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GUIDANCE ON A STRATEGY FOR GENOTOXICITY TESTING OF 1 
CHEMICALS.  2 

Executive Summary  3 

1. The Committee on Mutagenicity of Chemicals in Food, Consumer Products and 4 

the Environment (COM) has a remit to provide UK Government Departments and 5 

Agencies with advice on the most suitable approaches to testing chemical substances 6 

for genotoxicity. The COM published guidance in 1981, 1989, 2000 and again in 2011. 7 

This document incorporates some significant changes and reports the COM views 8 

regarding the most appropriate strategy for genotoxicity testing (Figure 1) reached in 9 

2020, bringing the guidance document up to date. 10 

2.  It should be noted that in this updated guidance, several key areas have been 11 

identified as potentially requiring frequent updating, due to their fast-moving nature. To 12 

facilitate such updates, standalone documents have been prepared outlining the 13 

currently available status of the use of Quantitative Structure Activity Relationship 14 

(QSAR) modelling (30 - 31) and testing strategies for germ cell mutagens (paras 88 - 15 

91), both of which were included in the previous version of the guidance document. In 16 

addition, standalone documents have been prepared detailing the use of 3D tissue 17 

models for genotoxicity testing and test guidance strategies for manufactured 18 

nanomaterials. Both of these areas were not included in the previous version of the 19 

guidance document and are now briefly detailed in paras 28 and 35 respectively.   20 

3. The COM recommends a staged approach to testing:  21 

• Stage 0 consists of preliminary considerations which include physico-chemical 22 

properties of the test chemical substance, Structure Activity Relationships 23 

(SAR), and information from screening tests1. However, data from SAR and 24 

screening tests should not overrule test data from adequately designed and 25 

conducted genotoxicity tests. 26 

• Stage 1 consists of in vitro genotoxicity tests. The COM recommends a core-27 

test battery of the Ames test combined with the in vitro micronucleus test. This 28 

combination provides information on three types of genetic damage for which 29 

 
1 Note that the terms ‘test’ and ‘assay’ are used interchangeably throughout the document to 
reflect naming conventions.  
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data are required (namely, gene mutation, chromosomal damage and 30 

aneuploidy) and gives appropriate sensitivity to detect chemical genotoxins. As 31 

also supported by the OECD, the COM consider that there is no need to 32 

independently replicate adequately designed and conducted core in vitro tests 33 

which are either clearly negative or clearly positive. The strategy document also 34 

considers the contribution that can be made by a number of non-core in vitro 35 

tests. 36 

• Stage 2 consists of in vivo genotoxicity tests. A case-by-case strategy should 37 

be developed to answer one or more of the following specific queries; 38 

1) Investigation of genotoxic end point(s) identified in Stage 1,  39 

2) Investigation of genotoxicity in tumour target tissue(s),  40 

3) Investigation of potential for germ cell genotoxicity,  41 

4) Investigation of in vivo genotoxicity for chemicals which were negative 42 

in Stage 1 but where there is high or moderate and prolonged exposure, 43 

5) Investigation of genotoxicity in site of contact tissues.  44 

4. The core tests in Stage 2 are the rodent micronucleus/chromosome aberration 45 

assays for aneuploidy and clastogenicity, the transgenic rodent gene mutation assay 46 

and the rodent alkaline comet assay for DNA damage.  47 

5. Usually, negative results obtained in a carefully selected in vivo test (possibly 48 

studying more than one endpoint and tissue) will be sufficient to address positive 49 

results found in vitro. However, a further test(s) may be needed if some of the genotoxic 50 

effects seen in Stage 1 in vitro tests had not been adequately studied in vivo (e.g. the 51 

chemical affects multiple mutagenic endpoints), or other aspects of the genotoxic 52 

potential of the chemical had not been fully resolved (e.g. a human metabolite is 53 

identified that is not formed, or only in small amounts, in rodents, or in the case where 54 

an investigation of heritable effects was required). The strategy document also 55 

considers the contribution that can be made by a number of non-core in vivo tests. In 56 

most instances information from core in vivo tests is sufficient to evaluate the in vivo 57 

genotoxicity of chemical substances. A supplementary in vivo test strategy can provide 58 

additional information on a case-by-case basis, to investigate aspects such as further 59 

characterisation of germ cell genotoxicity, and DNA adduct data which can provide 60 

information to elucidate the mode of genotoxic action of carcinogenic chemicals.  61 

 62 

63 
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I. Preface 64 

6. The COM is an independent expert advisory committee whose members are 65 

appointed by the secretary of state for health and social care and the chair of the Food 66 

Standards Agency (FSA) following an appointments exercise involving public 67 

advertisement. Members serve in their own capacity as independent experts and 68 

observe a published code of practice including principles relating to the declaration of 69 

possible conflicting interests. 70 

7. The remit of the COM is to advise any UK government departments and 71 

agencies with an interest in the safety of chemicals across various sectors on the 72 

human health aspects of the mutagenicity and genotoxicity of chemicals (these terms 73 

are defined for the purposes of this guidance document in paragraphs 9 - 11 below). 74 

The Secretariat is provided by Public Health England (PHE), who lead, and the FSA. 75 

Other government departments with an interest provide assessors to the COM; these 76 

are specifically from the Department of Health and Social Care (DHSC), the 77 

Department of Environment, Food and Rural Affairs (Defra), the Chemicals Regulation 78 

Division (CRD) of the Health and Safety Executive (HSE) (responsible for legislation 79 

regulating chemicals, pesticides, biocides and detergents), the Environment Agency 80 

(EA), the Veterinary Medicines Directorate (VMD; a Defra agency responsible for the 81 

licensing of veterinary drugs) and the Medicines and Healthcare products Regulatory 82 

Agency (MHRA; a DHSC agency responsible for the licensing of human medicines). 83 

In addition, there are assessors from the Scottish Government, the Welsh Assembly 84 

Government and the Northern Ireland Assembly. 85 

8. The role of the COM is advisory. It has no regulatory status, although its advice 86 

may be provided to a body that does have such a role (e.g. HSE CRD for occupational 87 

aspects and for pesticides etc). Its remit is to advise on the human health aspects of 88 

the genotoxicity of chemicals, and this may involve advice on a specific chemical, and 89 

also on testing strategies and research. This guidance document focuses on testing 90 

strategies for chemicals for which there are no available genotoxicity data. Separate 91 

guidance on a strategy for the genotoxicity testing and mutagenic hazard assessment 92 

of chemicals with inadequate genotoxicity data was published in 2011 93 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach94 

ment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.p95 

df). Throughout this guidance the COM has referred to the genotoxicity testing of 96 

chemical(s) which refers to a specified chemical or material, including any additive 97 

necessary to preserve its stability and any impurity deriving from the process used. 98 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
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The COM usually provides advice on a specific chemical which can be equated to a 99 

single chemical or compound. Provision of advice on radiation aspects is not within the 100 

scope of the COM.  101 

9. The COM also has a general remit to advise on important general principles or 102 

new scientific discoveries in connection with potential mutagenic and genotoxic 103 

hazards (inherent properties of chemicals) or risk (the likelihood of mutagenic or 104 

genotoxic effects occurring after a given exposure to a chemical) and to present 105 

recommendations for genotoxicity testing. In practice the bulk of the work of the COM 106 

relates to assessing genotoxicity tests and providing advice on the genotoxic hazard 107 

of chemicals. 108 

10. In the context of testing strategies, the COM first published guidelines for the 109 

testing of chemicals for mutagenicity in 1981, and these were revised in 1989  and 110 

2000 (DOH, 2000). These provided guidance to the relevant government departments 111 

and agencies on best practice for testing at those times. The rationale developed by 112 

COM in 2000, particularly in relation to the testing of all potential mutagenic endpoints, 113 

was adopted by the International Workshops on Genotoxicity Testing (IWGT) (Muller 114 

et al., 2003). The need for guidance to be periodically updated, to reflect advances in 115 

development and validation of methods, was recognised and substantially revised 116 

guidance was published in 2011 (DOH, 2011). Testing strategies, the same or similar 117 

to those outlined in the 2011 COM guidance, have been adopted by some regulatory 118 

bodies, including the European Food Safety Authority (EFSA) (EFSA, 2017) and 119 

included in the notes on Guidance from the Scientific Committee on Consumer Safety 120 

(SCCS) (SCCS, 2016) and in the Registration, Evaluation, Authorisation and 121 

Restriction of Chemicals (REACH) regulation (ECHA, 2017). 122 

11. A further revision of the guidance has been undertaken. This version (COM, 123 

202x) of the guidance outlines the strategy that COM consider to be the most 124 

scientifically appropriate given available methods, and recognises the need to avoid 125 

the use of live animals where practical and validated alternative methods are available. 126 

The COM believes that the approach outlined presents an overview of the core 127 

principles of genotoxicity testing and will remain valid for several years. It is 128 

acknowledged that existing national or international testing strategies will be at 129 

different stages of review and hence inconsistencies are expected. The COM guidance 130 

is not intended to supersede or replace existing national or international sector-specific 131 

genotoxicity testing strategies (e.g. those recommended for pharmaceuticals by the 132 

International Conference on Harmonisation of Technical Requirements for Registration 133 
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of Pharmaceuticals for Human Use (ICH) (ICH, 2011), for chemicals assessed under 134 

REACH Regulations (EC1906/2006) (ECHA, 2017), or by EFSA (EFSA, 2011). 135 

II. Introduction 136 

12. The COM last published guidance on a strategy for the testing of chemicals for 137 

mutagenic potential in 2011 (DOH,  2011). The guidance outlined in 2011 was based 138 

on the development of new approaches to identifying genotoxic hazards in vitro 139 

including new approaches to identify misleading positive results and evaluate target 140 

organ genotoxicity in vivo. There is also a need for a testing strategy which can 141 

encompass chemicals such as cosmetics where no animal tests are permitted under 142 

European Union (EU) law. It is the objective of this paper to set out a scientifically valid 143 

testing strategy comprising those methods which the COM believe to be the most 144 

informative with regards to the detection of genotoxic hazard and (when possible) are 145 

well validated. There is no discussion of methods which experience has shown to be 146 

suboptimal in determining genotoxicity. Details of methodologies are not given since 147 

they are provided in the Organisation for Economic Cooperation and Development 148 

(OECD) test guidelines (TG), the EU Test Methods Regulation (EC 440/2008) and the 149 

IWGT guidance.  150 

13. The genome can be damaged in a variety of ways either spontaneously or from 151 

exposure to genotoxic agents. The term “mutagenic” refers to the ability of a chemical 152 

to induce a permanent change in the amount or structure of the genetic material of an 153 

organism, which may result in an heritable change in the characteristics of the 154 

organism. Chemicals inducing mutations are referred to as mutagens (they are 155 

mutagenic). These alterations may involve individual genes, blocks of genes, or whole 156 

chromosomes. Mutations involving single genes may be a consequence of effects on 157 

single DNA bases (point mutations) or of larger changes, including deletions and 158 

rearrangements of DNA. The potential to induce mutation is measured in test systems 159 

that detect a broader range of genetic changes than simply mutation – they measure 160 

genotoxicity. Mutagenicity is accepted as a key event in carcinogenicity. Epigenetic 161 

changes, that could also be heritable, fall outside the scope of this guidance.  162 

14. Genotoxicity refers to interaction with, or damage to, DNA and/or other cellular 163 

components which regulate the fidelity of the genome. It is a broad term that, as well 164 

as mutation, includes damage to DNA such as the production of DNA adducts, by the 165 

chemical itself or its metabolites. Cells have the capacity to protect themselves from 166 

such potentially lethal or mutagenic genotoxic effects by many repair processes and 167 

therefore many genotoxic events do not become evident as mutations. However, the 168 
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capacity to damage the genome (genotoxicity) is an indicator of potential mutagenicity. 169 

Thus, some methods that measure genotoxicity do not provide direct evidence of 170 

heritable mutation.  171 

15. The objective of genotoxicity testing is to exclude or identify potential hazards 172 

to humans and, for those chemicals that are positive, to aid in the elucidation of the 173 

mode of action (MoA). This guidance therefore presents a strategy for genotoxicity 174 

testing since this term encompasses all the assays included in the strategy. 175 

Consequently, it is important to generate information on three types of genetic damage, 176 

namely gene mutation, changes to chromosome structure (i.e. clastogenicity) and 177 

number (i.e. aneuploidy), to provide comprehensive coverage of the mutagenic 178 

potential of a chemical.  179 

16. The COM reaffirms its view, published in 1989, 2000 and 2011, that there is 180 

currently no single validated assay that can provide comprehensive information on all 181 

three types of genetic damage and thus, it is necessary to subject a given test chemical 182 

to several different assays. The range of assays discussed in this document include 183 

those using prokaryotes (bacteria) and mammalian cells in vitro, and whole mammals, 184 

where effects in a wide range of target organs including germ cells can be measured. 185 

Assays may be classified on the basis of genetic endpoints (e.g. gene mutation, 186 

clastogenicity, aneugenicity and tests for DNA damage) or by consideration of the 187 

different phylogenetic levels (e.g. bacteria, and mammalian cells) represented and also 188 

in mammals by the tissues or target organs studied.  189 

III Significance of Chemical-Induced Mutation for Human Health 190 

17. A mutation in the germ cells of sexually reproducing organisms may be 191 

transmitted to the offspring, whereas a mutation that occurs in somatic cells may be 192 

transferred only to descendant daughter cells. Mutagenic chemicals may present a 193 

hazard to health since exposure to a mutagen carries the risk of inducing germ-line 194 

mutations, with the possibility of inherited disorders, and the risk of somatic mutations 195 

including those leading to cancer.  196 

18. A separate statement discussing the significance of chemical-induced mutation 197 

to human health was published in 2012: 198 

(https://www.gov.uk/government/publications/the-significance-of-chemical-induced-199 

mutation-for-human-health).  200 

https://www.gov.uk/government/publications/the-significance-of-chemical-induced-mutation-for-human-health
https://www.gov.uk/government/publications/the-significance-of-chemical-induced-mutation-for-human-health
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IV. General Principles of Testing Strategy  201 

19. The COM recommends a two-stage testing strategy (Stages 1 and 2) for the 202 

detection of the genotoxic hazard of chemicals which can be supported by appropriate 203 

preliminary screening tests and/or in silico data (Stage 0).  204 

20. Initial testing for genotoxic potential in Stage 1 is based upon two core in vitro 205 

tests that are chosen to provide information on gene mutation, clastogenicity and 206 

aneuploidy, with case-by-case additional testing and investigation depending on the 207 

results of these initial genotoxicity tests. All in vitro tests should be designed to provide 208 

the best chance of detecting potential activity, with respect to (a) the exogenous 209 

metabolic activation system (S9 - see glossary); (b) the ability of the compound or its 210 

metabolite(s) to reach the target DNA and/or targets such as the cell division 211 

apparatus, and; (c) the ability of the genetic test system to detect the given type of 212 

genotoxic event. Where international guidelines are available, the assays should be 213 

carried out to conform to those internationally recognised documents e.g. as published 214 

by the OECD, the IWGT and in the EU test methods Regulation (EC 440/2008). The 215 

same approach to testing can be used for chemicals where in vivo genotoxicity testing 216 

is not permitted (e.g. cosmetics). Investigations regarding MoA are important to derive 217 

conclusions on biological relevance of in vitro genotoxicity test results, to aid in overall 218 

risk assessment, and to inform on the strategy for in vivo tests. This is of particular 219 

importance for those chemicals where no in vivo genotoxicity testing is permitted.  220 

21. For most chemicals, results from the two Stage 1 core tests should be sufficient 221 

to reach a conclusion on the presence or absence of mutagenic potential. However, in 222 

some instances, even when Stage 1 tests are negative, regulatory authorities may 223 

require consideration of the need for in vivo Stage 2 testing particularly where exposure 224 

is considered to be high, or moderate and prolonged (e.g. most human medicines), or 225 

where there is a chemical class precedent (i.e. structural relationship) of positive in 226 

vivo genotoxicity data. Guidance on the level of exposure which equates to high, 227 

moderate or prolonged is beyond the remit of the COM.  228 

22. Stage 2 consists of a number of in vivo tests designed to investigate whether 229 

in vitro genotoxic activity including specific end points identified by in vitro tests can be 230 

expressed in the whole animal. This may also include assays for specific target organs 231 

(e.g. rodent tumours detected in carcinogenicity bioassays) or in germ cells. Few 232 

chemicals are active only in vivo and in such cases this may be due to a number of 233 

factors such as metabolic differences, the influence of gut flora, higher exposures in 234 
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vivo compared to in vitro, pharmacological (e.g. folate depletion or receptor kinase 235 

inhibition) and extreme physiological effects (Tweats et al, 2007b).  236 

23. There is currently no single in vivo test which can assay all three types of 237 

genetic damage (Thybaud et al., 2007) and thus a strategy for Stage 2 has to be 238 

designed based on the nature of genotoxic effects identified in Stage 1 and the 239 

possibility that genotoxic activity will only be expressed in vivo as discussed above. 240 

However, consideration should be given to the possibility of evaluating different 241 

genotoxicity endpoints in a single set of test animals.  242 

24. There should be a clear strategy for planning tests within each stage and for 243 

progressing from Stage 1 to Stage 2. Clear statements can be made regarding the 244 

initial in vitro tests to be used in Stage 1 as these methods have been well studied, 245 

whereas the strategy for Stage 2 is more complex and, if not a specific regulatory 246 

requirement, needs to be developed on a case-by-case basis.  247 

25. Under the strategy recommended by COM, the use of animals in genotoxicity 248 

testing is primarily required when it is necessary to investigate whether genotoxic 249 

activity detected in Stage 1 in vitro is reproduced in vivo, to study target organ 250 

genotoxicity (for example involvement of genotoxicity in rodent tumours) and to 251 

evaluate the potential for heritable mutagenic effects. Genotoxicity testing using 252 

animals, when required by guidance, should be carried out when there is no suitable 253 

alternative, and the minimum number of animals should be used, consistent with 254 

obtaining valid results. If feasible, studies can be conducted as an adjunct to single or 255 

repeat dose toxicity studies. The COM supports current and future developments to 256 

replace, refine or reduce the need for animals, consistent with the principles of the 257 

3Rs2.    258 

V Genotoxicity Testing Strategy  259 

26. The COM guidance provides a strategy for testing chemicals where no 260 

genotoxicity data are available.  Test chemicals may also contain impurities at varying 261 

levels which may exhibit genotoxic activity. Separate guidance on the genotoxicity 262 

assessment of impurities is available at 263 

https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-264 

in-chemical-substances. The assessment and control of genotoxic impurities is the 265 

subject of an ICH Guideline (M7)  and ICH M7(R1) and a Question and Answer 266 

 
2 https://www.nc3rs.org.uk/the-3rs 

https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-in-chemical-substances
https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-in-chemical-substances
https://www.nc3rs.org.uk/the-3rs
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document (https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-267 

mutagenic-impurities-pharmaceuticals-limit-potential). 268 

27. The strategy recommended in the following sections is concerned with testing 269 

for genotoxic activity of chemicals and does not specifically address complex mixtures 270 

of chemicals.  271 

Stage 0: Preliminary Considerations Prior to Genotoxicity Testing 272 

28. The intrinsic chemical and toxicological properties of the test chemical must be 273 

considered before devising the genotoxicity testing programme. Manufactured 274 

nanomaterials present particular considerations with regards to genotoxicity testing 275 

and these are discussed in a separate document ‘Test Guidance Strategies for 276 

Genotoxicity Testing of Manufactured nanomaterials’ (COM, 202x). 277 

Physico-chemical and Toxicological Properties 278 

29. The physico-chemical properties of the test chemical (for example, acid 279 

dissociation constant (pKa), partition coefficient, solubility, volatility and stability in, and 280 

potential reactions with, solvents/vehicles) and its purity can affect the ease of conduct 281 

and results of in vitro tests. For example, the tolerance of cells to acidic chemicals can 282 

be enhanced by neutralisation but this may affect the inherent reactivity of chemicals 283 

with DNA (Hiramoto et al., 1997). Potential reactions of the test chemical with solvent 284 

/vehicle should also be considered (e.g. cisplatin reacts with dimethyl sulfoxide 285 

(DMSO)) (Fischer et al., 2008). Alternatively, low solubility may limit the feasibility of 286 

undertaking some or all of the in vitro mutagenicity tests recommended in this strategy. 287 

The potential for auto-oxidation of the test chemical in the culture medium can also 288 

affect the outcome of in vitro genotoxicity tests (Long et al., 2007). It is noteworthy that 289 

the toxic properties of test chemicals, such as target organ effects, or 290 

irritancy/corrosivity in contact with skin or mucous membranes and their toxicokinetics 291 

and metabolism will influence the choice of route of administration and the highest 292 

dose level achievable in Stage 2 in vivo mutagenicity tests.  293 

Quantitative Structure Activity Relationships (QSAR) 294 

30. The expected mutagenic potential of a chemical can be assessed from its 295 

chemical structure, which may provide structural alerts for mutagenicity. The COM has 296 

previously agreed that where no genotoxicity data are available, initial assessment of 297 

potential genotoxicity can be based on publicly available QSAR models. A range of 298 

QSARs have been developed to predict genotoxicity and COM considered updated 299 

information on these models in February 2018. The discussions formed the basis of 300 

the COM Statement ‘Use of QSAR models to predict genotoxicity’ (COM, 202x).  It was 301 

https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential
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concluded that whilst it remained useful to evaluate data generated from QSAR 302 

models, in particular as a negative predictor for screening purposes, no changes to the 303 

previously recommended guidance (detailed more fully within the 2011 version of the 304 

COM Guidance document; COM, 2011) were warranted.    305 

31. Overall, QSAR approaches for the prediction of genotoxic activity can be a 306 

valuable tool to aid in the high throughput screening of compounds, the provision of 307 

assessments for chemicals for which no genotoxicity test data are available and also 308 

prioritisation for genotoxicity testing. QSAR can also aid in the interpretation of genetic 309 

toxicology tests. Expert judgement is needed when reaching conclusions on mutagenic 310 

hazard on the basis of QSAR information alone, and such predictions cannot replace 311 

the need to undertake the in vitro and in vivo genotoxicity tests required to derive 312 

conclusions on mutagenic hazard and risk. In reaching conclusions, data from well 313 

conducted in vitro or in vivo genotoxicity tests should be attributed a much higher 314 

weight of evidence than QSAR predictions, although all information should be 315 

assessed on a case-by-case basis.  316 

Screening Tests 317 

32. With regard to this guidance, genotoxicity screening tests refers to high 318 

throughput or scaled-down tests which have been designed to be rapid, economical, 319 

reproducible, require only small amounts of test chemicals (typically below 50 mg) and 320 

have a high concordance with comparator genotoxicity end points in genotoxicity tests; 321 

these tests are also often referred to as pre-screening tests. None of the available 322 

genotoxicity screening tests have reached the stage of development where they could 323 

routinely be used to replace data generated from guideline-compliant in vitro 324 

genotoxicity testing. COM therefore does not recommend any particular test for 325 

screening purposes. 326 

33. A number of in vitro systems for use as screening tests have been proposed 327 

and are described in full in the previous version of the COM Guidance (COM, 2011).  328 

COM is currently preparing a stand-alone document detailing recent advances in 329 

screening tests that will sit alongside this Guidance Document. 330 

Stage 1: In Vitro Genotoxicity Testing 331 

Overview of strategy  332 

34. The COM concluded in 1989, 2000 and 2011 that it was appropriate to concentrate 333 

on a relatively small number of assays, using validated, sensitive methods 334 

particularly chosen to avoid misleading negative or positive results when 335 

compared to in vivo testing results (Kirkland et al., 2005a, 2007c; Fowler et al., 336 
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2012a, b; Matthews et al., 2006; Pfuhler et al., 2011). A detailed justification of the 337 

strategy is given in the previous version of the COM Guidance (COM, 2011) and, 338 

as such, is not included here.   339 

35. Misleading positive results are considered to be caused by a number of factors, 340 

including inappropriately high doses of chemical and the use of cell lines of rodent 341 

origin (e.g., V79, CHO, CHL) that partially lack normal cell cycle control,[RB1][RB2] have 342 

limited metabolic capacity (even with the addition of S9) and do not mimic site-specific 343 

metabolic capacity (Reus et al., 2013). The use of p53-competent human cells and 344 

careful control of cytotoxicity can help reduce the number of misleading positive results 345 

without compromising sensitivity (Fowler et al., 2012a, b). The development of 3D 346 

tissue models is also hoped to reduce the number of misleading positive findings and 347 

improve the accuracy of predictions due to their improved metabolic capacity and 348 

proximity to in vivo gene expression and protein functions (Andres et al., 2012; 349 

Barcham et al., 2018; Pfuhler et al. 2020a, b). The current state of the science for 3D 350 

model development and validation is discussed in ‘3D Tissue Models for Genotoxicity 351 

Testing’ (COM, 2020). 352 

36. As outlined above in paragraph 20 and shown in Figure 2,  Stage 1 involves 353 

tests for genotoxic activity using in vitro methods and comprises a two test core system; 354 

namely an in vitro bacterial test for gene mutation (Ames test) and an in vitro 355 

micronucleus test (MNvit), with the objective of assessing genotoxic potential by 356 

investigating three different end points (gene mutation, structural chromosomal 357 

damage and changes in chromosome number). A detailed justification of the strategy 358 

is given in the previous version of the COM Guidance (COM, 2011).  359 

37. A clear positive result in either of these two core tests is sufficient to 360 

define the chemical as an in vitro genotoxin, although further in vitro and/or in 361 

vivo testing may be undertaken to understand the relevance of the positive 362 

results. The Committee considers this strategy allows for efficient identification of all 363 

genotoxic endpoints and that, by reducing the number of mammalian cell tests and 364 

following the most current version of the methodologies, the risk of misleading positive 365 

results (i.e. when compared with in vivo genotoxicity data) is decreased.  366 

38. Additional investigations of chemicals which give positive or repeated equivocal 367 

results in Stage 1 tests can include an assessment of mode(s) of in vitro genotoxic 368 

action. There are a number of reasons (discussed in paragraphs 43-45) why positive 369 

results in in vitro genotoxicity tests might occur by mode(s) of action not relevant to 370 

human health hazard assessment. Such MoA evaluation in vitro is particularly relevant 371 
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for those chemicals (e.g., cosmetics) where there is a regulatory constraint which 372 

precludes the use of in vivo genotoxicity assays in the testing strategy. The COM does 373 

not recommend the use of Stage 1 in vitro genotoxicity assays that have not been 374 

considered in detail in this guidance or for which OECD guidelines either do not exist 375 

or have been deleted. This includes assays for sister chromatid exchange, the in vitro 376 

Unscheduled DNA Synthesis (UDS) assay, the in vitro comet assay or tests using fungi 377 

or Drosophila, A table of genotoxic endpoints detected by each assay cited in Stage 1 378 

of this strategy is given in Annex 1.  379 

39. For chemicals which give equivocal results or repeated small positive effects, 380 

when considering biological relevance, it is important to consider evidence of 381 

reproducibility in the same assay or in different assays detecting similar effects, and 382 

the magnitude of the induced genotoxic effect in relation to historical negative control 383 

data, and then consider whether further in vitro genotoxicity testing is needed (Hayashi 384 

et al., 2011; Kirkland et al., 2007a). Further consideration of SAR data for these 385 

chemicals may also give valuable information (Dearfield et al., 2010). 386 

40. If clear negative results are obtained in both core in vitro tests undertaken, it 387 

can generally be concluded that the chemical has no genotoxic activity. However, there 388 

are some occasions when additional in vitro and/or in vivo genotoxicity testing may be 389 

undertaken for chemicals giving a negative response in the two in vitro core 390 

genotoxicity tests. For example, in situations where tumours are found in rodents, 391 

where the in vitro metabolic activation systems are not optimal or where there are 392 

human-specific metabolites, there may be a need for further genotoxicity assessment. 393 

A further testing strategy would have to be designed on a case-by-case basis (Kirkland 394 

et al., 2007b; Muller et al., 2003). An IWGT working group has published guidance on 395 

this topic (Kasper et al., 2007). An important part of any additional in vitro strategy 396 

should be consideration of the appropriate exogenous metabolic activation system 397 

(including alternative sources of S9 or other metabolic systems including genetically 398 

engineered cell lines) (Ku et al., 2007b), or even the testing of specific, relevant 399 

metabolites. Further information on in vivo genotoxicity testing of such test chemicals 400 

is provided in Stage 2 of this strategy. 401 

41. Information from other combinations of genotoxicity tests, which may include 402 

one or more non-core tests outlined below in paragraphs 66-71, may also give 403 

adequate data on all three endpoints on a case-by-case basis. In vitro genotoxicity 404 

tests (micronucleus scoring and comet) using human reconstructed skin may provide 405 

useful information on in vitro mutagenic hazard in circumstances where in vivo testing 406 

is not permitted, or when extensive dermal exposure is anticipated (e.g. cosmetic 407 
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ingredients) (Aardema et al., 2013; Chapman et al., 2014; Roy et al., 2016; Reisinger 408 

et al., 2018). 409 

42. The full Stage 1 strategy should be performed, and the results of studies 410 

evaluated before a decision is made on whether to proceed to Stage 2 testing or 411 

whether a conclusion on mutagenic hazard can be derived for test chemicals where 412 

no in vivo genotoxicity testing is permitted. An outline of Stage 0 and Stage 1 (in vitro 413 

genotoxicity testing) is given in Figure 2 and a description of the assays recommended 414 

is provided in the following paragraphs.  415 

Discussion of Stage 1 Tests- General Aspects 416 

43. The conduct of genotoxicity assays has improved over time and the overall 417 

sensitivity of in vitro testing strategies regarding prediction of rodent carcinogens is 418 

very high (Pfuhler et al., 2011; Corvi and Madia, 2017).   419 

44. Kirkland et al. assessed the sensitivity of a combination of the Ames test and 420 

MNvit test to detect rodent carcinogens and in vivo genotoxicants (Kirkland et al., 421 

2011). The authors stated that it is difficult to draw precise conclusions from the 422 

available sensitivity and specificity data since the databases of chemicals used vary. 423 

However, these data do show that mammalian cell genotoxicity tests can have low 424 

specificity and that combinations of in vitro genotoxicity tests result in high sensitivity 425 

for rodent carcinogens and in vivo genotoxicants. High sensitivity has always been a 426 

priority of genotoxicity testing strategies recommended by the COM (DOH, 2000, 427 

2011). COM evaluated the use of in vitro genotoxicity tests to predict rodent 428 

carcinogens and in vivo genotoxicants in June 2010 and concluded that there is no 429 

convincing evidence that any [relevant or DNA reactive] rodent carcinogen or in 430 

vivo genotoxicant would fail to be detected by using an in vitro genotoxicity test 431 

battery consisting of Ames and MNvit tests 432 

(http://webarchive.nationalarchives.gov.uk/20140506144308/http://www.iacom.org.uk433 

/meetings/index.htm). 434 

45. It is most likely that one of the few occasions where in vitro test strategies fail 435 

to detect mutagenic activity (i.e. misleading negative results) could be explained by the 436 

absence of appropriate metabolic activity in vitro (Brambilla and Martelli, 2004) or that 437 

the test chemical does not reach the cells. Approaches to resolving potential 438 

inadequacies in metabolic activation include structure based metabolism predictions, 439 

use of genetically modified target organisms (e.g. CYP2E1 in Salmonella 440 

YG7108pin3ERb5) (Emmert et al., 2006), the use of exogenous metabolic activation 441 

http://webarchive.nationalarchives.gov.uk/20140506144308/http:/www.iacom.org.uk/meetings/index.htm
http://webarchive.nationalarchives.gov.uk/20140506144308/http:/www.iacom.org.uk/meetings/index.htm
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systems derived from human sources, or recombinant human cytochrome P450 442 

systems as an external activation system (Ku et al., 2007b). Testing of isolated or 443 

synthesised metabolites may also be considered. 444 

46. There are a number of MoAs by which a chemical may demonstrate an in vitro 445 

genotoxic effect that is either not relevant for humans (e.g., a rat specific metabolite) 446 

or has a threshold. The COM has reviewed the evidence for a number of threshold 447 

MoAs and published a general guidance statement in 2010 448 

(https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-449 

mutagens) 450 

47. Threshold MoAs can generally be attributable to non-DNA interactions or an 451 

overload of normal cellular physiology. In such cases a No Observed Effect 452 

Concentration (NOEC) can be determined and may be useful in evaluating risk. 453 

Investigations of a threshold-based MoA need to be designed on a case-by-case basis 454 

and can be complex to interpret (Kirkland et al., 2007a).  455 

48. There has been considerable debate regarding the highest concentration that 456 

should be used routinely in mammalian cell assays. The ICH has stated the maximum 457 

concentration tested for human pharmaceuticals should be 1 mM (or 500 µg/mL; 458 

whichever is lower) in mammalian cell genotoxicity assays when not limited by 459 

solubility in solvent or culture medium or by cytotoxicity. (ICH, 2012) This  would have 460 

the effect of reducing the number of misleading positive results by avoiding the 461 

excessive concentrations where the cellular defence mechanisms might be 462 

overwhelmed (ICH, 2012). However, a reduction to 1 mM is not consistent with the 463 

OECD recommendation for a top concentration of 10 mM (or 2000 µg/mL; whichever 464 

is lowest) in mammalian cell genotoxicity assays, when not limited by solubility in 465 

solvent or culture medium or by cytotoxicity (OECD, 2016a,c,d,e). Morita et al. (2014) 466 

showed that the reduction in the top concentration from 5000 to 2000 µg/mL for 467 

mammalian cell tests had no impact on sensitivity or specificity of in vitro chromosomal 468 

aberration tests. Another analysis of published data for the top concentration in 469 

mammalian cell genotoxicity tests identified a small number of carcinogens that 470 

(according to the publications) would not be detected in any part of a three test in vitro 471 

genotoxicity test battery (consisting of the Ames, mouse lymphoma and in vitro 472 

chromosomal aberration (CA) tests) if the testing concentration limit for mammalian 473 

cell assays were reduced from 10 mM to 1 mM (Parry et al., 2010). A further 474 

investigation of these carcinogens found that some positive results at concentrations 475 

above 1 mM were not reproducible (i.e. they were not genotoxic in mammalian cells 476 

under current OECD guideline protocols) and others were positive at concentrations 477 

https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-mutagens
https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-mutagens
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below 1 mM, particularly when continuous treatments in the absence of S-9 (not 478 

included in the original publications) were conducted. An upper limit for mammalian 479 

cells tests of 1 mM or 500 μg/ml (whichever is lower) has been proposed as sufficient 480 

to detect all genotoxic carcinogens that are negative in the Ames test (Kirkland and 481 

Fowler, 2010). Several international organisations have updated their guidance 482 

regarding upper limit selection (e.g. ICH, 2012, OECD, 2020a; Galloway et al., 2011) 483 

although currently no international consensus has been reached. Precipitation of the 484 

chemical in the medium can also be used to define a maximal concentration or upper 485 

limit for testing. On balance, COM agreed that care should be taken to follow the 486 

appropriate guidance, depending on the chemical of interest.  487 

49. There has also been considerable investigation of the role of excessive 488 

cytotoxicity in mammalian cells and choice of cell type as possible causes of 489 

misleading positive results (Blakey et al., 2008; Fellows et al., 2008b; Pfuhler, 2009; 490 

Pfuhler et al., 2011). The method used to assess cytotoxicity may affect the selection 491 

of the highest concentration tested and potentially the results obtained using 492 

mammalian cell genotoxicity assays (Fowler et al., 2012b; Kirkland et al., 2007c; 493 

Kirkland, 2012a) and recommendations have been made to use cytotoxicity measures 494 

based on cell proliferation (Galloway, 2000). However, it is important to note that 495 

although excessive cytotoxicity may lead to misleading positive results, it may also 496 

result in misleading negative results when pronounced cell cycle delay occurs. A 497 

similar conclusion was reached at an international symposium on regulatory aspects 498 

of genotoxicity testing (Blakey et al., 2008).  499 

50. Most cell lines used for genotoxicity testing lack appropriate metabolism 500 

leading to reliance on exogenous metabolic activation systems. These cell lines may 501 

often have impaired p53 function and altered DNA repair capacity (Kirkland et al., 502 

2007c). There is some evidence that human lymphocytes are less susceptible to 503 

misleading positives than the rodent cell lines currently used (e.g. Chinese Hamster 504 

Ovary (CHO), V79, Chinese hamster lung (CHL)). The use of human cell lines HepG2, 505 

TK6 and MCL5 cells and the reconstructed human skin models and HepaRG have 506 

been  evaluated (Fowler et al., 2012a; Kirkland et al., 2007c; Le Hegarat, 2010). A brief 507 

summary of 3D models currently used for genotoxicity testing and those under 508 

development and/or validation has been prepared by COM (COM, 202x).  509 

51. The COM agrees that it is not necessary to undertake independent 510 

confirmatory in vitro tests when clear negative or positive results have been obtained 511 

provided the following criteria are satisfied:   512 
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• there is no doubt as to the quality of the study design and the conduct of the 513 

test;  514 

• the spacing and range of test chemical concentrations rule out missing a 515 

positive response; and 516 

• sufficient treatment conditions and sampling times have been used. 517 

52. It is recognised that it can be difficult to provide convincing evidence for 518 

absence of genotoxic effects. The investigator should consider the power of the study 519 

design and the past performance of the test system when formulating a protocol in 520 

order to optimise the chances of obtaining an unequivocal result from a single 521 

experiment and to ensure that any potential genotoxic effect is not missed. 522 

53. There is a need to undertake further in vitro genotoxicity testing 523 

[DK3][RB4][OS5][RB6]when an equivocal result is obtained (i.e., neither clearly negative nor 524 

clearly positive by appropriate biological or statistical criteria). In the case of the MNvit 525 

and CAvit assays an equivocal result may be resolved by scoring more cells from the 526 

existing study (paragraph 86) and this should be assessed in the first instance. 527 

Additional genotoxicity tests need to be planned on a case-by-case basis and need not 528 

necessarily be undertaken in an identical fashion to the initial experiment(s). Indeed, it 529 

may be preferable to alter certain aspects of the study (e.g. concentration levels 530 

investigated, treatment and sampling times, concentration of metabolic activation mix) 531 

to obtain supplementary data. It may also be appropriate to use a different genotoxicity 532 

test system, e.g. a chromosomal aberration (CA) test, if there is equivocal evidence of 533 

clastogenicity from an in vitro micronucleus test, or an in vitro cell mutation assay (e.g. 534 

TK or HPRT mutation assays) if there is equivocal evidence of gene mutations from 535 

an Ames test.  536 

54. The use of historical negative control data to aid in the interpretation of 537 

genotoxicity test results has been considered particularly in relation to equivocal and 538 

small magnitude genotoxic effects (Hayashi et al., 2011). Advice has been published 539 

on approaches to collecting historical control data. Ideally data should be reported in 540 

terms of means and confidence intervals for the distribution of baseline genotoxic 541 

effects rather than observed ranges where outliers can have a disproportionate effect. 542 

The dataset should be updated regularly and should be as large as possible. In 543 

addition, it is important that negative historical control data should have been 544 

generated using consistent methodology  unless it can be demonstrated that changes 545 

in protocol do not impact on the range of values reported in studies (Hayashi et al., 546 

2011). In their most recent guidance OECD places an increased emphasis on the use 547 
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of historical concurrent negative control data in the assessment of genotoxicity test 548 

results, including recommendations on how to build an historical control database 549 

(OECD, 2020a). 550 

55. If a chemical is considered on the basis of Stage 1 genotoxicity test results to 551 

have in vitro genotoxic potential but has not been tested in vivo, the COM considers it 552 

prudent to assume that the chemical may have in vivo genotoxic potential.  553 

Discussion of Stage 1 Strategy: Specific Core Tests 554 

In Vitro Bacterial Tests for Gene Mutations 555 

56. The most widely used in vitro mutagenicity test is the bacterial reverse mutation 556 

assay for gene mutations developed by Ames and his colleagues using Salmonella 557 

typhimurium (Gatehouse et al., 1994) which forms the basis of OECD TG471 (Bacterial 558 

Reverse Mutation Test). The very extensive database available for this assay justifies 559 

its inclusion in any initial genotoxicity testing for mutagenic hazard. Several strains of 560 

bacteria capable of detecting both base-pair and frame-shift mutations must be 561 

included, the validated strains being TA1535, TA1537 (or TA97 or TA97a), TA98 and 562 

TA100. These strains detect effects at G-C-rich sites. To detect certain oxidising 563 

mutagens or hydrazines, that produce effects at A-T-rich sites, an additional strain 564 

such as TA102 or a repair-deficient Escherichia coli strain (WP2uvrA or WP2uvrA 565 

(pKM101)) should be included. To detect cross-linking agents, it may be preferable to 566 

include TA102 or to add a repair proficient Escherichia coli strain (WP2 or WP2 567 

(pKM101)). Testing should be carried out both in the presence and absence of an 568 

appropriate exogenous metabolic activation system such as induced rat liver S-9. Both 569 

plate-incorporation and pre-incubation methods are widely used, and either is 570 

acceptable in all test guidelines. There is ongoing consideration of the bacterial strains 571 

used. For example, the sensitivity and selectivity of the bacterial strains specified in 572 

OECD TG471 have been assessed (Williams et al., 2019) and the current criteria for 573 

a valid Ames test and interpretation of test results have been evaluated (Levy et al., 574 

2019). 575 

57. Developments to the Ames test have been suggested to automate and 576 

minimise the amount of test chemical required; for example the Spiral Salmonella 577 

mutagenicity assay (Claxton et al., 2001)[RB7], Ames IITM test (Fluckigetr-Isler et al., 578 

2004) and Ames MPF (Fluckigetr-Isler and Kamber, 2012; Spiliotopoulos and Koelbert, 579 

2020). [RB8] Whilst discussions at the OECD around assay developments are 580 

ongoing[RB9], the Committee considers that these methods have not currently been 581 

developed to a point where they can be routinely used for regulatory submissions.  582 
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In Vitro Mammalian Cell Micronucleus Assay (MNvit) for Clastogenicity and 583 
Aneuploidy 584 

58. The COM recommends that equivalent information on clastogenicity could be 585 

obtained from the MNvit compared with CA testing in mammalian cells (metaphase 586 

analysis) but that aneuploidy could be more easily detected by MNvit. There have been 587 

extensive and authoritative investigations of the utility of the MNvit which have 588 

concluded that the MNvit is reliable and can be used as an alternative to the in vitro 589 

CA for the assessment of clastogenicity and has the benefit of more easily detecting 590 

aneuploidy (Corvi et al., 2008). The MNvit is available as OECD TG 487 (In Vitro 591 

Mammalian Cell Micronucleus Test) (OECD, 2016a).   592 

59. The MNvit can be carried out in the absence or presence of cytochalasin B, 593 

which is used to block cytoplasmic division and generate binucleate cells (cytokinesis 594 

block methodology (CBMN)). The advantage of using cytochalasin B is that it allows 595 

clear identification that treated and control cells have divided in vitro during or after 596 

treatment and provides a simple assessment of cell proliferation. Moreover, a defined 597 

population of binucleate cells is available for scoring. In general, the use of 598 

cytochalasin B has no impact on the sensitivity of the test results (Garriott et al., 2002; 599 

Lorge et al., 2006; Oliver et al., 2006; Wakata et al., 2006), however this is not the case 600 

for nanoparticles (COM, 202x). In the absence of cytochalasin B, where all cells will be 601 

mononucleate, it is essential to have evidence that cells have divided.  602 

60. MNvit protocol development and assay performance have been previously 603 

described (COM, 2011; Fowler et al., 2012a, b). A flow cytometric approach to the 604 

micronucleus assay has also been developed (Bryce et al., 2013). MNvit assay can be 605 

performed using most mammalian cell lines used in genotoxicity testing however there 606 

is evidence that rodent cell lines with compromised p53 activity such as V79, CHO and 607 

CHL cells can give more misleading positive results than cell lines proficient for p53 608 

activity such as TK6 and human lymphocytes (Fowler et al., 2012a). Overall, the 609 

COM’s preference is for human lymphocytes which have a number of advantages over 610 

cell lines (e.g. normal diploid primary human cells with some protection against 611 

oxidative damage when whole blood cultures are used). If cell lines are used, it is 612 

important that the cells have defined provenance (Lorge et al., 2016) and that the 613 

impact of potential genetic drift of the cells cultured is understood (Kirkland et al., 614 

2007c). One particular area of protocol development that has been under considerable 615 

investigation is the most appropriate method(s) for estimating cytotoxicity. It has been 616 

suggested that using relative cell counts (RCC) may underestimate cytotoxicity, as 617 

proliferation is not measured, and lead to potentially misleading positive results (Fowler 618 
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et al., 2012b). In addition, it should also be recognised that cytotoxicity may be 619 

underestimated when using vital stains as these also do not measure proliferation. 620 

[DK10][RB11][OS12][RB13]In the absence of cytokinesis block, the relative increase in cell 621 

count (RICC) or relative population doubling (RPD) are comparable with replication 622 

index (RI) used with the cytokinesis block assay and are the most appropriate methods 623 

of cytotoxicity estimation. Consensus recommendations embedded in the OECD 624 

guideline 487 indicate that the target range for cytotoxicity in the MNvit is 55 ± 5%.  625 

61. The MNvit assay in combination with the CB methodology and with 626 

pancentromeric or chromosome specific centromeric probes fluorescence in situ 627 

hybridisation (FISH) provides a sensitive assessment of cell proliferation and allows 628 

discrimination between chromosome breaks, chromosome loss (using pan-629 

centromeric or anti-kinetochore antibodies) and chromosome non-disjunction and 630 

polyploidy (using chromosome-specific  centromere probes) (Kirsch-Volders et al., 631 

2002). It is therefore a useful model for assessing mode of action (Parry, 2006).   632 

62. Binucleate cells obtained with the CBMN will usually be needed for 633 

determination of non-disjunction of chromosomes between daughter nuclei. Fenech 634 

has proposed that the CBMN assay can be further modified to provide comprehensive 635 

information on nucleoplasmic bridges (NPBs). This  may provide information on 636 

chromosome rearrangements or telomere end fusions, and nuclear buds (NBUDs) 637 

which may provide information on gene amplification (Fenech, 2006, 2007). Fenech 638 

proposed that the comprehensive CBMN assay should be considered as a ‘cytome’ 639 

method for measuring chromosomal instability and altered cellular viability (Fenech, 640 

2006). The ‘cytome’ method is complex and requires large amounts of blood and 641 

considerable technical skill. It is currently not suitable for routine testing of chemicals 642 

for genotoxicity but may provide useful information on MoA.  643 

63. The flow-cytometry-based micronucleus assay (FCMMN) was developed to 644 

increase reproducibility and decrease turnaround time for the micronucleus test 645 

(Laingam et al., 2008; Avlasevich et al., 2011). However, the modified assay did not 646 

overcome the potential issue of misleading positive results. A number of approaches 647 

were undertaken to overcome this and have been previously described (COM, 2011). 648 

A separate approach to automation of the CBMN assay involves automated image 649 

analysis (Decordier et al., 2009; Avlasevich et al., 2011; Seager et al, 2014, Chapman 650 

et al, 2014, Lyulko et al 2014; Thougaard et al., 2014; Buick et al., 2020). This does 651 

provide some advantages over the FCMMN assay as the cells are not destroyed in the 652 

analysis and it can be applied to the cytokinesis blocked micronucleus assay. Thus, 653 

micronuclei can be scored in binucleated cells, cells containing multiple micronuclei 654 
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can be easily identified and scored as a single event, and the image galleries and 655 

slides can be stored, allowing the experiment to be re-visited at a later date. 656 

64. An interlaboratory evaluation of the MultiFlow DNA Damage kit— p53, gamma 657 

H2AX, Phospho-Histone H3 and polyploidy has been described by Bryce et al. (2017). 658 

This is a multiplexed in vitro genotoxicity assay based on flow cytometric analysis in 659 

which detergent-liberated nuclei are simultaneously stained with propidium iodide and 660 

labelled with fluorescent antibodies against p53, gH2AX, and phospho-histone H3. 661 

Polyploidy can be quantified as the proportion of 8n-positive events relative to the 662 

number of total events with 2n and greater DNA content. 663 

65. From seven laboratories assessing chemicals representing clastogens, 664 

aneugens and non-genotoxicants, with analysis based on global evaluation factors and 665 

using a multinomial logistic regression, assay sensitivity, specificity and concordance 666 

in relation to a priori MoA grouping were 92%. The authors suggest that the two distinct 667 

analysis strategies utilised can be used to rapidly and reliably predict a genotoxic MoA  668 

for new chemicals. 669 

Discussion Stage 1: Non-Core Tests 670 

In Vitro Chromosomal Aberration Assay in Mammalian Cells (Metaphase Analysis) 671 
for Clastogenicity and Aneuploidy 672 

66.   The in vitro CA assay in mammalian cells has been widely used in genotoxicity 673 

testing for many decades and provides information on chromatid and chromosome 674 

breaks, deletions and re-arrangements that are indicative of damage associated with 675 

adverse health outcomes. Only limited information can be obtained on potential 676 

aneugenicity by recording the incidence of polyploidy and/or modification of mitotic 677 

index (Aardema et al., 1998). The COM notes that polyploidy may not be a reliable 678 

indicator for aneugenicity and may result from a number of different genetic changes 679 

(Galloway, 2000; Mitchell et al., 1995). It is possible to adapt the chromosome 680 

aberration assay to include the use of chromosome specific centromeric probes with 681 

fluorescence in situ hybridisation (FISH) to assess the potential for aneuploidy 682 

(Maierhofer et al., 2002).  An IWGT report  (Galloway , 2000) concluded that the 683 

preferred measure of cytotoxicity in the CA test should be one based on cell 684 

proliferation (e.g. relative population doubling or relative increase in cell counts) 685 

compared to negative control cultures rather than simple cell counts.  On balance it is 686 

considered preferable to use the in vitro micronucleus test for the initial assessment of 687 

clastogenic and aneugenic potential. The latest revision of the OECD test guideline 688 
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(OECD, 2016c) utilises a maximum test concentration corresponding to 10 mM (or 2 689 

mg/mL) which is in-line with the revised MNvit assay (OECD, 2016a).  690 

In Vitro Mouse Lymphoma Assay for Gene Mutation and Clastogenicity  691 

67. The COM reaffirms the view stated in the 1989, 2000 and 2011 guidance, that 692 

the most appropriate in vitro mammalian cell gene mutation test is the mouse 693 

lymphoma assay. Protocol development and test data interpretation strategies were 694 

discussed previously (COM, 2011). 695 

68. A re-evaluation of published studies, many of which were undertaken by the 696 

US NTP, showed that a large number of these were uninterpretable or the outcomes 697 

equivocal (Schisler et al., 2018). This assay is now described in a separate OECD TG 698 

(Test 490: In Vitro Mammalian Cell Gene Mutation Test Using the Thymidine Kinase 699 

Gene) which was published in 2016 (OECD, 2016d). Some authors have reported that 700 

the mouse lymphoma assay can detect, in addition to gene mutations and 701 

clastogenicity, information on recombination, deletion and aneuploidy (Ogawa et al., 702 

2009; Sofuni, 1996; Wang et al., 2009). However, this has been contested from results 703 

showing that none of 7 reference aneugens were reliably detected at acceptable levels 704 

of cytotoxicity (Fellows et al., 2011b). It is possible that aneuploidy in these cells could 705 

be a secondary effect of chromosomal rearrangement. However, the COM considers 706 

that this assay does not reliably detect aneugens.  707 

In Vitro HPRT assays for Gene Mutation  708 

69. An in vitro cell mutation assay which uses forward mutation in the hypoxanthine 709 

guanine phosphoribosyl transferase (HPRT) gene to assess mutations has been 710 

developed in several cell lines, principally CHO cells and is described in the revised 711 

OECD 476 guideline (OECD, 2016e). TG476 recommends that the minimum number 712 

of cells required for the assay should allow for at least 10 spontaneous mutants being 713 

present in all phases of the test. The COM have previously considered the power of 714 

this assay and it was concluded that 107 surviving cells are required for a valid test, 715 

(http://webarchive.nationalarchives.gov.uk/20140506144831/http://www.iacom.org.uk716 

/meetings/02.10.2003.htm), providing sufficient numbers of cells to maintain between 717 

10 and 100 spontaneous mutations.  718 

70. As discussed in para 43, a number of research groups have developed 719 

genotoxicity assays based on MN measurement using commercial sources of human 720 

reconstructed skin (such as Episkin® and EpiDermTM) (Chapman et al., 2014; Curren 721 

et al., 2006; Flamand et al., 2006; Hu et al., 2009; Mun et al., 2009; Roy et al., 2016; 722 

Pfuhler 2020a,b) or a co-culture technique involving reconstructed skin and mouse 723 

http://webarchive.nationalarchives.gov.uk/20140506144831/http:/www.iacom.org.uk/meetings/02.10.2003.htm
http://webarchive.nationalarchives.gov.uk/20140506144831/http:/www.iacom.org.uk/meetings/02.10.2003.htm
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lymphoma L5178Y cells (Flamand et al., 2006). Measurement of DNA damage using 724 

the comet assay in reconstructed skin has also been reported  (Pfuhler et al., 2011; 725 

Reisinger et al., 2018; Pfuhler et al., 2020b) and is considered to be sufficiently 726 

validated to start the OECD Test Guideline development process (Pfuhler et al., 727 

2020b). The primary purpose in developing genotoxicity tests using reconstructed skin 728 

has been to supplement genotoxicity data-packages for cosmetic chemicals where no 729 

in vivo genotoxicity tests are permitted. 730 

 731 

In Vitro Alkaline Comet Assay for DNA Damage 732 

71. The in vitro alkaline comet assay for DNA damage has been proposed as an 733 

alternative to clastogenicity assessment in mammalian cells since cell proliferation is 734 

not needed, therefore any cell type can be used (Hartmann et al., 2001; Witt et al., 735 

2007). The alkaline comet assay detects a wide range of genetic damage including 736 

single and double strand breaks, repair induced breaks, alkali labile lesions and abasic 737 

sites. There is evidence that the in vitro comet assay can be modified to detect DNA 738 

cross-linking agents (Spanswick et al., 2010). The comet-FISH assay has been 739 

developed to provide information on site specific DNA strand breaks (Glei et al., 2009; 740 

Rapp et al., 2000; Santos et al., 1997). There is evidence that the in vivo comet assay 741 

can detect chemicals that induce gene mutations in vitro  and in vivo (Dertinger et al., 742 

2010; Kirkland and Speit, 2008; Kirkland et al. 2019a, b). Extrapolation from this 743 

suggests that the in vitro comet assay can also detect chemicals that induce gene 744 

mutations and this capability has been demonstrated (Dertinger et al., 2010). However, 745 

it is not recommended as a routine replacement for gene mutation tests in vitro. Thus, 746 

the comet assay measures DNA damage irrespective of genotoxic endpoint, with the 747 

exception of aneuploidy. A positive comet assay result may be due to repairable DNA 748 

damage or lesions which lead to cell death and not necessarily lead to mutations or 749 

MN. Negative results from an Ames test and MNvit would reduce the level of concern 750 

associated with positive results from an in vitro comet assay. Thus, the in vitro comet 751 

assay can serve as a useful adjunct to the recommended core-tests, especially in 752 

instances where in vivo testing is not permitted such as in cosmetics testing. Pfuhler 753 

et al. (2020b) has reviewed the status of the development of the 3D organ-based 754 

models for genotoxicity testing. The authors concluded that the 3D skin comet assay 755 

was sufficiently validated to start the process of OECD Test Guideline development.   756 

Summary Stage 1 (In Vitro Genotoxicity Testing) 757 

72. The COM recommendations for Stage 1 testing remain the same as in the 2011 758 

guidelines, namely that the three key endpoints of gene mutation, clastogenicity and 759 
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aneuploidy can be detected by using two core in vitro tests. These  should be 760 

undertaken according to the best international guidance available to avoid misleading 761 

positive or negative results. Data should be interpreted using appropriate statistical 762 

analysis and use of historical negative control data. It is important to note that the in 763 

vitro tests should be undertaken prior to any in vivo testing. 764 

73. The COM confirms the need to understand MoA in order to derive conclusions 765 

regarding the biological importance of results. Data on MoA are important in elucidating 766 

whether genotoxicity tests give misleading negative or positive results, and also 767 

understanding of the MoA can help decisions with regard to devising a strategy for 768 

Stage 2 in vivo genotoxicity testing. There is a particular need to understand MoA for 769 

chemicals which cannot be subjected to in vivo genotoxicity tests (e.g. cosmetics). In 770 

this particular instance, some useful additional information on genotoxicity may be 771 

provided by undertaking further testing, for example using in vitro mammalian cell gene 772 

mutation assays or in vitro MN and comet tests using reconstructed human skin.  773 

74. The recommended two core genotoxicity tests in Stage 1 are the Ames test 774 

and MNvit. These recommended assays, when combined, provide sufficient 775 

information for the genotoxicity assessment of most chemicals and provide high 776 

sensitivity for the identification of rodent carcinogens and in vivo genotoxicants, and 777 

reduce the risk of misleading positive results when compared with a battery containing 778 

more than one mammalian cell test.  779 

75. Results from non-core tests described in this document may provide useful 780 

additional information on in vitro mutagenic hazards on a case-by-case basis. In most 781 

instances misleading negative in vitro results are due to inadequate exogenous 782 

metabolic activation (Ku et al., 2007b).  783 

76. Some regulatory authorities may require an in vivo genotoxicity test where high, 784 

or moderate and prolonged, levels of exposure are expected (e.g. most human 785 

medicines) in order to provide additional reassurance even when Stage 1 tests have 786 

given negative results. If a chemical is considered on the basis of Stage 1 test results 787 

to have in vitro mutagenic potential but has not been tested in vivo, the COM considers 788 

it prudent to assume that the chemical may have in vivo mutagenic potential. 789 

Stage 2: In Vivo Genotoxicity Tests  790 

Overview of Strategy  791 

Stage 2 of the testing strategy involves an assessment of genotoxic activity in vivo in 792 

somatic tissues and in germ cells (when there is a need for the assessment of heritable 793 

effects and/or information on hazard classification of mutagens) (see Figure 3). The in 794 
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vivo genotoxicity testing strategy has to be designed on a case-by-case basis and can 795 

be used to investigate  aspects of in vivo mutagenicity, for example;  796 

1.  key end point(s) identified in Stage 1,  797 

2. genotoxicity in tumour target tissue(s),  798 

3.  potential for germ cell genotoxicity,  799 

4. in vivo genotoxic potential for chemicals which were negative in Stage 1 but 800 

where there is high or moderate and prolonged exposure.  801 

5. genotoxicity [RB14]in site of contact tissues.  802 

77. It is thus possible for there to be one or more separate Stage 2 strategies 803 

designed to assess the above objectives for a particular test chemical. A revised in 804 

vivo Stage 2 strategy was presented in the previous COM guidance document (COM, 805 

2011) based on the selection of tests to provide information on one or more specific 806 

aspects such as species and/or tissue genotoxicity combined with investigation of 807 

particular genotoxic end points and modes of genotoxic action. This approach does 808 

not necessarily lead to the selection of the rodent BMMN test as the first assay. 809 

Furthermore, the rat liver UDS assay is no longer recommended as a second assay 810 

(EFSA, 2017 - discussed in para 104). A table of in vivo genotoxicity tests and 811 

endpoints is provided in Annex 1.  812 

78. Other factors that should be considered when determining an in vivo 813 

genotoxicity testing strategy include whether the testing strategy can be integrated into 814 

other regulatory toxicity tests (such as subacute or subchronic toxicity studies). 815 

Consideration needs to be given to the nature of the chemical (including physico-816 

chemical properties), the results obtained from in vitro genotoxicity tests and the 817 

available information on the toxicokinetic and metabolic profile of the chemical (for 818 

example when selecting most appropriate species, tissue and end point). The routes 819 

of exposure in animal studies should be appropriate to ensure that the chemical 820 

reaches the target tissue. Routes unlikely to give rise to significant absorption in the 821 

test animal should therefore be avoided. Unless systemic exposure can be confirmed 822 

from other toxicological studies, or evident toxicity in the target organ is seen, or the 823 

intravenous route is used, confirmatory toxicokinetic studies to measure blood or tissue 824 

exposure as appropriate should be undertaken to accompany all in vivo genotoxicity 825 

studies to assess the adequacy of any negative results obtained (Hardy et al.,  2017).  826 

79. The design of in vivo genotoxicity tests should incorporate appropriate 827 

approaches to reduce the number of animals used in tests, such as the integration of 828 
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genotoxicity endpoints into repeat-dose studies. Options for reduction in animal usage 829 

include: 830 

• use of one sex only (if supported by metabolism data or other data indicating 831 

equivalence),  832 

• reduced numbers of sampling times for micronucleus and CA assays when 833 

repeat dosing is performed,  834 

• combining micronucleus and comet assays into a single acute test employing 835 

repeated administrations of test chemical; integration of micronucleus and 836 

comet end points into repeat-dose toxicity (including transgenic mutation) 837 

studies, although it should be noted that the comet assay is difficult to integrate 838 

without using satellite groups  (Bowen et al., 2010; Bowen and Beevers, 2011; 839 

Pfuhler et al., 2009; Vasquez, 2010). 840 

80. It should also be possible to omit the concurrent positive control administrations 841 

in micronucleus, CA and transgenic rodent mutation assays (but not for the comet 842 

assay) where the test facility has appropriate historical positive control data (Pfuhler et 843 

al., 2009) as long as positive control slides or tissues from positive control treated 844 

rodents “banked” from previous treatments and coded in with the experimental 845 

samples, are included to demonstrate  technical proficiency.  846 

81. The toxic properties of test chemicals (such as acute toxicity, subchronic 847 

toxicity (including target organ effects), irritancy/corrosivity in contact with skin or 848 

mucous membranes), toxicokinetic and metabolism data will influence the choice of 849 

route of administration and the highest dose level achievable in in vivo mutagenicity 850 

tests. Dose selection for in vivo genotoxicity testing [DK15][RB16][OS17][RB18]requires 851 

estimation of the limit dose (LD), maximum tolerated dose (MTD), consideration of 852 

tissue-specific effects and in some instances (as discussed in paragraph 78), 853 

appropriate toxicokinetic data or toxicity data in the target tissue from other studies, to 854 

support tissue exposure to the chemicals and/or metabolites (EFSA, 2017). OECD 855 

recommend the use of the LD in circumstances where “toxicity and solubility are not 856 

limiting factors, and if genetic toxicity is not expected based on data from structurally 857 

related substances”. A LD of 2000 mg/kg bw/day for a treatment period of < 14 days 858 

and 1000 mg/kg bw/day for a treatment period > 14 days are stated. In circumstances 859 

where toxicity is the limiting factor, OECD recommend use of the which is defined by 860 

OECD as “the highest dose that will be tolerated without evidence of study-limiting 861 

toxicity such that higher dose levels, based on the same dosing regimen, would be 862 

expected to produce lethality or evidence of pain, suffering or distress necessitating 863 
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humane euthanasia” (OECD, 2000). It is possible that for some chemicals, the 864 

maximum dose may not be achievable (e.g., due to solubility issues) and, in this case, 865 

the maximum feasible dose (MFD) may be applied.  866 

82. The approach outlined for Stage 2 in Figure 3 takes account of evidence to 867 

suggest that in vivo comet and rodent transgenic mutation assays have better 868 

sensitivity and specificity for the identification of rodent carcinogens compared with the 869 

rat liver UDS test, particularly for carcinogens that are negative in the in vivo 870 

micronucleus test (Kirkland and Speit, 2008). The initial in vivo genotoxicity testing 871 

strategy should therefore involve selection of one or more of the core Stage 2 tests in 872 

rodents; namely, micronucleus tests (accompanied by specific modifications for 873 

aneuploidy if necessary), the transgenic gene mutation tests, or comet DNA damage 874 

assays in rodents. It is acceptable to undertake one in vivo genotoxicity test to 875 

investigate a specific end point identified from Stage 1 in vitro genotoxicity tests. In 876 

some instances, there may be a need to investigate more than one end point before 877 

reaching a full conclusion on in vivo genotoxic potential.  878 

83. Stage 2 in vivo genotoxicity tests should be undertaken for test chemicals that 879 

are positive in any of the in vitro Stage 1 genotoxicity tests where there is a need to 880 

ascertain whether genotoxic activity can be expressed in vivo. There are many reasons 881 

why activity shown in vitro may not be observed in vivo (for example, lack of absorption, 882 

inability of the active metabolite to reach DNA, rapid detoxication and elimination). Data 883 

from in vivo genotoxicity tests are, therefore, essential before any definite conclusions 884 

can be drawn regarding the potential mutagenic or genotoxic hazard to humans from 885 

test chemicals which have given positive results in one or more in vitro genotoxicity 886 

tests. However, conclusions on mutagenic or genotoxic hazard and MoA may have to 887 

be derived from in vitro genotoxicity data for test chemicals when no in vivo genotoxicity 888 

testing is permitted.  889 

84. In addition, an in vivo genotoxicity test may give positive results for chemicals 890 

which only act in vivo; experience though, has shown that such chemicals are rare 891 

(Tweats, 2007a, b). Such agents include some kinase inhibitors, glucocorticoid 892 

receptor antagonists (Hayes et al., 2013) and long-acting beta-2-agonists (Ponten et 893 

al., 2013). In some instances positive results might be obtained from in vitro 894 

genotoxicity tests that are adapted to evaluate specific characteristics of the test 895 

chemical; for example, by the use of modified or non-standard exogenous metabolising 896 

fractions (Muller et al., 2003).  897 
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85. Positive results in any Stage 2 genotoxicity test should be assessed for an 898 

indication of a MoA and for evidence which may suggest a threshold of effect or 899 

irrelevant positive responses. The COM has previously discussed the relevance of 900 

high-dose only positives and recognises that these results may be secondary to non-901 

genotoxic effects rather than being a genotoxic effect of the compound 902 

(http://webarchive.nationalarchives.gov.uk/20140506144902/http://www.iacom.org.uk903 

/statements/COM03S5.htm). 904 

86. Examples of  MoAs  that may lead to irrelevant positive responses in 905 

micronucleus tests, include hypothermia or hyperthermia in rodents and compound 906 

induced increases in cell division of bone marrow erythroblasts (Blakey et al., 2008; 907 

Shuey et al., 2007; Tweats et al., 2007a). If the conclusion is reached that a[RB19] 908 

relevant MoA occurs, then the chemical should be considered as an in vivo mutagen. 909 

MoA data will be important in considering whether a threshold or non-threshold 910 

approach to risk assessment can be used. The COM has published guidance on 911 

possible threshold modes of genotoxicity which can include; i) involvement of non-DNA 912 

targets, (e.g. aneugen inhibition of microtubules), ii) the contribution of protective 913 

mechanisms (e.g. repair of DNA adducts formed from many low molecular weight 914 

alkylating agents) and, iii) overload of detoxication pathways (e.g. paracetamol) 915 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach916 

ment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf). 917 

87. Equivocal results may be resolved in some assays such as MNvit or CAvit by 918 

scoring more cells. . In the absence of equivocal results or if there is a need to 919 

investigate specific mutagenic endpoints, tumour target organs, or the potential for 920 

heritable effects, supplementary in vivo genotoxicity tests should be undertaken 921 

[DK20][RB21][OS22][RB23] (Figure 3) or. This may involve repeating all or aspects of the initial 922 

Stage 2 testing strategy, or performing supplementary investigations (e.g. mode of 923 

action investigations, such as DNA adducts or more specific germ cell testing) to 924 

investigate aspects of the genotoxicity of the test chemical which have not been 925 

resolved. There is a need to select the most appropriate test(s) on a case-by-case 926 

basis. All relevant factors, such as results from previous tests, and available 927 

information on toxicokinetics, toxicological effects and metabolism of the chemical, 928 

should be considered.  929 

88. The development of testing strategies for germ cell mutagens is a rapidly 930 

evolving field. A summary of test methodologies that are currently under development 931 

and/or validation are outlined in the COM document ‘Test Strategies for Germ Cell 932 

Mutagens’ (COM, 202x). 933 

http://webarchive.nationalarchives.gov.uk/20140506144902/http:/www.iacom.org.uk/statements/COM03S5.htm
http://webarchive.nationalarchives.gov.uk/20140506144902/http:/www.iacom.org.uk/statements/COM03S5.htm
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf
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89. One aspect of the approach to testing outlined in Figure 3 is that hazard 934 

characterisation of germ cell genotoxicity can be included in the initial in vivo 935 

genotoxicity testing strategy if considered necessary. This is because there are multi 936 

tissue in vivo genotoxicity assays (e.g. transgenic rodent mutation assays and comet 937 

assay, though it should be noted that the standard comet assay has not been validated 938 

using mature sperm) which can also be used if a need to evaluate germ cell 939 

genotoxicity has been established (COM, 202x). Additionally, germ cell mutation 940 

assays might be valuable on a case-by-case basis to provide information on heritable 941 

mutagenic effects, but these would form part of a supplementary in vivo genotoxicity 942 

testing strategy, if considered appropriate.  943 

90. The COM reaffirms that a chemical considered a positive in vivo somatic cell 944 

mutagen should also be considered as a possible germ cell mutagen unless data can 945 

be provided to the contrary. The position held previously, that most if not all germ cell 946 

mutagens are also genotoxic in somatic cells, still holds true. It has been noted that 947 

some rare examples (e.g. sodium orthovanadate, (Attia et al., 2005) where the mouse 948 

bone marrow micronucleus assay does not predict germ cell genotoxicity have been 949 

reported. However, the data on such compounds are conflicting and it is not known, 950 

for example, whether somatic mutations or DNA strand breaks would have been 951 

identified if other test systems (e.g. transgenic assays and the comet assay) had been 952 

used and other tissues sampled (Attia et al., 2005; Ciranni et al., 1995; Witt et al., 953 

2003).  954 

91. It is plausible that other targets during the process of meiotic cell division may 955 

be unique to germ cells but not necessarily identical in both sexes (Pacchierotti et al., 956 

2007). The COM evaluated advances in germ cell mutagenicity testing and some 957 

theories and hypotheses regarding human germ cell mutagenesis. It was  concluded 958 

that it is not known whether unique germ cell mutagens exist (i.e., chemicals that are 959 

germ cell mutagens but not somatic cell mutagens), but that this is partially because 960 

of the underutilisation of the currently accepted tests for assessing germ cell 961 

mutagenicity and a lack of investigations examining this. Recommended regimes for 962 

the analysis of mutations in germ cells are discussed fully in the COM document ‘Test 963 

Strategies for Germ Cell Mutagens’ (COM, 202x). 964 

Discussion of Stage 2 Initial Testing Strategy - General Aspects 965 

92. There are many publications debating in vivo genotoxicity testing strategies. 966 

These include those  developed by the GUM (German speaking section of the 967 

European Environmental Mutagen Society) which recommended a single study using 968 
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a combined analysis for MN and comet induction in selected tissues (Pfuhler et al., 969 

2007), and those from the World Health [OS24][RB25]Organization/International 970 

Programme on Chemical Safety (WHO/IPCS) which recommended cytogenetics 971 

(bone marrow) or gene mutation or alternative tests as defined by genotoxic endpoint, 972 

chemical class and reactivity (with consideration of factors such as bioavailability and 973 

metabolism) (Eastmond et al., 2009). ICH (2011), EFSA (2017) and ECHA (2017) have 974 

also proposed similar strategies to these. The in vivo genotoxicity testing strategy 975 

recommended by the COM acknowledges there can be a variety of reasons for 976 

undertaking in vivo genotoxicity tests and it is important to identify clearly the objective 977 

of the study and the critical aspects of in vivo genotoxicity to be addressed (as set out 978 

in the Overview of Stage 2 strategy) in order to develop a strategy accordingly, rather 979 

than simply specify preferred first and second tests. There is less data on the 980 

performance of in vivo genotoxicity assays for prediction of rodent carcinogenicity 981 

compared with data on the performance of in vitro genotoxicity tests. Transgenic rodent 982 

mutation assays and the in vivo micronucleus assay have been shown to exhibit 983 

complementarity regarding prediction of rodent carcinogenicity, consistent with the 984 

assessment of different mutagenic endpoints by these two assays (Morita et al., 2016). 985 

The IWGT has reported that an evaluation of 91 chemicals showed that TGR and in 986 

vivo comet assays have a similar ability to detect in vivo genotoxicity when tested with 987 

bacterial mutagens and Ames-positive carcinogens (Kirkland et al., 2019b). Thus, 988 

genotoxic endpoint and MoA analysis of in vitro mutagenic activity is of considerable 989 

importance in helping to develop an initial in vivo genotoxicity testing strategy. The 990 

COM recommends that the initial in vivo genotoxicity testing strategy should be based 991 

on one or more tests selected from a relatively limited number of in vivo genotoxicity 992 

tests that have been specifically designed to provide the optimum amount of 993 

information on in vivo mutagenic potential of the test chemical. Where possible, 994 

consideration should be given to integrating in vivo genotoxicity testing into repeat-995 

dose toxicity studies.  996 

Discussion of Stage 2 - Recommended In Vivo Genotoxicity Tests 997 

93. Three recommended in vivo genotoxicity tests are outlined below and in Figure 998 

2. Information from one or more of these recommended core tests should provide 999 

sufficient in vivo genotoxicity data for most chemicals. 1000 

Rodent Bone Marrow and Peripheral Blood MN Assay for Clastogenicity and 1001 
Aneuploidy 1002 
OR Rodent Bone Marrow CA Assay for Clastogenicity 1003 
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94. The in vivo bone marrow or blood micronucleus (MNviv) assay is still the most 1004 

widely used in vivo genotoxicity test (OECD TG 474: Mammalian Erythrocyte 1005 

Micronucleus Test) (OECD, 2016f). Most of the available in vivo data on the 1006 

mutagenicity of chemicals have been obtained from studies using the MNviv test in 1007 

bone marrow of mice. The bone marrow is readily accessible to chemicals that are 1008 

present in the blood and a wide range of structurally diverse clastogens and aneugens 1009 

has been detected using these methods. The use of peripheral blood is an alternative 1010 

approach for both mice and rats (when the youngest fraction of reticulocytes are 1011 

sampled) which provides equivalent data to the bone marrow assay and is technically 1012 

less demanding. High throughput approaches to the peripheral blood MNviv utilising 1013 

flow cytometry have been published (De Boeck et al., 2005; Torous et al., 2000; 1014 

Dertinger et al., 2011a) and the assay is well validated. The MNviv assay detects 1015 

clastogenicity by measuring MN formed from acentric chromosome fragments in young 1016 

(polychromatic) erythrocytes in the bone marrow or in reticulocytes of peripheral blood. 1017 

It may also be used to identify the induction of chromosome loss. MN containing whole 1018 

chromosomes (as opposed to fragments) can be identified with molecular kinetochore 1019 

or centromeric labelling techniques. It should be noted that only aneuploidy produced 1020 

by chromosome loss can be measured in the MNviv assay. The MNviv can be used in 1021 

the initial in vivo genotoxicity strategy for generic testing for in vivo genotoxic potential 1022 

and for assessment of clastogenicity and aneuploidy. Clastogenicity may be measured 1023 

by metaphase analysis of CA in bone marrow of rodents as an alternative approach to 1024 

the use of the micronucleus assay.  1025 

95. Proposals have been published to incorporate micronucleus assays into routine 1026 

rodent 28 day subacute toxicity studies following demonstration of the feasibility of 1027 

such an approach (Hamada et al., 2001; Krishna et al., 1998; Madrigal-Bujaidar et al., 1028 

2008). The evidence from one evaluation of micronucleus tests conducted on samples 1029 

from short-term, subchronic and from a few chronic studies in mice has been published 1030 

(Witt et al., 2000). In mice, MN in polychromatic erythrocytes represent DNA damage 1031 

occurring in the last 72h, whilst MN in normochromatic erythrocytes represent average 1032 

damage during the 30 day period prior to sampling (Witt et al., 2000).  1033 

96. The development of a simultaneous liver and peripheral blood micronucleus 1034 

assay in adult rats has also been reported (Suzuki et al., 2005). A correlation between 1035 

micronucleus induction in hepatocytes and hepatocarcinogenicity was shown and the 1036 

authors proposed that the assay could detect micronucleus-inducing chemicals that 1037 

require metabolic activation. Takasawa et al. (2007),  Suzuki et al., (2009) and Hamada 1038 

et al. (2015) have also reported developments of an in vivo liver micronucleus assay, 1039 
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which has been discussed by IWGT (Uno et al., 2015b; Kirkland et al., 2019b), and it 1040 

has been recommended that an OECD guideline should be developed. 1041 

97. Transgenic Rodent (TGR) Mutation Assay for Gene Mutations 1042 

 The transgenic rodent somatic and germ cell gene mutation assays (OECD TG 488, 1043 

OECD, 2020b) can be used to assess gene mutations in a wide range of rodent tissues 1044 

(including germ cells) using all routes of administration and is particularly valuable 1045 

when investigating gene mutation as the genotoxic endpoint (Kirkland et al., 2019a, b). 1046 

There are sufficient data to support the use of the MutaTMmouse, BigBlue® mouse and 1047 

rat (including use of λ cII transgene), LacZ plasmid mouse, and the gpt delta models 1048 

in TG 488.   1049 

98. Molecular sequencing of induced mutations in transgenic targets can aid in 1050 

interpretation of study results (particularly equivocal responses) and also provide 1051 

mechanistic information. The OECD published a Detailed Review Paper (DRP) on 1052 

Transgenic Rodent Gene Mutation Assays which led to the development of an OECD 1053 

guideline that was  adopted in July 2011, with revision in 2013 (OECD, 2013 ) and in 1054 

2020 (OECD, 2020b). The latest version focuses on updating recommended regimes 1055 

for the analysis of mutations in germ cells (discussed fully in the COM document ‘Test 1056 

Strategies for Germ Cell Mutagens’ (COM, 202x)). TG488 states that “when both 1057 

somatic and germ cells need to be collected and/or tested, based on regulatory 1058 

requirements, or toxicological information, a 28+28d regimen [i.e., 28 days treatment 1059 

with sampling 28 days following administration of the final dose] permits the testing of 1060 

mutations in somatic tissues and tubule germ cells from the same animals” (Marchetti 1061 

et al., 2018; Marchetti et al., 2019). 1062 

Rodent Alkaline Comet Assay for DNA Damage[RB26][RB27] 1063 

99. The in vivo comet assay (OECD TG 489: In Vivo Mammalian Alkaline Comet 1064 

Assay) (OECD, 2016b) detects a wide spectrum of DNA damage including repairable 1065 

DNA damage. A report of an international validation of the in vivo alkaline comet assay 1066 

has been published (Uno et al., 2015a) and formed the basis for the OECD guideline. 1067 

An overview of the types of genetic lesions detected is given above in paragraph 71. 1068 

The in vivo comet assay can detect chemicals that induce gene mutations and has 1069 

produced positive results for nearly 90% of rodent carcinogens not detected by the 1070 

rodent BMMN assay (Kirkland and Speit, 2008). It also shows high sensitivity when 1071 

compared with TGR results in liver and the GI tract, and high sensitivity at detecting 1072 

bacterial mutagens and mutagenic carcinogens (Kirkland et al., 2019a, b). 1073 

Developments regarding the conduct of the in vivo alkaline comet assay were detailed 1074 

in the previous COM guidance (COM, 2011). This assay can be used for elucidating 1075 
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positive in vitro genotoxicity findings and to evaluate genotoxicity in target organs of 1076 

toxicity (Hartmann et al., 2004), however, it would not be an appropriate follow-up for 1077 

a chemical causing aneuploidy in vitro.  The comet assay can be applied to a wide 1078 

range of species and in many tissues including site-of-contact tissues. In the absence 1079 

of data indicating particular tissues of interest (e.g. toxic findings or tissue accumulation 1080 

seen in other studies), the IWGT concluded that comet analysis of the liver combined 1081 

with the bone marrow or peripheral blood micronucleus assay will be sufficient in most 1082 

cases. However, if systemic exposure is expected, or found, to be low then site-of-1083 

contact-effects in GI tract are effective (Kirkland, 2019b). Validation of a protocol for a 1084 

germ cell comet assay is ongoing.   1085 

100. The Committee considers that the in vivo comet assay has appropriate 1086 

sensitivity to detect chemicals which induce both gene mutations and/or clastogenicity.   1087 

Thus the in vivo comet assay is recommended as a core test in the initial in vivo 1088 

genotoxicity testing strategy to assess DNA damage in multiple somatic tissues in a 1089 

single study. It is possible to include the comet assay  within other in vivo genotoxicity 1090 

tests (Vasquez, 2010) or within standard subacute or subchronic regulatory toxicity 1091 

tests (Rothfuss et al., 2010), although the logistics of achieving the correct sampling 1092 

time in relation to  the final doses  must be carefully considered (Speit et al., 2015).  1093 

Non-Core In Vivo Test: Rat Liver UDS Assay for DNA Damage 1094 

101. The rodent liver UDS assay is an established approach for investigating 1095 

genotoxic activity in the liver with the endpoint measured being indicative of DNA 1096 

damage and subsequent repair in liver cells. The COM consideration of this assay and 1097 

published evaluations now suggest it is less sensitive than the in vivo comet assay with 1098 

regard to identification of genotoxicity in the liver. An analysis of the prediction of rodent 1099 

carcinogens not identified by the micronucleus tests indicated that the comet assay 1100 

was considerably better than the rat liver UDS assay at identifying rodent carcinogens 1101 

(Kirkland and Speit, 2008; Speit et al., 2015). Based on these analyses, EFSA 1102 

concluded that the UDS assay was of limited usefulness in genotoxicity testing 1103 

strategies, being only suitable for the detection of chemicals causing damage in the 1104 

liver, and with a lower predictive value than the TGR and comet assays in detecting 1105 

chemicals which cause gene mutations. For existing datasets, where the UDS assay 1106 

has been used as a follow up to positive in vitro gene mutation findings, a UDS study 1107 

is considered adequate only for positive results (Hardy et al., 2017). The COM agree 1108 

with this opinion and recommend use of the comet assay rather than rodent liver UDS 1109 

in order to assess potential for DNA damage in vivo.  1110 
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102. Another non-core test which is receiving increasing attention involves the 1111 

detection of gene mutations at the endogenous phosphatidylinositol glycan 1112 

complementation group A gene (Pig-A), a reporter gene in which mutations are 1113 

currently detected in peripheral red blood cells of mammals (Bryce et al., 2008b; 1114 

Dertinger et al., 2011; Miura et al., 2009). This assay has the potential advantage of 1115 

being integrated  into regulatory toxicity tests (Dertinger et al., 2010; Khanal et al., 1116 

2018) and it is noted that Pig-A mutations increase with duration of dosing (Miura et 1117 

al., 2009).  The development of the assay was discussed by the IGWT (Gollapudi et 1118 

al., 2015) and it has since undergone validation in support of the development of an 1119 

OECD TG (Dertinger et al., 2020; OECD 2020c; OECD 2020d). 1120 

Discussion of Stage 2-Supplementary Tests.  1121 

103. Supplementary in vivo genotoxicity tests need to be considered on a case-by-1122 

case basis taking into account all relevant information. It is considered that for most 1123 

chemicals, supplementary in vivo genotoxicity data should be unnecessary but on a 1124 

case-by-case basis, specific aspects of MoA (e.g. nature of DNA adducts) and further 1125 

characterisation of germ cell genotoxicity (e.g. characterisation of male and/or female 1126 

germ cell clastogenicity including use of FISH, and the evaluation of heritable effects) 1127 

may be required. DNA adduct studies can provide valuable information on potential 1128 

genotoxicity as a follow up for in vitro mutagens which have yielded negative results in 1129 

in vivo genotoxicity assays (Phillips et al., 2000). DNA adduct data (including type of 1130 

adduct, frequency, persistence, repair process) can be used to inform on MoA and its 1131 

relationship to carcinogenesis, and should be considered in conjunction with other 1132 

relevant data such as dosimetry, toxicity, genotoxicity and tumour data (Jarabek et al., 1133 

2009).  1134 

104. A brief outline of these additional Stage 2 methods is given in Table 1 below. 1135 

Reference is also made in Table 1 to a number of tests for heritable genotoxic effects 1136 

but it is noted that these tests, which involve the use of many animals and demand a 1137 

high level of expertise, are comparatively rarely used. The COM is aware that there is 1138 

the possibility that gender differences in germ cell mutagenesis may exist and this 1139 

aspect may need to be considered on a case-by-case basis (Eichenlaub-Ritter et al., 1140 

2007). The conclusions of COM’s evaluation of germ cell testing methods are provided 1141 

in a separate document (COM, 202x).  1142 

  1143 
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Table 1 Supplementary in vivo genotoxicity tests 1144 

Assay Endpoint Guidance Main Attributes Comments 
Investigations of 
DNA Adducts 

    

32P-postlabelling DNA adducts IWGT Can be highly sensitive 
particularly with bulky 
adducts and if 
appropriate enrichment 
technique used. 

Interpretation of 
results can be 
complex. Involves 
handling high-
activity 32P. (Phillips 
et al., 2020) 

Covalent binding 
to DNA 
A variety of 
methods can be 
used such as 
those involving 
radioactive decay 
measurements 
(eg. 14C-) or 
isotope 
measurements (eg 
Accelerator Mass 
Spectrometry 
AMS) 

DNA Adducts IWGT Some methods (AMS) 
are potentially very 
sensitive and can 
provide data on DNA 
binding at levels of 
exposure similar to low 
level environmental 
exposures 

Uses radiolabelled 
compound (very 
small amounts (e.g. 
nanograms) in the 
case of AMS). 
Interpretation of 
results can be 
complicated (e.g. 
by non-specific 
binding). 
(Himmelstein et al., 
2009) 

Supplementary investigations of germ cell mutagenicity  
Analysis for 
clastogenicity/ 
aneuploidy 

Structural and numerical 
changes in 
spermatogonia, 
spermatocytes or oocytes  

OECD  Can provide 
information on nature 
of effects in 
spermatogonia, 
spermatocytes and/or 
oocytes of mice or rats 

Can provide useful 
information on 
MoA. (Russo, 
2000) 

Spermatid 
micronucleus 
assay 

Chromosomal aberrations 
and or lagging 
chromosomes 

None 
available 

Provides information of 
clastogenic and/or 
aneugenic effects in 
spermatocytes. 

(Allen et al., 2000) 

Dominant lethal 
assay 

Chromosomal/gene 
mutations 

OECD Provides information on 
unstable chromosomal 
changes in gametes 
that lead to fetal death 
after fertilization and 
can determine stage(s) 
of gametogenesis 
affected  

Little used. needs 
relatively large 
numbers of animals 
(Adler et al., 1994) 

Mouse specific 
locus test 

Gene mutations EPA Provides information on 
genetic changes 
transmitted to the first 
generation progeny as 
basis for estimation of 
induced mutation 
frequency in humans 

Very rarely used. 
Needs large 
numbers of animals 
(Adler, 2008) 

Mouse heritable 
translocation test 

Chromosomal changes EPA Provides information on 
chromosomal changes 
transmitted to the first 
generation progeny as 
basis for estimation of 
induced translocation 
frequency in humans 

Very rarely used. 
Needs large 
numbers of animals 
(Adler, 2008) 

Sperm Comet 
assay 

Double strand breaks 
and/or apurinic sites in 
sperm head DNA 

None 
available 

Provides information on 
genetic instability in 
sperm 

(Trivedi et al., 2010) 

Spermatid UDS 
assay 

Repair DNA synthesis in 
spermatocytes  

EPA  Provides information on 
induction of DNA 
lesions 

(Sotomajor and 
Sega, 2000) 

 1145 
  1146 
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Summary Stage 2 (In Vivo Genotoxicity Testing) 1147 

105. The in vivo genotoxicity testing strategy has to be designed on a case-by-case 1148 

basis and can be used to investigate aspects of in vivo mutagenicity, for example; 1149 

• key end point(s) identified in Stage 1,  1150 

•  genotoxicity in tumour target tissue(s),  1151 

•  potential for germ cell genotoxicity,  1152 

•  in vivo genotoxic potential for chemicals which were negative in Stage 1 but 1153 

where there is high or moderate and prolonged exposure. 1154 

•  genotoxicity in site of contact tissues.  1155 

106. The recommended in vivo genotoxicity test(s) include micronucleus assay, 1156 

bone marrow cytogenetics, alkaline comet assay in rodents and transgenic rodent 1157 

mutation assay. In some instances there may be a need to undertake more than one 1158 

in vivo test to perform an initial assessment of in vivo genotoxic potential (e.g. where 1159 

endpoints cannot be assessed in one study and there is a need to investigate multiple 1160 

endpoints before reaching conclusions on in vivo mutagenic potential). Multiple 1161 

endpoints may be combined in a single study. If positive results are obtained it is 1162 

important to consider the evidence for MoA and check the data for evidence of 1163 

irrelevant positive results. Usually negative results obtained in a carefully selected in 1164 

vivo test (possibly studying more than one endpoint and tissue) will be sufficient to 1165 

address positive results found in vitro, provided that target tissue exposure is sufficient. 1166 

However, a further test(s) may be needed if some of the genotoxic effects seen in 1167 

Stage 1 in vitro tests have not been adequately studied in vivo (e.g., the chemical 1168 

affects multiple mutagenic endpoints), or other aspects of the genotoxic potential of 1169 

the chemical had not been fully resolved (e.g. in the case where an investigation of 1170 

heritable effects was required). If equivocal results are obtained, then supplementary 1171 

testing (including scoring of additional cells in the case of the comet and MN assays) 1172 

may be needed. This may involve repeating some aspects of the recommended in vitro 1173 

and/or in vivo genotoxicity tests or performing additional investigations (e.g. MoA 1174 

investigations, such as DNA adducts and/or more detailed consideration of heritable 1175 

effects). The supplementary in vivo genotoxicity testing strategy and selection of the 1176 

most appropriate assays should be undertaken on a case-by-case basis. [RB28]All 1177 

relevant factors such as results from previous tests, structural alerts and available 1178 

information on toxicokinetics, tissue toxicity and metabolism of the chemical, should 1179 

be considered. In the absence of appropriate germ cell genotoxicity data, the COM 1180 
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considers it is reasonable to assume that all somatic cell mutagens have the potential 1181 

to be germ cell mutagens.  1182 

Possible Future Developments 1183 

107. The COM is aware that new assays and toxicogenomic approaches are under 1184 

development which might be of value within genotoxicity testing. The ToxTracker 1185 

assay uses a series of reporter cell lines expressing biomarker genes selected to 1186 

detect chemically induced DNA damage and oxidative stress (Hendriks et al., 2012; 1187 

Hendriks et al., 2011; Brandsma et al., 2020). Whilst the assay presents an interesting 1188 

approach to identifying MoA, it is not currently considered to be a reliable genotoxicity 1189 

test and is more suitable as a biomarker assay or in MoA investigations.  1190 

108. Other potential tests include investigation of instability in expanded simple 1191 

tandem repeats in male gametes and offspring to evaluate heritable mutations (Singer 1192 

et al., 2006). The development of new high throughput assays for the assessment of 1193 

germ line mutations and the quantification of risk from such data may provide 1194 

opportunities to protect future generations from mutated DNA sequences. 1195 

Developments within the field of toxicogenomics are also likely to provide new methods 1196 

for investigating genotoxic mechanisms and informing on MoA. The COM have 1197 

reviewed data generated in this field several times [RB29]up to the drafting of this 1198 

guidance statement but currently conclude that the evidence does not support the 1199 

routine use of toxicogenomic approaches as an adjunct to genotoxicity testing.  1200 

109. HESI-GTTC has considered ‘next generation’ testing strategies for genotoxicity 1201 

including the use of QSAR modelling, MoA assessments and their human relevance. 1202 

The concept of quantitative assessment of genotoxicity data was also discussed 1203 

(Gollapudi et al., 2013, 2014; Johnson et al., 2014; Dearfield et al., 2017). Quantitative 1204 

approaches to the assessment of genotoxicity data was considered by COM in 2017-1205 

2018. Their conclusions were published in a statement 1206 

(https://www.gov.uk/government/publications/quantitative-approaches-to-the-1207 

assessment-of-genotoxicity-data). IWGT have also published guidance on quantitative 1208 

approaches to genotoxicity risk assessment (MacGregor et al., 2015a, b).   1209 

https://www.gov.uk/government/publications/quantitative-approaches-to-the-assessment-of-genotoxicity-data
https://www.gov.uk/government/publications/quantitative-approaches-to-the-assessment-of-genotoxicity-data
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1210 
[DK30][RB31][RB32][RB33] 1211 
 1212 

Figure 1: Overview of Strategy for testing chemical 
substances for genotoxicity  

 
Stage 0:  
Structure Activity Relationships (SAR), screening tests and physico‐chemical 
properties (of substances and impurities) 
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Stage 2: Consider rationale for in vivo study 
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‐ Mutagenic endpoints identified in Stage 1 in vitro tests  
‐ Tumour target tissues in carcinogenicity studies  
‐ Potential for germ cell genotoxicity  
‐ Negative in Stage 1 but where exposure is high, 

or moderate and prolonged  
‐ Site of contact tissues 
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 1213 
 1214 

Figure 2: Screening (Stage 0) and in vitro tests (Stage 1) 1215 
 1216 
 1217 

Figure 3: In vivo tests (Stage 2)[RB34] 1218 
 1219 
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[RB36]Specific locus test: A technique used to detect recessive induced mutations in 2065 

diploid organisms; a strain that carries several known recessive mutants in a 2066 

homozygous condition is crossed with a non mutant strain that has been treated to 2067 

induce mutations in its germ cells; induced recessive mutations allelic with those of the 2068 

test strain will be expressed in the progeny. 2069 

Spindle apparatus: In cell biology, the spindle apparatus is the structure that 2070 

separates the chromosomes into the daughter cells during cell division. It is part of the 2071 

cytoskeleton in eukaryotic cells. It is also referred to as the mitotic spindle during 2072 

mitosis and the meiotic spindle during meiosis. 2073 

Structure Activity Relationships: the relationship between chemical structure and 2074 

genotoxic effect based on predictions using computerised models (also Quantitative 2075 

Structure Activity Relationships)  2076 

Test chemical:  A chemical element and its compounds in the natural state or obtained 2077 

by any manufacturing process, including any additive necessary to preserve its stability 2078 

and any impurity deriving from the process used, but excluding any solvent which may 2079 

be separated without affecting the stability of the chemical or changing its composition.  2080 

Threshold: Dose or exposure concentration below which an effect is not 2081 

expected[DPL37]. 2082 

Topoisomerases: Enzymes which catalyze and guide the unknotting[DPL38][DK39] of 2083 

DNA by creating transient breaks in the DNA using a conserved tyrosine as the 2084 

catalytic residue. In so-called circular DNA, in which double helical DNA is bent around 2085 

and joined in a circle, the two strands are topologically linked, or knotted. 2086 

Topoisomerase I solves the problem caused by tension generated by 2087 

winding/unwinding of DNA. It wraps around DNA and makes a cut permitting the helix 2088 

to spin. Once DNA is relaxed, topoisomerase reconnects broken strands 2089 

Toxicogenomics: A new scientific subdiscipline that combines the emerging 2090 

technologies of genomics and bioinformatics to identify and characterise mechanisms 2091 

of action of known and suspected toxicants. Currently, the premier toxicogenomic tools 2092 

are the DNA microarray and the DNA chip, which are used for the simultaneous 2093 

monitoring of expression levels of hundreds to thousands of genes. 2094 

Toxicokinetics: The description of the fate of chemicals in the body, including a 2095 

mathematical account of their absorption, distribution, metabolism and excretion. (see 2096 

pharmacokinetics) 2097 
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Transgenic: Genetically modified to contain genetic material from another species 2098 

(see also genetically modified organism). 2099 

Transgenic rodent gene mutation models: Animals which have extra (exogenous) 2100 

fragments of DNA incorporated into their genomes. This includes transgenic mice 2101 

containing reporter genes[DPL40] to assess in-vivo mutagenicity in recoverable bacterial 2102 

gene (lacZ or lac I). DNA can be isolated from a wide range of tissues following 2103 

exposure to a test chemical and the genes assessed for induced mutations.  2104 

Translation: In molecular biology, the process during which the information in mRNA 2105 

molecules is used to construct proteins[DPL41]. 2106 

Tumour (Synonym - neoplasm): A mass of abnormal, disorganised cells, arising from 2107 

pre-existing tissue, which are characterised by excessive and uncoordinated 2108 

proliferation and by abnormal differentiation. Benign tumours show a close 2109 

morphological resemblance to their tissue of origin; grow in a slow expansile fashion; 2110 

and form circumscribed and (usually) encapsulated masses. They may stop growing 2111 

and they may regress. Benign tumours do not infiltrate through local tissues and they 2112 

do not metastasise. They are rarely fatal. Malignant tumours (synonym - cancer) 2113 

resemble their parent tissues less closely and are composed of increasingly abnormal 2114 

cells in terms of their form and function. Well differentiated examples still retain 2115 

recognisable features of their tissue of origin but these characteristics are 2116 

progressively lost in moderately and poorly differentiated malignancies: 2117 

undifferentiated or anaplastic tumours are composed of cells which resemble no known 2118 

normal tissue. Most malignant tumours grow rapidly, spread progressively through 2119 

adjacent tissues and metastasise to distant sites. Tumours are conventionally 2120 

classified according to the anatomical site of the primary tumour and its microscopical 2121 

appearance, rather than by cause. 2122 

Unscheduled DNA Synthesis (UDS): DNA synthesis that occurs at some stage in the 2123 

cell cycle other than the S period (the normal or 'scheduled' DNA synthesis period), in 2124 

response to DNA damage. It is usually associated with DNA repair.  2125 

Weight of Evidence  A quantitative ranking of evidence, or the qualitative appraisal of 2126 

many different forms of evidence (e.g toxicological or genotoxicity data) to arrive at a 2127 

conclusion regarding potential hazard (such as mutagenicity).  2128 
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Annex 1 2130 

Tabulation of Genotoxicity Tests (in Stages 1 and 2) and Mutagenic/Genotoxicity 2131 

Endpoints Detected. 2132 

Genotoxicity test Mutagenic/genotoxicity 
endpoint detected 

Comments 

In vitro assays  
Ames Gene mutation Responds to wide range of DNA 

reactive mutagens when full set of 
S. typhimurium tester strains and 
E. coli with appropriate exogenous 
metabolic activation used. 

Micronucleus test Clastogenicity, aneuploidy Centromere or kinetochore stains, 
with pancentromeric or 
chromosome specific centromeric 
probes using fluorescence in situ 
hybridisation (FISH) are required 
to distinguish between  aneuploidy 
and clastogenicity 

Chromosomal 
aberrations 

Clastogenicity, aneuploidy Indications of aneuploidy from 
induction of polyploidy or 
increased mitotic index, but the 
use of chromosome specific 
centromeric probes fluorescence 
in situ hybridisation (FISH) 
required to assess the potential for 
aneuploidy. Very similar assay 
performance compared with 
micronucleus test 

Mouse Lymphoma 
Assay 

Gene mutation, 
clastogenicity 

Distribution of large and small 
colony mutants can give 
information on induction of gene 
mutations versus clastogenicity. 
No convincing evidence that MLA 
can detect aneuploidy 
consistently.  

Comet assay DNA strand breaks and 
alkali labile sites 

Can respond to a wide range of 
gene mutagens and clastogens 
but gives no information about 
modes of mutagenic action. 

In vivo assays  
Rodent Bone 
Marrow/peripheral blood 
micronucleus assay 

Clastogenicity, aneuploidy A wide range of structurally 
diverse clastogens and aneugens 
have been detected. Distingishing 
between clastogenic and 
aneugenic MoAs can be  
investigated  by use of centromere 
or kinetochore probes. . 

Rodent transgenic 
mutation assay 

Gene mutations Valuable for the investigation of 
gene mutation in a wide range of 
tissues including germ cells and 
particularly to confirm gene 
mutation as a mode of action.  

Rodent Comet assay DNA strand breaks, alkali 
labile sites 

Can respond to a wide range of 
gene mutagens and clastogens 
but gives no information about 
modes of mutagenic action. Does 
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not detect aneugens. Valuable for 
detection of DNA damage in a 
wide range of tissues, but the 
standard alkaline assay not 
validated for mature sperm.  

Rodent Liver UDS Unscheduled DNA 
synthesis 

Endpoint measured is indicative of 
DNA damage and subsequent 
repair in liver cells, but now 
considered not as sensitive as 
other in vivo assays.  

Pig-a gene 
mutation assay 

Gene mutations Endpoint measured is a reporter of 
gene mutation in rodents, but 
currently only extensively 
validated in blood cells. 
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