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0. EXECUTIVE SUMMARY 

Reference Class Forecasting (RCF) is an established method for accounting for the systematic 

underestimation of cost and schedule overrun in projects. The underlying causes of this 

underestimation can include optimism bias (OB), strategic misrepresentation and economic 

incentives to see projects progress. RCF was first introduced in UK transport projects in the 2004 

report Appraisal Guidance for Optimism Bias as the standard method to adjust estimates to account 

for biases in project cost estimates. This document provides an update to the 2004 report, bringing 

much more data into the analysis as evidence for optimism bias uplifts. Drawing on a much larger 

sample size, this report considers further dimensions of OB in addition to capital costs, e.g. OB on 

benefits, operational costs and project delivery schedules. 

In addition, this report reviews recent methodological developments in RCF, finding that RCF has a 

track record of providing more accurate forecasts than conventional cost estimation methods. 

Furthermore, using RCF is found to increase the probability of delivering a project on time and on 

budget. The treatment of cost inflation is also explored in depth and an RCF for real cost inflation is 

developed. 

Finally, data from 2,522 rail, road, bridge and tunnel new build projects show that risks are even 

larger at earlier project stages such as at the Outline Business Case and Strategic Outline Business 

Case stages. The report demonstrates that optimism exists for both cost, schedule, benefit and 

operational cost forecasts throughout all project stages. A novel insight is that risks mainly diminish 

in the tail of the distributions of overruns as projects progress, rather than steadily throughout the 

distribution. This has material implications for recommended OB adjustments for different business 

case stages. 
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1. INTRODUCTION 

1.1 BACKGROUND AND OBJECTIVE 

Since the first report Appraisal Guidance for Optimism Bias was published in 2004, the sources of 

evidence have greatly expanded. Considerable effort has been undertaken by academics and 

consultancies around the world to better understand the issues of Optimism Bias and to improve the 

available data. Further, new approaches and tools for Quantitative Cost Risk Analyses have been 

developed and practice has evolved on how to better integrate and combine other methods with 

Optimism Bias. 

In response to this, The Department for Transport has contracted Oxford Global Project to undertake 

the consultancy assignment "Updating the evidence behind the optimism bias uplift for transport 

appraisals". The present research report is the result of this assignment. 

First, this assignment has, increased the number of reference cases for each class of project types. 

Second, this assignment has expanded the reference classes to include not only estimates from the 

stage of a full business case (FBC). The increase in available data makes it possible to track the 

projects through the lifecycle and covers the stages SOBC and OBC and is as such more informative 

for earlier baseline estimates. 

Third, whereas the 2004 report only included cost estimates, Optimism Bias is equally an issue in 

estimates of schedule and benefits. The current report includes schedule and benefit estimates. 

Furthermore, data on operational costs (OPEX) have been collected and are included. 

In addition, this assignment also investigates the extent of Optimism Bias in the UK and compares 

data from UK projects with international data. 

2. REVIEW OF REFERENCE CLASS FORECASTING METHODOLOGY 

This section provides an overview of developments and research that has taken place since 2004 to 

increase the accuracy of forecasts. 
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Common traditional project forecasting methods include three-point estimates, Monte Carlo 

simulations and Earned Value Management (EVM), once project work has started. The use of these 

methods has led projects to experience large cost overruns and schedule delays. The use of these 

methods has led projects to estimate median (P50) or mode (most likely) accurately, however they 

also lead to some projects experiencing large cost overruns and schedule delays. One of the main 

explanations for this is optimism bias, the tendency to be overly optimistic about future actions, 

resulting in underestimation of cost and schedule. Due to optimism bias project owners may be 

ignorant or underestimate the risk/uncertainties in estimates. Optimism bias is the result of taking an 

‘inside view’, focusing on the project at hand and estimating costs and duration of activities bottom-

up. 

Traditional forecasting techniques typically take an ‘inside view’, they include a fixed contingency 

to the project cost estimate to account for risk and uncertainty in cost estimation, often 10% of the 

estimated cost. However, this method is considered to be biased because of the arbitrary way of 

deciding on the contingency amount (Liu et al., 2010). 

Instead, Reference Class Forecasting (RCF) is an estimating approach that deals with optimism bias 

by taking an ‘outside view’ in determining the contingency amount that is based on statistical 

modelling of similar projects. Monte Carlo simulation can be considered as a ‘semi outside view’ 

because even though it makes use of historical data, it still relies on assumptions from the project 

manager to construct the distributional information (Batselier and Vanhoucke, 2016). 

Since the Optimism Bias Guidance was published in 2004 the risk management profession has 

improved their approaches and tools for Quantitative Cost Risk Analyses (QRA). 

A review of developments in RCF and its use in providing accurate forecast was made in 2019 

(Oxford Global Projects, 2019). Based on several studies using RCF in various industries including 

hydropower dam projects, building projects, chemical projects and wind farms, RCF has shown to 

result in more accurate estimates than using conventional methods. The key findings are as follows: 
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 Application of RCF to Bujagali hydropower dam project resulted in a more reliable cost 

estimate and increased the accuracy of the cost-benefit analysis (Awojobi and Jenkins, 2016). 

 A study of 420 building projects in Turkey revealed improved cost forecast accuracy when 

using RCF (Bayram and Al-Jabouri, 2016a). 

 The same study of 420 building projects in Turkey showed RCF provided the most accurate 

forecasts in the early stages of the project (Bayram and Al-Jabouri, 2016b). 

 Based on samples of nine and ten offshore wind farms in the United Kingdom respectively, 

using RCF increases the probability of delivering a project on time and on budget (Koch and 

Sondergaard, 2010; Koch, 2012). 

The effectiveness of RCF depends on the similarity of the reference class. If the project fits well into 

the reference class, the resulting uplift from the RCF will provide a more reliable estimate of the cost 

of the project (Awojobi and Jenkins, 2016; Batselier and Vanhoucke, 2016). Moreover, the 

effectiveness of RCF is influenced by the size of the projects and the size of the reference class 

(Batselier and Vanhoucke, 2016; Walczak and Majchrzak, 2018); projects need to be sufficiently 

large and the reference class should include enough projects. Only if these criteria, similarity, project 

size, reference class size, are met will RCF outperform other methods. 

In practical terms, any data is better than no data and a reference class comprising 20-30 past, similar 

projects is robust to derive meaningful insights. Moreover, as with the RCF analysis below, once data 

are pooled, they can be analysed to statistically test for similarities between subtypes of projects in 

the reference class or other characteristics, e.g. size, cost, timelines, location which might show 

statistically significantly different risk profiles. 

Based on the review of methodological developments of RCF, we conclude RCF is still a valid and 

best practice approach in forecasting particularly in the early stages of project development. Best 

results in forecasting accuracy overall will be achieved by combining the bottom-up and top-down 

methods, particularly RBE and Bayesian forecasting, combining the ‘outside view’ with ‘inside view’ 

approaches (Kim and Reinschmidt, 2011; Koch, 2012; Leleur et al., 2015). 
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A more detailed review of reference class forecasting as a project forecasting method is found in 

Appendix B. 

3. UPDATING CURRENT REFERENCE CLASSES 

RCF uses historical project data as a predictor of the uncertainty and risk of future projects, including 

the risk of optimism bias. The first step in our analyses was to identify the historical projects which 

are relevant for updating the reference classes for the most common transport projects under the UK 

Department for Transport. 

We reviewed and analysed cost and schedule data provided by Department for Transport from 5,294 

completed Network Rail projects, 33 programmes from the latest Department for Transport GMPP 

return, a large dataset from Highways England, and data from the Department for Transport local 

projects evaluation. Further, we reviewed the methodology behind the datasets and ensured that the 

data were prepared in a way that would allow it to be integrated with the Oxford Global Projects 

dataset on project performance, which covers international transport and other infrastructure projects. 

Compared to the Optimism Bias Guidance from 2004, the cost overrun benchmarking is now based 

on larger datasets of reference data as the Flyvbjerg database has expanded and is now integrated into 

the Oxford Global Projects database. In addition, DfT’s own data added to the pool of reference data. 

Table 1 below shows an overview of the cost data basis for the 2004 OB guidance document and this 

present 2020 data update. 

TABLE 1: OVERVIEW OF DATA IN 2004 GUIDANCE AND 2020 DATA UPDATE 
Categories Example of project subtypes 2004 guidance document 2020 

data 
update 

Rail Light rail, conventional rail, 
urban rail, high-speed rail 

46 (3 UK) 355 (18 
UK) 

Roads Trunk roads, motorways, 
highways 

172 (128 UK) 977 (202 
UK) 

Fixed links Bridge and tunnels 34 (4 UK) 117 (6 
UK) 

Buildings Stations, depots, concert halls, 
office buildings, museums 

Mott Macdonald - Non-standard 
Buildings Capital Expenditures 

149 (25 
UK) 

IT IT system development Mott Macdonald - Non-standard 
Buildings Capital Expenditures 

5303 
(171 UK) 
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Land & Property Property purchases - 48 (0 
UK) 

Rolling Stock Powered and unpowered 
vehicles 

- 20 (0 
UK) 

3.1. DATA 

Projects under the Department for Transport are generally divided into three main categories; roads, 

rail and fixed links. In addition, the department is also either directly or indirectly responsible for a 

handful of other project types, of which Oxford Global Projects is able to provide data for reference 

class construction for building projects, IT projects, and the cost of acquiring land and property, which 

is applicable to many project types. Previously, the reference classes only consisted of data on capital 

cost risk, however this current report additionally incorporates data on schedule, benefit and OPEX 

risk. Similarly, the first report only consisted of estimated at the Full Business Case (FBC) stage, 

while this report additionally incorporates data at the Strategic Outline Business Case (SOBC) and 

Outline Business Case (OBC) stages. In the presentation of the results, we refer to any percentile 

values taken from the distribution of reference class curves as RCF X. RCF50 is the median and 

RCF80 is the 80th percentile. For instance, as shown in Table 2 below, 80% of rail projects in the 

reference class had a cost overrun of 60% or less compared to the base cost estimate. We adopted this 

language to help projects clearly differentiate between bottom-up risk estimates, which refer to e.g. 

P50 and P80, and the results of the reference class analyses to avoid confusion. Finally, all means 

provided in this report are adjusted means based on data from the 5th to 95th percentiles. Table 2 below 

shows a descriptive overview for the data basis of the data update. 

TABLE 2: HIGH LEVEL OVERVIEW OF DATA IN 2020 OB DATA UPDATE (FBC) 

Sample 
size 

Mean 
deviation 

Frequenc 
y 

Median (RCF 
50) 

RCF 
80 

Historical 
range 

Rail 

Cost overrun 355 30% 7 out of 
10 

19% 60% 1964-2011 

Schedule 
overrun 

133 28% 6 out of 
10 

20% 61% 1964-2011 

Benefit shortfall 132 -25% 7 out of 
10 

-30% -64% 1970-2011 

Roads 
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Cost overrun 977 22% 8 out of 
10 

16% 47% 1954-2019 

Schedule 
overrun 

340 20% 7 out of 
10 

11% 57% 1965-2019 

Benefit shortfall 973 -5% 6 out of 
10 

-7% -35% 1954-2017 

Fixed Links 

Cost overrun 117 28% 7 out of 
10 

20% 62% 1927-2016 

Schedule 
overrun 

54 17% 6 out of 
10 

4% 40% 1931-2016 

Benefit shortfall 53 -13% 4 out of 
10 

-14% -47% 1970-2010 

Buildings 

Cost overrun 149 44% 7 out of 
10 

13% 84% 1851-2017 

Schedule 
overrun 

112 32% 6 out of 
10 

5% 68% 1851-2018 

Benefit shortfall 21 -4% 6 out of 
10 

-4% -48% 1993-2005 

IT 

Cost overrun 5303 42% 4 out of 
10 

0% 50% 2002-2017 

Schedule 
overrun 

1318 28% 5 out of 
10 

0% 58% 2001-2017 

Benefit shortfall 211 21% 5 out of 
10 

0% -85% 2006-2017 

Land and 
property 
Cost overrun 48 -4% 4 out of 

10 
-4% 11% 1994-2019 

Rolling Stock 

Cost overrun 20 35% 9 out of 
10 

30% 64% NA 

Schedule 
overrun 

20 4% 2 out of 
10 

0% 0% NA 

OPEX 

Roads 23 70% 7 out of 
10 

21% 185% 1998-2007 

Rail 49 1% 4 out of 
10 

-10% 40% 1985-2007 

Pooled* 74 23% 5 out of 
10 

-2% 77% 1981-2007 

*Pooled OPEX includes two bridge projects. 
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Table 3 below shows a descriptive overview for the UK data basis of the data update. 

TABLE 3: HIGH LEVEL OVERVIEW OF UK DATA IN 2020 OB DATA UPDATE (FBC) 

Sample size Mean Frequency Median (RCF 50) RCF 80 
Rail 

Cost overrun 18 39% 6 out of 10 12% 68% 
Schedule overrun 8 9% 8 out of 10 9% 17% 
Benefit shortfall 14 -10% 6 out of 10 -4% -36% 

Roads 
Cost overrun 202 20% 9 out of 10 18% 37% 
Schedule overrun 7 -2% 3 out of 10 0% 5% 
Benefit shortfall 219 -1% 5 out of 10 -1% -22% 

Fixed Links 
Cost overrun 6 60% 10 out of 10 51% 107% 
Benefit shortfall 7 -24% 9 out of 10 -16% -63% 

Buildings 

Cost overrun 25 26% 7 out of 10 11% 42% 

Schedule overrun 12 11% 5 out of 10 0% 29% 

Benefit shortfall 17 -7% 6 out of 10 -4% -19% 

IT 

Cost overrun 171 9% 4 out of 10 0% 30% 
Schedule overrun 36 78% 8 out of 10 51% 140% 
Benefit shortfall 16 -29% 6 out of 10 -14% -75% 

Table 4 below gives an overview of the geographic distribution of the cost overrun data basis for the 

data update. 

TABLE 4: HIGH LEVEL OVERVIEW OF GEOGRAPHIC DATA FOR PROJECT COST OVERRUNS IN 2020 OB DATA UPDATE 

Africa 
(53) 

Asia 
(501) 

South 
America 

(214) 

North 
America 
(3501) 

Oceania 
(214) 

Europe 
(2379)* 

UK only 
(423) 

Rail (n=355) 1 69 2 83 12 176 18 
Roads (n=977) 11 255 43 30 33 605 202 
Fixed links (n=117) 0 8 0 24 9 76 6 
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Buildings (n=149) 0 34 0 40 5 70 25 
IT (n=5303) 41 143 169 3348 74 1528 171 
Land and Property 
(n=88) 

0 0 0 0 0 88 0 

Rolling Stock (n=20) 0 0 0 11 3 6 0 
* Includes UK 

3.1.1. NETWORK RAIL DATA 

We cleaned and analysed a total of 5,294 completed projects in the Network Rail database. Our initial 

analysis showed that the projects in the dataset were small with a median size of £650.000. This is 

due to most projects in the dataset being maintenance and enhancement projects, which are very 

different from new build projects. Therefore, we recommend using broad rail RCFs based on data 

from the Oxford Global Projects (OGP) database. 

Furthermore, our analysis led to the same results as those of Bert De Reyck and his team in a 2015 

report on optimism bias in rail infrastructure1. Therefore, we recommend using the existing guidelines 

found in the report for future maintenance and enhancement projects. For practical appraisal 

purposes, we suggest defining rail maintenance and enhancement projects as projects with a base cost 

less than £7 million. In thread with this, we suggest defining rail new builds as projects with a base 

cost estimate of more than £7 million. 

3.1.2. COLLECTING ADDITIONAL DATA 

As a part of the data update, Oxford Global Projects collected additional data OPEX. In total, we 

were able to collect OPEX data from 74 projects; 23 roads, 49 rail, and 2 bridge projects. The projects 

originated from three geographical regions with 21 of the projects from China, seven from France, 

two from the Philippines, one from Sweden, one from the UK and 42 from the United States. 

3.1.3. DATA PREPARATION 

Reference Class Forecasting requires a like-for-like comparison. For cost reference class forecasts, 

specifically, projects need to compare outturn cost with cost estimates at the same price level and 

1De Reyck, Bert, et al. (2015) “Optimism Bias Study: Recommended Adjustments to Optimism Bias Uplifts.” 
UK Department for Transport. United Kingdom. 
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comparing real-term estimates with real-term outturn cost. The price level of a cost figure is adjusted 

to the year of the estimate and to the currency of the estimate. Similarly, cost forecasts have been 

stripped off contingency. 

In accordance with the HMT Green Book 2018, we used country-specific GDP implicit deflators 

from the World Bank2 to adjust price levels of cost estimates to the same year for the projects in the 

data sample. Note that the World Bank GDP implicit deflator for UK slightly deviates from the ONS 

GDP deflator recommended by HMT. The deflation data from World Bank was chosen to ensure 

comparability to international cost figures by using the same deflation index for all the projects in the 

data set. Deflation was done for the minority of the projects, since many of the OGP data are derived 

from research, in which case costs are commonly listed in real terms. The GDP implicit deflator is 

the ratio of GDP in current local currency to GDP in constant local currency. For more in-depth 

analyses of different inflation measures, see Appendix C. 

For currency exchange rates, we used official exchange rates from the World Bank3 to standardise 

cost estimates of the projects in the data sample. Official exchange rate refers to the exchange rate 

determined by national authorities or to the rate determined in the legally sanctioned exchange 

market. It is calculated as an annual average based on monthly averages (local currency units relative 

to the U.S. dollar). 

For the statistical analysis, international projects were furthermore categorised into geographic 

regions using the UN M49 nomenclature for area codes developed and maintained by the United 

Nations Statistics Division4. 

2 GDP implicit deflators are based on World Bank national accounts data and OECD National Accounts data 
files. Source: “GDP Deflator (Base Year Varies by Country).” The World Bank Data, World Bank, 
https://data.worldbank.org/indicator/NY.GDP.DEFL.ZS. 
3 Official exchange rates are based on data from the International Financial Statistics database under the 
International Monetary Fund (IMF). Source: “Official exchange rate (LCU per US$, period average).” The 
World Bank Data, World Bank, https://data.worldbank.org/indicator/PA.NUS.FCRF. 
4 “Standard Country or Area Codes for Statistical Use (M49).” United Nations Statistics Division, United 
Nations, https://unstats.un.org/unsd/methodology/m49/. 
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Cost overrun is calculated as Actual Cost / Estimated Cost – 1, where estimated cost is measured at 

the relevant business case stage and actual cost at project completion. The estimated cost is the base 

cost, i.e. the estimated cost excluding provisions for risk or optimism bias. 

Schedule overrun is calculated as Actual Schedule / Estimated Schedule – 1, where estimated schedule 

is measured from the approval of the relevant business case, i.e. the date of decision to build for FBC, 

date of SOBC and OBC, to the planned date of completion. Actual schedule is measured as the time 

passed from the date of SOBC/OBC/FBC approval to project completion as the date of actual 

opening. 

Benefit shortfall is generally calculated as Actual benefits / Estimated benefits -1. Except in the few 

cases where the estimated benefits are negative (which is a phenomenon primarily found in IT 

projects), in which the benefit shortfall is calculated as (Actual benefits – Estimated benefits) / 

Estimated benefits -1. Benefit data is estimated for the first years of operation. If data is not available 

at first year, then the first reported year of operation within the first 5 years after opening is used as a 

proxy of the benefits achieved. Benefits are measured as number of passengers for rail, traffic counts 

for roads and fixed links, usage figures for buildings (i.e.  visitor numbers for concert halls), and 

cashable benefits for IT projects. 

OPEX overrun is measured as Actual operational expenditure / Estimated operational expenditure -

1. OPEX overrun data include costs for salary, wages and benefits, maintenance and repair, 

materials/outsourcing transport cost, leasing charges, fuel, materials and administration cost/loading 

cost. The data do not include capital upgrades. Actual operational expenditure is the expenses on the 

first year after opening. If data is not available the first year, then the first reported year within 5 years 

after opening is used. Estimated operational expenditure is measured from the approval of the relevant 

business case. 

3.1.4. QA PROCEDURES 

The Oxford Global Projects data used for the update have undergone strict quality assurance 

procedures. The OGP team collects data, which is then reviewed by a separate person on the team. 

Statistical analysis including inspection of histograms, various hypothesis tests and outlier analysis 
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is then used to identify any anomalies, which are inspected and corrected if necessary. In addition, 

most of the transport data in the OGP database have been used in academic research and have thus 

been peer reviewed. However, this is not the case for the OPEX data that were collected specifically 

for the Department for Transport Optimism Bias update, which instead have been subject to the 

standard QA procedure. 

3.1.5. BASE COST ESTIMATES 

All the cost uplift estimates in this report should be applied to the base cost estimate for projects and 

not to any estimates that include contingency such as the QRA Pmean. RCF (top-down) and QRA 

(bottom-up) estimates both apply to the base cost estimate. Typically, RCF is more reliable in earlier 

stages of the project, while QRA is more informative in later stages. The point of changing from RCF 

to QRA is determined by the degree of definition of the project and the organizational maturity 

(process and capability). The more mature an organization, the earlier the transition point. The 

Infrastructure and Projects Authority suggests that that the transition as minimum should not be 

earlier than optioneering, when there are still significant options open for a meaningful bottom up 

risk model5. 

FIGURE SHOWING THE TRANSITION PROCESS FROM TOP-DOWN RCF TO BOTTOM-UP QRA 

SOURCE: INFRASTRUCTURE AND PROJECTS AUTHORITY, 2016 

Additionally, the two assessments can be carried out in conjunction and used to inform the other and 

the project’s approach to risk management. A gap between the top-down and bottom-up estimates 

could be an indication about the assurance validation of the QRA and that the project might not have 

understood risks correctly. 

5 Infrastructure Projects Authority (2016). “Improving Infrastructure Delivery: Project Initiation Routemap -
Risk Management Module”. Infrastructure Projects Authority, United Kingdom. 
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3.1.6. ESTIMATING AT DIFFERENT STAGE GATES 

As outlined above, this assignment expands the calculation for the Optimism Bias Uplift to now 

include SOBC and OBC estimates. Contrary to expectations, the analysis of the different stages found 

that the RCF 50 (median) uplifts remain constant throughout the front-end of projects, i.e. when the 

project is developed from SOBC to FBC. The difference in uplift figures throughout the project life 

cycle changes only in the tails. Further analysis and previous analysis of the GMPP data across the 

UK government led to a few possible explanations for this unexpected finding. 

First, key risks that are subject to optimism bias besides design risks are construction risks. Risks 

reduce as construction progresses and assumptions in estimates are proven by actual completion of 

the work. 

Second, early estimates have an anchoring and lock-in effect6, another form of well-documented bias 

in planners. This means that, for a portion of the projects, early estimates are only adjusted slightly 

during the planning process, therefore optimism bias on the typical project remains at similar levels 

throughout planning. Consequently, across the GMPP not only for transport projects, baselines of the 

typical projects (P50) remain similar during the front-end with only small adjustments between the 

different treasury approval points. 

Third, the Optimism Bias changes only in the tails. A key explanation for cost overruns is scope 

change. The typical project, however, will not see major scope changes that fundamentally change 

baseline estimates and the risk a project is exposed to during construction. The impacts of this might 

explain the behavior of the tails of the distribution, where changes in the risk exposure and therefore 

changes to the Optimism Bias is present. 

6 Cantarelli, C.C., Flyvbjerg, B., van Wee, B. and Molin, E.J., 2010. Lock-in and its influence on the project 
performance of large-scale transportation infrastructure projects: investigating the way in which lock-in can 
emerge and affect cost overruns. Environment and Planning B: Planning and Design, 37(5), pp.792-807. 

Terrill, M. and Danks, L., 2016. Cost overruns in transport infrastructure (No. 2016-13). Carlton, Victoria, 
Australia: Grattan Institute. 
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3.2. REFERENCE CLASS CONSTRUCTION 

In this section, we test whether there is any indication in the data that the updated reference classes 

should be constructed or split on the basis of specific factors. First, we test whether bridges and 

tunnels should continue to be pooled into a single fixed links reference class. Then, we test other 

influential background variables. Finally, we compare the international data against the UK data to 

ensure that geographically pooled reference classes are meaningful for estimating risk in UK projects. 

Note that all the p-values listed in this report are outputs from non-parametric Wilcoxon rank-sum 

tests7, which are preferable to classic t-tests when the data do not follow a normal distribution. The 

Wilcoxon rank-sum test is used to test whether two samples are likely to derive from the same 

population (i.e., that the two populations have similarly shaped distributions). This test is sometimes 

interpreted as a test of the null hypothesis that the medians of two distributions are equal. The tests 

were adjusted using Holm-adjustments to control for family-wise error rates. In addition to the 

Wilcoxon rank-sum tests, we additionally conducted all hypothesis tests using Welch’s t-tests as well 

as non-parametric Kolmogorov-Smirnov, Anderson-Darling k-sample and Kruskal-Wallis rank-sum 

tests. 

3.2.1. STATISTICAL VALIDATION OF REFERENCE CLASSES 

The 94 bridge projects were compared with the 75 tunnel projects in the sample. Here, we found that 

bridges were not statistically significantly different from tunnels in terms of neither cost overruns (p 

= 0.40), schedule overruns (p = 1.00) nor benefit shortfalls (p = 0.62). Bridges and tunnels are 

therefore continuously pooled in a single fixed link reference class, since the statistical tests showed 

no statistically significant difference with respect to cost overruns, schedule overruns and benefit 

shortfalls. 

Figure 1 below show the distribution of these cost, schedule and benefit deviations for bridge and 

tunnel projects though box plots. The boxes show the middle portion of the data: the inter-quartile 

range (IQR). The bottom and top of the boxes mark the first quartile (the 25% mark – or P25) and the 

third quartile (the 75% mark – or P75). The thick bars in the middle of the boxes are the medians 

(P50). The upper whisker extends from the top of the box to the largest value no further than 1.5 * 

7 Except for the tests of the relationship between the estimated project duration/budget size and project cost 
overruns, which were conducted using simple linear regression. 
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IQR from the top. The lower whisker extends from the bottom of the box to the smallest value at most 

1.5 * IQR of the bottom. Data beyond the end of the whiskers are called "outlying" points and are 

plotted individually. 

FIGURE 1: COMPARISON OF COST, SCHEDULE AND BENEFIT DEVIATION BETWEEN BRIDGES AND TUNNELS 

When comparing the performance of transport projects between major geographical regions, we 

found no association in the dataset between geographical regions and cost overruns (all p ≥ 0.09), 

which indicates that the reference classes overall should not be split by geographical region. The 

distribution of capital cost overruns by geographical region is shown in figure 2 below. 
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FIGURE 2: TRANSPORT PROJECT COST OVERRUNS BY GEOGRAPHICAL REGION 

The data show a statistically significant trend between the estimated duration of projects and cost 

overrun (p < 0.001). The trend is modest with 3-year projects having an estimated 13% cost overrun, 

5-year projects having a 20% cost overrun, and 10-year projects having a 30% cost overrun. The trend 

is shown in figure 3 below, in which the blue line is the projected correlation and the shaded bands 

are 95% confidence intervals. 

FIGURE 3: RELATIONSHIP BETWEEN ESTIMATED TRANSPORT PROJECT DURATION AND PROJECT COST OVERRUNS 
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However, once the interaction between project type and estimated duration is accounted for, the trend 

is no longer statistically significant (p = 0.282). This is a sound argument for not splitting the reference 

classes by estimated project duration. 

In addition, we tested the relationship between overruns and budget size (p = 0.50) but found no 

indication that the reference classes should split by the estimated project cost. 

3.2.2. UK VS WORLD 

We find that UK road projects are not significantly different from international projects in terms of 

cost overruns (p = 0.08) when tested using Wilcoxon rank-sum tests. However, the Kolmogorov-

Smirnov, Anderson-Darling k-sample, and Kruskal-Wallis rank-sum tests all find a statistically 

significant difference between UK and international road projects (p ≤ 0.001). The tests did not find 

a significant difference in terms of schedule overruns (p = 0.08). Finally, all tests showed a 

statistically significant difference between UK and international road projects in terms of benefit 

shortfalls (p ≤ 0.001). This indicates that DfT should use geographically pooled reference classes for 

schedule overruns but use UK-specific reference classes for road costs and benefits, especially 

considering the large UK-specific samples for both road cost overruns (n = 203) and benefit shortfalls 

(n = 219). Figure 4 below shows the UK vs world distribution of road project performance. 

FIGURE 4: UK VS WORLD COMPARISON OF ROAD COST, SCHEDULE AND BENEFIT DEVIATION 
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In terms of rail, the data show no significant difference between UK and international projects for 

cost overruns (p = 0.85), schedule overruns (p = 0.24), or benefit shortfalls (p = 0.053). The almost-

significant p-value for might indicate that the UK projects are different from the international projects 

in terms of benefit performance, however the UK data for the statistical comparison is limited to 14 

projects. Therefore, we recommend using an internationally pooled rail benefit reference class, which 

even though it shows a larger benefits shortfall than the UK specific one, and then testing the 

difference again once more data become available. Figure 5 below shows the UK vs world 

distribution of rail project performance. 

FIGURE 5: UK VS WORLD COMPARISON OF RAIL COST, SCHEDULE AND BENEFIT DEVIATION 

In terms of fixed links, the data show no statistically significant differences for cost overruns (p = 

0.09), schedule overruns (p = 0.94) or benefit overruns (p = 0.48). This indicates that DfT should use 

pooled reference classes for fixed link projects. Note that this analysis is affected by data scarcity, 

since the dataset only includes UK fixed links data for 6 cost overruns, 3 schedule overruns and 7 

benefit overruns. Thus, we also recommend DfT to use reference classes based on international data. 

Figure 6 below shows the UK vs world distribution of fixed link project performance. 

20 



 
 

  

 

 

 

 

 

 

 

 

 

 

     

      

   

  

  

 

  

 

 
     

     

 

     

  

 

 
       

 

     FIGURE 6: UK VS WORLD COMPARISON OF FIXED LINKS COST, SCHEDULE AND BENEFIT DEVIATION 

3.3 RESULTS: PICKING THE RIGHT LEVEL OF CONTINGENCY 

The risk appetite differs among decision makers and thus the required contingency commonly also 

varies. However, as a rule of thumb we would suggest picking RCF50 as the low contingency 

bound, RCF65 as the mid-point and RCF80 as the high contingency bound. For economic 

appraisals, we suggest using the trimmed means (i.e. the mean value within P5-P95) listed in this 

report due to the highly skewed distributions of project performance, which otherwise skew the 

means towards extremely large contingency uplifts. 

3.4 RESULTS: UPDATED REFERENCE CLASSES 

With the available data, we constructed six project specific international (including UK) reference 

classes for cost overruns. For each of the six project types, three separate reference classes were 

produced with estimates for the SOBC, OBC and FBC business case stages. Table 5 below displays 

an overview of the 18 total international capital cost reference classes. RCF curves can be found in 

Appendix A. 

TABLE 5: OVERVIEW OF INTERNATIONAL (INCL. UK) CAPITAL COST REFERENCE CLASSES 
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Cost overrun 
(mean) 

50% certainty of the 
estimate (RCF50) 

80% certainty of 
the estimate 

(RCF80) 
Rail (n=355) 

FBC 30% 19% 60% 
OBC 33% 19% 77% 
SOBC 56% 19% 121% 

Road (n=977) 
FBC 22% 16% 47% 
OBC 25% 16% 64% 
SOBC 48% 16% 108% 

Fixed links (n=117) 
FBC 28% 20% 62% 
OBC 32% 20% 79% 
SOBC 55% 20% 123% 

Building (n=149) 
FBC 44% 13% 84% 
OBC 48% 13% 101% 
SOBC 70% 13% 145% 

IT (n=5303) 
FBC 42% 0% 50% 
OBC 50% 0% 60% 
SOBC 69% 0% 111% 

Land and Property (n=88) 
FBC -4% 4% 11% 
OBC 14% 0% 62% 
SOBC 33% 3% 116% 

Rolling Stock (n=20) 
FBC 35% 30% 64% 
OBC 38% 30% 81% 
SOBC 61% 30% 125% 

We constructed five international reference classes for schedule overruns. For each of the five 

project types, three separate reference classes were produced with estimates for the SOBC, OBC 

and FBC business case stages. Table 6 below displays an overview of the 15 total international 

schedule reference classes. RCF curves can be found in Appendix A. 

TABLE 6: OVERVIEW OF INTERNATIONAL SCHEDULE REFERENCE CLASSES 

Schedule overrun 
(mean) 

50% certainty of the 
schedule estimate 

(RCF50) 

80% certainty of 
the schedule 

estimate (RCF80) 
Rail (n=133) 

FBC 28% 20% 61% 
OBC 33% 20% 78% 
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SOBC 31% 20% 73% 
Road (n=340) 

FBC 20% 11% 57% 
OBC 25% 11% 74% 
SOBC 23% 11% 69% 

Fixed links (n=54) 
FBC 17% 4% 40% 
OBC 22% 4% 57% 
SOBC 20% 4% 52% 

Building (n=112) 
FBC 32% 5% 68% 
OBC 37% 5% 85% 
SOBC 35% 5% 80% 

IT (n=1318) 
FBC 28% 0% 58% 
OBC 32% 0% 70% 
SOBC 31% 0% 70% 

Rolling Stock (n=20) 
FBC 4% 0% 0% 
OBC 9% 0% 17% 
SOBC 7% 0% 12% 

We constructed five international benefit reference classes at the FBC stage. Table 7 below displays 

an overview of the five reference classes. RCF curves can be found in Appendix A. 

TABLE 7: OVERVIEW OF INTERNATIONAL BENEFIT REFERENCE CLASSES AT FBC STAGE 

Benefit shortfall 
(mean) 

50% certainty of the 
benefit estimate 

(RCF50) 

80% certainty of the 
benefit estimate 

(RCF80) 
Rail (n=132) -25% -30% -64% 
Road (n=793) -5% -7% -35% 
Fixed links (n=53) -13% -14% -47% 
Building (n=21) -4% -4% -48% 
IT (n=211) -21% 0% -85% 

Finally, constructed three international OPEX reference classes at the FBC stage. Table 7 below 

displays an overview of the three reference classes. RCF curves can be found in Appendix A. 

TABEL 8: OVERVIEW OF INTERNATIONAL OPEX REFERENCE CLASSES AT FBC STAGE 
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OPEX overrun 
(mean) 

50% certainty of the 
OPEX estimate 

(RCF50) 

80% certainty of 
the OPEX 

estimate (RCF80) 
Road (n=23) 23% -2% 77% 
Rail (n=49) 70% 21% 185% 
Pooled* (n=74) 1% -10% 40% 

*The pooled reference class includes OPEX data from two bridge projects 

In addition, UK specific reference classes were constructed as well. In total, we constructed five 

UK project-specific reference classes for cost overruns. For each of the five project types, three 

separate reference classes were produced with estimates for the SOBC, OBC and FBC business 

case stages. We suggest using international data for any UK reference class with a sample size 

below 20. Table 9 below displays an overview of the 15 total UK cost reference classes. RCF 

curves can be found in Appendix A. 

TABLE 9: OVERVIEW OF UK COST REFERENCE CLASSES 

Cost overrun (mean) 50% certainty of the 
cost estimate 

(RCF50) 

80% certainty of the 
cost estimate 

(RCF80) 
Rail (n=18) 

FBC 39% 12% 68% 
OBC 42% 12% 85% 
SOBC 65% 12% 130% 

Road (n=202) 
FBC 20% 18% 37% 
OBC 23% 18% 54% 
SOBC 46% 18% 98% 

Fixed links (n=6) 
FBC 60% 51% 107% 
OBC 62% 51% 124% 
SOBC 85% 51% 168% 

Building (n=25) 
FBC 26% 11% 42% 
OBC 29% 11% 59% 
SOBC 51% 11% 103% 

IT (n=171) 
FBC 9% 0% 30% 
OBC 12% 0% 47% 
SOBC 35% 0% 91% 
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Note that we consider a sample size of under 20 projects to be too small for proper reference class 

forecasting. 

Similarly, we constructed five UK project-specific reference classes for schedule overruns. For each 

of the five project types, three separate reference classes were produced with estimates for the SOBC, 

OBC and FBC business case stages. We suggest using international data for any UK reference class 

with a sample size below 20. Table 10 below displays an overview of the 15 total UK schedule 

reference classes. RCF curves can be found in Appendix A. 

TABLE 10: OVERVIEW OF UK SCHEDULE REFERENCE CLASSES 

Schedule 
overrun (mean) 

50% certainty of the 
schedule estimate 

(RCF50) 

80% certainty of the 
schedule estimate 

(RCF80) 
Rail (n=8) 

FBC 9% 9% 17% 
OBC 13% 9% 34% 
SOBC 11% 9% 29% 

Road (n=7) 
FBC -2% 0% 5% 
OBC 0% 0% 22% 
SOBC -2% 0% 17% 

Fixed links (n=3) 
FBC NA NA NA 
OBC NA NA NA 
SOBC NA NA NA 

Building (n=12) 
FBC 11% 0% 29% 
OBC 16% 0% 46% 
SOBC 14% 0% 41% 

IT (n=36) 
FBC 78% 51% 140% 
OBC 83% 51% 157% 
SOBC 81% 51% 152% 

Note that we consider a sample size of under 20 projects to be too small for proper reference class 
forecasting. 

Finally, we constructed five UK-specific benefit reference classes at the FBC stage. Table 11 below 

displays an overview of the five reference classes. RCF curves can be found in Appendix A. 
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TABLE 11: OVERVIEW OF UK BENEFIT REFERENCE CLASSES AT FBC STAGE 
Benefit shortfall 

(mean) 
50% certainty of the benefit 

estimate (RCF50) 
80% certainty of the benefit 

estimate (RCF80) 

Rail (n=14) -10% -4% -36% 
Road (n=219) -1% -1% -22% 
Fixed links (n=7) -24% -16% -63% 
Buildings (n=17) -7% -4% -19% 
IT (n=16) -29% -14% -75% 

26 



 
 

  

   
 

 
 

 
 

APPENDIX A: UPDATED REFERENCE CLASSES 
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APPENDIX B: OGP DATA IN THE OPEX REFERENCE CLASS 

Project name Type Country 
A14 Orgeval-La Defense, 1988-1996 Road France 
A16 L'Isle Adam-Boulogne, 1992-1994,1997,1998 Road France 
A19 Sens-Courtenay, 1993-1997 Road France 
A26 Chalons-Troyes, 1989-1992 Road France 
A29 Saint Saens-A13, excluding Pont de Normandie, 1991-1998 Road France 
A39 Dijon-Dole et Dole-Bourg en Bresse Road France 
A837 Saintes-Rochefort, 1991-1997 Road France 
Atlanta MARTA metro, 1971-1986 Road United States 
Atlanta North Line Extension Rail United States 
Baltimore BWI, Hunt Valley, Penn Station LRT extensions, 1991-1997 Rail United States 
Baltimore Central LRT Double Tracking, 2000-2006 Rail United States 
Beijing-Tianjin-Tanggu Expressway, 1987-1993 Rail China 
Buffalo LRT, 1977-1986 Rail United States 
Chengdu-Nanchong Expressway, 1998-2002 Rail China 
Chicago Metra North Central, 1998-2006 Rail United States 
Chicago Metra Southwest Corridor, 1998-2006 Rail United States 
Chicago Metra UP West, 1998-2006 Rail United States 
Chicago Orange Line SW Transitway Rail United States 
Chingquing-Guizhou Leichong Expressway, 2000-2005 Road China 
Dallas North Central LRT Extension, 1996-2002 Rail United States 
Dallas South Oak Cliff LRT, 1990-1996 Rail United States 
Denver Southeast LRT Corridor, 1997-2006 Rail United States 
Denver Southwest LRT, 1995-2000 Rail United States 
Detroit DPM, 1980-1987 Rail United States 
Guang-Mei-Shan Railway, 1992-1995 Road China 
Hailar-Manzhouli Highway, 2005-2007 Road China 
Hudson-Bergen light rail MOS-1 & MOS-2, New Jersey Rail United States 
Humber Bridge, 1967-1981 Road United Kingdom 
Jacksonville Skyway Express ASE AGT, 1982-2000 Rail United States 
Ji-Tong Inner Mongolia Line, 1989-1995 Road China 
Jinan-Qingdao Highway, 1989-1993 Rail China 
Jiujiang-Jingdezhen. Jiangxi Province Expressway, 1996-2002 Road China 
Laoyemiao-Jining Highway Road China 
Liaoning Expressway, 1995-1998 Road China 
Liupanshui-Shuicheng Guizhou Shuibai Line, 1998-2004 Rail China 
Longgang-Tanxi Highway, 1992-1996 Rail China 
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Los Angeles Red Line, 1983-2000 Rail United States 
Manila Metrostar Express, 1996-1999/2000 (MRT-3) Bridge Philippines 
Manila MRT 2, 1995-2004 Rail Philippines 
Memphis Medical Center LRT Extension, 1997-2004 Rail United States 
Miami DPM, 1980-1986 Rail United States 
Miami metro, 1978-1985; correct: 1977-1985 Rail United States 
Miami Omni and Brickell AGT extensions, 1987-1994 Rail United States 
Miami South Florida Tri-Rail Double Tracking Segment 5, 1998-2007 Rail United States 
Minneapolis, Twin Cities Hiawatha LRT Corridor Rail United States 
Newark Elizabeth Rail Link MOS-1, 1997-2006 Rail United States 
Portland Interstate MAX LRT Extension, 1998-2004 Rail United States 
Portland LRT, 1978-1987 Rail United States 
Qingxian-Wuqiao Expressway, 1998-2001 Rail China 
Sacramento LRT, 1981-1987 Rail United States 
Sacramento South LRT Phase 1, 1996-2003 Rail United States 
Salt Lake City I-15/State St South LRT, 1990-1999 Rail United States 
Salt Lake City Medical Center LRT extension Rail United States 
Salt Lake City University & Medical Center LRT Extensions1997-2003 Rail United States 
San Diego El Cajon LRT extension, 1985-1989 Rail United States 
San Diego Mission Valley East LRT Extension, 1997-2005 Rail United States 
San Francisco BART to SFO Extension, FTA 2008, 1995-2003 Rail United States 
San Francisco Colma BART station, 1988-1996 Rail United States 
San Jose Guadalupe corridor LRT, 1981-1991 Rail United States 
San Jose-Tasman West LRT, 1991-1999 Rail United States 
San Juan Tren Urbano, Puerto Rico, FTA 2008, 1995-2005, Rail United States 
Sanyuan-Tongchuan Highway, 1987-1993 Road China 
Shanghai-Nanpu Bridge, 1989-1991 Road China 
SHANGHAI-ZHEJIANG HIGHWAY PROJECT Road China 
St, Louis Metrolink initial LRT system, 1984-1993 Rail United States 
St, Louis St, Clair Metrolink LRT extension, GAO 98, 1995-2001 Rail United States 
Stockholm Arlanda airport link (1995- 1999) Road Sweden 
Urumqi-Kuitun Highway, 1996-2001 Road China 
Washington Largo Metrorail Extension, 1996-2004 Rail United States 
Washington metro, na-1985 Rail United States 
Xian-Hefei Railways, 2000-2004 Road China 
XINJIANG HIGHWAY PROJECT Bridge China 
Yuanjiang-Mohei Expressway, 1998-2003 Road China 
Zhangzhou-Zhaoan Expressway Rail China 

39 



 
 

  

    
 

 

   

  

 

 

  

 

 

  

    

 

 

               

  

                

 

 

 

      

  

 

 

    

 

  

     

    

 

APPENDIX C: METHODOLOGY REVIEW OF REFERENCE CLASS 
FORECASTING 

METHODOLOGY REVIEW 

REFERENCE CLASS FORECASTING (RCF) 

October 2019 

SUMMARY 

This report has reviewed the developments in RCF and its use in providing accurate forecasts. Based on several 

studies using RCF in various industries including hydropower dam projects, building projects, chemical projects 

and wind farms, RCF has shown to result in more accurate estimates than using conventional methods. The key 

findings are as follows: 

 Application of RCF to Bujagali hydropower dam project resulted in a more reliable cost estimate and 

increased the accuracy of the cost-benefit analysis (Awojobi and Jenkins, 2016). 

 A study of 420 building projects in Turkey revealed improved cost forecast accuracy when using RCF 

(Bayram and Al-Jabouri, 2016a). 

 A study of 420 building projects in Turkey showed RCF provided the most accurate forecasts in the 

early stages of the project (Bayram and Al-Jabouri, 2016b). 

 Based on samples of nine and ten offshore wind farms in the United Kingdom respectively, using RCF 

increases the probability of delivering a project on time and on budget (Koch and Sondergaard, 2010; 

Koch, 2012). 

The effectiveness of RCF depends on the similarity of the reference class. If the project fits well into the reference 

class, the resulting uplift from the RCF will provide a more reliable estimate of the cost of the project (Awojobi 

and Jenkins, 2016; Batselier and Vanhoucke, 2016). Moreover, the effectiveness of RCF is influenced by the 

size of the projects and the size of the reference class (Batselier and Vanhoucke, 2016; Walczak and Majchrzak, 

2018); projects need to be sufficiently large and the reference class should include enough projects. Only if these 

criteria, similarity, project size, reference class size, are met will RCF outperform other methods. 
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RCF provides more accurate forecasts than conventional methods, particularly in the early stages of project 

development. In the later stages other forecasting methods such as regression analysis could provide increased 

accuracy in forecasting compared to conventional methods as well (Batselier and Vanhoucke, 2016; Bayram and 

Al-Jibouri, 2016b). Using a combination of forecasting methods throughout the life cycle of the project 

development is therefore recommended. 

Besides using RCF approaches in forecasting cost and schedule, several studies have compared the forecast 

accuracy of RCF with other methods: 

 A study of 56 construction projects shows that RCF outperforms traditional methods of forecasting 

Earned-Value Management and Monte Carlo Simulation on three criteria: accuracy, stability and 

timeliness. (Batselier and Vanhoucke, 2016, 2017) 

 At Sydney Water Corporation, based on 11 water infrastructure projects, risk-based estimation (RBE) 

with RCF resulted in more accurate cost estimates than projects that used conventional methods for cost 

estimation, and RBE with RCF significantly increased the likelihood of projects completing under budget 

(Liu and Napier, 2009) 

 For infrastructure projects in Saudi-Arabia a risk-based cost contingency estimation model (RBCCEM) 

regressing project cost overrun on clusters of causes of cost overrun of past similar projects results in 

better forecast accuracy than conventional forecasting and RCF (Allaheim et al., 2015). 

The latter method, RBCCEM can be considered hybrid estimation method as it uses the concept of RCF when 

examining the causes of cost overrun and adjusting the cost estimate accordingly. 

Several other hybrid estimation approaches have been considered, combining RCF with conventional 

contingency based forecasting, combing RCF with QRA and Monte Carlo simulation, combining RCF with 

Baysian forecasting, and combining RCF with EVM and exponential smoothing approach. The main findings of 

the studies using a hybrid forecasting approach are as follows: 

 At Australian State Road and Traffic Authority, based on a sample of 44 projects, the hybrid approach 

to forecasting (combining RCF with traditional contingency based forecasting) represents significant 

improvement in forecast accuracy against the conventional contingency approach but it reduces forecast 

accuracy compared to RBE (yet the sample characteristics are very different) (Liu, Wehbe and Sisovic, 

2010). 

 A bridge construction project using cost Bayesian adaptive forecasting produced more accurate forecasts 

than using the ‘inside view’ or ‘outside view’ methods separately (Kim and Reinschmidt, 2011). 
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 Based on a set of 8 car manufacturing plans, Bayesian forecasting with RCF produced more accurate 

forecasts than forecasts using RCF or statistical modeling separately. (Bordley, 2014) 

 Based on a sample of 23 construction projects, integrating RCF with EVM and exponential smoothing 

forecasting approach (eXponential Smoothening-based method XSM) provides considerable more 

accurate predictions of cost and schedule performance than other EVM forecasting methods (Batselier 

and Vanhoucke, 2016, 2017) 

Another methodological development was made by Salling and Leleur (2012, 2017) who proposes the method 

Reference Scenario Forecasting. This method combines RCF with Quantitative Risk Analysis (QRA) based on 

Monte Carlo simulation and exploratory scenarios. It provides probabilities of achieving certain BC ratios and 

as such can support investment appraisal decisions. 

Besides methodological advancements, the experience with the forecasting method may impact its results. A 

study of 399 political forecasters shows that those with probabilistic-reasoning training and practice in using RCF 

had higher forecasting accuracy than those who did not (Chang, Chen, Mellers, Tetlock, 2016). 

To conclude, based on the review of methodological developments of RCF we conclude RCF is still a valid and 

best practice approach in forecasting particularly in the early stages of project development. Best results in 

forecasting accuracy overall will be achieved by combining the bottom-up and top-down methods, particularly 

RBE and Bayesian forecasting, combining the ‘outside view’ with ‘inside view’ approaches (Kim and 

Reinschmidt, 2011; Koch, 2012; Leleur et al., 2015). 
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1. INTRODUCTION 

Common traditional project forecasting methods include Monte Carlo simulation and Earned Value 

Management (EVM). The use of these methods have led projects to experience large cost overruns and schedule 

delays. One of the main explanations for this is optimism bias, the tendency to be overly optimistic about future 

actions, resulting in underestimation of cost and schedule. Due to optimism bias project owners may be ignorant 

or underestimate the risk/uncertainties in estimates. Optimism bias is the result of taking an ‘inside view’, focusing 

on the project at hand and estimating costs and duration of activities bottom-up. Traditional forecasting 

techniques typically take an ‘inside view’, they include a fixed contingency to the project cost estimate to account 

for risk and uncertainty in cost estimation, often 10% of the estimated cost. However, this method is considered 

to be biased because of the arbitrary way of deciding on the contingency amount (Liu et al., 2010). Instead, 

Reference Class Forecasting is an estimating approach that deals with optimism bias by taking an ‘outside view’ 

in determining the contingency amount that is based on statistical modelling of similar projects. Monte Carlo 

simulation can be considered as a ‘semi outside view’ because even though it makes use of historical data, it still 

relies on assumptions from the project manager to construct the distributional information (Batselier and 

Vanhoucke, 2016). 

Since the Optimism Bias Guidance was published in 2004 the risk management profession has improved their 

approaches and tools for Quantitative Cost Risk Analyses (QRA). 

This report aims to answer the following three main questions: 

1. What have been the developments of Reference Class Forecasting since the publication in 2004 of 

“Procedures for Dealing with Optimism Bias in Transport Planning. Guidance Document” by The 

British Department for Transport? 

2. How are bottom-up (QRA) and top-down (RCF) estimation working together? 

3. How can we handle inflation above GDP deflators? 

Chapter 2 will provide a review of the methodological developments in RCF addressing the first two questions. 

Chapter 3 will address how inflation is being handled in the construction sector. 
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2. REVIEW OF METHODOLOGICAL DEVELOPMENTS IN RCF 

Use of Reference Class Forecasting 

Reference Class Forecasting (RCF) has been applied in various industries including hydroelectric dams, 

buildings, chemical projects, and wind farms. This section discusses the main findings of the studies that have 

used RCF. 

A study by Awojobi and Jenkins (2016) apply RCF to estimate cost risks of hydroelectric dams. They use 

maximum likelihood estimators to generate three different probability distributions covering three main 

development regions. They find the resulting cumulative probability distribution function fits better than those 

used in other studies (e.g. Sovacool et al., Ansar et al.). 

Application of RCF to Bujagali hydropower dam project resulted in a more reliable cost estimate and it increased 

the accuracy of the cost-benefit analysis. 

Based on a databased of 420 completed building projects in Turkey, Bayram and Al-Jobouri (2016a) compare 

cost estimates (based on contract sums) produced using the conventional method against cost forecasts using 

RCF. They use 75% of the total data to determine the probability distribution, establish an optimism bias curve, 

and develop the reference class. The other 25% is used to test the RCF method to predict the projects’ final 

actual costs. 

To compare the accuracy of the RCF with the conventional method three measures are used, root-mean-square 

error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). The magnitude of 

error differs depending on which of these measures was used but overall the study confirms that forecast accuracy 

can be improved by using the RCF method using various uplifts representing different levels of risk (Bayram and 

Al-Jibouri, 2016). Bayram and Al-Jibouri (2018) find similar results. 

A study of 420 building projects in Turkey revealed improved cost forecast accuracy when using RCF. 

Moreover, Bayram and Al-Jibouri (2016b) compare the forecasts of traditional and non-traditional approaches 

in building projects in Turkey. The three traditional methods include unit area costs (UAC), client detailed costs 

(UPA), and contract sums (CS). The five non-traditional methods include multilayer perceptron (MLP), radial 
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basis function (RBF), grid partitioning algorithm (GPA), reference class forecasting (RCF), and regression 

analysis (RA). 

Again using 75% of the data traditional forecasting models were established, while the remaining 25% of the data 

were used to test the forecast accuracy of the five non-traditional approaches. Regarding RCF, the client detailed 

costs required higher uplift values compared with unit area costs indicating a higher forecast accuracy for unit 

area costs. Considering all error measures, in general, the study shows that based on unit area costs (carried out 

in the predesign stage), RCF produced more accurate forecasts. Simple linear regression and radial basis function 

forecasting methods provided more accurate forecasts if estimates were based on reference point later in the 

project life cycle (in the postdesign stage). 

A study of 420 building projects in Turkey showed RCF provided the most accurate forecasts in the early stages 

of the project. 

Based on a sample of 65 chemical projects in one company completed between 2012-2014 Walczak and 

Majchrzak (2018) use reference class forecasting for small projects whereas typically RCF is used for large 

projects. They conclude that RCF is only suitable for large homogenous projects where it is possible to separate 

uniform groups of projects, while the usability of the method is limited in real business environment 

implementing a limited number of project types. 

The effectiveness of RCF is influenced by the size of the projects and the reference class; projects need to be 

sufficiently large and the reference class should include a sufficient number of projects. 

Based on a sample of nine offshore wind farm projects in the United Kingdom, Koch and Sondergaard (2010) 

use reference class forecasting to estimate the cost and duration for the London Array wind farm. They conclude 

that there is a much higher probability of delivering the project on time and budget if the budget is increased 

with 15% and the schedule extended with 30%. Moreover Koch (2012) argue that forecasting can be further 

improved by combining RCF with inside approaches appreciating the socio-technical content, taking into account 

for instance similarity in terms of technology, geography, nation state and operational, economic and regulatory 

conditions” (Koch, 2012, p618). Using this socio-technical perspective may result in smaller more narrow 

reference classes. Based on a sample of ten offshore wind farms in the United Kingdom, Koch (2012) 

recommend to increase the budget by 35-40% and extend the schedule by 30% to obtain higher level of 

probabilities of meeting budget and schedule of 70% and 60% respectively. 
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Based on samples of nine and ten offshore wind farms in the United Kingdom respectively, using reference class 

forecasting increases the probability of delivering a project on time and on budget. Koch and Sondergaard (2010) 

and Koch (2012) 

Using a probabilistic-reasoning training module Chang et al. (2016) investigate debiasing to improve probability 

judgements. They investigate four factors as possible explanations for the probabilistic-reasoning training effects, 

i.e. targeted practice, cognitive ability, cognitive motivation, and training. They found that subjects trained to 

apply probabilistic reasoning principles will be more accurate than subjects who do not. Training had the highest 

explanatory power for accuracy, followed by targeted practice, and cognitive ability. 

Probabilistic reasoning training boosted forecasting accuracy, with the use of comparison classes and base-rates 

having the highest contribution highlighting the benefits of adopting an outside view. 

A study of 399 political forecasters shows that those with probabilistic-reasoning training and practice in using 

RCF had higher forecasting accuracy than those who did not. 

Zarikas and Kitsos (2015) suggest two improvements to the current RCF method. First, instead of using 

confidence interval to estimate the percentile that corresponds to a risk of cost overrun, they recommend the 

use of tolerance intervals. Secondly, instead of using conventional simple linear regression they recommend the 

use of the proposed best fitting polynomial according to the criterion of best prediction. The new model used in 

RCF is then “the one that best predicts on an average the future value, which lie in a certain interval with some 

probability. This is achieved using beta expected tolerance regions. So, while the regression oriented prediction 

is based on the extrapolation or interpolation of the best model fitting the data, the proposed method is based 

on a probabilistic reasoning and provides the model which best predicts the next value within experimental 

region” (Zarikas and Kitsos, 2015, p6). 

Earned Value Management (EVM) 

Batselier and Vanhoucke (2016) compare the traditional project forecasting methods Monte Carlo simulation 

and Earned Value Management (EVM) with Reference Class Forecasting based on a set of 56 construction 

projects. 

For the Earned Value Management technique, two methods were used, EAC-1 (estimated cost at completion) 

with a project performance factor (PF) assuming the future cost performance will be according to plan, and EAC-

CPI with a PF assuming the future cost performance will be equal to current cost performance. Similarly two 
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methods were used for time forecasting, ESM-1 (earned schedule method) with a PF assuming the future time 

performance will be according to plan, and ESM-SPI(t) with a PF assuming the future time performance will be 

equal to the current time performance (Batselier and Vanhoucke, 2016). 

For the Reference Class Forecasting technique, they use four different RC compositions with different levels of 

similarity (broad sector level to specific company level RC). The comparison of methods is based on the mean 

absolute percentage error (MAPE) measure, with lower MAPE values indicating higher levels of accuracy. 

Forecasting quality is assessed on accuracy, stability and timeliness. 

On all three of these criterion RCF method outperforms the other two traditional methods. Specifically, RCF 

with the highest level of similarity (the most specific reference class of projects from the same company) is the 

most accurate cost forecasting method. It is also showing the greatest forecasting stability due to the use of one 

fixed constant pre-project forecast throughout the entire project, rather than using updated forecasts based on 

actual progress data. RCF also clearly outperforms EVM on timeliness criterion; RCF estimates are more 

accurate in the early stages compared to other techniques, and this is important as they allow adequate corrective 

actions to be taken in a timely manner. 

Batselier and Vanhoucke (2016) conclude that for both cost and time forecasting RCF has a strong performance. 

However, the reference class level of similarity and size are important factors in the performance of RCF. Only 

if the reference class is of sufficient size and similarity will RCF outperform other techniques. 

A study of 56 construction projects shows that RCF outperforms traditional methods of forecasting EVM and 

Monte Carlo Simulation on all three accuracy criterion of accuracy, stability and timeliness. 

Risk-based Estimation (RBE) 

One of the drawbacks for using RCF is the requirement of a sufficiently large dataset of similar projects. An 

alternative forecasting method that is able to adopt an outside view without the requirement of large dataset of 

historical data is Risk-based Estimation. RBE is a method that has been increasingly adopted for forecasting in 

large projects. 

RBE is said to be able to adopt the outside view through a collective decision-making process. RBE models a 

probabilistic distribution of component costs of a project. It quantifies the base estimates and risk contingencies 

for each project component (rather than for the total project cost as in the conventional contingency approach 

and RCF). This quantification is based on the reference class concept because it uses previous projects’ 
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performance data. After quantification RBE runs a Monte Carlo simulation to produce the probability 

distribution function of the entire project costs by aggregating the component probability distribution functions 

(Chau, 1995 in Liu and Napier, 2006). 

Liu and Napier (2009) test the effectiveness of RBE by comparing the cost estimates of a set of 11 water 

infrastructure projects estimated using RBE with RCF with a sample of 30 construction projects estimated using 

the conventional approach. Cost estimation accuracy was measured in two dimensions: i) closeness: percentage 

variation from the estimate measured as the percentage difference between the final contract amount 

(construction costs plus variation) and the contract award amount (base estimate plus contingency, and ii) 

consistency: the degree of dispersion in the sample around the mean measures by the variance or standard 

deviation. 

The mean percentage variation is -3.5% and 5.2% for the RBE with RCF and conventional samples respectively. 

Regarding the dispersion of variation the standard deviations are 5.9% and 9.6% for the RBE with RCF and 

conventional samples respectively. This shows that on both dimensions of closeness and consistency RBE with 

RCF performs better than the conventional method, thus resulting in higher cost estimate accuracy. Moreover, 

Liu and Napier (2009) found that projects using RBE with RCF appear more likely to be under-budget while the 

ones using the conventional approach appear more likely to be over-budget. 

At Sydney Water Corporation, based on 11 water infrastructure projects, RBE with RCF resulted in more 

accurate cost estimates than projects that used conventional methods for cost estimation, and RBE with RCF 

significantly increased the likelihood of projects completing under budget. 

Another study that uses RBE method in forecasting is by Allaheim et al. (2015). They argue that the actual impact 

of cost risk of past similar projects could produce more accurate cost contingency estimates. They identify four 

clusters or groups of causes of cost overruns and suggest to include these in the forecasting method similar to the 

reference class concept. Specifically they develop a risk-based cost contingency estimation model (RBCCEM) 

which regresses the project cost overrun on the four clusters of causes. A bootstrapping variant of RBCCEM was 

also estimated. Comparing these models with the conventional forecasting using a fixed contingency of 10% and 

the method of reference class forecasting, and using standard measures of forecast accuracy (error indices 

MAPE, MAE, MSE, and RMSE), Allaheim et al. (2015) conclude RBCCEM outperforms the conventional and 

RCF methods on dimensions of error indices, adjusted cost overrun, and variance. 
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Considering the adjusted cost overrun both RBCCEM and RCF reduce overrun significantly. However, one of 

the main differences between the forecasting techniques is that “RCF estimates are subject to the acceptable risk 

of cost overrun, whereas RBCCEM are not.” (Allaheim et al., 2015, 1299) 

Similar to the findings of Liu and Napier, projects using RBCCEM  tends to underrun budget while projects 

using the RCF model tends to overrun budget. (Allaheim et al., 2015) 

For infrastructure projects in Saudi-Arabia a risk-based cost contingency estimation model (RBCCEM) 

regressing project cost overrun on clusters of causes of cost overrun of past similar projects results in better 

forecast accuracy than conventional forecasting and RCF (Allaheim et al., 2015). 

The RBCCEM can be considered a hybrid approach as it uses the concept of reference class forecasting when 

examining the causes of cost overrun and adjusting the cost estimate accordingly. Risk-based Estimation can also 

be considered a hybrid approach because it combines probabilistic models with reference class forecasting. 

Several other studies have proposed hybrid estimation approaches which will be discussed in the next section. 

Hybrid Estimation Approaches 

Liu, Wehbe, and Sisovic (2010) argue that organisations develop these hybrid approaches to tailor generic 

estimating approaches to their operating environment. These hybrid approaches often combine reference class 

forecasting with conventional approaches. 

Liu et al. (2010) compare the accuracy of the hybrid estimation approach (combining RCF with traditional 

contingency based forecasting) with i) historical data reported by other studies (which typically use the fixed 

contingency approach), ii) accuracies in the conventional approach, and iii) accuracies in the RBE approach. 

They find that the hybrid approach represents significant improvement against the conventional contingency 

approach (mean estimation error is lower) but reduces accuracy compared to RBE (mean estimation error is 

higher). Moreover, the variance of the estimation error is higher in the hybrid sample again suggesting RBE is 

more accurate. 

The results may be explained by the large variation in the project type that is used in the different samples. The 

RBE sample only contains 11 water infrastructure projects, the hybrid sample includes 44 road and traffic 

projects conducted by one organization, whereas the historical data (the conventional sample) includes road, toll 

roads, mining, rail, bridges, tunnels, World Bank, metro, and ‘various’ type of projects. 

49 



 
 

  

 

  

  

 

 

 

     

  

  

    

    

   

 

  

  

 

    

 

 

 

  

 

 

  

 

     

   

  

 

 

  

   

     

 

 

At Australian State Road and Traffic Authority, based on a sample of 44 projects, the hybrid approach to 

forecasting (combining RCF with traditional contingency based forecasting) represents significant improvement 

in forecast accuracy against the conventional contingency approach but it reduces forecast accuracy compared to 

RBE. 

Salling and Leleur (2012, 2017) propose a new technique to forecasting called Reference Scenario Forecasting. 

This method combines RCF with Quantitative Risk Analysis (QRA) based on Monte Carlo simulation and 

makes use of a set of exploratory scenarios. The approach first performs a Cost Benefit Analysis (CBA) which 

provides a deterministic point estimate. Then this point estimated is transformed into an interval result through 

the Monte Carlo simulation, using random input parameters based on reference class forecasting. The result are 

scenario-based graphs that show the risk probability of achieving specific BC ratios. The advantage of this method 

is thus the ability to consider the probability of implementing a non-feasible project or not implementing a 

feasible one. Salling and Pryn (2015) further expand this method by including sustainable planning criteria in the 

assessment of projects. However, none of these three studies show whether this combined CBA-RCF method is 

superior to RCF in itself. 

Reference Scenario Forecasting, which combines RCF with QRA based on Monte Carlo simulation and 

exploratory scenarios, provides probabilities of achieving certain BC ratios and can support investment appraisal 

decisions. 

Another method that combines the QRA and CBA with RCF is proposed by Leleur et al. (2015). The method 

combines RCF with expert judgements based on overconfidence theory interpretation. The main advancement 

is the combination of outside view and inside view approaches in contrast to solely using the inside view as RCF 

does. The method replaces the point estimate benefit-cost ratio with a probability-based interval (referred to as 

certainty graph). The average or agreed ‘consensus’ values by experts on the provided Min and Max cost forecasts 

represents the ‘inside view’ forecast. However, overconfidence theory states that the ranges indicated by the 

experts are often too narrow and Leleur et al. (2015) therefore propose to calibrate the interplay between RCF 

and expert judgements, by modifying the probability distribution produced by the RCF. 

Bayesian Updating 

Kim and Reinschmidt (2011) suggest combining the inside and outside view of cost forecasting by using Bayesian 

inference and the Bayesian model averaging technique. They propose a probabilistic cost forecasting framework 

for Bayesian adaptive forecasting to incorporate the actual performance data from earned value management 

into the predictions and revise the pre-project cost estimates. 
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The cost Bayesian adaptive forecasting (cost-BAF) method is used to update the current estimate of cost at 

completion throughout the execution phase. Kim and Reinschmidt (2011, p960) explain “The inside-view prior 

estimate and the outside-view prior estimate are applied separately, in conjunction with the reported performance 

data. The predictions from the cost-BAF model using different pre-project estimates are combined to compute 

a combined posterior distribution using the Bayesian model averaging technique.” 

A prior estimate of project cost is based on pre-project planning or historical data (this can be both the inside-

view estimate and the outside-view estimate), whereas the posterior estimate reflects the actual performance of 

the project. As the project progresses the impact from a prior estimate diminishes because more data on actual 

performance has become available. Earned value method may be able to revise predictions using actual 

performance data. This method to systematically update pre-project estimates with actual project performance 

data differentiates the cost-BAF method from conventional cost forecasting methods. 

Based on a hypothetical bridge construction project, Kim and Reinschmidt (2011) test the forecasting accuracy 

of the cost-BAF with other methods. They compare the cost predictions from the inside-view, outside-view and 

cost-BAF and conclude that the combined cost-BAF predictions are more sensitive to actual performance data, 

that is, they provide more precise predictions. 

A bridge construction project based on cost Bayesian adaptive forecasting produced more accurate forecasts 

than using the ‘inside view’ or ‘outside view’ methods individually. 

Similar to Kim and Reinschmidt (2011) Bordley uses a Bayesian approach to forecasting in healthcare. The 

forecasting method combines reference class forecasting with model-based forecasting. The reference class 

forecast information is used to specify the Bayesian prior. The prior was then updated with model-based forecasts 

to generate a posterior probability. The Bayesian cost forecast is higher than the model-based forecast because 

higher actual costs are provided by the reference class forecasts and model-based forecasts are typically 

systematically underestimated. Bordley (2014, p221) found that the “Bayesian posterior forecast had lower 

variance (and lower forecast error) than either the model-based forecast or the reference-class forecast.” 

Based on a set of 8 car manufacturing plans, Bayesian forecasting with RCF produced more accurate forecasts 

than forecasts using RCF or statistical modeling separately. 

eXponential Smoothening-Based Method (XSM) 
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With the traditional EVM forecasting technique one can either use an unweighted method (EAC-1 and ESM-1 

for estimated cost at completion and earned schedule method with performance factor assuming the future 

cost/schedule performance will be according to plan) or a weighted method (CPI and SPI(t) for estimated cost 

at completion and earned schedule method with performance factor assuming the future cost/schedule 

performance will be equal to current performance). However, the unweighted method does not accurately 

account for two possible influences, i.e. the occurrence of natural performance improvement and the effect of 

corrective management actions during the course of the project. 

Batselier and Vanhoucke (2017) propose a new technique, eXponential Smoothening-based Method (XSM) 

which deals with these limitations. It integrates the earned value management approach with the exponential 

smoothing forecasting approach. The exponential smoothening forecast approach makes it possible to assign 

higher weighting to more recent results. XSM uses one smoothing parameter which allows for anticipated 

changes in management. To set the smoothening parameter there are two approaches, the static and dynamic 

approach. In the static approach, the value of the smoothing parameter is chosen before the project starts and 

remains constant throughout the entire project. In the dynamic approach, the smoothing parameter can be 

adjusted every tracking period. The XSM technique allows the integration with RCF by using the data from the 

reference class of projects to inform the value of the smoothing parameter (static approach). 

Batselier and Vanhoucke (2017) investigated four different XSM approaches, varying in the smoothing 

parameter β, using three static and one dynamic version and compared this with other forecasting methods. For 

the static approach, β is chosen before the project starts and remains constant throughout the entire project. 

 βopt: constant β value that produces the most accurate (optimal) forecast 

 βopt, oa: constant optimal β value over all projects in the database 

 βopt, oa, rc: constant optimal β value over all historical projects with the same characteristics as the considered 

project (this incorporates reference class forecasting concept into XSM) 

 βdyn: β is based on progress of the considered project itself. It is based on a quantitative analysis whereby 

βdyn value is “calculated for every tracking period based on the performance of the past tracking periods”8 

(Vatselier and Vanhoucke, 2017, p42). A qualitative analysis can also be used to calculate the βdyn. 

The results show that based on MAPE comparison, XSM(t)-βopt is 14.8% and 31.8% more accurate than forecasts 

obtained from ESM-1 and ESM-SPI(t) respectively. XSM(t)-βopt is however difficult to apply in practice and 

8 Or the value for a certain tracking period is calculated as the β that would have produced the most accurate forecasts over all of the 
preceding tracking periods” (Batselier and Vanhoucke, 2017, p42). 
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therefore SXM-βopt, oa is preferred. Yet XSM(t)-βopt, oa results in a considerable reduction in accuracy but it is still 

more accurate than ESM-1. The quantitative dynamic approach does not improve accuracy; XSM(t)-βdyn is similar 

to ESM-1 and while it is considerably more accurate than ESM-SPI(t) (19.6%), it is worse compared to XSM(t)-

βopt. The static approach can enhance performance of accuracy by considering reference classes. XSM(t)-βopt, rc 

obtains the highest forecast accuracy, with 13.9% improvement over the best EVM forecasting method ESM-1. 

Cost forecasting show similar results to time forecasting when comparing XSM versions. XSM($)-βopt shows a 

substantialpotential accuracy gain of 25.1% over the best EVM approach for cost forecasting EAC-CPI. XSM($)-

βopt, oa againreduces accuracy compared toXSM($)-βopt but still remains more accurate than EAC-1 and EAC-CPI 

although the accuracy gain is low. Again XSM($)-βopt, rc has the largest forecast accuracy, with relative improvements 

of 22.2% and 22.6% over EAC-1 and EAC-CPI respectively. 

The above comparisons clearly show that the XSM has great potential improving the accuracy of both cost and 

schedule forecast, especially when it incorporates the reference class component. XSM-βopt, rc outperforms other 

forecasting methods, with performance accuracy for costs being even more significant than for time. 

Based on a sample of 23 construction projects, integrating RCF with EVM and exponential smoothing forecasting 

approach (eXponential Smoothening-based method XSM) provides considerable more accurate predictions of 

cost and schedule performance than other EVM forecasting methods (Batselier and Vanhoucke, 2016, 2017) 

Conclusion 

1. What have been the developments of Reference Class Forecasting since the publication in 2004 of 

“Procedures for Dealing with Optimism Bias in Transport Planning. Guidance Document” by The 

British Department for Transport? 

Studies have provided more evidence of improved forecasting accuracy by using RCF over conventional 

forecasting techniques. The method has been recognized more widely with increased adoption of RCF in various 

industries and countries. 

Most methodological developments are focused on combing RCF with other estimation techniques rather than 

making adjustments in RCF itself. 
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2. How are bottom-up (QRA) and top-down (RCF) estimation working together? 

RCF has its strengths in the early stages of the project development, outperforming other methods, while other 

estimating methods also provide accurate forecasting results in the later stages. 

The review shows combining both bottom-up and top-down estimation techniques provides the best results in 

forecasting accuracy. Current advancements combine RCF with Risk-based Estimation, Bayesian forecasting, 

and EVM with exponential smoothening forecasting. The review suggests that a first step is to conduct RCF and 

QRA side by side each based on the base cost estimate. This encourages projects and planners to investigate the 

gap between the two analyses and get an understanding of the completeness and ranges of their risk assessments. 

A second step might be to expand RCF and integrate hard distributional data in the bottom-up analysis. In 

practical terms, if all items on a risk register, including an item for unknowns and correlations between risks, are 

evaluated with unbiased and accurate data, i.e. RCF curves for each risk, the top-down RCF approach and the 

bottom-up QRA approach should reach similar conclusions. 
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APPENDIX D: SUGGESTIONS FOR INFLATION TREATMENT 

SUGGESTIONS FOR INFLATION TREATMENT 

The reference class forecasts in this report have removed all inflation, i.e. used real-term cost estimates and real-

term outturns to calculate overruns. 

In some cases, projects will have to produce estimates that include inflation and therefore additional 

consideration needs to be given to any optimism bias included in inflation forecasts. 

We took two different approaches to identify the optimism uplift required for estimates including inflation, often 

referred to as nominal estimates or year-of-expenditure estimates. The first approach applies the Reference Class 

Forecast logic to historical construction inflation in the UK. The second approach uses historic data on real-

terms cost overruns and nominal cost overruns in past, completed UK projects. 

REFERENCE CLASS FORECAST BASED ON HISTORICAL INFLATION 

INDECES 

In the UK several different measures are available for the forecast of inflation: 

- Consumer price indices: CPI and CPIH issued by the Office of National Statistics (note: RPI is not 

considered to be a national statistic any longer); 

- Construction Price Indices: in this context most notably the producer price index for infrastructure 

(previously issued by BEIS now ONS), general civil engineering cost index (issued by RICS), 

construction cost index (issued by Eurostat), tender price indices (issued by various entities e.g. RICS); 

and 

- Government deflator: GDP deflator issued by the Office of National Statistics and prescribed HMT 

Greenbook. 

The consumer price indices are not relevant for capital investment project appraisals. 

Construction price indices exist for key industries in the UK. In the UK, the Building Cost Information Service 

(BCIS, n.d.) of RICS prepares four price adjustment indices: 

1. Building; 

2. Specialist engineering; 

3. Civil engineering; and 
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4. Highways maintenance. 

In addition, to the general civil engineering cost price index RICS also issues a Tender Price Index. Tender price 

indices suffer from the typical problem that tender prices are lowballed to win bids when markets are contracting. 

In theory tender prices should be a suitable measure, however, this theory rests on the assumption that markets 

are rational (i.e. that tenderers would not bid at loss-making prices). 

The Office of National Statistics issues a Construction Output Price Index (OPI). Since 2015, this index has 

replaced the Construction Price and Cost Index (CPCI). Further changes to the OPI were made in 2017 to 

improve the quality of the measure. Unfortunately, this means that little historic data is available, the oldest 

quarterly measure of OPI is October 2014. 

Eurostat issues a Construction Cost Index, which has the advantage that it is available for the EU28 and has a 

relatively long history (earliest 1980, earliest UK reporting period 1993). This measure follows the same 

methodology as the OPI. 

The government deflator is a broad measure for the prices of all goods and services sold in an economy. The 

GDP deflator also includes the prices of investment goods, government services and exports, and excludes the 

price of UK imports. The wider coverage of the GDP deflator makes it more appropriate for deflating and 

inflating public expenditure series. The HMT Greenbook 2018 states that projects should use the GDP deflator 

to strip out inflation. 

The comparison of the three key indices discussed above (General Civil Engineering Cost, GDP Deflator, 

Construction Cost) is shown in Figure 1. The historic data show a gap between the three series, where the GDP 

deflator shows less inflation than the other indices. 
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FIGURE 1 COMPARISON OF THE BCIS GENERAL CIVIL ENGINEERING COST INDEX (GCECI), THE GDP DEFLATOR, AND THE 

EUROSTAT CONSTRUCTION COST INDEX (STS_COPI_Q), 1993=100 
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Figure 1 illustrates the timeseries of the different deflators. The gap between the different deflators is widening, 

because compound effects of small differences in the growth rates of inflation are amplified when the data are 

viewed with the reference index being this far in history. 

FIGURE 2 COMPARISON OF THE BCIS GENERAL CIVIL ENGINEERING COST INDEX (GCECI), THE GDP DEFLATOR, AND THE 

EUROSTAT CONSTRUCTION COST INDEX (STS_COPI_Q), AND THE ONS CONSTRUCTION OUTPUT PRICE INDEX, 2018=100
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Figure 2 shows the same time series as Figure 1 but baselined at 2018, i.e. 2018=100. The figure shows that the 

GDP deflator and the industry specific construction cost indices trail more closely between 2008-2018. 

The long running mean of the annual GDP deflator growth in the UK is around 2% p.a.; for construction cost 

this is the case between 2008-2018, while for the full data series, i.e. 1993-2018, the inflation is about 4% p.a. 

TABLE 1 COMPOUND ANNUAL GROWTH RATE OF GENERAL CIVIL ENGINEERING COST, CONSTRUCTION COST, AND 

GENERAL PRICE INFLATION (GDP DEFLATOR) FOR THE YEARS 1993-2018, 2008-2018, AND 2013-2018 

Mean annual change 

(CAGR) 

General Civil 

Engineering Cost 

Index 

Construction Cost 

Index 

GDP Deflator 

1993-2018 4.0% 3.9% 1.9% 

2008-2018 1.9% 2.0% 1.5% 

2013-2018 1.5% 1.8% 1.4% 

Figure 3 shows the difference of the inflation in civil engineering cost above and beyond the GDP deflator for 

the years 1992-2018. The difference does not follow any clear patterns. For example, economic recessions in 

the UK only happened between Q2 2008 and Q2 2009 during this period and in these two years civils cost 

inflation was higher and lower than the GDP deflator. 

FIGURE 3 DIFFERENCE BETWEEN CIVIL ENGINEERING COST INFLATION AND GDP DEFLATOR 
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Thus, for the construction of the Reference Classes the GDP Deflator has been used to turn nominal outlays 

and nominal forecasts into real-term forecasts. This is in line with HMT Greenbook suggests that projects use 

GDP Deflators to express nominal values in real-term values (the HMT Greenbook allows projects to plan with 

inflation above and beyond GDP deflator), which is between 2% and 3.5% depending on the length of the 

forecast period. 
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A Reference Class Forecast can be used if a project wants to forecast additional inflation above and beyond GDP 

deflators for the full range of available data 1992-2018). This Reference Class Curve is shown in Figure 4. The 

most likely scenario (P50 = 50% acceptable chance of unforeseen inflation) is an uplift of 2.3pp on top of the 

GDP deflator and at P80 the uplift is approximately 4pp. 

FIGURE 4 REFERENCE CLASS FORECAST FOR INFLATION UPLIFT NEEDED FOR THE GDP DEFLATOR FOR A GIVEN 

ACCEPTABLE CHANCE OF UNFORSEEN INFLATION 

REFERENCE CLASS FORECAST OF INFLATION BASED ON PAST UK 

PROJECTS 

The second approach to formulate a reference class forecast for the unanticipated inflation is based on 116 

projects from the UK. This reference class is based on the difference of 

Cost overrun in nominal terms – Cost overrun in real terms. 
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The cost overrun in nominal terms is calculated as 

Actual cost in nominal terms / Estimated cost in nominal terms. 

The cost overrun in real terms is calculated as 

Actual cost in real terms / Estimated cost in real terms. 

The difference in the overruns represents the additional optimism bias that stems from producing estimates in 

nominal terms above and beyond the optimism bias that is in the base cost estimate. 

For 116 UK projects the both nominal and real-terms cost overruns were available. Figure 5 shows the 

difference between the nominal and real-terms overruns for these projects. The P50 estimate is a 4pp 

additional uplift; the P80 estimate is a 10pp uplift. 

FIGURE 5 OPTIMISM BIAS OF INFLATION ESTIMATES IN UK PROJECTS (N=116) 
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Acceptable chance of overruns (%) 

TABLE 2 REFERENCE CLASS FORECAST FOR INFLATION 

Acceptable chance of 
overrun (%) 

Provision for unexpected 
inflation 

95% -4% 

90% -2% 

85% -2% 

80% 0% 
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75% 0% 

70% 2% 

65% 2% 

60% 3% 

55% 3% 

50% 4% 

45% 4% 

40% 5% 

35% 6% 

30% 7% 

25% 8% 

20% 10% 

15% 11% 

10% 12% 

5% 15% 

To illustrate how these figures could be used the following provides a worked example. A rail project estimates 

the base cost at GBP 250m in nominal terms, i.e. including inflation as per HMT Greenbook. Then on top of 

the base cost the project needs to add an uplift for cost overruns from the reference classes (see the main part of 

the report).  At FBC the uplift at P50 is 19% and for P80 the uplift is 60%. Thus, additional GBP 47.5m are 

required as Optimism Bias Uplift at P50 and GBP 150m are required at P80. The additional uplift for inflation 

is 4% at P50 and 10% at P80, thus GBP 10m and GBP 25m respectively (calculated on the base cost). In sum, 

the total uplift at P50 is GBP 57.5m and GBP 175m at P80, which brings the total adjusted estimate to 307.5m 

and 425m respectively. 

Most major construction projects limit the exposure to inflation, e.g. through contractual clauses that regulate 

price adjustments by specifying a specific index or negotiating a specific annual percentage adjustment. 

Therefore, most projects are only openly exposed to inflation prior to contracting, which explains also the 

difference in the two RCF approaches. Thus, we recommend the following: 

(1) If a project forecasts inflation only on the GDP deflators recommended in the Greenbook to establish 

a budget in nominal terms the risk of unforeseen inflation should be derived from the first RCF curve, 

which compare actual construction inflation against the GDP deflator. 

(2) If a project has limited exposure to inflation through specialist technical forecasts or commercial 

strategies the second RCF curve should be used, which compares real-terms and nominal forecasts. 
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