
Social Care Working Group chairs summary of role of shielding. 

SAGE steer: the question is about the extent to which interventions targeted towards protecting the 
more vulnerable individuals could be effective in this wave e.g. guidance or additional support to 
reduce contacts (not necessarily shielding in the sense of the programme that was in place in 2020, 
though that is obviously relevant past experience), and whether that would mean fewer measures 
affecting the whole of society might be needed (to get to broadly similar outcomes). Also useful to 
have a view on how it changes if applied to a wider cohort of people than the previous shielding 
programme e.g. unboosted over-40s. 

1) This note focuses on applicability of shielding to social care settings rather than general 
vulnerable population given threat posed by omicron variant. However, the model given in 
Annex B is illustrative of a more general population. 

2) National lockdowns act to reduce numbers of cases/deaths in social care settings [see 
Figure 1, below, analysis of CQC mortality notifications, grey areas are national lockdown 
periods] so breaking network is critical and hard without major lockdown or effective 
vaccine.  

3) Experience of past waves of infection in social care settings: 
a. The Wave 1 situation is hard to generalise due to lack of testing/surveillance though 

excess deaths suggests impact was very high [Morciano et al 2021, Excess mortality 
for care home residents during the first 23 weeks of the COVID-19 pandemic in 
England: a national cohort study (biomedcentral.com)]. During Wave 2, whilst better 
testing regimes and PPE were in place and eventually vaccine was available, the 
exposure in Wave 1 mitigated outbreaks due to prior immunity (homes affected in 
Wave 1 did not have large outbreaks in Wave 2 on the whole). 

b. In Wave 3 outbreaks are smaller and impact of past outbreaks less clear in data (we 
are now 2 years into a pandemic, a timescale close to the average residency in care 
home settings). Wave 2 to Wave 3 comparison suggests vaccine has quartered the 
number of homes affected by relatively large outbreaks once averaged over time 
but once in a home outbreaks arising have had about half the cases observed in 
Wave 2 (but about a quarter the deaths because of case fatality reduction from 
vaccine). This is suggestive that within home mixing and contacts are strong and/or 
probability of transmission remains high – so preventing ingress is important. Scaling 
by ¼ is roughly similar to estimated vaccine effectiveness and so suggests any impact 
from loss of VE due to omicron can be estimated. 

c. Case fatality ratio has been stable [Overton et al 2021, figure 2 below, arXiv 
submission pending] at around 13% in W3, dropping from 25% in Jan 2021 
suggesting vaccination has reduced case fatality ratio by 50% in care home settings. 

d. Currently Cornwall, Devon and North Somerset are showing significant signs of 
growing case numbers (P1 and P2 data from 13th Dec) in care home settings. One 
home in NW has had a high omicron clinical attack ratio but low signs of severity but 
extrapolating from one outbreak is challenging. 

4) Evaluation of specific interventions that may be considered part of shielding policy 
a. Evaluating specific interventions is challenging [SCWG: What are the appropriate 

mitigations to deploy in care homes in the context of the post vaccination risk 
landscape?, 26 May 2021 - GOV.UK (www.gov.uk)] due to the responsive nature of 
the pandemic. 

b. Vaccine staff and resident 2nd doses are high (95%+ coverage), booster programme 
has reached 82% of residents and 39% directly employed staff. Only 11% agency 
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staff are boosted. Vaccination has reduced mortality and morbidity in care home 
settings. 

c. Testing (both PCR and LFD) can be simulated in isolation to other interventions 
(Annex A modelling is agnostic of setting) but it is hard to get reliable measure of 
adherence and whether it will change with policy changes. In annex A, adherence is 
measured as number of LFDs matched to number of PCRs: this is pessimistic due to 
most missing tests likely being people not recording a negative result.  More 
frequent testing could be worse if adherence drops with frequency. So monitoring 
adherence is critical part of policy effectiveness and ensuring that those tested trust 
the testing programme and are engaged in process. Staff are hard-working and have 
been operating for a long time under COVID pressures.   

d. Daily contact testing for workers around the shielded, understandably works well 
with a critical mass of participation and quickly becomes ineffective when 
participation is patchy. Regular communication and support is vital – ideally with 
certification https://www.liverpool.ac.uk/coronavirus/research-and-analysis/covid-
smart-pilot/. 

e. PPE and other interventions are hard to measure/model and there has been a lack 
of trials, so any simulation would be predicated on assumptions made. It is 
noteworthy that the evidence shows infection risk is greater at home than at work 
for healthcare staff. Also there is evidence that staff-staff transmission occurs during 
breaks when PPE is not worn. It is critical that PPE is fitted correctly with appropriate 
training. [see The effectiveness of PPE in reducing the transmission of COVID-19 in 
health and social care settings:  December 2021 update] 

f. Ventilation is likely effective but likely challenging to implement given a) season and 
b) variety of housing stock used for care homes.  

g. Limiting visitors and visiting out reduces ingress but has a large impact on general 
wellbeing and visitors are a relatively small fraction compared to staff (daily contact 
with staff but weekly contact with visitors, though essential care providers visit as 
often as staff in many situations). Those visiting in or out are advised to undertake 
regular LFD testing, and have negative LFD on the day of the visit. Those who are 
visiting are advised to have had their CV-19 vaccinations including booster if eligible 
and flu vaccine if eligible.. Pod visiting clearly safer but impact on wellbeing should 
be monitored. See SAGE papers 
S0584_Adverse_effects_of_social_isolation_and_loneliness_in_care_homes_during
_COVID-19.pdf (publishing.service.gov.uk) and 
S0875_Social_Care_Working_Group_Consensus_statement_on_visitor_policies.pdf 
(publishing.service.gov.uk)

h. The hierarchy of control model suggests that the impact of a range of interventions 
will not be additive but instead support each other [SCWG: What are the 
appropriate mitigations to deploy in care homes in the context of the post 
vaccination risk landscape?, 26 May 2021 - GOV.UK (www.gov.uk)]. Interventions 
deployed target specific hazards and a holistic view is necessary. Modelling theory 
suggests that  due to the non-linearity the total impact of interventions is often 
greater than the sum of the parts 

5) Other considerations 
a. A simple model (2 age groups under and over 55’s suggests that a policy needs to 

reduced contacts between groups by 80% to avert half of cases in older group (2.5 
million cases still infected) if vaccine is all or nothing; if vaccine is leaky this would 
avoid ¾ of cases, but given a larger baseline epidemic size, a larger absolute number 
of cases would be infected (4 million) [Annex B] 
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b. Isolation of older people from each other is ineffective by itself, it is the additional 
reduction of contacts between age groups that is key. Any model is limited by 
spontaneous behavioural change. 

c. If omicron has complete vaccine escape the situation could be worse than in W1 as 
social care staff recruitment and retention is an emerging issue. Staff wellbeing 
should be monitored. 

d. Home care clients are less connected to community than a care home and due to 
size/nature of work less at risk of major outbreaks but are harder to monitor so 
signals of adverse outcomes may be lagged.  

e. Staff in social care settings, whilst mandated to have vaccine, also have children so 
likely remain exposed to household cases whilst COVID-19 circulates in schools; late 
school holiday and incubation period mean this remains an issue over Christmas 
period. This connectivity to areas of high circulation is likely important if relaxation is 
continued elsewhere in system.  

f. High staff absences from a community outbreak may impact on care for other 
needs. Social care staffing is optimised to minimise costs so there is little slack in 
system. Any intervention that reduces care time of staff would impact on outcomes 
to other conditions. So there is an opportunity cost to intervention that is hard to 
measure or equate to COVID infections.  

g. Some residents/clients want to be protected and some want to see family. A care 
home is a home but with a social contract for all residents which is difficult to 
balance.  

6) The lived experience of W1, W2 and W3 is that shielding is challenging and there is no 
precedent nationally for effective shielding of care home settings, though it may be 
workable in households. Impact assessment of omicron is dependent on vaccine 
effectiveness after boosting programme.  



Figure 1) Top panel: Daily CQC death notifications confirmed as COVID-19 and GAM model fit. Lower panel: instantaneous 
growth rate of GAM spline (black line central estimate, blue region 95% CI, grey shade time periods of national lockdowns, 
pink shaded time periods of vaccine delivery to homes. 



Figure 2: Modelled daily case fatality ratio over time. Since March 2013 this has been fairly consistent with period of large 
uncertainty due to small case numbers [See Overton 2021 for details of method and data used]. 



Annex A. Modelling the impact of weekly PCR tests on potential 
SARS-CoV-2 transmission in high-risk work environments. 

Carl Whitfield, Ian Hall 
University of Manchester 

Executive Summary 

 Using the latest data on LFD sensitivity vs. PCR-quantified viral load (from concurrent   
testing in social-care settings) has enabled us to re-evaluate previous models. This update 
suggests that removing weekly PCR tests for staff (even if replacing with an extra LFD test) 
is likely to increase SARS-CoV-2 transmission in these settings. 

 Using “infectious days out of isolation” as a proxy for transmission risk, our analysis suggests 
that 2 LFDs per week, assuming no change in compliance, is likely to be approximately 64% 
as effective at reducing transmission as the current intervention (2 LFDs and 1 concurrent 
PCR). In settings with 40% adherence to LFD testing, this reduced to only 43% as effective.  

 The magnitude of the impact of testing is difficult to predict, since the sensitivity of PCR 
testing is uncertain, but our estimates suggest that the status quo leads to a total reduction 
in infectious days out of isolation (RPI – reduction in potential infectiousness) of between 
25% and 60% depending on the model of PCR testing and the adherence rate.  

 Stochastic modelling indicates that while testing can be an effective intervention, it is not 
sufficient alone to prevent introduction into the workplace, and so needs to be accompanied 
by other measures. 

Methods 

Model 1: Population average model 

Model 1 is a population-average model used to predict the impact of different testing strategies in a 
previous SCWG document [citation]. It used published data on PCR and LFD sensitivity, 
infectiousness, and symptom onset, to estimate the relative reduction in total infectivity (i.e. 
integrated over time) for different testing regimes relative to the case with no testing but 
symptomatic isolation. This model does not use sensitivity data from LFD testing in social care 
settings (unlike model 2) and so the relative impact of LFDs compared to PCR is less reliable in this 
model.    

Parameters and assumptions: 

Epidemiological parameter Value/Distribution Source/notes 

Symptom Onset Time 𝜏𝑠 Gamma (mean 4.84 and s.d. 
2.6 days) 

[10] 

Symptomatic fraction 𝑃𝑠 0.5 [8, 11] Note older people 
may have atypical 
presentation and this is not 
considered. 

Infectiousness 𝑓(𝑡) Weibull (mean 5 s.d. 1.92 
days) 

[4] A function of days since 
infected 𝑡

Test positive probability for 
PCR 𝑃𝑃𝐶𝑅(𝑡) and LFD 
𝑃𝐿𝐹𝐷(𝑡)

Empirical distribution (see 
supplementary section S1). 

[5] A function of days since 
infected 𝑡. See figure S1. 



Delay from PCR test to 
receipt of result 𝜏𝐷

42.8 hours Median observed in high-
risk settings [6]. 

Adherence with LFD testing 70% or 40%  Average observed in care 
and prison settings 
respectively. 

Adherence with PCR testing 100% Assumed (mandated at 
workplace). 

Adherence with 
symptomatic isolation 

100% Assumed. 

Isolation period 𝜏𝐼 10 days Current guidelines 
Table 1: Parameters for model 1. 

A key assumption of the model is that an individual has 0 (effective) infectiousness while isolated – 
this may over-estimate the impact of testing on transmission in the workplace if staff are still 
contacting other staff or residents outside of work while isolating (e.g. via shared households). The 
model then calculated the expected value of the total infectiousness under each testing scenario. 

Limitations 

 Uses population average estimates, so is not representative of individuals and does not 
account for variation between people. 

 While vaccines and variants have broadly been shown not to impact on peak viral load or 
infectiousness [7], there is some evidence that they affect the average prodromal period, 
which may alter the results. There is also very little evidence available on the Omicron 
variant. 

 There is no information about shift pattens and how these relate to test timings. This may 
have an impact on their role in reducing workplace infection risk. 

Model 2: Viral-load model 

Model 2 accounts for the fact that individuals have different viral load trajectories, and therefore 
their infectiousness and test positive probabilities are likely to be different to the population 
average, and highly correlated within each individual. This model does use the observed sensitivity 
data from LFD testing in social care settings and so the relative impact of LFDs compared to PCR is 
more reliable in this model. However, due to extra complexity of this model we are less confident in 
the absolute magnitude of the impact of testing predicted.  

Parameters and assumptions: 

Epidemiological 
parameter 

Value/Distribution Source/notes 

Peak Viral Load 𝑉max Normal (mean 7.5 and s.d. 1.2 log10

copies/ml). 
[7] 

Viral load parameter 
𝑉0

2.6 log10 copies/ml Equivalent to Ct = 40 in[7], 
note we use a lower 
threshold for modelling 
PCR. 



Time for viral load to 
grow from 𝑉0 to 𝑉max: 
𝜏𝑝𝑒𝑎𝑘

Gamma (mean 3.5 and s.d. 2.2 
days) 

[8] 

Time from infection 
to 𝑉0 viral load: 𝜏onset

0.38 × 𝜏𝑝𝑒𝑎𝑘 Assumed. Results in mean 
time to peak viral load 
matching symptom onset. 

Time for viral load to 
decay from 𝑉max to 
𝑉0: 𝜏decay

Gamma 
If symptomatic: mean 10.5 and s.d. 
5.9 days 
If asymptomatic: mean 6.7 and s.d. 
4.7 days 

For all individuals in [7], the 
best fit distribution had 
shape parameter 2.4 and 
inverse scale parameter 
0.3. Means for 
symptomatic and 
asymptomatics were 
reported in [7], but s.d. 
used assumption that both 
distributions had scale 
parameter 0.3. 

Symptom Onset Time 
𝜏𝑠

Gamma (mean 4.84 and s.d. 2.6 
days), truncated to the range 
𝜏𝑜𝑛𝑠𝑒𝑡 + 𝜏𝑝𝑒𝑎𝑘 − 2 ≤  𝜏𝑠  ≤  𝜏𝑜𝑛𝑠𝑒𝑡 +
𝜏𝑝𝑒𝑎𝑘 + 2

[1] Truncation added based 
on observation of peak 
viral load occurring within 
2 days of symptom onset 
[8,9].  

Symptomatic fraction 
𝑃𝑠

0.5 [2,3] Note older people 
may have atypical 
presentation and this is not 
considered. 

Infectious viral load 
threshold 𝑉inf

6 log10 copies/ml [11] See figure S2. 

Test positive 
probability for PCR 
𝑃𝑃𝐶𝑅(𝑉(𝑡))

0 if 𝑉(𝑡) < 1 log10 copies/ml 

0.95𝑒−4.41(𝑉−1.93)2
 if 𝑉(𝑡) ≥ 1

log10 copies/ml 

1 log10 copies/ml is our 
assumed Ct=40 threshold 
[6]. Sensitivity for Ct<40 is 
from [11], with a cap at 
95% to account for bad 
swabs. See figure S3. 

Test positive 
probability for LFD 
𝑃𝐿𝐹𝐷(𝑉(𝑡))

0.004𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 𝑉(𝑡) ≤ 2
0.025𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 2 < 𝑉(𝑡) ≤ 3
0.087𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 3 < 𝑉(𝑡) ≤ 4
0.162𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 4 < 𝑉(𝑡) ≤ 5
0.414𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 5 < 𝑉(𝑡) ≤ 6
0.651𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 6 < 𝑉(𝑡) ≤ 7
0.80𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 𝑉(𝑡) > 7

[6]. All values of 𝑉(𝑡) in 
log10 copies/ml. See figure 
S3. 

Alternative test 
positive probability 
for LFD (Oct 2021 
values) 𝑃𝐿𝐹𝐷2(𝑉(𝑡))

0.032𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 𝑉(𝑡) ≤ 4
0.255𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 4< 𝑉(𝑡) ≤ 6
0.477𝑃𝑃𝐶𝑅(𝑉(𝑡))  if 𝑉(𝑡) > 6

[6]. All values of 𝑉(𝑡) in 
log10 copies/ml. See figure 
S3. 

Delay from PCR test 
to receipt of result 𝜏𝐷

Gamma (mean 45 and s.d. 17.3 
days) 

Estimated from [6]. See 
figure S3. 



Adherence with LFD 
testing 

70% or 40%  Average observed in care 
and prison settings 
respectively [6]. 

Adherence with PCR 
testing 

100% Assumed (mandated at 
workplace). 

Adherence with 
symptomatic isolation 

100% Assumed. 

Isolation period 𝜏𝐼 10 days Current guidelines 
Table 2: Parameters for model 2. 

For each individual, a piecewise linear (in log10 copies/ml) viral load trajectory is randomly drawn 
using the parameters 𝑉max, 𝜏onset, 𝜏peak, and 𝜏decay in table 2. People are assumed infectious on 

days where their viral load exceeds 𝑉inf, for which they are assigned an “infectiousness” value of 1. If 
their viral load transitions from 𝑉 <  𝑉inf  to 𝑉 >  𝑉inf over the course of the day, their 
“infectiousness” value on that day is taken as the fraction of the day they are infectious. Thus, in this 
model, “total infectious days” is used as a proxy for infectiousness. 

Since we simulate using a timestep of 1 day, symptomatic isolation is assumed to begin on the 
nearest whole number day to onset time. Similarly, for positive PCRs, isolation begins on the nearest 
whole number day from the test result. For positive LFDs, people isolate on the day they perform 
their test (so it is assumed to be taken at the start of the day, before any workplace exposure). All 
positive LFD tests are immediately followed by a confirmatory PCR, the result of which has the same 
viral-load dependent probability as any other PCR test. 

We generated 100,000 viral load trajectories and simulated all testing scenarios once for each 

individual. We the calculated each person’s total infectious potential (their total number of 

infectious days) for each scenario.  

Limitations 

 Data on viral load trajectories is sourced from a sample that is not representative of the 
wider population (professional athletes). However, fig S6 compares this to a model based on 
an alternate dataset and shows very similar results. 

 The viral load model is not mechanistic, and so some viral load trajectories may be 
unrealistic. 

 While vaccines and variants have broadly been shown to not impact on peak viral load or 
infectiousness [7], there is some evidence that they influence the growth and decay rates in 
the viral load trajectories, potentially altering the results. 

 There is no information about shift pattens and how these relate to test timings. This may 
have an impact on their role in reducing workplace infection risk. 

Results 

We simulate 6 scenarios in total:  
(a) No testing  
(b) Daily LFDs + 1 weekly PCR 
(c) Daily LFDs (no PCR) 
(d) Status Quo (2 LFDs + 1 concurrent PCR per week)  
(e) 3 LFDs per week. 
(f) 2 LFDs per week + 1 (randomly timed) fortnightly PCR  



(g) 2 LFDs per week + 1 concurrent fortnightly PCR  
(h) 2 LFDs per week 

According to model 1, the status quo (2 LFDs and 1 PCR per week) Is predicted to reduce infectious 
potential by ~35% vs. no testing. 3 LFDs per week are predicted to perform similarly with adherence 
at 70%, however 2 LFDs per week are predicted to only reduce infectious potential by around ~25%. 
At lower adherence (40%) the LFD only options are considerably worse, with 2 LFDs only performing 
half as well as the status quo.  

Model 2 predicts much higher effectiveness overall, primarily because PCR sensitivity is predicted to 
be higher in this model and also because there is greater correlation, at an individual level, between 
test sensitivity and infectiousness. Model 2 predicts a greater discrepancy between the Status Quo 
and LFD-only options. This model uses data on real-life sensitivity vs. PCR, so the relative sensitivity 
of LFD vs. PCR is more realistic than model 1. The results of the two models are compared in figure 1. 

Figure 3: Top-Left: Model 1 (population average model) predictions for the potential infectiousness (1 
is benchmark infectiousness with no symptom isolation) under 7 different testing scenarios (scenarios 

(b)-(h) respectively). Bottom-left: Model 1 results plotted as relative reduction compared to “no 
testing” case. Top-Right: Updated model 2 predictions for the same testing scenarios using LFD 

sensitivity data from all 2021. The bars show the mean number of infectious days for each scenario. 
Bottom-left: Model 2 results plotted as relative reduction in infectious days (at the population level) 



compared to “no testing” case. We have also added the case of lower LFD sensitivity, as observed in 
Oct 2021 (see supplementary figure S3).  

Model 2 also predicts the wide range of infectiousness potentials predicted for individuals in the 
model, shown by the violin and box plots in figure 2. This indicates that while testing can have a 
significant impact on reducing transmission, it cannot prevent highly infectious people entering the 
workplace entirely. Supplementary figure S2 also shows the impact on the fraction of people 
infectious out of isolation as a function of days since infected. This helps to visualise how testing 
shortens the effective infectious period via isolation measures. 

Figure 4: Violin and box-and-whisker plots of the distribution of total (non-isolated) infectious days 
predicted for each scenario. The white dot and middle line of the box indicates the median, while the 

red dot indicates the mean. Note that the tails (representing very rare events) of the violin 
distribution extend beyond the y-axis limit, which has been truncated here for visibility. 

One potential drawback of increased staff testing frequency is that there will be more false positive 
tests resulting in unnecessary staff isolation. The absolute impact of this is highly dependent on the 
specificity of the test being used. Government estimates suggest that LFDs have 99.9% - 99.97% 
specificity. Figure 5 shows the number of false isolations per new infection that could be expected at 
different incidence rates for different specificity values. This assumes that the chance of receiving a 
false positive test in a given week is 1 − 𝑆𝑁 where 𝑆 is the specificity and 𝑁 is the number of tests 
taken that week. Therefore, the number of false positive isolation per infection is  (1 − 𝑆𝑁)(1 −
𝐼)/𝐼 where 𝐼 is the weekly incidence. 

Figure 5: Plots of false positive isolations per new infection in a given week for the different test 
specificities and testing frequencies. (Assuming PCR has specificity 100%) 



Supplementary Figures

Figure S1: Comparison of population-level average sensitivity of LFD and PCR tests in model 1 vs. 
model 2 

Figure S1 compares the test-positive probabilities in the two models. In model 1, the population 
average is used to represent all people, in model 1 each person has a different viral load trajectory 
and test positive probability, so figure S1 shows the mean probability of a positive test performed on 
a large sample each day since infection. Note that model 2 predicts a marginally higher PCR positive 
probability, but lower LFD sensitivity. 

Figure S1: Left – Test positive probability used for PCR and LFD tests in model sourced from [5]. Right 
– Population mean test positive probability from 100,000 samples of model 2. The green curve 

indicates the reduced sensitivity measures observed in high-risk settings in October. 

Figure S2: Model 2 average infectiousness and effect of testing 

Regular testing removes infectious people from the workplace reducing their infectious potential. 
Figure S2 shows a visualisation of the average effect of different interventions over the course of an 
infection.  

Figure S2: Fraction of people in model 2 who are infectious and not isolating on each day since 
infection. The blue line is the baseline infectiousness. Orange shows the case when symptomatics 

self-isolate. The green line shows the extra effect of 2 the status quo testing arrangement. The purple 
line shows the effect of removing the weekly PCR. The interventions shown assume 70% adherence to 

LFD testing and LFD sensitivity based on all 2021.   



Figure S3: Model 2 test sensitivity and delays 

Figure S3 gives a visualisation of some of the data used in model 2 based on the results in [9]. 

Figure S3: Left: Test sensitivity vs. viral load relationships used to model testing in model 2. Right: The 
distribution of PCR test delays used in model 2 (from time of test to receipt of result). 

Figure S4: Model 2 sensitivity to baseline PCR sensitivity 

One reason for the discrepancy between models is the difference in maximum sensitivity of PCR 
tests. In model 2 we assume that this is 95%, although there is a lack of reliable data on the 
sensitivity of PCR self-swabs due to the lack of a benchmark. Data from a study in healthcare 
workers suggest the PCR false negative rate (FNR) is actually ~20% [3, 5]. Therefore, we consider 
three scenarios in figure S4, corresponding to an FNR of 0%, 5% and 20%.  

Note that, in model 2, the sensitivity of LFDs is defined relative to PCR, so a reduction in PCR 
sensitivity also reduces LFD sensitivity, hence the effect on all intervention scenarios is similar. 

Figure S4: The relative reduction in total infectious days in model 2 assuming different values for the 
maximum PCR sensitivity (as labelled). The dotted line shows the comparison to the prediction of 
model 1. In all cases we assume 70% adherence and model 2 test sensitivity is from all 2021 data. 

The corresponding predictions from model 1 (from figure 3) are replotted for comparison.

Figure S5: Sensitivity to confirmatory PCR sensitivity alone 



The effect of false negatives from confirmatory PCRs is close to negligible in the above models, due 
to the high sensitivity assumed (95% in model 1, viral load dependent in model 2 but in most cases 
~95%) and because subsequent tests are likely to catch false negatives. We test the effect of the FNR 
on confirmatory PCR in figure S5. Note that in this case, we assume for model 2 that the FNR for 
confirmatory PCRs is fixed, and not dependent on viral load (and all other parameters remain 
unchanged). Interestingly, we see that it has very little effect on the impact, one reason for this is 
because the majority of the impact is from the first two days of isolation (while waiting for the 
confirmatory PCR result). This may be sensitive to changes in model assumptions about the 
infectious period – however both model 1 and model 2 agree on this point. 

Figure S5: The same results as the bottom panel of figure 3, but varying the sensitivity of 
confirmatory PCRs only. Left: Model 1. Right: Model 2 with test sensitivity from all 2021 data. In all 

cases we assume 70% adherence.   

Figure S6: Model 2 sensitivity to viral load parameters 

The results of model 2 are dependent on the non-representative sample of viral load trajectories in 
the data from [7]. However, figure S6 compares these to an alternative model derived from the data 
in [6], the full details of which will be published elsewhere. The key model parameters are contained 
in table S1, and a comparison of the trajectories for the two models is given in figure S7. We see that 
the model makes remarkably similar predictions for the relative effect, suggesting that it is the 
testing patterns and sensitivity that dominate the results in figure 3, not the specifics of the viral 
load model. We do see a slight difference as the narrower infectious window predicted by the 
alternative parameterisation results in more frequent testing being marginally more effective, and 
less frequent testing marginally less effective. 



Figure S6: Plot of model 2 results for reduction in total infectious days (70% adherence, 2021 LFD 
sensitivity) vs. alternative model parameterisation based on the data in [6] (labelled Ke et al.).  

Figure S7: Comparison of Model 2 with alternative parameterisation 

The viral load trajectories and infectivity profiles predicted by the alternative parameterisation of 
model 2 are substantially different, as shown in figure S7. The alternative parameterisation has less 
heterogeneity in viral load dynamics, but includes heterogeneity in peak infectiousness.  

Figure S7: Top: Comparison of viral load trajectories generated by model 2 (left) and the alternative 
parameterisation (right). Note viral loads less than 0 log10 copies/ml are set a value of 0 in the plot 

for visibility. Bottom: Comparison of the infectiousness proxy used in the corresponding models. In all 



plots the grey lines show 100 random samples, while the red and black dotted lines show the mean 
and median trajectories respectively.

Table S1: Alternative parameterisation of model 2 
We fitted a piecewise exponential model to peaks of the individual viral load curves derived in [6]. 
This is because the dynamic model presented in that paper leads to an unrealistic second peak of 
viral load at late times. The viral load (in copies/ml) in this model is given by 

𝐶(𝑡) = 𝐶𝑝 {
exp [−(𝑡𝑝 − 𝑡)/𝜏𝑟]

exp [−(𝑡 − 𝑡𝑝)/𝜏𝑑]
 , 

where 𝑡 is time measured in days, 𝜏𝑟 is the inverse growth rate, 𝜏𝑑 is the inverse decay rate, 𝑡𝑝 is the 

peak viral load time, and 𝐶𝑝 is the peak viral load in copies/ml. We found that some of the 

parameters of the model were correlated, so we fitted a multivariate lognormal distribution to the 
values of 𝐶𝑝, 𝜏𝑟, 𝜏𝑑, and 𝑡𝑝 for all individuals.

We also used the model of infectiousness as a function of viral load given in [6] 

𝐽(𝐶) =
𝐽𝑝𝐶ℎ

𝐶ℎ + 𝐾𝑚
ℎ

We found there was no significant correlation between the parameters of 𝐽 and the peak viral load, 
and so these are assumed independent of the parameters of the viral load model. 𝐾𝑚 is a fixed 
parameter and we fitted a multivariate lognormal to the distribution of the random variables 𝐽𝑝 and 

ℎ. Note that the infectivity is in arbitrary units so to make this comparable to model 2 we normalise  
𝐽𝑝 to have mean 1.  

Model 
parameters 

Interpretation Value 

𝝁𝑉𝐿 Vector of means of log (𝐶
𝑝
), 

log (𝜏𝑟), log (𝜏𝑑), and log (𝑡𝑝)

respectively. 

[17.55, 1.39, -1.20, -0.67] 

𝚺𝑉𝐿 Covariance matrix of log (𝐶
𝑝
), 

log (𝜏𝑟), log (𝜏𝑑), and log(𝑡𝑝).

0.909 0.044 −0.011
0.044 0.033 0.029

−0.011 0.029 0.029

0.081
0.005
0.0004

0.081 0.005 0.0004 0.027
𝝁𝐽 Vector of means of log (𝐽

𝑝
), 

log(ℎ).

[-0.169, -0.108] 

𝚺𝐽 Covariance matrix of log (𝐽
𝑝

), 

log(ℎ).
[0.3387 0.0265
0.0265 0.1270

]

𝐾𝑚 Fixed infectivity scale 
parameter 

4.0 × 106 copies/ml

Table S1: Parameters of the multivariate distributions used in the alternative parameterisation of 
model 2.  These distributions are sampled from to generate models of individual viral load and 
infectivity trajectories. 
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Annex B Age-based NPIs: 
Simple model insight 

20/12/2021 

Francesca Scarabel & Lorenzo Pellis 

Summary: 

 With such a high infectivity (doubling time of 2 days, R0 ~ 10), without any intervention, 
essentially all those who can get infected do get infected, but this strongly depends on 
modelling assumptions about the population immunity profile to Omicron, so we explore all-
or-nothing VS leaky protection from vaccination. 

 Immunity assumptions about protection from infection (no hospitalisation or severe disease 
in the model): 

o 0% for 0 or 1 doses 
o 30% for 2 doses 
o 70% for 3 doses (booster) 
o 28m boosters given (48% of all 12+, as of Dec 19), given to all 55+ and some of 0-54 

 Two extreme scenarios for reduction in contacts are considered: 
o Only within the 55+ group, proxy for free mixing of them with family members 
o Both within the 55+ group and between 55+ and 0-54 (in both directions), proxy for 

taking extreme steps to reduce within-household transmission and family 
interaction. 

 Key results: 
o Assuming all-or-nothing vaccine efficacy, about 1/3 of the population is assumed 

perfectly immune and all the rest gets infected; for leaky vaccine, everyone could 
potentially get infected, so baseline (i.e. no NPIs) final size is much larger. 

o Age-based NPIs have virtually no impact in the 0-54 group 
o Reduction only in contacts among the 55+ has no impact, unless accompanied by 

reductions in contacts between age groups 
o With 80% reduction in contacts both within 55+ and between 55+ and 0-54, about 

1/2 of the cases in the 55+ could be averted if vaccine is all-or-nothing (but 2.5m 
would still get infected) and about 3/4 if vaccine is leaky (but this now means 4m, a 
larger absolute numbers). Absolute numbers are not expected to be precise, with all 
the caveats of this extremely simplistic model. 

o Intuitively, the wave is much larger in the 0-54 than in the 55+ due to a combination 
of higher protection in the 55+ and a lower contact rate (resulting in a slower, less 
peaky epidemic) 



Further considerations: 

 An age-based lockdown is potentially highly socially divisive, and possibly met with low 
adherence: those 55+ who are worried about themselves will likely reduce their contacts 
anyway, while the others might ignore recommendations. 

 There is no evidence anything like this has been achieved in the past (e.g. care homes badly 
affected, cases in all ages, etc.): we now have better treatment, vaccines, etc. but also 
Omicron seems to be spreading even faster than wild-type. 

 It is as yet unclear what the relative severity of a 55+ case (likely with booster) is, compared 
to a younger case, so the usefulness of limiting infections in the elderlies, though 
reasonable, is uncertain. 

 Despite modelling these scenarios, we are personally doubtful such a policy alone would 
bring substantial benefits, as it relies heavily on individuals’ choices on adherence (e.g. we 
believe 80% reduction in contacts is unrealistically high). Furthermore, a free-fall epidemic in 
the 0-54, less likely to have received their boosters, is likely to present significant hospital 
burden anyway (not quantified here). 



Results: 

Figure 1: Epidemic dynamics in 0-54 (dashed) and 55+ (continuous lines) for 4 scenarios of reduction 
in contacts both within the 55+ and between 55+ and 0-54 (left), or among the 55+ only (right 
column), and assuming vaccine effectiveness in the population is all-or-nothing (top) or leaky 
(bottom row). 

Figure 2: Zoom on the epidemics in the 55+ only from Figure 1. Note: absolute numbers are to be 
taken with caution, as they rely on assumptions on contact patterns and precise values of doubling 
times, which are uncertain. 



Figure 3: Final epidemic size 0-54 (bottom, full coloured part of each bar) and 55+ (whiter top of each 
bar) for 4 scenarios of reduction in contacts (colours) both within the 55+ and between 55+ and 0-54 
(first and third group from the left), or among the 55+ only (second and fourth), and assuming 
vaccine effectiveness in the population is all-or-nothing (first two groups on the left) or leaky (last 
two groups on the right). Dash-dotted line gives total UK population, while dotted line given total 
susceptible population assuming all-or-nothing vaccine (left two groups only). 

Methods: 

 This is a simple model with 2 age groups and a 2x2 POLYMOD matrix of contacts, with a 
probability of transmission across a contact that is roughly calibrated to give a doubling time 
of 2 days. 

 When vaccine is assumed to be leaky, the model is expanded to a 4x4 matrix where groups 
1-3 are the 0-54 with <2, 2 and 3 doses, and group 4 gives the 55+ (all assumed boostered). 

 Initial conditions are roughly calibrated so that they correspond to total cases as of 19 Dec 
2021, but this has only limited impact on the dynamics and no impact on the final size bar 
plot. 

 R0 is just “very high”, as we don’t really know what its real value might be. However, we 
have given the model an SEEILR structure with average sojourn times of 1.5 days in each 
latent classe E1 and E2, and in I (infectious pre-symptomatic), and a late infectious stage L of 
3.5 days on average. This given an incubation period of around 4.5 days, and an overall 
infectious period of around 5 days. It might not be perfect, but anything simpler would have 
distorted excessively the relationship between the growth rate and R0 (e.g. in a simple SIR 
model, the epidemic would be much faster for the same R0, compared to here). 

 With the parameters chosen for the figures, in the all-or-nothing case R0 = 9.3, and the 
doubling times are 2 days in 0-54 and 2.1 days in the 55+. 

 Sensitivity analysis: an R0 = 6 corresponds, in this model, to a doubling time of 2.6 days in 
the 0-54 and 3 days in the 55+. Results are qualitatively similar, but peak incidence in 0-54 is 
3m cases rather than 4m (AoN) and 3m rather than 5m (leaky). 

 The generation time is assumed unchanged compared to Delta. 


