

Epidemiology Modelling Review Group: consensus statement on COVID-19

25 August 2021

Introduction

The UK Health Security Agency (UKHSA) Epidemiology Modelling Review Group (EMRG) shares this consensus statement on coronavirus (COVID-19) with acknowledgment to SPI-M-O, who have developed and shared modelling methodologies and contribute model outputs to these combined estimates.

All probability statements are in line with the framework given in Annex A.

Summary

- 1. The UKHSA's best estimate for R in England is between 1.0 and 1.1. R is estimated to be between 1.0 and 1.3 for Scotland, 1.2 and 1.4 for Wales, and 0.9 and 1.2 for Northern Ireland (<u>Figure 1</u>). These estimates are based on models¹ fitted to data available up to 23 August 2021, including hospitalisations, deaths, testing, wastewater samples and longitudinal studies.
- 2. Combined estimates² show that the incidence³ is between 32,000 and 83,000 new infections per day in England.

Incidence and prevalence

- 3. During its most recent week (ending 21 August), the Office for National Statistics (ONS) COVID-19 infection survey estimates⁴ that an average of 756,900 people had COVID-19 in the community in England (95% credible interval 710,100 to 806,200). The survey does not include people in care homes, hospitals, or prisons. Estimates from across the 4 nations of the UK are:
 - England 756,900 (95% credible interval 710,100 to 806,200)
 - Scotland 36,700 (95% credible interval 27,600 to 47,200)
 - Wales 25,200 (95% credible interval 18,000 to 33,500)
 - Northern Ireland 43,300 (95% credible interval 33,600 to 53,900)

Growth rate and reproduction number

4. For small daily changes, the growth rate is approximately the proportion by which the number of infections increases or decreases per day, that is, the speed at which an epidemic is growing or shrinking.⁵

¹ Model estimates are required as quantities such as the Reproduction Number (R) are not directly observable. Instead, a variety of independently produced models are used to interpret the data and estimate R.

² Different nations and regions may use different sets of models for these estimates; hence caution should be applied in drawing direct comparisons. Fewer models produce estimates for Wales and Northern Ireland, and in this weeks' estimates fewer models were available for inclusion in incidence estimates for England here.

³ The number of new infections per day.

⁴ These estimates can be subject to revision as further information is available and modelled.

⁵ Further Technical Information on the growth rate can be found in Plus Magazine: <u>The growth rate of COVID-19</u> plus.maths.org.

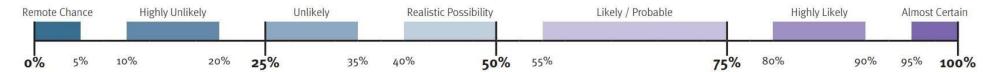
- 5. EMRG's consensus estimates for the growth rates in the 4 nations are (90% credible interval):
 - England is between 0% to +2% per day
 - Scotland is between -1% to +6% per day
 - Wales is between +2% to +7% per day
 - Northern Ireland is between -2% to +3% per day

National and regional estimates of growth rates are summarised in Figure 1 and Figure 2.

- 6. The reproduction number (R) is the average number of secondary infections produced by a single infected individual; it is an average over time, geographies, viral variants, and communities.
- 7. UKHSA's best estimate for R in in England is between 1.0 and 1.1. R is estimated to be between 1.0 and 1.3 for Scotland, 1.2 and 1.4 for Wales, and 0.9 and 1.2 for Northern Ireland. UKHSA's agreed national estimates are summarised in Table 1 and Figure 1, and these are based on the latest data available up to 23 August 2021⁶.
- 8. R is an indicator that lags by 2 to 3 weeks,⁷ due to the time required for changes to be seen in data streams.
- 9. This inherent lag means that recent fluctuations should not be expected to be consistent with these estimates, and estimates may not represent transmission trends now.

⁶ Different models fit to different windows of time using different methodologies, hence not all models will fit up to this precise date.

⁷ Different data-streams and different models are expected to be lagged in their estimates by different amounts when compared with the true underlying epidemiological situation. This is due to multiple lags such as reporting and delays in the infection processes. However, the consensus combination generally reflects a 2-week lag.


Table 1. Combined estimates of R values growth rates and doubling times in the 4 nations of the UK and NHS England regions (90% credible interval)

Nation	R	Daily growth rate	Doubling time ⁸
England	1.0 to 1.1	0% to +2%	Flat
Wales	1.2 to 1.4	+2% to +7%	11 to 24 days
Scotland	1.0 to 1.3	-1% to +6%	Flat to 13 days
Northern Ireland	0.9 to 1.2	-2% to +3%	Flat to 31 days
NHS England region	R	Daily growth rate	Doubling time ⁸
London	0.9 to 1.1	-1% to +2%	Flat
East of England	1.0 to 1.2	0% to +3%	31 days to flat
Midlands	0.9 to 1.1	0% to +2%	Flat
North East and Yorkshire	0.9 to 1.0	-2% to +1%	Flat
North West	0.9 to 1.1	-1% to +2%	Flat
South East	1.0 to 1.2	+1% to +3%	23 days to flat
South West	1.0 to 1.2	0% to +4%	20 days to flat

⁸ Any estimates with a halving or doubling time of more than 40 days have been described as flat. Negative values of doubling time indicate a halving time (the time expected for cases to fall by 50%). Doubling time here is calculated using the growth rate.

Annex A. PHIA framework of language for discussing probabilities

The Yardstick splits the probability scale into 7 ranges from remote chance (0 to 5% probability) to almost certain (95% to 100% probability).

Acknowledgements

The UKHSA takes responsibility for this consensus statement and its contents. However, the UKHSA would like to acknowledge the work of SPI-M-O and academic partners in developing methodologies and sharing these, as well as continuing to contribute model outputs to the combined estimates. These estimates include contribution from London School of Hygiene and Tropical Medicine (LSHTM) (1, 2), Imperial College London (3), University of Warwick (4, 5), University of Exeter and University of Bristol (6), Lancaster University (7, 8), University of Manchester, Public Health England and University of Cambridge (9). The UKHSA would also like to thank the European Bioinformatics Institute (10), University of Oxford (11, 12), University of Liverpool (13), and the Institute of Disease Modelling (14) for contributing model outputs. The UKHSA also acknowledges the work developing combination estimates from Defence and Science Technology Laboratory (15). UKHSA also thanks and acknowledges the support and collaboration of the SPI-M-O Secretariat and co-Chairs, as well as colleagues across the 4 nations.

References

- Abbott, Hellewell and others '<u>Estimating the time-varying reproduction number of SARS-CoV-2 using national and subnational case counts</u>'. Wellcome Open Research, 8
 December 2020
- 2. Sherratt and others. 'National and Subnational estimates for the United Kingdom'
- 3. Knock and others. '<u>Key epidemiological drivers and impact of interventions in the 2020 SARS-CoV-2 epidemic in England'</u>. Science Translational Medicine, 14 July 2021
- 4. Keeling and others. 'Predictions of COVID-19 dynamics in the UK: Short-term forecasting and analysis of potential exit strategies. PLOS Computational Biology, 22 January 2021
- 5. Keeling and others. 'Fitting to the UK Covid-19 outbreak, short-term forecasts and estimating the reproductive number.' MedRxiv: 29 September 2020
- 6. Challen and others. 'Estimates of regional infectivity of COVID-19 in the United Kingdom following imposition of social distancing measures.' Philosophical Transactions of the Royal Society B: 31 May 2021
- 7. Jewell and others. 'Bayesian stochastic model-based forecasting for spatial COVID-19 risk in England Technical Concept Note.' Github: 22 September 2020
- 8. Cori and others. '<u>A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics</u>.' American Journal of Epidemiology: 1 November 2013
- 9. Birrell and others. 'Real-time Nowcasting and Forecasting of COVID-19 Dynamics in England: the first wave?' Philosophical Transactions of the Royal Society B: Biological Sciences, 31 May 2021
- 10. Vöhringer and others .<u>Genomic reconstruction of the SARS-CoV-2 epidemic across England from September 2020 to May 2021</u>. MedRxiv, 26 May 2021

- 11. Teh and others. 'Efficient Bayesian Inference of Instantaneous Reproduction Numbers at Fine Spatial Scales, with an Application to Mapping and Nowcasting the Covid-19

 Epidemic in British Local Authorities.' LocalCovid.info: 19 April 2021
- 12. Panovska-Griffiths and others. Modelling the impact of reopening schools in early 2021 in the presence of the new SARS-CoV-2 variant amd with the roll out of vaccination against COVID-19. MedRxiv: 9 February 2021
- 13. Moore and Phillips. 'Liverpool Covid Model: Model Overview.' Github: 10 March 2021
- 14. Kerr and others. 'Covasim: an agent-based model of COVID-19 dynamics and interventions.' MedRxiv: 1 April 2021
- 15. Maishman and others. 'Statistical methods used to combine the effective reproduction number, R(t), and other related measures of COVID-19 in the UK.' arXiv preprint, 3 March 2021

Figure 1. Estimates of R in the 4 nations of the UK (90% credible intervals). Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to 1 decimal place

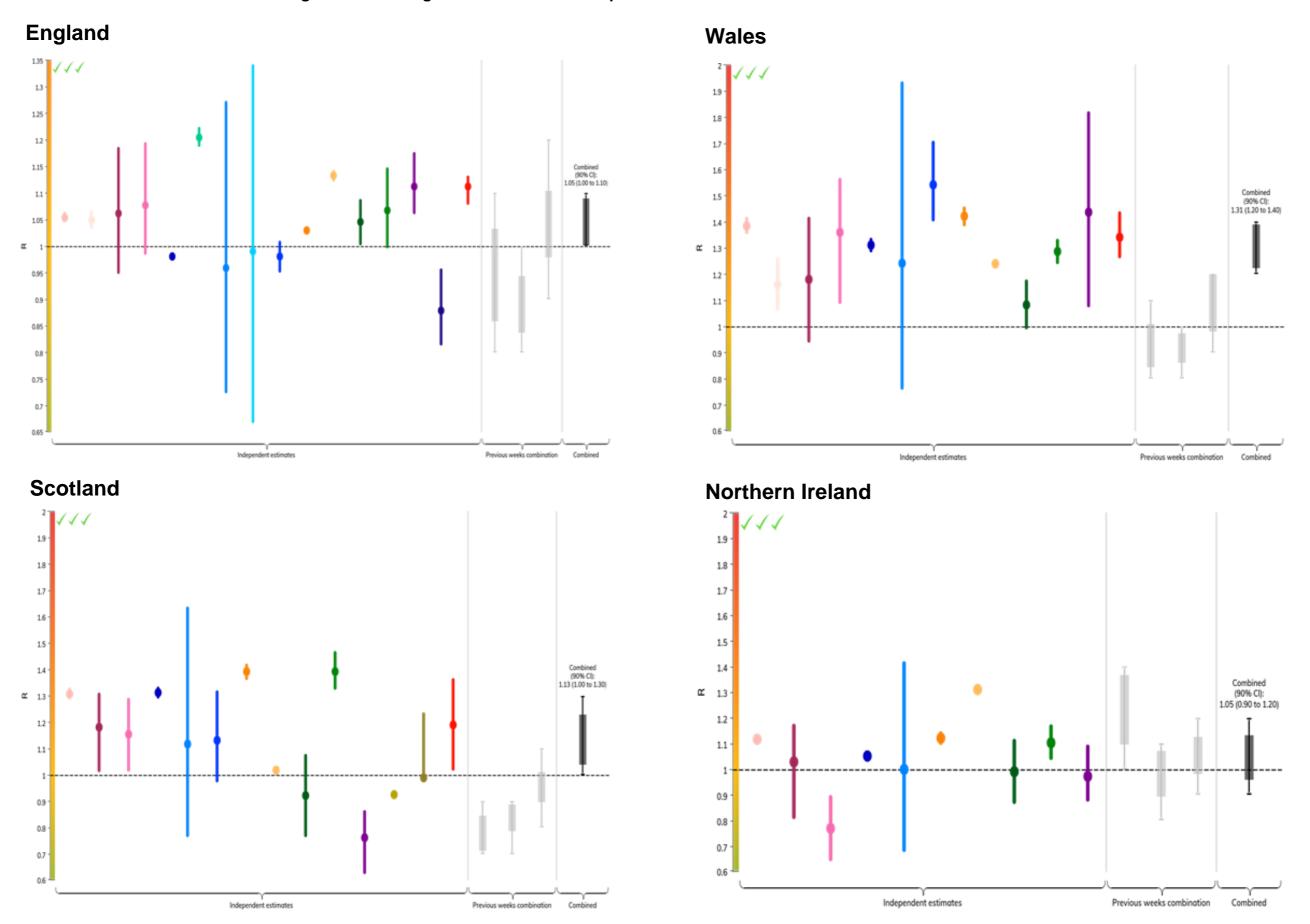


Figure 2. Estimates of the growth rate in NHS England regions, including 90% credible intervals. Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to the nearest percent

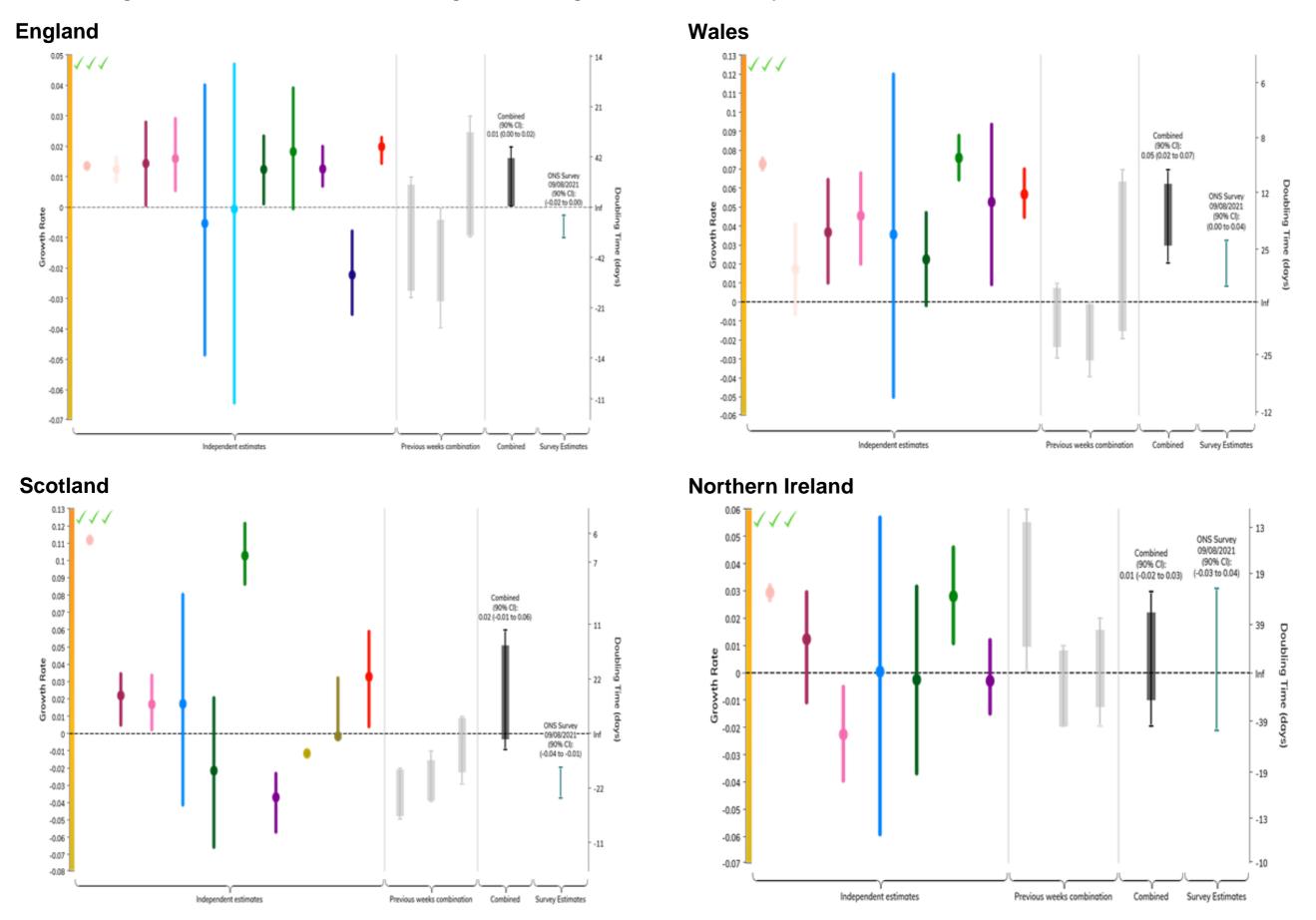
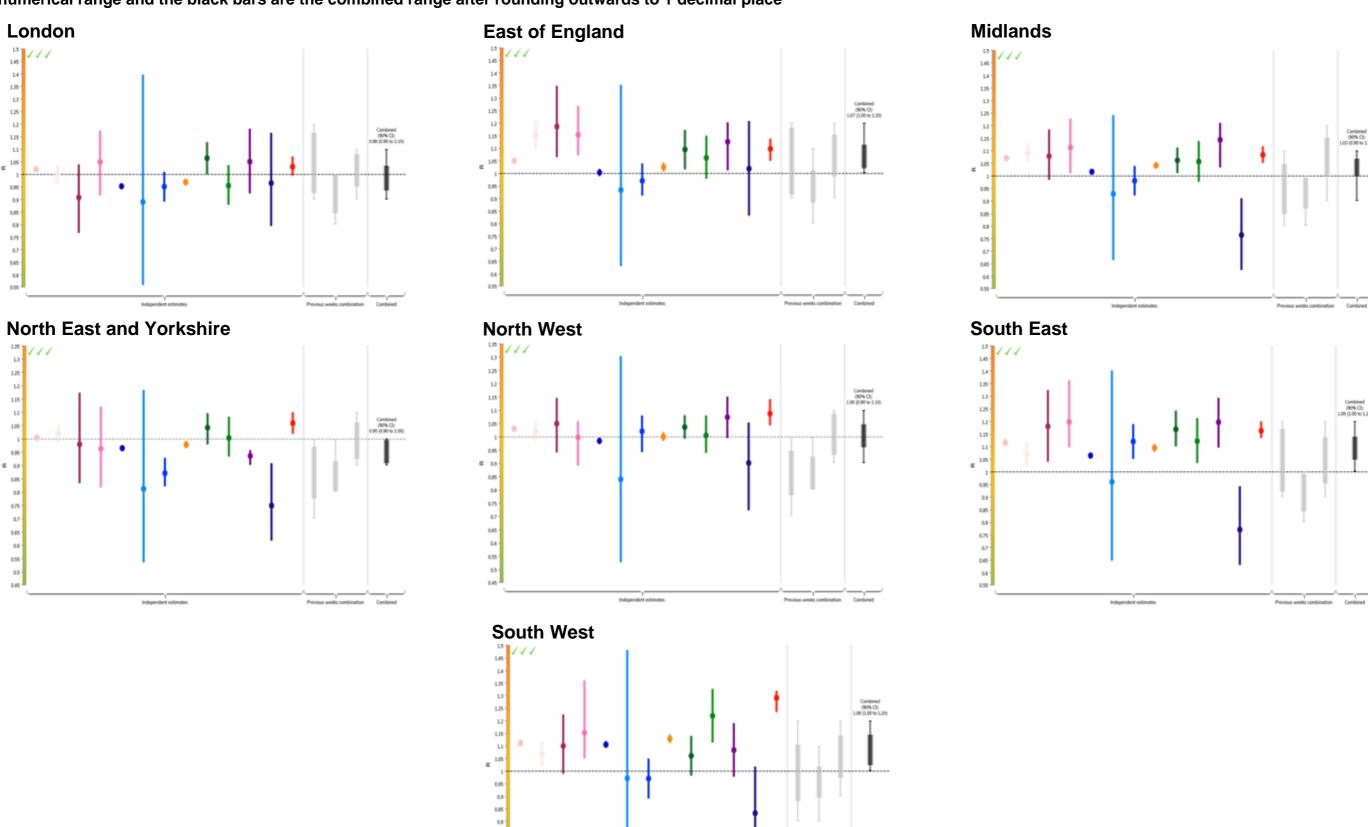



Figure 3. Estimates of R in the NHS England regions, including 90% credible intervals. Bars represent different independent estimates. The grey shaded areas represent the combined numerical range and the black bars are the combined range after rounding outwards to 1 decimal place

About the UK Health Security Agency

The UK Health Security Agency is an executive agency, sponsored by the <u>Department of Health and Social Care.</u>

UKHSA Website: https://www.gov.uk/government/organisations/uk-health-security-agency

© Crown copyright 2021

Published: September 2021 Gateway number: GOV-9702

You may re-use this information (excluding logos) free of charge in any format or medium, under the terms of the Open Government Licence v3.0. To view this licence, visit <u>OGL</u>. Where we have identified any third party copyright information you will need to obtain permission from the copyright holders concerned.

UKHSA supports the UN Sustainable Development Goals

