	Project	Descript	ion		200MW.			2 0 27 120			, ogenne og	2 seperat	ion capta		aergi eur		80 mm		54010000	.,	-orren plan		
Debt capital repayment			0	0	0 5 154	0	0 9 182	0 9 182	Simu	lation R	un Numbe	3900.45	5243	Simula	ation Run	Date 1	0/03/202	0 10:55		Project C	ase	Simulat	ion Case f	or avearge l	oad Facto	or of 441.	7% maxim	num aver	age gas p	oroductio	n of 15mn	nscfd and	maximum	economic	load fact	or
Carbon Taxes					-	0	0	0					2018	2019	2020	2021	2022	2023	2024	2025	202	6 2027	202	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
otal Cash out				0	165,677	161,201	9,182	9,182	Assets				2010	2010	2020	2021	LULL	2025		2023			202		2000	2001	2002	2000	2004	2000	2000	2007	2000	2000	2010	2011
Januarius				0			0	0																												
Net Cash Flow		0	0	0	9,682	1,337	50,932	24,198	24 Net B	ook Value			0	0	0	160,523	303,388	258,925	244,799	230,673	216,54	7 202,421	188,295	174,169	160,042	145,916	131,790	117,664	103,538	89,412	75,286	61,160	47,034	32,908	18,781	4,655
Cumulative CF		C	0	0	9,682	11,019	61,951	86,149	110 Cash			-1,481	0	0	0	9,682	-1,481	19,616	31,314	43,334	59,53	1 70,184	87,613	101,432	114,375	128,396	142,736	148,259	152,500	157,066	171,629	182,837	186,212	194,349	201,165	72,932
					Co	onfidential &	Commerically	/ Sensitive. C	Copyw Tatal	a					0	170 205	201 000	270 544	276 442	274 007	276 07	272.004	275 007	275 601	274 417	274 212	274 526	265.024	255 020	246 470	246.014	242.007	222.246	222.256	210.046	77 507
									Total	Assets			0	0	0	170,205	301,908	278,541	276,113	274,007	276,074	8 272,604	275,907	275,601	2/4,41/	2/4,312	274,526	265,924	256,038	246,478	246,914	243,997	233,246	227,256	219,946	//,58/
									Short	term						70.000	450 507																			
									total	term Liabilites			0	0	0	79,298 79,298	158,597 158,597	141,261 141,261	141,261	141,261	141,26	1 141,261 1 141,261	141,261	141,261	141,261 141,261	141,261 141,261	141,261 141,261	141,261	141,261 141,261	141,261	141,261	141,261	141,261 141,261	141,261	141,261	0
									Net As	sets			0	0	0	90,907	143,311	137,280	134,852	132,746	134,81	7 131,343	134,646	134,340	133,156	133,051	133,265	124,663	114,777	105,217	105,653	102,736	91,985	85,995	78,685	77,587
									Shareh	older funds																										
									Equit	y ves			0	0	0	96,061 -5.154	144,218 -907	132,661 4.619	132,661 2.191	132,661 85	132,66	1 132,661 6 -1.318	132,661 1.985	132,661 1.679	132,661 495	132,661 390	132,661 604	132,661 -7,998	132,661 -17.884	132,661 -27,444	132,661 -27.008	132,661 -29,925	132,661 -40.676	132,661 -46,666	132,661 -53,976	132,661 -55.074
									Total				0	0	0	90,907	143,311	137,280	134,852	132,746	134,81	7 131,343	134,646	134,340	133,156	133,051	133,265	124,663	114,777	105,217	105,653	102,736	91,985	85,995	78,685	77,587
									chksun				0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
																	Confide	ential & Comn	merically Sen	itive. Copywr	ite of TiGRE	Technologies	Ltd. Not to be	copied or publis	hed without th	ie express per	mission of TiG	GRE Technolo	gies Ltd							

Concept Option 3 Oxyfuel Generation

Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd Confidential, Trade Mark and Copywrite property of Indigo TiGRE Ltd 16th 16th March 2020

The TiGRE[™] OxyFuel Power Plant Summary

- Capital cost 42% higher than OCGT Reference Case.
- Net thermal efficiency 10% higher than OCGT(RC).
- System Latency increased by less than 30mins over OCGT(RC) to full efficiency & therefore within 1/2hr trading period & fully dispatchable to market demand.
- Practically Zero CO2 released.
- Viable operating envelope between 42% and 56% average annual Load Factor.
- LCOE range from £45.31/MWh (56%LF) to £55.43/MWh (42%LF).

natural gas fe	ed	
Temperature	15.00	С
Pressure	1.000	bar
Molar Flow	1608	kgmole/h
Mass Flow	7.500	kg/s
Master Comp Mass Frac (Ethane)	0.0526	
Master Comp Mass Frac (Methane) 0.9158	
Master Comp Mass Frac (i-Butane	0.0000	
Master Comp Mass Frac (n-Butane) 0.0000	
Master Comp Mass Frac (Propane) 0.0316	
Higher Heating Value	9.202e+005	kJ/kgmole

Power and CO2 Perfo	rmance	
Net Therm System Eff (LHV)	52.72	%
Net Therm System Eff (HHV)	47.90	
% CO2 Captured	99.23	
CO2 released per kWh (g/kWh)	8.119e-004	
Net Power Out	1.969e+005	kW

The TiGRE[™] OxyFuel Power Plant Key Assumptions

		TiGRESS™			Key Input Sheet						
	Projec Simula	t Name Ition Run Number	TIGRE SE 3899.66	ALS 55914	Simulation Run Date	09/03/2	020 15:5	8	TIGRE SEALS		-
		Project Name			TIGRE SEALS			Project Sta	rt Reference Year	2018	
		Gas Price Scenario	2		Power Price Scenario	2	1.039	Apply Gas I	Price Discount Taper	No	
		Constrained Gas Supply (Y/N)?	Y		Export Power Constrained (Y/N)?	Yes		Gas Price D	viscount Taper start price	54	
		Gas supply price discount on NBP	100.0%		Export Transmission maximum capacity (MV	408		Gas Price D p/thm)	viscount Taper rate (% per	1.00%	
		Fixed gas price (Y/N)?	Ν		Export Transmission distance (km)	32		Zero discou	unt gas price	154	
Simulation inputs are t	he				Export Overcapacity in OFTO (MW)	0					
same as those used fo	or				Number of Export Circuits	1		OFTO		No	
the TiCPE CrueSen	"	Number of GT's installed	1		Fixed Price PPA cost (£/MWh)	0		OFTO - Ger	nerator Build	Yes	
		Capex Contingency	10%		Fixed off-take only	N		OFTO - OFT	O Build	No	
simulations		Derating of maximum OEM guarentee Thermal efficiency (%)	100%		Target load factor for reference base fixed price (reference peaking price)	0%		Gearing on	Gen Build OFTO	80%	
		Opex Scalar	0		Merchant trading premium rate	0.0%		Interest rat	e on Gen Build OFTO	5.50%	
		Apply Corporate tax @ stnd rates?	Ν		Debt interest rates	6.5%		Private Wir	e Transmission	Yes	
		Apply Corporate tax @ PRT rates	N		Development transfer charge £m	8.60		Gearing on	Private Wire Trans	60%	
		Available tax lossess	0		Derated Capacity Payment (£/kW)	11.9		Interest rat	e on Private Wire	6.5%	
		Full integration of gas field operations with TiGRE	Y		Balancing Power payment premium (£/MWh)	7		Non Firm C derating fa	OFTO Capacity Charge ctor	50%	
		Save report (1=yes, 0=no)	0		Reference Year for simulation	2018		Wind Farm on max OF	Sub MV TEC charge Factor TO TEC charge	50%	
					TiGRE debt gearing	50%					
		Total Local Power Demand (MW)	0								
		Local Power Price markup factor (%)	0%		Project Description						
		Net export power (MW)	198.8		Simulation run for the TiGRE SEALS Oxyfuel	Combustior	CO2 seper	ation captu	re and undergroaund storage	with	
					enhanced gas recovery TiGRE power plant ra Simulation Case for maximum average gas	ating approx	x 200MW.				
			-								

TiGRESS^(TM) - Transition to integrated Gas and Renewable Energy Simulation System is trademark and copywrite of TiGRE Technologies Ltd

The TiGRE[™] OxyFuel Power Plant Time Series Data 43% Load factor

	TiGRESS™			-				٦	Time Se	eries D	ata								-	4			т	ICF	E
Project N	ame	TIGRE S	EALS																	RE SEA	ALS				
Simulatio	n Run Number	38	99.6659	14		S	Simulation	Run Date	09/03/	2020 1	5:58							-							
		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
	Gas Production					15	15	15	15	15	i 15	15	15	15	15	15	15	15	15	15	15	15	15	15	15
	Current Net export Gas Production Forecast (mmscfd)	0	0	51.2	44.7	11.25	11	11	10	10	10	9	9	9	9	8	8	8	8	7	7	7	7	7	e
	Compression Fuel Gas Recovery	0%	0%	0%	0%	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
5.50%	6 Prodcution Uplift from CO2 injection					-	0.94	0.93	0.92	0.91	1.12	1.08	1.26	1.26	1.66	1.66	1.67	2.09	2.52	2.96	2.99	3.01	3.03	3.05	3.07
	Uplifted production rates (mmscfd)					11.3	11.9	11.5	11.2	10.9	10.8	10.4	10.4	10.1	. 10.2	10.0	9.7	9.9	10.1	10.3	10.1	9.9	9.7	9.6	9.4
	Production Variation Compound Factor					0.00	0.94	0.93	0.92	0.91	1.12	1.08	1.26	1.26	1.66	1.66	1.67	2.09	2.52	2.96	2.99	3.01	3.03	3.05	3.07
1000	Production rate difference (%)					0.0%	7.9%	8.1%	8.2%	8.4%	10.4%	10.3%	12.2%	12.5%	16.2%	16.7%	17.2%	21.1%	25.0%	28.7%	29.5%	30.3%	31.1%	31.9%	32.8%
100%	Gas Price Discount Rate (%)					100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%
	Proven Providentian					0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	Power Production					1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Number of Gr					198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.8	198.9
Fue	el das production matches da	35				150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0	150.0
						(AE A7)	46 2249	47 202	49.0711	48.0202	40.9074	50 6756	E1 E437	52 4110	52.20	EA 1492	EE 0163	EE 004E	56 7526	57 6209	E0 4000	50 2571	60.2257	61 0024	61 002/
aen	nand for the OxyFuel Power					(45.47)	-40.5546	-47.205	-48.0711	-46.9595	-49.8074	-50.0750	-51.5457	-52.4119	-55.26	-54.1462	-35.0105	-55.6645	-30.7520	-57.0208	-36.4669	-59.5571	-60.2252	-01.0954	-01.0934
nlar	nt running at 13% I aad facto	r				0.6	0.63	0.646134	0.662288	0.678845	0.695816	0.713211	0.731042	0.749318	0.768051	0.787252	0.806933	0.827107	0.847784	0.868979	0.890703	0.912971	0.935795	0.95919	0.98317
piai	il Turining al 45 % Luau lacio	"				-18 1867	-17 1265	-16 7035	-16 2342	-15 7171	-15 1506	-14 5332	-13 8631	-13 1387	-12 3583	-11 5199	-10 6218	-9 66206	-8 63864	-7 54954	-6 39264	-5 16579	-3 86675	-2 49321	-1 02821
for	this scenario					-10.1007	-17.1205	-10.7035	-10.2342	-15./1/1	-15.1500	-14.5552	-15.8051	-15.1587	-12.5505	-11.5155	-10.0210	-5.00200	-0.03004	-7.54554	-0.33204	-5.10575	-5.80075	-2.43321	-1.02021
101			0.50%	0.75%	1 25%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%	1 50%
2.50%	Annual CPI Index (Base 2016)	1.00	1.00	1.00	1.00	1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.25	1.28	1.31	1.34	1.38	1.41	1.45	1.48	1.52	1.56	1.60	1.64
	Wholesale Day Ahead Gas Price Index (1/10/16)																								
	LOW	28.68	36.12	36.37	36.62	36.87	37.12	37.37	37.62	37.87	38.12	38.37	38.62	38.87	39.12	39.37	39.62	39.87	40.12	40.37	40.62	40.87	41.12	41.37	41.37
2.50%	CENTRAL	34.60	49.37	50.37	51.37	52.37	53.37	54.37	55.37	56.37	57.37	58.37	59.37	60.37	61.37	62.37	63.37	64.37	65.37	66.37	67.37	68.37	69.37	70.37	70.37
	HIGH	43.95	54.77	56.07	57.37	58.67	59.97	61.27	62.57	63.87	65.17	66.47	67.77	69.07	70.37	71.67	72.97	74.27	75.57	76.87	78.17	79.47	80.77	82.07	82.07
	Wholesale Electricity SSP Index (1/10/16 = 1)																								
	LOW	34.73	41.35	42.17	38.23	42.56	42.89	38.73	39.91	44.18	40.10	46.96	45.26	45.91	46.78	48.51	43.36	42.25	42.57	49.78	48.85	44.67	49.86	50.48	50.48
2.50%	S CENTRAL	39.10	58.72	60.69	55.71	62.80	64.07	58.55	61.03	68.33	62.70	74.23	72.29	74.08	76.25	79.84	72.05	70.88	72.07	85.03	84.18	77.64	87.39	89.22	89.22
	HIGH	41.67	62.70	65.02	59.88	67.72	69.29	63.50	66.38	74.51	68.55	81.36	79.42	81.57	84.15	88.31	79.85	78.71	80.18	94.78	94.00	86.86	97.93	100.14	100.14
	ETS Carbon Price (£/tn, nominal base 1/1/16)																								
	LOW				-	-										-		-	-						
	CENTRAL				-	-	-	-				-	-	-		-		-	-	-		-	-	-	-
	HIGH		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-
	UK CPS (£/kWh gas, nominal base 1/1/16)																								
	LOW	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	CENTRAL	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	HIGH	-		-	-	-		-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
	Fixed Gas Price																						<u> </u>		
	LOW	28.68	36.12	36.37	36.62	37.37	37.37	37.37	37.37	37.37	38.62	38.62	38.62	38.62	38.62	39.87	39.87	39.87	39.87	39.87	41.07	41.07	41.07	41.07	41.07
		34.60	49.37	50.37	51.37	54.37	54.37	54.37	54.37	54.37	59.37	59.37	59.37	59.37	59.37	64.37	64.37	64.37	64.37	64.37	69.17	69.17	69.17	69.17	69.17
	non	43.95	54.//	0.07	1 37.37	01.2/	01.2/	01.2/	01.2/	01.27	0/.//	07.77	07.77	0/.//	07.77	/4.2/	/4.2/	/4.2/	1 /4.2/	/4.2/	00.51	00.51	1 00.51	1 00.51	00.51

16th March 2020

The TiGRE[™] OxyFuel Power Plant Time Model Results

for a 42% Load Factor condition for the power plant

Load Factor for Scenario

OxyFuel Power Plant produce the lowest LCOE for a 43% Load factor (i.e approx. 1mmscfd gas supply)

	TGPE	= '	RR(p80)	12.8%	IRR(p50)	17.3%	Tigres	SS™ Simu	lation Ma	in Result	ts Page	Total Iterations	100	Current Iteration	12		Simulation Yea	Reference ar	2018		TIG			
TiGRESS ^(TM) Simulation	Projec	t	т		LS						CONFID	DENTIAL			Location:		Power Scenario Case	Central	Gas Scenaric Case	Central	All Data in	Nominal	Strictly Confi Commercially	idential. Sensitive
Scenario Number	Power Export Con	strained?	Yes	Oversizing (MW)	-		40555	Total Initial Equ	iity Investment	£230.4	or or	£1,158.9	per kW	Gearing Applied:	50.0%	Debt Interest Rate	6.50%	Tax Treatment	No Corp	Tax Applied; N	o Prior Years Ta	ax Applied	without written p TiGRE Technol	bermission of logies Ltd
3899.665914	Power Export max Ca	ipacity (MW) 4	108	Annual TNUOS Chrg(£m)	£6.20	Avg TNUOS rate (£/MWh)	£8.18	Avg Load Factor	43.5%	Gas Constrained?	Y	Gas Energy Value	40.00	MJ/sm3	20yr total gas vol. (bscf)	93.2	Avg Gas price paid £/thm	#DIV/0!	Avg Gas price £/MWh	#DIV/0!	Gas Price Disc on Mkt Price	100.0%	V (excl Decom)(£m)	£77.67
09/03/2020 15:58	Investor IRR & NPV (£m) (Current Scenario)	5.0%	£29.6	CapEx & DevEx (£k)	£221,789	£8,600	Capacity Payment per kW	£11.85	Discount rate 🗧	5.0%	Avg debt interest rate	6.50%	Corp Tax marginal Rate	N/A	Forecast Duration (yrs)	20	Avg/Max PP captured (£/MWh)	£56.17	£297	Avg Power Sales (m/yr)	£55.19	Max/Min Power Sales (m/yr)	£63.74	£46.94
2	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041
Power Rating (MW) Number GT					198.8 1	198.8 1	198.8 1	198.8 . 1	198.8 1	198.8 1	198.8 1	198.8 1	198.8 1	198.8 1	198.8 . 1	198.8 1	18.8	198.8 1	198.8	198.8 198.8 1	198.8 . 1	198.8 1	198.8 1	198.8 1
Minimum Capture Price Dispatches per year	e per MWh				£4.44 1702	£4.53 1591	£4.68 1606	£4.31 1639	£4.48 1673	£5.01 1679	£5.24 1717	£4.75 1729	£5.23 1751	£5.39 1757	£5.64	£5.76 1838	£5.70 1847	£5.76 1801			nour	and for	r total	£7.13 1936
Generated Power delive Avg Power Sales Price Ca	rered to OFTO subst Captured(£/MWh) (r	Sce	nario	moo	lellind	r is all s	et .82	797,451 £54.66	784,921 £59.69	781,651 £53.37	766,481 £61.72	762,178 £58.58	749,405 £58.48	753,977 £58.75	742,352 £60.00	724,226 £53.05	729,844 £50.89	744,086 \$50.31	6		JIISUII		lolai Far	96,335 £54.20
Max Power sales Price A Annual Power Sales Rev	Achieved(£/MWh) venue after TNUOS	to a	chiev	/e an	eaui	tv retur	n .94	£203 £48.12	£228 £53.01	£209 £48.38	£247 £56.23	£241 £54.40	£247 £54.73	£254 £56.70	£266 £58.44	£240 £51.67	£236 £51.20	£340 £52.90	5	mual	ion pe	- 1100 -		£297 £61.85
Load Factor Equiv Annua Annual Running Hours (i	al Hrs incl part load)		(nor	ninal)	of 1	5% to	074 097	4,011 4,034	3,948 3,971	3,932 3,955	3,856 3,878	3,834 3,857	3,770 3,792	3,793 3,815	3,734 3,757	3,643 3,665	3,671 3,694	3,743 3,766		ns sce	enario	It is ic	wer	3,503 3,525
Average Annual Load Fa	ency (LHV)	rofic	(110) Not th	ninai) o inv	octm	ont rick	82%	53.83%	45.07%	44.88% 53.84%	44.01% 53.84%	43.77%	43.03%	43.29%	53.85%	41.59%	41.91% 53.86%	42.73%	t t	nen th	e Refe	erence	e case	53.87%
Average Start/Stop cycle	es per day nst NBP (%)			C IIIV Chio in	CSIIII A offo	en noto	4	4	23.263	25.946	24.939 5	25.080	20.000	5	5	29.558	50.105	50.572	lá	argely	due to	o the		57.202
Average Gas Price (Yr) (f Annual gas consumed (r	£/MWh) (HHV) mmscf)	yrac the	ie. i volot	:			-	- 4.909	- 4.831	- 4.811	- 4.717	4.690	4	Time	series	outr	out dai	ta 🖁	ir	ncreas	se effic	ciency	of the	4.283
Max Gas Flow (Yr) (mms	scfd)	line	reial	ive Da		orthe	.67	23.67	23.67	23.67	23.67	23.67	2					57	מ	lant				23.67
Annual gas cost (£m) (H	HV)	calc	ulati	on of	the L	COE	.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	£0.00	Ľ					£0.00
Uplifted Gas Prod Rate F Average Gas Consumpti	F/C (mmscfd) ion Rate (mmscfd)			10.217	10.700	11.064	.51 10.936	11.19 10.768	10.87 10.597	10.79 10.553	10.45 10.347	10.35 10.289	10.08 10.116	10.21 10.178	9.96 10.020	9.71 9.774	9.89 9.850	10.09 10.043	10.31 10.25	. 10.11 5 10.134	9.92 9.965	9.73 9.778	9.55 9.581	9.38 9.396
Gas Prod annual Shortf	fall against uplifted pr	oduction f/c	(%)		-19%	-18%	-20%	-22%	-24%	-25%	-26%	-27%	-29%	-29%	-31%	-31%	-31%	-32%	-349	6 -36%	-37%	-37%	-37%	-37%
Operating costs (£k)																								
Fuel gas compressor dr	rive electricity cost				£366	£386	£389	£390	£391	£396	£395	£399	£399	£408	£409	£405	£415	£429	£445	£446	£445	£444	£441	£432
O&M Costs (Variable)					£13,439 £3.147	£13,775 £3,335	£14,119 £3.380	£14,472 £3,411	£14,834 £3.441	£15,205 £3,513	£15,585 £3,531	£15,974 £3,598	£10,374 £3,627	£16,783	£17,203 £3,774	£17,633 £3,774	£18,074	£18,525 £4.074	£18,989 £4.264	£19,463	£19,950 £4 353	£20,449 £4.379	£20,960	£21,484 £4.421
Power Transmission (in	cl all TNUOS) Costs				£5,433	£5,501	£5,500	£5,644	£5,718	£5,794	£5.872	£5,952	£6.033	£6,117	£6,203	£6,291	£6,381	£6.474	£6,568	£6.665	£6,765	£6.867	£6,972	£7.079
ETS Carbon Charges (£k))				-					-	-	-	-		-	-	-	-	-	-	-	-	-	-
UK CPS Charges (£k)						-			-		-	-	-		-	-	-			-	-	-	-	-
CO2 Annual Production	(tn)				n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a n/	ı/a
Wholesale Average Gas	Price NBP (p/thm)				52.38	53.38	54.38	55.38	56.38	57.38	58.38	59.38	60.38	61.38	62.38	63.38	64.38	65.38	66.38	67.38	68.38	69.38	70.38	70.38
Consumer Price Inflation	n Pate (%)				62.72	63.99	58.47	60.95	68.24	62.62	/4.13	/2.20	/3.98	/6.15	/9.74	/1.96	/0.79	/1.97	84.91	84.07	//.54	87.28	89.10	89.10
LIK Base Interest Pate (9	(70)				1.03	1.05	1.08	1.10	1.13	1.16	1.19	1.22	1.25	1.28	1.51	1.34	1.38	1.41	1.45	1.48	1.52	1.56	1.00	1.64
GBP/Euro Exchange rate	e - 1GBP is worth				1.30%	1.20	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30%	1.30	0 1.20	1.30%	1.30%	1.20	1.30%
GBP/US\$ Exchange rate	- 1GBP is worth				1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.23	1.2	3 1.23	1.23	1.23	1.23	1.23
Annual fuel gas compres	ssion electricity dema	and (MWh)			6,996	7,233	7,150	7,040	6,928	6,899	6,765	6,727	6,613	6,654	6,551	6,390	6,440	6,566	6,705	6,626	6,515	6,393	6,264	6,143
Fixed Power Price					0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0	0 0.00	0.00	0.00	0.00	0.00

The TiGRE[™] OxyFuel Power Plant Model Profit and Loss Account for a 43% Load Factor condition for the power plant

									TiGRESS™ Transition to Integrated Gas and Renewable Energy Simulation System															TIGRE SEALS				
Project Name	TIGRE SEALS		Pro	ject D	escrip	tion		Simulation r	un for the	Tigre seal	S Oxyfuel	Combustio	n CO2 sepe	ration capt	ure and u	ndergroaun	d storage v	vith enhan	ced gas rec	overy TiGI	RE power pl	ant rating	approx 20	OMW.				
Simulation Run Number	3899.665914		Sim	nulatio	on Rui	n Date 0	9/03/202	0 15:58	Р	roject Case	S	imulation (Case for ma	ximum ave	rage gas p	roduction o	f 15mmscf	d and max	imum ecor	nomic load	factor							
		20	018 201	19 20	020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038	2039	2040	2041		
Income	70						62.08	65 58	59 24	60.72	66 90	61.05	70.96	68 65	69.07	71 56	73 75	65.20	64 61	66 75	80.43	78.60	71 37	78 94	79.35	78.05		
Power Sales - Export	1.00				-		49,191	51.966	46.941	48.118	53.011	48.378	56.235	54.399	54,733	56,703	58.441	51.667	51.200	52.898	63.737	62.287	56.553	62.552	62.881	61.849		
Power Sales - Local	0 0	1%					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Gas Export Sales	0						-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Physical Balancing Power Premium (ba	s 7					-	5,547	5,735	5,669	5,582	5,494	5,472	5,365	5,335	5,246	5,278	5,196	5,070	5,109	5,209	5,318	5,256	5,168	5,072	4,970	4,874		
Other (Capacity Payment)	2,35	6 -			-		2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356	2,356		
Total Income		-			-	-	57,094	60,057	54,966	56,056	60,862	56,205	63,956	62,090	62,334	64,337	65,994	59,092	58,665	60,463	71,411	69,899	64,077	69,980	70,206	69,079		
Operating Expenses																												
Fuel gas costs	0				-			-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-			
Purchased Power supplies	0						-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Startup & Fuel Gas Compression Powe	Cost				-	-	376	406	419	430	442	459	469	487	499	523	536	545	572	607	645	663	678	692	705	708		
O&M costs (Fixed)					-	-	13,775	14,472	15,205	15,974	16,783	17,633	18,525	19,463	20,449	21,484	22,571	23,714	24,915	26,176	27,501	28,893	30,356	31,893	33,507	35,204		
O&M Costs (Variable)		-			-	-	3,226	3,504	3,639	3,765	3,893	4,074	4,197	4,384	4,529	4,787	4,952	5,076	5,374	5,757	6,175	6,411	6,624	6,830	7,031	7,245		
Subtotal Onex					-		2,710	2,751	24 835	25 814	26 837	27 959	29.063	30 286	31 510	32 911	34 263	35 626	37 242	39.013	40.889	42 633	44 423	46 282	48 215	50 236		
Subtotal Open							20,000	21,100	24,000	25,014	20,007	27,555	25,005	50,200	51,510	52,511	54,205	55,020	57,242	55,615	40,000	42,000	44,425	40,202	40,210	50,250		
Total Admin Expenses	60	0 -			-	-	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600		
Decommissioning provision costs							5,750	5,250	4,750	4,250	3,750	3,250	2,750	2,250	1,750	1,250	750	250 -	250 -	750 -	1,250 -	1,750 -	2,250 -	2,750 -	3,250 -	3,750		
Decommission provision	250,00	0					12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500		
Total Operating Costs		-			-	-	38,943	39,483	42,685	43,164	43,687	44,309	44,913	45,636	46,360	47,261	48,113	48,976	50,092	51,363	52,739	53,983	55,273	56,632	58,065	59,586		
EBITDA							18,151	20,574	12,281	12,892	17,175	11,896	19,042	16,454	15,975	17,076	17,881	10,116	8,573	9,100	18,672	15,916	8,804	13,348	12,142	9,493		
							18.2	20.6	12.3	12.9	17.2	11.9	19.0	16.5	16.0	17.1	17.9	10.1	8.6	9.1	18.7	15.9	8.8	13.3	12.1	9.5		
Interest Charges		-	-	-		4,167	8,335	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	7,208	-		
Carbon taxes							-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		
Depreciation		-			-	-	6,508	12,534	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089	11,089		
Net Operating Profit			-			4,167	3,308	832 -	6,016 -	5,406 -	1,123 -	6,402	745 -	1,844 -	2,323 -	1,222 -	417 -	8,181 -	9,724 -	9,197	375 -	2,382 -	9,494 -	4,949 -	6,156 -	1,597		
Tax Allowance					-	110,895				-	-	-	-	-		-	-		-	-	-	-		-	-	-		
Net Taxable profits		-	-			115,062	3,308	832 -	6,016 -	5,406 -	1,123 -	6,402	745 -	1,844 -	2,323 -	1,222 -	417 -	8,181 -	9,724 -	9,197	375 -	2,382 -	9,494 -	4,949 -	6,156 -	1,597		
Tax Receivable/(payable)	0.0	1% -			-	-			-	-		-	-			-		-			-	-		-	-			
Profit after Tax						4,167	3,308	832 -	6,016 -	5,406 -	1,123 -	6,402	745 -	1,844 -	2,323 -	1,222 -	417 -	8,181 -	9,724 -	9,197	375 -	2,382 -	9,494 -	4,949 -	6,156 -	1,597		
Deferred Tax Credit account			0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Tax refund against prior years tax paid Remaining prior years Tax Capacity Tax cash benefit recievable	-		0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0		
Dividends	-		-		-		-			-	-		-	-	-		-		-	-	-	-	-	-	-			
								Confidential 8	& Commerically	Sensitive. Copy	write of TiGRE T	echnologies Lto	l. Not to be copie	ed or published	without the ex	press permission	of TiGRE Techr	ologies Ltd										

2040

14.227

139 447 26 9

110.895

110.895

102.295 102.2

0.00

145 603

110.895

110.895

102.295

The TiGRE™ OxyFuel Power Plant Model Profit and Loss Account for a 43% Load Factor condition for the power plant

TGPE	c	ash Flo	ow Sta	atem	TIGRESS™ Transition to Integrated Gas and Renewable Energy Simulation System																																	
Project Name	TiGRE SE	ALS I	Project	Descri	ption		Simulation approx 2	on run fo :00MW.	or the TiG	RE SEALS	Oxyfuel	Combust	ion CO2 s	eperatio	n captur	re and un	dergroau	ind stor	age with	enhanc	ed gas re	ecovery	TiGRE p	ower pla	nt rating													
Simulation Run Number	3899.665	914	Simula	tion Ru	in Date	09/03/2	2020 15:5	8	Project C	ase	Simulatio	n Case fo	r maximi	um avera	ge gas p	roductior	n of 15mr	mscfd a	nd maxii	mum ecc	onomic le	oad fact	or															
Cash In		2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	203	6 20	037	2038	2039	2040	2041												
Cash received from operations Decommissioning Provision		0	0	0	0	18,151 12,500	20,574 12,500	12,281 12,500	12,892 12,500	17,175 12,500	11,896 12,500	19,042 12,500	16,454 12,500	15,975 12,500	17,076 12,500	17,881 12,500	10,116 12,500	8,573 12,500	9,100 12,500	18,672 12,500	2 15,9) 12,5	916 500 1	8,804 2,500	13,348 12,500	12,142 12,500	9,493 - 237,500												
Net cash from Equity		0	0	0	74,805	39,047	-11,557	0	0	0	0	0	0	0	0	0	0	0	0	()	0	0	0	0	0												
Debt Cash in from TiGRE debt Cash in from OFTO debt Asset Disposal (OFTO etc)		0	0	0	55,447 8,668 0	55,447 8,668 0	0 28,892	0	0 0	0	0	0	0	0	0 0	0	0 0	0 0	0	0)	0 0	0 0	0 0	0	0 0												
Tax Receivable/(payable) Prior year tax receivable Total Cash In		0 0 0	0 0 0	0 0 0	0 0 138,920	0 0 133,813	0 0 50,410	0 0 24,781	0 0 25,392	0 0 29,675	0 0 24,396	0 0 31,542	0 0 28,954	0 0 28,475	0 0 29,576	0 0 30,381	0 0 22,616	0 0 21,073	0 0 21,600	((31,172) 2 28,4	0 0 416 2	0 0 1,304	0 0 25,848	0 0 24,642	0 0 -228,007												
Cash Out																																						
Capital expenditure OFTO Investment Debt capital repayment Interest charges		0	0	0	110,895 19,261 0 4,167	110,895 9,631 0 8,335	0 7,208	0 0 7,208	0 0 7,208	0 0 7,208	0 0 7,208	0 0 7,208	0 0 7,208	0	0	0 0	0	0 0	0) ()) 	0	0	0 0	0 0	0												
Carbon Taxes Total Cash out		0	0	0	- 134,323	0 128,860	0 7,208	0 7,208	0 7,208	0 7,208	0 7,208	0 7,208	0 7,208		TIC	BE		Bal	lance S	heet				TiGR	ESS™ T	ransiti	on to li	ntegrate	ed Gas	and Re	newał	ole Ene	rgy Sin	nulatio	n Syst	em		
Dividends		0	0	0	0	0	0	0	0	0	0	0	0									Sir	nulatior	run for t	he TiGRE	SEALS O	vfuel Cor	nbustion C	O2 sepera	ation cap	ture and	undergro	aund sto	age with	enhanc	ed gas rec	overv TiG	RE powe
Net Cash Flow		0	0	0	4,596	4,953	43,201	17,573	18,184	22,467	17,188	24,334	21,746	Project N	lame	TiGI	RE SEALS	Pro	ject Desc	cription		20	omw.						-	-		-				-	-	-
Cumulative CF		0	0	0	4,596	9,549	52,750	70,323	88,507	110,973	128,161	152,496	174,241	Simulatio	on Run N	umb€ 389	9.665914	l Si	mulation	Run Dat	e 09/0 3	3/2020 1	.5:58	P	Project Cas	se s	Simulation	Case for	maximum	average	gas prod	uction of	15mmscf	d and ma	aximum e	economic	load facto	r
																		2018 20	019 2020	2	021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
					Cor	onfidential 8	k Commerical	y Sensitive.	Copywrite of	TiGRE Techn	ologies Ltd. N	ot to be copie	d or publish	Assets																								
														Net Book V	alue			0	0 0	130,1	.56 2	244,174	202,747	191,658	180,568	169,479	158,390	147,300	136,211	125,121	114,032	102,942	91,853	80,763	69,674	58,584	47,495	36,405
														Cash Debtors		-2,95	51	0	0 0	4,5	96	-2,951	10,415	15,488	21,171	31,138	35,826	47,660	56,906	65,673	75,540	86,213	89,121	90,487	92,379	103,843	112,551	114,147
														Total Asset	s			0	0 0	134,7	52 2	241,222	213,162	207,146	201,740	200,617	194,216	194,960	193,117	190,794	189,572	189,155	180,974	171,250	162,053	162,427	160,046	150,552
														Liabilities Short term Long term total Liabili	tes			0 0	0 0 0 0	64,1 64,1	15 1 15 1	128,230 128,230	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895	110,895 110,895
														Net Assets				0	0 0	70,€	37 1	112,992	102,268	96,251	90,845	89,723	83,321	84,066	82,222	79,899	78,677	78,261	70,080	60,355	51,158	51,533	49,151	39,658
														Shareholder Equity Reserves Total	funds			0 0 0	0 0 0 0	74,8 -4,1 70,6	005 1 67 637 1	113,851 -859 112,992	102,295 -27 102,268	102,295 -6,043 96,251	102,295 -11,449 90,845	102,295 -12,572 89,723	102,295 -18,974 83,321	102,295 -18,229 84,066	102,295 -20,073 82,222	102,295 -22,396 79,899	102,295 -23,617 78,677	102,295 -24,034 78,261	102,295 -32,215 70,080	102,295 -41,939 60,355	102,295 -51,136 51,158	102,295 -50,762 51,533	102,295 -53,143 49,151	102,295 -62,637 39,658
														chksum				0.00 0.0	00 0.00	0.	00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

The TiGRE[™] OxyFuel Power Plant Analysis of LCOE and Fuel Gas Consumption against and Load Factor

The LCOE has relatively high sensitivity to load factor. This mainly results from the increasing recovery on marginal costs with higher load factor rates. Oxyfuel Power plants have a lower LCOE than a TiGRE[™] OCGT power plant at load factors above 40%. This would suggest a TiGRE Oxyfuel power plant would not require CO2 subsidies to be competitive in the merchant power market for peaking plant.

- Based on 2014-2018yrs
- Monte Carlo simulation P50 & P80

The TiGRE[™] CryoSep Power Plant Analysed for 42% Load factor with a full distribution of risks across the main components of the plant

The TiGRESS[™] Monte Carlo risk analysis system was used to calculate and illustrate the range of probabilistic outcomes using 5 years of simulation data (see report CS362_CCUS Feasibility Study_TIGTTL001_RH1.0 relating to the system operation of the TiGRESS[™] Monte Carlo Simulation modelling). There is a high degree of IRR variation which very much depends on the relative spark spreads for each year and sensitivities with capex and opex cost ranges.

As can be seen based on 500 scenario simulations the P20 IRR is 22.3% and the P80 IRR is 16.2%. A 20% IRR has P50 probability. This suggests that the OXYFuel concept has the highest investment returns even at relatively low load factors.

Conclusions and Key Findings

	Reference Base OCGT without CCUS	Concept Option 2: Cryogenic Separation	Concept Option 3: Oxyfuel Generation
Power out (MW)	214	203	197
Operational complexity	Simple	Complex and novel technology required	Novel technology. Relatively simple at scale and in an offshore environment
TRL (estimated)	9	7-8	7
Capital cost per installed MW (£m/MW)	0.75	1.38 (84% higher than RC)	1.065 (42% higher than RC)
Net Thermal Efficiency (%)	42	42	52
Response time to full dispatch	<10mins	<30mins	<30mins
Load Factor (viable operating envelope) (%)	30-80	42-56	42-56
CO2 released (g/kWh)	450	31.5	<1
LCOE range (P50) (£/MWh)	59-60.50* 40-60% LF	47-77 42-56LF	45.31-55.43 42-56%LF
IRR @ P50	15.0	15.0	20.0

* Includes full CO2 costs at EU ETS rates.

Key Findings

- Depleted Gas Reservoirs can be used for medium levels CO2 storage while improving economic recovery of hydrocarbons.
- Gas field assets can have significant life extension opportunities of approximately 20years by employing the TiGRE SEALS CCUS concept options contemplated by this Study.
- The study has theoretically proven that it is possible to continue to produce hydrocarbons from an existing subsurface reservoir, convert these to commercially useful electrical power and capture CO2 to be stored back into the original source reservoir. The study has further shown that this has significant potential economic advantage compared to other more conventional CCUS processes currently being considered.
- The study has shown that by producing CO2 as a liquid product from the capture process and storing it in dense phase within the reservoir provides the opportunity to enhance gas recovery through re-pressurisation of the hydrocarbon reservoir.
- The study has shown that the concept of producing hydrocarbons, converting to electrical energy, capturing and storing CO2 in a closed circuit provides an technically and economically viable method for a fully contained and managed CO2 lifecycle.

Recommendations

- The study has identified two commercial and technically viable solutions at TRL7 and above which can be delivered to market within four years.
- To deliver to this timeline, the following further work would be required:
 - Further development of the materials and mechanical design of the expander turbine consistent with the thermodynamic and fluid mechanic characteristics of both the CryoSep and Oxyfuel concept processes.
 - Heat exchanger designs for components within the post-combustion stages of the CryoSep and Oxyfuel concept processes to maximise efficiency of heat recuperation and condensation systems at lowest capital cost.
 - Subsurface reservoir modelling to understand the geomechanical and thermodynamic behaviours including Joule Thompson effects within the reservoir structures whilst undertaking CO2 sequestration as contemplated by the study.