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Research at the Environment Agency 
Scientific research and analysis underpins everything the Environment Agency does. 
It helps us to understand and manage the environment effectively. Our own experts 
work with leading scientific organisations, universities and other parts of the Defra 
group to bring the best knowledge to bear on the environmental problems that we 
face now and in the future. Our scientific work is published as summaries and 
reports, freely available to all.  
 
This report is the result of research commissioned by the Environment Agency’s 
Chief Scientist’s Group. 
 
You can find out more about our current science programmes at 
https://www.gov.uk/government/organisations/environment-agency/about/research 
 
If you have any comments or questions about this report or the Environment 
Agency’s other scientific work, please contact research@environment-
agency.gov.uk. 

 

Professor Doug Wilson 
Chief Scientist 
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Executive summary 
Climate change and particularly warming is expected to change freshwater 
ecosystems and water quality. Understanding how and where changes may take 
place and the likely magnitude of these can help to project water quality and target 
management activity. River systems are highly sensitive to water temperature so it is 
important to have insight about future patterns. These will not necessarily be a 
reflection of patterns in air temperature change for which information is readily 
available. 
 
There are no national-scale approaches to water temperature modelling of 
contemporary or future dynamics of change in England, although examples exist 
elsewhere (e.g. Scotland). This limits our understanding of future risks and our ability 
to target management options to improve resilience to the impacts of climate 
change. This report provides recommendations for the development of a water 
temperature modelling framework that can provide projections under current and 
future climate taking full account of available empirical information. 

To develop a flexible framework for river water temperature modelling across 
England, the following questions were addressed: 

1. What methods are available for modelling water temperature, and what are 
their benefits and limitations? 

2. What are the data and modelling requirements, benefits and limitations of 
using these approaches to produce projections of river water temperature for 
England under climate change? 

3. What is the most suitable methodology for developing these projections given 
current data availability? 

A comprehensive literature review identified four broad groups of modelling 
approaches for river water temperature: statistical, process-based, machine learning 
and hybrid. Statistical (regression based) water temperature models are the most 
established and widely used approach for modelling contemporary water 
temperature and making projections. Spatial river network models are the current 
“state of the art” and can facilitate predictions of mean/maximum water temperature 
but require frequent field measurements (e.g. hourly) for calibration, a topologically 
correct digital river network and advanced statistical and programming expertise. 
Process-based models can be potentially more accurate than statistical models for 
making predictions at unmonitored sites as they represent the physical processes 
that control warming and cooling of river water. However, they are not well 
represented in the literature at larger spatial scales (e.g. greater than small sub-
catchments) as data requirements for calibration becomes prohibitive. A number of 
emerging research approaches were identified that may be suitable for large scale 
modelling in the future. These new approaches are largely associated with machine 
learning / artificial intelligence approaches. 
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Two decision trees were developed to facilitate: (1) the identification of the most 
suitable approach for generating water temperature projections for England given the 
data constraints, (2) the most suitable approach for a given use case. The first 
decision tree considers the type of model approach a user wishes to pursue (e.g. 
statistical vs process-based). The tree structure highlights how different models are 
interlinked and, in the case of regression-based models, how they can be considered 
building blocks of increasing complexity towards a model that predicts daily water 
temperature for the entire river network. The second set of decision trees focuses on 
the practical considerations that a user may face when attempting to select a 
suitable model for generating water temperature projections. This second decision 
tree emphasizes the data requirements, computational requirements and length of 
time series associated with specific water temperature models. Hence, these 
decision trees represent a practical tool for choosing a suitable water temperature 
model for a range of use cases. 

Given the data limitations (lack of sub-daily data) and the need for an interpretable 
and flexible model a statistical approach was required. A multi-site, mixed effect 
regression model was identified as the most feasible approach for producing 
temperature projections. This is recommended for application where there is 
adequate temporal resolution of the water temperature data available for model 
calibration and validation. A mixed effect regression model has potential to predict to 
unmonitored locations but should not be used to predict outside the environmental 
range of the calibration dataset. Furthermore, it represents a building block towards 
a water temperature model for the entire river network. Detailed instructions are 
provided in the appendix of this report covering all required steps, including: 
site/selection, data pre-processing, covariate extraction, exploratory analysis, model 
selection, model validation for contemporary water temperature and developing 
future projections. 

Finally, recommendations are provided for future data collection to facilitate the 
development of a water temperature model for the entire river network, including a 
method to optimise future site selection and avoid data redundancy. 
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Introduction 

Overview 
Climate change is expected to cause a deterioration in water quality and river 
aquatic ecosystems in nutrient rich environments (Whitehead et al. 2009). To 
maintain or improve water quality and ensure management responses are resilient to 
future pressures, it is important to identify priority areas for management 
intervention. Previous modelling exercises to assess how water quality and 
eutrophication risk are likely to change in the future have highlighted the sensitivity of 
projections to water temperature (Environment Agency, 2019). Consequently, an 
accurate representation of future water temperature patterns across England’s rivers 
is required to improve predictions of water quality (Whitehead et al. 2009) and 
develop effective mitigation strategies for problems where these arise.  

River flow regimes shape the river habitats that support biological communities. We 
have a growing understanding of the role extreme events (droughts and floods) play 
in shaping these communities (Aspin et al. 2019). Water temperature is also a key 
control on the structure and function of river ecosystems (Woodward et al. 2010). 
Understanding likely changes in thermal regime is thus important to guide targeted 
mitigation strategies (Knouft et al. 2021). For example, tree planting to enhance 
riparian shading can reduce thermal maxima in some places, but given the long lead 
time careful targeting is required (Garner et al. 2017). However, there is currently a 
lack of future water temperature projections to quantify and map water temperature 
change. However, models to identify where rivers are hottest, most sensitive to 
climate change and most effectively protected by trees are now available for 
Scotland (Jackson et al. 2018) and are being used to target riparian tree planting to 
protect cold water dependent species such as Atlantic salmon and brown trout. 

There are a range of potential methods for modelling water temperature that have 
historically had limitations, making them unsuited to prediction to unmonitored 
locations or projection into the future (Gallice et al. 2015). Recent advances in the 
fields of statistics and computer science have yielded new approaches that 
overcome some of the major issues, in particular those associated with spatial 
covariance in river networks (Isaak et al. 2014). Given this, there is scope to develop 
a ‘national Future River Water Temperature dataset’ that could be used alongside 
projections of river flows and groundwater levels, such as Future Flows (Prudhomme 
et al., 2012, 2013) and the ongoing Met Office / CEH eFLaG project which will 
provide updated estimates of future river flows.  

There are many options for modelling water temperature at small scales or for 
particular sites (Benyahya et al. 2007a), however, decision makers require 
information at national scales to support strategic planning and inform policy making. 
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Approaches to estimating future river water temperature range from relatively simple 
linear and logistic regression (Benyahya et al. 2007a) to complex physically based 
models using heat exchange principles (Dugdale et al. 2017). The use of regression 
based approaches that model relationships between air and water temperature, and 
in some cases how other factors can alter the relationship, have been favoured in 
the literature (Benyahya et al. 2007a, Letcher et al. 2016, Ouellet et al. 2020). 
Alternative approaches such as process-based models are useful but often require a 
large amount of data and are not practical to apply at large scales (see the review in 
Dugdale et al. 2017). Spatial statistical river network models are well suited to make 
predictions across large spatial scales and have been shown to provide accurate 
predictions of contemporary water temperature (Isaak et al. 2017, Jackson et al. 
2018). However, data requirements, required model output (e.g. static monthly 
metrics vs daily metrics), computational demand and availability of software 
packages to facilitate model development may represent a barrier to implementation. 
Furthermore, the potential utility of emerging approaches (e.g. machine learning and 
artificial intelligence) remains largely unknown in the context of large scale water 
temperature modelling. 

Project aim and objectives 
There is a clear need for an updated, practitioner focused review of river water 
temperature modelling. Such a review can then provide the basis for development of 
a robust framework for river water temperature projection. This report provides a 
roadmap for this by presenting: (1) an overview of the methods available for 
modelling contemporary water temperature and for making projections of water 
temperature under likely future scenarios; (2) decision trees to guide users towards 
selection of suitable modelling approaches given constraints in data availability, 
analytical requirements, spatial scale and computational demand; and, (3) a step-by-
step, flexible framework (constrained by current data availability) for producing 
projections of future river water temperature at a range of spatial and temporal 
scales. 
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Methodology 
Three key steps were undertaken to identify a suitable framework for water 
temperature modelling that could facilitate future projections and offer a flexibility to 
accommodate varied use cases. First, a review of the contemporary literature was 
undertaken to enable identification of the methods available for water temperature 
modelling. Second, following discussion with Environment Agency specialists, key 
properties of the models were tabulated to help identify feasible approaches based 
on reporting priorities and potential limitations (e.g. model time step, data availability, 
computational demand, etc). Third, decision trees were developed to enable users to 
identify the best approach for modelling water temperature for a given use case (e.g. 
across a range of spatial and temporal resolutions). Finally, following further 
discussion with Environment Agency specialists the most suitable modelling 
approach was identified (based on current data availability and likely future resource 
allocation) and a flexible framework for implementation outlined.  

Identification of relevant literature 
To assess the availability of stream water temperature modelling approaches a 
systematic review was undertaken following the approach outlined by Pickering and 
Byrne (2014). The goal was to identify trends in the use of different modelling 
approaches and emerging methods rather than undertake statistical analysis of 
evidence, as is common in the meta-analyses of the medical sciences. Utilizing Web 
of Science automated the process as recent research has highlighted this as the 
most suitable search engine for systematic review (Gusenbauer & Haddaway 2020). 
The search results were augmented by manual searches of the literature. The aim 
was to include papers and studies that explicitly developed or used water 
temperature models and the search criteria were defined as follows: 

TS=("river water temperature" AND model*) OR TS =("stream water temperature" A
ND model*) ORTS =("stream temperature" AND model*) OR TS =("river temperature
" AND model*) OR TS = ("river temperature" AND prediction*) OR TS = ("stream tem
perature" AND prediction*) OR TS = ("river water temperature" AND prediction*)  

Here TS = subject area and the * denotes a wildcard that retrieves variants of the 
word, for example plurals and different spellings. This initial search returned 998 
publications. The search criteria were further refined to return only literature 
published over the last 30 years and then a screening of title and abstract was 
conducted. This yielded 338 publications (including 5 identified from manual 
searches) that were used to form the basis of this review 
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Data availability and spatio-temporal reporting 
requirements 
The Environment Agency has monitored water temperature at ~30,000 sites across 
England and Wales. Most of the associated 42 million data records are spot 
measurements that were typically measured twice a month, between 08:00 and 
16:00 h. Sub-daily measurements (hourly -15-min resolution) are available for 351 
sites but further data quality checks are required to assess the suitability of this data 
for modelling purposes. The average site record length is 14 years, but this is 
skewed to sites monitored at weekly – monthly intervals (Orr et al. 2015). It is 
important to note that no guidance was provided to operatives regarding time of day 
that sampling should be undertaken; hence this coupled with irregular sampling 
could introduce systematic bias into the water temperature dataset (Toone et al., 
2011). 

To understand the impact of climate change on river systems at different times and 
places the Environment Agency has a range of spatio-temporal reporting 
requirements. Of particular relevance here are the need for: (1) Reach scale 
projections of changes in water temperature across the river network in England that 
can indicate absolute and relative change values at different time scales (i.e. daily, 
monthly, seasonal, annual, 30 year averages). (2) Station/site specific projections 
that can also indicate absolute and relative change at varied time scales. Reach 
scale projection can provide an understanding of risks and vulnerabilities in different 
locations, drive water quality models and produce a range of other outputs (for 
example a network map of future water temperatures). While station specific 
projections focus on a set of monitoring stations (c.f. Future Flows) and can enable 
site specific and national understanding of temperature change and risk. The key 
use of river water temperature projections would be to drive existing water quality 
models, develop new ecosystem models and produce visualisations of changes in 
river water temperature.  

Given that additional monitoring or data collection is unlikely, any framework for 
developing future projections will be constrained by data availability (i.e. a lack of 
sub-daily data for model building). In addition, given the range of potential use cases 
flexibility of the framework is an important property. In particular it should be 
adaptable in response to the particular reporting requirements and data availability, 
with flexibility regarding the spatial and temporal resolution of input data and the 
modelling outputs. Another important requirement is the ability to predict to sites that 
are currently unmonitored (i.e. sites with no water temperature records). 

https://www.ceh.ac.uk/services/future-flows-maps-and-datasets
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Identification of suitable modelling approaches  
Papers were examined and retained if modelling approaches were described that 
could generate reach scale water temperature predications across the entire river 
network or for specific monitoring stations/sites. Information on these water 
temperature modelling approaches was then extracted to facilitate the development 
of summary tables. Four key model groups were apparent: (1) statistical, (2) 
process-based, (3) machine learning/ artificial intelligence and (4) hybrid 
approaches. A separate summary table was constructed for each group of models to 
act as a quick reference guide to models that have potential for river water 
temperature projection over large scales. For each model summary information was 
produced on: spatial resolution, potential to predict at unmonitored sites, the input 
data requirement, calibration requirements, computational requirements, software 
availability, advantages, constraints and model response metric (See Table 1). Key 
references were also identified that either provided a technical overview of the 
modelling approach or showcased a highly relevant application of that specific 
model. 

Development of decision trees  
Decision trees were developed for two purposes, namely to:  

1. understand available models and how they are related - highlighting in 
particular how statistical methods can be considered as building blocks 
allowing development of progressively more complex models.  

2. identify suitable modelling approaches based on data availability and other 
practical considerations (i.e. those applicable to each use case). 

Development of flexible framework for water 
temperature modelling  
A detailed step by step approach was developed for making water temperature 
projections across large spatial scales but with flexibility to increase spatial 
resolution. The development of this framework was guided by potential use cases 
and data availability within the Environment Agency. These can be broadly defined 
as applications that require data that is spatially distributed across the river network 
(e.g. water quality models such as SAGIS-SIMCAT) or those that require projections 
for specific points or stations within the river network (e.g. to assess impact of 
abstractions or develop a future-flows analogue). However, the potential to develop a 
framework that could provide distributed projections is constrained by the availability 
of input data for model fitting and validation (i.e. availability of a calibration dataset to 
cover the environmental ranges of the rivers where predictions are required). Hence, 
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the framework outlined in this report represents the best possible approach for the 
Environment Agency given their objectives and constraints. In particular, the 
selection was governed by the need for flexibility around the required model 
timestep, the spatial configuration of projections (i.e. site vs entire network), model 
interpretability (i.e. not a black-box) and additional variables available for model 
development.  

Table 1. The key attributes of the water temperature models identified by the literature 
review. The rationale for selecting these attributes is also highlighted.  
 

Model property Reason for inclusion 
Model detailed description To provide a reference point for the user 

Model approach Identify if the model can produce predictions that vary across time 
and space 

Spatial resolution To understand the most appropriate spatial scale for using the model 
approach (e.g. site vs network) 

Prediction for unmonitored 
sites 

To identify if the model has potential to predict for sites with no 
water temperature records 

Time step of input To help the user identify the temporal resolution of data required to 
use the model (also guidance on the most suitable time step 
provided) 

Input data To help the user identify the specific data required to use the model 
(e.g. air temperature, discharge and land cover) 

Calibration requirements 
To help the user identify the specific calibration requirements 

Response metric 
To provide the user with information on the output from the model 
(e.g. daily mean, weekly mean etc). Guidance also provided on the 
most suitable output metric. 

Computational requirements 
The expertise and computational requirements required to calibrate 
and use the model.  

Software available The available software available for running the model (R packages 
are identified where possible) 

Open source Provide info on whether the code is open source (useful if the model 
needs to be adapted in the future) 

Advantages An assessment of the key advantages to help the user make an 
informed judgement of the model suitability for the anticipated 
application 

Constraints An assessment of the key constraints to help the user make an 
informed judgement of the model suitability for the anticipated 
application 

Used with climate projections Info on whether the model has previously been used to make future 
projections - an established method may be preferable 

Key Reference 
A particularly useful reference to help the user understand and 
implement the model 
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Notes Any additional notes that may be important for a user to consider 
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Results 

Available approaches for water temperature 
modelling 

The literature review identified 29 modelling approaches that may be suitable for 
developing national scale river water temperature projections (Table 2). Statistical 
(regression based) water temperature models were identified as the most 
established and widely used approach for modelling contemporary water 
temperature and making predictions (Table 2). These ranged from simple linear 
models of air-water temperature relationships, for example see Kelleher et al. (2012), 
to more complex generalized additive mixed effect models (Siegel & Volk 2019) and 
techniques emerging from the research domain (e.g. functional regression; 
Boudreault et al. 2019). Most of these approaches are only capable of making 
predictions at sites used in the model fit. However, in the case of mixed effect 
models with additional spatial covariates it is also possible to predict to new discrete 
points in the catchment, but with reduced accuracy. Spatial statistical river network 
models represent the current “state of the art” in statistical river temperature 
modelling; when a river network smoother is used, it can facilitate daily projections of 
mean/max water temperature but this requires sub-daily calibration data, a 
topologically correct digital river network with appropriate predictor variables and 
advanced statistical and programming expertise (Jackson et al. 2018).  

Process-based modelling approaches are particularly well suited for prediction to 
unmonitored sites and projection (Dugdale et al. 2017). They are generally more 
transferable than statistical models as they represent the physical processes that 
control warming and cooling of river water. However, applications at larger spatial 
scales (e.g. greater than the river basin) were limited in the literature as data 
required for calibration becomes prohibitive (Table 3). DynWat a dynamical 1-D 
water energy routing model may be suitable for large scale water temperature 
projections (Wanders et al. 2019) but the errors associated with limited calibration 
are problematic and the coarse scale (10 km resolution) does not match river 
network maps used by the Environment Agency.  

A number of emerging research orientated approaches were also identified (Tables 4 
& 5) that may be suitable for large scale modelling once they become more 
accessible to non-specialists and have been applied more commonly to river 
temperature research thereby facilitating a more rigorous assessment of 
performance. Machine learning / artificial intelligence and hybrid approaches have 
mainly been used for prediction of current water temperature at specific sites (Zhu & 
Piotrowski 2020). Deep learning and hybrid wavelet-neural network models seem to 
hold the most potential for generating large scale projections (Rahmani et al. 2021).  



16 of 61 

Table 2. Summary table providing an overview of the statistical models used for water temperature modelling. Model N (number) is provided to aid 
cross-referencing with the decision trees. More detailed information on column criteria can be found in Table 1 in the methods section. 
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1 Linear 
regression Static Site specific  Limited 

potential 

Has been 
used: 
daily - 
annual.                            
Works 
best for: 
weekly - 
monthly  

Air 
temperature  

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily - 
annual 
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Low -most 
basic statistical 
software can 
implement 
model 
calibration and 
fitting  

R (lm 
function)             
SPSS                                 
MATLAB                      

Y 

Well 
established 
technique that 
is widely used. 
Simple to 
implement and 
interpret 

Site specific, 
linearity not 
always a valid 
assumption, 
autocorrelation 
not 
considered.  

Yes 

Stefan & 
Preudhom
me  (1993); 
Kelleher et 
al. (2012) 

Most basic 
approach with 
limited potential 
for accurate 
future 
predictions. Need 
to correct for 
differences 
between air 
temperature 
station and water 
temperature 
station (e.g. 
altitude distance 
to the coast) - 
see Detenbeck et 
al (2016) 

2 
(Multiple) 
linear 
regression 

Static Site specific  

Limited 
potential -  
however 
see 
Hrachowit
z et al. 
(2010) 
and model 
(6) below 
for an 
extension 
for 
predicatio
n to 
unmonitor
ed 
locations 

Has been 
used: 
daily - 
annual.                                 
Works 
best for: 
weekly - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature 
and 
discharge 
records for 
calibration  

Has been 
used: 
daily - 
annual 
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Low -most 
basic statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS) 

R (lm 
function)             
SPSS                                 
MATLAB 
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Well 
established 
technique that 
is Widely used. 
Relatively 
Simple to 
implement and 
interpret 

Site specific, 
linearity not 
always a valid 
assumption, 
autocorrelation 
not 
considered. 
Also need to 
consider 
collinearity and 
model 
parsimony. 
Constrained by 
calibration 
period 

Yes 

Ducharne 
(2008); 
Kelleher et 
al. (2012); 
Segura et 
al. (2015) 

Good predictor 
variables: 
Discharge, 
lagged air 
temperature, 
snow melt solar 
radiation, 
humidity, riparian 
shading, river 
order, baseflow 
index, ground 
water , 
impervious land 
cover. Need to 
correct for 
differences 
between air 
temperature 
station and water 
temperature 
station (e.g. 
altitude distance 
to the coast) 
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3 

LASSO/ Ridge 
regression/sup
port vector 
(extension of 
linear 
regression)  

Static Site specific  Limited 
potential 

Has been 
used: 
daily                                  

Air 
temperature  
+            
Catchment 
descriptors 
for 
groupings 

Site specific 
water 
temperature, 
air 
temperature 
for 
calibration  

Has been 
used: 
daily max                             
Works 
best for: 
daily - 
annual 
mean or 
max 

Low -most 
basic statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS) 

R (caret 
package) Y 

Established 
technique but 
not Widely 
used for water 
temperature 
modelling 

Site specific, 
linearity not 
always a valid 
assumption, 
autocorrelation 
not 
considered. 
Also need to 
consider 
collinearity and 
model 
parsimony. 
Constrained by 
calibration 
period 

Yes 

St-Hilaire et 
al. (2018); 
Rehana 
(2019) 

  

4 Logistic 
regression Static Site specific  Limited 

potential 

Has been 
used: 
daily - 
annual.                                 
Works 
best for: 
weekly - 
monthly  

Air 
temperature  

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily - 
annual 
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Low -most 
basic statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS) 

R (nls 
function)             
SPSS                                 
MATLAB 

Y 

Well 
established 
technique  that 
is simple to 
implement and 
interpretation 
only slightly 
more difficult 
than linear 
regression 

Parameters of 
model are site 
specific, sites 
do not always 
adhere to S-
shaped curve. 
Autocorrelation 
not 
considered.  

Yes 

Mohseni et 
al. (1998); 
Koch and 
Grunewald 
(2010) 

Good predictor 
variables: 
Weighted lagged 
air temperature. 
Need to correct 
for differences 
between air 
temperature 
station and water 
temperature 
station (e.g. 
altitude distance 
to the coast) 

5 
(multiple) 
Logistic 
regression 
extension 

Static Site specific  Limited 
potential 

Has been 
used: 
daily - 
annual.                                 
Works 
best for: 
weekly - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature 
and 
discharge 
records for 
calibration  

Has been 
used: 
daily - 
annual 
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
to implement 
as will not be 
possible from 
dropdown 
menu options 

R (nls 
function)             
SPSS                                 
MATLAB - 
Captain 
toolbox 

Y 

Well 
established 
technique but  
requires some 
knowledge of 
statistics and 
programming. 
Interpretation  
is still relatively 
straight 
forward 

Parameters of 
model are site 
specific, sites 
do not always 
adhere to S-
shaped curve. 
Autocorrelation 
not explicitly 
considered.  

Yes 

Van Vliet et 
al. (2011); 
Johnson et 
al (2014); 
Piotrowski 
& 
Napirorkow
ski (2019) 

Extension 
including 
declination angle 
of the sun 
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6 
Multiple 
regression 
models at 
single sites 

Static Site specific  Some 
potential  

Has been 
used: 
monthly                              

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature  

Has been 
used: 
monthly 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
to implement 
as will not be 
possible from 
dropdown 
menu options 

R (various 
packages)                                 Y 

Extension to a 
well-
established 
technique but 
is moderately 
difficult to 
implement and 
requires some 
knowledge of 
statistics and 
programming.  

Parameters of 
model need to 
be resampled 
so can lead to 
bias as spatial 
covariance is 
not included in 
model 

Yes Hrachowitz 
et al. (2010)   

7 
Generalised 
linear 
modelling 

Tempor
al 
(spatial 
as 
random 
effect) 

Site specific  

Some 
potential 
when 
using 
random 
effects 

Has been 
used: 
daily                                
Works 
best for: 
daily - 
annual 

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature 
and 
discharge 
records for 
calibration  

Has been 
used: 
daily max                             
Works 
best for: 
daily - 
annual 
mean or 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
to implement 
as will not be 
possible from 
dropdown 
menu options 

R (packages 
lme or lm4)                       
SPSS                           
MATLAB                                 

Y 

Established 
technique but 
not widely 
used for water 
temperature 
modelling. 
Enables 
temporal and 
spatial errors 
to be 
incorporated. 
Flexible - 
models can be 
nested with 
random effects 
at varying 
spatial and 
temporal 
scales. 

Can be 
computationall
y demanding 
to fit and 
convergence 
can be an 
issue. 

 No 

Wehrly et 
al. (2009);             
Moore et al. 
(2013);                           
Siegel & 
Volk (2019) 
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8 
Generalised 
additive 
modelling 

Tempor
al 
(spatial 
as 
random 
effect) 

Site specific  

Some 
potential 
when 
using 
random 
effects 

Has been 
used: 
daily - 
weekly                              
Works 
best for: 
any time 
step  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature 
and 
discharge 
records for 
calibration  

Has been 
used: 
daily max 
and daily 
mean                            
Works 
best for: 
daily - 
annual 
mean or 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
to implement 
as will not be 
possible from 
dropdown 
menu options 

R (mgcv 
package)             
SPSS                                  

Y 

Well 
established 
technique but 
not as easy to 
fit or interpret. 
Flexible and 
can account 
for non-linear 
relationship 
between air-
water 
temperature. 
Flexible so can 
include 
temporal and 
spatial 
structure to the 
model. Need 
statistical 
knowledge and 
programming 
skills. 

Can be 
computationall
y demanding 
to fit and prone 
to overfitting. 

 No 

Wehrly et 
al. (2009);     
Laanaya et 
al. (2017);                        
Jackson et 
al. (2017);            
Siegel & 
Volk (2019) 

Can be used to 
establish 
breakpoints in 
air-water 
temperature 
relationship 

9 
Functional 
Regression 
Models 

Static 
(can 
have 
tempora
l and 
spatial 
element
s but 
not 
currentl
y used 
for 
water 
tempera
ture) 

Site specific  

New 
method so 
potential 
remains 
unknown 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature, 
air 
temperature, 
meteorologic
al variables 
and 
discharge 
records for 
calibration  

Has been 
used: 
annual 
stream 
temperat
ure 
curves                              
Works 
best for: 
limited 
studies 
to make  

Intermediate 
computational 
demand. 
Statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R).  
However, user 
will need to 
have a good 
understanding 
of 
programming 
and 
background in 
statistics. 

R (Fdboost 
package) Y 

New approach 
for water 
temperature 
modelling uses 
a curve 
instead of 
daily, weekly, 
or monthly 
metrics hence 
captures more 
of its 
variability. 
Flexible 
approach 
enables 
additional 
predictors to 
be 
incorporated 
into the model.  

Difficult to 
interpret output 
and requires a 
high level of 
statistical 
expertise to 
implement. 

No Boudreault 
et al. (2019)   
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10 Autoregressive 
model 

Tempor
al Site specific  Limited 

potential 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
discharge 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration. 
Long time 
series best 
(>15 years).  

Has been 
used: 
daily - 
monthly                                          
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
required to 
implement as 
is not be 
possible from 
dropdown 
menu options 

R (arima 
function, 
package 
forecast)     
SPSS                                        
MATLAB 

Y 

Well 
established 
technique that 
is relatively 
simple to 
implement. 
Accounts for 
temporal 
autocorrelation
.  Interpretation  
more difficult 
than linear 
regression but 
still relatively 
straight 
forward 

Long time 
series are 
required for 
calibration. 
The 
transferability 
limited as 
functions need 
to be fitted for 
each new 
monitoring 
location.  
Stationarity is 
assumed so 
problematic for 
predicting for 
future climate 
scenarios. 
Spatial 
structure not 
considered. 

Yes 

Caissie et 
al. (2007);               
Benyahya 
et al. (2007) 

  

11 
Periodic 
Autoregressive 
Models 

Tempor
al Site specific  Limited 

potential 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
discharge  

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration. 
Long time 
series best 
(>15 years).  

Has been 
used: 
daily - 
monthly                                          
mean or 
max                                
Works 
best for: 
Daily - 
monthly 
mean or 
max 

Intermediate - 
statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
However user 
will need to 
have a good 
understanding 
of 
programming 
required to 
implement as 
is not be 
possible from 
dropdown 
menu options 

R (package 
parts)                   
SPSS                                        
MATLAB 

Y 

Established 
technique  that 
is relatively 
simple to 
implement and 
interpretation  
more difficult 
than linear 
regression 

Long time 
series are 
required for 
calibration. 
The 
transferability 
limited as 
functions need 
to be fitted for 
each new 
monitoring 
location.  
Prone to 
overfitting that 
can be an 
issue for future 
climate 
scenarios.  
Spatial 
structure not 
considered. 

No 

Benyahya 
et al.  
(2008);  
Graf 
(2018); 
Hague and 
Patterson 
(2014)  
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12 
Linear Spatial 
Statistical 
Network 
models 

Spatial 

Distributed 
(predictions 
for the whole 
river 
network) 

Good 
potential 

Has been 
used:  
monthly                                
Works 
best for:  
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 
+ 
topologically 
correct 
(unbroken, 
non-
circuitous) 
Digital River 
Network  

Spatially 
distributed 
water 
temperature 
records 
covering the 
environment
al range 
required for 
prediction. 
Paired or 
gridded air 
temperature 
records also 
required for 
calibration.  

Has been 
used: 
monthly                                          
mean or 
max                                
Works 
best for: 
summariz
ed 
metrics 
(e.g. 
monthly 
max) 

High 
computational 
demand (e.g. 
many days to 
fit large model 
using 16 
cores). 
Statistical 
software can 
implement 
model 
calibration and 
fitting (e.g. R 
or SPSS). 
Users will 
need a good 
understanding 
of 
programming 
to implement 
as is not be 
possible from 
dropdown 
menu options 

R (SSN  
package)            
STARS 
toolset for 
geo 
processing 
in ARC Map 
OpenSTAR
S package 
for R 
(Kattwinkel 
et al 2020) 

Y 

Relatively new 
technique but 
with good 
package 
support. 
Potential to 
predict for 
unmonitored 
locations 
across the 
entire river 
network. Has 
been 
successfully 
used to predict 
summer 
temperature 
maxima  

May only be 
effective when 
links between 
climate, 
groundwater, 
and 
topography is 
regionally 
constant. 
Computationall
y demanding 
and calibration 
requirements 
are data 
heavy. Can't 
incorporate 
temporal 
variability so is 
static - hence 
multiple 
models would 
be required for 
annual 
monthly 
prediction   

Yes 

Isaak et al. 
(2017);                        
Lee et al. 
(2020) 

Good potential 
for prediction of 
unmonitored 
sites however the 
GIS and 
calibration data 
requirements 
may be the 
limiting factor. 

13 
River network 
smoother 
models 

Spatio-
Tempor
al 

Distributed 
(predictions 
for the whole 
river network 

Good 
potential 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors+    
topologically 
correct 
(unbroken, 
non-
circuitous) 
Digital River 
Network  

Spatially 
distributed  
water 
temperature 
records 
covering the 
environment
al range 
required for 
prediction. 
Lidar 
surveys may 
be possible 
see Lee et al 
(2020). Air 
temperature 
records for 
calibration.  

Has been 
used: 
daily - 
monthly                                          
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

High 
computational 
demand (e.g. 
many days to 
fit large model 
using 16 
cores). 
Statistical 
software can 
implement 
model 
calibration and 
fitting. Users 
need a good 
understanding 
of 
programming 
to implement 
as is not be 
possible from 
dropdown 
menu options 
or currently 
developed 
packages 

No 
dedicated 
package                          
Can use 
Stars for 
preprep 
OpenSTAR
S package 
for R 
(Kattwinkel 
et al 2020). 
Fitting using 
existing 
packages to 
create river 
network 
smoother 
(mgvc) 

Y 

Relatively new 
technique that 
can be 
implemented 
using open 
source data 
analysis and 
statistical 
tools. Potential 
to predict for 
unmonitored 
locations 
across the 
entire river 
network. River 
network 
smoother more 
flexible than 
SSN Can 
incorporate 
space and 
time.  

RNS not 
transferable 
between 
catchments. 
No direct 
package 
support. 
Significant 
data and 
computational 
requirements. 
Statistical and 
programming 
expertise 
required. 

Yes - 
but 
not 
publis
hed 

Jackson et 
al. (2018);                  
O Donnell 
et al. (2014) 

Good potential 
for prediction of 
unmonitored 
sites however the 
GIS and 
calibration data 
requirements 
may be the 
limiting factor. 
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Table 3. An overview of the process-based models used for water temperature modelling (see Table 1 in methods for details on column criteria). 
Met = Meteorological variables, GIS = spatial data including land cover, elevation, distance from source/sea etc, Hydro = hydrological variables 
(discharge or groundwater etc). 
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14 
BasinTemp  or 
SnTemp 
(simplified 
heat budget) 

Spatio-
temporal 

Distributed 
-
Watershed 

Good 
potential 

Daily (for 
discharge 
data) 

GIS: Digital elevation 
model (30m res), tree 
height, vector based 
stream network 
(minimum 1:24000), 
channel geometry, 
daily                                                                    
Hydro: mean daily  
discharge, 

Spatially 
distributed 
water 
temperature 
monitoring 
stations to 
account for 
basin size, 
drainage 
density, and 
vegetation and 
lithological 
heterogeneity 

Daily - 
monthly 
mean or  
max 
temperature 

Computation
al 
requirement
s unclear for 
modelling at 
a scale 
larger than a 
single water 
shed.  

Proprietary 
(Still Water 
Science) 

N 

Good support 
and well 
established. A 
simple 
hydrological 
model is 
included. No met 
data required as 
assumes that 
direct shortwave 
radiation drives 
summertime 
stream 
temperatures. So 
can calculate 
temperature 
based on 
latitude, aspect 
and riparian 
shading. 

GIS data 
requirements 
are demanding 
(e.g. tree 
heights).  The 
cost may be 
prohibitive. 
May need 
adaption for 
predictions 
based on 
future climate 
data as 
assumes solar 
radiation is the 
key drivers of 
heat budget 

No Allen et al. 
(2007) 

May 
require 
further 
developm
ent to 
enable 
prediction
s based 
on air 
temperatu
re 

15 

DHSVM-RBM 
(Distributed  
Hydrology    
Soil 
Vegetation 
Model coupled 
with semi-
Lagrangian  
stream  
temperature 
model RBM) 
or VIC-RBM 

Spatio-
temporal 

Distributed 
-
Watershed 

Good 
potential 

Daily (for 
discharge 
data) 

Met variables: 
precipitation, air 
temperature, down-
ward shortwave and 
longwave radiation, 
wind speed, and 
relative humidity                                                                
Hydro: discharge 
GIS: River network 
(slope and length) 
and vegetation cover 
for shading, soil data, 
land cover 

Demanding as 
both the 
discharge and 
temperature 
components 
need to be 
calibrated  

Daily - 
monthly 
mean or  
max 
temperature 

Computation
ally 
demanding  
- state for 
space 
models. 
Requires 
highly 
specialised 
skill set to 
implement 

Fortran     
Free 
download 
http://www.h
ydro.washin
gton.edu/Let
tenmaier/Mo
dels/RBM/in
dex.shtml 

Y 

Characterization 
of the impacts of 
climate, 
landscape, and 
near-stream 
vegetation 
changes on 
stream 
temperature and 
allows modelling 
of spatially 
distributed water 
temperature for 
the entire stream 
network.  

Computational 
requirements 
may prohibit 
use for large 
scale 
modelling 

Yes 

Sun et al. 
(2015);                                         
Yearsley 
et al. 
(2019); 
Van Vliet 
2013 
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16 T-net model  
(equilibrium 
temperature) 

Spatio-
temporal 

Distributed 
-
Watershed 

Good 
potential 

Daily Met variables: air 
temperature, specific 
humidity , wind 
velocity , global 
radiation and 
atmospheric radiation                                          
Hydro: discharge, 
GW flow, GW 
temperature GIS: 
River network (slope 
and length) and 
vegetation cover for 
shading 

Spatially 
distributed 
water 
temperature 
and discharge 
monitoring 
stations to 
account for 
environmental 
heterogeneity 

Daily - 
monthly 
mean or  
max 
temperature 

Computation
ally 
demanding 
as discharge 
and 
groundwater 
flows need 
to be 
spatially 
distributed 
so coupling 
with a 
hydrological 
model 
required. 
Multiple 
steps 
required to 
solve the 
heat budget  

N N Performs best for 
lower order 
streams. Proven 
to work across 
large catchments 
(e.g. Loire Basin) 

Requires 
highly 
specialised 
skillset to 
implement 
(programming)
. Seasonal 
bias due to 
fixed shading 
factor. 
Sensitive to 
variations in 
hydraulics 

Yes Beaufort 
et al. 
(2016) 

  

17 Dynamical 1-D 
water energy 
routing model 
(DynWat) 

Spatio-
temporal 

Global 
(10km 
resolution) 

Good 
potential 

Daily Met variables: 
precipitation, air 
temperature, down-
ward shortwave and 
longwave radiation, 
wind speed, and 
relative humidity                                                                      
Hydro: 1. direct 
runoff or surface 
runoff;2. interflow;3. 
base flow or 
groundwater 
discharge; and 4. 
simulated or 
estimated 
temperature of these 
fluxes                                   
GIS: Land Processes 
Distributed Active 
Archive Centre, 
HYDRO1kElevation 
Derivative Database, 
http://eros.usgs.gov/#
/Find_Data/Products_
and_Data_Available/g
topo30/hydro 

Spatially 
distributed 
water 
temperature 
and discharge 
monitoring 
stations to 
account for 
environmental 
heterogeneity 

Daily - 
annual 
mean or 
max 
temperature. 
Works best 
for 
monthly/ann
ual to 
assess long 
term trends 

Computation
ally 
demanding 
as discharge 
needs to be 
spatially 
distributed 
hence 
coupling 
with a 
hydrological 
model 
required.  

Model 
dynWat link: 
https://githu
b.com/wand
e001/dynWa
t/tree/master
/model                                  
Coupled 
hydrological 
Model PCR-
Globwb2                                         
https://githu
b.com/UU-
Hydro/PCR-
GLOBWB_
model 

Y Can provide daily 
estimates of 
water 
temperature 
across very large 
spatial scales. 
Based on GIS 
layers that are 
freely available 
with no need for 
pre processing. 

Requires 
highly 
specialised 
skillset to 
implement 
(programming)
. Coarse scale 
(10 km) and 
river network 
may not match 
requirements 
(i.e. 
hydrosheds 
network) 

Yes Wanders 
et al. 
(2019) 
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18 I Tree Spatio-
temporal 

Reach - 
watershed 

Good 
potential 
across 
small 
spatial 
scales 

Hourly 

Input data 
requirements are 
particular demanding 
and include:                                          
Hydro - discharge for 
river and lateral storm 
sewer inflows, 
groundwater and 
hyporheic exchange                                            
Met -precipitation, air 
temperature, down-
ward shortwave and 
longwave radiation, 
wind speed, and 
relative humidity                     
GIS: Land cover and 
shading data 

Spatially 
distributed 
water 
temperature 
and discharge 
monitoring 
stations to 
account for 
environmental 
heterogeneity 

Hourly mean 
Computation
ally 
demanding.  

Freely 
available 
code in C++ 
for 
VisualStudio
,thttp://www.
itreetools.or
g/research_
suite/coolriv
er. 

Y 

Can provide 
hourly stream 
temperature 
estimates. Can 
model urban 
impacts on heat 
budget and diel 
variability in 
riparian shading 
Useful for 
simulating river 
warming or 
cooling due to 
urban 
development or 
greening. Well 
documented 
source code so 
can be adapted/ 
extended if 
required. 

Requires 
programming 
knowledge to 
implement. 
Only suitable 
for modelling 
reach to small 
basin scale 
due to input 
data 
requirements 

No Abdi et al  
2020 

Added as 
may be 
suitable 
for 
informing 
tree 
planting 
strategies 
in 
headwater
s 
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Table 4. An overview of machine learning models used for water temperature modelling (see Table 1 in methods for details on column criteria). 
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19 K-nearest 
neighbour Static Site 

specific  
Limited 
potential 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: daily 
max                             
Works best 
for: daily - 
annual 
mean or 
max 

Intermediate - 
statistical 
software can 
implement model 
calibration and 
fitting (e.g. R or 
SPSS). However 
user will need to 
have a good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

Can be 
implemented 
in R using 
the 
tidymodels 
or caret 
package 

Y 

Established 
technique but not 
widely used for 
river temperature 
modelling. Flexible 
approach can 
include a 
multivariate 
dataset 

Model tuning 
can be difficult. 
Long time series 
usually required 
for calibration. 

No 

Benyahya 
et al.  
(2008)            
St-Hilaire 
et al. 
(2012) 

Models 
performed 
best when 
using 
lagged air 
and water 
temperature 
as 
predictors 

20 
Artificial 
Neural 
Network (feed 
forward) 

Static Site 
specific  

Some 
potential 

Has been 
used: 
Hourly- 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: daily - 
monthly 
max mean                             
Works best 
for: daily - 
monthly 
mean or 
max 

Demanding -   
user will need to 
have a good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

See R 
package 
wateRtemp 
github.com/
MoritzFeigl/
wateRtemp 

Y 

Established 
technique that has 
been widely used 
in hydrology and 
specifically for 
water temperature 
modelling. Flexible 
approach that can 
incorporate a 
range of static and 
dynamic variables 

Black box - 
difficult to 
identify 
relationship 
between 
predictor and 
response. Model 
tuning can be 
difficult. Long 
time series 
usually required 
for calibration. 

Yes 

Zhu et al. 
(2018)             
DeWeber 
& Wagner 
(2014) 

  

21 
ANN and deep 
learning (long 
short-term 
memory) 

Static Site 
specific  

Some 
potential 

Has been 
used: 
daily - 
monthly                                
Works 
best for: 
daily - 
monthly  

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and gridded 
meteorological 
data  

Has been 
used: daily 
mean / max                            
Works best 
for: daily - 
annual 
mean or 
max 

Demanding -   
user will need to 
have a good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

Can be 
implemented 
in Python 
using 
HYdroDL 
code 
(https://githu
b.com/mhpi/
hydroDL) 

Y 

Can outperform 
conventional 
statistical 
approches. in 
terms of accuracy  
Can be used to 
predict point scale 
temperature 
based on basin 
meteorological 
averages. Can 
predcit discharge 
for ungauged 
basins that can 
improve model 
accuracy. 

Model tuning 
can be difficult 
and an 
experienced 
computer 
scientist is 
required. Black 
box model so 
can't extract 
physical basis. 
Still in the 
research phase 
so risky to 
implement. 

Yes 

Rahmani 
et al. 
(2021); 
Qiu et al. 
(2021) 
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22 
GPR 
(Gaussian 
Process 
Regression) 

Static Site 
specific  

Limited 
potential 

Has been 
used: 
daily                                 
Works 
best for: 
unclear 
due to 
limited 
studies 

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: daily 
mean / max                            
Works best 
for: unclear 
due to 
limited 
studies 

Demanding -  
user will also 
need to have a 
good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

Can be 
implemented 
in R using 
the 
tidymodels 
or caret 
package 

Y 

Can outperform 
conventional 
statistical 
approaches in 
terms of accuracy. 
Can be used to 
predict point scale 
temperature.  It  
combines  various  
machine  learning  
tasks,  including  
model  training,  
uncertainty  
estimation,  and  
hyper parameter  
estimation,  which  
is  its  major  
advantage  over  
the  other  
machine  learning  
methods.  

Model tuning 
and selection of 
prior can be 
difficult and an 
experienced 
computer 
scientist is 
required. Limited 
number of 
applications for 
river water 
temperature. 

No 

Zhu et al 
(2018)           
Grbic et 
al.  (2013) 

  

23 Random 
Forest Static Site 

specific  
Limited 
potential 

Has been 
used: 
daily                                 
Works 
best for: 
unclear 
due to 
limited 
studies 

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: daily 
mean                            
Works best 
for: unclear 
due to 
limited 
studies 

Demanding -   
user will need to 
have a good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

Can be 
implemented 
in R using 
the 
tidymodels 
or caret 
package 

Y Insensitive to 
missing values 

Model tuning 
can be difficult  No Feigl et al 

(2021)  

Paper still 
under open 
review in 
HESS 

24 
Extreme 
gradient 
boosting 

Static Site 
specific  

Limited 
potential 

Has been 
used: 
daily                                 
Works 
best for: 
unclear 
due to 
limited 
studies 

Air 
temperature 
+         
Discharge   
+                            
Other met. 
vars +            
Catchment 
descriptors 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: daily 
mean                            
Works best 
for: unclear 
due to 
limited 
studies 

Demanding -   
user will need to 
have a good 
understanding of 
programming to 
implement as will 
not be possible 
from dropdown 
menu options 

Can be 
implemented 
in R using 
the 
tidymodels 
or caret 
package 

Y Insensitive to 
missing values 

Model tuning 
can be difficult  No Feigl et al 

(2021)  

Paper still 
under open 
review in 
HESS 
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Table 5. An overview of hybrid models used for water temperature modelling (see Table 1 in methods for details on column criteria). 
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25 

Gallice-
physics-
derived 
statistical 
model 

Hybrid  Point/ 
reach 

Some 
potential 
but needs 
further 
validation 

Monthly 

Met:  air 
temperature                                                        
GIS:DEM 
(<10m), 
Corrected river 
network, land 
cover 
information                                                             
Hydro: 
discharge                                

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
Monthly 
mean                                
Works 
best for: 
Monthly 
mean 

Intermediate -
Can be 
implemented in 
many 
programming 
languages. User 
will need to have 
a good 
understanding of 
programming to 
implement and 
parameterise 

No N 

Data 
requirements 
are minimal 
compared to 
physically 
based models. 
Model 
parameters 
have a physical 
basis so can be 
readily 
interpreted 

Not tested 
outside 
Switzerland 
so would 
need to be 
parametrise
d for new 
locations 

No Gallice et 
al. (2015)   

26 Air2stream Hybrid  Point/ 
reach 

Some 
potential 

Daily 
data 

Air 
temperature 
and discharge 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily - 
annual 
mean or 
max                                
Works 
best for: 
weekly - 
monthly 
mean or 
max 

Demanding -  
can be 
implemented in 
Fortran with  
data prep and 
validation 
possible in other 
software in (e.g. 
MATLAB). User 
will need to have 
a good 
understanding of 
programming 
principals to 
implement as will 
not be possible 
from dropdown 
menu options. 

Model source 
code available: 
https://github.c
om/marcotoffol
on/air2stream.  
For Machine 
learning 
extensions for 
optimization 
MATLAB code 
available (see 
Piotrowski & 
Napiorkowski 
2018) 

Y 

Can outperform 
traditional 
regression 
approaches and 
only requires 
minimal data to 
drive the model. 
Physical basis 
means 
predictions 
outside 
observed range 
possible. 

Still in the 
research 
phase. 
Model 
optimization 
can be 
difficult with 
many 
different 
techniques 
available 
with no 
consensus 
on the best 
approach 

No but 
has 
been 
used to 
hindcast 
long 
time 
series 
(see 
Islam et 
al., 
2019) 

Toffolon & 
Piccolroaz 
(2015)  
Piccolroza 
et al. 
(2016) 

Lumped heat 
budget model. 
Can use gridded 
temperature 
data as an input. 
Uses single  
ordinary  
differential  
equation  
linearly  
dependent  on  
air  temperature,  
water  
temperature  
and  discharge.  

27 

The 
Integrated 
Soil-Water-
Balance and 
Artificial 
Neural 
Network 
version 1 
(SWB-
ANNv1) 

Hybrid  Spatially 
distributed 

Good 
potential Daily 

Met variables:  
air temperature 
and 
precipitation                                 
Hydro: 
discharge, 
groundwater 
delivery and 
ground water 
recharge GIS: 
Drainage area, 
sinuosity 
(corrected river 
network 
required), land 
cover 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily 
mean , 
monthly 
mean 
(July)                             
Works 
best for: 
daily 
mean   

Very Demanding 
-  user will need 
to integrate the 
soil water model 
with a ANN 
model. A 
computer 
scientist is 
required to 
implement this 
model 

No N 

Proven to work 
for spatially 
distributed 
future 
predications. 
Less 
demanding in 
terms of input 
data a than 
physically 
based models 

Black box - 
difficult to 
interpret 
model. 
Computation
ally 
demanding 
so may not 
be feasible 
for large 
scale 
modelling 

Yes Stewart et 
al (2015)   
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28 Wavelet - AI 
model Hybrid  point/ 

reach 
Limited 
potential 

Hourly - 
monthly 

Air 
temperature 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily 
mean                       
Works 
best for: 
daily 
mean   

Demanding -  
can be 
implemented in  
MATLAB or R. 
Users will need 
to have a good 
grasp of 
programming to 
implement  

Caret package 
in R for tuning 
ANN           
Multiple 
packages in R 
for wavelets 
including 
wavelets 

Y 

Performs well 
with just air 
temperature as 
the driver 

Model tuning 
required for 
each new 
site. Long 
time series 
required 
(ideally >10 
years) 

No 

Graf et al 
(2019)  
Qiu et al 
(2020) 

 

29 
WT-MLR or 
Wavelet - 
fuzzy model 

Hybrid  point/ 
reach 

Limited 
potential 

Hourly - 
monthly 

Air 
temperature 

Site specific 
water 
temperature 
and air 
temperature 
records for 
calibration  

Has been 
used: 
daily 
mean 

Demanding -  
can be 
implemented in  
MATLAB or R. 
Users will need 
to have a good 
grasp of 
programming to 
implement 

Caret package 
in R for tuning 
ANN           
Multiple 
packages in R 
for wavelets 
including 
biwavelets 

Y 
 

Performs well 
with just air 
temperature as 
the driver 

Model tuning 
required for 
each new 
site. Long 
time series 
required 
(ideally >10 
years) 

No Zhu et al 
2019   
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Decision trees for water temperature model 
selection 
A series of decision trees were developed based on discussion with Environment 
Agency specialists focused around: (1) the information presented in Tables 2 – 5 and 
(2) the perceived challenges to implementation of a large-scale water temperature 
model with potential to make projections. A number of modelling approaches 
identified in Tables 2- 5 were not carried forward to the decision trees as they were 
deemed unsuitable due to the high data/calibration requirements (e.g. I-Tree or T-
net) or lack of example use cases in the literature (e.g. functional regression).  
 
The main goal of the report was to identify a suitable modelling framework based on 
data availability, analytical requirements, spatial/temporal scale and computational 
demand. In Figure 1 a set of decision trees is presented for selecting an appropriate 
modelling approach based first on the generic classification of the modelling 
approach (i.e. statistical, process based, machine learning or hybrid) and 
subsequently split by spatial and temporal scale of the predictions. This is 
particularly useful if a user has a preference for a particular modelling approach. For 
example if a statistical regression approach is selected (See Figure 1B) then a user 
can assess how the approaches are linked, the underlying data assumptions and 
potential to predict to unmonitored locations. An alternative series of decision trees 
are presented in Figure 2 with the primary split based on the data available for model 
fitting. Subsequent splits are then based on computational demands, prediction time 
step and statistical expertise required. This decision making approach is particularly 
useful when a user has a specific dataset and wishes to assess all the feasible 
modelling options. 
 
The decision trees were worked through based on the likely data constraints and 
selection criteria outlined in the Methods section. Given the data limitations and need 
for an interpretable model it was clear that a statistical approach was required. Both 
the reach scale and entire river network outputs were not deemed feasible as the 
calibration/validation data available was not adequate to facilitate a river network 
model (SSN/RNS; Figure 1B) A mixed effect regression model was deemed the 
most feasible approach for producing temperature projections as it provided flexibility 
around the required model timestep (i.e. could be used with sub daily – monthly 
data) and has potential to predict to unmonitored locations.  
 
The data requirements of a mixed-effect regression model are less demanding when 
compared to process based modelling approaches and model outputs/coefficients 
are interpretable, often with a physical basis (unlike black-box machine learning 
approaches), and there are a wide range of open source software applications 
available for implementation (Table 2). Furthermore, a mixed-effect regression model 
is flexible with potential for a wide range of use applications (e.g. station specific or 
multi-site) and also represents a building block towards a water temperature model 
for the entire river network (e.g. a spatial statistical model; Jackson et al., 2018).  
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Figure 1. Decision tree for selecting modelling approaches based on the desired 
modelling approach (i.e. the primary split in the tree is based on the model approach 
(see A), for example process-based or statistical). Box colour denotes if a model can 
handle statistical problems associated with spatial covariance (see key). The dashed 
box outlines denote models that can only predict for monitored sites while solid box 
outlines are for models that can predict for unmonitored locations. The stars denote 
whether a model is site specific, spatially distributed or temporally dynamic (see key 
for detail). Distributed =Water temperature sites at locations covering range of 
environmental conditions, Station = Location of monitoring stations haphazard (not 
covering range of env. conditions), DRN = Topologically correct (unbroken, non-
circuitous) Digital River Network , Ta = Air temperature, Tw = Water temperature, EB =  
Meteorological data required for heat budget / energy balance (e.g. air temperature, 
humidity, wind speed, radiation, bed heat flux), Q = River flow/discharge, ANN = 
Artificial Neural Network, LMM/GAMM = Linear /generalized additive mixed effect 
model, SSN/RNS = Spatial Statistical Model/ River Network Smoother (specific type of 
SSN), KNN = K-Nearest Neighbour, GPR = Gaussian Process Regression. 
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Figure 2.  Decision tree for selecting water temperature modelling approaches 
depending on the availability of data (i.e. the primary split in the tree is based on the 
data available). Box colour denotes if a model can handle statistical problems 
associated with spatial covariance (see key). The dashed box outlines denote models 
that can only predict for monitored sites while solid lines are for models that can 
predict for unmonitored locations. Distributed =Water temperature sites at locations 
covering range of environmental conditions, Station = Location of monitoring stations 
haphazard (not covering range of env. conditions), DRN = Topologically correct 
(unbroken, non-circuitous) Digital River Network , Ta = Air temperature, Tw = Water 
temperature, EB =  Meteorological data required for heat budget / energy balance (e.g. 
air temperature, humidity, wind speed, radiation, bed heat flux), Q = River 
flow/discharge, ANN = Artificial Neural Network, LMM/GAMM = Linear /generalized 
additive mixed effect model, SSN/RNS = Spatial Statistical Model/ River Network 
Smoother (specific type of SSN), KNN = K-Nearest Neighbour, GPR = Gaussian 
Process Regression. Note here the number displayed in parentheses relates to the 
model number in Tables 1 – 4, and is to aid cross-referencing. 
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Proposed framework for developing a flexible water 
temperature model  
Development of methods for spatially distributed, daily projections of water 
temperature was deemed not feasible given the temporal resolution of the water 
temperature data available for model calibration and validation (See Methods 
section). Following the decision-making process outlined in the previous section a 
mixed effect regression model was identified as the approach that offered the 
greatest flexibility and scope for use in multiple applications (e.g. single station to 
multiple monitoring locations). While this modelling approach has some potential to 
predict to unmonitored locations any results should be treated with caution and only 
used when the calibration data covers the full range of environmental conditions 
within the river network. Furthermore, adequate data for robust validation of 
predictions is always required and it is still possible to overfit due to issues with 
spatial covariance (Figure 3). A useful property of a mixed effect regression model is 
that it represents a building block towards a fully distributed, river network water 
temperature model (see Figure 1B). Detailed instructions for developing a mixed 
effect regression model to make water temperature projections are provided in the 
appendices of this report. These instructions cover all the required steps, including: 
site/selection, data pre-processing, covariate extraction, exploratory analysis, model 
selection, model validation and developing projections.  

 

Figure 3. High-level schematic representation of the proposed regression based 
modelling approach to enable site specific water temperature predictions. The 
numbers relate to the steps outlined in detail in Appendix A and Appendix B. Note it is 
important that prior to undertaking any modelling exercise there is clear 
understanding of the decision context. For example, a user may wish to develop a 
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model for a well instrumented catchment. In this instance Figure 2 may identify a 
process based model is a suitable solution.  

Further recommendations and 
considerations 
The multi-site, mixed effect regression approach outlined above represents a 
building block on which a river network smoother model (RNS; Jackson et al. 2018) 
can be built, similar to existing models for Scotland. An RNS model would be 
temporally dynamic, facilitating prediction of any daily water temperature metric, and 
spatially distributed across the entire river network (i.e. England), whilst also 
accounting for spatial covariance (non-independence of data on river networks). To 
create an RNS model there are a number of additional steps required:  

• A topologically correct (unbroken, non-circuitous) Digital River Network (DRN) 
for the whole of England needs to be generated and validated. Predictor 
variable also need to be available for all the nodes on the river network.  

• At least one year of sub-daily water temperature data (preferably sub-hourly) 
needs to be generated for sites that cover the full range of potential 
environmental conditions within the network (Appendix C). 

• Spatial data analysis similar to that outlined in Jackson et al. (2016) is 
required (Appendix C). This can be conducted for monitoring sites with 
historical data (i.e. those used in the mixed effect regression model above) to 
assess how well they cover the range of environmental conditions. This will 
enable optimisation of the site selection for additional high resolution water 
temperature monitoring - reducing redundancy and minimising the need to 
establish new monitoring sites. 

Alternatively, a temporally static spatial statistical network model (SSNs) can be 
generated for a specific temperature metric and time period (e.g. summer maximum 
temperature or august mean temperature). These models still require sub-daily water 
temperature records (Isaak et al. 2017) but over a shorter time period (i.e. during 
time of interest) and recent research has highlighted the potential for using remote 
sensing data for calibration (Lee et al. 2020). While the calibration data requirements 
for SSN models can be less than RNS models, the trade-offs need to be considered 
as SSN models are only suitable for certain applications (e.g. assessing thermal 
maxima). RNS models have been aggregated spatially or temporally to provide a 
range of water temperature summary metrics (see Jackson et al. 2017). 

As identified in Tables 2 – 5 there have been limited examples of water temperature 
models being driven by climate models to generate projections. Hence, there are not 
enough examples to facilitate a rigorous assessment and thus advise on best 
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practise in the context of water temperature modelling. However, it is important to 
consider the spatiotemporal scale required as this will dictate the choice of climate 
model product (see appendix B) For example, a static spatial model may be best 
driven by a probabilistic climate projection with a monthly temporal resolution, while 
a dynamic river network smoother model by a regional or derived climate projection 
(daily time step). Another important consideration relates to the choice of bias 
correction which can have implications for the ability to quantify extremes (see 
appendix B). Furthermore, it is worth considering the properties of any future climate 
scenario that are required for the particular application (i.e. means vs extremes/ 
change in seasonality). For example, in certain situations an approach similar to that 
outlined by Isaak et al. (2017) may be feasible where future scenarios are driven by 
simple change factors (i.e. the current air temperature series; +2 °C, +4 °C +6 °C).   

Summary 
In this report we have reviewed available approaches for modelling river temperature 
across a range of spatial and temporal scales. A number of promising emerging 
research approaches were identified that may be suitable for large scale modelling. 
Machine learning / artificial intelligence hold promise for future development but 
spatial network models represent the current “state of the art” for water temperature 
modelling. Decision trees were developed for selecting water temperature models 
based on: (a) methodological approach (e.g. statistical, process based, etc) (b) data 
availability / spatio-temporal scale. A potential modelling approach (mixed effect 
regression) was identified for making water temperature projections primarily based 
on constraints in data availability and the spatio-temporal scale required for model 
predictions. Finally, further considerations are presented around the available 
climate projections, how these could be used to drive future temperature predictions 
and the additional steps required to develop a water temperature model for the entire 
river network. 
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List of abbreviations 
AIC Akaike Information Criterion 

ANN Artificial Neural Network 

AI Artificial Intelligence 

BIC Bayesian Information Criterion 

DRN Digital River Network 

EB  Energy Balance 

GAM Generalized Additive Model 

GAMM Generalized Additive Mixed effect Model 

GPR Gaussian Process Regression 

KNN K-Nearest Neighbour 

LMM Linear Mixed effect Model 

Q River flow/discharge 

RPCs Representative Concentration Pathways 

GCMs Global Circulation Models 

RNS River Network Smoother 

SAGIS Source Apportionment Geographical Information System 

SIMCAT Environment Agency’s stochastic water quality river mode 

SSN Spatial Statistical Model 

Ta Temperature of the air 
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Tw  Temperature of the water 
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Glossary 
Akaike Information Criterion A single number score that can be used to determine 

which of multiple models is most likely to be the best 
model for a given dataset 

Artificial intelligence Computer systems able to perform tasks normally 
requiring human intelligence 

Artificial Neural Network  Computer systems based on biological neural networks 
in brains 

Autocorrelation A mathematical representation of the degree of 
similarity between a given time series and a lagged 
version of itself over successive time intervals. 

Bayesian Information Criterion A single number score that can be used to determine 
which of multiple models is most likely to be the best 
model for a given dataset 

Calibration data Data used to provide correction of measured data or 
perform uncertainty calculations. 

Collinearity When one predictor variable  has a linear relationship 
with another, which in turn reduces their statistical 
significance 

Covariates A possible predictive or explanatory variable of the 
dependent variable 

Deep learning models A type of machine learning 

Digital River Network  A digitised map of the entire river network that should 
be topologically correct (unbroken, non-circuitous) 

Distributed  Water temperature sites or modelling points are spread 
across the entire river network at a spatial resolution 
suitable for the purposes of the modelling exercise   

DynWat  A dynamical 1-dimensional water energy routing model 

https://en.wikipedia.org/wiki/Variable_(mathematics)
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Energy balance  Meteorological data required for heat budget / energy 
balance (e.g. air temperature, humidity, wind speed, 
radiation, bed heat flux) 

Functional regression A version of regression analysis when responses or 
covariates can be functions (e.g. information about the 
shape of a curve) 

Gaussian Process Regression A nonparametric, Bayesian approach to regression 

Generalized additive mixed 
effect model 

An extension of linear mixed models to allow response 
variables from different distributions 

Generalized additive model A modelling technique where the impact of the 
predictive variables is captured through smooth 
functions which can be nonlinear 

Global Circulation Model A mathematical type of climate model of the general 
circulation of a planetary atmosphere or ocean 

Heterogeneous Diverse in character or content 

Hybrid wavelet-neural network 
models 

A type of machine learning 

K-Nearest Neighbour A machine learning algorithm 

Linear mixed effect model An extension of simple linear models particularly used 
when the data have temporal or spatial structure that 
needs to be considered to ensure assumptions of 
independence are not violated. 

Linear models A linear approach to modelling the relationship between 
a response and one or more explanatory variables 

Logistic regression A modelling approach used to describe data and to 
explain the relationship between one dependent 
variable and one or more explanatory variables. 



48 of 61 

Machine learning A field of artificial intelligence where a computer 
program can learn and adapt to new data without 
human intervention 

Overfitted A modelling error occurring when there is limited 
variation within the model reducing its predictive power 

Process-based models A water temperature modelling approach that attempts 
to recreate the physical phenomena that cause 
warming or cooling. 

Regression based models A model exploring the relationship between one 
variable (the dependent variable), and several other 
variables (independent variables) 

Representative Concentration 
Pathways  

A greenhouse gas concentration (not emissions) 
trajectory adopted by the Intergovernmental Panel on 
Climate Change 

Residuals An estimate of the unobservable statistical error 

River Network Smoother  A statistical model with potential to predict for 
unmonitored locations across an entire river network. 

Spatial Statistical Model  A model based on statistical tools that are used to 
characterize the distribution of something across space 

Station A monitoring location 

Sub-daily  At a frequency of smaller periods than days 

Sub-hourly At a frequency of smaller periods than hours 

Topology The shape of the land 
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APPENDIX A: Detailed schematic representation of the modelling 
approach.  



 

APPENDIX B: Development of spatio-
temporal river temperature model using 
"spot" river temperature measurements in the 
absence of a corrected digital river network 

Prerequisites 
The minimum data requirement for a site-specific (i.e. not distributed across the entire 
network) regression based river temperature model is water and air temperature records. 
These can either be paired stations (models may need to be developed to apply transfer 
functions if the distance is > 2km) or based on gridded temperature products available 
from the Met Office. The recommended regression based model described here assumes 
it is unlikely that the Environment Agency will have access to sub-daily water temperature 
data from enough sites to develop a spatially distributed and temporally dynamic 
regression model. Hence, it is recommended that sites with long term and sub-monthly 
water temperature time series based, on spot sampling, are used to develop a mixed 
effect regression model. This approach provides some potential to predict for new 
unmonitored sites providing there is no bias in the calibration data, and the new locations 
are within the environmental range of sites used to calibrate the model. A useful first step 
before model fitting would be to investigate the consequences of using spot sample data 
(collected during regular working hours) to characterise daily temperature metrics and 
investigate to what extent biases could vary between sites and consider the consequences 
for regression models. This could be based on resampling of existing high-frequency 
(hourly) records to simulate the spot sampling resolution (weekly – monthly). Other 
covariates are recommended to improve the model accuracy and also to increase the 
potential to make predictions for unmonitored sites. It is assumed that all data (particularly 
water temperature and air temperature) used have undergone quality control procedures 
to identify and remove spurious values associated with operator or instrument error (see 
Orr et al. 2015). It is beyond the scope of this document to outline suitable methods for the 
quality control step in the procedure. Finally, the following method is only appropriate for 
circumstances where spot samples are collected at random times of day to ensure on 
temporal biases within or between sites. 

Step by Step Instructions 
STEP 1. A thorough assessment of the available water temperature (Tw) data is required. 
Identification of missing records can be done using the R software environment which 
offers useful tools for graphing (ggplot2) and summarising (skimr) large data sets.  

 

https://www.r-project.org/
https://ggplot2.tidyverse.org/
https://cran.r-project.org/web/packages/skimr/vignettes/skimr.html
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Figure A1. Example of the summary output that can be generated using Skimr. 

 

Depending on gap length and timestep, operators must decide if interpolation is a viable 
option. Linear interpolation is the best option for short gaps while splines or polynomials 
are better suited to longer gaps (Gnauck 2004, Lepot et al. 2017). More complex methods 
are available (e.g. machine learning and autoregressive models) but require longer 
timeseries to be reliably implemented. There are a number of R packages available for 
univariate time series interpolation, however ImputeTS is a recommended staring point. 

 

 

Figure A2. Example of a test time series (monthly resolution) with missing data filled using 
ImputeTS. The imputed values are those filled by the statistical function with “real values” 
representing the actual value for the filled data point. The advantage of ImputeTS is that the 
fill function performs well even when data are trending.  

 

https://cran.r-project.org/web/packages/imputeTS/vignettes/imputeTS-Time-Series-Missing-Value-Imputation-in-R.pdf
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An assessment of the number of samples per year/month/week/day is required to decide 
on feasible model time step. A rough guide is that: i) daily models require hourly records, 
ii) weekly models require daily data, iii) monthly models require sub-weekly records. The 
time of day that the measurement was collected is also important as this can bias 
estimates of maximum or mean due to peak water temperature generally occurring in the 
afternoon during summer. Advection and site/ catchment specific properties makes it 
difficult to create models for deriving daily peak water temperature from a spot sample. 
However, bias in the calculation of weekly/monthly mean Tw is reduced, if sites with >3 
year record length and a degree of variability in the time of day that the water temperature 
was measured are selected for modelling. NOTE: for models at the monthly time step data 
longer time series are recommended to build robust models. If there is limited variability in 
the time of measurement and an unbiased mean cannot be generated then a judgment 
must be made as to whether modelling relative change in water temperature is a suitable 
compromise. 

 

STEP 2. Water temperature and air temperature need to be available at the same 
temporal resolution, so a data aggregating may be required if this is not the case. The xts 
package in R provides ‘downsampling’ or aggregating functions. Alternatively, if adequate 
data is available calculation of a water temperature metric (e.g. mean Tw) can be 
conducted. Interpolation from coarse monitoring time steps (e.g. monthly or weekly) to 
daily time steps is not advisable as the uncertainty associated can be significant. However, 
there are promising approaches being developed for hydrographs and groundwater level 
observations see the tool box for TFN models (multiple site linear transfer function noise) - 
http://peterson-tim-j.github.io/HydroSight/. 

 

STEP 3. The availability of covariates for model fitting needs to be assessed. Following 
Jackson et al. (2018) the following suite of covariates provide good predictive power: air 
temperature data (station or gridded), discharge data records (river flow archive), land 
cover data (CEH land cover map 2019), riparian shading (e.g. woodland in a 25 m buffer 
width extending 1000 m upstream), upstream catchment area, Strahler river order, 
channel orientation, altitude, summer and winter hill shading, channel width, channel 
gradient, distance to coast and distance to the sea along the river. A decision on the use 
of station specific vs gridded air temperature records is required at this stage. Gridded 
data is recommended as it is directly comparable to climate model outputs. All covariates 
need to be collated and the quality assessed before including them in the model. In 
addition all spatial data used must cover the spatial scale to be predicted over as you have 
matched covariates for all of the prediction locations. 

 

STEP 4. If a water temperature metric (e.g. Mean Tw) was calculated in (2) then the same 
must be done for covariate time series data (air temperature and discharge). Time steps 
should be aligned and checked for consistency. It is assumed that all data taken to this 

https://cran.r-project.org/web/packages/xts/index.html
http://peterson-tim-j.github.io/HydroSight/
https://nrfa.ceh.ac.uk/
https://catalogue.ceh.ac.uk/documents/31f4887a-1691-4848-b07c-61cdc468ace7
https://www.ceda.ac.uk/blog/uk-weather-station-records-now-freely-available-to-all-midas-open/
https://www.metoffice.gov.uk/research/climate/maps-and-data/data/haduk-grid/haduk-grid
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stage have been quality controlled. Screening for outliers is advised and missing data 
should be filled where it is feasible. 

 

STEP 5. Data preparation prior to modelling. An assessment of collinearity between 
covariates is required. This can be carried out using a combination of visual tools, 
correlation coefficients and variance inflation factors (vif) - see Zurr et al. (2010) for a 
detailed guide. Correlation coefficients (r) > 0.8 and vif >3 are reasonably conservative 
indictors of problematic combinations of variables. To avoid issues later in the model fitting 
process the variables that are highly correlated need to be carefully considered and 
removed from the analysis based on either data quality/record length or physical 
principles*. Following this a visual assessment of data distributions is advised with 
subsequent transformation if required. This is particularly important if data are highly 
skewed or non-normal (square-root and log transformations are good starting points the 
bestNormalize package in R is also a useful tool). An assessment of spatial distribution 
and spatial structure of sites (e.g. are data clustered in space) is advised. 

*An alternative option is to undertake a principal component analysis (PCA) to reduce the 
dimensionality of the dataset and overcoming any issues associated with collinearity. 

 

STEP 6. To ensure models are robust and not overfitted to the available data it is 
advisable to conduct model training and model validation on different data fractions (i.e. 
spatially or temporally). The traditional method requires partitioning data into training and 
validation sets (training data needs to be continuous and evenly distributed across the 
year, while validation data need not be temporally continuous). If the time series length is 
short (<3 years) cross validation approaches represent a more robust alternative and can 
be applied once the model is specified (Kuhn & Others 2008, Kuhn & Johnson 2013). 

 

STEP 7. A phase of data exploration is required before model fitting and selection. The 
water temperature time series should be the focus in the first instance. Visualisation of the 
Tw time series (ggplot2) can help identify sites/regions with differing thermal regimes. This 
can be further aided by a statistical assessment of similarity between sites (e.g. Pearson’s 
correlation coefficient). A GAM smoother should be fitted to assess relationship between 
time step (e.g. week or month of the year) and water temperature. This can be done using 
the mgcv package in R. Temporal structure in the residuals can be assessed to identify 
periods when thermal patterns are most heterogeneous, spatial structure can also be 
assessed (x-y coordinates, elevation, distance from sea, etc). This information will help 
guide the operator towards the most important covariates for model building and the need 
for spatial covariance structure in the final model.  

 

https://cran.r-project.org/web/packages/bestNormalize/vignettes/bestNormalize.html
https://ggplot2.tidyverse.org/
https://cran.r-project.org/web/packages/mgcv/index.html
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STEP 8. A second phase of data exploration is required to explore the form of the 
relationship between Tw-Ta. A first step is to asses is the relationship is linear or non-
linear fit (e.g. logistic regression) which will then be taken forward for subsequent 
modelling steps. Note that a seasonally varying linear relationship can look non-linear (e.g. 
Jackson et al., 2018). Failure to capture seasonal variability would introduce temporal bias 
in predictions If data are sub-monthly test for breakpoints in relationship between Tw- Ta 
(see Letcher et al. 2016) and only model for periods when Tw – Ta are synchronised. If 
predication across the full year is required then assess the monthly variability in intercept 
and slope of the Tw-Ta relationship. If this is significant then incorporate a term to account 
for variation (see Jackson et al. 2018). Assess site specific variability in the Tw-Ta 
relationship and consider adding a random effect to allow the intercept and slope to vary 
between sites. Assess influence of covariates on Tw-Ta relationship - coplots in R are a 
recommended starting point for this. 

 

Figure A3. Example of the seasonal relationship between air and water temperature for an 
example sites in Scotland. Solid lines represent the first six months of the year (January–
June) and dashed lines the second six months (July–December). The colour range is 
between blue (cool) and red (warm) and vary according to the maximum observed daily 
temperature in each month. After Jackson et al. (2018).  

https://www.rdocumentation.org/packages/graphics/versions/3.6.2/topics/coplot
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STEP 9. The structure of the fixed effects required in the model should be apparent if 
sufficient time was spent exploring relationships during step (step 8). If the operator is 
satisfied that no further exploration of the water temperature and covariate relationships is 
required then the model selection process can be undertaken. 

 

STEP 10. Specify the global model – i.e. the most complex model including all variables 
and interactions identified in steps (step 5) and (step 8). Fit the model mgcv package in R 
with smooth terms for non-linear effects. If no no-linear terms are apparent then a linear 
mixed effect model can be fitted using the lme4 package. The operator must decide on the 
random effect structure (e.g. allow intercept and slope for Tw-Ta relationship to vary by 
site) then test for temporal autocorrelation (incorporating an AR1 structure if necessary – 
see Jackson et al. (2018). The spatial autocorrelation structure must then be assessed. 
Ideally this would be done using a variogram based on network distance and “as the crow 
flies” distance but if a corrected river network is not available then just use Euclidean 
distance. Detailed information regarding spatial autocorrelation, variograms and fitting 
appropriate correlation structure to mixed models can be found in Zuur et al. (2009) and 
Zimmerman & Ver Hoef (2017). Once the random effect structure and temporal/ spatial 
correlation structure(s) have been specified a stepwise model selection process-based on 
AIC or BIC can be conducted (see Jackson et al. 2018). The aim is achieve a 
parsimonious model with normally distributed residuals. 

 

STEP 11. Once the final model has been selected the performance of the model should be 
assessed using the validation data set or via a suitable cross validation approach (see 
below). It is generally good practice to assess multiple indicators of model performance – 
Root mean Square error (RMSE), Coefficient of variation (R2) and percent bias. The 
hydroGOF package in R provides a variety of functions to facilitate the calculation of these 
goodness of fit indicators. If the record length was too short for a data partition then 10-fold 
cross-validation should be used. This is a resampling approach that splits the 
training/calibration dataset into k-folds, refits the model and predicts for the data left out 
(Kuhn & Others 2008, Kuhn & Johnson 2013). If the performance is not satisfactory return 
to (step 8) and refine the model or collect more data. If the performance is good the 
potential to predict to unmonitored sites can be further explored using new sites not 
included in the training/validation set. 

Alternatively, the operator can decide to return to (step 8) and then fit single station 
models. This would involve the operator specifying a global model with the temporally 
dynamic data available for each site (i.e. 9b in Appendix A). Then a regression model can 
be fitted for each site in the dataset at step 10 (i.e. 10b in Appendix A) and the coefficients 
generated used to predict or generate projections into the future for that particular site.    

 

https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/lme4/index.html
https://cran.r-project.org/web/packages/hydroGOF/hydroGOF.pdf
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STEP 12. Once the final model has been selected and validated it can be used for water 
temperature projection. The first step required is a decision Global Circulation Model 
(GCMs) to be used (UKCP 18 is recommended). A useful starting point is the series of 
factsheets available for UKCP18. In the first instance users need to decide on the spatio-
temporal resolution as this can limit the climate products available - i.e. GCM, RCMs, 
probabilistic (see Table A1). If a probabilistic projection is chosen then a decision must be 
made on the Representative Concentration Pathways (RCPs) to be used (See Table A2. 
Generation of ensembles that sample key uncertainties in the different types of climate 
models are required for robust future projections. Once the GCMS and RCPs have been 
selected the required netcdf files should be obtained from the Ceda data repository 
(www.ceda.ac.uk). The operator will then need to extract relevant grid cells and 
meteorological data - this can be done using the ncdf4 package in R. The time series for 
the particular location must be aggregated/down sampled to match the time step of the 
water temperature model. Then the outputs from each climate model need to be bias 
corrected. The delta change approach is well established and has been widely used (see 
Hay et al. 2000). Briefly, this approach uses the GCM response to climate change to 
modify observations of Ta. For example if the climate model predicts +3°C, then 3°C is 
added to all historic observations to construct a new time series for the future climate.  
There are other delta change methods available including variance scaling, quantile 
mapping and trend-preserving quantile mapping (See Table A3)  If the operator has used 
an ensemble or a probabilistic product the 5th, 50th and 95th percentiles can then be taken 
forward to make future Tw projections based on model coefficients obtained in (step 10). 

 

  

 

 

 

 

 

 

 

 

 

  

https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/guidance-science-reports
http://www.ceda.ac.uk/
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Table A1 summary of the key characteristics of each of the three strands of information for 
the UKCP18 land projections. Taken from the UKCP18 guidance document  

 

 

 

 

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---how-to-use-the-land-projections.pdf
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Table A2 1 The increase in global mean surface temperature averaged over 2081-2100 
compared to the pre-industrial period (average between 1850-1900) for the RCP pathways 
(best estimate, 5-95% range). From IPCC AR5 WG1. 

 

RCP Mean change in Ta by 2081-2100 (°C) 

RCP2.6 1.6 

RCP4.5 2.4 

RCP6.0 2.8 

RCP8.5 4.3 
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Table A3: Information on some of the most commonly used bias correction methods used 
for climate data. Taken from the UKCP18 how to bias correct document. 

 

  

https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/ukcp/ukcp18-guidance---how-to-bias-correct.pdf
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APPENDIX C: Spatial data analysis example. 
 

 

Figure C1: From Jackson et al. (2016) – Coverage of the environmental parameter space 
(grey dots) sites selected for the Scotland river temperature monitoring network (red dots) 
and subsequently used to build an RNS model. 
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Would you like to find out more about us or 
your environment? 
Then call us on 

03708 506 506 (Monday to Friday, 8am to 6pm) 

Email: enquiries@environment-agency.gov.uk 

Or visit our website 

www.gov.uk/environment-agency 

incident hotline  
0800 807060 (24 hours) 

floodline  
0345 988 1188 (24 hours) 

Find out about call charges (https://www.gov.uk/call-charges) 

Environment first 
Are you viewing this onscreen? Please consider the environment and only print if 
absolutely necessary. If you are reading a paper copy, please don’t forget to reuse and 
recycle. 

 

 

mailto:enquiries@environment-agency.gov.uk
https://www.gov.uk/environment-agency
https://www.gov.uk/environment-agency
https://www.gov.uk/call-charges
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