Salmon Stocks

 and Fisheries in England and Wales in 2020

- Cefas

(9)
Environment Agency

Cyfoeth
Naturiol
Cymru
Natural
Resources Wales

SALMON STOCKS AND FISHERIES IN ENGLAND AND WALES, 2020

Preliminary assessment prepared for ICES, March 2021

Acknowledgement:

This report has been compiled jointly by staff from the Centre for Environment, Fisheries and Aquaculture Science, Salmon and Freshwater Team at Lowestoft and fisheries personnel from the Environment Agency and Natural Resources Wales. The monitoring and assessment of salmon stocks is funded by Defra and Welsh Government. All the participating organisations would like to extend their thanks and recognition to the various operational fisheries staff who have collected and compiled the data for this report. Thanks are also due to the National River Flow Archive at the UK Centre for Ecology and Hydrology for providing river flow data, the Game and Wildlife Conservation Trust for data relating to the River Frome, the General Secretary of ICES for permission to cite the reports of the ICES Working Group on North Atlantic Salmon, and the North Atlantic Salmon Conservation Organisation (NASCO) for permission to include their summary of regulatory measures for the high seas fisheries.

CONTENTS

FOREWORD 4
HIGHLIGHTS FOR 2020 5
REPORT ON SALMON FISHERIES IN 2020 7

1. Description of stocks and fisheries 7
2. Fishery regulation measures 10
3. Fishing effort 15
4. Catches 22
5. Catch per unit effort (CPUE) 48
6. Exploitation rates 52
REPORT ON STATUS OF STOCKS IN 2020 56
7. Stock monitoring 56
8. Assessment of stock status 65
9. Factors affecting stocks, fisheries and catches 76
10. Existing and emerging threats to salmon populations 81
11. References 84
Annex 1. NASCO's request for scientific advice from ICES in 2021 85
Annex 2. Net Limitation Orders applying to salmon net fisheries in England and Wales 87
Annex 3. Byelaws applying to salmon rod fisheries in England and Wales 88

FOREWORD

Annual reports on the status of salmon stocks and fisheries in England and Wales have been produced since 1997. These reports present a preliminary assessment for the most recent year to assist the International Council for the Exploration of the Sea (ICES) in providing scientific advice to the North Atlantic Salmon Conservation Organisation (NASCO) and to provide early feedback to fishery managers and anglers. The list of questions posed by NASCO to ICES for consideration in 2021 is provided at Annex 1 of this report.

For much of the period, the annual reports were prepared by the Centre for Environment, Fisheries and Aquaculture Science (Cefas) and the Environment Agency. However, from 1 April 2013, the functions of the Environment Agency in Wales were transferred to Natural Resources Wales (Cyfoeth Naturiol Cymru) (NRW). This body is now responsible for salmon management and regulation in Wales. All three organisations have therefore contributed to production of the annual assessment report since 2013.

Until 2013, each annual assessment report was designed to stand alone to avoid the need to refer to previous reports for background information. However, this resulted in much of the descriptive text being very similar from year to year. From 2014, therefore, and in the interest of streamlining procedures, the report has been split into two separate documents. A Background Report provides the regulatory framework and describes the various methods and approaches used in the assessment process (Cefas, Environment Agency and Natural Resources Wales, 2021); this report therefore changes relatively little from year to year. The report describing the most recent annual assessment (this report) then provides a relatively short description of developments in the most recent year together with updated tables and figures. Both reports are available online at the same location on the Gov.UK website.

It should be noted that data for the most recent year are provisional and will be updated and confirmed once complete catch data are obtained and records validated. The final confirmed reported catch data for the most recent year will be included in the annual compilation of catch statistics published by the Environment Agency and NRW later in the year (e.g., Environment Agency, 2020: also available at Gov.UK: https://www.gov.uk/government/publications/salmonid-and-freshwater-fisheries-statistics-2019) and final assessments will be published in next year's version of this report.

HIGHLIGHTS FOR 2020

- The provisional declared salmon catch by nets and fixed engines in 2020 (904 fish; 3.4t) was 85% higher than the catch in 2019 but well below the average of the previous five years. The largest percentage contribution to net catches of salmon in 2020 were made in the North West (42\%) and North East (32\%) regions of England, followed by Wales (20\%), the Midlands (5\%) and the South West (1\%). All net caught salmon were released alive in line with existing and new national byelaws. There has been a marked decline in net catches over the past 15-20 years due to a reduction in stock abundance but also due to increased regulatory controls. However, the closure of many net fisheries and mandatory catch-and-release (C\&R) in others in England and Wales has accelerated this trend since 2019.
- Angling effort was likely to have been impacted to some degree by the coronavirus (COVID-19) and the resulting access and movement restrictions imposed to prevent its spread throughout England and Wales. Stock assessment procedures have therefore included adjustments to account for this impact. Despite the COVID-19 restrictions, the provisional declared rod catch in 2020 (11,440 fish) increased by 25% on the confirmed catch for 2019 but was the sixth lowest in the time series (since 1988). The catch of 1SW salmon (grilse) was 8% below the average of the previous five years and the third lowest in the time series, and the catch of multi-sea-winter (MSW) salmon was 10\% below the average of the previous five years but the sixth highest in the time series.
- Environmental conditions for returning adult salmon, and for angling, were in the main favourable in 2020 due to amenable weather conditions resulting in high flows and suitable water temperatures. This affected both angler effort and catches.
- The online reporting system for catches in rod fisheries, first implemented in 2015, is now fully operational. Therefore, the temporary raising factor applied to reported catches in rod fisheries between 2015 and 2018 to account for increased rates of under-reporting has not been applied to the catch data since 2018.
- Since 1993, rod catches have included an increasing proportion of fish that have been caught and released. In 2020, it is provisionally estimated that 10,672 salmon (93\% of the catch) were released across England and Wales, the highest percentage ever recorded. Released fish are estimated to have contributed more than 21 million eggs to the breeding population.
- More than three-quarters of the returning stock estimates and counts for rivers were above the values recorded in 2019, with estimated returns the highest in the time series for two rivers. For some rivers with fish counters and/or traps, notably some of those on the south coast of England, there is evidence of an increase in the numbers of returning salmon over the last decade. However, overall, there has been a marked decline in the number of returns to most rivers during the same time period.
- Egg deposition levels in 2020 were estimated to be above the Conservation Limit (CL) on 21 of the 64 principal salmon rivers in England and Wales (33\% of all rivers) - the joint-seventh lowest in the 28 -year time series. Rivers where egg deposition levels were below the CL were widely distributed.
- Formal compliance assessment in the current year (2020) classified 1 river as 'not at risk' (>95\% probability of achieving the management objective or MO - namely to meet or exceed the CL in at least 4 years out of 5), 4 rivers (6\%) as 'probably not at
risk' (50-94\% probability of achieving the MO), 24 rivers (38%) as 'probably at risk' (5$49 \%$ probability of achieving the MO), and 35 rivers (55\%) as 'at risk' ($\leq 5 \%$ probability of achieving the MO) which was the second highest in the time series.
- New regulatory provisions that came into force in January 2019 and 2020 in England and Wales, respectively, have substantially reduced the harvesting of salmon in 2020. The measures included the closure of many net fisheries and mandatory C\&R in others. In many rod fisheries, there were increased levels of C\&R, some mandatory and others voluntary.
- The poor juvenile recruitment observed in 2016 is likely to have adversely affected smolt runs on many rivers in 2018, with potential implications for numbers of returning adults and egg deposition in 2019 and beyond.
- Salmon returning to rivers with swollen and/or bleeding vents (Red Vent Syndrome) continued to be observed in 2020, with the percentage of incidences on the River Tyne the highest in the time series (since 2007). No reported captures of pink salmon were made in 2020. Nine reported captures of escaped farmed salmon from the west coast of Scotland on five rivers (Lune, Ehen, Derwent, Eden, and Border Esk) in North West England were confirmed by scale reading.

REPORT ON SALMON FISHERIES IN 2020

1. DESCRIPTION OF STOCKS AND FISHERIES

There are 49 rivers in England and 31 rivers in Wales that regularly support salmon, although some of the stocks are very small and support minimal catches. Of these, 64 rivers were designated 'principal salmon rivers' on the basis of the prospect of annual rod catches of at least 50 fish around the time (~1996) of the development of Salmon Action Plans (SAPs). These plans reviewed the status of stocks and fisheries, identified the main factors limiting performance, and proposed and costed remedial measures (Figure 1). Conservation Limits (CLs) and Management Targets (MTs) have been set for the 42 principal salmon rivers in England and 22 in Wales and are used to give annual advice on stock status and to assess the need for management and conservation measures.

Rod fishing for salmon is permitted on all rivers supporting salmon stocks, with net or fixed engine fisheries for sea trout operating on a proportion of these - usually in the river estuaries. Descriptions of the different salmon fishing methods employed in England and Wales can be found in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

Many of the tables and figures presented in this report summarise statistics for England and Wales at a regional level. Following a reorganisation in 2014, the Environment Agency ceased to operate on a regional basis. However, in the interests of maintaining existing time series, data are still aggregated and reported by region in this report. The full statistics, reported on a river-by-river basis, are provided in the catch statistics reports which are published annually by the Environment Agency and NRW. A list of the individual rivers falling within each region is provided in Table 1.

Table 1. The main salmon rivers in England and Wales aggregated according to their former regional jurisdictions. The table also provides details of those rivers with Salmon Action Plans* (SAPs) and those designated as Special Areas of Conservation (SAC) for which salmon are a qualifying species.

Country	Region (pre 2014)	Region (pre 2011 where different)	Principal salmon river	Other salmon river	SAP for river *	SAC designation	Comments
England	North East			Aln			
			Coquet		Yes		
			Tyne		Yes		
			Wear		Yes		
			Tees		Yes		
			Yorkshire Esk		Yes		
	Anglian						No salmon producing rivers, but has a coastal fishery.
	South East	Thames		Thames	Yes		
		Southern	Itchen		Yes	Yes	
			Test		Yes		
	South West		Hampshire Avon		Yes	Yes	
			Stour		Yes		
			Piddle		Yes		
			Frome		Yes		
			Axe		Yes		
			Exe		Yes		
			Teign		Yes	Yes	
			Dart		Yes	Yes	
			Avon (Devon)		Yes		
			Erme		Yes	Yes	
			Yealm		Yes	Yes	
			Plym		Yes		

Table 1 continued

		Tavy		Yes	Yes
		Tamar		Yes	
		Lynher		Yes	
			Looe		
		Fowey		Yes	
		Camel		Yes	Yes
		Taw		Yes	Yes
		Torridge		Yes	
		Lyn		Yes	
	Midlands		Ouse		
			Trent	Yes	
		Severn		Yes	
	North West		Mersey		
		Ribble		Yes	
		Wyre		Yes	
		Lune		Yes	
		Kent		Yes	
		Leven		Yes	
		Crake		Yes	
		Duddon		Yes	
		Esk (Cumbria)		Yes	
		Irt		Yes	
		Ehen		Yes	Yes
		Calder		Yes	
		Derwent		Yes	Yes
			Ellen		
		Eden		Yes	Yes
		Esk (Border)		Yes	
Wales	Welsh	Wye		Yes	Yes
		Usk		Yes	Yes
		Taff		Yes	
		Ogmore		Yes	
			Afan Neath	Yes	
		Tawe		Yes	
			Loughor Gwendraeth Fawr \& Fach	Yes	
		Tywi		Yes	
		Taf		Yes	
		E \& W Cleddau		Yes	
		Nevern		Yes	
		Teifi		Yes	Yes
			Aeron		
			Ystwyth		
		Rheidol		Yes	
		Dyfi		Yes	
		Dysynni		Yes	
		Mawddach		Yes	Yes
			Wnion		
		Dwyryd		Yes	
		Glaslyn		Yes	
		Dwyfach \& Dwyfawr		Yes	
			Llyfni		
			Gwyrfai		Yes
		Seiont		Yes	
		Ogwen		Yes	
		Conwy		Yes	
		Clwyd		Yes	
		Dee		Yes	Yes

Notes: \quad Those rivers designated as SACs have salmon identified as a qualifying species in all or part of the catchment. This confers additional protection measures specifically for salmon in these rivers and any associated on-line lakes. In some of these rivers, salmon are a primary reason for SAC designation

* Salmon Action Plans in Wales are now referred to as 'Know Your Rivers' reports.

Figure 1. Map of England and Wales showing the main salmon rivers and denoting those that are Principal Salmon Rivers (*) and those designated as Special Areas of Conservation (\$) in which salmon must be maintained or restored to favourable conservation status.

2. FISHERY REGULATION MEASURES

Salmon fisheries in England and Wales are primarily regulated by effort controls, which specify the nature of the gear that may be operated, along with where, when, and how it may be used. A full description of these controls is provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021); summary details of the current Net Limitation Orders (NLOs) and byelaws related to rod fisheries are provided in this report at Annex 2 and Annex 3 , respectively. The following tables summarise some of the other current controls:

- Table 2 provides details of the statutory rod bag limits and catch limits on net and fixed engine fisheries currently in force.
- Table 3 summarises the progress in phasing out those net fisheries that exploit predominantly mixed stocks where our capacity to manage individual stocks is compromised. A policy to phase out such fisheries has been in place since 1996 (see Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021) for further details).
- Table 4 provides details of other arrangements to reduce netting effort operating in 2020, principally by agreement to release fish alive or by compensating netters not to fish for the periods shown.
- Table 5 provides a summary of the effort restrictions recorded in Table 4 over the available time series, 1993 - present.

In response to the widespread decline in stocks of early-running MSW salmon, national measures were introduced in 1999 to reduce the exploitation of this stock component. Most netters were banned from fishing for salmon before 1 June, with a small number allowed to continue where netting is predominantly for sea trout, on the basis that any salmon caught are returned alive. The national measures also introduced mandatory catch-and-release (C\&R) of salmon by anglers prior to 16 June and imposed other method restrictions. In December 2018, the measures were approved for continuation in England for a further 10 years, subject to a mid-term review (Salmon and Sea Trout Byelaws, 2018). In Wales, the same measures were retained in 2019 by emergency byelaw and new byelaws came into force in January 2020 to ensure the continued protection of stocks. A brief evaluation of the effect of these measures is included in Section 4.

In response to ongoing declines in stock status, further controls on exploitation by both nets and rods have been developed separately in England and Wales. Measures introduced in England under the Salmon and Sea Trout Byelaws in December 2018 required the closure of a number of net fisheries and mandatory C\&R in others (Table 3). Where a net fishery is allowed to continue to operate for sea trout, any salmon caught must be released alive. Mandatory C\&R is required for anglers on rivers that have a byelaw prohibiting the retention of salmon in place and are classed as 'at risk', based on the projected status of stocks for 2022 as assessed in 2017, and on all recovering rivers in England; high levels of voluntary C\&R ($>90 \%$) are also required in rod fisheries on rivers designated as 'probably at risk'. The latter will be subject to further review in 2021 and 2022 to ensure that targets are being achieved. 'All Wales' and 'Cross-Border (Wye and Dee)' fishery byelaws have been introduced in Wales. The byelaws will run for 10 years from January 2020 (with a 5-year mid-term review), and consequently all salmon caught by net and rod fisheries must be released alive with the minimum of injury and delay. Full details of the regulatory provisions are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

Table 2. Statutory rod bag limits and catch limits on net and fixed engine fisheries in force for salmon in 2020.

EA Region / NRW	Rod fishery bag limits				Net/FE catch limits	
	River	Salmon Bag Limits - per		Other constraints	Fishery	Measure
		day	week season			
North East		No bag limits apply			Drift nets	Fishery closed through National Salmon and Sea Trout Protection byelaws 2018.
North East		No bag limits apply			T \& J net / T net	Sea trout fishery only, mandatory release of all salmon.
Anglian		No bag limits apply			Drift	
South East	Thames	2				
South West	Taw				Seine	Fishery closed through National Salmon and Sea Trout Protection byelaws 2018.
	Torridge				Seine	
	Tavy				Tavy seine nets	
	Tamar				Tamar seine nets	
	Exe				Exe seine nets	
	Camel				Camel drift nets	
	Lynher				Lynher seine nets	
	Poole Harbour				Poole seine nets	Sea trout fishery only, mandatory release of all salmon.
Midlands	Severn			No salmon may be retained. Mandatory 100\% catch and release.	Severn fixed engines	No catch applies, fishery closed by emergency byelaw.
					Severn lave nets	No salmon may be retained. Mandatory 100\% catch and release.
					Severn seine nets	No catch applies, fishery closed by emergency byelaw.
North West	Ribble		2	Additional voluntary carcass tagging scheme of 1 fish per angler per season.	Drift	Fishery closed through National Salmon and Sea Trout Protection byelaws 2018.
	Lune		4	Limit applies to catch on whole river by all anglers; mandatory carcass tagging scheme.	Haaf net	Sea trout fishery only, mandatory release of all salmon.
					Drift	Fishery closed through National Salmon and Sea Trout Protection byelaws 2018.
	Leven		3 L		Lave	Sea trout fishery only, mandatory release of all salmon.
	Kent				Lave	
	Crake		3 L	Limit applies to catch on whole river by all anglers; mandatory carcass tagging scheme.		
	Derwent	2		No female fish to be retained after 30 Sept. Voluntary 100\% catch and release encouraged by Derwent Owners Association.		
	Eden			No salmon may be retained. Mandatory 100\% catch and release.	Solway haaf nets	No salmon may be retained. Mandatory 100\% catch and release.
	Border Esk					
Wales	Wye			No salmon may be retained. Mandatory 100\% catch and release byelaw.	Blackrock lave nets	Limited to 15 salmon per year (maximum of 5 salmon per month).
	Usk					
	Taff \& Ely					
	Ogmore					
	Afan					
	Neath					
	Tawe					
	Loughor					

Table 2 continued

Table 3. Number of licences issued each year in net fisheries subject to phase outs (zero NLOs) and closures, 1992-2020.

		Phase Outs																					Closures [a]		
Fish			$\begin{aligned} & \stackrel{\rightharpoonup}{F} \\ & \stackrel{\omega}{\omega} \\ & 0 \\ & 0 \\ & \underset{Z}{2} \end{aligned}$									$\begin{aligned} & \cdot \frac{0}{0} \\ & \stackrel{0}{6} \\ & 5 \\ & 3 \\ & 3 \\ & 3 \end{aligned}$									© © © © © © © ■			$\begin{aligned} & \mathbb{Q} \\ & \stackrel{C}{\mathbb{D}} \\ & \mathscr{N} \\ & \stackrel{C}{0} \\ & \mathbb{O} \\ & \dot{\sim} \end{aligned}$	
Phas	t commenced	1993	2012	1996	1997	1997	1997	1997	1997	1997	1997	1998	2000	2002	2003	2004	2004	2004	2005	2005	2014	2015			
Year	1992	142		129	17	2	2	2	0	2	8	4	1	$14{ }^{\text {[b] }}$	6	14	5	4	4	13			2	0	0
	1993	124		93	11	1	1	3	0	2	8	4	1	$14^{[b]}$	6	14	5	4	4	21			1	0	0
	1994	114		72	16	2	2	2	0	2	8	4	1	$14^{[b]}$	6	14	5	5	4	18			0	0	0
	1995	99		65	9	2	1	2	0	2	8	4	1	$14{ }^{[b]}$	6	14	5	5	4	14			0	0	0
	1996	89		59	0	2	1	2	1	2	8	4	1	12	6	14	5	4	4	14			0	0	0
	1997	81		56	1	2	1	2	0	2	8	4	1	14	6	14	5	5	4	15			0	0	0
	1998	75		54	0	2	0	0 *	0	1	8	4	1	14	6	15	5	5	4	14			0	0	0
	1999	72		54		2				1	8	1	1	14	6	14	5	4	4	12			0	0	0
	2000	71		46		1				0	0 *	1	1	14	6	14	5	4	4	10			0	0	0
	2001	70		46		0						1	1	14	6	14	5	4	4	8			0	0	0
	2002	69		46								1	1	3 *	6	14	5	4	4	12			0	0	0
	2003	16 *		45								1	1	3	4	14	5	4	4	12			\#	0	0
	2004	16		40	\#	\#	\#	\#	\#	\#	\#	0	1	3	4	3 * ${ }^{(b)}$	1 * ${ }^{\text {b }]}$	2 * ${ }^{\text {[}]}$	4	11				\#	\#
	2005	16		39								\#	1	3	4		$1{ }^{[b]}$	$2{ }^{\text {b }]}$	4	13					
	2006	16		36									1	3	3	$3^{\text {bl }}$	$1{ }^{\text {b }]}$	$2{ }^{\text {b }]}$	3 *	9 *					
	2007	16		35									1	3	3	$3^{(b)}$	$1{ }^{\text {b] }}$	$2^{\text {b] }}$	2 *	4*					
	2008	16		33									1	3	3	$3^{(b)}$	$1{ }^{\text {b }]}$	$2^{\text {b }{ }^{\text {b }} \text {, }}$	0 *	3 *					
	2009	15		30									0	3	2	$3^{\text {bl }}$	$1{ }^{\text {b }]}$	$2{ }^{\text {b] }}$		0 *					
	2010	14		30										3	2	$3^{\text {bl }}$	$1{ }^{\text {b] }}$	$2{ }^{\text {b] }}$							
	2011	14		26										3	2		$1{ }^{\text {b }]}$								
	2012	14	63	25										$3^{\text {cl }}$	2	$3^{(b)}$	$1{ }^{\text {b }]}$								
	2013	13	56	24										3	$1{ }^{\text {(d) }}$	$3^{\text {[b] }}$	$1{ }^{\text {[b] }}$	$2{ }^{\text {b] }}$							
	2014	13	52	22										3	2	$3^{\text {(e) }}$	0	$1{ }^{\text {(e) }}$			1				
	2015	12	49	20										3	2	$3^{\text {(e) }}$		$1{ }^{\text {(e) }}$			1	1			
	2016	11	48	18										3	2	$3^{\text {[e] }}$		$1{ }^{\text {e] }}$			1	0 *			
	2017	11	47	17										3	2	$3^{\text {[e] }}$		$1{ }^{\text {(e) }}$			1				
	2018	11	43	17										3	2	$3^{\text {(e] }}$		$1{ }^{\text {(e) }}$			1				
	2019	$0{ }^{\text {[f] }}$	41	17										$0{ }^{\text {(f) }}$	2	$0{ }^{\text {(f) }}$		$0{ }^{\text {[f] }}$			$0^{\text {\|g] }}$				
	2020	\#	40	16										\#	1	\#		\#			$0{ }^{\text {\|g] }}$				

[^0]Table 4. Buy off arrangements operating on net fisheries in 2020.

River/Fishery	Method	Period without netting (full season in parentheses)	Brokers/Funding agency
Fowey	Draft nets (1)	Complete season (2007 to present) (2 March-31 August) Complete season $(2015-2025)$	Brokered by: Environment Agency / South West Water plc
Dart	Draft nets (3)	Complete season $(2012-2022)$	Brokered by: Christchurch Harbour (Hants Avon \& Stour)
Draft nets (2)		Brokered by: Environment Agency / North Atlantic Salmon Fund	

Notes: Fowey buy-off - fishing from 2 March to 31 May applies to sea trout only.

Table 5. Summary of buy off arrangements and local agreements operating on net fisheries, 1993-2020. (X denotes compensation measure applied; O denotes fishery closed or no licences issued/available).

Year	Fishery																						
												Taw \& Torridge seine nets											
1993	X											X											
1994	X											X											
1995	O											X											
1996	O																						
1997	O	X					X	X	X	X													
1998	O	X		X			X	X	X	X													X
1999	O	X		X			X	X	X	X													X
2000	O	X					X	X	X	X					X	X	X						X
2001	O	X					X	X	X	X					X	O	X						X
2002	O	X					X	X	X	X	X	X			X	0	X					X	x
2003	O	X					X	X	X	X	X		X		X	0	X						X
2004	O	X					X	X	X	X	X		0	X	X	0	X						X
2005	O	X					X	X	X	X	X		0		0	0	0				X		0
2006	O	X			X	X	X	X	X	X	X		0		0	0	0		X	X			0
2007	O	X		X			X	X	X	X	X		0		0	0	0		X	X			0
2008	O	X	X	X			X	X	X	X	X		0		0	0	0	X	X	X			0
2009	O	X	X	X			X	X	X	X	X		0		O	0	0	X	X	0			0
2010	0	X	X	X			X	X	X	X	X		0	X	0	0	0	X	0	0			0
2011	O	X	X	X		X	X	X	X	X	X		0	X	0	0	0	X	0	0			0
2012	O	0	X			X	X	x	X	X			0	X	0	0	0	X	0	O			0
2013	O	0	X			X	X	X	X	X			0		0	0	0		0	0			0
2014	O	O	X						0	X			0		0	0	0		0	0	X		0
2015	O	0	X						0	X			0		O	0	0		0	0			0
2016	O	O	X						0	X			0		0	0	0		0	0			0
2017	O	0	X						0	X			0		0	0	0		0	0			0
2018	O	O	X						0	X			0		0	0	0		0	0			0
2019	O	O	X	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0
2020	O	O	O	O	O	O	O	O	O	0	O	O	0	O	0	0	0	0	0	O	O		0

[^1]
3. FISHING EFFORT

The regulatory measures outlined above provide overall limits on the 'allowable' fishing effort in England and Wales; this has fallen in recent years as measures have been introduced to regulate exploitation. The amount that both netters and anglers actually fish (the 'utilised' effort) also varies due to weather conditions, perceptions about the numbers of fish returning, and other factors. In 2020, angling effort was likely to have been constrained to some extent by coronavirus (COVID-19) restrictions throughout England and Wales, which imposed some limitations on angling opportunities and access to rod fisheries - particularly in the early part of the season. The following tables and figures summarise changes in allowable and utilised effort:

Net fisheries - Table 6 and Figure 2 illustrate the long-term decline in the numbers of licences issued for all types of nets and fixed engines over the period since 1971. The rate of decline in the number of fishing days available, since 1999 when data became available, has been greater over this time due to additional effort restrictions on remaining licensees (Figure 3). In 2020, net and fixed engine licences were only issued for sea trout fishing and zero days were available to fish for salmon. Table 7 provides details of the allowable and utilised effort in salmon net fisheries for the latest season. The percentage of available days that is utilised varies markedly between fisheries. Figure 3 also illustrates the overall changes in allowable and utilised effort, and the percentage of available days utilised by netters, over the time series.

Rod fisheries - Numbers of rod licences (annual and short-term) from 1994 are shown in Table 6 and Figure 4. No comparable data are available for earlier years because of changes in licensing arrangements. Regional summaries of the total rod days fished, over the time series, are provided in Table 8 and Figure 5. It should be noted that effort data (days fished) submitted via rod licence returns do not distinguish between time spent fishing for salmon and sea trout.

Overview of fishing effort in 2020

A progressive decline in the number of net and fixed engine licences issued for salmon and sea trout fishing, and hence in available fishing effort, has occurred over the time series. In 2020, commercial licences were only issued for sea trout fishing and therefore no direct fishing for salmon was permitted. Licence numbers in 2020 were the second lowest in the time series, with just one more licence issued in 2020 compared with 2019. The time spent fishing is reported by licensees and enables derivation of the percentage of the available days utilised by netters. These values in 2020 were well below the levels seen in recent years because no days were available for salmon fishing. The overall percentage of available days utilised by netters declined steadily between 2000 and 2009, from a little over 34\% to about 20\% (Figure 3). It then increased in some more recent years ($24-32 \%$) associated with some relatively good catches, suggesting that the take-up of available fishing opportunities is strongly influenced by catch rates. However, allowable effort specifically targeting salmon in 2020 was zero throughout England and Wales. Utilised effort has fallen sharply in the last three years and was non-existent in 2020.

The numbers of salmon rod licenses issued since 1994, when such data are available, show variable patterns. The number of short term (one-day and eight-day) rod licences issued has shown a progressive decline over the period, from a 5 -year mean of about 11,000 licences at the start of the period to a 5-year mean of around 6,300 recently, and with the sales in 2020 the lowest in the time series. There has been greater variation in the number of annual licences issued; these account for most of the salmon caught by anglers. Annual licence numbers decreased sharply from over 26,000 in 1994 to about 15,000 in 2001. This was thought to reflect the decline
in salmon stocks and the introduction of restrictions on angling, especially those to protect earlyrun MSW fish, although licence sales were particularly low in 2001 due to the restrictions on access to many rivers due to an outbreak of the 'foot and mouth' livestock disease. Sales of annual licences increased again after this date, reflecting Environment Agency efforts to promote angling and to reduce levels of licence evasion through targeted enforcement efforts. Licence sales in the period 2009 to 2012 were more than 26,000 , similar to levels at the start of the time period. Annual licence numbers declined again after this. In 2017, new 365-day 'annual' licences (valid from day of purchase) were introduced, primarily to allow greater flexibility for coarse fish anglers. There was a 3\% drop in annual licence sales in 2020 compared to 2019, despite over 6,500 free junior licences being issued (3% more than 2019). The rate of decline in annual licence sales from 2019 to 2020 was less marked than the year-on-year declines back to 2017, and shortterm licence sales have been around 5,500 each year since 2018. Both the outbreak of COVID-19 and a requirement for increased C\&R fishing may be linked to the reductions in licence uptake in 2020.

The number of days fished by anglers closely followed the reduction in rod licence numbers over the period 1994 to 2001. However, while annual licence sales then recovered to the levels at the start of the time series, the number of declared days fished by anglers has not. Provisionally, the overall number of days fished by anglers in 2020 has been estimated at about 106,200, which is 15% lower than 2019 and 18% below the average of the previous five years. This decrease in fishing effort in 2020 may have, in part, resulted from COVID-19 restrictions on angling, especially during the spring and early summer (Section 9 provides further discussion of potential COVID-19 effects on angling in 2020). There is some variation in the pattern of fishing effort between regions (Figure 5). For Wales and the North West, South West and Midlands regions of England, the number of days fished has fallen by more than half since the start of the time series. In contrast, fishing effort in the North East and Southern Regions has remained relatively consistent.

Table 6. Numbers of rod licences (1994-2020) and net and fixed engine licences (1971-2020) in England and Wales.

Year	Rod licences		Net and fixed engine gear type					Total net licences
	Short-term	Annual	Gill	Sweep	Hand-held	FE	Combined drift/T net \#	
1971			437	230	294	79	75	1040
1972			308	224	315	76	75	923
1973			291	230	335	70	75	926
1974			280	240	329	69	75	918
1975			269	243	341	69	75	922
1976			275	247	355	70	75	947
1977			273	251	365	71	75	960
1978			249	244	376	70	75	939
1979			241	225	322	68	75	856
1980			233	238	339	69	75	879
1981			232	219	336	72	75	859
1982			232	221	319	72	75	844
1983			232	209	333	73	75	847
1984			226	223	354	74	75	877
1985			223	232	375	69	75	899
1986			220	221	369	64	75	874
1987			213	206	352	68	75	839
1988			210	212	284	70	75	776
1989			208	199	282	75	75	764
1990			207	204	292	70	75	773
1991			199	187	264	66	75	716
1992			203	158	267	65	75	693
1993			187	151	259	55	36	652
1994	10,637	26,641	177	158	257	53	30	645
1995	9,992	24,949	163	156	249	47	29	615
1996	12,508	22,773	151	132	232	42	29	557
1997	11,640	21,146	139	131	231	35	27	536
1998	11,364	21,161	130	129	196	35	26	490
1999	10,709	18,423	120	109	178	30	26	437
2000	10,916	19,223	110	103	158	32	25	403
2001	9,434	14,916	113	99	143	33	24	388
2002	10,039	19,368	113	94	147	32	24	386
2003	8,683	21,253	58	96	160	57	5	371
2004	10,628	22,138	57	75	157	65	5	354
2005	10,170	23,870	59	73	148	65	5	345
2006	9,460	22,146	52	57	147	65	5	321
2007	9,065	23,116	53	45	157	66	5	321
2008	9,761	24,139	55	42	130	66	5	293
2009	9,353	27,108	50	42	118	66	4	276
2010	10,024	26,135	51	41	118	66	4	276
2011	10,121	26,870	53	41	117	66	3	277
2012	9,045	26,090	51	34	115	73	3	273
2013	8,264	25,037	49	29	111	62	3	251
2014	7,691	23,914	48	34	109	65	3	256
2015	8,017	22,830	52	33	102	63	3	250
2016	8,055	22,159	49	34	105	62	2	250
2017	7,098	28,064	46	32	112	57	2	247
2018	5,479	26,176	38	30	87	57	2	212
2019	5,545	23,581	14	13	60	49	0	136
2020	5,433	22,954	17	13	64	43	0	137

[^2]Table 7. Allowable and utilised effort for the principal salmon net fisheries in 2020.

EA Region / NRW	River/ Fishery ${ }^{\text {[a] }}$	Method	No. of licences ${ }^{[a]}$	NLO ${ }^{\text {[c] }}$	Days available [b,g, j]	Allowable effort net days ${ }^{\text {li] }}$	Utilised effort		\% days utilised	Av. day/ lic.
							net days	net tides		
NE	N Coastal (N)	Drift \& T	0	0	0	0	n/a	n/a	n/a	n/a
	N Coastal (N)	Drift	0	0	0	0	n/a	n/a	n/a	n/a
	N Coastal (N) ${ }^{[b]}$	T	19	19	0	0	n/a	n/a	n/a	n/a
	N Coastal (S)	Drift	0	0	0	0	n/a	n/a	n/a	n/a
	N Coastal (S) ${ }^{[b]}$	T	0	0	0	0	n/a	n/a	n/a	n/a
	Y Coastal	Drift	0	0	0	0	n/a	n/a	n/a	n/a
	Y Coastal ${ }^{[b]}$	T or J	21	21	0	0	n/a	n/a	n/a	n/a
	Region total		40			0	n/a	n/a	n/a	
SW	Avon \& Stour	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Poole Harbour ${ }^{\text {[g] }}$	Seine	0	1	0	0	n/a	n/a	n/a	n/a
	Exe	Seine	0	0	0	0	n / a	n/a	n/a	n/a
	Teign ${ }^{[b]}$	Seine	3	3	0	0	n / a	n/a	n/a	n/a
	Dart ${ }^{[b]}$	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Camel	Drift	0	0	0	0	n / a	n/a	n/a	n/a
	Tavy	Seine ${ }^{\text {li] }}$	0	0	0	0	n/a	n/a	n/a	n/a
	Tamar	Seine ${ }^{\text {[i] }}$	0	0	0	0	n / a	n/a	n/a	n/a
	Lynher	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Fowey ${ }^{[b, g]}$	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Taw/Torridge	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Region total		3			0	n/a	n/a	n/a	
Midlands	Severn	Putchers ${ }^{[d, i]}$	0	0	0	0	n/a	n/a	n/a	n/a
	Severn	Seine ${ }^{\text {[i] }}$	0	0	0	0	n/a	n/a	n/a	n/a
	Severn	Lave ${ }^{\text {[i] }}$	11	15	0	0	n/a	n/a	n/a	n/a
	Region total		11			0	n/a	n/a	n/a	
NW	Ribble	Drift	0	0	0	0	n/a	n/a	n/a	n/a
	Lune	Haaf ${ }^{\text {dd }}$	14	12	0	0	n / a	n/a	n/a	n/a
	Lune	Drift	0	0	0	0	n/a	n/a	n/a	n/a
	Kent	Lave	0	6	0	0	n/a	n/a	n/a	n/a
	Leven	Lave	1	2	0	0	n/a	n/a	n/a	n/a
	Eden \& Esk	Haaf ${ }^{\text {[i] }}$	38	75	0	0	n/a	n/a	n/a	n/a
	Eden \& Esk	Coops ${ }^{[d]}$	0	3	0	0	n/a	n/a	n/a	n/a
	Region total		53			0	n/a	n/a	n/a	
Wales	Wye	Lave	0	[e]	0	0	n/a	n/a	n/a	n/a
	Tywi ${ }^{\text {b] }}$	Seine	0	3	0	0	n/a	n/a	n/a	n/a
	Tywi ${ }^{[b]}$	Coracles	3	8	0	0	n / a	n/a	n/a	n/a
	Taf ${ }^{[b]}$	Coracles	1	1	0	0	n/a	n/a	n/a	n/a
	Taf	Wade	1	1	0	0	n/a	n/a	n/a	n/a
	E/W Cleddau	Compass	5	6	0	0	n/a	n/a	n/a	n/a
	Nevern ${ }^{[b]}$	Seine	1	1	0	0	n/a	n/a	n/a	n/a
	Teifi ${ }^{[b]}$	Seine	3	3	0	0	n/a	n/a	n/a	n/a
	Teifi ${ }^{[b]}$	Coracles	11	12	0	0	n/a	n/a	n/a	n/a
	Dyfi ${ }^{[b]}$	Seine	2	3	0	0	n/a	n/a	n/a	n/a
	Dysynni	Seine	0	1	0	0	n/a	n/a	n/a	n/a
	Mawddach	Seine	1	3	0	0	n/a	n/a	n/a	n/a
	Conwy	Seine	2	3	0	0	n/a	n/a	n/a	n/a
	Conwy	Basket ${ }^{[d]}$	0		0	0	n/a	n/a	n/a	n/a
	Dee	Trammel	0	0	0	0	n/a	n/a	n/a	n/a
	Dee	Seine	0	0	0	0	n/a	n/a	n/a	n/a
	Wales total		30			0	n/a	n/a	n/a	

Key: ${ }^{\text {al }} \quad$ Net and fixed engine licences are issued for sea trout and salmon fisheries, but all net caught salmon are required to be released.
${ }^{[b]}$ National spring salmon byelaws apply - all net fisheries closed until June 1.
[${ }^{[l}$ Sea trout fisheries - exempted from national spring salmon byelaws (all salmon caught before 1 June to be released).
[d] NLO refers to number of nets allowed under the terms of the net limitation order for that fishery. Where the number of licences exceeds the NLO, numbers are being reduced as licensees leave the fishery. For coastal mixed stock fisheries a zero NLO means the fishery is being phased out permanently, but for other fisheries the zero limit may only apply for the duration of the NLO.
[e] Fishery operates under an historical certificate of privilege.
(f) No NLO, but number of licences capped.
lgl In calculating the days available, any day, or part day, on which fishing has been allowed is included. Days available have been adjusted to take account of partial buy-off arrangements and the national measures.
${ }^{\text {[h] }}$ Buy-off applies for all or part season (see Table 4 for details).
III Allowable effort is calculated by multiplying the days available by the number of nets permitted under the NLO, except where the number of licences exceeds the NLO, in which case the higher figure is used.
(i) No days were available to net and fixed engines to fish for salmon in England and Wales following the introduction of national byelaws.

Notes: Effort data incomplete for some licence returns; minor corrections were applied based on catch and effort data for other licensees fishing in same area and time period.
For all regions in England, days fished were calculated from data provided on tides fished, using an average of 1.4 tides per day. For Wales, days fished were as reported.

Table 8. Total number of rod days fished, as reported in catch returns, 1994-2020.

Total days	Former Environment Agency Region						NRW Wales	E\&W Total
	NE	Thames	Southern	SW	Midlands	NW		
1994	37,937	343	2,446	41,087	13,596	78,176	118,862	292,447
1995	38,724	414	2,696	35,853	14,893	65,601	85,107	243,288
1996	34,726	154	1,928	32,504	13,056	64,454	84,922	231,744
1997	40,345	181	2,332	38,809	14,886	70,222	102,930	269,705
1998	38,229	145	2,095	31,285	11,493	64,248	85,906	233,401
1999	31,676	311	2,018	25,642	7,024	50,667	70,660	187,998
2000	32,319	143	1,771	22,401	5,373	49,255	66,270	177,532
2001	27,485	111	2,117	18,573	4,084	23,320	59,163	134,853
2002	34,423	91	2,462	25,526	4,720	43,278	72,328	182,828
2003	31,030	126	2,663	23,322	5,302	37,567	72,719	172,729
2004	37,677	110	2,344	24,730	4,633	48,174	72,846	190,514
2005	37,355	86	2,096	22,427	5,221	49,698	69,786	186,669
2006	30,441	21	1,602	17,704	4,124	40,782	53,441	148,115
2007	33,292	64	1,816	19,979	3,800	40,828	64,694	164,473
2008	35,633	53	2,132	20,708	4,211	44,499	63,776	171,012
2009	37,366	46	2,046	22,828	4,819	47,509	69,144	183,758
2010	42,061	37	2,652	23,279	5,052	51,774	70,201	195,056
2011	42,982	22	2,873	24,122	5,105	53,340	68,453	196,897
2012	38,349	13	2,284	20,763	3,521	47,352	63,131	175,413
2013	38,785	17	2,709	18,497	4,211	46,163	56,634	167,016
2014	35,366	55	2,812	16,476	4,198	36,592	49,456	144,955
2015	32,892	68	3,022	18,359	4,584	30,573	52,232	141,730
2016	33,018	73	2,974	15,573	3,611	30,521	49,586	135,356
2017	36,095	160	2,999	17,981	3,875	32,749	47,967	141,826
2018	30,785	70	2,873	12,174	2,605	24,110	33,150	105,767
2019	35,906	63	3,243	15,129	2,724	26,903	41,283	125,251
2020	33,112	140	3,040	13,591	1,830	26,517	27,991	106,221
Mean (2015-19)	33,739	87	3,022	15,843	3,480	28,971	44,844	129,986
\% change:								
2020 on 2019	-8	+122	-6	-10	-33	-1	-32	-15
2020 on 5-yr mean	-2	+61	+1	-14	-47	-8	-38	-18

Notes: Includes effort targeted at both salmon and sea trout.
Table does not include rod days fished in the Anglian Region, where there are not thought to be any directed salmon rod fisheries.
Table does not include reported fishing days where no location was recorded.
Not all catch returns report effort data.
Data for 2020 are provisional.

Figure 2. Numbers of net and fixed engine licences issued in England and Wales, 1971-2020.

Figure 3. Numbers of fishing days available to net and fixed engine fisheries in England and Wales, and number and percentage of available days utilised, 1999-2020.

Figure 4. Numbers of annual and short-term rod licences issued, and the number of rod days fished in England and Wales, 1994-2020.

Figure 5. Numbers of rod days fished, as reported in catch returns, 1994-2020.

4. CATCHES

The main indicators of the state of salmon stocks are the catches taken by rod and net fisheries. It should be remembered that the data presented here for 2020 are provisional. Final confirmed declared catch data for 2020 are reported in the Environment Agency and NRW annual compilation of catch statistics (e.g., Environment Agency, 2020).

Net and rod fisheries - The following tables and figures provide provisional declared catches for 2020 together with confirmed catches for earlier years:

- Table 9 provides the total declared number and weight of salmon caught by nets and fixed engines and by rods in England and Wales since 1988 and provides overall catch totals for England and Wales for both total catch and retained catch (i.e., excluding fish that have been caught and released).
- Table 10 gives a regional breakdown of the provisional 2020 rod and net catches (based on the former Environment Agency regions). These data are total catches only and include fish that have been caught and released by nets and rods.
- Table 11 and Figure 6 provide time series of regional net and fixed engine catches from 1971 onwards.
- Table 12 and Figure 7 provide time series of regional rod catches from 1993 onwards, distinguishing fish caught and released from those caught and retained (data on C\&R were not recorded prior to 1993).

Catches in coastal, estuary and river fisheries - ICES requests that catch data (fish caught and retained only) are grouped by coastal, estuary and river fisheries. Data for the available time series, since 1988, are presented in Table 13 and Figure 8. Details of the fisheries included in the various categories are provided in the footnotes to the table. Historically, the catch for the coastal zone has mainly reflected the catch in the north east coast drift and fixed net fishery. However, no coastal fishery operated in 2020, and all incidental catches of salmon in the north east T \& J net fishery for sea trout were released alive (Table 11). The catches in each of the categories have been subjected to downward pressures over recent years, in the case of the coastal and estuarine categories due to the substantial reductions in fishing effort, and, in the case of rod fisheries, due to the increasing use of C\&R.

Catch-and-release (C\&R) - C\&R data were first collected in England and Wales in 1993, and the practice has been used increasingly by salmon anglers in recent years. This increase is largely a result of voluntary measures, but also reflects the national measures to protect spring salmon and the introduction of mandatory C\&R on some rivers (details available in Annex 3). As noted above, new measures to increase C\&R levels were introduced in England from 2019 and Wales from 2020. Regional C\&R rates are provided in Table 12 and Figure 7 and a summary for England and Wales as a whole is given in Table 14 and Figure 9. C\&R rates for individual major salmon rivers in England and Wales are published in the annual catch statistics reports (e.g., Environment Agency, 2020).

Long-term catch trends - The annual declared net and fixed engine catch for England and Wales since 1956 is shown in Figure 10; this distinguishes the catch taken in the north east coast fishery from net catches elsewhere. Figure 11 presents the declared rod catch of salmon from 1956, including (since 1993) fish that have been caught and released. It is unclear to what extent fish may be caught and recorded more than once because of C\&R.

Undeclared and illegal catches - The undeclared and illegal catch for England and Wales in 2020 (only fish retained) is estimated at about 0.5 tonnes. This represents approximately 14% of the total weight (including the unreported and illegal catch) of salmon caught and killed.

Of the total undeclared and illegal catch in 2020 (about 120 salmon), 62.5% by number is estimated to have derived from under-reporting in rod fisheries, 37.5% from illegal catches and 0% from under-reporting in net fisheries. These estimates exclude any additional under-reporting of rod caught fish that had been subject to C\&R. The methodology used to derive these estimates is provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021). No other substantial sources of non-catch fishing mortality were noted in 2020; in some previous years there have been reports of significant mortalities of fish in rivers and/or estuaries due to elevated temperatures or water quality issues. However, reports from rod fisheries in some rivers suggest that further levels of under-reporting catches may be occurring. All fishers are implored to make accurate catch returns to the Environment Agency and NRW through the statutory rod catch declaration because these data are used to assess stock status and inform management decisions.

Effect of the national spring salmon measures - The restrictions imposed since 1999, as a result of the national measures, have affected both net and rod fisheries. Table 15 and Figures 12a (nets) and 12b (rods) show the general reduction in the number of fish caught before 1 June. It should be noted that the relatively high percentages of net catch taken before 1 June in 2019 (12.5%) and 2020 (12.7%) are not directly comparable to the values presented in previous years due to the introduction of new byelaws in England and Wales which restricted fishing by nets to sea trout and required the mandatory C\&R of salmon throughout the fishing season. Table 16 and Figure 13 show the numbers of salmon released by weight category ($<3.6 \mathrm{~kg}(8 \mathrm{lbs}), 3.6-6.4 \mathrm{~kg}$, and $>6.4 \mathrm{~kg}(14 \mathrm{lbs})$) and season, since 1998 . This illustrates that anglers have been voluntarily releasing an increased proportion of all fish caught after June, and large salmon in particular.

Age composition of catches - The annual salmon stock assessments carried out by ICES are conducted on two separate stock components: those fish that mature after one winter at sea (i.e., one-sea-winter fish, 1SW or grilse) and those that mature after two or more winters at sea (i.e., multi-sea-winter, MSW fish). The relative percentages of the different sea-age groups have shown marked variability over time (Figure 14), and these tend to have different patterns of run-timing, and differences in the typical weight of females affects river-wide egg deposition. It is therefore necessary to be able to estimate the relative percentages of 1SW and MSW fish in catches, and hence spawning stocks; details of the approaches used are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

- Nets - The relative percentages of 1SW and MSW fish in regional net catches in 2020 are provided in Table 17 and available time series are presented in Figures 15 and 16. The longer time series for the North East Region reflects the consistent reporting arrangements that have applied in this fishery from the mid-1960s onwards.
- Rods - The estimated age composition of catches for many of the principal salmon rivers in 2020 are provided in Table 18. Of these, 18 rivers (44\%) were estimated to contain 50% or more MSW salmon (including fish subsequently released), 19 rivers (46%) had between 25% and 49% MSW salmon and 4 rivers (10\%) less than 25% MSW salmon in the rod catch. Changes in the relative percentages of fish in these different categories (for the same rivers) are presented in Figure 17. There has been a notable increase in the percentage of MSW fish in rod catches over the last ten years.

The estimated numbers of 1SW and MSW salmon (including fish released), and the percentage of MSW fish, in regional rod catches over the period since 1992 are provided in Table 19; these data have been corrected for under-reporting - a scaling factor of $\times 1.1$ has been applied each year. Additional adjustments were made for the catches between 2015 and 2018 (see Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021) for details). The number and percentage of MSW salmon in regional rod catches are illustrated in Figure 18. A summary of the estimated rod catches of 1 SW and MSW salmon for England and Wales as a whole, for the same period, is provided in Figure 19.

Overview of catches in 2020

The total salmon catch for 2020 (including those fish released alive by netters and anglers) is provisionally estimated at 51.9 t , representing 12,344 fish, and comprising 3.4 t (904 fish) by nets and fixed engines and $48.5 \mathrm{t}(11,440$ fish $)$ by rods. A total of 904 fish (3.4 t) were released from nets and fixed engines. Of the rod caught fish, 10,672 were released (45.4 t), representing 93% of the catch by number. Thus, 0 fish (0 t) were retained by netters and 768 fish (3.0 t) were retained by anglers. These figures do not take account of catches of salmon which go unreported (including those taken illegally), and it is estimated that there may have been a total of 0.5 t of additional fish caught in 2020.

The total declared catch by nets and fixed engines in 2020 increased by 85% on the catch recorded in 2019 but was 92% below the average of the previous five years. There has been a marked decline in net catches over the past 15-20 years due to increased regulatory controls and the phasing out of some fisheries. Net and fixed engine fisheries in England and Wales have been prohibited from retaining catches of salmon following the introduction of national byelaws in 2019 and 2020, respectively.

The policy to phase out salmon fisheries predominantly exploiting mixed stocks, where the capacity to manage individual river stocks is compromised, has had a major effect on catches. The largest phase out has occurred in the north east coast fishery. This was enhanced by a partial buy out in 2003, which reduced the number of drift net licences from 69 in 2002 to 16 (an immediate reduction of 77%). The ongoing phase out has resulted in the number of drift net licences continuing to fall, culminating in no licences being issued in 2020 following the closure of the drift net fishery in 2019. The T \& J nets have also been subject to a reducing NLO since 2012 with licence numbers falling from 63 in 2012 to 40 currently. Historically, the north east coast fishery accounted for the majority ($86-93 \%$ between 2012 and 2018) of the total retained net catch in England and Wales. However, following the closure of the north east coast drift net fishery and the mandatory requirement for T \& J nets fishing for sea trout to release any salmon caught alive from 2019, there is no longer any retained net catch in the north east coast fishery.

The provisional estimated rod catch in 2020 (including released fish) increased by 25% on 2019 and was 8% above the average of the previous 5 years. However, long-term trends in rod catch (Figure 11) indicate a progressive decline from the peak in the mid-1960's to the early 2000's. This was followed by a general improvement in the rod catch between 2004 and 2011, suggesting some degree of reversal in the declining trend, when catches, including fish caught and released, were typically above the long-term average. Since 2012, there has been a decline in catches and the provisional rod catch for 2020 was the eighth lowest in the entire time series. It should also be noted that rod catch trends on individual rivers have varied from much more severe declines to substantial recoveries (e.g., the River Tyne, where rod catch has increased considerably since the mid-1950s as the river recovered from industrial pollution such that it contributed 24% of
the total rod catch in England and Wales in 2020). The percentage of rod caught fish released by anglers has increased progressively since such data were first recorded in 1993; it is provisionally estimated that 93% of rod caught fish were released in 2020. It should be noted that rod catches have not been adjusted to account for repeat capture of salmon arising from C\&R practices.

Rod catches of 1SW salmon show substantially greater year to year variability than those of MSW fish in numerical terms (Figure 19). Since the early 1990s, catches of 1SW salmon have ranged from a high of over 24,200 to just over 4,300. Catches in the period 2004 to 2011 were generally higher than those in the earlier part of the time series. However, there was a sharp downturn in the 1 SW rod catch from 2012 to 2014, which subsequently stabilised at relatively low levels until 2017 and then declined further. The provisional adjusted catch in 2020 was the third lowest in the time series. In contrast, rod catches of MSW salmon have demonstrated comparatively small numerical changes (range 3,100 to 10,900) and have been trending positively over the period as a whole. Catches of MSW salmon in 2020 were 26% higher than in 2019 and remained above levels in the earlier part of the time series, and MSW salmon have comprised more than 50% of the estimated total rod catch, on average, over the past ten years, compared with an average of 25% in the preceding period back to 1992. In total, the declared number of salmon retained in catches by rods, nets, and fixed engines in 2020 (768) was by far the lowest in the time series, representing just 6% of the 12,344 salmon caught.

Assessment of national catch trend

The annual assessment of the status of salmon stocks in the North East Atlantic carried out by the ICES Working Group on North Atlantic Salmon (WGNAS) requires the best available time series of nominal catch data (i.e., fish retained) for each country. Figure 20 provides the current best estimate of the total catches of 1 SW and MSW salmon in England and Wales, for the period since 1971. These data have been adjusted to take account of non-reported and illegal catches and exclude Scottish origin fish taken historically in the north east coast fishery. Further details on the procedures used in deriving these estimates are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

The data indicate that total retained catches of salmon in England and Wales (fish caught and killed only) have declined by 93% from the early 1970s to the present time. There was a particularly marked decline in catch around 1990, which is consistent with the general perception of a decrease in the marine survival for many stocks around the North Atlantic, and consequently in the abundance of returning fish, at this time. For much of the period, the decline has been greater for MSW salmon than for 1SW fish (grilse). However, there has been a marked increase in the percentage of MSW salmon in the national catch in the last ten years (Figure 20) and the overall reduction in catches between the start and end of the time series is now less for MSW salmon (a reduction of 91% in the most recent 5 -year mean compared with the 5 -year mean at the start of the time series) than for 1SW salmon (a reduction of 94% between 5 -year means).

Table 9. Declared number and weight of salmon caught by nets and fixed engines and by rods in England and Wales, 1988-2020.

Year	Nets \& Fixed Engines		Rods (inc. released fish)		Total caught		Total retained	
	No.	Wt (t)						
1988	77,317	271.1	32,846	123.6	110,163	394.8	110,163	394.8
1989	68,940	239.3	14,728	56.6	83,668	295.9	83,668	295.9
1990	71,827	277.8	14,849	60.3	86,676	338.1	86,676	338.1
1991	37,675	144.6	13,974	55.5	51,649	200.1	51,649	200.1
1992	33,849	130.4	10,737	40.2	44,586	170.5	44,586	170.5
1993	56,566	202.3	14,059	51.1	70,625	253.4	69,177	248.1
1994	66,457	241.9	24,891	94.0	91,348	335.9	88,121	323.7
1995	67,659	245.7	16,008	61.0	83,667	306.7	80,478	294.6
1996	32,680	125.7	17,444	71.5	50,124	197.2	46,696	183.2
1997	31,459	107.2	13,047	48.4	44,506	155.6	41,374	141.8
1998	25,179	84.7	17,109	59.1	42,288	143.9	36,917	122.9
1999	34,167	124.4	12,505	49.8	46,672	174.2	41,107	150.0
2000	50,998	182.7	17,596	67.5	68,594	250.2	60,953	218.8
2001	43,243	153.3	14,383	56.8	57,626	210.1	51,307	184.2
2002	38,279	133.2	15,282	60.4	53,561	193.6	45,669	161.0
2003	17,219	69.2	11,519	48.5	28,738	117.7	22,206	89.0
2004	16,581	59.1	27,332	104.5	43,913	163.6	30,559	111.4
2005	16,811	60.9	21,418	85.8	38,229	146.7	26,162	96.5
2006	13,578	50.5	19,509	72.1	33,087	122.6	22,056	79.8
2007	10,922	37.9	19,984	71.6	30,906	109.5	19,914	67.1
2008	8,647	30.2	23,512	83.7	32,159	113.9	19,036	63.7
2009	7,505	29.3	15,563	62.0	23,068	91.3	13,910	54.0
2010	22,615	72.9	25,153	89.4	47,768	162.3	32,695	108.7
2011	26,193	101.2	23,199	98.5	49,392	199.7	34,575	135.8
2012	8,484	31.0	18,450	81.1	26,934	112.1	14,926	58.0
2013	18,176	67.2	14,920	62.2	33,096	129.4	22,608	84.1
2014	11,976	45.2	10,307	43.4	22,283	88.6	14,218	54.3
2015	17,320	60.4	10,263	42.8	27,583	103.1	19,261	67.6
2016	20,312	76.9	12,068	52.9	32,380	129.8	22,494	85.9
2017	10,133	40.2	13,570	60.4	23,703	100.6	12,195	48.8
2018	11,140	40.3	7,787	33.9	18,927	74.2	11,640	42.3
2019	488	1.7	9,163	39.0	9,651	40.7	1,139	4.5
2020	904	3.4	11,440	48.5	12,344	51.9	768	3.0
Mean (2015-19)	11,879	44	10,570	46	22,449	90	13,346	50

Note: Data for 2020 are provisional. All salmon caught by net and fixed engines were released in 2020.

Table 10. Provisional regional declared number and weight of salmon caught by nets and rods (including released fish), 2020.

Former EA	Net catch		Rod catch		Total catch	
Region / NRW	No.	Weight (kg)	No.	Weight (kg)	No.	Weight (kg)
North East	288	798	4,459	19,413	4,747	20,212
Anglian	0	0	0	0	0	0
Southern	0	0	421	1,482	421	1,482
South West	12	45	96	3,265	939	3,311
Midlands	375	182	218	1,049	263	1,231
North West	184	707	3,408	14,770	3,783	16,477
Wales	0	709	2,007	8,487	2,191	9,196
Unknown	$\mathbf{9 0 4}$	$\mathbf{3 , 4 4 2}$	$\mathbf{1 1 , 4 4 0}$	$\mathbf{4 8 , 4 6 6}$	$\mathbf{1 2 , 3 4 4}$	$\mathbf{0}$
E\&W Total						$\mathbf{5 1 , 9 0 8}$

Note: Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). All net caught salmon were released in 2020.

Table 11. Declared number of salmon caught by nets and fixed engines, 1971-2020. (N.B. Since 1999, catches include fish that were subsequently released).

Year	Environment Agency Region						NRW Wales	E\&W Total
	NE	Anglian ${ }^{\text {a] }}$	Southern	SW	Midlands	NW		
1971	60,353		186	11,827	3,629	4,989	9,008	89,992
1972	51,681		317	13,146	4,467	3,941	9,633	83,185
1973	62,842		455	12,637	3,887	4,939	9,006	93,766
1974	52,756		346	8,709	3,152	6,282	8,883	80,128
1975	53,451		384	14,736	3,833	5,251	11,107	88,762
1976	15,701		195	11,365	3,194	5,348	7,712	43,515
1977	52,888		212	7,566	2,593	5,312	6,492	75,063
1978	51,630		163	6,653	2,327	7,321	7,426	75,520
1979	43,464		282	7,853	1,404	3,723	4,552	61,278
1980	45,780		137	9,303	3,204	3,769	6,880	69,073
1981	69,113		233	11,391	4,014	5,048	9,050	98,849
1982	50,167		94	6,341	1,738	3,944	4,481	66,765
1983	77,277		163	8,718	2,699	8,489	4,834	102,180
1984	59,295		157	8,489	3,376	7,957	3,947	83,221
1985	57,356		251	9,876	2,423	2,559	3,465	75,930
1986	63,425		461	11,548	3,300	6,682	5,031	90,447
1987	36,143		505	14,530	2,963	5,052	4,535	63,728
1988	50,849		477	11,799	3,511	5,671	5,010	77,317
1989	41,453	4	83	10,684	4,364	7,294	5,058	68,940
1990	51,530	9	43	5,892	4,397	5,579	4,377	71,827
1991	25,429	34	25	2,897	1,747	4,499	3,044	37,675
1992	20,144	11		5,521	2,117	3,123	2,927	33,843
1993	41,800	4		5,017	950	5,460	3,324	56,555
1994	46,554	3		6,437	2,321	6,143	4,995	66,453
1995	53,210	5		3,251	2,588	5,566	3,039	67,659
1996	18,581	3		5,093	1,608	4,464	2,931	32,680
1997	21,922	0		2,466	1,282	3,161	2,628	31,459
1998	18,265	3		1,759	1,074	1,778	2,300	25,179
1999	26,833	6		1,605	989	2,387	2,347	34,167
2000	43,354	0		2,171	973	3,496	1,004	50,998
2001	36,115	0		1,794	1,027	3,310	997	43,243
2002	30,980	112		1,404	1,190	3,318	1,275	38,279
2003	10,435	24		1,444	1,540	2,801	975	17,219
2004	11,017	53		1,295	769	2,477	970	16,581
2005	8,987	15		572	938	5,178	1,121	16,811
2006	7,566	15		477	864	3,977	679	13,578
2007	7,091	7		211	676	2,324	613	10,922
2008	6,241	9		587	871	981	160	8,849
2009	5,395	3		285	883	846	93	7,505
2010	19,982	1		506	238	1,665	223	22,615
2011	24,214	5		363	171	915	228	25,896
2012	7,276	2		258	210	577	106	8,429
2013	16,643	2		286	131	877	204	18,143
2014	10,800	7		291	177	479	222	11,976
2015	15,863	1		402	135	543	188	17,132
2016	18,824	0		338	162	742	241	20,307
2017	9,157	0		246	42	424	264	10,133
2018	9,909	4		235	113	562	317	11,140
2019	164	0		5	4	126	189	488
2020	288	0		12	45	375	184	904
Mean (2015-19)	10,783	1		245	91	479	240	11,840
\% change:								
2020 on 2019	+76		+140	+1025	+198	-3	+85	-96
2020 on 5-yr mean	-97		-95	-51	-22	-23	-92	-97

[^3]Table 12. Declared number of salmon caught by rods and the number and percentage of salmon released, 1993-2020.

Year	Environment Agency Region						NRW Wales	E\&W Total \#
	NE	Thames	Southern	SW	Midlands	NW		
Number caught								
1993	1,696	2	84	2,806	336	5,055	4,080	14,059
1994	1,939	11	432	5,213	555	8,840	7,901	24,891
1995	2,201	13	302	2,554	442	6,348	4,146	16,006
1996	2,514	34	384	2,681	643	5,720	5,468	17,444
1997	2,445	2	149	2,372	312	4,144	3,622	13,047
1998	2,941	0	366	2,919	186	6,359	4,325	17,109
1999	2,670	1	253	1,881	185	4,133	3,369	12,493
2000	3,600	0	316	2,487	327	6,814	4,049	17,596
2001	3,733	0	405	1,396	273	4,209	4,351	14,383
2002	3,967	0	531	1,737	195	5,532	3,312	15,282
2003	3,507	0	225	1,266	333	3,547	2,632	11,519
2004	6,788	0	609	2,799	319	10,022	6,648	27,332
2005	5,933	0	438	1,725	430	8,446	4,408	21,418
2006	5,774	0	331	1,802	356	6,771	4,355	19,509
2007	4,872	0	466	2,071	280	7,151	5,136	19,984
2008	5,634	0	711	2,686	294	8,065	6,122	23,512
2009	4,421	0	391	1,648	213	5,532	3,356	15,563
2010	7,947	2	590	2,628	235	8,074	5,676	25,153
2011	8,373	0	606	2,402	362	6,672	4,784	23,199
2012	6,465	0	364	2,022	249	4,609	4,740	18,450
2013	6,469	0	271	1,085	332	3,539	3,224	14,920
2014	4,269	0	336	799	211	2,530	2,162	10,307
2015	2,936	0	451	1,592	469	2,179	2,636	10,263
2016	4,460	0	368	1,178	334	2,590	3,137	12,067
2017	4,977	0	283	1,622	330	3,124	3,234	13,570
2018	3,356	0	140	598	185	2,209	1,299	7,787
2019	4,468	1	216	656	161	2,172	1,489	9,163
2020	4,459	0	421	927	218	3,408	2,007	11,440
Number released								
1993	191	1	36	262	17	668	273	1,448
1994	322	0	69	745	36	1,253	802	3,227
1995	555	7	83	526	32	1,393	593	3,189
1996	732	25	88	510	57	1,332	684	3,428
1997	797	1	107	586	30	1,131	480	3,132
1998	1,037	0	222	1,077	31	2,019	979	5,371
1999	1,348	1	137	898	65	1,795	1,203	5,447
2000	1,888	0	247	1,152	103	2,816	1,264	7,470
2001	1,855	0	397	635	128	1,779	1,347	6,143
2002	2,257	0	528	920	73	2,534	1,346	7,658
2003	2,265	0	225	746	153	1,859	1,172	6,425
2004	3,612	0	609	1,572	174	4,672	2,487	13,211
2005	3,426	0	438	1,130	271	4,376	2,310	11,983
2006	3,283	0	331	1,342	210	3,450	2,285	10,959
2007	2,545	0	466	1,406	145	3,838	2,517	10,922
2008	2,831	0	711	1,825	155	4,360	3,153	13,035
2009	2,533	0	391	1,080	119	3,236	1,736	9,096
2010	4,714	2	587	1,795	133	4,807	2,974	15,012
2011	5,232	0	604	1,678	222	3,904	2,766	14,406
2012	3,995	0	358	1,454	185	2,774	3,186	11,952
2013	4,444	0	266	870	227	2,320	2,331	10,458
2014	3,193	0	332	657	166	1,953	1,691	7,992
2015	2,114	0	449	1,338	340	1,708	2,164	8,113
2016	3,448	0	366	989	260	2,027	2,610	9,700
2017	3,977	0	282	1,393	253	2,567	2,783	11,255
2018	2,759	0	140	569	149	2,103	1,137	6,857
2019	3,922	1	216	617	159	2,002	1,254	8,171
2020	3,958	0	421	876	217	3,224	1,976	10,672
Number retained								
1993	1,505	1	48	2,544	319	4,387	3,807	12,611
1994	1,617	11	363	4,468	519	7,587	7,099	21,664

Table 12. continued

1995	1,646	6	219	2,028	410	4,955	3,553	12,817
1996	1,782	9	296	2,171	586	4,388	4,784	14,016
1997	1,648	1	42	1,786	282	3,013	3,142	9,915
1998	1,904	0	144	1,842	155	4,340	3,346	11,738
1999	1,322	0	116	983	120	2,338	2,166	7,046
2000	1,712	0	69	1,335	224	3,998	2,785	10,126
2001	1,878	0	8	761	145	2,430	3,004	8,240
2002	1,710	0	3	817	122	2,998	1,966	7,624
2003	1,242	0	0	520	180	1,688	1,460	5,094
2004	3,176	0	0	1,227	145	5,350	4,161	14,121
2005	2,507	0	0	595	159	4,070	2,098	9,435
2006	2,491	0	0	460	146	3,321	2,070	8,550
2007	2,327	0	0	665	135	3,313	2,619	9,062
2008	2,803	0	0	861	139	3,705	2,969	10,477
2009	1,888	0	0	568	94	2,296	1,620	6,467
2010	3,233	0	3	833	102	3,267	2,702	10,141
2011	3,141	0	2	724	140	2,768	2,018	8,793
2012	2,470	0	6	568	64	1,835	1,554	6,498
2013	2,025	0	5	215	105	1,219	893	4,462
2014	1,076	0	4	142	45	577	471	2,315
2015	822	0	2	254	129	471	472	2,150
2016	1,012	0	2	189	74	563	527	2,367
2017	991	0	1	226	76	555	435	2,315
2018	597	0	0	29	36	106	162	930
2019	546	0	0	39	2	170	235	992
2020	501	0	0	51	1	184	31	768
\% of fish released								
1993	11		43	9	5	13	7	10
1994	17		16	14	6	14	10	13
1995	25		27	21	7	22	14	20
1996	29		23	19	9	23	13	20
1997	33		72	25	10	27	13	24
1998	35		61	37	17	32	23	31
1999	50		54	48	35	43	36	44
2000	52		78	46	31	41	31	42
2001	50		98	45	47	42	31	43
2002	57		99	53	37	46	41	50
2003	65		100	59	46	52	45	56
2004	53		100	56	55	47	37	48
2005	58		100	66	63	52	52	56
2006	57		100	74	59	51	52	56
2007	52		100	68	52	54	49	55
2008	50		100	68	53	54	52	55
2009	57		100	66	56	58	52	58
2010	59		99	68	57	60	52	60
2011	62		99.7	70	61	59	58	62
2012	62		98	72	74	60	67	65
2013	69		98	80	68	66	72	70
2014	75		99	82	79	77	78	78
2015	72		100	84	72	78	82	79
2016	77		99	84	78	78	83	80
2017	80		100	86	77	82	86	83
2018	82		100	95	81	95	88	88
2019	88		100	94	99	92	84	89
2020	89		100	94	100	95	98	93
Mean total catch including fish caught \& released (2015-19)	4,039		292	1,129	296	2,455	2,359	10,570
\% change:								
2020 on 2019	0		+95	+41	+35	+57	+35	+25
2020 on 5-yr mean	+10		+44	-18	-26	+39	-15	+8

[^4]Table 13. Declared weight of salmon caught (retained fish only) and percentage of catch by weight taken in coastal, estuarine and riverine fisheries, 1988-2020.

Year	Coastal		Estuarine		Riverine		Total
	Wt (t)	\%	Wt (t)	\%	Wt (t)	\%	Wt (t)
1988	218.1	55	53.0	13	123.6	31	394.8
1989	159.3	54	80.0	27	56.6	19	295.9
1990	212.4	63	65.5	19	60.3	18	338.1
1991	105.9	53	38.7	19	55.6	28	200.1
1992	90.7	53	39.6	23	40.2	24	170.5
1993	158.8	64	43.4	18	45.9	18	248.1
1994	183.5	57	58.4	18	81.9	25	323.8
1995	200.3	68	45.4	15	48.9	17	294.6
1996	83.3	45	42.3	23	57.5	31	183.2
1997	80.5	57	26.7	19	34.6	24	141.8
1998	65.2	53	19.4	16	38.2	31	122.9
1999	101.0	67	23.1	15	26.0	17	150.0
2000	156.6	72	25.4	12	36.9	17	218.8
2001	128.6	70	24.2	13	31.3	17	184.2
2002	107.9	67	24.4	15	28.7	18	161.0
2003	42.0	47	26.6	30	20.4	23	89.0
2004	39.2	35	19.4	17	52.8	47	111.4
2005	32.2	33	28.3	29	36.0	37	96.5
2006	29.5	37	20.7	26	29.6	37	79.8
2007	23.9	36	13.4	20	29.8	44	67.1
2008	21.7	34	8.1	13	34.0	53	63.7
2009	20.2	37	8.6	16	25.2	47	54.0
2010	63.8	59	8.8	8	36.2	33	108.7
2011	93.1	69	6.4	5	36.3	27	135.8
2012	26.1	45	4.6	8	27.2	47	58.0
2013	61.5	73	5.6	7	17.0	20	84.1
2014	40.6	75	4.3	8	9.3	17	54.3
2015	55.2	82	4.4	6	8.0	12	67.6
2016	70.7	82	5.6	6	9.7	11	85.9
2017	36.0	74	3.2	7	9.7	20	48.8
2018	35.5	84	3.3	8	3.5	8	42.3
2019	0.0	0	0.5	12	4.0	88	4.5
2020	0.0	0	0.0	0	3.0	100	3.0
Mean (2015-19)	39.5	64.3	3.4	7.9	7.0	27.8	49.8

Notes: Coastal catches in 2018 from North East coast nets and Anglian coastal nets, but previously included River Parrett putcher rank (last fished 1999), River Usk drift nets (1997) \& putcher rank (1999), SW Wales coastal wade (1995) \& seine nets (1997), River Ogwen seine nets (2000), River Seiont/Gwyrfai seine nets (1997), River Dwyfawr seine nets (1999), N. Caernarvonshire seine nets (1996), River Clwyd sling (drift) nets (1997) and the SW Cumbria drift nets (2003).
Riverine catches in 2017 from rod catches and River Eden coops; River Conwy basket trap (also operated in freshwater) was last fished in 2002.
Estuarine fisheries include all other nets and fixed engines not mentioned above.
Data for 2020 are provisional.

Table 14. Declared number, weight and percentage of salmon released by rods, and declared number and weight of salmon released by nets, 1993-2020.

Year	Salmon released by rods			Salmon released by nets	
	Number released	Weight (t)	\% of declared catch	Number	Weight (t)
1993	1,448	5.26	10		
1994	3,227	12.19	13		
1995	3,189	12.11	20		
1996	3,428	13.99	20		
1997	3,132	13.77	24		
1998	5,371	20.98	31		
1999	5,447	23.87	44	118	0.4
2000	7,470	30.70	42	171	0.7
2001	6,143	25.50	43	176	0.4
2002	7,658	31.80	50	234	0.9
2003	6,425	28.20	56	107	0.5
2004	13,211	51.70	48	143	0.5
2005	11,983	49.80	56	84	0.4
2006	10,959	42.50	56	72	0.3
2007	10,922	42.00	55	70	0.3
2008	13,035	49.80	55	88	0.3
2009	9,096	37.00	58	62	0.3
2010	15,012	53.38	60	61	0.2
2011	14,406	62.40	62	411	1.5
2012	11,952	53.89	65	56	0.2
2013	10,458	45.26	70	30	0.1
2014	7,992	34.19	78	73	0.2
2015	8,113	34.74	79	209	0.8
2016	9,700	43.25	80	185	0.6
2017	11,255	50.72	83	253	1.0
2018	6,857	30.07	88	363	1.4
2019	8,171	35.06	89	341	1.2
2020	10,672	45.43	93	904	3.4

Notes: A proportion of the salmon released by nets are fish caught pre June, which, since 1999, are required to be released.
Catch limits now apply on a number of net and fixed engine fisheries necessitating salmon to be released once limits are reached. A small proportion of the salmon released by nets have previously resulted from an agreement between the Environment Agency and netters fishing the estuary of the River Avon (Hants); this fishery ceased to operate in 2012.
There was no requirement for net caught salmon to be released prior to 1999.
The data reported in this table are declared catches, however, adjusted values have been used for assessment purposes (see Table 19).
Data for 2020 are provisional.

Table 15. Declared number and percentage of salmon caught by nets and rods taken before (<) and from (\geq) 1 June, 1989-2020.

Year	Net catch (including released fish)				Rod catch (including released fish)			
	Number			\%	Number \#			\%
	< 1 June	≥ 1 June	Total	< 1 June	< 1 June	≥ 1 June	Total	< 1 June
1989	4,742	64,198	68,940	6.9	3,199	11,529	14,728	21.7
1990	7,339	64,488	71,827	10.2	2,397	12,290	14,687	16.3
1991	3,637	34,038	37,675	9.7	2,240	11,496	13,736	16.3
1992	2,497	31,352	33,849	7.4	1,012	9,725	10,737	9.4
1993	1,630	54,936	56,566	2.9	865	13,194	14,059	6.2
1994	4,824	61,633	66,457	7.3	2,609	22,282	24,891	10.5
1995	4,888	62,771	67,659	7.2	2,141	13,865	16,006	13.4
1996	2,913	29,767	32,680	8.9	2,691	14,753	17,444	15.4
1997	1,528	29,931	31,459	4.9	1,335	11,278	12,613	10.6
1998	832	24,335	25,167	3.3	712	15,275	15,987	4.5
1999	116	34,043	34,159	0.3	920	11,211	12,131	7.6
2000	19	50,979	50,998	0.04	760	16,496	17,256	4.4
2001	47	43,196	43,243	0.11	708	13,675	14,383	4.9
2002	32	38,247	38,279	0.08	815	14,250	15,065	5.4
2003	42	17,177	17,219	0.24	1,037	10,373	11,410	9.1
2004	35	16,546	16,581	0.21	1,168	25,777	26,945	4.3
2005	29	16,782	16,811	0.17	1,652	19,239	20,891	7.9
2006	17	13,561	13,578	0.13	1,618	17,891	19,509	8.3
2007	14	10,908	10,922	0.13	908	18,733	19,641	4.6
2008	17	8,630	8,647	0.20	1,068	22,444	23,512	4.5
$2009{ }^{\text {a] }}$	1	7,504	7,505	0.01	925	14,638	15,563	5.9
$2010{ }^{\text {[a] }}$	1	22,614	22,615	0.00	682	23,811	24,493	2.8
$2011{ }^{\text {[b] }}$	367	25,826	26,193	1.40	1,255	21,383	22,638	5.5
2012	59	8,425	8,484	0.70	1,175	17,025	18,200	6.5
2013	30	18,146	18,176	0.17	1,236	13,541	14,777	8.4
2014	47	11,417	11,464	0.41	957	9,350	10,307	9.3
2015	133	17,188	17,321	0.77	1,348	8,843	10,191	13.2
2016	104	20,203	20,307	0.51	1,173	10,801	11,974	9.8
2017	172	9,961	10,133	1.70	1,086	12,484	13,570	8.0
2018	61	11,079	11,140	0.55	583	7,197	7,780	7.5
2019	61	427	488	12.50	685	8,298	8,983	7.6
2020	115	789	904	12.72	374	11,031	11,405	3.3
Mean (1994-98)	2,997	41,687	44,684	6.7	1,898	15,491	17,388	10.9
Mean (1999-20)	69	18,348	18,417	2	1,006	14,931	15,937	7

Notes: National measures to protect 'spring' salmon introduced on 15 April 1999 - required compulsory catch-and-release of all rod caught salmon prior to 16 June, and closed most net fisheries prior to 1 June. Those net fisheries still allowed to operate before June target sea trout and are required to release all salmon alive.
Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). Data for 2020 are provisional.
Key: \# Excludes fish for which no capture date recorded.
${ }^{\text {al }}$ No requirement to record net-released fish on new logbooks, so pre-June catch under-estimated
${ }^{[b]}$ The increase in the pre-June catch from 2011 reflects the fact that salmon caught and released by T\&J nets operating in the NE Region were not recorded over the period 1999-2010.

Table 16. Declared number of salmon caught by rods, and number and percentage of fish released, by weight category and season, 1998-2020.

Period	April to June			July to August			September to October			April to October		
Wt. category (kg)	<3.6	3.6-6.4	>6.4	<3.6	3.6-6.4	>6.4	<3.6	3.6-6.4	>6.4	<3.6	3.6-6.4	>6.4
Number caught												
1998	523	753	111	3782	857	222	5767	2045	562	10,072	3,655	896
1999	354	864	262	1283	627	203	3667	2209	879	5,303	3,699	1,345
2000	388	771	206	2495	818	240	5813	3111	896	8,695	4,700	1,342
2001	205	971	203	1758	1041	200	4290	2536	724	6,253	4,548	1,127
2002	377	1014	300	2033	767	173	4434	2728	775	6,844	4,508	1,247
2003	282	817	241	885	839	188	2879	2400	862	4,046	4,056	1,292
2004	516	832	241	3374	1587	283	11124	6120	1212	15,014	8,539	1,736
2005	546	1454	327	2007	1198	169	8048	4941	974	10,601	7,593	1,470
2006	567	1505	269	1422	779	110	9176	3593	766	11,165	5,877	1,145
2007	565	931	161	2936	1897	233	7876	3445	707	11,377	6,273	1,101
2008	719	1,381	215	3,367	2,213	288	8,908	4,028	1,018	12,994	7,622	1,521
2009	500	849	172	2,163	1,933	221	4,955	3,096	802	7,618	5,878	1,195
2010	441	469	117	3740	1418	215	11284	4986	1099	15,465	6,873	1,431
2011	643	1,426	364	2,606	2,777	574	6,831	5,255	1,567	10,080	9,458	2,505
2012	597	1,395	512	2,504	2,750	558	4,476	3,762	1,185	7,577	7,907	2,255
2013	437	1,200	486	1,644	1,146	228	5,202	3,130	1,006	7,283	5,476	1,720
2014	388	879	214	1,296	1,096	184	2,993	2,270	647	4,677	4,245	1,045
2015	547	1,236	461	1,826	1,182	292	2,465	1,403	575	4,838	3,821	1,328
2016	614	1,184	574	1,996	1,527	580	2,534	1,715	1,101	5,144	4,426	2,255
2017	576	1,223	465	2,112	1,688	603	2,722	2,524	1,317	5,410	5,435	2,385
2018	94	584	201	792	936	157	1,765	2,461	626	2,651	3,981	984
2019	242	1,072	291	1,153	1,044	225	1,999	2,036	684	3,394	4,152	1,200
2020	200	777	127	1,723	1,941	372	2,354	2,969	832	4,277	5,687	1,331
Number released												
1998	136	113	20	643	197	40	2,076	900	253	2,855	1,210	313
1999	209	570	194	295	163	61	1,430	994	466	1,934	1,727	721
2000	221	532	148	499	229	72	2,325	1,431	502	3,045	2,192	722
2001	119	602	138	422	302	52	1,673	1,141	420	2,214	2,045	610
2002	241	659	213	488	207	57	2,084	1,473	488	2,813	2,339	758
2003	214	629	193	239	235	64	1,382	1,392	595	1,835	2,256	852
2004	283	576	143	1074	501	116	5,154	2,962	707	6,511	4,039	966
2005	464	1105	265	715	439	67	4,240	2,661	598	5,419	4,205	930
2006	499	1234	239	583	304	54	4,496	2,048	498	5,578	3,586	791
2007	436	666	142	1181	726	109	4,253	1,981	448	5,870	3,373	699
2008	507	948	170	1547	874	116	4,827	2,307	622	6,881	4,129	908
2009	378	630	148	957	743	104	2,925	1,963	549	4,260	3,336	801
2010	339	367	104	1743	604	107	6751	3141	802	8,833	4,112	1,013
2011	481	1,038	298	1,380	1,289	301	4,242	3,351	1,092	6,102	5,678	1,691
2012	449	1,046	443	1,391	1,371	334	2,960	2,502	871	4,800	4,919	1,648
2013	367	996	456	874	619	137	3,553	2,292	794	4,794	3,907	1,387
2014	345	768	204	830	649	112	2,406	1,823	553	3,581	3,240	869
2015	486	1,140	440	1,280	745	215	1,876	1,170	512	3,642	3,055	1,167
2016	522	1,040	528	1,424	1,009	409	2,081	1,468	983	4,027	3,517	1,920
2017	507	1,104	435	1,560	1,152	436	2,357	2,198	1,193	4,424	4,454	2,064
2018	85	542	192	639	772	127	1,548	2,213	570	2,272	3,527	889
2019	223	981	264	968	897	190	1,765	1,860	635	2,956	3,738	1,089
2020	192	750	122	1,559	1,750	343	2,182	2,838	798	3,933	5,338	1,263

Percentage (\%) released

1998	26	15	18	17	23	18	36	44	45	28	33
1999	59	66	74	23	26	30	39	45	53	36	47
2000	57	69	72	20	28	30	40	46	56	35	47
2001	58	62	68	24	29	26	39	45	58	35	45
2002	64	65	71	24	27	33	47	54	63	41	52
2003	76	77	80	27	28	34	48	58	69	45	56
2004	55	69	59	32	32	41	46	48	58	43	47

Table 16. continued

2005	85	76	81	36	37	40	53	54	61	51	55
2006	88	82	89	41	39	49	49	57	65	50	61
2007	77	72	88	40	38	47	54	58	63	52	54
2008	71	69	79	46	39	40	54	57	61	53	54
2009	76	74	86	44	38	47	59	63	68	56	57
2010	77	78	89	47	43	50	60	63	73	57	60
2011	75	73	82	53	46	52	62	64	70	61	60
2012	75	75	87	56	50	60	66	67	74	63	62
2013	84	83	94	53	54	60	68	73	79	66	71
2014	89	87	95	64	59	61	80	80	85	77	76
2015	89	92	95	70	63	74	76	83	89	75	80
2016	85	88	92	71	66	71	82	86	89	78	79
2017	88	90	94	74	68	72	87	87	91	82	82
2018	90	93	96	81	82	81	88	90	91	86	89
2019	92	92	91	84	86	84	88	91	93	87	90
2020	96	97	96	90	90	92	93	96	96	92	94

Notes: 1998 Pre national byelaw.
1999 National byelaw requiring compulsory catch and release before 16 June introduced on 15 April.
2000 First full year of national catch and release byelaw.
Analysis based on representative sample of catch return data; totals differ from the declared catches (Table 10).
The data reported in this table are declared catches, however, adjusted values have been used for assessment purposes (see Table 19).
Data for 2020 are provisional.

Table 17. Provisional declared number and percentage of small ($\leq 3.6 \mathrm{~kg}$) and large ($>3.6 \mathrm{~kg}$) salmon caught by net fisheries in England and Wales, 2020.

EA Region/NRW	Small salmon (1SW)		Large salmon (MSW)		Total
	$(\leq 3.6 \mathrm{~kg})$	$\%$	$(>3.6 \mathrm{~kg})$	0	0
Anglian	0	n / a	0	n / a	
North East	187	65	101	35	288
South West	6	50	6	50	12
Midlands	21	47	24	53	45
North West	112	30	263	70	375
Wales	94	51	90	49	184
Total	$\mathbf{4 2 0}$	$\mathbf{4 6}$	$\mathbf{4 8 4}$	$\mathbf{5 4}$	$\mathbf{9 0 4}$

[^5]Table 18. Provisional declared number and percentage of 1SW (grilse) and MSW salmon caught by selected rod fisheries (including fish caught and released), 2020.

EA Region / NRW	River	No. 1SW	\%	No. MSW	\%
NE	Coquet	363	57	271	43
	Tyne	1074	39	1707	61
	Wear	383	49	397	51
Southern	Itchen	144	70	63	30
	Test	127	60	85	40
SW	Hants Avon	49	39	76	61
	Frome	18	40	27	60
	Exe	98	72	39	28
	Teign	23	66	12	34
	Dart	5	56	4	44
	Tavy	23	66	12	34
	Tamar	56	61	36	39
	Lynher	44	81	10	19
	Fowey	65	75	22	25
	Camel	44	70	19	30
	Taw	76	52	70	48
	Torridge	20	74	7	26
	Lyn	33	73	12	27
Midlands	Severn	34	16	184	84
NW	Ribble	162	34	317	66
	Lune	175	41	254	59
	Kent	98	64	55	36
	Leven	34	45	41	55
	Irt	83	78	23	22
	Ehen	157	65	84	35
	Derwent	130	38	212	62
	Eden	249	31	566	69
	Border Esk	193	36	350	64
Wales	Wye	82	25	245	75
	Usk	84	32	175	68
	Ogmore	11	38	18	62
	Tywi	186	39	293	61
	Tawe	13	65	7	35
	Taf	7	41	10	59
	E \& W Cleddau	16	80	4	20
	Teifi	67	46	80	54
	Dyfi	47	69	21	31
	Mawddach	31	56	24	44
	Ogwen	51	86	8	14
	Conwy	50	51	49	49
	Dee	110	38	176	62
E\&W Total		4,715	44	6,065	56

Note: Data only included for fish for which weight data provided on catch return and do not include all rivers; these data therefore differ from the total reported catch (Table 10).

Table 19. Estimated number of 1SW and MSW salmon (corrected for under-reporting) and the percentage composition of MSW salmon caught by rods (including fish caught and released), 1992-2020.

Year	Environment Agency Region										NRW Wales			E\&W Total	
	NE		Southern		SW		Midlands		NW						
	1SW	MSW	Total												
1992	1,085	723	235	29	3,186	476	112	175	4,029	945	2,282	1,074	10,927	3,422	4,349
1993	966	729	465	82	3,216	706	145	192	5,245	999	4,788	1,197	14,825	3,905	18,730
1994	1,173	660	277	156	4,172	1,043	217	339	7,162	1,680	5,609	2,291	18,611	6,169	24,780
1995	1,270	1,082	218	65	1,914	860	71	402	5,380	1,102	2,769	1,491	11,622	5,002	6,624
1996	1,246	1,405	262	97	1,674	1,116	90	603	4,620	1,228	3,431	2,287	11,322	6,736	8,058
1997	1,325	1,084	120	30	1,932	483	54	266	3,780	667	2,382	1,021	9,593	3,551	13,144
1998	2,226	909	378	24	2,543	501	66	131	5,975	699	3,548	843	14,736	3,107	17,843
1999	1,586	1,351	206	72	1,386	683	70	132	3,589	955	2,278	1,175	9,115	4,368	3,483
2000	2,188	1,618	292	56	2,270	441	200	139	6,507	807	3,196	816	14,653	3,877	30
2001	2,628	1,478	344	61	1,275	261	90	210	3,936	694	3,638	1,149	11,911	3,853	15,764
2002	2,924	1,440	520	64	1,452	459	92	123	5,233	852	2,550	1,093	12,771	4,031	16,802
2003	2,353	1,505	151	74	947	446	117	249	3,121	780	1,766	1,129	8,455	4,183	2,638
2004	5,222	2,245	528	81	2,633	446	123	228	9,790	1,234	5,927	1,386	24,223	5,620	43
2005	5,481	2,088	306	132	1,404	494	151	322	7,804	1,487	3,588	1,261	18,734	5,784	4,518
2006	4,637	1,715	256	76	1,388	595	145	247	5,810	1,639	3,593	1,198	15,829	5,470	21,299
2007	3,798	1,431	382	84	1,615	656	171	136	6,725	1,029	4,110	1,267	16,801	4,60	21,404
2008	4,651	1,547	633	78	2,245	710	106	217	7,724	1,147	5,387	1,347	20,746	5,046	72
2009	3,686	1,346	157	95	1,326	477	74	157	4,686	1,346	2,323	1,163	12,252	4,584	6,836
2010	6,119	2,623	498	88	2,486	335	106	153	7,194	1,687	5,027	1,103	21,430	5,989	27,419
2011	4,422	4,788	420	183	1,882	760	105	293	4,564	2,775	3,066	2,126	14,460	10,925	25,385
2012	3,528	3,584	273	128	1,219	1,005	68	206	2,877	2,193	2,198	3,016	10,162	10,132	20,294
2013	3,978	3,138	140	158	778	416	76	289	2,790	1,103	1,828	1,719	9,590	6,822	16,412
2014	2,153	2,200	256	100	463	339	48	161	1,738	901	953	1,197	5,610	4,897	10,507
2015	2,074	1,919	326	287	1,232	933	136	502	1,323	1,641	1,414	2,171	6,505	7,453	13,958
2016	2,285	3,602	263	223	881	674	78	363	1,614	1,805	1,439	2,702	6,560	9,369	15,928
2017	2,133	4,238	237	125	1,233	843	96	327	1,773	2,225	1,525	2,614	6,997	10,372	7,370
2018	2,233	2,835	109	102	475	428	58	221	1,729	1,606	729	1,232	5,334	6,424	11,758
2019	1,849	3,066	140	97	425	297	16	162	1,333	1,056	667	970	4,430	5,648	10,078
2020	2,128	2,777	300	164	628	392	37	202	1,509	2,240	894	1,314	5,495	7,089	12,584
Mean (2015-19)	2,115	3,132	215	167	849	635	77	315	1,554	1,667	1,155	1,938	5,965	7,853	13,818
\% change:															
2020 on 2019	+15	-9	+114	+68	+48	+32	+140	+25	+13	+112	+34	+35	+24	+26	+25
2020 on 5-yr mean	+1	-11	+39	-2	-26	-38	-51	-36	-3	+34	-23	-32	-8	-10	-9

Table 19. continued

Percentage MSW							
Year	Environment Agency Region					NRW	E\&W
	NE	Southern	SW	Midlands	NW	Wales	Total
1992	40	11	13	61	19	32	24
1993	43	15	18	57	16	20	21
1994	36	36	20	61	19	29	25
1995	46	23	31	85	17	35	30
1996	53	27	40	87	21	40	37
1997	45	20	20	83	15	30	27
1998	29	6	16	66	10	19	17
1999	46	26	33	65	21	34	32
2000	43	16	16	41	11	20	21
2001	36	15	17	70	15	24	24
2002	33	11	24	57	14	30	24
2003	39	33	32	68	20	39	33
2004	30	13	14	65	11	19	19
2005	28	30	26	68	16	26	24
2006	27	23	30	63	22	25	26
2007	27	18	29	44	13	24	22
2008	25	11	24	67	13	20	20
2009	27	38	26	68	22	33	27
2010	30	15	12	59	19	18	22
2011	52	30	29	74	38	41	43
2012	50	32	45	75	43	58	50
2013	44	53	35	79	28	48	42
2014	51	28	42	77	34	56	47
2015	48	47	43	79	55	61	53
2016	61	46	43	82	53	65	59
2017	67	35	41	77	56	63	60
2018	56	48	47	79	48	63	55
2019	62	41	41	91	44	59	56
2020	57	35	38	84	60	60	56
Mean (2015-19)	60	44	43	80	52	63	57

Note: Data for 2020 are provisional.

Figure 6. Declared number of salmon caught by nets and fixed engines, 1971-2020. Note that the figure axes are not drawn to the same scale.

Figure 7. Declared number of salmon caught by rods, 1993-2020. The histograms display the total declared catch, with the blue shaded area denoting fish caught and released. Note that the histograms are not drawn to the same scale.

Figure 8. Percentage (by weight) of the declared total catch of salmon (caught and retained only) taken in coastal, estuarine, and riverine fisheries, 1988-2020.

Figure 9. The number and percentage of the declared salmon catch released by anglers, 1993-2020.

Figure 10. Declared number of salmon caught by nets and fixed engines in England and Wales and the percentage of the catch taken in the north east coast fishery, 1956-2020. (N.B. no 2020 data shown on the figure because all salmon caught were released).

Figure 11. Declared number of salmon caught by rods in England and Wales, 1956-2020. (Fish caught and released not reported prior to 1993).

Figure 12. Declared number and percentage of salmon caught by (a) nets and (b) rods before 1 June, 1989-2020.

Figure 13. Percentage of rod caught fish released by anglers, by weight category, 1998-2020.

Figure 14. Variation in the percentages of 1SW and older salmon returning to the Rivers Dee, Tamar, Lune, and Tyne over the available time series.

Figure 15. Estimated percentage (\%) of salmon $>81 \mathrm{lb}(3.6 \mathrm{~kg})$ caught in regional net and fixed engine fisheries (excluding NE Region), 1999-2020. (N.B. no 2020 data shown on the figure because all net caught salmon were released).

Figure 16. Estimated percentage (\%) of salmon >8lb (3.6 kg) caught in the north east coast net fishery (as declared by netters), 1965-2020. (N.B. since 2019, no data shown on the figure because all net caught salmon were released).

Figure 17. Estimated percentage of selected principal salmon rivers with $\geq 50 \%, 25-49 \%$ or $\leq 24 \%$ of MSW salmon in the declared rod catch, 1997-2020.

Figure 18. Estimated number (histogram) and percentage (solid line) of MSW salmon caught by rods, 1992 to 2020. Note that the histograms are not drawn to the same scale.

Figure 19. Estimated total number (corrected for under-reporting) of 1SW, MSW and all salmon caught by rod fisheries in England and Wales (including fish caught and released), 1992-2020.

Figure 20. Estimated total catch of 1SW and MSW salmon in England and Wales (fish caught and killed only), 1971-2020, as used in the ICES PFA assessment.

5. CATCH PER UNIT EFFORT (CPUE)

Since catch levels are influenced strongly by the level of fishing effort, catch per unit effort (CPUE) data are commonly used as well as the declared catch to help evaluate the status of stocks. However, the relationship between CPUE and abundance can be influenced by confounding factors in both rod and net fisheries. It should also be remembered that, when operated, net and rod fisheries are undertaken sequentially (the net fisheries exploit the returning fish first), and over different time periods (fishing seasons). Rod fisheries are active over a longer period and typically extend into the early autumn after net fisheries have ceased to fish. Thus, changes in patterns of run-timing may have contrasting effects on CPUE values in the different fisheries.

- Nets - Regional CPUE data for net fisheries for the period since 1997 are presented in Table 20. These data are based on the number of tides fished by netters, except in the North East Region where the number of days fished has been used. To provide comparable time series, the data only include fishing gears that have operated in a consistent manner over the full period. Plots of the standardised CPUE Z-scores for the various regions and for net fisheries overall (expressed as a 2-year moving average) are provided in Figure 21.
- Rods - Regional CPUE data for rod fisheries for the period since 1997 (expressed as the number of salmon caught per 100 days fished) are presented in Table 21. Plots of the standardised CPUE Z-scores for the various regional rod fisheries and the overall rod CPUE for England and Wales are provided in Figure 22 for the same period. Individual CPUE data for all the major salmon rivers in England and Wales are reported in the annual catch statistics reports (e.g., Environment Agency, 2020). The trends in rod CPUE for the different regions show a reasonable degree of coherence and available evidence from selected rivers where we have estimates of returning stock size, as well as CPUE, suggest that rod CPUE values provide a reasonable indicator of stock abundance (Figure 23).

Overview of CPUE in 2020

No estimates of CPUE for nets and fixed engines in 2020 could be made because there was no fishing effort for salmon in England and Wales (Table 20). Normalised CPUE values (Z-scores) for the various former regions and an overall average (Figure 21) indicate that CPUE, and by inference abundance, peaked during the period 2000-2002, then declined steadily until 2009, before increasing again between 2010 and 2011. Since that time overall CPUE has oscillated; in 2019 it was the lowest of the time series because CPUE data were only available from Wales. An earlier analysis of net CPUE and river flow suggests above average flows in July (when a high proportion of the net catch typically occurs) tend to result in reduced CPUE values.

Rod CPUE in 2020 increased on 2019 in all regions and was above the previous 5-year mean in all regions, except the South West (Table 21). Normalised CPUE values (Z-scores) for rod fisheries (Figure 22) indicate a largely positive trend between 1997 and 2012, and by inference increasing abundance (Figure 23). However, overall CPUE decreased from 2013 to 2015, followed by an increase until 2017 and then a decline until 2019. Overall CPUE in 2020 was above the long-term average of the time series.

Table 20. Mean catch per unit effort (CPUE) for salmon net fisheries, 1997-2020.

Year	Environment Agency Region					NRW Wales	England \& Wales total
	NE drift nets (June-August)	NE	SW	Midlands	NW		
1997	6.48	4.40	0.70	0.23	0.63	0.07	1.23
1998	5.92	3.81	1.25	0.24	0.46	0.08	1.17
1999	8.06	4.88	0.79	0.31	0.52	0.20	1.35
2000	13.06	8.11	1.01	0.33	1.05	0.18	2.19
2001	10.34	6.83	0.71	0.33	0.71	0.16	1.77
2002	8.55	5.59	1.03	0.53	0.90	0.23	1.66
2003	7.13	4.82	1.24	0.60	0.62	0.11	1.43
2004	8.17	5.88	1.17	0.36	0.69	0.11	1.65
2005	7.23	4.13	0.60	0.60	1.28	0.09	1.35
2006	5.60	3.20	0.66	0.51	0.82	0.09	1.04
2007	7.24	4.17	0.33	0.51	0.75	0.05	1.14
2008	5.41	3.59	0.63	0.64	0.34	0.06	0.96
2009	4.76	3.08	0.53	0.64	0.51	0.04	0.89
2010	17.03	8.56	0.99	0.26	0.47	0.09	2.08
2011	19.25	9.93	0.63	0.14	0.34	0.10	2.25
2012	6.80	5.35	0.69		0.31	0.21	1.36
2013	11.06	8.22	0.54		0.39	0.08	1.89
2014	10.30	6.12	0.43		0.31	0.07	1.42
2015	12.93	7.22	0.64		0.39	0.08	1.71
2016	10.95	9.98	0.78		0.38	0.10	2.38
2017	7.58	5.64	0.58		0.26	0.15	1.41
2018	6.27	6.05	1.07		0.92	0.15	1.68
2019	n/a	n/a	n/a	n/a	n/a	0.15	0.15
2020	n/a						
Mean (2015-19)	9.43	7.22	0.77		0.49	0.12	1.47

No. fisheries
\% change (2020
on 5-yr mean)

Notes: No CPUE for net fisheries in 2020 was available because there was no fishing effort for salmon.

Fisheries were selected on the basis that they were fished consistently during the period. Data are expressed as catch per licencetide, except for the North East, for which data are recorded as catch per licence-day.
From 2012, the fishery operating in the Severn (Midlands Region) has been limited by a catch limit (cap); the Midlands data have therefore been removed from the combined E\&W total for the whole time series.
CPUE estimates in recent years include small numbers of fish that were subsequently released.
Data for 2020 are provisional.

Table 21. Mean catch per unit effort (CPUE) for salmon rod fisheries in each Region, 1997-2020.

Year	Environment Agency Region						NRW Wales	England \& Wales
	NE	Thames	Southern	SW	Midlands	NW		
1997	5.0	0.6	3.1	5.2	1.7	5.3	2.6	4.0
1998	6.5	0.0	5.9	7.5	1.3	8.6	3.9	6.0
1999	7.4	0.3	3.1	6.3	2.1	7.4	3.5	5.5
2000	9.2	0.0	5.2	8.8	4.9	11.7	4.4	7.9
2001	11.3	0.0	11.0	6.6	5.4	15.4	5.5	8.7
2002	9.4	0.0	18.3	6.0	3.5	10.0	3.6	6.8
2003	9.7	0.0	8.8	4.7	5.2	8.3	2.9	5.7
2004	14.7	0.0	18.8	9.6	5.5	17.4	6.6	11.4
2005	12.4	0.0	12.7	6.2	6.6	13.9	4.5	9.0
2006	14.2	0.0	15.6	8.7	6.6	13.3	5.9	10.1
2007	11.7	0.0	18.0	8.7	5.7	14.2	6.0	9.6
2008	12.7	0.0	21.8	10.9	5.8	15.3	7.3	10.5
2009	9.5	0.0	13.7	5.7	3.6	9.3	3.6	6.6
2010	16.7	2.8	17.1	9.9	4.3	14.1	6.5	10.2
2011	17.5	0.0	14.5	9.4	6.5	11.4	6.0	10.9
2012	15.4	0.0	17.3	9.2	6.3	9.1	6.5	10.6
2013	16.7	0.0	10.0	5.9	7.9	7.7	5.7	8.9
2014	12.1	0.0	11.9	4.8	5.0	6.9	4.4	7.1
2015	8.7	0.0	16.6	8.8	9.0	7.0	4.8	7.1
2016	13.5	0.0	16.8	7.8	9.5	8.5	6.4	9.1
2017	13.5	0.0	13.6	8.7	8.0	9.3	6.6	9.4
2018	10.5	0.0	5.0	4.9	6.7	9.0	4.0	7.2
2019	12.0	1.6	6.6	4.2	5.4	7.7	3.4	7.0
2020	13.2	0.0	13.9	6.7	10.6	12.4	7.0	10.5
Mean (2015-19)	11.6	0.3	11.7	6.9	7.7	8.3	5.0	7.9
\% change:								
2020 on 2019	+10		+109	+59	+96	+63	+107	+50
2020 on 5-yr mean	+13		+18	-2	+37	+50	+39	+32

Notes: Based only on catch returns for which effort data have been reported.
CPUE is expressed as number of salmon (including released fish) caught per 100 days fished.
Data for 2020 are provisional.

Figure 21. Normalised catch per unit effort (CPUE) (Z-score) for salmon net fisheries, 1997-2020. (N.B. no 2020 data shown on the figure because net CPUE was not available due to a lack of fishing effort for salmon).

Figure 22. Normalised catch per unit effort (CPUE) (Z-score) for salmon rod fisheries, 1997-2020.

Figure 23. The relationship between mean rod CPUE and mean stock size for the Rivers Frome, Tamar, Fowey, Dee, Lune, and Kent, 1994-2020 (black line). Note: the red lines are 95\% confidence intervals and blue lines are 95\% prediction intervals.

6. EXPLOITATION RATES

Care is required in trying to draw general conclusions about current stock status from catches alone. The actual relationship between catch and stock abundance depends upon exploitation rates (i.e., the proportion of the salmon population taken in the catch - both retained fish and those released), although it is important to remember that fishing effort and catchability (the proportion of the stock taken per unit of fishing effort) can be influenced by factors such as river flow, angler competency and changes in run-timing. Exploitation rates can be estimated where there is a fishery-independent measure of the salmon run, such as that obtained from fish counters and traps (Table 23 and Figure 28), and these data can then be compared against the catch (both total catch and retained fish) to estimate exploitation rates (Table 22 and Figure 24). These show varying trends, but the 'true' exploitation rates (i.e., fish retained) show a marked decline over the available time series, due largely to the increasing use of C\&R.

Overview of exploitation rates in 2020

Exploitation rates for rod fisheries on most 'counted' rivers in 2020 were below those in 2019 and the average of the previous five years, although values remain highly variable among rivers. Increases in exploitation rates were reported on three rivers (Hampshire Avon, Leven and Teifi), remaining below the 5 -year mean in the Hampshire Avon and Teifi but exceeding this metric and reaching the highest levels in the time series in the Leven. While total exploitation rates remain quite high on some 'counted' rivers, the 'true' exploitation rates (i.e., fish retained) have declined over time in almost all rivers. This is largely attributable to C\&R, which has increased from 10\% to over 90% over the past three decades. The exploitation rates for the net fisheries, where estimates have been possible, have reduced to zero due to regulatory measures which have closed fisheries or require the release of any salmon caught.

Assessment of national trend in exploitation

Estimates of aggregated national exploitation rates, split by sea-age class, are required for use in the ICES annual assessment of stock status to estimate numbers of returning fish. The procedures used in deriving these estimates are described in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021). The overall trends in national exploitation rate derived from this process are provided in Figure 25. These indicate that exploitation rates have fallen from about 50% for 1 SW fish and $35-40 \%$ for MSW fish at the start of the period to 0.9% and 0.4%, respectively, currently, due to the measures taken to control both legal and illegal fisheries. A further reduction in exploitation rates has resulted from the introduction of the latest regulatory measures (Section 2).
Table 22. Estimated exploitation rates (\%) for selected rod and net fisheries in England and Wales, 1988-2020.

			Rod Fisheries																								Net Fisheries			
Region/NRW	NE		Southern				SW								NW						Wales						NW Wales			
River	Tyne ${ }^{\text {ce] }}$		Test		Itchen		Hampshire/Avon		Frome ${ }^{\text {a] }}$		Tamar		Fowey		Kent		Leven		Lune		Dee ${ }^{[b]}$		Dee ${ }^{(6)}$		Teifi		Kent	Leven	Lune	Dee
Wild/Hatchery	W		W/		W		W		W				W		W		W		W		W 11		W (M		W		W	W	W	W
Year	All	Ret.	Ret.	Ret.	Ret.	Ret.																								
1988			40	40	34	34			12	12																				
1989			29	29	45	45			8	8					37	37			29	29							26		44	
1990			37	37	53	53			12	12					28	28			45	45							9		36	
1991			26	26	68	68			9	9					52	52			51	51							11		31	
1992			53	53	85	85			13	13					43	43			54	54	14	14	18	18			4		29	15
1993			37	34	30	30			12	7					53	47			47	41	11	10	15	13			7		30	11
1994			40	31	59	54			15	14	13	12			36	31			34	29	15	13	21	19			4		35	22
1995			32	26	17	10			10	9	8	7	16	12	22	18			23	17	8	7	13	12			4		27	18
1996			24	18	68	52			16	13	8	7	21	14	15	12			22	17	9	7	10	8			1		24	17
1997			15	1	41	15			8	6	6	4	30	16	22	18			24	18	8	7	9	6			7		28	17
1998			27	15	39	7			9	6	10	6	25	11	37	27			21	12	10	7	10	5			1		12	15
1999			20	11	44	14			16	7	7	3	13	6	24	15			23	12	13	10	10	5			5		15	22
2000			27	9	82	9			14	8	7	4	22	10	26	16	6	1	19	8	8	5	20	13			3	10	17	13
2001			53	1	89	1			16	9	3	2	16	8	10	6			10	4	15	11	12	5			6		17	14
2002			33	0	79	0			14	6	2	1	23	10	12	6	3	1	16	6	7	4	5	0			1	2	18	12
2003			46	0	34	0			11	3	2	1	15	5	9	5	4	0.1	13	6	10	7	8	2			2	1	12	13
2004	23	10	41	0	37	0			9	4	7	3	13	6	21	12			16	6	17	11	17	10			0		6	9
2005	29	12	31	0	21	0			12	4	2	1	23	8	20	11			17	7	15	8	20	7			3		19	13
2006	25	10	20	0	29	0	12	0	8	0.3	4	1	27	10	20	12	31	0	17	8	11	6	14	5			3	10	15	8
2007	33	16	39	0	70	0	10	0.3	10	0	5	2	14	5	19	12	8	0	11	4	12	7	17	6			0.2	0.9	7	8
2008	39	20	28	0	58	0	9	0	5	0.2	5	1	23	7	52	31	12	1.0	16	7	13	5	26	15			0	0.3	3	0.8
2009	38	16	20	0	74	0	11	0.3	6	1	7	2	15	6	41	21	26	0	11	4	10	4	12	7			2	2	5	0
2010	27	11	26	0	48	0	9	0.2	5	0	6	2	28	7	31	16	18	1.3	15	6	15	8	17	4	17	10	1	0.3	5	0
2011	34	13	32	0	42	0	17	0.3	7	0.2	6	2	21	6	n/a	n/a	42	1.7	19	8	16	6	20	10	16	9	n/a	0	4	0
2012	41	16	31	0	60	0	9	0	13	0	17	5	21	8	n/a	n/a	26	0	16	7	18	6	20	4	19	10	n/a	0.5	3	0
2013	27	8	32	0	32	0	10	0	23	0	6	1	12	4	n/a	n/a	19	0	11	5	9	3	13	2	18	7	n/a	0.7	5	0
2014	22	6	23	0	35	0	9	0	14	1	4	1	18	4	n/a	n/a	8	0	11	2	10	2	10	1	18	5	n/a	0.3	6	0
2015	13	4	25	0	38	0	29	0	18	1	8	1	25	7	n/a	n/a	3	0	13	4	11	3	11	2	23	9	n/a	0.3	7	0
2016	20	5	24	0	87	0	18	0.1	13	0	6	1	35	9	n/a	n/a	10	0	n/a	n/a	9	1	14	2	20	7	n/a	0.4	n/a	0
2017	28	6	18	0	51	0	14	0.6	10	1	10	1	45	10	n/a	n/a	11	0	n/a	n/a	14	1	15	1	26	7	n/a	0	n/a	0
2018	n/a	n/a	25	0	39	0	9	0.0	10	0	4	0.3	32	0	n/a	n/a	n/a	n/a	13	2	5	0	8	0	16	2	n/a	n/a	10	0
2019	42	6	20	0	34	0	5	0.3	13	0	4	0.4	25	0	n/a	n/a	16	0	n/a	n/a	13	1	16	1	12	3	n/a	n/a	n/a	0
2020	n/a	n/a	12	0	32	0	9	0.0	8	0	2	0.3	20	0	n/a	n/a	44	0	n/a	n/a	4	0	8	0	14	0	n/a	n/a	n/a	0
Mean(2015-19)	26	5	22	0	50	0	15	0	13	0	7	1	32	5			10	0	13	3	10	1	13	1	19	6		0	8	0

Mean(2015-19) 26	5	22	0	50	0	15	0	13	0	7	1	32	5	10	0	13	3	10	1	13	1	19	6	0
change																								
2020 on 2019		-36		-8		+102		-41		-49	-25	-21		+172				-66		-51		+19		
2020 on 5-yr mean		-44		-37		-37		-40		-69	-70	-39		+330				-58		-38		-27		

[^6]

Figure 24. Estimated exploitation rates (\%) for selected rod and net fisheries in England and Wales, 1988-2020. For rod fisheries, the figures display exploitation rates for all fish caught - i.e., including fish released (blue dots) and fish killed (red triangles). Note that estimates for the Dee rods have been split by sea age class (1SW and MSW); all other estimates are combined for all ages. Data for net fisheries are for retained fish only.

Figure 25. Estimated national exploitation rates for 1SW and MSW salmon caught in England and Wales (fish caught and killed only), including estimated non-reported catch, 1971-2020, as used in the ICES PFA assessment.

REPORT ON STATUS OF STOCKS IN 2020

7. STOCK MONITORING

The Environment Agency and NRW monitor both stocks and fishery performance in most rivers supporting salmon stocks in England and Wales, respectively. This includes operating counters, undertaking electrofishing surveys of juvenile fish, and collecting fishery statistics. These data provide the basis for assessing stock status and informing management decisions. In addition to protecting the abundance of stocks, managers need to maintain the diversity of stocks in terms of their biological characteristics. Measures of stock diversity potentially encompass a wide range of biological characteristics, but those of greatest significance for the management of stocks are the population structure within the river, the river-age of the emigrating smolts and the run-timing and sea-age composition of the returning adult stock. Such data tend to be derived from a small number of 'indicator' rivers. Further details on the various monitoring programmes are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

Juvenile surveys (salmon fry and parr)

A programme of juvenile salmonid monitoring - undertaken using electrofishing methods - is carried out annually to identify spatial variation in juvenile populations and temporal trends in their abundance. The habitat at all sites is assessed such that the abundance of the juvenile salmon population at any site can be compared with standard reference conditions. A classification scheme is also applied such that the percentage of sites falling into different salmon abundance classes (Classes A to F) provides a measure of the health of the juvenile salmon populations for each river. Figure 26 presents the percentage of sites in each catchment that fall into the top three categories (Classes A to C) over the period 2014 to 2019. Thus, for catchments shaded red, 25% or fewer sites fall within this category, while for those shaded green more than 75% of sites are at or above average. Overall, about half (51%) of the sites surveyed over the period were in the lowest two classes (Classes E or F). It should be noted that the results remain unchanged from those presented in last year's assessment because COVID-19 restrictions prevented any notable juvenile salmonid monitoring (electrofishing surveys) in 2020.

Figure 27 presents annual estimates of the overall percentage of sites within principal salmon rivers falling within classes A to C viewed over the available time series (2005-2019). It should be noted that not all the same sites are sampled every year and so the data are not directly comparable from one year to the next. Nonetheless, these data provide a general indication of overall changes in juvenile recruitment throughout England and Wales over the period. The data show considerable variability in the percentage of sites falling within classes A to C, ranging from over 50% in 2009 to a low of 23% in 2016. The latter reflected the poor juvenile recruitment observed throughout England and Wales in that year (Section 10). There was a small improvement in the percentage of sites falling within classes A to C from 2017 to 2019, with the value for 2019 (35%) a little below the average of the time series (37\%).

Upstream counts of adult salmon

Electronic fish counters and/or traps are operated on several catchments to provide estimates of the upstream run of adult salmon and sea trout. Where it is possible to separate the species, the counts are adjusted to provide estimates of the numbers of returning salmon. For some rivers
(e.g., the River Tyne), the time-consuming validation procedures mean that data may not be available for the most recent year. Available time series, including those that have been recently discontinued, are presented in Table 23 and Figure 28.

In most rivers, particularly those on the west coast of England and in Wales (Figure 28), there is evidence of a marked decline in the numbers of returning salmon over the last decade. On some other rivers, however, notably some of those on the south coast of England, the numbers of returns have increased.

It was not possible to estimate the numbers of salmon returning to two rivers (Lune and Tyne) in 2020 because COVID-19 restrictions prevented essential counter maintenance. Returning stock estimates and counts for the other rivers in 2020 were above the levels recorded in 2019, except on the Leven and Teifi, and higher than the recent 5 -year means for more than two-thirds of these rivers. On two rivers (Test and Hampshire Avon), the estimates were the highest in the time series.

Tagging investigations

Tagging studies have often been undertaken to monitor stocks and to evaluate the outcome of different management initiatives, although tagging effort has declined in recent years. In 2020, COVID-19 restrictions limited the extent of tagging studies. Just over 600 wild salmon smolts were microtagged and released in England and Wales to assess return rates to rivers; all these fish were also adipose fin-clipped. A total of 9,600 hatchery parr and smolts and over 8,200 wild parr were marked with adipose fin clips; all the wild parr were also tagged with PIT tags. Other internal tags were fitted to 100 smolts of wild origin for use in tracking investigations. In addition, just over 560 adult salmon were tagged to aid in the assessment of returning stocks. Details of the tagged and marked salmon released each year around the whole North Atlantic are compiled annually by ICES and reported to NASCO. Details of the fish tagged in England and Wales in 2020 are provided in Table 24.

Return rates to rivers

Evidence from monitored rivers around the North Atlantic indicates that the survival of salmon during the marine phase of their life-cycle has declined in recent decades. Time series of percentage return rates for the River Corrib (Ireland), River Bush (Northern Ireland) and River North Esk (Scotland) (data from ICES, 2021) are shown in Table 25. Shorter time series for the Rivers Dee (Wales), Tamar and Frome (Table 25 and Figure 29) indicate similarly low levels of marine survival in recent years. It was not possible to monitor adult returns on the Tamar in 2014, nor to undertake any smolt tagging, so there are therefore gaps in this time series. However, this programme resumed in 2015.

For the Rivers Tamar and Frome, the return rates of 1SW fish (from the 2019 smolt cohort) were higher than the previous year but remained within the range previously observed (back to 2002). The return rates for 2 SW salmon on the Tamar and Frome in 2020 (from the 2018 smolt cohort) were also within the range of recent values. For the River Dee, the return rates of 1SW fish in 2020 were the highest in the last five data years and those for 2SW fish were the second highest in the time series.
Table 23. Validated counts and run estimates of salmon smolts and adults in selected monitored rivers, 1986-2020.

Table 24. ICES compilation of microtag, fin clip and external tag releases.

Country: UK (England and Wales)						
Totals	Origin	Primary Tag or Mark			Other internal ${ }^{\text {a] }}$	Total
		Microtag	External Mark	Adipose Clip		
	Hatchery juvenile			9,600		9,600
	Wild juvenile	607		8.263	100	8.970
	Adult		564			564
	Total fish marked	607	564	17,863	100	19,134

Marking Agency	Age	Life Stage	H/W	Stock Origin	Primary Tag or Mark	Number marked	Code or Serial	Secondary Tag or Mark	Release date	Release Location
EA North East	Various	Adult	W	Tyne	Floy tag	9	Green 3126-3134	None	Dec 2020	North Tyne
EA North East	Various	Parr/smolt	H	Tyne	Adipose clip	3,192		None	Jan-May 2020	North Tyne
Natural Resources Wales	Various	Adult	W	Dee	Floy tag	555	Various grey and blue/green	None	May-Sep 2020	Dee - Chester
Natural Resources Wales	Various	Smolt	W	Dee	CWT	607	01/42/38	Adipose clip	May-Jun 2020	Dee - Chester
Natural Resources Wales	1+	Smolt	H	Usk	Adipose clip	2,577		None	30 Apr 2020	Usk - Senni
Natural Resources Wales	1+	Smolt	H	Usk	Adipose clip	1,531		None	14 May 2020	Usk - Senni
Natural Resources Wales	$1+$	Parr	H	Usk	Adipose clip	2,300		None	14 Oct 2020	Usk - Senni
GWCT	0+	Parr	W	Frome	Adipose clip	8,030	PIT codes starting 3DD.003xxxxxx	PIT tag	Aug-Sep 2020	Frome
GWCT	1+	Parr	W	Frome	Adipose clip	233	PIT codes starting 3DD.003xxxxxx	PIT tag	Aug-Sep 2020	Frome
University of Glasgow	2+	Smolt	W	Derwent (Cumbria)	Acoustic	100		None	Apr 2020	Derwent - St John's Beck

Table 25. Estimated survival of wild smolts (\%) to return to homewaters (prior to coastal fisheries) for index rivers in the UK and Ireland (from ICES, 2021 and Environment Agency/Cefas/GWCT data) for 1984 to 2019 smolt years.

Smolt migration year	Ireland			UK (N. Ireland)	UK (Scotland)		UK (England and Wales)									
	River Corrib		Burishoole	River Bush ${ }^{\text {lal }}$	River North Esk ${ }^{[b]}$		Dee ${ }^{[c]}$				Tamar				Frome ${ }^{[d]}$	
	1SW	2SW	1SW	1SW	1SW	MSW	1SW	95\% CL	MSW	95\% CL	1SW	95\% CL	MSW	95\% CL	1SW	MSW
1984	26.2	2.0	19.8		6.0	4.0										
1985	18.9	1.8	19.3		13.6	5.4										
1986			20.0	31.3												
1987	16.6	0.7	26.9	35.1	10.4	3.9										
1988	14.6	0.7	22.9	36.2												
1989	6.7	0.7	7.1	25.0	6.6	4.2										
1990	5.0	0.6	16.0	34.7	6.0	3.1										
1991	7.3	1.3	21.7	27.8	7.6	3.1										
1992	7.3		15.9	29.0	10.9	6.5										
1993	10.8	0.1	23.9		14.5	6.1	6.3	3.6	2.5	2.2						
1994	9.8	1.4	26.9	27.1	10.9	3.6	1.3	1.2	1.2	1.3						
1995	8.4	0.1	14.6		8.4	3.8	2.7	1.8	0.4	0.7						
1996	6.3	1.2	18.3	31.0	5.9	2.7	4.8	1.7	2.1	1.3						
1997	12.7	0.8	15.6	19.8	7.2	4.2	6.2	2.9	3.4	1.9						
1998	5.5	1.1	12.4	13.4	2.6	1.4	2.3	2.4	3.7	3.6						
1999	6.4	0.9	14.9	16.5	6.8	3.8	5.0	8.3	12.4	11.8						
2000	9.4		22.5	10.1	6.0	2.8	2.0	1.1	0.9	0.8						
2001	7.2	1.1	16.6	12.4	4.7	2.9	4.3	5.1								
2002	6.0	0.5	12.3	11.3	2.2	2.0	2.9	1.4	0.7	0.9	3.6	2.1	1.4	0.9	5.6	1.7
2003	8.3	2.1	19.4	6.8			2.6	1.7	0.4	0.4	6.1	2.0	1.8	1.1	4.8	0.9
2004	6.3	0.8	12.8	6.8			4.5	1.1	1.0	0.5	6.0	2.3	1.5	1.0	5.3	2.9
2005			8.1	5.9	6.7	2.8	5.1	1.6	0.5	0.4	6.4	1.6	1.2	0.8		
2006	3.6	0.7	12.9	14.0	3.3	3.4	4.3	1.2	1.5	0.9	3.8	1.3	5.3	2.5	5.1	2.2
2007	1.3	1.6	8.4	8.3	5.0	4.0	1.3	1.1	0.9	0.7	7.6	3.8	3.3	2.0	5.7	1.3
2008	1.7	1.0	8.2	4.0	6.4	5.3	2.5	2.0	1.3	1.5	1.6	0.9	0.9	0.7	3.1	1.6
2009	6.0	1.0	8.9	5.9	9.0	8.7	4.8	2.1	1.1	1.0	8.2	2.1	1.9	0.9	7.7	2.6
2010	2.9	1.2	7.5	4.0			1.9	1.9	0.7	1.3	3.4	1.5	5.0	3.1	8.6	2.8
2011	2.4	0	10.8	2.7					0.3	0.5	1.1	1.6	1.9	1.2	1.2	1.7
2012	1.5	0	9.4	11.7			4.8	4.9			2.5	1.4			3.1	2.0
2013	2.2	0.3	4.5	4.6			1.9	1.7	1.4	1.3			4.7	2.6	1.5	2.1
2014	2.9	0.5	8.0	2.9					0.5	1.1					2.0	2.7
2015	5.5	0.6	7.8	6.7			0.5	1.0	1.8	1.6	4.2	2.1	2.3	1.9	5.9	3.0
2016	6.9	0.2	7.5	3.8			0.3	0.6			3.5	2.6	1.4	1.2	4.4	2.0
2017	3.6	0.4	7.1	3.2							5.0	2.9	5.2	3.4	2.6	1.9
2018	2.3	0.4	8.0	2.8			1.0	2.0	6.6	7.4	3.7	1.8	3.2	1.8	1.6	1.9
2019	2.5		8.2	7.1			2.1	3.1			6.3	2.9			4.7	
Mean (2014-18)	4.2	0.4	7.7	3.9			0.6		3.2		4.1		3.1		3.3	2.3
Mean (2009-18)	3.6	0.5	7.9	4.8	9.0	8.6	2.2		2.0		3.9		3.2		3.9	2.3

Notes: Data based on Game \& Wildlife Conservation Trust monitoring facilities at East Stoke, and supplied courtesy of GWCT. 2019 smolt migration year are provisional.

Figure 26. Juvenile salmon abundance indices for each catchment, presented as percentage of electrofishing survey sites in classes A to C only, 2014-2019. (N.B. no 2020 data shown on the figure because COVID-19 access and movement restrictions prevented any notable juvenile salmonid monitoring).

Figure 27. Overall percentage of juvenile electrofishing survey sites in England and Wales in classes A to C, 2005-2019. Data include all surveys conducted in a single year from principal salmon rivers only. (N.B. no 2020 data shown on the figure because COVID-19 access and movement restrictions prevented any notable juvenile salmonid monitoring).

Figure 28. Counts from electronic counters (C) and monitoring traps (T), and returning stock estimates (RSE) (based on trapping and tagging, or validated counts plus catch below counter) for selected salmon stocks in England and Wales, 1988-2020.

Figure 29. Estimated survival (± 95 Confidence Limits where available) of wild smolts (\%) to return to homewaters (prior to coastal fisheries) for (a) 1SW and (b) MSW salmon for the Rivers Dee, Tamar, and Frome.

8. ASSESSMENT OF STOCK STATUS

The status of individual river stocks in England and Wales is evaluated annually against Conservation Limits (CLs) and Management Targets (MTs) in line with the requirements of ICES and NASCO. An assessment of the status of the national salmon resource in England and Wales is also undertaken annually, using the Pre-fishery Abundance (PFA) and National Conservation Limit Models (Potter et al., 2004), and reported to ICES to assist with the development of management advice for the distant water fisheries. Full details of these assessment approaches are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

Status of river stocks in 2020

Egg deposition estimates for 2020 have been calculated for each of the 64 principal salmon rivers in England and Wales and values, expressed as the percentage of the CL attained, are provided in Table 26 and illustrated in Figure 30. It should be noted that egg deposition estimates in the current year (2020) were adjusted to account for the influence of the COVID-19 pandemic on rod catches (see Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021) for further details).

Twenty-one rivers (33\%) were provisionally assessed as meeting their CL in 2020 (Table 27), an increase on 2019 (10 rivers) but the joint-seventh lowest in the 28 -year time series (Figure 31). A total of twenty-four rivers (38%) were below 50% of their CL in 2020, compared with 34 rivers (55\%) in 2019. However, it should be noted that it was not possible to calculate the percentage of the CL attained in 2020 for the River Yealm because it had declared rod catches of zero meaning no estimate of egg deposition could be made. River-to-river variation in the percentage of the CL attained in 2020 (Figure 30) indicates that rivers where spawning escapement was below the CL were widely distributed throughout England and Wales.

In 2020, additional egg deposition resulting from fish that were caught and released is estimated at about 21 million eggs (assuming 80% adult survival from release to spawning, 50% females and an average of 5,000 eggs per female). This represents about 9% of the total estimated egg deposition in England and Wales in 2020.

Compliance with the management objective

The 'management objective' (MO) for salmon stocks in England and Wales is that they should meet or exceed their CLs in at least four years out of five (i.e., at least 80% of the time). Compliance with this objective takes trends in egg deposition into account and has been calculated for all 64 principal river stocks in England and Wales for 2020 and projected to 2025 (Table 26 and Figure 32).

The latest compliance assessment indicates that just one principal salmon river (Tyne) in England and Wales was classified as 'not at risk' in the current year (2020) - i.e., having a high probability ($p \geq 95 \%$) of achieving the management objective. This is the first year since 2013 that a river has been classified as 'not at risk', but this is not projected to continue to apply for this river in 2025. In 2020, 35 rivers (55%) were classified as 'at risk' - having a low probability ($p \leq 5 \%$) of achieving the management objective, an improvement from 2019 which had 40 rivers 'at risk', but 26 rivers (41%) are projected to be 'at risk' in 2025. Just 4 rivers (6\%) are classified as 'probably not at risk'
($50 \% \leq \mathrm{p}<95 \%$) in 2020. Twenty-four rivers (38\%) in 2020 are classified as 'probably at risk' (5\% $<\mathrm{p}<50 \%$ of achieving the management objective); this is projected to rise to 34 rivers (53%) in 2025. The compliance figures are summarised, separately, for rivers in England and Wales below:

Rivers in England

Stock status category	Probability of meeting the Management Objective	$\mathbf{2 0 2 0}$		$\mathbf{2 0 2 5}$	
	Number of rivers	$\%$	Number of rivers	$\%$	
Not at risk	$>95 \%$	1	2	0	0
Probably not at risk	$50-95 \%$	4	10	4	10
Probably at risk	$5-50 \%$	17	40	23	55
At risk	$<5 \%$	20	48	15	36

Rivers in Wales

Stock status category	Probability of meeting the Management Objective	$\mathbf{2 0 2 0}$		$\mathbf{2 0 2 5}$	
		Number of rivers	$\%$	Number of rivers	$\%$
Not at risk	$>95 \%$	0	0	0	0
Probably not at risk	$50-95 \%$	0	0	0	0
Probably at risk	$5-50 \%$	7	32	11	50
At risk	$<5 \%$	15	68	11	50

In England (Figure 33a), the percentage of principal salmon rivers regarded as 'at risk' has generally decreased over the past 15 years, but in 2019 it was at the highest level of the time series. In 2020, the percentage of rivers classified as 'at risk' was the second highest on record and is projected to continue at a relatively high level. The percentage of rivers classified as 'not at risk' was relatively stable, at about 20%, over the early part of the time series, but just one river has been assessed as 'not at risk' over the last seven years, and none are projected to retain this classification to 2025. There was an increase in the number of rivers classified as 'probably not at risk' in 2020 (4) compared with 2019 (3). Nearly half of the rivers (48%) are assessed as 'at risk', which is lower than 2019 (57%), but exceeds the preceding five years where most rivers are assessed as 'probably at risk'. The 2020 assessment suggests that the vast majority (90%) of English rivers will fall in the 'probably at risk' and 'at risk' categories in 2025.

For Wales (Figure 33b), the percentage of principal salmon rivers falling into the 'at risk' category has generally increased over time and very few rivers (≤ 2) have been classed as 'not at risk' throughout the time series. In 2020, all the rivers are classified as either 'at risk' (68\%) or 'probably at risk' (32\%). The projected trends suggest that all rivers will continue to fall in these same two categories in 2025, with half classed as 'at risk'.

The latest assessment therefore indicates that most salmon stocks in England and Wales remain in a depleted state.

Assessment of pre-fishery abundance (PFA) for England and Wales

Each year, ICES assesses the status of the salmon stocks in the North East Atlantic Commission (NEAC) area as a basis for advising managers and providing catch advice for the distant water fisheries. A key part of this assessment is the estimation of the PFA of all NEAC stocks, which is defined as the number of fish alive in the sea on January 1 in their first winter at sea. This is split between maturing (potential 1SW) and non-maturing (potential MSW) fish. The PFA estimates for the period since 1971 provide our best interpretation of what the available catch and effort data tell us about changes in the status of the total national stock of salmon over this time period. [N.B. the model cannot provide an estimate of PFA of potential MSW fish for the most recent year, as this relies on an assessment of the returns to homewaters of these fish, which will not occur until the subsequent year].

The estimated PFA of salmon from England and Wales has declined by around 42\% from the early 1970s to the present time (Figure 34). Over much of the period, the decrease has tended to be somewhat steeper for the non-maturing (i.e., potential MSW) component of the PFA than the maturing 1SW (i.e., potential grilse) component. However, there has been a marked reduction in the PFA of 1SW salmon in the last ten years, and the decline in PFA between the start and the end of the time series is now steeper for 1SW fish (61\%) than for MSW salmon (32\%). It should be noted that these trends mask conflicting changes in individual river stocks. Many rivers have experienced more serious declines, but these are obscured by the very substantial improvements and recovery in others (e.g., the River Tyne) over the entire ~ 50-year time series. The results also suggest that there was a marked decline in PFA around 1990, which is consistent with the general perception of a decrease in the marine survival for many stocks around the North Atlantic at about that time.

The estimated numbers of salmon returning to rivers in England and Wales (prior to exploitation in homewater fisheries) are also derived from the ICES national assessment, based on retained homewater fishery catches corrected for under-reporting raised by exploitation rates. These estimates show a similar downward trend to the PFA (Figure 35), although the decrease is less marked due to the reduction in net exploitation in distant water fisheries. Thus, the numbers of returning fish are estimated to have declined by about 33% between the early 1970s and the present time. As with the PFA, the decline in returning MSW fish has tended to be steeper than that of the 1 SW returns over much of the time period. However, a higher percentage of MSW fish has been observed in the last ten years and the percentage reduction in returning fish between the start and the end of the times series is now substantially greater for 1 SW fish.

The difference between the estimated numbers of returning fish and those surviving to spawn has reduced progressively over the time series and the total spawning escapement has remained reasonably consistent over the period (Figure 35). This reflects the marked reduction in levels of exploitation in homewater net and rod fisheries, including the increasing use of C\&R. In 2020, the estimated numbers of returning fish were at the highest levels since 2011 and total spawning escapement was the second highest in the time series. The recent upturn in MSW returns means that MSW spawner numbers for the international assessment used by ICES and NASCO are now estimated to be similar to those at the start of the time period. This will be expected to have a disproportionate effect on egg deposition, given the substantially higher fecundity of these larger fish. Again, it should be noted that these national estimates of spawner numbers in England and Wales make no reference to the status of individual river stocks, which, in the main, are assessed as being in a depleted state.
Table 26. Conservation Limits (CLs) and the percentage of the CL attained for the principal salmon rivers in England and Wales, 2011-2020. Current compliance against the management objective and projected compliance in 2025 are shown in the right-hand columns (see Background Report for details).

EA Region/NRW	Accessible	CL eggs /	CL eggs	Mgmt	2020 egg	Percentage of Conservation Limit attained (\%) ${ }^{\text {la] }}$										Current	Predi
River	wetted area (ha)	$100 \mathrm{~m}^{2}$	($\times 10^{6}$)	Target eggs $\left(\times 10^{6}\right)$	deposition $\left(\times 10^{6}\right)$	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	compliance ${ }^{\text {\|b }}$ 2020	compliance ${ }^{[b]}$ in 2025

NE																	
Coquet	144	218	3.14	5.67	9.65	325	366	228	134	93	160	190	96	209	308	PNaR	PaR
Tyne [c]	542	208	11.25	20.88	29.22	518	277	436	408	434	545	426	359	263	260	NaR	PNaR
Wear	232	250	5.80	11.44	13.44	460	321	526	351	196	228	310	225	181	232	PNaR	PaR
Tees	620	240	14.90	16.66	0.79	21	50	23	4	8	13	21	5	8	5	AR	AR
Esk-Yorks	86	236	2.02	2.63	1.31	105	89	100	84	73	100	174	45	59	65	AR	PaR
Southern																	
Test	138	246	3.40	4.68	6.61	66	64	68	68	137	99	128	59	69	194	PaR	PNaR
Itchen	69	234	1.63	1.97	1.43	96	82	67	109	125	45	86	59	55	88	PaR	PaR
SW																	
Avon-Hants	369	175	6.48	7.38	5.89	50	43	61	37	59	85	63	59	59	91	PaR	PaR
Stour	142	149	2.12	2.18	0.39	11	9	13	8	13	18	14	12	12	18	AR	AR
Piddle	18	177	0.31	0.39	0.25	129	50	33	27	66	63	74	69	41	82	AR	PaR
Frome	88	171	1.50	2.20	2.51	239	93	57	52	133	128	151	123	90	168	PaR	PaR
Axe	83	175	1.45	1.74	0.08	58	77	26	16	37	37	16	2	11	5	AR	AR
Exe	282	253	7.14	13.25	5.89	341	279	70	48	130	86	106	60	53	82	AR	AR
Teign	98	251	2.47	3.48	1.46	175	207	123	100	121	72	95	81	66	59	AR	AR
Dart	137	218	2.98	4.03	0.47	93	143	37	18	23	52	43	13	20	16	AR	AR
Avon-Devon	35	202	0.70	0.88	0.36	122	127	50	69	63	64	60	43	33	52	AR	AR
Erme	20	180	0.37	0.54	0.04	86	66	76	13	19	31	176	129	7	11	AR	AR
Yealm	11	212	0.24	0.28	0.03	64	57	49	29	25	24	11	29	n/a	n/a	AR	AR
Plym	29	188	0.55	0.66	0.14	91	43	24	35	32	7	29	18	12	26	AR	AR
Tavy	68	201	1.37	1.77	0.60	84	102	64	45	130	37	86	29	26	44	AR	AR
Tamar	293	395	11.56	13.31	13.14	104	126	74	77	111	84	104	88	78	114	PaR	PaR
Lynher	29	233	0.68	1.19	0.55	104	162	150	75	277	172	293	46	45	80	PaR	PaR
Fowey	42	207	0.86	1.30	1.07	196	153	261	139	235	100	147	104	71	124	PaR	PaR
Camel	56	176	0.98	1.46	0.45	241	142	158	88	88	112	93	82	46	46	AR	AR
Taw	274	211	5.78	9.94	7.24	287	199	52	109	253	139	244	62	74	125	PaR	PaR
Torridge	198	207	4.10	5.29	1.16	68	131	58	49	91	83	101	48	19	28	AR	AR
Lyn	27	359	0.97	1.68	1.87	291	166	85	103	95	60	257	39	208	192	PaR	PaR
Midlands																	
Severn	898	143	12.85	16.10	8.13	91	69	95	55	149	107	102	66	51	63	AR	PaR
NW																	
Ribble	351	202	7.10	9.67	8.21	210	189	120	124	111	108	174	92	82	116	PaR	PaR
Wyre	67	73	0.49	0.55	0.14	44	37	14	16	23	2	27	11	n/a	28	AR	PaR
Lune	423	237	10.01	13.31	10.03	190	136	112	94	105	104	122	61	48	100	AR	AR

Kent	68	223	1.52	2.33	1.52	275	160	138	70	55	105	113	108	76	100	PaR	PaR
Leven	46	182	0.83	1.15	0.71	109	58	119	170	186	62	125	156	78	85	PaR	PaR
Crake	16	194	0.32	0.44	0.10	152	119	91	45	29	13	60	76	23	31	AR	AR
Duddon (\& Lickle)	26	121	0.31	0.64	1.04	540	343	316	177	230	342	548	351	194	334	PNaR	PNaR
Esk	20	181	0.37	0.52	0.99	176	112	156	147	98	120	169	124	110	267	PNaR	PNaR
1 rt	35	198	0.69	1.02	1.05	192	143	164	42	44	63	87	57	58	152	PaR	PaR
Ehen	41	230	0.94	1.66	2.11	371	220	279	162	75	116	181	110	105	224	PaR	PaR
Calder	13	261	0.33	0.47	0.32	174	124	91	34	22	16	42	24	40	98	AR	PaR
Derwent	213	185	3.93	6.14	4.21	271	152	144	82	58	90	162	68	49	107	PaR	PaR
Eden	688	200	13.75	16.45	14.45	115	105	65	52	99	114	93	83	58	105	PaR	PaR
Esk-Border [d]	306	255	7.79	10.77	8.45	191	125	67	68	71	90	81	172	68	108	PaR	PaR
Wales																	
Wye	1,721	224	38.57	48.69	18.49	50	79	79	43	95	132	96	50	32	48	AR	PaR
Usk	407	248	10.11	15.82	8.32	137	222	122	97	160	228	235	61	70	82	PaR	PaR
Taff \& Ely	146	219	3.19	3.49	0.56	34	25	30	15	43	26	17	8	10	17	AR	AR
Ogmore	61	180	1.10	1.24	0.44	52	47	17	36	32	27	25	6	13	39	AR	AR
Tawe	88	211	1.85	2.07	0.19	55	34	37	24	26	28	31	12	10	10	AR	AR
Tywi	500	226	11.30	14.18	10.75	120	78	84	41	52	82	119	65	31	95	PaR	PaR
Taf	90	189	1.70	2.10	0.55	122	78	58	53	85	31	54	48	36	32	AR	AR
E\&W Cleddau	87	179	1.55	1.73	0.26	44	55	37	35	45	24	48	21	19	17	AR	AR
Teifi	326	265	8.65	10.32	2.38	97	62	53	47	30	32	28	22	31	28	AR	AR
Rheidol	31	222	0.68	0.81	0.05	62	46	66	35	24	30	6	10	14	7	AR	AR
Nevern	19	259	0.48	0.62	0.31	57	60	81	89	127	72	117	39	14	65	AR	PaR
Dyfi	179	235	4.21	5.30	1.69	125	70	24	16	29	50	56	44	41	40	AR	AR
Dysinni	31	216	0.68	0.73	0.05	0	30	18	6	17	24	11	11	7	7	PaR	PaR
Mawddach	57	242	1.37	1.89	1.64	199	199	73	75	106	144	154	96	122	120	PaR	PaR
Dwyryd	9	201	0.19	0.26	0.18	116	44	56	74	83	48	186	58	16	98	PaR	PaR
Glaslyn	25	191	0.48	0.69	0.08	122	107	193	104	147	68	88	50	47	16	AR	AR
Dwyfawr	33	258	0.86	0.95	0.11	43	27	19	30	15	38	4	8	22	13	AR	AR
Seiont	21	226	0.48	0.67	0.35	127	158	49	21	15	37	41	8	49	73	AR	PaR
Ogwen	24	362	0.87	1.40	1.26	244	231	112	39	135	101	270	109	153	145	PaR	PaR
Conwy	63	185	1.17	1.61	1.42	200	164	107	76	100	134	221	162	145	122	PaR	PaR
Clwyd	84	237	1.99	2.97	0.32	175	138	33	15	14	17	48	10	24	16	AR	AR
Dee	617	248	15.30	17.51	13.84	85	87	79	80	68	66	73	91	33	90	AR	PaR

[^7]Table 27. Number and percentage of salmon river stocks above their Conservation Limit (CL), between 50% and 100% of the CL, and less than 50% of the CL, 1993-2020.

Year	$>\mathrm{CL}$		50-100\% CL		<50\% CL	
	No.	\%	No.	\%	No.	\%
1993	32	52	14	23	15	25
1994	42	67	13	21	8	13
1995	26	41	22	35	15	24
1996	33	52	13	21	17	27
1997	21	33	26	41	17	27
1998	31	48	22	34	11	17
1999	21	33	22	34	21	33
2000	26	41	24	38	14	22
$2001{ }^{\text {[a] }}$	20	34	19	33	19	33
2002	27	42	20	31	17	27
2003	20	31	16	25	28	44
2004	41	64	15	23	8	13
2005	31	48	18	28	15	23
2006	37	58	15	23	12	19
2007	32	50	17	27	15	23
2008	42	66	16	25	6	9
2009	23	36	24	38	17	27
2010	38	59	16	25	10	16
2011	39	61	16	25	9	14
2012	34	53	17	27	13	20
2013	20	31	27	42	17	27
2014	14	22	20	31	30	47
2015	23	36	19	30	22	34
2016	22	34	18	28	24	38
2017	30	47	16	25	18	28
2018	13	20	22	34	29	45
$2019{ }^{[b]}$	10	16	18	29	34	55
$2020{ }^{\text {[c] }}$	21	33	18	29	24	38
Average \% 1993-2020		43		29		27

Key: ${ }^{[a]}$ No CL compliance assessment possible for 6 rivers due to the impact of foot and mouth disease.
No CL compliance assessment possible for 2 rivers due to declared rod catches of zero meaning no estimates of egg deposition could be made.
(c) No CL compliance assessment possible for 1 river due to declared rod catches of zero meaning no estimates of egg deposition could be made.
Notes: Data for 2020 are provisonal.

Percentage of salmon conservation limit attained in 2020 Black fill indicates the percentage of salmon conservation limit attained

Figure 30. Pie charts for individual rivers for which Conservation Limits (CLs) have been set showing the percentage of the CLs attained in 2020. A black circle indicates that the limit was met or exceeded.

Figure 31. Percentage of salmon river stocks exceeding their Conservation Limit (CL), between 50\% and 100% of the CL, and less than 50\% of the CL, 1993-2020.

Figure 32. Status of river catchments in 2020 assessed against the management objective (i.e., that the Conservation Limit is met or exceeded in at least 4 years out of 5, on average).

Figure 33. Percentage of principal salmon rivers in each risk category, assessed against the management objective, for 2006-2020, and as projected for 2025 for rivers in (a) England and (b) Wales.

Figure 34. Estimated pre-fishery Abundance (PFA) of salmon from UK (England and Wales), as derived from the ICES-NEAC PFA model, 2020.

Figure 35. Estimated numbers of returning and spawning salmon for UK (England and Wales), 19712020, as derived from the ICES-NEAC PFA model, 2020, together with the national Conservation Limit (derived from the sum of river-specific CLs).

9. FACTORS AFFECTING STOCKS, FISHERIES AND CATCHES

9.1 Management measures

Viewed against historic data, current stock estimates and catches provide ongoing cause for concern, hence the conservation of salmon remains a priority. As a result, the Environment Agency and NRW have developed a range of measures to protect salmon stocks in England and Wales, respectively. This followed initial consultations to better understand how further regulation of salmon fishing might help to safeguard stocks. Salmon and Sea Trout Protection byelaws came into effect in England in 2019 for a 10-year period, subject to a mid-term review. The measures include the closure of many net fisheries (or the need to release any salmon caught where a fishery is authorised to continue to operate for sea trout) and for requirements to achieve very high levels of $C \& R(>90 \%$) in rod fisheries (including mandatory $C \& R$ on rivers with the lowest stock status). In Wales, new measures were approved in late 2019 (following extensive public consultation beginning in 2017 - including a Local Inquiry). These measures came into force in January 2020 for 10 years (with a 5 -year mid-term review) and - based on the poor status of all individual river stocks - include the mandatory C\&R of salmon across Wales, as well as restrictions on angling methods (e.g., the number, size, and type of hooks) to help maximise the survival of released fish. Full details of the new provisions are provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

As well as further controls on exploitation, a range of other actions are being taken forward in both England and Wales to better protect salmon and the habitats in which they live. Progress on these actions is summarised in the England and Wales Annual Progress Reports (APRs) to NASCO, available at: https://nasco.int/conservation/third-reporting-cycle-2.

In addition to the above, several measures aimed at better management of this valuable resource have been implemented or strengthened in England and Wales in recent years. The following provides a brief overview:

- The number of licences issued for nets and fixed engines to fish for salmon and sea trout in England and Wales has continued to decline because of measures taken to reduce levels of exploitation and the declining commercial viability of some fisheries. Overall, the number of net licences has decreased by 87% since 1971. No net licences were issued for salmon fishing in 2020.
- The national spring salmon measures introduced in 1999 have reduced the percentage of the net catch taken before 1 June from a 5 -year average of 6.7% in the mid-1990's to 1.5%, on average, from 1999 to 2020; these latter fish are all required to be released. These measures have remained in place since this time. Although the percentage of net catch taken before 1 June increased to 12.5% in 2019 and 12.7% in 2020, these values cannot be directly compared to those in previous years because the introduction of national byelaws in England and Wales restricted fishing by nets to sea trout and required the mandatory $C \& R$ of salmon throughout the fishing season.
- Several net fisheries have been phased out because they exploit migratory salmonids returning to more than one river (i.e., mixed stock fisheries). From 2019, the two remaining coastal mixed stock fisheries in England were prevented from landing salmon. The drift net fishery on the north east coast was closed and fishing by T \& J
nets was restricted to sea trout, with mandatory C\&R required for all salmon caught. Mandatory C\&R was also required for all salmon taken in the Anglian coastal fishery. Since 2020, all net caught salmon have therefore been required to be released.
- Previous arrangements have also been made to reduce netting effort in some fisheries by either compensating netters not to fish for a particular period (buy-offs), or through voluntary agreement to return salmon alive. Catch limits have also been imposed on some net, fixed engine and rod fisheries and these are expected to continue to apply.
- The introduction of new fishery restrictions in Ireland in 2007, including the cessation of coastal drift netting, was estimated at the time to have resulted in up to 5,000 more grilse returning to homewaters, particularly rivers in the south and west of England and Wales.
- The national spring salmon measures (carried over into new legislation) have also affected rod fisheries. The percentage of the rod catch taken before 1 June fell from a mean of 10.9% over the period 1994-1998 to a mean of 6.8% for the period since 1999, and these fish are required to be released.
- C\&R has represented an increasingly important measure for stock conservation. The percentage of salmon released by anglers has increased steadily from 10\% in 1993 to 93%, provisionally, in 2020: the highest in the time series. Tracking studies suggest that, if handled appropriately, most released salmon go on to spawn successfully. The measures that recently came into force in England and Wales seek to further increase levels of C\&R in all net and rod fisheries because of the poor status of stocks.
- A range of non-statutory restrictions on methods and fishing areas have also been imposed by fishery owners and angling associations. These include measures such as weekly and seasonal bag limits and method restrictions aimed at improving the survival of fish after C\&R.

9.2 Other factors

Other, non-regulatory, factors may have also contributed to changes in stocks and catches, for example, the condition of returning fish, weather conditions, water quality, extreme river flow events and the market prices of wild and farmed fish. Further information on these factors is provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021). The following provides brief details of factors pertinent to 2020 :

The effect of river flows on angler effort and catches

For rod fisheries, river flow is an important factor affecting angler effort. In 2020, river flows were well above the long-term average in February, below average from April to June, and above the long-term average for most of the rest of the season (except September) - including a wet autumn in August and October (Figure 36). River flows were therefore variable due to a wet winter and dry spring. Periodic freshets are important for stimulating river entry and upstream migration of salmon and in improving angling opportunities. As such, river conditions were generally favourable for angling, particularly the high flows experienced during late summer and autumn, which are commonly important periods for many rod fisheries, and this will have affected angler effort and catches.

Monthly rod catch data for most of the rivers featured in Figure 36, expressed in the same format as the flow data, as a percentage of the long-term average, are presented in Figure 37. This excludes the River Cynon, which has no catch of salmon, but includes the catch for the whole River Tyne rather than just the South Tyne tributary. The long-term average for the rod data has only been extended back as far as 1999, which is when the national measures were introduced imposing compulsory $C \& R$ in the early part of the season. Fishing patterns are likely to have been different prior to this time. The monthly rod catch data have also been restricted to the period February to October, since for most rivers fishing seasons do not extend outside this period.

Median monthly rod catches in 2020 were below the long-term average over most of the fishing season from February to October. Median catches were low, particularly in March and April, and only peaked above the long-term average in July. Comparing the low catches in February and March with river flow conditions needs to be treated with caution since there is relatively little fishing at this time of year, catches are typically very small, and fishing is restricted to only some rivers. The low abundance of 1SW salmon (Figure 19) is likely to have been the main factor affecting the relatively poor late season catches. It is important to remember that differing proportions of 1 SW and MSW fish in the runs and the timing of the return migrations of these fish (many MSW fish return earlier in the season) will have an impact on catch rates, in addition to river flows.

Above average temperatures

Warm summer conditions during 2020 resulted in above average water temperatures in some river catchments. Elevated temperatures can affect the survival of salmon subject to C\&R, and measures to prevent this can substantially reduce angling effort. For example, there is a voluntary agreement not to fish on the Hampshire Avon when the river temperature, measured at 09:00 at a fish counter site (Knapp Mill), exceeds $19^{\circ} \mathrm{C}$. In 2020, anglers voluntarily ceased salmon fishing for 18 days when this threshold was exceeded during the fishing season. Similar voluntary restrictions on angling applied on two other catchments (Test and Itchen) affected effort and catches.

Coronavirus (COVID-19) pandemic

Angling opportunities for salmon in 2020 were affected by the outbreak of the COVID-19 pandemic and the resulting access and movement restrictions imposed to prevent its spread throughout England and Wales. A lockdown period was in place between the 23 March and the 12 May. Once lockdown restrictions on outdoor activities eased on the 13 May, angling was permitted within a 5 -mile distance from one's home. Restrictions were further lifted on the 23 June in England and the 6 July in Wales to allow unimpeded travel. Wales entered a further "firebreak" lockdown between the 23 October and the 9 November, but this would have had a minimal effect on salmon angling because on most rivers the season ended on the 17 October, with only a few rivers or parts of rivers fishing until the 31 October.

Examination of angling returns for 2020 indicates that COVID-19 restrictions were likely to have constrained fishing effort and rod catch to some extent in the early part of the season, but similar effects were not evident thereafter (comparisons were restricted by established reporting formats for fishing effort to 'before 16 June' as a proxy for the early season and '16 June onward' for the remainder of the season). Similarly, given that, on most rivers, early season effort and catch comprise a relatively small proportion of the total, whole season effects were also not marked (including exploitation rates estimated on the counted rivers) compared to the preceding 6 years
(i.e., 2014-2019 - the start of this period being the first year in which fishing effort was recorded pre-16 June). Following an investigation into the potential impacts of the COVID-19 pandemic on angling it was determined that specific adjustments were required to the 2020 assessment to account for these. A full description of this procedure is provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

First sale price of salmon

Historically, the first sale price of salmon had potential implications for fishing effort and the economic viability of net fisheries that targeted these fish. The average monthly price of wild salmon varies seasonally, reflecting both availability and the size of fish. Figure 38 provides an indication of trends in the first sale price of both wild and farmed salmon from 1978 to 2016 - the most recent data available. The data are provided for a single month, August. Further discussion on these price changes is provided in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021).

Figure 36. Monthly mean river flows (cubic metres per second) in 2020 for 12 rivers (South Tyne, Itchen, Avon, Exe, Taw, Severn, Wye, Cynon, Teifi, Dee, Lune, and Eden) in England and Wales, expressed as a percentage of the long-term average on each river for the same month. (Data supplied by the National River Flow Archive at the UK Centre for Ecology and Hydrology). The long-term average is calculated for the available time series, which varies from river to river, but is in the range of 25-40 years.

Figure 37. Monthly rod catches in 2020 for 11 rivers (Tyne, Itchen, Avon, Exe, Taw, Severn, Wye, Teifi, Dee, Lune, and Eden) in England and Wales, expressed as a percentage of the long-term average on each river for the same month. The long-term average is derived from the data for the period since 1999.

Figure 38. The average price of farmed salmon and wild Scottish salmon sold in August at Billingsgate, London, 1978 to 2016 (most recent data available).

10. EXISTING AND EMERGING THREATS TO SALMON POPULATIONS

Further information on the various factors impacting salmon stocks in England and Wales, and progress with actions to protect and enhance these stocks, is reported in the NASCO Implementation Plan and in the annual progress reports to NASCO. These reports are available at: https://nasco.int/conservation/third-reporting-cycle-2. Some additional information is also available in the Background Report (Cefas, Environment Agency and Natural Resources Wales, 2021). The following provides brief details on four issues:

Red Vent Syndrome and other diseases

The occurrence of salmon returning to rivers in England and Wales with swollen and/or bleeding vents has been noted since 2004. The condition, referred to as Red Vent Syndrome (RVS), has continued to be observed since this time, and has been subject to ongoing monitoring. Monitoring programmes on salmon 'index' rivers provide the most consistent measure of the incidence of RVS. Since 2007, this consistency has been improved through the introduction of a system whereby symptoms have been classified according to their apparent severity (with samplers referring to a set of standard photographs and descriptions to assist their judgement). Available time series of RVS incidence in returning fish are presented in Table 28 for the Rivers Tyne, Tamar, Dee, Lune, and Caldew (a tributary of the River Eden). However, no sampling has taken place on the Caldew over the last seven years because there is no longer an operational fish trap on the river and sampling effort has been substantially reduced at two other sites. The incidence of RVS was higher in 2020 than the previous year in the Rivers Tyne, Tamar and Lune, and levels on the River Tyne were the highest in the available time series. In contrast, the incidence of RVS was lower in 2020 than the previous year in the River Dee. It should be noted that only a small sample of returns were checked for RVS on the Rivers Tyne and Lune because COVID-19 restrictions limited broodstock collection and trap operation, respectively. For the River Lune, the high values recorded in 2017 and 2018 included a higher percentage of fish than usual exhibiting mild symptoms of the disease. It is unclear whether the increased prevalence of RVS may have been linked to the above average temperatures observed during these years (Section 9).

Fish affected by RVS show a degree of recovery in freshwater and appear to be able to spawn successfully.

In response to increased reports of fungal (Saprolegnia) infections in salmon (and sea trout), the Environment Agency and NRW continue to monitor for disease problems in all the major salmon rivers across England and Wales. Over the last decade, there have been increased reports of fish infected with Saprolegnia. In some rivers, resulting mortalities have been above those considered usual from this disease. The Environment Agency has part funded a collaborative project with Cardiff University to further improve the understanding of Saprolegnia and to help identify potential drivers for infection that could explain recent observations. This work has included genetic comparisons of samples obtained over the last four years to help identify the diversity and behaviour of this fungal pathogen in rivers across the country. Nationally, 2020 was a relatively quiet year for Saprolegnia, with numbers of reported infections comparable to those in 2018 and 2019, which are considered to be within natural levels for this disease and not a cause of serious concern. Reports of Saprolegnia infections have substantially reduced over the past four years.

Reports have been made of small numbers of salmon affected by ventral haemorrhaging in 2019 and 2020. This condition has been termed Red Skin Disease (RSD) and efforts are ongoing to monitor its occurrence, confirm exact characteristics of the skin lesions and identify the cause. At present, it is unclear what the exact effect these lesions have on fish health. Low level lethargy is a common symptom but affected fish can also appear in good health and make a full recovery. There have been no confirmed cases of RSD, although anecdotal reports of fish with mild ventral haemorrhaging have been received from a small number of rivers. The Environment Agency and NRW are monitoring the situation in all the major salmon rivers across England and Wales, as well as liaising with colleagues in Ireland and Norway.

Poor juvenile recruitment in 2016

The densities of juvenile salmon, and 0+ salmon fry in particular, were very low in English and Welsh rivers in 2016 and well below long-term averages. Abnormal conditions associated with severe storms and high winter temperatures, as well as low numbers of spawners, particularly in rivers where 1SW fish normally comprise the main component of the run, are believed to have been contributory factors. A more detailed appraisal of this issue was included in an earlier report (Cefas, Environment Agency and Natural Resources Wales, 2017) and, in Wales, a followup investigation commissioned by NRW - the findings of which have been published (Bewes et al., 2019; Gregory et al., 2020). Concerns over the effects of this event on the status of salmon stocks are ongoing. The smolt run estimate for the River Frome in 2017 (Table 23), where almost all smolts migrate at one year old, was the lowest in the time series, consistent with the poor juvenile recruitment in 2016. Adult returns on the Frome in 2018 and 2019 were also the fifth and third lowest, respectively, in the available time series (Table 23). For rivers where the majority of smolts migrate as two-year-olds, smolt output may well have been below average in 2018 and this is expected to have affected numbers of returning 1SW adults in 2019 and 2SW adults in 2020.

Pink salmon (Oncorhynchus gorbuscha)

There have been occasional reports of captures of the Pacific salmon species pink salmon (Oncorhynchus gorbuscha) in England and Wales in previous years. Most recent reports have occurred in odd years (e.g., 2007, 2009 and 2015) consistent with the fish originating from established populations of pink salmon in northern parts of the Russian Federation and northern Norway. Pink salmon have a strict two-year life-cycle and thus have distinct populations breeding in even and odd years. It is principally only odd year populations that have established in these areas.

In 2017, there were widespread reports of pink salmon captures across North Atlantic countries (ICES, 2018). Relatively large numbers of pink salmon (around 200) were taken in the English north east coast fishery and there were also reports of fish being captured in a number of river systems across the country. In 2019, far fewer pink salmon captures were reported in England and Wales, with three captured in the north east coast fishery and one at the Chester Weir fish trap on the River Dee. No reported captures of pink salmon were made in 2020.

Escaped farmed salmon in 2020

Concerns have been expressed about the potential impact of escaped farmed salmon on wild salmon stocks in England and Wales, particularly those in North West England located relatively close to Scottish salmon farms. Escaped farmed salmon can negatively impact wild salmon stocks
through genetic introgression due to interbreeding, transmission of sea lice and competition for resources. On the 20 August 2020, 48,834 farmed salmon escaped from Mowi (Scotland) Limited's farm at Carradale North on the west coast of Scotland due to a mooring failing after adverse weather conditions during Storm Ellen. Following this event, anglers reported nine captures of escaped farmed salmon on five rivers (Lune, Ehen, Derwent, Eden, and Border Esk) in North West England that were verified by scale reading. Anglers also made unverified anecdotal reports of around 50 additional captures of escaped farmed salmon. It should be noted that the escaped farmed salmon were not sexually mature, and therefore were unlikely to reproduce in the winter of 2020. The Environment Agency and NRW will continue to monitor the situation to ascertain the impact of the escaped farmed salmon on wild salmon stocks in England and Wales.

Table 28. Percentage of returning salmon showing signs of Red Vent Syndrome in monitored rivers in England and Wales, 2004-2020.

River	Tyne \#	Tamar	Dee	Lune	Caldew \#
Region/NRW	NE	SW	N. Wales	NW	NW
Sample source	Upper river broodstock	Lower river trap	Lower river trap	Lower river trap	Sub-catchment trap
	\% incidence of RVS in returning fish				
2004			0.4		
2005			3.2	0	
2006			9.2	1.4	
2007	1.4	60.2	29.9	23.1	$5.3{ }^{\text {a] }}$
2008	0.8	45.3	20.9	24.7	$0.3{ }^{\text {[a] }}$
2009	3.4	41.5	28.2	21.2	10.2
2010	5.3	57.1	23.7	18.8	5.1
2011	3.8	45.6	10.9	16.3	6.4
2012	5.2	26.1	13.2	$0{ }^{\text {a] }}$	6.1
2013	10.1	44.5 \#	20.5	41.6	$0.8{ }^{\text {a] }}$
2014	7.5	n/a	25.3	9.5 \#	n/a
2015	10.3	35.5 \#	24.4	13.6 \#	n/a
2016	3.5	24.6 \#	21.7	19.0 \#	n/a
2017	4.9	17.7 \#	22.5	$60.2 \#^{\text {[b] }}$	n/a
2018	7.4	38.9 \#	34.7	$60.8 \#^{\text {b] }}$	n/a
2019	6.5	45.0 \#	36.9	21.2 \#	n/a
2020	12.5 *	57.0 \#	24.4	52.2 **	n/a

Note: Except where indicated (\#), these estimates are based on fish sampled over a common (June-October) period and have been weighted according to monthly run totals. Three of the traps (not the Caldew) are located at or close to head-of-tide. Tyne estimates, from 2012, are based on fish captured up river for use as broodstock.
(a) Considered minimum values.
[b] A high proportion of returns had mild symptoms in 2017 and 2018.

* In 2020, only a small sample of returns were checked for RVS because broodstock collection was substantially impacted by COVID-19 restrictions.
** In 2020, only a small sample of returns were checked for RVS because COVID-19 restrictions limited trap operation.

11. REFERENCES

Bewes, V., Davey, A. and Gregory, S. 2019. Investigations into the extent and causes of recruitment failure of salmon and trout in Wales in 2016. NRW Evidence Report No: 377, 134 pp.

Cefas, Environment Agency and Natural Resources Wales. 2017. Salmon stocks and fisheries in England and Wales, 2016. Preliminary assessment prepared for ICES, March 2017, 85 pp.

Cefas, Environment Agency and Natural Resources Wales. 2021. Assessment of salmon stocks and fisheries in England and Wales. Standing report on methods, approaches and wider stock conservation and management considerations in 2020, 87 pp.

Environment Agency, 2020. Salmonid and fisheries statistics for England and Wales 2019. https:// www.gov.uk/government/publications/salmonid-and-freshwater-fisheries-statistics-2019.

Gregory, S.D., Bewes, V.E., Davey, A.J.H., Roberts, D.E., Gough, P. and Davidson, I.C. 2020. Environmental conditions modify density dependent salmonid recruitment: Insights into the 2016 recruitment crash in Wales. Freshwater Biology, 65: 2135-2153.

ICES. 2018. Report of the Working Group on North Atlantic Salmon (WGNAS), 4-13 April 2018, Woods Hole, MA, USA. ICES CM 2018/ACOM:21. 386 pp.

ICES. 2021. Working Group on North Atlantic Salmon (WGNAS). ICES Scientific Reports. 3:29. 407 pp. https://doi.org/10.17895/ices.pub. 7923

Potter, E.C.E., Crozier, W.W., Schön, P-J., Nicholson, M.D., Prévost, E., Erkinaro, J., Gudbergsson, G., Karlsson, L., Hansen, L.P., Maclean, J.C., Ó Maoiléidigh, N. and Prusov, S. 2004. Estimating and forecasting pre-fishery abundance of Atlantic salmon (Salmo salar L.) in the north-east Atlantic for the management of mixed stock fisheries. ICES Journal of Marine Science 61: 1359-1369.

Annex 1. NASCO's request for scientific advice from ICES in 2021

1. With respect to Atlantic salmon in the North Atlantic area:

1.1 provide an overview of salmon catches and landings by country, including unreported catches and catch and release, and production of farmed and ranched Atlantic salmon in 2020 ${ }^{1}$
1.2 report on significant new or emerging threats to, or opportunities for, salmon conservation and management ${ }^{2}$;
1.3 provide a compilation of tag releases by country in 2020;
1.4 identify relevant data deficiencies, monitoring needs and research requirements;
1.5 review and update the General Considerations section (Annex 2) of the ICES Commissions' advice documents to include 'Environmental and other influences on the stock'.
2. With respect to Atlantic salmon in the North-East Atlantic Commission area:
2.1 describe the key events of the 2020 fisheries ${ }^{3}$;
2.2 review and report on the development of age-specific stock conservation limits, including updating the time-series of the number of river stocks with established CLs by jurisdiction;
2.3 describe the status of the stocks, including updating the time-series of trends in the number of river stocks meeting CLs by jurisdiction;
2.4 provide catch options or alternative management advice for the 2021 / 2022 - 2023 / 2024 fishing seasons, with an assessment of risks relative to the objective of exceeding stock conservation limits, or pre-defined NASCO Management Objectives, and advise on the implications of these options for stock rebuilding ${ }^{4}$; and
2.5 update the Framework of Indicators used to identify any significant change in the previously provided multi-annual management advice.
3. With respect to Atlantic salmon in the North American Commission area:
3.1 describe the key events of the 2020 fisheries (including the fishery at St Pierre and Miquelon)³;
3.2 update age-specific stock conservation limits based on new information as available, including updating the time-series of the number of river stocks with established CLs by jurisdiction;
3.3. describe the status of the stocks, including updating the time-series of trends in the number of river stocks meeting CLs by jurisdiction;
3.4 provide catch options or alternative management advice for 2021 - 2024 with an assessment of risks relative to the objective of exceeding stock conservation limits, or pre-defined NASCO Management Objectives, and advise on the implications of these options for stock rebuilding ${ }^{4}$; and
3.5 update the Framework of Indicators used to identify any significant change in the previously provided multi-annual management advice.

4. With respect to Atlantic salmon in the West Greenland Commission area:

4.1 describe the key events of the 2020 fisheries 3;
4.2 describe the status of the stocks ${ }^{5}$;
4.3 provide catch options or alternative management advice for 2021 - 2023 with an assessment of risk relative to the objective of exceeding stock conservation limits, or pre-defined NASCO Management Objectives, and advise on the implications of these options for stock rebuilding4; and
4.4 update the Framework of Indicators used to identify any significant change in the previously provided multi-annual management advice.

Notes:

1. With regard to question 1.1, for the estimates of unreported catch the information provided should, where possible, indicate the location of the unreported catch in the following categories: in-river; estuarine; and coastal. Numbers of salmon caught and released in recreational fisheries should be provided.
2. With regard to question 1.2, ICES is requested to include reports on any significant advances in understanding of the biology of Atlantic salmon that is pertinent to NASCO, including information on any new research into the migration and distribution of salmon at sea and the potential implications of climate change for salmon management.
3. In the responses to questions 2.1, 3.1 and 4.1, ICES is asked to provide details of catch, gear, effort, composition and origin of the catch and rates of exploitation. For homewater fisheries, the information provided should indicate the location of the catch in the following categories: in-river; estuarine; and coastal. Information on any other sources of fishing mortality for salmon is also requested. For 4.1, if any new surveys are conducted and reported to ICES, ICES should review the results and advise on the appropriateness for incorporating resulting estimates into the assessment process).
4. In response to questions 2.4, 3.4 and 4.3 , provide a detailed explanation and critical examination of any changes to the models used to provide catch advice and report on any developments in relation to incorporating environmental variables in these models. Also provide a detailed explanation and critical examination of any concerns with salmon data collected in 2020 which may affect the catch advice considering the restrictions on data collection programmes and fisheries due to the Covid-19 pandemic.
5. In response to question 4.2, ICES is requested to provide a brief summary of the status of North American and North-East Atlantic salmon stocks. The detailed information on the status of these stocks should be provided in response to questions 2.3 and 3.3.

Annex 2. Net Limitation Orders applying to salmon net fisheries in England and Wales

EA Region / NRW	Area	Net Limitation Order	End date	Welsh rivers in Wales 'all areas' NLO	NLO licence provision	
					Type	Number
Anglian	Coastal	Anglian Coast 2015	2022		Drift net \& non-drift net	$0^{[a, 9]}$
North East	Coastal	North East Coast 2012	2022		T and J nets	$40{ }^{\text {[9] }}$
					Drift net - Northumbria and Yorkshire	$0{ }^{\text {a] }}$
North West	North	River Lune Estuary 2009	2019		Drift	$0{ }^{\text {[a] }}$
		River Lune Estuary 2009	2019		Haaf	$12{ }^{\text {[g] }}$
		River Ribble Estuary 2017	2027		Drift (hang or whammel) nets	$0{ }^{\text {[a] }}$
		River Kent Estuary 2013	2023		Lave net	$6^{[9]}$
		River Leven Estuary 2013	2023		Lave net	$2^{\text {[g] }}$
		Solway Firth 2018	2028		Heave or Haaf net	$75{ }^{\text {bb, g] }}$
Southern	Solent \& S Downs	Southern Region Byelaw 2018	n/a		Seine	$1{ }^{[c, ~ 9]}$
South West	Cornwall	Camel Estuary 2013	2018		Draft, seine, drift or hang net	$0^{\text {la, d, g] }}$
	Wessex	Christchurch Harbour 2012 (Hants Avon \& Stour)	2022		Draft or seine net	0
		Poole Harbour 2017 (Piddle \& Frome)	2027		Seine net	$1^{\text {[e, g] }}$
	Devon	River Dart 2015	2025		Draft or seine net	0
		Exe Estuary 2011	2021		Draft nets	0
	Cornwall	River Fowey 2018	2028		Draft or seine net	$0{ }^{[f, 9]}$
		River Lynher 2014	2024		Draft or seine net	0
		River Tamar 2014	2024		Draft or seine net	0
		River Tavy 2014	2024		Draft or seine net	0
		Rivers Taw and Torridge 2012	2022		Draft or seine net	0
	Devon	River Teign 2021	2031		Draft or seine net	$3^{\text {[g] }}$
Midlands		River Severn 2014	2019		Draft or seine net	0
		River Severn 2014	2019		Lave net	$15^{\text {[g] }}$
Wales	All areas	Wales 2017	2028	Nevern	Draft or seine net	$1{ }^{\text {[g] }}$
				Taf	Coracle net	$1{ }^{\text {[g] }}$
				Taf	Wade net	$1{ }^{\text {[g] }}$
				Dyfi	Draft or seine net	$3^{\text {[g] }}$
				Dysynni	Draft or seine net	$1{ }^{\text {[g] }}$
				Glaslyn \& Dwyryd	Draft or seine net	0
				Mawddach	Draft or seine net	$3^{\text {[g] }}$
				Conwy	Draft or seine net	$3^{\text {[g] }}$
				Cleddau	Compass nets	$6^{\text {[g] }}$
				Teifi	Coracle net	$12^{\text {[g] }}$
				Teifi	Draft or seine net	$3^{\text {[g] }}$
				Tywi	Draft or seine net	$3^{\text {[g] }}$
				Tywi	Coracle net	$8^{\text {[g] }}$
Wales	North	River Dee 2015	2025		Draft or seine net	0
					Trammel nets	0

Notes: Table does not include historical installation fisheries which operate under Certificates of Privilege or the private lave net fishery on the River Wye.
Some fisheries are also subject to seasonal catch limits - see Table 2 for details.
Key: \quad lal All drift net fisheries closed in England in 2019 following the introduction of the National Salmon and Sea Trout Protection byelaws rather than through NLOs.
[b] Byelaw also introduced for Solway (Eden \& Esk) on 24 May 2018 requiring mandatory release of all salmon caught; byelaw in force for 10 years.
(c) Southern Region NLO replaced in 2018 by byelaw (not time-limited). This precludes all netting for salmon and sea trout in the Region with the exception of a single seine net authorised by the Environment Agency for the capture of sea trout only in the estuary of the River Beaulieu.
(d) Fishing currently precluded on the River Camel under the terms of an emergency byelaw; this expired on 30 April 2019.
[e] Poole Harbour NLO worded as: "Such number as is equal to the number of applicants who in the preceding year held a fishing licence for salmon and sea trout in Poole Harbour". Under the previous NLO a single licence applied and only one net has operated in recent years.
[f] River Fowey seine net compensated not to fish in recent years. A new NLO is currently pending confirmation; this would be be a zero NLO accompanied by a buy-out of the one remaining licensee. This would mean that there would no net fishing on the river for the duration of the new NLO (10 years).
[g] Net and fixed engine licences are issued for sea trout and salmon fisheries, but all net caught salmon are required to be released.

Annex 3. Byelaws applying to salmon rod fisheries in England and Wales

EA Region / NRW	River	Salmon Season (inclusive dates)	*Method Restrictions	/Catch and Release etc.	Effective from (date); expires (date)
NE	Aln	1.2-31.10	a) Limits on hook size when night fishing (all season). b) Prohibition on fishing near certain obstructions at night 1.9-30.11 and at all times at certain named obstructions.	National byelaws apply only.	All Area byelaws effective from 11.05.2001-no end date.
	Coquet	1.2-31.10	As above.		
	Tyne	1.2-31.10	As above.		
	Wear	1.2-31.10	As above.		
	Tees	1.2-31.10	As above.		
	Esk (Yorks.)	6.4-31.10	Prohibition of fishing below Ruswarp weir at night. Byelaw expires in 2022.		
	Ouse (Yorks.)	6.4-31.10			
Anglian	Region	1.3-28.9			
Thames	Thames	1.4-30.9		2 salmon bag limit a day.	
SW	Avon (Hants.)	1.2-31.8	Artificial fly only before 15.5 (Byelaw dis-applied during 2020 to facilitate spinning trial; anglers able to fish with artificial lure with fishery owner's permission 01.02.19 to 15.05 .19 , subject to specific conditions).		
	Piddle	1.3-31.8	Artificial fly only before 15.5. Mandatory C\&R of all salmon - National byelaw applying to At Risk rivers.		
	Frome	1.3-31.8	Artificial fly only before 15.5.		
	Stour			Mandatory C\&R of all salmon National byelaw applying to At Risk rivers.	
	Axe	15.3-31.10	No shrimp, prawn, worm or maggot. Fly only after 31.7 below Axbridge, Colyford.		
	Exe	14.2-30.9	No worm or maggot.	Fly only and mandatory catch and release during trial extension period.	
	Teign	1.2-30.9	Artificial fly and artificial lure only after 31.08.		
	Dart	1.2-30.9	No worm or maggot. No shrimp/prawn except below Staverton Bridge.		
	Avon (Devon)	15.4-30.11	No worm or maggot.		
	Plym	1.4-15.12	No worm, maggot, shrimp or prawn after 31.8.		
	Tavy	1.3-14.10	No worm, maggot, shrimp or prawn after 31.8.		
	Tamar	1.3-14.10	No worm, maggot, shrimp or prawn after 31.8 .		

SW	Lynher	1.3-14.10	No worm, maggot, shrimp or prawn after 31.8 .		
	Fowey	1.4-15.12			
	Camel	1.4-15.12	No worming for salmon; single barbless hooks on spinners, plugs, artificial lures; maximum gape on artificial flies of 8mm; prawn and shrimp barbless hook gape <8mm.	Mandatory C\&R applies as well as bait and method restrictions under emergency byelaw.	$\begin{aligned} & 03.10 .2019- \\ & 03.10 .2024 \end{aligned}$
	Taw	1.3-30.9	No shrimp, prawn, worm or maggot. Fly only 1.4 to 30.9.		
	Torridge	1.3-30.9	No shrimp, prawn, worm or maggot. Fly only 1.4 to 30.9 .		
	Lyn	1.2-31.10	No worm or maggot before 16.6.		
	Yealm	1.4-15.12	No worm, maggot, shrimp or prawn after 31.8.	Mandatory C\&R of all salmon National byelaw applying to At Risk rivers.	
Midlands	Severn	1.2-7.10	No float fishing with lure or bait.	Mandatory C\&R applies under (2019) emergency byelaw.	$\begin{aligned} & 15.06 .2019- \\ & 15.06 .2020 \\ & \hline \end{aligned}$
	Severn (in Wales)			Mandatory C\&R applies under (2019) emergency byelaw (Wales).	$\begin{aligned} & \text { 28.09.2019- } \\ & 27.09 .2020 \end{aligned}$
Wales	Wye	3.3-17.10 (a)	Fly only 1.9-17.10. No bait all season.	Mandatory C\&R of salmon and sea trout all season.	$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \\ & \hline \end{aligned}$
	Usk	3.3-17.10	Fly 3.3-17.10, Spin 1.617.10, Shrimp/prawn 1.9-15.9.	All other rivers in Wales.	$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2021 \end{aligned}$
	Taff \& Ely	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-30.9.	Mandatory C\&R of salmon all season.	$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Ogmore	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-30.9.	No bait fishing with worm.	$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Afan	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-30.9.	All hooks must be barbless or debarbed.	$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Neath	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-30.9.	Flies with a hook gape greater than 7 mm , hooks are restricted to singles or doubles.	$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Tawe	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.	No treble or double hooks are permitted on lures used for spinning.	$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Loughor	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.	Spinners and spoons can have only one single hook with a gape of 13 mm or less.	$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Tywi	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.	Plugs can have a maximum of three single hooks, each with a gape of 13 mm or less.	$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Taf	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.	Shrimp and prawn fishing for salmon is allowed from the 1 September until end of specified bait period (varied) with the use of a barbless, single treble hook with a gape of less than 7 mm .	$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	$E+W \text {. }$ Cleddau	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Nevern	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Teifi	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$

Wales	Aeron	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \hline 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Ystwyth	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Rheidol	1.4-17.10	Fly 1.4-17.10, Spin 1.417.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Dyfi	$\begin{aligned} & 20.3-17.10 \text { (some } \\ & \text { sections to } \\ & 31.10^{* *} \text {) } \end{aligned}$	Fly 20.3-17.10 (31.10**), Spin 20.3-17.10 (31.10**), Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Dysynni	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Mawddach	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Artro	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Dwyryd	20.3-17.10 (some sections to 31.10**)	Fly 20.3-17.10 (31.10**), Spin 20.3-17.10 (31.10**), Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Glaslyn	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Dwyfawr	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Llyfni	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Gwyrfai	20.3-17.10	$\begin{aligned} & \text { Fly 20.3-17.10, Spin 20.3- } \\ & \text { 17.10, Shrimp/Prawn } \\ & \text { 1.9-7.10. } \end{aligned}$		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Seiont	20.3-17.10 (some sections to 31.10**)	Fly 20.3-17.10 (31.10**), Spin 20.3-17.10 (31.10**), Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Ogwen	$\begin{aligned} & 20.3-17.10 \text { (some } \\ & \text { sections to } \\ & 31.10^{* *} \text {) } \end{aligned}$	Fly 20.3-17.10 (31.10**), Spin 20.3-17.10 (31.10**), Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & \text { 01.01.2020- } \\ & 31.12 .2029 \end{aligned}$
	Conwy	20.3-17.10 (some sections to 31.10**)	Fly 20.3-17.10 (31.10**), Spin 20.3-17.10 (31.10**), Shrimp/Prawn 1.9-7.10.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Clwyd	20.3-17.10	Fly 20.3-17.10, Spin 20.317.10, Shrimp/Prawn 1.9-30.9.		$\begin{aligned} & 01.01 .2020- \\ & 31.12 .2029 \end{aligned}$
	Dee	3.3-17.10	Fly 3.3-17.10, Spin 1.617.10, Shrimp/Prawn 1.9-30.9.		$\begin{aligned} & 31.01 .2020- \\ & 31.12 .2029 \end{aligned}$
NW	Ribble	1.2-31.10		Byelaw - no more than two salmon may be killed between 16.6 and 31.10.	$\begin{aligned} & \hline 20.06 .2017- \\ & 19.06 .2027 \end{aligned}$
	Wyre	1.2-31.10			
	Lune	1.2-31.10		Byelaw - no more than four salmon may be killed during the season.	$\begin{aligned} & \hline 26.11 .2009- \\ & 26.11 .2019 \\ & \hline \end{aligned}$
	Kent	1.2-31.10			
	Leven	1.2-31.10		Byelaw requiring release of all salmon after capture unless marked with a carcass tag. Number of tags available is based on the previous year's salmon stock assessment (currently 3 for whole season).	$\begin{aligned} & \text { 10.06.2016- } \\ & 09.06 .2023 \end{aligned}$

NW	Crake	1.2-31.10	Byelaw requiring release of all salmon after capture unless marked with a carcass tag. Number of tags available is based on the previous year's salmon stock assessment (currently 3 for whole season).	$\begin{aligned} & \text { 10.06.2016- } \\ & \text { 09.06.2023 } \end{aligned}$
	Duddon	1.2-31.10		
	Esk (Cumb.)	1.2-31.10		
	Irt	1.2-31.10		
	Calder	1.2-31.10	Mandatory C\&R of all salmon National byelaw applying to At Risk rivers.	
	Ehen	1.2-31.10		
	Derwent	1.2-31.10	Byelaw - two salmon per angler per day bag limit between 16.6 and 31.10; all female salmon caught between 01.10 and 31.10 to be returned.	$\begin{aligned} & 24.05 .2013- \\ & 23.05 .2023 \end{aligned}$
	Ellen	1.2-31.10		
	Eden	15.1-14.10	Byelaw requires that all salmon be released immediately between 16.6 and 14.10 (national spring byelaw covers early part of season).	$\begin{aligned} & 24.05 .2018- \\ & 23.05 .2028 \end{aligned}$
	Esk (Border)	1.2-31.10	Byelaw requires that all salmon be released immediately between 16.6 and 14.10 (national spring byelaw covers early part of season).	$\begin{aligned} & 24.05 .2018- \\ & 23.05 .2028 \end{aligned}$
	Others	1.2-31.10 (b)		

Notes: (a) Season 3.3 to 25.10 Rivers Irfon, Ithon and main River Wye upstream of Llanwrthwl Bridge.
(b) Applies to all other watercourses in the North West not named specifically above.

* National spring salmon byelaws apply.

Natural Resources Wales - variations apply to Anglesey and the Lleyn Peninsula (check local byelaws).
Always check local byelaws before fishing.

Front cover images (clockwise from top left)
1 - Rotary screw trap on the River Tyne (photo courtesy of Environment Agency)
2 - T net at South Shields (photo courtesy of Environment Agency)
3 - Salmon smolt from the River Frome (photo courtesy of Game and Wildlife Conservation Trust)
4 - Salmon crossing the River Test Nursling fish counter (photo courtesy of Environment Agency)

Centre for Environment, Fisheries \& Aquaculture Science
Lowestoft Laboratory
Pakefield Road
Lowestoft
Suffolk
NR33 OHT
Cefas
襄
www.cefas.co.uk
Centre for Environment
Fisheries \& Aquaculture
Tel: 01502562244
Science
Twitter: @cefasgovuk

Environment Agency
National Customer Contact Centre
PO Box 544
Rotherham
S60 1BY
www.Gov.uk

Tel: $\quad 03708506506$ (Mon-Fri, 8am - 6pm)
Email: enquiries@environment-agency.gov.uk
Facebook: https://www.facebook.com/environmentagency
Twitter: https://twitter.com/envagency

Cyfoeth Naturiol Cymru /Natural Resources Wales
Cambria House
29 Newport Road
Cardiff
CF24 OTP.
Cyfoeth
Naturiol
Cymru
Natural
Resources
www.naturalresourceswales.gov.uk
Wales

Tel: \quad Customer contact centre 03000653000
Email: enquiries@naturalresourceswales.gov.uk
Facebook: www.facebook.com/NatResWales
Twitter: @NatResWales

[^0]: ${ }^{\text {(e) }}$ Phase out remains in place, but under new NLO existing licensees able to If Net fishery closed in 2019 following the introduction of the National Salmon and Sea Trout Protection Byelaws.
 (g) Emergency byelaw introduced in Emergency byelaw introduced in 2019, extended to 2020, prohibited draft
 nets and putcher ranks and required mandatory catch-and-release of salmon by the lave net fishery in the River Severn.

[^1]: Key: \# Fishery operated for scientific purposes - all fish released alive in tracking investigation (no compensation agreement). \$ Agreement for all salmon caught to be released alive.

[^2]: Notes: Net fisheries are authorised for sea trout and salmon, but all net caught salmon are required to be released.
 Rod short-term licences are for 1 or 8 days; from 2019 annual licences are reported as sales from 1 February to 31 January the proceeding year as licences are now valid for 365 days from purchase.
 Gill nets include: drift, trammel, sling and coracle nets.
 Sweep nets include: seine (draft and draw) and wade nets.
 Hand-held nets include: haaf/heave and lave/dip nets.
 Fixed engines include: T-nets, J-nets, stop (compass) nets, putcher ranks, traps, weirs and cribs (coops).
 East Anglian coastal nets \& Southern seine net are not included, as they are targeted primarily at sea trout and catch few salmon. Table only includes data for gear licences that are fished (i.e. excluding licences that remain available, but which cannot be fished due to compensation arrangements or other similar provisions).
 Free annual licences were introduced for junior anglers in 2017 and accounts for the observed increase in licence numbers.
 Licences previously recorded as combined drift/t net are included as FE as no drift nets are authorised.
 Data for 2020 are provisional.
 Key: \# Combined drift/T net licences (issued in Northumbria (Northern area)) have been included in the gill net totals.

[^3]: Note: Data for 2020 are provisional. All salmon caught by nets and fixed engines were released in 2020.
 Key: \quad |al Returns not required before 1989. It is unusual for salmonids positively identified as salmon to be caught in this sea trout fishery in any numbers; some reported fish may have been misidentified in some years. Hence, no period means are reported.

[^4]: Key: \# Totals include some fish of unknown region of capture.
 Notes: Declared catches are reported in this table, however, adjusted values have been used for assessment purposes (see Table 19). Data for 2020 are provisional.

[^5]: Note: Weight split based primarily on retained fish, so total differs from that provided in Table 10.

[^6]: It is unclear to what extent total rod exploitation rate ('All') has been affected by catch-and-release and the repeat capture of fish; no correction factor has been applied.
 Prior to 2019, the entire catch from net fisheries was assumed killed.
 ${ }^{(a)}$ Data based on Game \& Wildlife Conservation Trust counter at East Stoke, and supplied courtesy of GWCT.
 ${ }^{(b)}$ Data derived from mark recapture investigation.
 (c)
 Tyne values are provisional; work is ongoing with Newcastle University to further refine RSEs. Notes:

[^7]:
 On some rivers, catch returns from fishery owners (rather than declared catches) or data from counters/ traps have been used to derive estimates of egg deposition where these are considered to provide the most complete record of the returning stock.
 Data for 2020 are provisional.
 (see text for details).
 Provisional salmon coun
 Provisional salmon counts now used on the Tyne to estimate egg deposition.
 Prior to 1 April 2005, Border Esk egg deposition estimates were based only on
 English rod catch and likely to be underestimates.
 English rod catch and likely to be underestimates.

