Claim No. Claim No. HP-2020-000037

IN THE HIGH COURT OF JUSTICE

BUSINESS AND PROPERTY COURTS

INTELLECTUAL PROPERTY LIST (CHANCERY DIVISION)

PATENTS COURT

BETWEEN:

KONINKLIJKE PHILIPS N.V.

(a company incorporated under the laws of the Netherlands)

Claimant

and

(1) XIAOMI INC

(a company incorporated under the laws of China)

(2) XIAOMI TECHNOLOGY (UNITED KINGDOM) LIMITED

(3) XIAOMI COMMUNICATIONS CO., LTD

(a company incorporated under the laws of the People's Republic of China)

(4) XIAOMI CORPORATION

(a company incorporated under the laws of the Cayman Islands)

(5) XIAOMI HK LIMITED

(a company incorporated under the laws of Hong Kong Special Administrative Region of the

People's Republic of China)

Defendants

ANNEX B – SCHEDULE OF AMENDMENTS

The proposed conditional amendments to European Patent (UK) No. 1 815 647 ("EP 647") are as follows:

Conditional Amendments to the Claims of EP 647				
Old	New	Amendment		
Claim	Claim			
1	1	A method in a communication terminal (410) of a mobile communication system of multiplexing data packets having different assigned priorities, comprising:		
		receiving data packets;		
		operating a queue for each different priority of data packet;		
		assembling a group of the data packets according to a first multiplexing rule and a second multiplexing rule.		

		wherein
		a first portion (90) of the group is populated with data packets selected from one or more of the queues according to <u>a-the</u> first <u>multiplexing</u> rule and a second portion (95) of the group is populated with data packets selected from one or more of the queues according to <u>athe</u> second <u>multiplexing</u> rule; and
		transmitting the group, characterized in that the method is further comprising adapting the size of the first and second portions (90, 95) according to the delay experienced by data in each queue relative to a Quality of Service delay requirement for the respective queue.
2	2	A method of multiplexing as claimed in claim 1 wherein according to the first <u>multiplexing</u> rule data packets are selected from the queue containing the highest priority of the data packets.
3	3	A method of multiplexing as claimed in claim 1 or 2, wherein according to the second <u>multiplexing</u> rule data packets are selected from one or more of the queues containing data packets having a lower priority than the highest priority.
4	4	A method of multiplexing as claimed in claim 1, 2 or 3, wherein according to the second <u>multiplexing</u> rule data packets are selected from any queue, except at least the highest priority queue, for which the data packets have experienced a delay longer than a threshold delay.
5	5	A method of multiplexing as claimed in any one of claims 1 to 4, wherein according to the second <u>multiplexing</u> rule data packets are selected from any queue which has more data awaiting transmission than a threshold amount of data, except at least the highest priority queue.
6	<u>6</u>	A method of multiplexing as claimed in any one of claims 1 to 5, comprising receiving a signal indicative of a mix of first and second portions (90, 95) and adapting the size of the first and second portions (90, 95) in response to the signal.
7	<u>76</u>	Multiplexing apparatus (300) in a communication terminal (410) of a mobile communication system for multiplexing data packets having different assigned priorities, comprising:
		means (10) for receiving data packets;
		means (30, 40) for operating a queue store (50) for each different priority of data packet;
		means (60, 80) for assembling a group of the data packets <u>according to a first</u> <u>multiplexing rule and a second multiplexing rule</u> , wherein
		a first portion (90) of the group is populated with data packets by selecting data packets from one or more of the queue stores (50) according to <u>athe</u> first <u>multiplexing</u> rule and
		a second portion (95) of the group is populated with data packets by selecting data packets from one or more of the queue stores (50) according to <u>athe</u> second <u>multiplexing</u> rule;
		means (100) for transmitting the group; and characterized by in that said multiplexing apparatus (300) further contains
		means (110) for adapting the size of the first and second portions (90, 95) according to the delay experienced by data in each queue store (50) relative to a delay criterion for the respective queue store (50).

9	<u>98</u>	Multiplexing apparatus (300) as claimed in claim $\frac{76}{76}$ or $\frac{87}{7}$, wherein according to the second <u>multiplexing</u> rule data packets are selected from one or more of the queue stores (50) containing data packets having a lower priority than the highest priority.
10	<u>109</u>	Multiplexing apparatus (300) as claimed in claim <u>76</u> , <u>87</u> or <u>98</u> , wherein according to the second <u>multiplexing</u> rule data packets are selected from any queue store (50), except at least the highest priority queue store, for which the data packets have experienced a delay longer than a threshold delay.
11	<u>1110</u>	Multiplexing apparatus (300) as claimed in any one of claims $\frac{76}{76}$ to $\frac{109}{70}$, wherein according to the second <u>multiplexing</u> rule data packets are selected from any queue store (50) which has more data awaiting transmission than a threshold amount of data, except at least the highest priority queue store (50).
12	<u>12</u>	Multiplexing apparatus (300) as claimed in any one of claims 7 to 11, comprising means (100) for receiving a signal indicative of a mix of first and second portions and means (110) for adapting the size of the first and second portions (90, 95) in response to the signal.