In Parliament – Session 2021 - 2022

High Speed Rail (Crewe – Manchester) Environmental Statement

Volume 5: Appendix WR-008-00001

Water resources and flood risk

MA05: Risley to Bamfurlong Groundwater modelling report -Holcroft Moss

M342

HS2

High Speed Rail (Crewe – Manchester) Environmental Statement

Volume 5: Appendix WR-008-00001

Water resources and flood risk

MA05: Risley to Bamfurlong Groundwater modelling report -Holcroft Moss

High Speed Two (HS2) Limited has been tasked by the Department for Transport (DfT) with managing the delivery of a new national high speed rail network. It is a non-departmental public body wholly owned by the DfT.

High Speed Two (HS2) Limited Two Snowhill Snow Hill Queensway Birmingham B4 6GA

Telephone: 08081 434 434

General email enquiries: HS2enquiries@hs2.org.uk

Website: www.hs2.org.uk

A report prepared for High Speed Two (HS2) Limited:

ARUP+ ERM | FOSTER + PARTNERS | JACOBS

High Speed Two (HS2) Limited has actively considered the needs of blind and partially sighted people in accessing this document. The text will be made available in full on the HS2 website. The text may be freely downloaded and translated by individuals or organisations for conversion into other accessible formats. If you have other needs in this regard please contact High Speed Two (HS2) Limited.

© High Speed Two (HS2) Limited, 2022, except where otherwise stated.

Copyright in the typographical arrangement rests with High Speed Two (HS2) Limited.

This information is licensed under the Open Government Licence v3.0. To view this licence, visit www.nationalarchives.gov.uk/doc/ open-government-licence/version/3 **OCL** or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: psi@nationalarchives.gsi.gov.uk. Where we have identified any thirdparty copyright information you will need to obtain permission from the copyright holders concerned.

Printed in Great Britain on paper containing 100% recycled fibre.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Contents

1	Intro	oduction	4			
	1.1	Background	4			
	1.2	Aims	5			
	1.3	Objectives	5			
	1.4	Justification of approach	6			
	1.5	Scope	6			
2	Qua	litative description of groundwater response	7			
	2.1	Sources of information	7			
	2.2	Description of the study area	7			
	2.3	Site visit	18			
	2.4	Conceptual model of groundwater flow	19			
3	Mod	el approach and justification	22			
	3.1	Model conceptualisation	22			
	3.2	Software	22			
	3.3	Input data	22			
	3.4	Convergence criteria	22			
4	Tech	nical method and implementation	23			
	4.1	Groundwater model build – baseline model	23			
	4.2	Groundwater model build – Proposed Scheme	26			
5	Mod	el results	29			
	5.2	Baseline scenario	29			
	5.3	Proposed Scheme	32			
6	Mod	el proving	36			
	6.1	Run performance	36			
	6.2	Calibration and verification	36			
	6.3	Validation	36			
	6.4	Sensitivity analysis	37			
	6.5	Run parameters	38			
7	Limi	tations	39			
8	Cond	clusions and recommendations	40			
Anr	Annex A: Borehole logs 41					
Anr	Annex B: Groundwater level impact maps 57					

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Tables

Table 1: Summary of climate data and estimated recharge	10
Table 2: Geological succession	11
Table 3: Environment Agency observation boreholes	16
Table 4: Cheshire Wildlife Trust monitoring data	17
Table 5: Estimated water balance	21
Table 6: Aquifer properties used in groundwater model	24
Table 7: Proposed Scheme – reductions in groundwater level	33
Table 8: Proposed Scheme flow budget comparison	33
Table 9: Cumulative mass balance error	36
Table 10: Sensitivity analysis	37

Figures

Figure 1: Modelled extent of Holcroft Moss	8
Figure 2: Average monthly rainfall and potential evapotranspiration (2003–2015)	9
Figure 3: Geological map	12
Figure 4: Geological cross section: east-west section (profile 1)	13
Figure 5: Geological cross section: north-south section (profile 3)	13
Figure 6: Environment Agency observation borehole hydrographs	16
Figure 7: Model refinement around key features	24
Figure 8: Model boundaries	26
Figure 9: Modelled groundwater levels for baseline scenario	30
Figure 10: Modelled transect through Holcroft Moss for baseline scenario	31
Figure 11: Modelled zone budget for baseline scenario (units in m³/day)	32
Figure 12: Difference in modelled flows between the full embankment option and baseline (units in m³/day)	34
Figure 13: Difference in modelled flows between the viaduct option and baseline (units in m ³ /day)	34
Figure 14: Difference in modelled flows between the viaduct with gravel trench option and baseline (units in m³/day)	35
Figure A 1: Borehole log SJ69 SE62	41
Figure A 2: Borehole log SJ69 SE66	42
Figure A 3: Borehole log SJ69 SE67	43
Figure A 4: Borehole log SJ69 SE68	44
Figure A 5: Borehole log SJ69 SE71 Sheet 1 of 2	45
Figure A 6: Borehole log SJ69 SE71 Sheet 2 of 2	46
Figure A 7: Borehole log SJ69 SE72	47

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 8: Borehole log SJ69 SE871 Sheet 1 of 2	48
Figure A 9: Borehole log SJ69 SE871 Sheet 2 of 2	49
Figure A 10: Borehole log SJ69 SE73	50
Figure A 11: Borehole log SJ69 SE74	51
Figure A 12: Borehole log SJ69 SE75	52
Figure A 13: Borehole log SJ69 SE872 Sheet 1 of 2	53
Figure A 14: Borehole log SJ69 SE872 Sheet 2 of 2	54
Figure A 15: Borehole log SJ69 SE76	55
Figure A 16: Borehole log SJ69 SE83	56
Figure B 1: Holcroft Moss impact map for the viaduct option	57
Figure B 2: Holcroft Moss impact map for the full embankment option	58
Figure B 3: Holcroft Moss impact map for the viaduct option with gravel trench	59

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

1 Introduction

1.1 Background

- 1.1.1 This appendix presents the results of the groundwater modelling carried out for the Holcroft Moss Site of Special Scientific Interest (SSSI), which is part of the Manchester Mosses Special Area of Conservation (SAC).
- 1.1.2 The modelling has been undertaken for Holcroft Moss to the boundary with the Glaze Brook, which is located in the following community areas (CA):
 - Broomedge to Glazebrook community area (MA04); and
 - Risley to Bamfurlong community area (MA05).
- 1.1.3 No other relevant groundwater modelling has been undertaken for this area.
- 1.1.4 This appendix should be read in conjunction with:
 - Volume 2, Community Area reports;
 - Volume 3, Route-wide effects;
 - Volume 4, Off-route effects; and
 - Volume 5, Appendices.
- 1.1.5 The water resources and flood risk assessments include both route-wide and community area specific appendices. The route-wide appendices comprise:
 - a Water Framework Directive (WFD) compliance assessment (Volume 5: Appendix WR-001-00000); and
 - a Draft water resources and flood risk operation and maintenance plan (Volume 5: Appendix WR-007-00000).
- 1.1.6 For each community area the water resources and flood risk assessments (Volume 5: Appendices WR-003 and WR-005) should also be referred to. In addition, a series of hydraulic modelling reports are included in Volume 5 Appendices WR-006 covering river catchment areas.

- 1.1.7 Additional information is included in Background Information and Data (BID):
 - Water resources assessment baseline data (BID WR-004)¹; and
 - Water Framework Directive compliance assessment baseline data (BID WR-002-00001)².

1.2 Aims

- 1.2.1 Holcroft Moss SSSI is part of the Manchester Mosses SAC. It is a raised peat bog supporting five species of moss and has never been cut for peat. It represents a unique ecosystem that may be supported by groundwater within the superficial deposits and underlying sandstone aquifer. While it is unclear if the site is groundwater fed, it has been assessed on a precautionary basis.
- 1.2.2 The aim of this study was to develop a groundwater model of Holcroft Moss to determine potential hydrogeological impacts from Glazebrook North embankment and M62 West viaduct by simulating groundwater levels with and without the Proposed Scheme. Note that the groundwater modelling is not intended to be used for water quality. This report documents the methods used, the results, assumptions and limitations.
- 1.2.3 The outputs from the study have been used to inform the Water resources assessment Volume 5: Appendix WR-003-0MA05.

1.3 Objectives

- 1.3.1 The objectives of this study were to:
 - develop an understanding of existing hydrogeological conditions at the Holcroft Moss, including aquifer units, groundwater flow direction and hydraulic properties, through desk study and, where possible, by conducting a site visit;
 - estimate the water balance for the site, including recharge and major discharge locations; and
 - develop a groundwater model, using the information available at this stage, to estimate the groundwater levels within the Holcroft Moss, both before and after construction of the Proposed Scheme.

 ¹ High Speed Two Ltd (2022), High Speed Rail (Crewe – Manchester), *Background Information and Data, Water resources assessment baseline data*, BID WR-004-0MA04 and BID WR-004-0MA05. Available online at: <u>http://www.gov.uk/government/collections/hs2-phase-2b-crewe-manchester-environmental-statement.</u>
 ² High Speed Two Ltd (2022), High Speed Rail (Crewe – Manchester), *Background Information and Data, Water Framework Directive compliance assessment data*, BID WR-002-00001. Available online at: <u>http://www.gov.uk/government/collections/hs2-phase-2b-crewe-manchester-environmental-statement.</u>

1.4 Justification of approach

- 1.4.1 A risk-based approach has been adopted, whereby the level of modelling detail supporting the assessment at a specific site reflects the magnitude of the likely impacts of the Proposed Scheme on groundwater levels.
- 1.4.2 As there is little information on the groundwater levels or flows within the Holcroft Moss, a steady-state MODFLOW 6 model³ was developed with separate layers representing the peat, the superficial deposits and the sandstone. Sensitivity testing of key parameters was carried out to understand the uncertainty in the model.

1.5 Scope

- 1.5.1 The scope of the study was to undertake detailed groundwater modelling to enable assessment of the impact of the Proposed Scheme on the groundwater levels in the Holcroft Moss. The model aimed to be detailed enough to allow assessment of different options for the Proposed Scheme construction.
- 1.5.2 This report focuses on Holcroft Moss, extending north to Glaze Brook, east to Holcroft Lane Brook, south to the edge of the superficial deposits outcrop and west to the edge of Pestfurlong Moss. A description of the location and type of scheme is provided in Section 2.
- 1.5.3 The scope of the report includes:
 - discussion of all relevant datasets, in terms of their quality and gaps;
 - details of the hydrogeological analysis undertaken, the approach used and the calculation steps;
 - details of how the hydrogeological analysis has been integrated with the groundwater modelling;
 - identification and justification of the groundwater modelling methodology selected; and
 - a description of the groundwater modelling parameters, assumptions, limitations and uncertainty.

³ MODFLOW 6 is a United States Geological Survey (USGS) Modular Hydrologic Model and this is considered to be the industrial standard software for groundwater modelling.

2 Qualitative description of groundwater response

2.1 Sources of information

- 2.1.1 The groundwater levels for observation boreholes in the Sherwood Sandstone were obtained from the Environment Agency.
- 2.1.2 Additional information from publicly available sources included:
 - geological maps from the British Geological Survey (BGS);
 - borehole logs from the BGS;
 - gridded potential evapotranspiration from the Centre for Ecology and Hydrology (CEH)⁴;
 - gridded rainfall from the CEH⁵; and
 - gauged river flows for the Glaze Brook at Little Woolden Hall (station number 69005) from the CEH National River Flow Archive.

2.2 Description of the study area

Model extent

- 2.2.1 Model boundaries have been assigned at known flow divides, such as rivers or streams, or at a distance from Holcroft Moss so that boundaries do not affect the results of the investigation. The boundaries are shown in Figure 1 and are defined as the:
 - Glaze Brook in the east;
 - edge of the superficial deposits outcrop in the south;
 - western extent of the Pestfurlong Moss in the west; and
 - Holcroft Lane Brook in the north.
- 2.2.2 The route of the Proposed Scheme is 40m to the west of Holcroft Moss at its closest point and runs approximately south-east to north-west. Figure 1 shows the model domain.

⁴ Climate, Hydrology and Ecology research Support System (CHESS) dataset, Robinson, E. L. et al. (2016), *Climate hydrology and ecology research support system potential evapotranspiration dataset for Great Britain* (1961-2017) [CHESS-PE]. Available online at: <u>https://catalogue.ceh.ac.uk/documents/9116e565-2c0a-455b-9c68-558fdd9179ad.</u>

⁵ Gridded Estimates of Areal Rainfall (GEAR) dataset, Tanguy, M. et al. (2016), *Gridded estimates of daily and monthly areal rainfall for the United Kingdom (1890-2017) [CEH-GEAR]*. Available online at: <u>https://catalogue.ceh.ac.uk/documents/ee9ab43d-a4fe-4e73-afd5-cd4fc4c82556</u>.

Figure 1: Modelled extent of Holcroft Moss

Climate

- 2.2.3 Rainfall in the study area, as obtained from the Gridded Estimates of Areal Rainfall (GEAR) dataset, is 840mm/year on average (2003–2015). The highest annual rainfall was recorded in 2012 (1,129mm) and the lowest in 2010 (647mm).
- 2.2.4 Potential evapotranspiration from the Climate, Hydrology and Ecology research Support System (CHESS) dataset for 2003–2015 is 513mm/year. There is less annual variability in the potential evapotranspiration than the rainfall; for the period considered. The highest potential evapotranspiration was observed in 2003 (551mm) and lowest in 2012 (455mm).
- 2.2.5 Average daily rainfall and potential evapotranspiration per month (2003–2015) is shown in Figure 2. For the period of time shown, rainfall is lowest in March and April and highest in December and January. Potential evapotranspiration is seasonal, being lowest in December and January and highest in June and July.

Figure 2: Average monthly rainfall and potential evapotranspiration (2003–2015)

Recharge

- 2.2.6 Rainfall was obtained from the CEH's GEAR dataset and potential evapotranspiration from the CEH's CHESS dataset for 2003–2015. These climate data were used to estimate the recharge to the model. Recharge is obtained by solving the soil-water balance where water which remains after removing the runoff, actual evapotranspiration and soil moisture deficit⁶ losses becomes recharge. Actual evapotranspiration was based on a grass crop type. Recharge was calculated on a daily basis and then averaged to obtain a single value for the steady-state model.
- 2.2.7 The runoff coefficient for peat is generally low and the land surrounding Holcroft Moss is relatively flat. Therefore, the runoff coefficient for peat has been assumed to be 1% and for the superficial deposits 15%. These are the low-end estimates of runoff coefficients. These are considered to be a reasonable worst case, as the more groundwater recharge occurs the more likely it is that the groundwater will become an important factor in supporting water levels on Holcroft Moss.
- 2.2.8 Table 1 contains a summary of the climate data and estimated recharge used for the groundwater model.

⁶ Allen et al. (1998), *Crop evapotranspiration. Guidelines for computing crop water requirements, FAO irrigation and drainage* paper 56, Rome: Food and Agriculture Organisation of the United Nations. Available online at: <u>http://www.avwatermaster.org/filingdocs/195/70653/172618e_5xAGWAx8.pdf.</u>

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Table 1: Summary of climate data and estimated recharge

Parameter	Units	Value on peat outcrop (2003– 2015)	Value on superficial deposits outcrop (2003–2015)
Rainfall	mm/year	840	840
Potential evapotranspiration	mm/year	513	513
Runoff	mm/year	2	35
Actual evapotranspiration	mm/year	494	494
Recharge	mm/year	344	311

Geology

- 2.2.9 Geology in the study area comprises the Triassic Sherwood Sandstone Group bedrock overlain by superficial glaciofluvial sands and gravels, glacial till and peat. The Sherwood Sandstone is regionally deformed by folds and north-west to south-east trending faults. South of the site, the Tarporley Siltstone Formation and Sidmouth Mudstone Formation, part of the Mercia Mudstone Group, are at subcrop beneath the superficial deposits. Bedrock dips to the south.
- 2.2.10 Figure 3 shows the geology of the study area. Cross sections of the geology along the northern boundary of the Holcroft Moss are shown in Figure 4 and Figure 5.
- 2.2.11 Superficial sands, gravels and till were deposited as the ice sheets retreated following glaciation; sands and gravels are associated with rivers that formed as the ice melted. Distribution of the superficial deposits is variable, thicker sequences are associated with erosional features in the bedrock and sands and gravels lenses or beds are interbedded with till (locally described as sandy clay or sandy stony clay, see Annex A).
- 2.2.12 Peat bogs initially formed in hollows in the glacio-fluvial gravels before spreading across the adjacent glacial till. Peat is formed when high water tables prevent decomposition of plant matter. Such waterlogging may occur due to low permeability deposits, which prevent water from draining through to the bedrock, or due to high water levels in the bedrock aquifer, which maintain groundwater levels above the top of the superficial deposits. It is reported that the site may have started as a lacustrine system which developed into a reed swamp before the development of ombrotrophic conditions⁷.
- 2.2.13 Published geological cross-sections from nearby maps show that the timing and spatial deposition of glacial deposits was variable across north-west England. Glacio-fluvial sands and gravels were deposited both before and after the glacial till. In the study area, borehole logs indicate that the glacial till was deposited after the glacio-fluvial deposits and that the

⁷ Leah, M. D., Wells, C. E., Appleby, C. & Huckerby, E. (1997), *Northern Mosses. In: R. Newman & M. Lister, eds.* The Wetlands of Cheshire. Lancaster: Lancaster University Archaeological Unit, pp. 19-44.

peat was deposited on top of the till. Further east, near Glaze Brook, the reverse may be true.

2.2.14 Table 2 shows the principal lithologies present in the study area including estimated thicknesses from borehole logs in the study area.

Formation	Age	Description	Thickness (m)	Elevation of base of formation (mAOD)
Alluvium	Quaternary	Clays, silts and sand	<5	Variable
Peat		Organic rich layer, partially decomposed vegetation	1.4-5.2	14.71-21.96
Glacial till		Clay, silt and sand	1.4-8.2	8.64–15.94
Glaciofluvial sands and gravels		Sand and gravel	1.8-6.2	5.61-13.79
Mercia Mudstone Group	Triassic	Mudstones and siltstones	>1,350	Not proven
Sherwood Sandstone Group		Fine to medium grained sandstones of fluvial origin	>500	Not proven

Table 2: Geological succession

2.2.15 Two cross sections have been constructed based on the borehole logs obtained from the ground investigation for the construction of the M62 (Figure 4 and Figure 5). The line of the sections is shown on Figure 3. Thicknesses and distribution of the glaciofluvial sheet deposits is based on borehole log data (see Annex A) where available with some interpretation required where data were not available. The lateral extent of the sands and gravels and till is known to vary across the site but is not well defined.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure 3: Geological map

Figure 4: Geological cross section: east-west section (profile 1)

Figure 5: Geological cross section: north-south section (profile 3)

Topographical profiles through Holcroft Moss and surrounding areas - approximate North-South section

Topography and drainage

- 2.2.16 Ground elevations in the study area generally fall towards the east. The highest elevations are recorded where the peat is at outcrop; the site forms a raised bog at an elevation of c.23mAOD. Lowest elevations (c.12mAOD) are at the river, which captures runoff from the study area and flows in a southerly direction.
- 2.2.17 As the site forms a topographic high in the study area, natural drainage flows away.Drainage is then east or south towards. During the site visit September 2018 (see Section 2.3 for details), it was noted that the ditches appeared to drain towards the river.
- 2.2.18 Various ditches, culverts and other drainage features have been constructed across the study area, including:
 - Wigan Junction branch line cutting, which was constructed in the late 19th century and runs in an approximately north-south orientation. Drainage ditches were constructed along its length. The branch line has since been decommissioned and backfilled with unknown material;
 - the M62 motorway, which was constructed in the 1960s when the whole thickness of the peat was removed along the motorway, which runs approximately from east to west. There is no record of any retaining structure between the M62 and Holcroft Moss, although there is some evidence^{8,9} that the clayey deposits excavated as part of the motorway construction were used to form a partial barrier between the two features;
 - a culvert along the southern edge of the Holcroft Moss (likely installed for the crossing of the historical Wigan Junction branch line); and
 - a ditch along the eastern edge of the Holcroft Moss.
- 2.2.19 Other minor ditches have been constructed across the study area, which may affect surface and shallow groundwater flow.
- 2.2.20 Mean flow in Glaze Brook at Little Woolden Hall¹⁰ is 3.336m³/s (288,230m³/day) and its baseflow index is 0.5. The catchment of Glaze Brook is 152km², compared with the study area, which is 3.87km², and the Holcroft Moss, which is 0.227km². Using this information, baseflow to the Glaze Brook from the study area is expected to be approximately 3,700m³/day.

⁸ Highways England (2019), *M62 junction 10 to 12 smart motorway*. Available online at: <u>https://highwaysengland.co.uk/our-work/north-west/m62-junction-10-to-12-smart-motorway/</u>.

⁹ Natural England (1981), *Holcroft Moss Citation.* Available online at: <u>https://designatedsites.naturalengland.org.uk/PDFsForWeb/Citation/1006461.pdf.</u>

¹⁰ National River Flow Archive (2017), *69005 - Glaze Brook at Little Woolden Hall.* Available online at: <u>https://nrfa.ceh.ac.uk/data/station/meanflow/69005.</u>

- 2.2.21 Flows within the smaller drains and culverts have not been measured. Observations from the site visit in September 2018 were that:
 - the smaller drains and ditches did not have any flow in them although there were areas with standing water; and
 - flow with the culvert was observed from a manhole and was of the order of 2–5 litres per second.

Hydrogeology

- 2.2.22 There are three aquifer systems in the study area¹¹, which may or may not be hydraulically connected:
 - peat;
 - superficial deposits; and
 - Sherwood Sandstone Group.
- 2.2.23 Borehole logs (see Annex A) from along the route of the M62 indicate that the peat has formed on top of the glacial till, forming a perched aquifer. To the east, the glacial till thins and the peat may have formed on top of the glacio-fluvial sands and gravels; the peat and sands and gravels may be in hydraulic continuity in this area.
- 2.2.24 Glaciofluvial sands and gravels support groundwater flow and may be in hydraulic continuity where they lie directly on the Sherwood Sandstone. The presence and extent of the low permeability glacial till is an important control on the vertical connection between the superficial deposits and the Sherwood Sandstone or peat.
- 2.2.25 The Sherwood Sandstone Group is a Principal Aquifer, capable of supporting regional water supply. Groundwater levels for the Sherwood Sandstone Group are above the top of the formation, leading to a confined aquifer in the study area. In the south of the study area, the Mercia Mudstone Group confines the Sherwood Sandstone as the beds dip southwards.
- 2.2.26 The study area considered as part of the development of the proposed groundwater model is 3.87km², as shown in Figure 1. There are five Environment Agency observation boreholes within the study area, all of which monitor the Sherwood Sandstone Group (see Table 3). Data was provided for four of these observation boreholes.

¹¹ Aquifers are designated by the Environment Agency. Details are provided in Water resources assessment baseline data (BID WR-004-0MA05).

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Table 3: Environment Agency observation boreholes

Name	Easting	Northing	Distance from Holcroft Moss (km)	Length of record	Groundwater level range (mAOD)
Taylors Industrial Estate	366040	394400	2.67	29 November 1974 to 06 September 2018	8.77-19.01
Chat Moss	370420	395620	3.06	28 June 2011 to 16 February 2014	16.98–17.86
Fowley Common	366920	396200	3.31	06 September 1978 to 06 September 2018	12.90-17.72
Carrington Shell	374720	392240	6.34	15 October 1970 to 22 December 2015	16.73-22.29
Holcroft Lane	368550	393720	0.23	Not provided	Not provided

2.2.27 Data from these boreholes is presented in Figure 6.

Figure 6: Environment Agency observation borehole hydrographs

2.2.28 Cheshire Wildlife Trust provided groundwater dip monitoring data from 36 piezometers installed across Holcroft Moss. As the piezometers are not secured to the bedrock, they may rise and fall as the peat saturates and desaturates; therefore, these data can only be used to provide an estimate of water levels below ground level. A summary of the information is provided in Table 4; monthly monitoring data were provided from August 2001 until October 2006.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Table 4: Cheshire Wildlife Trust monitoring data

Name	Easting	Northing	Minimum dip (mbgl)	Maximum dip (mbgl)	Average dip (mbgl)
1	368408	393375	0.01	0.39	0.11
2	368447	393342	0.00	0.44	0.13
3	368502	393301	0.00	0.39	0.12
4	368559	393240	-0.02	0.43	0.15
5	368576	393220	-0.01	0.37	0.13
6	368628	393357	0.02	0.54	0.19
7	368569	393306	0.02	0.47	0.16
8	368526	393277	0.01	0.45	0.14
9	368483	393252	-0.02	0.34	0.10
10	368440	393224	-0.05	0.27	0.05
1	368735	393264	0.00	0.30	0.10
2	368726	393259	-0.01	0.34	0.09
3	368717	393251	0.00	0.37	0.14
4	368705	393244	-0.02	0.40	0.13
5	368719	393244	0.05	0.39	0.14
6	368719	393250	0.03	0.35	0.14
7	368720	393263	0.00	0.31	0.11
8	368715	393272	0.02	0.45	0.16
1A	Not provided	0.11	0.79	0.47	
1B		0.24	0.90	0.60	
2A		0.11	0.73	0.39	
2B		0.36	1.01	0.74	
ЗA		0.05	0.71	0.27	
3B		0.25	0.91	0.45	
4A		0.08	0.90	0.27	
4B		0.19	0.95	0.37	
5A		0.01	0.47	0.18	
5B		0.05	0.61	0.28	
6A		0.06	0.62	0.27	
6B		0.07	0.67	0.30	
7A		0.02	0.44	0.17	
7B		0.00	0.78	0.27	
8A		0.02	0.59	0.18	
8B		0.04	0.74	0.31	
9A		-0.02	0.51	0.16	
9B		0.03	0.73	0.33	
Average			0.05	0.56	0.23

- 2.2.29 The data in Table 4 indicate that groundwater levels in the peat are 0.23mbgl on average although this can be as deep as 1.01mbgl during dry periods or at or above surface during wet periods. Groundwater levels are a function of rainfall and potential evapotranspiration.
- 2.2.30 It is not possible to discern the groundwater flow direction in the peat from the data provided as no data are available as level above datum.

Proposed Scheme

2.2.31 The route of the Proposed Scheme crosses 40m to the west of Holcroft Moss at its closest point. Further detail on the Proposed Scheme can be found in Volume 2, Map Books: maps CT-05-326b and CT-06-326b.

2.3 Site visit

- 2.3.1 A site visit was undertaken on 5 September 2018.
- 2.3.2 Holcroft Moss was visited and the ditches, drains, underground utilities and culverts around the site boundary were inspected.
- 2.3.3 The following observations made during the site visit are of interest to the groundwater modelling study:
 - most boundary ditches drain towards the Glaze Brook in the east;
 - northern section of ditches to the east and west of the site drain towards the motorway;
 - ditches were inspected at various locations during the visit. Ditches had no flow where inspected, but there were patches of standing water;
 - ditches are plugged at various points with massive peat bunds;
 - the western ditch is deeper than the eastern ditch, estimated visually to be approximately 2m–3m (western), compared to approximately 1m–2m (eastern);
 - overall, Holcroft Moss is on higher ground and slopes in all directions from the central area where the peat has been drained/dried. Therefore, the ground surface is lower at the edges, and then drops away steeply into the ditches;
 - there is a Victorian brick-lined culvert along the southern edge of the site. The flow into the culvert was in the order of 2–5 litres/second. Seepage through the brickwork lining the manhole chamber was observed during the visit. The water level was approximately 4.7m below the top of the manhole which is approximately 0.8m above ground level. The water was approximately 0.1m deep; and
 - with rewetting, the surface of the peat can rise by up to 0.5m.

2.4 Conceptual model of groundwater flow

Geological sequence

- 2.4.1 Based on the geological maps and available borehole logs, it is suggested that the peat is underlain by lenses of sand and gravel which are separated by relatively continuous deposits of glacial till.
- 2.4.2 In the west, the geological sequence is sandstone overlain by sands and gravel then glacial till followed by peat. Between the site and the river, the sandstone is overlain by sands and gravel, followed by glacial till with a later deposition of fluvial sands and gravel to the surface, which may be associated with the proto river. The valley of the river has eroded through the surface sands and gravel to the glacial till below and the depositional sequence is sandstone, glacio-fluvial sands and gravels, till then alluvium at the surface.

Groundwater flow mechanisms

- 2.4.3 Regional groundwater flow within the Sherwood Sandstone Group is well understood and has been described in literary sources. Groundwater flow occurs mainly within the matrix of the sandstone although it may be controlled by the position of faults. The effective aquifer thickness is reported to be approximately 200m although the total thickness of the group may be in excess of 3km⁷.
- 2.4.4 Groundwater flow within the superficial deposits is not well understood. However, it is expected that local perched aquifers have developed where more permeable glacio-fluvial sands and gravels overlie the low permeability till deposits. Where sands and gravels are in contact with the bedrock sandstone aquifer and groundwater levels in the sandstone are above the base of the superficial deposits, the two formations are expected to be in hydraulic continuity.
- 2.4.5 Where the sands and gravels overlay the sandstone, the two formations are expected to be hydraulically linked. Similarly, where the peat lies on top of the sands and gravel, the peat and sands and gravel will be hydraulically connected. The presence of the glacial till both above and below the sands and gravel restricts vertical flow of groundwater. It is therefore considered unlikely that the sandstone aquifer is hydraulically linked to the peat.

Analysis of historical groundwater flow

2.4.6 Groundwater levels from the Environment Agency's network of observation boreholes were provided (Table 3 and Figure 6). Historically, groundwater flow was towards the cone of depression in the west, associated with the large industrial abstractions. Since the cessation of abstraction in the 1980s, there has been a rise in groundwater levels so that groundwater flow in the study area is currently towards the east.

- 2.4.7 Groundwater levels in the sandstone are above the base of the peat although the Sherwood Sandstone Aquifer may be confined by the glacial till deposits, where present.
- 2.4.8 No historical groundwater level data are available for the superficial deposits. It is assumed that flow is towards the Glaze Brook in the east.
- 2.4.9 Groundwater levels in the peat have been measured relative to the ground surface without a reference ground elevation so it is not possible to obtain information on groundwater flow direction. It is assumed that groundwater drains into the culverts and drains that bisect the peat.

Availability of existing groundwater models

2.4.10 The Environment Agency's Lower Mersey regional groundwater model includes Holcroft Moss. Superficial deposits are not explicitly represented in the groundwater model, which simulates flow in the Sherwood Sandstone Group Aquifer, although they are included in the recharge model for the sandstone.

Review of existing groundwater models

2.4.11 The Environment Agency regional groundwater model was not provided for the study.

Water balance

- 2.4.12 A water balance was estimated for Holcroft Moss (see Table 5). The following assumptions were made:
 - recharge is calculated using the FAO methodology⁶, which assumes that recharge occurs once the crop requirements, soil moisture deficit and runoff have been satisfied;
 - the proportion of runoff across the peat is assumed to 1% of rainfall. Runoff is only generated if the soil moisture deficit has been satisfied;
 - vertical flow between the superficial deposits and the peat is controlled by the vertical permeability of the glacial till and is assumed to be in an upwards direction; and
 - flow in the culvert to the south of the site was observed as being approximately 2–5l/s during the site visit in September 2018. For the purposes of the water balance calculation, this is assumed to be 2–3l/s (173–259m³/d).

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Parameter	Units	Value	Notes
Area of Holcroft Moss SSSI	m ²	191,295	Natural England Site of Special Scientific Interest (SSSI) citation ⁹
Recharge	mm/year	344	Remaining water available following soil balance
Recharge	m³/day	179	(Table 1)
Drain and culvert flow	m³/day	216	Estimated from observations during site visit (2.5l/s)
Vertical flow from superficial deposits	m³/day	52	Calculated using Darcy's Law, assuming a vertical head difference of 1m and a vertical conductivity of 0.001m/d
Balance	m³/day	15 (3%)	Sum of recharge and vertical flow minus discharge to the drain and culvert

Table 5: Estimated water balance

2.4.13 The water balance indicates that Holcroft Moss is supported predominantly by rainfall recharge. The biggest uncertainty is in the discharge volumes to the culvert and drains across the site as well as any contributions to or from the superficial deposits. It should be noted that any significant change in the estimated contribution from the superficial deposits would be balanced by a change in discharge to the drains, which are currently in line with observations made during the site visit.

3 Model approach and justification

3.1 Model conceptualisation

- 3.1.1 The hydrogeological system is conceptualised as a three-layer system, comprising the peat, superficial deposits and Sherwood Sandstone Group. No flow cells are used to delineate the extent of the model layer where appropriate. Aquifer properties are modified to reflect the geology of each layer, such as hydraulic conductivity and vertical leakance.
- 3.1.2 Boundary conditions are used to represent the Glaze Brook as well as the various ditches, drains and culverts that cross the study area. The regional groundwater throughflow in the sandstone aquifer is also represented using boundary condition cells.
- 3.1.3 A steady-state model was used as there are no data available to inform or calibrate a transient model.

3.2 Software

3.2.1 MODFLOW6 has been used. This methodology is in line with standard practice to use the latest available build at the time modelling commenced. MODFLOW is industry standard software.

3.3 Input data

- 3.3.1 Elevations of the top and base of the geological formations in the model were taken from boreholes logs and geological maps available from the BGS. Other model parameters such as aquifer properties were assigned based on literature sources.
- 3.3.2 Ground elevations from Light Detection and Ranging (LiDAR) were used to estimate the stage of boundary conditions. Groundwater levels provided by the Environment Agency were used to inform the groundwater throughflow in the sandstone aquifer.

3.4 Convergence criteria

- 3.4.1 Convergence criteria for the model were set at 0.001m (1mm) for groundwater levels and 0.1m³/day for flows. These values are considered to be stringent and to ensure repeatability between model runs and consistent model results.
- 3.4.2 For groundwater levels, the modelled simulations are, therefore, accurate to the nearest 1mm. This is particularly important when comparing the results of model runs for different development scenarios. Differences in simulated levels of less than 1mm between model runs would be within the error in convergence for each run. These differences cannot, therefore, be used to quantify accurately such marginally small impacts.

4 Technical method and implementation

4.1 Groundwater model build – baseline model

Grid and geometry

- 4.1.1 Three model layers were used to simulate flows in the:
 - peat;
 - glacial superficial deposits, including the glacial till and sands and gravels; and
 - Sherwood Sandstone Group.
- 4.1.2 The model cell size ranged from 2m²–470m² and an unstructured model grid was used, with cell refinement along the key features within the model area such as the M62, the Wigan Junction and culverts, drains and ditches (see Figure 7).

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure 7: Model refinement around key features

Aquifer properties

4.1.3 Aquifer properties assigned to the model layers are shown in Table 6.

Table 6: Aquifer properties used in groundwater model

Property	Layer 1–Peat	Layer 2– Glacial deposits	Layer 3–Sherwood Sandstone Group
Top of layer	Ground surface	Base of peat or ground surface	Base of superficial deposits.
Base of layer	Top of glacial deposits	Top of sandstone	Top of sandstone minus 20m.
Thickness (m)	Approximately 5m where the peat crops out	Approximately 18m	Transmissivity set to represent an effective thickness of 200m.
Extent of layer	Restricted to the peat outcrop	Whole model layer	No flow cells to south where the sandstone is confined by the Mercia Mudstone Group.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Property	Layer 1–Peat	Layer 2– Glacial deposits	Layer 3–Sherwood Sandstone Group
Hydraulic conductivity (m/d)	Peat: 0.5 Wigan junction: 2 Motorway cutting: 50	0.01–5	N/A
Transmissivity (m²/d)	N/A	N/A	100
Vertical leakance	0.01-0.1	0.001-0.1	N/A
Recharge (mm/year)	343	304	N/A

4.1.4 Sensitivity testing was carried on the aquifer properties within the bounds shown in Table 6 as part of the model verification.

Boundary conditions

- 4.1.5 River cells were used to represent the Glaze Brook and the Holcroft Lane Brook, which form the eastern and northern boundaries of the model. Stage elevations of the river cells were obtained from LiDAR data, and flow depth estimated as 1m below LiDAR levels.
- 4.1.6 Drain cells simulate the flow along the various ditches, drains and culverts which cross the peat and form the boundaries to the site. Further drain cells were used to allow water to exit the model along the M62 where the peat was removed. Using the observations made during the site visit in September 2018, the following assumptions were made:
 - the ditch along the western boundary of the Holcroft Moss is at an elevation of 2.5mbgl;
 - on the eastern boundary of the Holcroft Moss, the elevation of the ditch is 1.5mbgl;
 - all other minor ditches are assumed to be at an elevation of 2mbgl, which is an average of those observations made during the site visit; and
 - the culvert, which forms the southern boundary of the site, is at an elevation of 15.5mAOD.
- 4.1.7 Boundary inflows were also applied to the superficial deposits layer in the west based on observed water strike levels in borehole logs (see Annex A). The inflow across the boundary was calculated using Darcy's Law as 70m³/day. The following assumptions were made to determine the inflow across the western boundary:
 - the glaciofluvial sheet deposits are continuous across the western boundary, which has a length of 1,360m;
 - groundwater flow occurs over the full thickness of the glaciofluvial sheet deposits (i.e. the sands and gravels are fully saturated), which varies over the length of the western boundary but is typically 4m;
 - head at the western boundary of the model can be approximated as the top of the sands and gravels (15mAOD);

- the hydraulic gradient is calculated as the difference between the head on the western boundary and the stage of the Glaze Brook (9mAOD) divided by the distance between the two boundaries; and
- hydraulic conductivity of the sands and gravels is 5m/d.
- 4.1.8 General head boundaries were used to simulate the regional flow through the Sherwood Sandstone Group aquifer. Observed groundwater levels from the Environment Agency's observation borehole network were used to assign the regional groundwater gradient across the model.
- 4.1.9 Model boundary conditions are shown in Figure 8.

Figure 8: Model boundaries

4.2 Groundwater model build – Proposed Scheme

4.2.1 The Proposed Scheme model has been edited from the baseline to include the M62 West viaduct which would be constructed adjacent to Holcroft Moss. The model has also been run with the option of an embankment. Both options include piling, which may affect groundwater flow. An embankment will be constructed in the northern and southern sections of the Proposed Scheme where it crosses the study area.

M62 West viaduct

4.2.2 The M62 West viaduct adjacent to Holcroft Moss connects to the embankments in the north and south. The footprint of the viaduct is based on the details shown in the Volume 2, Map Books: maps CT-06-326b and CT-06-327.

- 4.2.3 The span length for the Proposed Scheme viaduct is 40m. Piles will be sunk through the superficial deposits approximately 8m into the Sherwood Sandstone Group bedrock and each pile has a diameter of 1.2m. Lines of three to four piles across the viaduct will be constructed beneath each pile cap. It is expected that the piles will comprise approximately 10% to 25% of the cross-sectional area along the length of the viaduct. This range in values took into account the possible variations in span length, pile caps and pile layout considered in design.
- 4.2.4 Hydraulic conductivity was reduced in those model cells beneath the Proposed Scheme to represent the reduced ability for groundwater flow as a result of the piles. Reductions in hydraulic conductivity were estimated assuming zero hydraulic conductivity for each pile. The obstructed proportion of each cell containing a pile has been calculated as the ratio of the pile diameter (1.2m) to the width of the cell perpendicular to the predominant flow direction. The width of the cell has been approximated from the cell area, assuming a circular cell shape as representative of the typical hexagonal cells contained within the model. For a 4m² cell this results in a blockage of 53%. This method is conservative compared to a simple cross-sectional area ratio which would give a blockage ratio of 28%.
- 4.2.5 In the peat and superficial deposits layers, the whole layer is affected. However, the piles are only expected to be constructed into the top 8m of the Sherwood Sandstone Group aquifer. The reduction in transmissivity in the Sherwood Sandstone is therefore applied only to a proportion of the thickness of the sandstone.
- 4.2.6 Embankments have been incorporated into the model to the north and south of the proposed viaduct reach.

Glazebrook embankment

- 4.2.7 A second scenario has been considered in order to understand the potential impact of an embankment adjacent to Holcroft Moss, rather than a viaduct, on groundwater levels within the Holcroft Moss.
- 4.2.8 It is assumed that piles would be constructed beneath the embankment, comprising up to 33% of the cross-sectional area along the length of the Proposed Scheme (0.6m diameter piles at a spacing of 1.8m).
- 4.2.9 Hydraulic conductivity along the route of the embankment was reduced by 33% to reflect the impact of the embankment piles. As for the simulation of the viaduct, the reduction in hydraulic conductivity was applied to the full thickness of the peat and superficial deposit layers and to 4% of the thickness of the sandstone layer.

Modelling assumptions made

- 4.2.10 Existing LiDAR is assumed to be correct as no other information is available.
- 4.2.11 Aquifer properties obtained from literature are appropriate for the study area as no other information is available.

- 4.2.12 Runoff from the peat is low and the FAO methodology is an appropriate method to determine recharge.
- 4.2.13 Drains and the culvert that were observed during the site visit exist only in the peat layer and do not penetrate the superficial deposits.
- 4.2.14 No flow will occur through the piles and a reduction in the hydraulic conductivity of the model cell is an appropriate reflection of the impact that the piles will have on groundwater flow.
- 4.2.15 Groundwater flow is towards the Glaze Brook.
- 4.2.16 It is appropriate to use groundwater levels at observation boreholes distant from the site to determine the regional groundwater gradient in the Sherwood Sandstone Group.
- 4.2.17 Conductance of drains reflect the hydraulic conductivity of the formation which they are in.
- 4.2.18 MODFLOW assumes that:
 - groundwater flow can be represented by a mathematical expression;
 - the three-dimensional movement of groundwater can be described by Darcy's Law;
 - fluid is of constant density;
 - the aquifer can be represented as a homogeneous porous media;
 - principal axes of hydraulic conductivity are aligned to the coordinate directions when representing anisotropy; and
 - groundwater levels are calculated at the central point of a cell using a finite difference equation.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

5 Model results

- 5.1.1 The baseline model was run for a steady-state scenario, which represents the current conditions at the site. Following sensitivity testing and verification, the baseline model was varied to include the Proposed Scheme and an embankment option.
- 5.1.2 The difference between baseline and design element simulations of the Proposed Scheme are shown in Annex B.

5.2 Baseline scenario

5.2.1 The modelling indicates that, in the baseline scenario, groundwater levels in the Sherwood Sandstone Group decrease from west to east in line with the regional groundwater levels. In the superficial deposits, levels also decrease from west to east, with flow discharging into Holcroft Lane Brook to the north and Glaze Brook to the east. In the peat, water levels are typically raised in areas of higher ground and decrease with proximity to ditches and drains. Overall levels are higher in the west than the east within the peat (see Figure 9).

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure 9: Modelled groundwater levels for baseline scenario

- 5.2.2 Transects of the modelled results through Holcroft Moss from north to south and from west to east are provided in Figure 10. It should be noted that the relative thickness and distribution of glaciofluvial sheet deposits (sands and gravels) and glacial till is shown in the figures for illustration purposes, based on available borehole log data, but is not explicitly represented in the model.
- 5.2.3 Groundwater levels within the Sherwood Sandstone Group are simulated above the top of the sandstone indicating a confined aquifer. Modelled groundwater levels in the superficial deposits layer (glacial till and glaciofluvial sheet deposits sands and gravels) are raised in the west and fall towards Glaze Brook in the east, and Holcroft Lane Brook in the north.
- 5.2.4 Within the peat outcrop, modelled groundwater levels fall towards drain locations and at the Wigan Junction cutting which lies parallel to a drain as it passes Holcroft Moss. To the west of Holcroft Moss and to the south, groundwater levels in the peat exceed ground levels. This could be due to uncertainty in ground levels, which can vary seasonally as the peat saturates and desaturates. The raised levels may also be due to several drains that are outside of the

model domain which would allow the peat to drain more efficiently. It should also be noted that areas of peat which are not part of the Holcroft Moss are farmed and may be drained via sub-surface drainage, which is not mapped or included in the model.

^{5.2.5} Zone budget (mass balance) analysis has been carried out on the baseline results to show movement of flow between layers and in and out of the Holcroft Moss area (see Figure 11). The predominant source of water to Holcroft Moss is through recharge (200m³/day), with 25m³/day coming in laterally from outside of Holcroft Moss. Roughly half discharges through drains (90m³/day) with the remaining (136m³/day) passing through to the superficial deposits.

Figure 11: Modelled zone budget for baseline scenario (units in m³/day)

5.3 Proposed Scheme

- 5.3.1 Modelled impacts on groundwater levels, due to the inclusion of the Proposed Scheme, are included in Annex B. Table 7 shows the maximum simulated decrease in groundwater levels in Holcroft Moss for various scheme options. For each modelled option, the maximum decrease occurs in the south west corner, adjacent to the culvert that runs along the southern boundary of the SSSI.
- 5.3.2 For the full embankment option, the simulated decrease in levels is up to about 6mm in the south-western corner of Holcroft Moss. In this option, groundwater levels within the superficial deposits are also impacted, although to a lesser degree; no impact is seen within the Sherwood Sandstone Group. For the viaduct option, the maximum impact is close to the error of convergence of the model (1mm).
- 5.3.3 Groundwater levels in the peat are simulated to decrease across more than 80% of Holcroft Moss for the full embankment option. In contrast, for the viaduct option, groundwater levels are modelled to decrease over about 4% of the SSSI. It should be noted, however, that areas shown in Table 7 are the areas in which the simulated impact is greater than 1mm, the error of convergence for the model.
- 5.3.4 The decrease in groundwater levels modelled for the viaduct option are associated with impacts from the Glazebrook embankment north, located just to the south of Holcroft Moss, and not the M62 West viaduct itself. Model scenarios have therefore also been considered to assess whether relatively simple measures, such as a gravel-filled trench around the end of the embankment, could be utilised as effective mitigation.
- 5.3.5 The simulated mitigation scenario indicated in Table 7 incorporated a gravel-filled trench around the end of the Glazebrook embankment north, near the south-west corner of Holcroft Moss. The intention of the trench is to encourage groundwater flow within the peat layer from the west of the embankment to the east.

- 5.3.6 The trench has been modelled as 10m wide, with a conductivity of 30m/d representing coarse gravel. The trench extends 30m across the end of the embankment. The full depth of the peat has been replaced by the trench.
- 5.3.7 With the trench in place, the maximum impact on groundwater levels in the peat in Holcroft Moss is assessed to be less than the model error of convergence (1mm). As a result, Table 7 indicates that groundwater levels are not affected in the SSSI by the viaduct option with mitigation. However, as for the other model runs, the assessment does not take into account any areas in which the modelled impact may be less than the model error of convergence.

Scenario	Run	Comparison with modelled baseline (no Scheme in place) Area of Holcroft Moss affected by reduction in groundwater level greater than the model error of convergence (as % of total area of SSSI)	Maximum reduction in groundwater level on Holcroft Moss (in south west corner of SSSI)
Proposed Scheme	Full embankment	82%	6mm
	Viaduct	4%	1mm
	Viaduct with mitigation (gravel-filled trench)	0%	Below model error of convergence (1mm).

Table 7: Proposed Scheme – reductions in groundwater level

5.3.8 Zone budget outputs for the Proposed Scheme scenarios are very similar to those of the baseline model suggesting that the overall flow dynamics remain the same. Differences in flows compared to the baseline scenario are detailed in Figure 12, Figure 13 and Figure 14, for the full embankment, viaduct and viaduct with gravel trench options respectively. Table 8 summarises the change in lateral flows into the peat and superficial deposits.

Scenario	Run	Lateral flow into l through the peat	Holcroft Moss	Lateral flow into through the supe	Holcroft Moss rficial deposits
		Volume (m³/day)	Percentage change	Volume (m³/day)	Percentage change
Baseline	Baseline	24.85	N/A	135.59	N/A
Proposed	Viaduct	24.85	0.0%	135.57	-0.0%
Scheme	Full embankment	24.76	-0.3%	135.48	-0.1%
	Viaduct with gravel trench	24.85	0.0%	135.58	-0.0%

Table 8: Proposed Scheme flow budget comparison

Note: Blue text indicates flow rates have increased, red text indicates flow rates have decreased. Arrows represent the overall flow direction.

Figure 13: Difference in modelled flows between the viaduct option and baseline (units in m³/day)

Note: Blue text indicates flow rates have increased, red text indicates flow rates have decreased. Arrows represent the overall flow direction.

Note: Blue text indicates flow rates have increased, red text indicates flow rates have decreased. Arrows represent the overall flow direction.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

6 Model proving

6.1 Run performance

- 6.1.1 As indicated in Section 3, convergence criteria for the model were 0.001m for groundwater levels and 0.1m³/day for flows. These values are considered to be stringent and will ensure repeatability between model runs and consistent model results.
- 6.1.2 Final cumulative mass balance error is within +/-1.0% for all model runs undertaken. Mass balance errors for the baseline, scenarios and sensitivity models are provided in Table 9.

Scenario	Run	Mass balance error (%)
Baseline	Baseline	-0.01%
Sensitivity	Recharge increased	0.00%
	Recharge decreased	-0.01%
	Horizontal conductivity increased	0.00%
	Horizontal conductivity decreased	-0.01%
	Vertical leakance increased	-0.02%
	Vertical leakance decreased	-0.01%
	Wigan Junction conductivity increased	-0.01%
	Wigan Junction conductivity decreased	-0.01%
Proposed Scheme	Viaduct option	-0.01%
	Full embankment option	-0.01%
	Viaduct with gravel trench	-0.01%

Table 9: Cumulative mass balance error

6.2 Calibration and verification

6.2.1 There are no groundwater level observation boreholes situated within an appropriate distance of this location to provide calibration or verification data.

6.3 Validation

- 6.3.1 The groundwater level plots and cross-sections generated by the model were validated against the conceptual model and data provided in Table 3 and Table 4 to assess their accuracy. Modelled groundwater levels and the water balance are not dissimilar to those estimated using on-site data:
 - flow within the culvert was estimated at approximately 2–5l/s during the site visit, compared to a modelled flow of 3.28l/s;

- river flow contribution has been estimated as 3,700m³/day based on the observed mean flow at Little Woolden Hall on Glaze Brook and a comparison of relative catchment areas. The combined modelled flow to rivers and drains, which are assumed to discharge to the river, is 3,187m³/day; and
- groundwater levels within Holcroft Moss are modelled to be 2.14mbgl which is lower than those measured by the Cheshire Wildlife Trust, which suggest water levels are typically between 0.5–1mbgl. There is however uncertainty in the ground level used in the model, as ground levels can rise and fall as the peat saturates and desaturates. The LiDAR elevation data only provides a snapshot in time of the ground elevations on Holcroft Moss.

6.4 Sensitivity analysis

6.4.1 Analysis was undertaken to assess the sensitivity of the baseline model outputs to the scenarios shown in Table 10. Groundwater levels in the peat layer within Holcroft Moss have been extracted from the model to assess the sensitivity of the model to the parameters.

Scenario	Parameter details	Groundwater level in Holcroft Moss (mAOD)	Difference compared to Baseline (m)
Baseline	Baseline	20.86	N/A
Sensitivity	Recharge increased (400.8m ³ /day on the peat and 267.2m ³ /day on superficial deposits)	21.47	0.61
	Recharge decreased (373.2m ³ /day on the peat and 248.8m ³ /day on superficial deposits)	19.98	-0.88
	Horizontal conductivity increased Conductivity - peat 1.5, glacial till 1, glaciofluvial sheet deposits 15m/d Transmissivity - Sandstone 400m ² /d	19.44	-1.42
	Horizontal conductivity decreased Conductivity - peat 0.25, glacial till 0.005, glaciofluvial sheet deposits 2.5m/d Transmissivity - Sandstone 50m ² /d	22.31	1.45
	Vertical leakance increased Peat to glacial till - 1 Peat to glaciofluvial sheet deposits - 10 Superficial deposits to Sandstone - 0.1 Peat to Sandstone - 10	Dried out	N/A
	Vertical leakance decreased Peat to glacial till - 0.0001 Peat to glaciofluvial sheet deposits - 0.001 Superficial deposits to Sandstone - 0.00001 Peat to Sandstone - 0.001	27.08	6.22

Table 10: Sensitivity analysis

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Scenario	Parameter details	Groundwater level in Holcroft Moss (mAOD)	Difference compared to Baseline (m)
	Wigan Junction conductivity increased to 5m/d	20.84	-0.02
	Wigan Junction conductivity decreased to 0.01m/d	20.73	-0.13

- 6.4.2 The model is sensitive to all the parameters changed.
- 6.4.3 Due to the uncertainty surrounding the spatial extent of the superficial deposits, as part of the sensitivity testing, the permeability of the glacial till was increased to 1m/d (within the same order of magnitude as the hydraulic conductivity of the glaciofluvial deposits 5m/d). This sensitivity run showed that with the assumption that the site is underlain by higher permeability deposits then water levels on the site would be reduced. Therefore, the assumption that clay underlies the site provides a worst-case modelling scenario.
- 6.4.4 Increasing horizontal conductivity and vertical leakance both result in large decreases in head levels within the peat, with the peat either drying out or coming close to drying out. Based on observations from the Cheshire Wildlife Trust and from the site visit this is unlikely to be the case and therefore the values for horizontal conductivity and vertical leakance are likely to be lower than those chosen for the sensitivity test.
- 6.4.5 Decreasing vertical leakance results in very limited connectivity between the layers and significant standing water over the peat. Decreasing horizontal conductivity has a similar impact as recharge cannot move horizontally through the peat and into the drains.
- 6.4.6 Increasing and decreasing the recharge by 20% results in a change of groundwater level within the peat of 0.62m and -0.88m respectively. This gives an indication of how much the groundwater levels within the peat could vary with changing hydrological conditions, which are likely to be within the limits of annual seasonal variations.
- 6.4.7 The sensitivity tests indicate that there is sensitivity to the key input parameters, however values have been chosen that reflect the observed data as much as possible and are consistent with typically expected hydrogeological conditions. The study is a comparative study to assess the potential impact of the Proposed Scheme, and therefore the sensitivity of final head levels to changes in key parameters is of less importance than the relative change in levels due to the Proposed Scheme.
- 6.4.8 Uncertainty in the model parameters used would be reduced if further data were available to the study to refine the realistic bounds of model parameters.

6.5 Run parameters

6.5.1 There is no deviation from default run parameters recommended in MODFLOW for all model runs.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

7 Limitations

- 7.1.1 Land access for new topographic survey was not possible and so the model was built using available LiDAR information supplemented by on site observations.
- 7.1.2 All channels have been represented in 2D. Channel conveyance will therefore not be fully represented in the model. This is likely to have resulted in a conservatively high estimate of peak flood levels.
- 7.1.3 Geological interpretation is based upon site information available at the time of this report.
- 7.1.4 Pumping test analysis was not available such that aquifer properties were obtained from literature sources rather than site data.
- 7.1.5 Calibration was not possible due to a lack of available historical data.

8 Conclusions and recommendations

- 8.1.1 The largest modelled decreases in groundwater levels in Holcroft Moss for Proposed Scheme options are in the south-western corner of the SSSI, adjacent to the culvert running along the southern boundary. Groundwater levels are simulated to decrease by up to about 6mm for the full embankment option. For the viaduct option, the maximum impact is close to the error of convergence of the groundwater model (1mm).
- 8.1.2 For the full embankment option, groundwater levels in the peat are simulated to decrease across more than 80% of Holcroft Moss. The affected area reduces to about 4% of the SSSI for the viaduct option. It should be noted, however, that the areas indicated are areas in which the simulated impact is greater than 1mm, the error of convergence for the model.
- 8.1.3 The changes in groundwater levels for the viaduct option are attributed to the proximity of the Glazebrook embankment north, located to the south of Holcroft Moss, and not to the M62 West viaduct itself.
- 8.1.4 The simulated changes in groundwater levels on Holcroft Moss for the viaduct option with mitigation in the form of a gravel-filled trench close to the Glazebrook embankment north is assessed to be less than the model error of convergence (1mm). As a result, the modelling indicates that groundwater levels across the SSSI are not affected by the viaduct option with this mitigation in place. However, as for the other model runs, the assessment cannot take into account any areas in which the modelled impact may be less than the model error of convergence.
- 8.1.5 On the basis of these modelling results, it should be possible to mitigate for the impact of the current design of the Glazebrook embankment north and M62 West viaduct on peat groundwater levels in Holcroft Moss. The mitigation would comprise a gravel-filled trench around the northern end of Glazebrook embankment north. The precise design of the trench would be based on the finding of ground investigations planned for the area, together with further detailed groundwater modelling.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Annex A: Borehole logs

Figure A 1: Borehole log SJ69 SE62

		CONTRACT.	LAN	CASI	HRE 10.11	YORKS	HIRE	MO	TOR	WA: Al	Y M 1 439	62 D			SHE	ET 	No.	1		
		LOCATION.	CRO	FT 1	10 11	ORSLEY	(Sit	SSION	ы) П	(Jr	Casi	- <u>D</u>	107	+	Grou	nd le	evel.			
			>7	69	51	=/62	T	U	Size	1	to.	Size	to.	L				76.6) 	
•	- Billish	MINISTRY	6 // (OF 1	C. RAN	I D SPO	よう RT	SPT.	al Su	6"						om. Com	men Gela	ceo.	23/4/	58	
٠.		Weather					ROTA	B RY	M.C.		GRADIN	G % PAS	SING SIE	VE		TAQ.	or UC	23/4/		
• •	1	wweathich.	FINE				Core	• {	%	Type of	3'	11 1	1 1	÷,	Bulk		Dev.	at. U	W/	TER
		STRATUM	Scale: ‡ i	nch to 1	foot)	S.P.T. Blow Count	0/	н	Core Rec.	Test	N.7	25 52	100 20	20 St	p.c.f. hear /		tress .s.i.	Shear/I	.f. REM	ARKS
,	, 1	1 Th	ickness	Depth 2	Sample No. 3	(N) LL/PL/Pi	LEGE	ND	6	7	8 R	ESULTS OF	ANY O	THER	p.s.f. TESTS	1		<u>p.s.f.</u> 9	10	
		Top soil	110	110						-										
Ĵ.	; ;	Soft brown peat		1.0				Ĭ											1	
1				2.0.	R1			ľ	/03.2											
÷.	ľ			316"	B1				81.7											
ģ.	۰.	Fire brown candy	3161	416"															-	
		stony clay																		
	British	Geological Survey		7'0"	M2	British	Nologica	al Sud	17.6											
	11																			
	1:			8161	01	24/13/11		ľ	15.7	UCT					134.9	2		24 24	32	
	[]			10 ' 0"	A1	(01)			16.1						134.	.		28	32	
-	1.	•																-		
	Γ			12 ° 0"	M3			H	15.0											
2	4.4			13*0*	B2				13.7											
	17			14*07	U 2				14.1	UCT					135.0	2		70	86	
	1		11'0"	15"6"	A2				13.0						136	2		72	Vatar	Table
	1					BOREHOLI	COMPL	677											DO	ot stared
	Hillish	enlodical Sumer																		
:	1.	oorogiour ourroj				21100	a na ilian	,												
1		•																		
	IT.																			
L. L.	3																			
1.1	18																			
No.	1.1.1							.											.	
	13																			
S - No.											ľ								·	
											•									
	ġ.																			
ş	Dilish	teological Suney					<u>doj</u> i:	611.0 12.120		•						Čedi j				
	B)																			
1							<u>Ш</u> Т		L		L		С. В	. R.				c	MPACTI	
•		REMARKS:				н на стала Стала стала стала Стала стала ста	Sample C	Depth	M.C.	SG.	Air	Туре	TC)P	вот	TOM	Value	B.S. 1377	Max. Dry	Optm
-	_		•						U.W.		volus		0.1	0.2	0.1	0.2	Va108	No	Density	M.C.
														,						<u> </u>

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 2: Borehole log SJ69 SE66

			. <i></i> .												···.		יית	11		
_	CONTRACT.	LANC	ASHI	RE YO	ORKS	HIR	E M	OTOP	RWA	Y I	M62			SHE	ЕТ	No.	1			
1	LOCATION.	CROF	т то	WOR	SLE	Y (S	Site	36) (ЗH	N	P DI	11		No.	ofs	heets.	1			عيستك
	CLIENT. SJ	5 69	SE	- 16	6	PERC	USSION			Casi	ing.			Grou	und l	evel.	75.	89		
Rhish (eological SugreyE	723	. 9	329	8	SP:	τΡ	Size		το.	5120	I	°~	Com	nmei	nced.	22/	4/68		
	MINISTR	Y OF 1	RAN	SPOR	Т		8	. 6						Соп	ple	ted.	22/	4/68		
0	Weather.	PTHE				R0 Co	TARY ored (M.C.	Turk	GRADI	NG %PA	SSING S	IEVE		TAQ	, or U	с.т.			
1	STRATUM	cale: + inch	to 1 foo	n s	PT.	ru		Core	of	3"	1 ¹ / ₂ " ¹ / ₂ "	100	+ 7 200	Bul) Densi	ity	Dev. Stress	Lat. L Pres. S	JC.T tren,	WA REM	AR
1:			oth Sam	Blow	Count N)	, c	р/н {	Rec.						p.c.r Shear	/00	p.s.i.	Shear	/L°		
1	1 Thic	kness 2	3 3	4 LL/F	PL/PI	5 LE	GEND	6	7	8	RESULTS	FANY	OTHE	R TESTS	 k			9 1	0	
r;	Soft damp brown									Γ									,	•
1.	peat															•				
		2	0				Ī	847.0	1											
1;		3	6" B1					642.3												
Ċ																-				
	eological Suney .						cal Su								68010				,	
1		1	0" M2				Ī	797.0	ŀ											
1		8	6" B2			1		371.4												
,								1								,				
,							ì													
		1210 121	0#				,											۰Ľ,		
	Firm brown sandy	12	6" M3					28.5			·							-	- <u></u> ,	
	stony clay	14	0"			11 ·														
			° B3					24.3	UCT					129.	5 8		2	261 148		
1		16	0"				ĺ	23.1				•		125.	9		2	374		
			<u>ה</u> מ	1.				23.1	UCT					125. 129.	4 3		14 30	441		
British	teological Survey	516 171	6" 11		British	Hologi	ical Sur	22.	_					128.	3	gical Sun	<u>e</u> 1	201		
P					B	HTHOL	2 001	ETED										- Ma	nter RO	tal t
1.	. •						ľ											er	teoun	te
ſ.							-													
Ц																				
11																				
L																				
100										ľ										
200 AN																				
E.S.																				
C	REMARKS :							M.C.				C.	B. 1	R,			c	OMPA	CTR	DN
6					4	Sample	Depth	о. 	S.G.	Air Voids	Туре	T	OP	BOT	TOM	Value	B.S. 1377	Max	Dry	0
1					Ļ	B3	14 0	24.4	2.7	4.5	STATIC	0.6	0.2	0.7	0.6	0.7	No			
11					Ľ															

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 3: Borehole log SJ69 SE67

-																		
-		CONTRAC	T. LANC	CASH	IRE	YORKSH	IRE	MO	rorv	VAY	M6	2		SHE	ET N	o. 1		
		LOCATION	I. CRO	FT T	'O 1	OBSTE	V /C	ite 20		zu	M 72	-n	117	No.	of shee	ts. 1		
	ł	CLIENT.	SJ 6	59	SE	/ 67	PER	CUSSION		<u>)ri</u>	Casi	ng.		Grou	nd leve	əl. 78.	95	
		Man			2000 1000	0.0.7	Щ	D	Size	,	to.	Size	to,	Com	mence	d. 28/4	/68	
	Unsh	Geological Survey	1 RY OF	G	NSP GZ			ogical Si	₩ 6*					Bills	Geologica	Suner.	/~	
			614		13	50	11.	B	IL NG	r				Com	piete	1. 28/4	/08	
		vveatner.	INE				0	ored (% %	Туре	GRADI	NG %PA	SSING SIEV	Bulk	TAQ. or	Lat. L	ICT	
	1	STRATU	VL(Scale : ‡	inch to	1 foot)	SP.T.	111 '	1	Core	of	3" N.7	25 52	100 200	Densi p.c.f	ty Stre	Pres. S	tren. F	EMARKS
	ſ			Depth	Sample	Blow Coun (N)	t	0/Н {	Rec.					Shear p.s.f	/o° ^{p.s.}	Shear	/L•	
k r	1	1	Thickness	2	3 ^{No.}	LL/PL/PI	51	EGEND	6	7	8 1	RESULTS	OF ANY OT	HER TESTS	· · · · · ·		9 10	
		Soft wet brown		1														
÷		peat																
÷	(2'0"	M1				1085.									
٠,	£**.			316														
,	1,			1	B1				1047.									
ŀ									Π		S02	W 4.1	p.H 7.0			- ·	ws.	0 516#
ł				[1						SWL	410"
1	Britsh	Geological Survey					i H eol	ogical Sc								l Suney_	1	- 410
. 1				7.0	M2			Ī	1217.									
1				8.0.	B2				1490.									
÷							111 '		Π									
				10*0"	B3				1173.									
1	+ -								11									
	(* ·			12:0"	H3			·	1377.									
• 					-													
				13'6"	B4			1.	11									
1		-																
	L.																	
	{.																	
		Firm brown and	17º0"	17'0"			₩				<u> </u>	· · · · ·					Wet	
	British	grey sandy clay	,	17'6"	M4	Brti	e li leol	ogical Se	27.7									
	11			18.0.	01	44/16/28			23.8	UCT				125.6		25	22	,
1	1.			2010	A1	(01)			24.9					124.2		24	102	
	π				-			÷ [
-	-		5101	22101			-										h.,	-
-		1981 to 1	3.0-	22.0.		19		LE COM	TI PTED									P
	11	2							T T								Cas	• 17'6"
	u					_											Wat	er Nil .SØL 590
	1 2																	
a and a second	2																	
											· ·							
4	Į.																	
	Li .	Paalaaiaal Ourses													Castories			
	ti ilisi R	osonodicai anvel					1980	uğicəl a										
CLOC.	Ē																	
	-										L	<u>.</u>						
2	F	REMARKS :							M.C.				С. В.	R.	TOW	- C	OMPAC	TION
	L						Sample	e Depth	D.W.	SG.	Voids	Туре	0,1 0	2 0.1	0.2 Va	ue 1377	Max Dens	ty Optm
	,																	
													+			_		
							•											•

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 4: Borehole log SJ69 SE68

1	0LU - RESE	ANG	1 61	υ.								0,11.110	•			
	CONTRACT.	LAN	CASH	IRE	YORKSI	IRE MO	DTOR	WAY	M	52 ·		SHEE	T No.	1		
	LOCATION.	CRO	FT T	o w	ORSLEY	(Site 3	36) P	ЫИ	2 cl	DU	13	No. of	sheets	1		
ł	CLIENT.	67	LQ	5	=168	PERCUSSIO			Casi	ng.		Ground	l level.	70.20		
-		55	07 142	5 0	4321	U U	Size		to.	Size	to,	Comm	enced	10.38		
British	MINIS	TRY O	FTR	ANS	PORT	Set	6*					Comp		20/4/0		
						B		T				Comp	leted.	28/4/6	8	
	Weather.	SHOWER	r			Cored	%	Type	ORAUIN ar	11- 3-	331110 31211	Bulk	Dev.	Lat. UCT	w.	TF
	STRATUM	Scale : ‡ i	nch to 1	l foot)	SPT.	0/14	Core	ot Test	N.7	25 52	100 200	Density p.c.f.	Stress D.S.i.	Pres. Stren p.s.i. p.s.f	REM	AR
			Depth	Sample	(N)		- %					Shear /oª p.s.f.		D.s.f.		
	1 T	hickness	2	3 20.	4	SLEGEND	6	7	8 R	ESULTS O	F ANY OT	IER TESTS		9	10	
	Soft brown peat															
	with traces of															
	ash fill		216"	м			806.1	9								
			316n				847	2	500	502						
				1				1			- 4 6 6			<i>.</i> •	Wet	
$\left \cdot \right $	Soft brown neet	510"	5'0"	Al.				1-	503	. 2.1	P.n 0.9				SVIL 5	0"
british	Geological Survey			1	Britis	eological S								liney	<u>n - 5</u>	; 1 0"
,		1 ·	7*0"	M2			1060									
		:														
			8'6"	U2			923.	5								
$\{\cdot\}$		1	10*0"	A2	· ·	÷.,	U.									
	•			BI												
$\langle \cdot \rangle$																
		<u>7'6"</u>	12'6"			₩	 	–			M-10-				Wet	1 91
	Soft/firm brown/		13'0" 13'6"	M3	10000		37.	2				134.0		1321	HES O	13.
	clay			0	(CL)		15.	,				134.5		1321		
La	ŗ		15'0"	43			14.1	3			•	136.0		1561		
					1											
Aritish	Genlonical Survey		17'0"	M4	Rritis	Doninginal S	14.	4								
	e e e e e e e e e e e e e e e e e e e		1.016		21110											
	· · · ·		10.0.	U4			13.	UCT				133.2 135.2		2762 2282		
۲.		716	2010"	A4				1	ļ						Damp	
R					B	STRUCT CON	PIETED								OCB O	201
u															Water	Nil
15				·											OWC.SI	NE 3
ŝ																
								1							'	•
									ŀ							
L 51						1 ·	·									
E-		,														
Ŀ	Paulaniani Ormon	;			D.#	linalaaisal A										
0111511 F	oennintei onnei				01115	na rotogical S		·							· ·	•
							<u> </u>								L	
- ·											C 8	R.		0	PACT	O M
ſ	REMARKS :						M.C.			r	1					T.
L	REMARKS :					Sample Dep	M.C. ** D.W.	SG.	Air Voids	Туре	TO	P BOTT	OM 0.2 Valu	B.S. 1377	Aax. Dry Density	0

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 5: Borehole log SJ69 SE71 Sheet 1 of 2

Ľ	REMARKS :				Sample	epth	м.с. %	SG.	Air	Type	С. В. ТО	R. P 801	том		CC B.S.	MPACT	
E	sandy stony clay, with sandy bands 210 Continued on Sheet 2	30"0"	<u></u>			0.110	11.3	•					Geolo	igical Sur		<u>Water</u> 8/5/6 	Ni 8 0 • 0
No-webs 1	16'0"	27"6" 28"0"	M6			·	11.3		•							7/5/6 BH • Cas •	8 28' 13
Real Provide P			,													Damo	
1		23"6"	U3 A3				12.9										•
-		2216	N5	,			9.9										
		20 * 0"	▲2														
Bhilish	Geological Survey	17"6" 18"6"	M4 02	Britisl	di ologica	il Su m	26.9 18.1										
And a second		15'0"	Al	(CI)			22.1 21.0				• •	128. 127.	9	29.5 38.6	40 60 2405/0	,•	
Ļ	stony clay	13'6"	M3 101	46/21/25			34.9 21.9	TAQ				126.4	8	31.9	20		
F!	1210"	12"0"	110													wet	
ſ			204			, , , , , , , , , , , , , , , , , , ,											
!		8161	80				825 P					aug w 4,	.o p				1.0
	Geological Survey	710	: W2				1965					Brilisi	166010	igical Sur		IS O SVL 3	516 10#
	. · ·	3'6"	Bl				1075.							-			
		210"	M1				1276.										
	Soft brown peat				5			/	0 KL.	50113 01							
7	Thickness	Depth	Sample	Blow Count (N) LL/PL/PI	0/1	H () H	Rec.	,				Shear p.s.	/0° I.	p.s.i.	Shear/l		
	STRATU M.(Scale: 2	INE	foot)	SP.T.	Core run	J	% Core	Type of Test	3" 1 N.7 2	1 1 1	₹″ † 100 20	Bull Densi	ity s	Dev.	at. UC Pres. Str	IT WA	AT
HTIŞT	6760	. ¶	NSP 33	ORT Hits	ROTAL	B	6" M.C.		GRADING	•/ PASS	ING SIFY	Com	TAO	ted.	9/5/	68	
	CLIENT. 35	59	5Ę	(71.	SPT	U D	Size	1	to.	Size	to,	Com	mer	nced.	67. 6/5/	37 68	
1.	OLUTINT -			1 _ 1	PERCUS	SIGN	<u> </u>		Caein	a .	- 1	Grou	ind l	ovel			

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 6: Borehole log SJ69 SE71 Sheet 2 of 2

	CONTRACT. LA	NCASH	IRE YORKS	HIRE MO	DTOR	WA	Y M62	SH	EET No.	2		,
	LOCATION. CR	$\frac{1}{100}$	WORSLEY	(Site 3	6) (S	М	N-5641	15 No.	of sheets	2		
-	CLIENT. 35	54 5	e 11	U	Size	,	to. Size			67.3	7	
Bilish (6/6 MINISTRY OF	0.91 TRANS	SPORT Brish	SPT Cological Sup	6	11		Co	m menced. In Geological Sur	• 6/5/68 Vey	3	
			·	ROTARY	MC	r	CRADING OF BASSING		TAD or U	9/5/68	3	
	Weatner. WET, F	TNE		Cored f	%	Туре	3" 11" 3" 3"	H Bu	Ik Dev.	Lat. UC	T WA	TER
	STRATU M(Scale:	inch to 1 f	oot) SPT. Blow Count	0/н /	Core Rec.	Test	N.7 25 52 100	200 Den 5.0	.f. p.s.i.	p.s.i. p.s.	f. REM	ARK
		Depth Sa	Imple (N) Ho. LL/PL/PI	IFCEND	%			p.		p.s.f.	-	
	i inickness	3010"	14	Scocno	6	1	8 RESULTS OF ANT	UTHER IES	12	,		
[-	sandy stony clay,	31 '0"	U4		9.3	TAQ		138	.9 175.7	20		
	with sandy bands	32"0"	A4		9.1			137	.5 152.2	40		
										11808/0	Ĩ	
											· .	
<i>(</i> ·		35"0"	M8		11.3	8			•			
	enonical Survey	3616"	ne Dilish	i niorical Sur					h Deolooigel Sur	20		
			05		11,1	TAG		134	40.0	40		
	• See Remarks	38"0"	A5		10.6			141	.,1 57,1	60 3442/0	•	
	Below 9'0' Loose sand and	13910"				 					-	
	gravel (clayey)	40"0"	M9	, I	21.2				•			
ʻ ,											B/5/68 BH ● 4	210
											Cas • SWL 30	401 108
l. s		43"0"	P1 10.9.15.20		8.8						9/5/68 SML 25	108
			(),"									•.
Ŀ.		45'0"	B3 .		17.4		97 93 86 67 25 7	89 5				
									-			
British (eological Survey	4810	British	Sological Sur			· .					
11			P2 8.14.19.24 (65)	1	8.8							
	11 *0	50'0"									Wet	
1.			BO	CONCECCION	TED						осв •	50%
L	•										SVL 32	161
ı,											Collap	E sed
											to 25"	0× 0u
-						•						
_												
-												
	eological Survey			Conlogical Suit								
1												
Ľ					<u> </u>	L						_
12	REMARKS :	un Crair-	to 28108	Samel Dare th	M.C.		Air _	B. R.	OTTOM	B.S.	MPACTIO	NC NC
L	and water had to be	added to	balance	sample Depth	D.Ŵ.	-545-	Voids Type 0.1	0.2	0.1 0.2 Value	1377 No	Max, Dry Density	M.
	Water pressure							+		┼──┼		\vdash
					 	 _	├──┼──┼─	+		++		<u> </u>

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 7: Borehole log SJ69 SE72

	REMARKS :					Sampl	Depti	M.C. % D.W.	SG.	Air Voids	Ťyp		T	DP	BOT	том	Value	B.S. 1377	Max Dry	Optm
3 2 1							T	1					C. E	3. R				CC	MPACT	ION
alester at	sandy gravel	1'0"	3010"		(total)	REHO	LE COM	ETED		60 4	4 3	6 2	22 1	6					SWL 12	29.6" 210" "L
	Very dense clayey	9"0"	29*0*	P2	75 for 3"			8.3				u 7	2 6	5	Luich	Conio	ared Cu 2		OCB 0	3010
			00105					T					-						Wet	
13			27*0*	B3				1												
							·													
18																			30/4/0 SVT. 1	58 210#
			23'6"	P1	1.3.4.2.	t,	· .	14.6											Cas O	15'6"
	weathered sandstone	'	001/5	1						93	70	5 2	23 1	.6			•		29/4/0 B/H ●	68 25'0"
I LL	with pieces of		22 *0*	B2				13.2		 _ 1	00 <	99	97 9	6						
11	Loose, very sandy							·							,					
1		416"	2010"	A4_				13.2							135.1			8	55 Vet .	
			1816"	U4			-	13.3	UCT						126.0	ł		7	88	
Billish	Geological Survey		17"6"	M4	8	Tileol	ogical S	13.4											90. 1 1 - 1	13!0"
. [1	Firm red/brown very sandy stony									\$0 ₃	W 6.2	? p.	H 6.	0					S O S	20108
		10*6*	1510" 1516"	A3				27.9		<u> </u>			•		.22.7			19	Very d	lamp .
• []								28.3	001						112.1			16	33	
· · · ·			1316"	112				28 4	007						111.4			19	4	
		÷	1216"	M3				56.2												
								1												
			10°0"	₿Ĵ																
			8'6"	U2		•		730.3												
	gravel		716"	M2				908,6												
	of clayey sandy					1060	ogical co													
	Soft brown peat,																			
a a ta		5*0"	510#	Al													~		Damp	
			3'6"	נט				100.0												
. 1			2"6"	м			ļ	593.8				•								
	with traces of												•							
	Soft brown peat	11622	2	 	1			•	<u>/</u>		ESULIS	UF /	ART C	Inck	15217				1	
' .	1 This	knos-	Depth	Sample Ho.	(N) LL/PL/PI		EGEND	%	,						p.s.f.			p.s.f.	10	
	STRATUM(Sc	ale : ‡ i	nch to	foot)	SP.T. Blow Count		о/н)	Core Rec.	Test	N.7	25	52 1	00 2	00	Densit p.c.f.	y s	tress p.s.i.	Pres. Str p.s.i. p.s Shear/I	en. REM	ARKS
· •	Weather.	AINY				C		M.C. %	Туре	GRADI	16 %1	ASSI	NG SIE	VE 2*	Bulk	TAQ.	or UC	at. UC	T w	ATER
. Diitaii	MINISTRY	OF	TRA	NSP	ORT		uyicai di. B	6"						0	Com	plet	ted.	30/4/6	3	
Deitish	Contonional Cumoru	672	53	97	339	sr	τΡ	Size		to.	Si	20	10.	' †	Com	men	ced.	29/4/6	3	
	CLIENT. 5	ΓĿ	,9 :	5E	172	PER	CUSSION			Casi	ng.			0	Grou	nd le	evel. ,	72.29		
	LOCATION. C	ROF	т то) wo	ORSLEY	(Sit	e 36)	B	11	<u>jo</u>	D		4	,	10. 0	f sh	eets.	1		
	CONTRACT. L	ANC.	ASHI	RE	YORKSH	RE	MOT	ORW	AY	M62	2			15	SHE	ET	No.	1		

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 8: Borehole log SJ69 SE871 Sheet 1 of 2

		,	۹ĽΙ	LIED	EXP	BORE	EHOLE	a GE	ORD		SLID	Status:- FINAI Date:- 02/07
Project:	urvey	NM	cs	2 M62/	CCTV	Ground	Investigat	ion - Co	ntract 2		British Geo	BOREHOLE
Client:	н	iahwav	s Ac	iency			Location: M62 MP	34/5+0	0A			BH-11
Method &	Equipmer	it:		na o Di	leen W	L	1500	Grou	ind Level (m	(AOD)):	Date:	Sheet:
	ES & TE	CUSSION	usi	ngar		aylarer	1500		17.04		15-04-9	/ <u>1 of 2</u>
Depth	Type No	Test Result	Water	Reduced Level	Legend	Depth (Thick- ness)		0114	DESCI	RIPTION		
0.10-0.80	81					(0.80)	MADE GF coarse an	ROUND (B Igular lime	rown silty fir estone grave	ne to medi el. Some r	ium sand wi ootlets - Top	ith occasional psoil).
0.80-1.30	B2			16.24		0.80	MADE GF with occa and cons	ROUND (N sional cob	ledium dens obles. Grave estone, sand	se grey silt el is fine to dstone, mu	ty gravelly fi coarse ang udstone, ba	ne to coarse sand juiar to rounded salt and clinker.
1.50-1.95 1.60	CB3 W6	N23	Ţ			(1.70) -	Cobbles of below c.1	consist of .50m BGL	limestone - occasior	Roadstone	e). s of firm bro	wn sandy clay.
2.00-2.45	B4			14.54		2.50	below c.2	2.00m BGL	becomir	ng brown.		
2.55-3.00	SJ5	N39	¥				Stiff brow light brow	n sandy (in fine to d	CLAY with or coarse sand	casional g	gravel and o fine to coa	ccasional lenses of rse rounded to
3.00-3.50	B7					 [(1.40)	Subangul (Glacial T below c.3	ar and cor ill) 1.00m BGL	nsists of bas	salt and sa nal lenses (ndstone. of thinly lan	ninated brown clay.
3.55-4.00	, U8	(110)		12.14		200						•
4.10 4.15 4.40-4.85	J9 W11 SJ10	N69	₹ ¥ ¥		0		Very dens Gravel is basalt, qu (Possible	se brown g fine to coa uartzite an Contarnir	gravelly fine arse rounder d concrete. hation from	to coarse d to angula above stra	SAND with ar and consitation tables the second seco	some cobbles. ists of sandstone,
5.00-5.50	B12				D	Entish Geol	gical Survey					
5.55-6.00	SJ13	N61		11.04	'Q	6.00						
6.00-6.90	B14				0 0	يەر بەر بەر بەر ا	Very dens rounded sandston (Fluvio-gl	se brown (to subrour e. acial)	gravelly fine nded and co	to coarse onsists of b	SAND. Gra basalt, quart	vel is fine to coarse zite and
7.15-7.30	SJ15	56 for				- /2 001						
7.50-8.00	B16					- (0.00) 						
Bori	ng Prog	ress an	d W	ater O	bservat	ions		Chiselli	ng	Water	Added	GENERA
Date		Depth	C	asing	Casing Dia	Water Depth	From	То	Hours	From	R.To. Go	REMARK
15/04/97 15/04/97 16/04/97 16/04/97		0.00 5.00 5.00 10.50	1	0.00 5.00 5.00 0.35	50mm 50mm 50mm	4.15 2.60	4.60 10.00	5.00 10.50	1.00 1.00			 Inspection pit d prior to drilling -1. Water strikes at rose to 1.60m and rose to 4.15m BG minutes). Depti piezo tip = 7.00m

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 9: Borehole log SJ69 SE871 Sheet 2 of 2

50	6932	871

		1		led	EXP	lor/ Bor	ATION & EHOLE F	GEC RECC	DTECH DRD	NICS	LTD	Status:- FINAL Date:- 02/07/	/97
Project:	al Survey		~~~	Meg #	· · · · · ·	Sround	Central Super	- 007	tract 2		Bilish	BOREHOLE	No
lient:	н	ighwav:	s Ac	encv			Location: M62 MP 34	/5+00	A			BH-11	
Aethod & Eq Cab	uipmen le Per	nt: cussion	usi	ng a Pil	icon W	ayfarer	1500	Groun	d Level(m(/ 17.04	(OD)):	Date: 15-04-97	Sheet: 2 of 2	
SAMPLE	S&TE	STS	Ľ.					STRAT	ΓA				5
Depth	Type No	Test Result	Wate	Reduced Level	Legend	Depth (Thick- ness)	Ì		DESCR	PTION			Tust
8.00-8.50 8.60-9.05	B17 SJ18	N57		8.04	0	9.0	(As sheet 1 o Very dense b rounded to s sandstone. (Fluvio-glacia below c.8.00	f 2) rown gr ubround al) m BGL .	avelly fine t led and cor becoming	o coarse (isists of bi very san	SAND. Grave asalt, quartz dy gravel.	el is fine to coarse ite and	
9.30-9.70 British Geologic	J19 Il Survey			7.24		(0.80) 9.8	Red brown s medium ang (Fluvio-glacia	lightly g ular and al/Bedro	ravelly fine consists of ock Interface	to coarse red sand a)	SAND. Grav stone. British	rel is fine to Geological Survey	
10.05-10.20	SJ20	83 for 105mm*		-		- (0.70)	Red brown a very weak. (Gravel is fine (Sherwood S	nd gree Recover to med andstor	n grey mod red as very d lium angula ne)	erately we tense silty r and con	eathered silty slightly gra sists of sand	y SANDSTONE velly fine sand. Istone lithorelicts).	
10.45-10.50	SJ21	50 for		6.54		<u> </u>	Borehole cor	nplete a	at 10.50m B	GL.		<u></u>	122
												· · · · ·	
	l Survey					Britis	h Geological Survey						
Borin Date	g Prog	press ar Depth	nd V	Vater O	bserva Casing Dia	tions Wate	From	hisellin To	I g Hours	Water	Added To	GENERA REMARK	L
15/04/97 15/04/97 16/04/97 16/04/97	ai Guivey	0.00 5.00 5.00 10.50		0.00 5.00 5.00 10.35	150mm 150mm 150mm	4.1	5 10.00 1 0	5.00 10.50	1.00 1.00		Brus	1) Inspection pit d prior to drilling -1. 2) Water strikes at rose to 1.60m and rose to 4.15m BG minutes). 3) Depti piezo tip = 7.00m	ug 20m. 2.70n 1 4.50n L (20 h of
All dime	ensions Scale 1	s in met	res		For Ex Abbre	planatio	on of Symbols s see Key Sho	s and eets	Che N	cked By	: Logg A. La	ed By: Contra timer 17	ct No 18

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 10: Borehole log SJ69 SE73

_		ULU - ALDLAN		υ.				_						. ·			
-		CONTRACT. LA	NCASH	IRE	YORKSH	IRE	MO	FORW	AY	M	62		SHEE	T No.	1		
		LOCATION. CR	OFT T	o w	ORSLEY	(Si	te 36	BH	1 N	° [2115	-	No. o	f sheets	1		4
		CLIENT. SJ	69	St	173	PERC	USSION	\mathbb{I}		Casi	ng.		Grour	nd level.	75 74		
•					/·.⁄		, D	Size		to.	Size	to,	Comr	nenced.	18/5/6		
1	Hilligh	MINISTRY OF	TRAN	SPO えてい	RT BILLS		jical Sui	6"					Com	oleted.	20/5/6	(A	
	٢.	Weather.	101	1.20	10	RO	TARY	M.C.		GRADI	NG % PAS	SING SIEVE	T	AQ. or U	CT.	1	
	-	WET				Co	ins {	%	Type	3*	11 2	1 1	Bulk	Dev.	Lat. UC	T w	TER
		STRATUM.(Scale	: 🛔 inch to	1 foot)	S.P.T. Blow Count)/н Д	Core Rec.	Test	N.7	25 52	100 200	p.c.f.	p.s.i.	p.s.i. p.s Shear/l	.f. REM	ARKS
			Depth	Sampl No.	(N) LL/PL/PI	L		%					p.s.f.	1	p.s.f.		
		1 Thickne	ss 2	3	4	54	GEND	6	7	8 /	ESULTS O	F ANY OT	ER TESTS		. 9	10	
1		Brown peat															
			210"	м				1065.								·	,
			1.1														
1			316"	Pl	2.1.1	Щ		761.7									
					(4)												
						<u>All</u>											
	Ditto	Feological Survey			Britis		10101										
ł	ι.																
		With clay	816"	H2				192.5									
đ																	
1						Ш.	V	·									
÷	· ,								·								
÷.																	
1	1.7		1310			Ш.								-		-	
,			۲° -	Bl			·	3/0.0									
, ,																	
	1.											•			· .		
		16	6" 1616"			₩.								1 1 m /		loist	
	British	Fire brown/grey	17'0"	M3	Britis	i i la cioq	jical Sul	37.5									
	11	stony clay	1816										100 8		10		
				סי	24/13/11 (CL)			20.9	OCT				122.7		19	56	
			20*0"	ы				╣									
	11																
-	L																
i	11	6	6# 2310"		<u> </u>											Damp	
	U	Sandy stony clay	23:3"	M4 B2			. 1	± 35.4									
		with bands of sand	2416"	P2	4.2.4.4.	Ш	.	21.6									-
					(14)			·		ŀ							
1. A 1.							:										
	I																
	L L Driffie h	Indianian Cumay	2816	P2	3360	Щ	tinal Qu	16									
المراجع مع المراجع مع	[5	eennäirai amiiel		1	(21)	M	jitāl Old		•							toist	• .
1	Ŀ		01 3010					Towner.		<u> </u>						Water	table
1. N.				L	В	TILLAOL				<u> </u>						encoun	tered
	I.	REMARKS :					L	M.C.		Air	1	С. В.	R.	M	B.S.	MPACTI	
1	-					Semple	Depth	D.W.	56.	Voida	Туре	0.1 0	.2 0.1	0.2 Value	1377 No	Max Dry Density	Optr M.C.
1	1						1						_				
, ¹						L	1		L	l		1					

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 11: Borehole log SJ69 SE74

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 12: Borehole log SJ69 SE75

610 -	- 110		۱		<i>ь</i> .					_					-, • • • • •	··				
CON	RACT.	L	ANC	CASH	IRE	YORK	SHI	RE MO	DTOR	WAY 2 J		62 2	17		SHEE	T NO	D. 1			
LOCA	ATION.	C	ROI	T T	o w	ORSLE	'Y - 11	(Site 3	6) <u>[</u>	51	N-		17	-+	NO. 01	d love	18-1		<u></u>	
CLIE	NT. <u>2</u>	J	· 6	,9 _	SE	75	ł	U	Size		to.	Size	to	. L	Groun	10 1846	6	9.36		
shGeological (iuwev E	58	40	5.9	35	5	Britis	Set D	₩.						Comr	nence	d. 1	4/5/68		
	AINIST	RY	OF	TRA	NSI	PORT		8	6º						Com	olete	d. 1	4/5/68		
Weat	ner.							ROTARY Cored (M.C	·	GRADI	NG % PAS	SING SI	EVE	۲	AQ. or	υc	.т.		
070		F.	INE			607		runs .		of	3"	13" 3"	3	1	Bulk Density	Dev		at. UC res. Stre		ATER
SIR	ATUM	(Scal	le: ‡ il	nch to 1	1 foot)	Blow Co	unt	<u>,</u> 0/н {	Rec	lest	N.7	25 52		200	p.c.f. Shear /c	p.s.	i. P	.s.i. p.s Shear/L	•	
1 .	Ŧ	hick		Depth	No.	LL/PL/F	PI	ELEGEND	/0	,			FANY) OTHE	p.s.f.	1			10	
					1	1	-		₩Ě=	t										
Brown pe	at												•						1	
																			1	
				216	м				111241	'										
				3"6"	P1	1	ť													
						(1)														
								00091313												
			ļ	·																
				9"0"	M2				#1508	·		 1	n H	4.0	•				s • 1	סיסו
									· .		1	-3" "							SWL 7	101
																				/-0-
									:											
Sandy pe	at	A	2.0-	13'0"	M3				78.	8	\vdash		_						- 885 •	1310
Light g	evels ve	` *	110	14'0"		0.01.0	╢		11		+									
sand	.,	· .	1.0.0		P2	(7)	•		-/-	1									Noiet	
Light br	own clay		1.7.	4 <u>3</u> • <u>3</u> •						\uparrow										
sand, w	th trace	:5																		
Geological	, u ivey			17"6"	N4		Britis	eological S	20.	6		•								
																			VS @ 1	1810 ¹
				19'0"	P3	2.2.4.7	. 1		18.	\$									P** 1/	
		•		20*0#	B1	(15)				1										
									Π											
					·															
											· ·									
				24 10"	PA	7.5.6.8			27.											•
			919#	25107	<u> </u>	(26)		1	Щ <u>_</u> ,	1	ļ								4	
		•					BO	CHOLE CO	FLETE										осв о	251
																			SWL 24	116#
			•		ļ														bwc.si	a 5
Assissiant																				
					1															•
Oculuyitali			•																	
ocuuguai									Ш											
OEUIUgitai							T	1		T			<u> </u>	R I	R			~~~	MPACT	
REMA	RKS :			<u> </u>	<u> </u>				M.C.	56	Air	1	С.	B. I	R. BOTT	ом		CO B.S.	MPACT	ION
REMA	RKS :			<u> </u>			s	ample Dep	M.C. % D.W.	5.G.	Air Voids	туре	C. T	B. 1 OP 0.2	R. BOTT	0.2 Va	lue	CC B.S. 1377 No	MPACT Max. Dry Density	OP M.

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 13: Borehole log SJ69 SE872 Sheet 1 of 2

Project: Client: Method & Equ Cable SAMPLES Depth 0.60-1.05 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 Second States	Hiqipment e Perc 3 & TE No B1 SJ2 B3 W17 B4 U*	NM ghways ussion STS Test Result N19	Mater Nater	2 M62// ency ng a Pi Reduced Level		Around ayfarer Depth (Thick- ness) - (0.30) 0.30	Investigation Location: M62 MP 34 1500	n - Contract 2 /9 + 30B Ground Level 15 STRATA DES ROUND (Topsoi	2 (m(AOD)): 61 SCRIPTION	Date: 25-04-97	Sheet: 1 of 2
Clent: Method & Equ Cable SAMPLES Depth 0.60-1.05 1.90-1.05 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 Sological Survey	Hig ipment e Perc 3 & TE Type No B1 SJ2 B3 W17 B4 U*	ghways t: ussion STS Test Result N19	Nater Nater	Reduced Level	Legend	Depth (Thick- ness) (0.30) 0.30	Location: M62 MP 34 1500 (1) MADE GPO	/9 + 30B Ground Level 15 STRATA DES	(m(AOD)): 61 SCRIPTION	Date: 25-04-97	BH-12 Sheet: 1 of 2
Method & Equ Cable SAMPLES Depth 0.60-1.05 0.60-1.05 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 55 Declosed Surve	B1 SJ2 B3 W17 B4 U*	STS Test Result	Water	ng a Pi Reduced Level	Legend	Depth (Thick- ness) (0.30) 0.30	1500 (1) MADE GPO	Ground Level 15. STRATA DES ROUND (Topsoi	(m(AOD)): 61 SCRIPTION	Date: 25-04-97	Sheet: 1 of 2
SAMPLES Depth 0.60-1.05 0.60-1.05 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 50	B1 SJ2 B3 W17 B4 U*	STS Test Result N19	Water	Reduced Level 15.31		Depth (Thick- ness) - (0.30) - 0.30	(1) MADE GPO	STRATA DES	SCRIPTION	<u>.</u>	
Depth Depth 0.60-1.05 0.60-1.05 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 55 Depth of the second s	B1 SJ2 B3 W17 B4 U*	Test Result N19	Wate	Reduced Level	Legend	Depth (Thick- ness) - (0.30) - 0.30	(1) MADE GRO	DES ROUND (Topsoi	SCRIPTION I).		
0.60-1.05 5 Califying Sume 1.50-1.95 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 sh ballogical Sume	B1 SJ2 B3 W17 B4 U*	N19		15.31		- (0.30) - 0.30	(1) MADE GRO	OUND (Topsoi	i).		
0.60-1.05 1.50-1.95 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 sh Deological Surve	B1 SJ2 B3 W17 B4 U*	N19					MADE GROU				
 Galancial Sume 1.50-1.95 1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 Sellogical Sume 	SJ2 B3 W17 B4 U*						angular to ro - field drain)	JND (Medium d unded gravel.	ense brown c Gravel consis	layey sandy ts of limesto	fine to coarse one and sandstone
1.95-2.50 2.10 2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 ist Beoingral Survey	B3 W17 B4 U*		i I			(2.20) - 510-510 -	cal Survey				
2.50-3.00 3.05-3.50 4.00-4.50 4.65-5.10 ist Beological Surve	B4 U*		-	13.11		- 2.5					
3.05-3.50 4.00-4.50 4.65-5.10 Ist Beological Surve		(100)	r				Very stiff red to coarse ro	brown sandy (unded to suban	CLAY with occ gular and con	asional grav	vel. Gravel is fine dstone, basalt,
4.00-4.50 4.65-5.10 Isi Gedigical Surve	0.15	NICO				Ę.	quartzite an (Glacial Till)	d coal.	•		
4.00-4.50 4.65-5.10 tish Geological Surve	505	NBU				ŧ					
4.00-4.50 4.65-5.10 tish Geological Surve											
4.65-5.10 tish Geological Surve	B6 U*	(110)		· .		[] [(3.50)					
4.65-5.10 tish Geological Surve						ŧ					
1 1	SJ7	N50	Ţ	4		t <mark>ûs</mark> h Geoloj	gical Survey				
5.50	J8										
			ł	9.6	1	6.0	0 Dense brow	n sandy fine to	coarse round	ed to subrou	unded GRAVEL
6.10-6.55	SB9	N44	-		, 'o.' 0 , 0		Gravel cons (Fluvio-glac	ists of sandstor ial Gravel)	ie, basalt, qua	artzite and co	onglomerate.
6.75-7.50	B10				0.0.0. 0.0.0.						
7.50-8.00	SB11	N63			, , , , , , , , , , , , , , , , , , ,		below c.7.5	0m BGL very	dense.		
Borino) Proa	ress ar	nd M	Vater O	bserva	tions		hiselling	Water	r Added	GENERA
Date		Depth	T	Casing	Casing Dia	Wate Dept	From	To Hou	rs From	BritisTOcolo	REMARK
25/04/97 25/04/97		0.00 10.50	; . 	0.00	150mm	2.1	0	10.50 1.0	U		1) Description de from drillers daily 2) Water strike at rose to 5.10m BG minutes).

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 14: Borehole log SJ69 SE872 Sheet 2 of 2

	G						BOR	EHOL	ERE	CORD		Rritich Go	FINA Date:- 02/07	L 7/97
	Project:		NA	ics	2 M62/	CCTV	Ground	Investica	ation - C	Contract 2			BOREHOL	E No
	Client:	н	lighway	s A	gency			Location: M62 M	P 34/9+	-30B			BH-12	2
	Method & E	duipme de Per	ni: cussior	n us	ing a Pi	lcon V	Vayfarer	1500	Gr	ound Level(r 15.6	m(AOD)): 51	Date: 25-04-	Sheet: 97 2 of 2	
	SAMPLE	S & T	ESTS	Ľ					ST	RATA			2012	Ŀ
	Depth	Type No	Test Result	Wate	Reduced Level	Legend	Depth (Thick- ness)			DESC	CRIPTION			Lustru Lustru
	8.20-9.00	B12				0 0 0 0 0 0		(As shee Dense b Gravel c (Fluvio-ç	et 1 of 2) rown san consists of glacial Gra	dy fine to co I sandstone, avel)	arse rounde basait, qua	ed to subro rtzite and	ounded GRAVEL. conglomerate.	
	9.00-9.45	SB13	81 for 150mm*			0,0 0,0	ه می ارم م							
Diffis	9.45-10.00	B14			= 04	o o	Diiish Geolo							
	10.00-10.20 10.45-10.50	SJ15 SJ16	50 for 71mm 50 for	•	5.11		(0.50) (0.50)	Green gr SANDST fine to m	rey fine to ONE weat tedium an	medium gr k to very we ngular to sub	ained mode ak. (Recove angular gra	erately wea red as ver wel of san	thered y dense silty sandy dstone lithorelicts	
			50mm*					(Sherwood Borehold	od Sands complet	(). tone) te at 10.50m	BGL.	·		1
								•						
	h Geological Sur						ontish Geol							
ĺ														
	i.													
		ĺ												
														1
ļ														1
	Boring	Progr	ess and	Wa	ater Ob	servati	ons		Chiselli	ng	Water /	Added	GENERAL	<u>.</u>
Brits	Date 25/04/97	ey	Depth 0.00	Ca	asing	Dia	Depth	From	To	Hours	From	To	REMARKS	
	25/04/97		10.50	1	0.00 15	0mm	2.10	10.00	10.50	1.00			1) Description deriv from drillers daily re 2) Water strike at 6, rose to 5.10m BGL minutes).	ved aport. 10m (20

「「「「「「」」」

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 15: Borehole log SJ69 SE76

Ľ	010 11014110		۰.												
	CONTRACT. LANC	CASH	IRE	YORKSH	IRE MO	TORW	AY	M6	2	0	SHEE	T No.	1		
	LOCATION. CROI	T T	o we	ORSLEY	(Site 36) B	Н	N	PI	18	No. of	sheets	1		
Γ	CLIENT. SJ (59	SE	17.6	PERCUSSION			Casi	ng.		Groun	d level.	60.25		
-	6855	5.0	139	560	SPT D	Size	1	to.	Size	to,	Comm	enced	11/5/68		
151 0	MINISTRY OF	TRAF	SPC	JRT BILS	a soluțical a	6"					Comp	leted.	11/5/68		
	Weather			••••	ROTARY	M.C.		GRADI	NG % PAS	SSING SIEVE	т	AQ. or U	IC.T.		
	WET				runs	%	Type of	3"	11 2	* *	Bulk	Dev.	Lat. UC	T WA	TE
	STRATUM(Scale: 1	nch to t	1 foot)	SP.T. Blow Count	0/н /	Core Rec.	Test	N.7	25 52	100 200	p.c.f. Shear /o	p.s.i.	p.s.i. p.s. Shear/L	A. REM	AR
		Depth	Sample No.	(N) LL/PL/PI		%					p.s.f.		p.s.f.	-1	
F	1 Thickness	2	3	4	5 LEGEND	6	7	8 6	RESULTS C	F ANY OT	IER TESTS.		3	10	
. 1	Loose brown peat														
		210#	l m			883.5									
												• •	• •		
•															
					r Heological Si										
		7'0"	M2			1092.									
			PI	(2)											
						III •									
1	•	11'0"	ы			51.8	ļ								
٠L	1210	1210"	<u> </u>	L										Wet	
: [Soft brown and grey	12"6"	M3			28.7	1	^{S0} 3	23.4	p.H 7.5				NS • 1 SWL 11	131 216
	slightly clayey/ silty sand	13"6"	B2			24.3		-		- 100				<u>n - 1</u>	2
	* See remarks	1.5101					·	100	96 77	51 19				Bas o	14
1 h	Firm brown silty	1516"	M4			23.7	1			•				7	
	clay, with sandy	16'0"	n	43/16/27		22.8	UCT				127.3		480	4	
ish (Geological Survey	1716	41	Britis	i i eological Si	22.8					128.8		UNEY 564	5	
.		– <i>(</i>	-												
4															
1															
T		20"6"	M5			23.7	1								
4				1						5					
5		23*0"									110 0		18		
	9'0"	24 '0"	02 A2			28,8	001				116,1		156	amp	
ſ			T	в	ON LIGHT	28.0	1				117.5		180)1 OCB •	24
				· ·				ŀ						Cas Ø Water	15
×														OWC.S	4
				Drille	i Unalaniani Qi	- H									
-				191113	n a foinăirai ni		•								
1				<u> </u>		Щ		<u> </u>			-		-1		
	REMARKS :					M.C.		Air	1	С. В.	R. P BOTT	IMO	B.Ś.	MPACT	T
۱	 When water struck a came up casing to 1 	יסיני ז סיסי	", Sar	a	Sample Dept	th D.W.	55	Void	s Type	0.1	0.2 0.1	0.2 Valu	le 1377 No	Max, Dry Density	ŝ
							<u> </u>						-		T
								1							Ţ

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure A 16: Borehole log SJ69 SE83

Annex B: Groundwater level impact maps

The groundwater level difference in each of the three model layers has been mapped for the two Proposed Scheme options as described in Section 5.

Figure B 1: Holcroft Moss impact map for the viaduct option

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Difference in levels in Layer 1 - Peat Difference in levels in Layer 2 - Superficial deposits 39500 No change North-South section North-South section adda Ear 39450 394500 39400 39350 393500 East-West section East-West section 393000 393000 392500 392500 39200 392000 Difference in levels in Layer 3 - Sandstone 0.2000 395000 North-South section 0.1333 39450 39400 0.0667 Diference in Head level (m) 39350 0.0000 East-West section 39300 -0.0667 392500 -0.1333 39200 -0.2000 367500 368000 368500 369000 369500 370000 367000

Figure B 2: Holcroft Moss impact map for the full embankment option

Volume 5: Appendix WR-008-00001 Water resources and flood risk Groundwater modelling report – Holcroft Moss

Figure B 3: Holcroft Moss impact map for the viaduct option with gravel trench

hs2.org.uk

High Speed Two (HS2) Limited

Two Snowhill Snow Hill Queensway Birmingham B4 6GA Freephone: 08081 434 434 Minicom: 08081 456 472

Email: HS2enquiries@hs2.org.uk