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Evidence at the  
Environment Agency 
Scientific research and analysis underpins everything the Environment Agency does. It 
helps us to understand and manage the environment effectively. Our own experts work 
with leading scientific organisations, universities and other parts of the Defra group to 
bring the best knowledge to bear on the environmental problems that we face now and 
in the future. Our scientific work is published as summaries and reports, freely available 
to all. 
 
This report is the result of research commissioned and funded by the Joint Flood and 
Coastal Erosion Risk Management Research and Development Programme. The Joint 
Programme is jointly overseen by Defra, the Environment Agency, Natural Resources 
Wales and the Welsh Government on behalf of all Risk Management Authorities in 
England and Wales:  
http://evidence.environment-agency.gov.uk/FCERM/en/Default/FCRM.aspx. 
 
You can find out more about our current science programmes at: 
https://www.gov.uk/government/organisations/environment-agency/about/research. 
 
If you have any comments or questions about this report or the Environment Agency’s 
other scientific work, please contact research@environment-agency.gov.uk. 

 
 
Professor Doug Wilson 
Director, Research, Analysis and Evaluation 

http://evidence.environment-agency.gov.uk/FCERM/en/Default/FCRM.aspx
https://www.gov.uk/government/organisations/environment-agency/about/research
mailto:research@environment-agency.gov.uk
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Executive summary 
This interim guidance aims to introduce practitioners to the concepts of non-stationary 
flood frequency analysis and guide them as to when and how they should do it, and 
how to interpret the results. 
 
The guidance has been written for analysing river flows as part of the appraisal of flood 
risk management schemes and is intended for use by experienced hydrologists familiar 
with the Flood Estimation Handbook methods. It could also be used by project 
managers involved in appraisal of flood alleviation schemes with some knowledge of 
flood hydrology, who need to learn more about issues of trend and non-stationarity. 
 
The guidance outlines important concepts including, stationarity, non-stationarity, trend 
testing, hypothesis testing, statistical distributions used to model UK flood frequency, 
and parameter estimation.  It goes on to explain the use of covariates (an observed 
variable used in a statistical model to help predict the main variable of interest) in non-
stationary flood frequency analysis, and how they can be applied in the England and 
Wales. 

The main focus of this report is to present practitioners with a step-by-step guide on 
how to carry out non-stationary flood frequency analysis, illustrated with examples in 3 
case studies. 
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1 Introduction 
 

1.1 What’s this document about? 

This interim guidance aims to introduce practitioners to the concepts of non-stationary 
flood frequency analysis and guide them as to when and how they should do it, and 
how to interpret the results. It illustrates the concepts with 3 case studies. 
The guidance has been written for analysing river flows as part of the appraisal of flood 
risk management schemes. It will be updated following feedback on its use and further 
developments in the underlying science.   
 

1.2 Who does this apply to? 

Experienced hydrologists familiar with the Flood Estimation Handbook methods, 
needing to find out more about trend and non-stationarity and how to allow for them in 
flood frequency analysis. 
 
Project managers involved in appraisal of flood alleviation schemes with some 
knowledge of flood hydrology, needing to learn more about issues of trend and non-
stationarity. 
 
You should apply this guidance: 
 

 in the appraisal of all projects submitting a short form business case or outline 
business case to the Environment Agency for assurance and approval after 1st 
July 2021.  Projects submitting before this date could also be assessed against 
this guidance to check that it would not lead to different decisions provided this 
would not unduly slow completion or add significantly to the cost.  

 

 to your FCERM strategy if you have not already submitted it to the Environment 
Agency for assurance and approval. For existing approved plans and strategies 
we would not normally expect this advice to be applied until the next review, 
unless specific investment projects within them are planned before this. In these 
cases, new project appraisals should adopt the new guidance. 
 

You should use this guidance to understand how and when non-stationarity should be 
included in the appraisal of FCERM projects schemes and strategies. This guidance 
should be used in conjunction with the full appraisal guidance available here. 
 

 

 

https://www.gov.uk/government/publications/flood-and-coastal-erosion-risk-management-appraisal-guidance
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2 Purpose of this guidance 
This interim guidance aims to introduce practitioners to the concepts of non-stationary 
flood frequency analysis and guide them as to when and how they should do it, and 
how to interpret the results. It illustrates the concepts with 3 case studies. 

The guidance has been written for experienced hydrologists to use in their analysis of 
river flows as part of the appraisal of flood risk management schemes. It will be 
updated following feedback on its use and further developments in the underlying 
science.   

2.1 Audience 

Read this guidance if you are:  

 a hydrologist familiar with the Flood Estimation Handbook methods, interested 
to find out more about trend and non-stationarity and how to allow for them in 
flood frequency analysis 

 a project manager with some knowledge of flood hydrology, needing to learn 
more about the issues 

 working on appraisal of capital schemes  

Flood frequency estimation is unavoidably a topic that involves statistics, because we 
are interested in the probability that floods will occur. Some of the concepts may be 
unfamiliar. This guidance keeps jargon to a minimum and the main terms used are 
referenced in the glossary. The science report explains the statistical concepts in more 
depth. 

2.2 What to expect 

This guidance introduces concepts and techniques that are widespread in academia 
but until recently have been applied very little in flood risk management. Section 3 
introduces some basic concepts, explaining what is meant by non-stationarity, what 
causes it and when to consider non-stationary analysis. Section 4 goes on to explain 
more concepts such as distributions, parameters, and covariates. It also contains some 
important material on how to understand flood probabilities in a non-stationary context 
and how to select statistical models. 

Section 5 provides a step-by step guide to non-stationary analysis. Read it alongside 
section 4. 

Three case studies that illustrate different aspects of non-stationary analysis are given 
in section 6. 

 

  



 

  

Figure 2-1 Process flow chart giving an overview of the steps to be followed 
during a flood estimation study where non-stationarity is a potential issue. The 

numbers in bold refer to sections of this guidance. 

 

 

 

  

Plot time series of 

peak flows and 

examine

Test for trend and 

change points

Check for any 

hydrometric 

reasons for trend

Fix hydrometric 

issues or discard 

portions of data

Look into causes 

such as land use 

change

Fit non-stationary 

models with time 

as covariate

Is there scope for 

considering 

physical 

covariates?

Obtain physical 

covariates

Fit non-stationary 

models with 

physical covariates

Select preferred 

model

No

Yes

Extract flood 

frequency 

estimates

Compare with FEH 

analysis and select 

preferred approach 

Adjust for climate 

change if 

necessary

3.4

5.4

5.6

5.4

5.85.7

5.2 4.6

3.3



 Development of interim national guidance on non-stationary fluvial flood frequency estimation – practitioner guidance  

 4 

2.3 Related documents 

There are 2 main documents that support this guidance, listed below.  They’re the first 
place that you should look if you have any questions on either the theoretical or the 
practical aspects of non-stationary flood frequency estimation. This guidance was 
produced as part of a project (Development of interim national guidance on non-
stationary fluvial flood frequency estimation), which also developed methods for non-
stationary flood frequency estimation, carried out tests for trend, developed a software 
package and applied non-stationary methods at a national scale.  

2.3.1 Science report 

The report, ‘Development of interim national guidance on non-stationary fluvial flood 
frequency estimation, gives the scientific background to the methods that are 
summarised in this guidance. Refer to the report for more information on where the 
methods come from, how they were developed, how they relate to wider scientific 
literature, and for information on options that were considered but are not yet 
recommended for implementation. 

The report also includes an analysis of trend across the gauging station network in 
England and Wales, and nationwide results from applying non-stationary flood 
frequency analysis. 

2.3.2 User guide for the R package, nonstat 

We have developed tools to allow hydrologists to easily carry out trend and change 
point detection and non-stationary flood frequency analysis using annual maximum 
flow data. 

These tools are implemented using R. R is a freely-available programming language 
and environment for statistical computing and graphics (see https://www.r-
project.org/about.html). R packages are collections of R functions, data, and compiled 
code in a well-defined format that make data analysis more user-friendly. 

The user guide explains how to use the R package, called nonstat, to implement the 
methods outlined in this guidance. 

2.3.3 In summary 

If you want to ask ‘Why?’, refer to the science summary report. 

If you want to ask ‘How?’, refer to the user guide for the nonstat package. 

 

https://www.r-project.org/about.html
https://www.r-project.org/about.html


 

  

3 Stationarity and its absence 

3.1 Definitions 

3.1.1 Stationarity 

If the processes that produce floods are stationary, we would expect that the probability 
of a particular flow occurring would not change over time.  The relevant time scale is 
usually a few decades, since this is the typical length of river flow records and the 
typical design life of flood alleviation schemes. We would expect short-term fluctuations 
in flood probability, for example due to seasonal variations.  

Since we do not have perfect knowledge of flood-generating processes, we adopt a 
functional definition of stationarity, which describes a data set rather than the 
underlying physical processes. A time series of flood flows is stationary if its statistical 
properties do not change over the relevant timescale. 

3.1.2 Non-stationarity 

If the statistical properties of a data set do change over the relevant timescale, you can 
regard the data set as non-stationary.   

For example, the mean, the median or the variance of annual maximum flows might 
change during the period of record.   

It is normally necessary to use a statistical significance test, or a range of tests, to 
diagnose non-stationarity. 

3.1.3 Trend 

Trend is closely related to the above functional definition of non-stationarity. Trend is 
often thought of as a progressive change in the size of a variable (“floods are getting 
bigger”). This is one example of non-stationarity. Another might be an increase in the 
variability of floods, without any change in their average (“big floods are getting bigger 
and small floods are getting smaller”). 

Is there a trend in Figure 3-1? This (made up) time series of annual maximum flows 
shows no increase in the mean over the period of record. A linear trend line fitted by 
regression is horizontal. Yet the variability of floods is increasing. The 3 largest floods 
all occur towards the end of the record. So there appears to be a trend in the variance. 
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Figure 3-1 Made up time series of annual maximum flows 

 

 

 

3.2 Assumption of stationarity 

The Flood Estimation Handbook (FEH) methods assume stationarity in both rainfall 
and flood flows. This is known as the ‘identically distributed’ assumption: each annual 
maximum rainfall or flow at a particular site is assumed to come from an identical 
statistical distribution. 

FEH methods assume that observations of past flood events can represent the 
behaviour of future events. They are normally applied together with an allowance for 
the potential impacts of climate change, which are assumed to occur in the future. 

If this assumption is not correct, it calls into question the results of flood frequency 
estimation. 

 

3.3 Causes of non-stationarity in flood flows 

3.3.1 Climate, land use or other 

Non-stationarity in flood time series may occur due to climatic change or climate 
variability. Changes within a catchment such as urbanisation, deforestation and 
changes in agricultural practices may also result in non-stationary flood series. Most of 
this guidance applies equally to non-stationarity from any of these causes. There has 
been little research on the causes of non-stationarity in UK flood data. This guidance 
does not cover the important issue of trend attribution. 

Other causes of non-stationarity include construction of reservoirs or flood alleviation 
schemes, which may include providing flood storage. These are likely to lead to sudden 
changes in flood flows (step changes), usually reductions. The methods in this 
guidance don’t apply in these cases.  
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3.3.2 Climate change: past, present and future 

Our current limited knowledge of the causes of past trends in flooding limits our ability 
to estimate future flows. Until recently, allowances for the impact of climate change on 
floods have treated climate change as if it were purely a future phenomenon. The 
procedure has been to make an estimate of the present-day design flow (or rainfall), 
which is assumed to equally apply to past conditions, and then to adjust it for potential 
future conditions.  

Climate change allowances are based on a baseline period of 1961 to 1990. Although 
this is now receding into history, the way in which allowances are applied assumes that 
the entire period spanned of hydrometric records, up to the present day, can be treated 
as the baseline. 

If some of the observed trends in flooding are due to changes in climate, then it is no 
longer valid to treat the entire observed period as a constant baseline. The implication 
would be that some of the expected climate change impacts on flooding have already 
occurred. This may well be the case, for example, given that climate change 
allowances predict an increase in peak flows by the 2020s compared with 1961 to 
1990. If this is correct, it may then be valid to apply a reduced allowance for the 
impacts of climate change in future decades.  

The difficulty is that we are not certain what is causing the trends. Even where trends 
are seen in rainfall as well as flow, it is difficult to know whether they are due to climate 
change caused by human activity, which is likely to continue, or natural climate 
variability, which can change direction. 

For this reason, this guidance does not offer a definitive way of estimating future flood 
frequency under non-stationary conditions. Instead, it suggests 2 approaches to 
consider. 

 

3.4 Trend tests 

3.4.1 Data checking 

The longer the flow record, the more confident you can be in the results of a trend test. 
As a general guide, 40 years should be a minimum length to consider. Even with this 
record length, it is very important to realise that a trend that looks significant and 
convincing might disappear or even reverse after another decade or so. 

Some apparent trends in flood flow data can be misleading.  You should check that any 
trends are not due to hydrometric issues such as changes in flow measurement 
structures or in channel geometry that have not been accounted for in a rating 
equation. 

You should check whether any step changes can be explained by interventions such 
as construction of reservoirs or flood alleviation schemes. If so, it is normally best to 
ignore the pre-change part of the record. 
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3.4.2 Visual assessment 

Start any assessment of trend by plotting a time series of the AMAX flows. Is there an 
apparent trend? Does it affect only the highest floods or all floods? Is there any obvious 
hypothesis for what has caused the trend? 

3.4.3 Hypothesis testing 

In statistical trend testing the null hypothesis, labelled H0, is that there is no trend.  

The tests output a p-value, or probability, and if this is less than a chosen significance 
level then H0 is rejected. The conventional approach is then to (provisionally) accept a 
single alternative hypothesis H1, that is, that a statistically significant trend exists. It is 
common to adopt a 0.05 significance level, which means that if p<0.05, there is less 
than a 5% chance of obtaining a trend at least as extreme as the one in your data set, 
if the null hypothesis is true. This formal but rather abstract concept is sometimes 
informally interpreted as meaning there is a 95% probability that trend is present, 
although this interpretation is rather loose.  

It is important to be aware that sometimes your conclusion from a significance test can 
be wrong. You might wrongly:  

 reject the null hypothesis, that is, that there is no trend present, but you 
conclude that there is a trend. This type of error is more likely if you choose a 
high significance level 

 accept the null hypothesis, that is, although there is a trend you conclude that 
there is not. This type of error is more likely if you choose a low significance 
level. If you are concerned about missing trends, consider increasing the 
significance level, for example to 0.10. 

3.4.4 Non-parametric test for trend 

The Mann-Kendall test is a very widely used method for testing for consistent trend in a 
data set. It is non-parametric, which means that it makes no assumption about the 
statistical distribution of the data. The test is not dependent on the magnitude of the 
data, but is based on the proportion of increases and decreases between pairs of 
values. A consequence is that it tests the statistical significance of the trend but does 
not directly measure the strength of the trend. 

You can apply the Mann-Kendall test to a station or a group of stations using the 
MK.test function in the R package, nonstat. 

The test outputs a score, labelled Z. Positive values of Z indicate increasing trends, 
while negative ones refer to decreasing trends. Z scores are standardised, so you can 
compare them between different stations or different periods of record. If the absolute 
value of Z exceeds 1.96, the trend is statistically significant at a 0.05 significance level. 
If it exceeds 1.645, the trend is significant at a 0.10 significance level. 

The Mann-Kendall test assumes that each data value is independent of the others. 
This assumption may not be made if there are flood-rich and flood-poor periods, or on 
some groundwater-dominated catchments where high baseflow persists for more than 
one year. Refer to the science report for a way of overcoming this limitation. 

The science report presents a nationwide analysis of trend, applying the Mann-Kendall 
test in a multi-temporal fashion. This selects numerous subsets of each annual 
maximum flow series, selecting every reasonable combination of start and end years. 



 

  

The results indicate how sensitive trend test results are to the period of record available 
for analysis. 

3.4.5 Test for change point: Pettitt 

Pettitt’s test is designed to detect a sudden change in the average of a time series. It 
outputs the time of the change as well as its statistical significance level, in the form of 
a p-value. It is another non-parametric test. The null hypothesis H0 is that there is no 
difference between the means of the earlier and later portions of the AMAX flow series. 
Refer to the section above on hypothesis testing for guidance on interpreting p values. 

The Pettitt test is included in the R package, nonstat: the Pettitt.test function. 

3.4.6 Test for change points: PELT 

One limitation of Pettitt's test is that it can only detect a single change point. It can also 
classify some gradual trends as sudden changes. An alternative test is PELT: Pruned 
Exact Linear Time. See Killick and others (2012), listed in ‘Related documents’. PELT 
tries to find the optimal segmentation in a time series. It can detect one or more change 
in the mean, the variance or both. 

PELT, as implemented in the nonstat package PELT.test function, provides the 
following results for each change point found: 

1. year that the change occurred 

2. direction of change in the mean of the time series (positive or negative) 

3. the arithmetic difference between the means before and after the change point 

4. the percentage difference in the means 

5. the same as 2 to 4 above, for the change in the standard deviation 

The test does not output significance levels for the change points. 

The PELT test requires an assumption that the data follow a known distributional form. 
In the nonstat package, the AMAX flows are assumed to follow a log-normal 
distribution. A minimum segment length is required, which prevents false positive 
changes at short timescales. This is set to 10 years, which means that the PELT.test 
function will not detect any change points within 10 years of the start or end of the 
AMAX series. This means that the record length must be at least 20 years (twice the 
minimum segment length). 

3.4.7 What to do if you find a step change 

See if you can identify a physical cause for the change. Look into the hydrometric 
history of the gauging station. Seek information on any sudden changes in the 
catchment. Refer to ‘Data checking’ above. 

If you cannot find a cause, investigate whether the change takes place at a time when 
there was a known shift between a flood-poor and flood-rich period, either locally or 
nationally. For instance, some AMAX records show step changes in the late 1990s, 
with the Easter 1998 or autumn 2000 floods marking the end of a long flood-poor 
period.  
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3.4.8 Test for differences between different segments of a time 
series 

Another statistical test that can help in testing for non-stationarity is to predetermine a 
potential split point in the data set, for example by dividing the time series into 2 equal 
halves. There are then 2 statistical tests that can be applied: 

 Mann-Whitney U test, for significance of changes between the distributions of 
AMAX flows in the earlier and later periods. The test determines whether 2 
independent samples were selected from populations having the same 
distribution. The null hypothesis is that the distributions of the 2 populations are 
identical  

 Brown-Forsythe test (Brown and Forsythe, 1974), for significance of changes 
between the variances of AMAX flows in the earlier and later periods. The null 
hypothesis is that the samples of AMAX flows are drawn from populations with 
equal variance 

Both tests output a statistical significance level, in the form of a p-value. They are not 
included in the R package but can be implemented in R using other code. 

3.4.9 Parametric tests for trend 

The tests described above do not give a full picture of the stationarity or non-
stationarity characteristics of a data set. For instance, the Mann-Kendall test may not 
detect a significant trend when the variance of floods is increasing rather than their 
mean. This is the case for the data set in Figure 3-1, no trend is detected at a 0.05 
significance level.  

Parametric tests are a useful complement because they include information on the 
magnitude of floods rather than only their relative rankings. You can view the fitting of a 
non-stationary flood frequency distribution as a parametric test for trend: if the data are 
fitted better by a non-stationary distribution than a stationary distribution, this is an 
indication that there may be some type of trend present. 

In addition, the strength of a trend can be quantified using an approach known as Thiel-
Sen. This estimates the slope of the trend line. Refer to the science report for results of 
the Thiel-Sen approach applied to flood peak series throughout England and Wales. 
This method is not included in the R package. 

3.4.10 Increasing or decreasing trend? 

Much of the interest in non-stationarity focuses on increasing trends. But the methods 
described in this guidance equally apply to decreasing trends.  

If you detect a significant decreasing trend, it would be wise to try and investigate its 
possible causes. One hypothesis would be that floods have reduced as a result of 
constructing reservoirs, flood storage schemes or natural flood management 
measures. In other cases, the trend may be due to natural climatic cycles. 

  



 

  

3.5 When to consider non-stationary analysis 

The guidance is currently intended to be used only in the planning and appraisal of 
flood risk management schemes. Non-stationary methods may in future be approved 
for other aspects of the Environment Agency’s work.   

The methods described in this guidance can be applied only at gauged sites. There 
has been research into applying non-stationary analysis across a pooling group, but 
this has not yet developed a method recommended to be generally applied at 
ungauged sites. Use your judgement to consider when it is appropriate to transfer 
analysis at a gauged location to an ungauged one. 

Visual assessment and the Mann-Kendall test are a useful initial screening step. 
Neither are guaranteed to detect non-stationarity. So, if you have other reasons to 
suspect non-stationarity, consider applying non-stationary flood frequency analysis. 

If you carry out non-stationary analysis, always do so alongside an equivalent 
stationary analysis. Use the ways of selecting statistical models explained in this 
guidance to help decide which type of analysis is preferable. 

 

In summary, consider non-stationary analysis: 

 for the planning and appraisal of flood risk management schemes 

 when there is a flow gauging station not far from your sites of interest 

 when you think relevant data sets may be non-stationary 

However, do not abandon stationarity automatically. 
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4 Concepts of non-stationary 
flood frequency analysis 

This chapter introduces the concepts. Refer to chapter 5 for information on how to put 
them into practice. 

4.1 Distributions 

4.1.1 Distributions used in UK flood frequency 

Flood frequency analysis involves fitting a statistical distribution to flood peak data. Out 
of the many ‘extreme value’ distributions available, methods used in the UK (the FEH) 
most commonly fit the generalised logistic (GLO) or generalised extreme value (GEV) 
distributions, or simpler versions of these. 

The preferred distribution is then adopted as the estimate of the flood frequency curve. 

The fitted distribution is sometimes referred to as a statistical model. 

4.1.2 Single-site or pooled? 

The non-stationary methods described in this guide can be applied only at an individual 
gauging station.  

Although pooled application of non-stationary methods has been explored, it is not yet 
recommended for use by UK practitioners. 

 

4.2 Parameters and how they might vary  

4.2.1 Number of parameters 

The GLO and GEV distributions both have 3 parameters: the location, scale and 
shape. The simpler 2-parameter versions of these distributions are known as the 
logistic and Gumbel distributions. 

4.2.2 Non-stationary parameters 

In conventional flood frequency analysis, for a particular gauging station, the 
parameters are thought of as fixed quantities that we are trying to estimate. 

In non-stationary analysis, one or more of the parameters is not fixed. It might be 
changing over time, or changing in response to changes in some variable other than 
flow. 

The nonstat package enables you to fit 4 types of statistical model: 

 stationary 



 

  

 non-stationary, with the location parameter varying (that is, the average flood 
magnitude is changing) 

 non-stationary, with the scale parameter varying (that is, the variability of flood 
magnitudes is changing) 

 non-stationary, with the location and scale parameters varying 

In all cases, the shape parameter is assumed to be constant because there is too 
much error in estimating it to allow a covariate to be included. 

 

4.3 Covariates: temporal and physical 

4.3.1 Time as a covariate 

If a parameter of the distribution of AMAX flows is varying, it must be varying in 
accordance with some quantity other than river flow. This quantity is known as a 
covariate.  

Most simply, the covariate is time, usually expressed in terms of the water year. For 
instance, the location parameter of the distribution might increase as time goes on. 

4.3.2 Physical covariates in addition to time 

Physical covariates may help remove some of the year-to-year variability in AMAX 
flows, allowing time-based trends to be better identified and better fit of the distribution. 
Examples of potentially relevant physical covariates include: 

 annual or seasonal rainfall over the catchment 

 temperature 

 large-scale indices of atmospheric circulation, such as the North Atlantic 
Oscillation (NAO) or East Atlantic pattern (EA) 

 urban extent for the catchment 

If you include physical covariates alongside time in fitting a statistical model, it is 
preferable that the physical covariates themselves have no time trend. If they do have 
a trend, it needs to be removed first to reduce correlation between the covariates. The 
nonstat package can do this detrending. 

4.3.3 Physical covariates instead of time 

Time itself has no physical influence on flooding. As a covariate, time is merely a 
substitute for some changing physical quantity that is influencing floods.   

A model that includes only physical covariates can provide a more physically 
meaningful description of non-stationarity. 

Within this approach, to model a non-stationary flood series, it is preferable to include 
at least one physical covariate that exhibits some easily modelled trend over time. An 
example might be the extent of urbanisation in a catchment, which can be typically 
expected to show a consistent increase over time. Additionally, urbanisation can be 
reasonably predicted into the future under a range of scenarios.   
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A risk associated with this approach is confusing correlation with causation. In other 
words, there is a temptation to think that because floods are correlated with some 
covariate, there is a physical process that links the covariate with river flow. In principle, 
it would be possible to include any covariate with a trend, whether or not it had any 
physical connection with the processes that cause floods. For example, flood 
magnitudes might be correlated with mobile phone ownership, since both have tended 
to increase over the last 20 years. 

This could lead to a false sense of confidence about the ability to estimate the future 
evolution of the flood frequency curve. We might end up with a covariate for which we 
can confidently predict future values, but which is no more useful than the water year 
as a way of explaining observed trends in flood magnitudes. Therefore, it would be vital 
to demonstrate a strong causal relationship, not just a statistical association, for 
physical covariates if you were going to use them for future predictions. In practice, this 
is difficult to do without an in-depth investigation, for instance using rainfall-run-off 
modelling. 

The case study on the River Eden in section 6.1 provides an example of using physical 
covariates. 

 

4.4 Understanding probabilities and return periods in 
a non-stationary context 

4.4.1 Return period, AEP and encounter probability 

Return period (T) is commonly used by practitioners, despite official recommendations 
to express flood rarity in different terms.   

The reciprocal of the return period (on the annual maximum scale), 1/T, is the annual 
exceedance probability, AEP.  

Both return period and AEP are used in this guidance. Outputs from the R package are 
expressed in terms of return period. 

In practice, it can be more useful to express the exceedance probability associated with 
a period of time longer than a year. For example, you may be interested in the 
probability of a flood defence scheme being overtopped during its design life, or the 
probability of a housing development flooding during a 25-year mortgage term. This 
quantity is known as the encounter probability. It is the chance of encountering a 
particular flood flow (or higher) during a particular period. 

You can calculate the encounter probability P using: 

𝑃 = 1 − (1 − 1
𝑇⁄ )

𝑁
     Equation 1 

where T is the return period of the flood and N is the length of the period, both 
expressed in years. 

Refer to Sayers (2016) for more information. 

 



 

  

4.4.2 Non-stationary return periods and the integrated flow 
estimate 

Return period is an awkward concept under non-stationary conditions, when the 
average interval between floods of a particular size might be changing over time. When 
modelling non-stationarity using time as a covariate, you can think of the return period 
as the reciprocal of the AEP at a particular point in time. 

In non-stationary conditions, the encounter probability becomes a more valuable 
concept. In this guidance, the integrated flow estimate is the flood flow associated with 
a particular encounter probability (see section 5.6). In non-stationary conditions you 
need to specify not just the length of the period (N) but also its timing. For instance, you 
could say “An integrated flow estimate of X m3/s has an encounter probability P over 
the 20-year period starting in 1995”.  See  

Figure 4-1 for an illustration. 

The same terminology can also be used for future periods, although it is more 
challenging to have confidence in the results. 

When including physical covariates, there are extra complications because the AEP of 
a particular flow varies not only with time but also with the physical covariates. 
However, the concept of the integrated flow estimate remains valid; refer to section 5.6. 

 

Figure 4-1 Illustrating encounter probability and integrated flow estimates 
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Figure 4-1 presents results for a station with a record length of 58 years. Integrated 
flow estimates have been calculated from a non-stationary model and output by the R 
package, for a range of return periods. They represent flows expected over the period 
of record. The return periods are converted to encounter probabilities using Equation 1, 
applied in Excel. 

 

Figure 4-1 shows how encounter probability and flow are related to each other. The 
plot shows both stationary and non-stationary estimates, along with the confidence 
limits for the latter (another output from the package). The observed annual maximum 
flows are plotted on the y axis for reference.  

 A flow of 100 m3/s has an encounter probability of 0.44 during the 58-year period, 
according to the non-stationary results. If you wanted to design a structure that had 
only a 10% probability of being overtopped during the period, you could look up the 
flow with an encounter probability of 0.1, which is just under 200 m3/s according to the 
non-stationary model. 

For this example, the flows from the stationary analysis are higher than from the non-
stationary analysis. This will not always be the case. 

This type of plot differs from the conventional flood frequency curve which plots flow 
against return period, or AEP, and typically also shows the annual maximum flows, with 
their probabilities estimated using a plotting position. There are 2 issues with showing 
non-stationary estimates on a conventional flood frequency curve: 

 The integrated flow estimates are defined relative to a period of time which is 
typically longer than one year. It is possible to relate them to an instantaneous 
AEP or return period, as noted above, which enables a more conventional plot, 
but it is open to misinterpretation. This issue is illustrated in the case studies. 

 The annual maximum flows cannot be readily plotted on the same probability 
scale because the probability of a given flow is typically changing from year to 
year. 

The res.phys.cov function in the nonstat package is able to output encounter 
probability plots similar to that shown above. 

 

4.5 Ways of fitting distributions 

4.5.1 L-moments 

FEH methods use L-moments to fit extreme value distributions. These are not readily 
adapted to work in non-stationary conditions. 

4.5.2 Maximum likelihood 

Non-stationary distributions can be fitted using maximum likelihood estimation (MLE). 
One drawback of MLE, and a reason why it was not used in the FEH, is that it requires 
a numerical optimisation that does not always converge to a solution. You may 
occasionally find that MLE does not give an answer for a particular data set. 

  



 

  

4.6 Ways of selecting between rival models 

The MLE method can estimate the parameters of a particular statistical model, but in 
non-stationary flood frequency analysis there can be a large variety of candidate 
models to choose from. Even if there is only one covariate, there is a need to choose 
between models in which only the location, only the scale, both or neither vary. If there 
are several potential covariates the number of candidate models can grow rapidly. 
Which family of extreme value distributions to fit also needs to be considered. 

There are many helpful ways of judging model quality, listed below. The first 3 
approaches are statistical measures. They often, but not always, agree with each other 
in which models they select. 

4.6.1 Likelihood ratio testing 

A likelihood ratio test assesses which of a pair of statistical models (one more complex 
than the other) is the better fit. 

It is a preferred approach when comparing a small number of candidate models, when 
the likelihood ratio can be calculated for each nested pair of models. It is impractical 
when comparing hundreds, which can be the case when several covariates are being 
considered. This has been implemented in the nonstat package to use when only time 
is a covariate (the fit.time function). 

The package indicates which model is preferred according to the likelihood ratio test. 
No numerical output from the test is provided by the code. 

4.6.2 AIC (Akaike information criterion) 

The AIC establishes a trade-off between the goodness of fit and the simplicity of the 
model, measured by the number of parameters. It can be readily compared across a 
large number of candidate models, the lowest AIC indicating the preferred model. The 
AIC values themselves have no absolute meaning, but the model with lowest AIC of a 
group of models fit to the same data will be that which achieves the best trade-off. AIC 
is outputted by the nonstat package for each fitted model. 

4.6.3 BIC (Bayesian information criterion)  

This is similar to AIC, but BIC gives more weight than AIC to model simplicity. In 

calculating AIC, the penalty for the number of parameters 𝑘 is 2𝑘; for the BIC, the 
penalty is 𝑙𝑛(𝑛)𝑘 where 𝑛 is the sample size, so if 𝑛 > 8 then the penalty for a more 
complicated model is greater and so there is a preference for simpler models. BIC is 
also outputted by the nonstat package. 

If in doubt, you are recommended to prefer BIC over AIC because there are 
advantages in fitting simpler models. 

4.6.4 Hydrological reasoning 

It is important that the statistical model makes physical sense. For instance, if rainfall is 
included as a covariate, it should act to increase one or more of the distribution 
parameters, so that higher rainfall is associated with higher peak flows.   

Another consideration is that the covariates should not be too correlated with each 
other. This should not be a concern if you include only one physical covariate at a time, 
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along with water year, in the models that you fit. If the physical covariate is correlated 
with time, this effect will be removed automatically by the package if the default setting 
to detrend the data based on the time covariate has been used. If you try to fit models 
with several physical covariates, first check for cross-correlations. Calculate a 
correlation coefficient for each pair of covariate time series in Excel or R, for instance.  

4.6.5 Consistency of model form across locations 

A consistent choice of covariates and type of relationship between covariates and 
parameters is expected for nearby and similar catchments, and particularly for gauges 
on the same river. For example, if all neighbouring gauges have a significant trend in 
the location parameter then it may be a good idea to include a trend in the location 
parameter, even if measures such as likelihood ratios or BIC indicate that models with 
a fixed location parameter are preferable. 

4.6.6 Visual inspection of model fit plotted on probability-
probability (P-P) and quantile-quantile1 (Q-Q) plots 

Refer to the science report for a more formal explanation of what P-P and Q-Q plots 
show. Together they are known as diagnostic plots.  

The P-P plot compares the following 2 quantities, calculated for each annual maximum 
flow in the data set: 

a) the non-exceedance probability of the flow, estimated from the statistical model 

b) an empirical estimate of the probability made using a plotting position formula, 
which equally spaces the points along the x axis between 0 and 1 

The Q-Q plot compares the following, again calculated for each annual maximum flow: 

a) the flow estimated using the statistical model from the empirical probability at 
step (b) above 

b) the measured flow 

A well-fitting model will have diagnostic plots where the points lie close to a diagonal 
line. These indicate that the modelled probabilities and quantiles (flows) match their 
empirical equivalents closely. The P-P and Q-Q plot essentially contain the same 
information, but expressed on a different scale, so what looks like a reasonable fit on 
one scale may look poor on the other. In general, a good fit throughout the whole 
distribution may be preferable to having a very good fit for some points but a poor fit for 
others, particularly if the poor fit is in the higher values that are of most interest when 
considering extreme flows. The Q-Q plots can be useful to reveal where any poor fit 
occurs in the distribution (it may also highlight if there is a single outlying point which 
needs investigating for a potential data quality issue).  

You can find example P-P and Q-Q plots in the second case study, section 6.2. 

These visual inspections are feasible when a small number of candidate models is 
being compared. For example, you may find them useful to help choose between the 
GEV and GLO distributions. They are useful for seeing when models have not fitted 
well, so it is worth checking the plots for your selected model. 

                                                           
1 A quantile is a statistical term for an estimate of a variable made for a particular probability 

 



 

  

4.6.7 Confidence intervals 

Compare the confidence intervals of the various fitted models. All other things being 
equal, give preference to models with narrower confidence intervals, since their results 
are more certain. Refer to the next section for more information.  

4.6.8 Visual inspection of the flow estimates in comparison with 
the recorded flood peak data 

This is the final check: do the model outputs look sensible? The nonstat package 
produces plots of the flow estimates superimposed on a time series of the annual 
maximum flow series to help you judge the sensibility of the outputs.   

It is often interesting to examine the exceedance probability of the largest flood(s) that 
have been observed. This judgment can be conceptually more difficult in a non-
stationary setting, where a flood that occurred in a particular year might have a different 
exceedance probability if it occurred earlier in the record, or in a year in which physical 
covariates such as annual rainfall or NAO were different. 

 

4.7 Uncertainty 

4.7.1 Confidence intervals 

Uncertainty can be quantified using confidence intervals. The 95% confidence interval 
is the range within which we are 95% confident that the true answer lies. If we want a 
higher level of confidence, such as 99%, then we need to use a wider range.  

4.7.2 Why consider uncertainty? 

It is helpful to be able to quantify the uncertainty in flood frequency estimates so that 
we can measure whether it can be reduced, for example, by using a different method 
or by incorporating more data.  

It is important to think about the implications that the uncertainty has on the output or 
outcome of a study. If the range of uncertainty has a significant impact on a decision 
that needs to be taken, that should act as a prompt to seek ways of reducing the 
uncertainty.  

Non-stationary models of flood frequency are more complex than stationary models, 
with more parameters to fit, and so their results tend to have wider confidence 
intervals. In brief, there can be more scope for a non-stationary model to give an 
inaccurate answer even if statistical measures judge it to be the best fit to the data. 

The case study on the River Kennal in section 6.2 has an example of calculating 
confidence limits and using them to help select a preferred model. 
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5 How to carry out non-
stationary analysis: a step-
by-step guide 

5.1 General comment 

Remember to refer to the nonstat package user guide for instructions on how to use 
the package. It covers issues such as the required formats for input data and how to 
understand the inputs and outputs of each function. To help with cross-referencing, this 
practitioner guidance mentions some function names in the package, which are given 
in bold. 

5.2 Data needed 

5.2.1 Annual maximum flows  

For each gauging station you need an annual maximum series in .am format, as used 
by the National River Flow Archive. 

5.2.2 Physical covariates 

You can attempt to fit a non-stationary model using any variables as covariates. Refer 
to section 4.3 for some recommended covariates. You need to provide a covariate 
value to pair up with each annual maximum flow. 

Useful sources of data for covariates include: 

 the Centre for Ecology and Hydrology Gridded Estimates of Areal Rainfall 
(CEH-GEAR) dataset2, which provides a 1 km grid of daily rainfalls from 1890 to 
the present day. Catchment-average time series of rainfall for all NRFA gauges 
are available from the NRFA website. From these, you can calculate seasonal 
or annual totals corresponding to the water year in which each annual 
maximum flow is recorded 

 the National Oceanic and Atmospheric Administration (NOAA) website3 for 
monthly values of indices of atmospheric circulation dating back to 1950. You 
can calculate seasonal or annual averages from the monthly figures. Use water 
years for compatibility with the way annual maximum flows are extracted 

 historical maps or digital data sets from which you can estimate how the urban 
coverage has evolved during the period of record 

                                                           
2 https://eip.ceh.ac.uk/rainfall 
 
3 https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml 

 

 

https://eip.ceh.ac.uk/rainfall
https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml


 

  

5.2.3 Transforming covariate data 

It is good statistical practice to transform covariate data sets so that they are all on the 
same scale before they are included in a non-stationary analysis. To do this, first 
calculate the mean and standard deviation of the observed covariate values. Then 
subtract the mean from each observation and divide the result by the standard 
deviation. The fit.time function in the nonstat package carries out this transformation 
automatically for the time covariate. Users need to carry it out when supplying any 
physical covariate data. 

 

5.3 Choosing a distribution 

5.3.1 GLO or GEV? 

The nonstat package can fit both the GEV and GLO distributions. To help manage the 
complexity of the non-stationary analysis, it can be helpful to select between these 
distributions on the basis of a stationary analysis, and then carry out the non-stationary 
analysis using only one distribution. 

Try fitting the GEV and GLO distributions and compare the P-P and Q-Q plots (see 
section 4.6). Check for any errors or warnings, which tend to be more common for the 
GLO distribution. If all other things are equal you may want to choose the GLO since 
on average this has been found to give a better fit to flood peak data in the UK. 

Refer to the River Kennal case study (section 6.2) for an example of selecting the 
distribution. 

 

5.4 Fitting candidate models 

5.4.1 Time as a covariate 

With time as a covariate, for a particular distribution there are 4 candidate models that 
can be fitted: 

 stationary 

 location varying with time 

 scale varying with time 

 location and scale varying with time 

All 4 are fitted at the same time by the fit.time function in the nonstat package. 

5.4.2 Physical covariates: all combinations (Option 1) 

With more than one potential covariate, the number of candidate models increases 
rapidly. One approach is to examine all possible combinations of covariates, for each of 
the location and scale parameters. There can be thousands of combinations, if there 
are many covariates. The fit.phys.cov function in the package can fit these 
combinations for up to 7 covariates. One drawback of this approach, apart from the 
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time taken for the calculations, is the possibility that the models which are judged 
statistically to have the best fit are excessively complex, with too many covariates to be 
physically interpretable.  

5.4.3 Physical covariates: one plus time (Option 2) 

A simpler approach is to allow just one covariate per model parameter, or 2 covariates 
if one of them is time. This limits the number of combinations and avoids selecting 
excessively complex models. The combinations included in Option 2 include those that 
use only time as covariates, so it is possible that the preferred model will end up being 
one that has no physical covariates, or indeed a stationary model. 

5.4.4 Physical covariates: one on its own (Option 3) 

Simpler again is to allow only one covariate per model parameter.  Option 3 fits models 
that use each covariate on its own. Within this option there cannot be a different 
covariate for the location and scale parameters. 

 

5.5 Choosing a preferred model 

Consider all of the approaches described in section 4.6, if feasible and applicable, 
when selecting models. Some will not be feasible if you are comparing a large number 
of candidate models.  

Remember always to consider the stationary model (which is always included in the 
model combinations fitted by the nonstat package) alongside non-stationary options. 

 

5.6 Extracting results from non-stationary analysis 

5.6.1 Time as a covariate 

When you model non-stationarity using time as a covariate, the design flow estimates 
will be changing steadily over time (Figure 5-1). The fit.time function outputs a table of 
results with a set of flow estimates for each year of the observed record. These results 
are known as conditional flow estimates. For instance, the conditional estimate for 
2015 is the expected flow under the (clearly unrealistic) conditions that the year is 
always 2015. 

Figure 5-1 illustrates conditional flow estimates based on only time as a covariate. The 
symbols show the conditional flow estimate for each year of record at an example 
station, for 2 values of AEP. There is a time trend in the location parameter, which 
manifests itself as an increasing trend in the conditional estimates. There is also a 
trend in the scale parameter, manifested as an increase in the ratio between the 1% 
and 50% flow estimates.   

The stationary flow estimates are included for comparison. 

 

  



 

  

Figure 5-1 Illustrating conditional flow estimates based on only time as a 
covariate 

 

 

If you are estimating the return period of an observed flood: 

The return period or probability of a particular event is not a straightforward concept 
under non-stationary conditions.  The same event may have a different probability of 
occurring nowadays than it did a few years ago.   

Look at the conditional flow estimates for the water year when the flood occurred. 
Compare the estimates with the observed peak flow of the flood to estimate its 
probability of occurrence in the year when it occurred. There is an example of this in 
the case study on the River Kennal. 

You can also look at conditional flow estimates for other years to estimate the 
probability of the same flood occurring nowadays, or at other times.  

If you are estimating flood frequency in present-day conditions: 

If the flow record goes up to the present day (give or take a water year), you can adopt 
the conditional flow estimates for the last year of record as the present-day results. 

If you are estimating flood frequency for scheme design: 

Refer to the guidance on adjusting for climate change in section 5.7. There are 2 
options available. 
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5.6.2 Physical quantities as covariates 

Design flow estimates from a non-stationary model that uses physical covariates will 
change not only over time, if water year is included as a covariate, but also with the 
value of the other covariates. Figure 5-2 shows an example where both time and NAO 
are covariates. 

For instance, if the covariate is annual rainfall, then the 1% AEP design flow given 
1,200 mm of rainfall is the expected flow under the (clearly hypothetical) conditions that 
the annual rainfall is always 1,200 mm.   

Because we know the values of all covariates for past years, we can calculate a 
conditional flow estimate for each year. For instance, the conditional estimate for 2015 
is the expected flow under the (again hypothetical) conditions that the year is always 
2015 and the annual rainfall is always that observed in 2015. 

The conditional flow estimate may be useful when examining the probability of past 
floods, but it is less informative when thinking about design. 

Figure 5-2 illustrates conditional flow estimates based on both time and physical 
covariates. The symbols show the conditional flow estimate for each year of record at 
an example station, for 2 values of AEP. The interannual variation in the conditional 
estimates is due to the influence of a physical covariate, the autumn NAO. More 
negative values of autumn NAO are associated with larger annual maximum flows. 

As in Figure 5-1, time still has a strong influence as a covariate at this site, resulting in 
a large increase in the conditional estimates over the period of record.  

The stationary flow estimates are included for comparison. An explanation for the red 
symbols is given later. 

When examining results from the R package, you can investigate the effect that each 
individual covariate has on the flood frequency distribution by examining the 
parameters output by the package. For each covariate and each distribution parameter, 
the fit.phys.cov function outputs a gradient term which expresses how the covariate 

affects the parameter value. These gradient terms are named μ1, μ2,… for the location 

parameter and 𝜙1, 𝜙2, … for the scale parameter. If the gradient is positive, the 
parameter increases as the covariate increases. 

 

  



 

  

 

 

 

Figure 5-2 Illustrating conditional flow estimates based on both time and 
physical covariates 

 

 

 

5.6.3 Integrated flow estimate 

The integrated flow estimate4 removes the dependence on a particular value of the 
covariates. It is calculated by averaging the probabilities corresponding to the 
conditional flow estimates, over a sample or a statistical distribution of covariate values. 

Refer to the science report for a formal mathematical definition. For an informal 
explanation, refer to the following process, which assumes that you are wanting to 
obtain the integrated flow estimate relevant to the observed period. These calculations 
are carried out automatically within the res.phys.cov function in the nonstat package. 

1. Choose a trial value for the flow estimate as a starting point. 

2. For each year in your annual maximum flow series, calculate the probability of 
the flow exceeding the value from step 1 given the value of the observed 

                                                           
4 The integrated flow estimate is more formally known as the marginal return level. 
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covariate(s) in that year. This probability comes from the fitted non-stationary 
model.  

3. Average all the probabilities you calculated at step 2. 

4. Repeat from step 1 until your averaged probability is close enough to the 
exceedance probability you require. 

The integrated flow estimate is defined relative to a period of time, usually longer than 
a year. It is usually calculated by averaging over all the covariate values observed 
within the period of river flow measurements, as above. It is the flood flow associated 
with a particular encounter probability (see section 4.4).  

When the water year is not included as a covariate, the integrated flow estimate does 
not vary over time and so can be understood as a temporally stationary estimate.  

In theory, the integrated estimate can also be calculated by averaging over a different 
distribution of covariate values, for instance one that is intended to represent future 
conditions. This is not currently recommended. 

Because the integrated flow estimate is defined for a period of time rather than an 
instantaneous point in time, it can be misinterpreted if it is plotted on a time series 
graph like that shown in Figure 5-2. It is more appropriate to plot it as illustrated in 
Figure 4-1, which uses the same data set as Figure 5-2. 

The case study on the River Eden in section 6.1 provides another example to illustrate 
the integrated flow estimate. 

 

5.6.4 Single-year integrated flow estimate 

If the covariates include both water year and physical variables, it is possible to 
calculate an integrated flow estimate by averaging the probabilities corresponding to 
the observed physical covariate values, but setting the water year covariate to a single 
value, such as the final year of record. This gives the single-year integrated flow 
estimate.  The res.phys.cov function can calculate this for the last year of record. 

If the flow records runs up to, or nearly up to, the present day, this estimate is 
representative of the present-day expected flow for a particular exceedance probability, 
without being conditional on any particular value of a covariate such as annual rainfall. 
You could probably assume it is representative of the short-term future too.   

The single-year integrated flow estimate can be more easily compared with alternative 
estimates such as those from a model that uses only water year as a covariate. The 
red symbols on Figure 5-2 show the single-year integrated flow estimates for the last 
year of record, 2016. They are similar but not identical to the conditional flow estimates 
for 2016, because the latter are conditional on the value of the autumn NAO matching 
that observed in 2016. 

 

  



 

  

5.6.5 Extracting results 

Follow the advice listed for the situations listed below. This assumes that time is 
included as a covariate alongside physical quantities. 

If you are estimating the return period of an observed flood: 

If you want to know the annual probability of a flood of that magnitude around the year 
it occurred, calculate a single-year integrated flow estimate for the year when the flood 
occurred. The probability for any particular year will depend on the physical covariates 
for that year, but that dependence is removed by calculating the integrated flow 
estimate. 

If you want to know the probability of a flood of that magnitude occurring at some 
unspecified time during the whole of the observed record, use the integrated flow 
estimates that correspond to the period of record. 

If you are estimating flood frequency in present-day conditions: 

Use the single-year integrated flow estimate, calculated for the most recent year of 
record. 

If you are estimating flood frequency for scheme design: 

Refer to the guidance on adjusting for climate change in section 5.7. You can apply 
option 1 using the single-year integrated flow estimate, calculated for the most recent 
year of record. Option 2 is more difficult to apply when there are physical covariates in 
addition to water year. It could be applied by calculating a single-year integrated flow 
estimate, setting the year to the mid-point of the 1961 to 1990 baseline period. The R 
package cannot currently do this. 

 

5.7 Adjusting for future climate change 

5.7.1 Background 

Refer to the background information about causes of non-stationarity in section 3.3.   

Current guidance on accounting for climate change in flood risk management 
investment decisions is given in: ‘Adapting to Climate Change: Advice for Flood and 
Coastal Erosion Risk Management Authorities’. 

Adjusting non-stationary flood frequency estimates for climate change is not 
straightforward. Here is some guidance on what not to do. 

5.7.2 What not to do 

Do not project non-stationary analysis into the future, for example, setting the time 
covariate to a future water year. 

Do not assume that physical covariates can help with estimating future flood frequency. 
We could only be confident of this if we had a non-stationary model that included all the 

https://www.gov.uk/government/publications/adapting-to-climate-change-for-risk-management-authorities
https://www.gov.uk/government/publications/adapting-to-climate-change-for-risk-management-authorities
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important physical factors and relationships that influence the effect of climate change 
on flood flows.  

For example, annual rainfall is often a useful covariate to explain the variation of annual 
maximum flows. Because we can obtain estimates of the impact of climate change on 
annual rainfall, it might be tempting to think that we can use these in a non-stationary 
model to estimate future flood frequency. This would only be valid if the only way that 
climate change affects river floods is via changes in total annual rainfall. This is not the 
case as changes in storm intensity and evapotranspiration are also likely to be 
influential.   

Avoid assuming that observed trends can be attributed to climate change in the 
absence of any other obvious causative factors (such as urbanisation). Without in-
depth research we just don’t know enough to deduce this, but we can be tempted to 
think we do because we like to find patterns and stories to explain observations. 

5.7.3 Some ways forward 

There are 2 suggested options for adjusting non-stationary flood estimates for climate 
change: 

Option 1: Applying climate change allowances in full to a present-day estimate of 
flood frequency. The thinking behind this is that because we cannot be confident of 
the extent to which climate change is causing trends, we will assume that it is not until 
we have evidence to the contrary. This approach reduces the risk of underestimating 
the impact of future climate change. 

Option 2: Applying climate change allowances to a 1961 to 1990 baseline 
estimate. This could give more accurate future flood estimates on catchments where 
observed trends are mainly due to climate change. It is explained here for the case 
where time is the only covariate in the non-stationary analysis. The steps are: 

a) Estimate the flow from the non-stationary model, setting the water year 
covariate to 1975, the mid-point of the 1961 to 1990 baseline period. This gives 
the conditional flow estimate for the year 1975. 

b) Compare the result with the stationary estimate, representative of the whole 
period of record. 

c) If the 2 estimates are significantly different, allowing for their confidence 
intervals, go to step (d). If not, it may be better to adopt option 1 above. 

d) Ask if the difference between the 2 estimates could be accounted for by 
anything other than climate change. In the unlikely event that you are confident 
enough that the answer is no, go to step (e), otherwise revert to option 1. Bear 
in mind the cautionary advice above in ‘What not to do.’ 

e) Adopt the non-stationary estimate for the 1961 to 1990 period as a baseline and 
then adjust it using the currently recommended change factors for the desired 
future epoch. For a present day estimate, use the 2020s epoch change factor. 

Refer to the case study on the River Kennal for an example of these approaches. 

Guidance on climate change allowance for flood peaks is in the process of being 
updated, using the UKCP18 probabilistic projections for river basin regions. As for 
previous work, the baseline period for the projections was 1961 to 1990, with a longer 
baseline for the hydrological modelling, 1961 to 2001. The intention is for the outputs of 
the project to be made available via a web tool.   



 

  

Substantially more research would be needed to derive climate change allowances 
suitable for different baseline periods, such as one more representative of present-day 
conditions. 

 

5.8 Comparing with FEH estimates 

5.8.1 Single-site versus pooled 

Aside from the fundamental difference in the assumption of stationarity, one of the 
main differences between a non-stationary flood frequency analysis, carried out 
according to this guidance, and an FEH analysis, is that FEH analysis tends to use 
pooling groups. 

There are 2 main advantages to carrying out pooled analysis rather than single-site 
analysis: 

 it reduces the estimation error, by averaging the analysis over several stations 

 it permits flood frequency estimation at ungauged sites 

Although pooled application of non-stationary methods is feasible, it is not yet 
recommended for use by UK practitioners. The science report explains how non-
stationary pooled analysis was explored and gives recommendations for further work. 

5.8.2 Other differences 

Another reason why FEH results may differ is that FEH methods use L-moment ratios 
to fit flood frequency curves, whereas the methods described in this guidance use 
maximum likelihood estimation. This can sometimes lead to significant differences. 

To compare non-stationary flood estimates against an equivalent FEH at-site analysis, 
carry out a single-site analysis of the same AMAX series using FEH methods 
(WINFAP). This should always be done to provide a comparison between the results 
from a ‘benchmark’ stationary FEH, and non-stationary methods described in the 
report. 
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6 Case studies 
Each of the 3 case studies illustrates a different aspect of non-stationary flood 
frequency analysis. To avoid repetition, issues such as choice of distribution, 
understanding confidence limits or handling physical covariates are not repeated; 
instead each is dealt with in just one case study. Look at the first 2 case studies, on the 
Rivers Eden and Kennal, to cover most aspects. The third, on the Little Ouse, deals 
with how to handle decreasing trends.  

All calculations described in the case studies were carried out using the R package, 
apart from some simple additional analysis of the results using Excel. The graphs 
shown are either those output by the R package or produced in Excel from the results 
files from the package. Please note that results from the final release of the package 
may differ slightly from those in the case studies. 

 

6.1 Eden at Temple Sowerby (station 76005) 

The main purpose of this case study is to illustrate how covariates can be chosen. Both 
time and physical quantities are considered, separately and together, as candidate 
covariates. 

6.1.1 Catchment and data 

The Eden at Temple Sowerby is a 616 km2 catchment draining a rural upland area in 
the Northern Pennines. There has been no appreciable urban development or other 
large-scale land use change during the period of record. 

There are 53 annual maximum flows in the data set used for this project, from 1964 to 
2016. 

 

Figure 6-1 Catchment location and flood peak time series, Eden at Temple 
Sowerby (station 76005) 
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6.1.2 Trends 

Non-parametric test 

The Mann-Kendall test shows signs of an increasing trend over the period of record. 
For the record as a whole, there is a trend of fairly high significance, with p=0.06, 
indicating that there is only a 6% chance of obtaining a trend at least as extreme as the 
one seen in the data set, under a null hypothesis of no trend.  

As the p value is just greater than 0.05, there is no statistically significant trend at the 
0.05 significance level. 

There is a significant trend at the 0.05 significance level for most subsets of the record 
that begin in the 1960s to 1970s and end in the 2010s. 

Change point tests 

Neither the Pettitt nor the PELT test detect any significant step changes. 

6.1.3 Non-stationary analysis: time as a covariate 

For the purpose of this case study, only the GEV distribution was considered. 

Four candidate models were fitted: stationary, location varying with time, scale varying 
with time and both location and scale varying with time.  

The highest quality model, according to both likelihood ratios and BIC, is the stationary 
model.  

The varying location model produces similar results to the stationary model, but the 
varying scale models show a strong trend, so that the estimated flow for low AEPs 
increase greatly between the start and the end of the record, as shown in the plot 
below.  

In the case of the varying location and scale model, this increase amounts to more than 
a doubling of the estimate over the period of record. According to this model, the 
severe flood of December 2015 had an AEP of 2%, less severe than that of the March 
1968 flood even though the peak flow in 2015 was 75% higher than in 1968. These sort 
of results are difficult to believe, lending further weight to the preference for the 
stationary model over the non-stationary options with only time as a covariate. 
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Figure 6-2 Plot of time-varying model results for the 2% AEP, Eden at Temple 
Sowerby (station 76005) 

 

 

6.1.4 Non-stationary analysis: physical covariates 

Non-stationary models were fitted using the following covariates, both in addition to 
time and on their own: 

 catchment-average rainfall (annual, autumn and winter) 

 North Atlantic Oscillation (NAO) (winter, summer and autumn) 

 East Atlantic pattern (EA) (winter) 

Each covariate was allowed to influence the location, the scale and both parameters in 
separate candidate models. This gave 88 candidate models in total. The covariates 
were detrended by the nonstat package. 

The model with the lowest BIC used the following covariates: 

 location parameter: time and annual rainfall 

 scale parameter: none (constant) 

It is also interesting to examine other models with low BIC and/or AIC statistics, since 
there is little difference in the value of either of these statistics for the best-ranking 
models. The model with the second lowest BIC, and lowest AIC, had these covariates: 



 

  

 location parameter: time and annual rainfall 

 scale parameter: time 

Annual rainfall appears to be a physically reasonable covariate to include on a rural 
catchment with low evaporation like the Eden. Water years with high rainfall will lead to 
higher soil moisture and more run-off. 

BIC and AIC values for some of the fitted models are listed below. The stationary 
model performs much less well than the highest-quality models according to these 
statistical measures. 

Table 6-1 Statistical quality of example models, Eden at Temple Sowerby (station 
76005) 

Covariates for 
location 

Covariates for scale AIC BIC BIC rank 
(lowest = 1) 

Time and annual 
rainfall 

None 629.1 639.0 1 

Time and annual 
rainfall 

Time 628.6 640.5 2 

Annual rainfall None 634.1 642.0 3 

None (stationary model) 652.3 658.3 21 

 

The graph below compares the stationary flow estimates with the conditional estimates 
from the top 3 ranking models given above. Only one set of conditional estimates is 
shown for the 50% AEP; the others are very similar. 

 

Figure 6-3 Time series plot of conditional flow estimates from the physical 
covariate models, Eden at Temple Sowerby (station 76005) 
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The above plot illustrates some important points. 

Firstly, models that have a similar quality according to statistical measures like 
AIC or BIC may have quite a different model form. Compare the 1% AEP 
conditional estimates for models ranking 1 and 2. The difference between the models is 
that the rank 2 model includes time as a covariate for the scale parameter. This acts to 
steepen the flood frequency curve as time goes on, so by the end of the record the 
ratio of the 1% AEP to the 50% AEP is much higher than at the start. Take this as a 
reminder not to rely only on statistical measures to judge model suitability. 

Secondly, non-stationary models do not necessarily have a consistent time trend 
in their results. The rank 3 model does not include time as a covariate. For the rank 1 
model, although time is a covariate for the location parameter, its effect is minor 
compared with the interannual variation which is controlled by the annual rainfall. You 
can see this from the position of blue symbols on the plot: they jump around from year 
to year without much discernable long-term trend. These results may not all look like 
what you expect from a non-stationary analysis.  

Thirdly, conditional flow estimates are not necessarily helpful ingredients for a 
design process. They are defined relative to hypothetical circumstances. The 
integrated flow estimates are more useful because they are averaged over the 
distribution of the covariates. See the plots below. 

 

Figure 6-4 Frequency plot of integrated flow estimates from the physical 
covariate models, Eden at Temple Sowerby (station 76005) 

 

 

Understanding the frequency plot 

Figure 6-4 is included to provide a link with conventional flood frequency plots which 
will be familiar to many practitioners. However, it needs to be interpreted with care. The 
concept of return period is not easily applied under non-stationary conditions (see 
section 4.4). You should not interpret it in the usual way as the average time between 
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floods of a given size, because this ‘expected waiting time’ is not a constant value 
under non-stationary conditions. The integrated flow estimates are defined relative to 
their encounter probability over the entire period of record and so it is more appropriate 
to plot them against this probability, as shown below. 

 

Figure 6-5 Encounter probability plot, Eden at Temple Sowerby (station 76005) 

 

 

Understanding the encounter probability plot (Figure 6-5) 

As on the frequency plot (Figure 6-4), the 3 non-stationary models generate similar 
results. Although their conditional flow estimates appear quite different, depending 
whether the time trend is included in the scale parameter, the integrated estimates are 
similar. All 3 non-stationary models show higher flow estimates than the stationary 
model, with the difference growing for low probabilities.  

The plot does not show results for encounter probabilities below 23%; this corresponds 
to an annual probability of 0.5% (from equation 1). 

The plot includes results from a conventional FEH statistical analysis, with an 
enhanced single-site growth curve. This gives lower estimates than any of the single-
site analyses. The FEH results were calculated using equation 1 applied to design 
flood estimates from WINFAP. 

Another way of exploring the results is to examine the encounter probability associated 
with the highest flow on record, 1,146 m3/s during Storm Desmond on 5 December 
2015. According to the stationary model shown in the above plot, the probability of this 
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flow occurring during the period of record was 0.25. The non-stationary models 
estimate a much higher encounter probability, of about 0.50 to 0.55. 

6.1.5 Preferred model 

In terms of integrated flow estimates, there is little to choose between the 3 non-
stationary models. The model with BIC rank 3 is the simplest, with only annual rainfall 
as the covariate for the location parameter, and a constant scale parameter. This is 
suggested as preferable. The lack of significant trend over time may be surprising, 
although it is consistent with the findings of the Mann-Kendall test.  

The integrated flow estimates from the preferred model can be interpreted as 
temporally stationary estimates, because the one covariate included in the model 
(detrended annual rainfall) is stationary. Because the preferred model does not include 
water year as a covariate, there is no need to calculate a single-year integrated flow 
estimate. The integrated flow estimates can be more straightforwardly interpreted in 
terms of an annual exceedance probability, or return period, as on Figure 6-4.   

This choice of model is consistent with the findings from the national-scale analysis at 
some surrounding catchments. For example, for the Eamont at Udford, a tributary that 
joins the Eden shortly downstream of Temple Sowerby, the lowest-BIC model has an 
identical form, with only annual rainfall as the covariate for the location parameter, and 
a constant scale parameter. The same is found in several catchments in west Cumbria. 

Further work could examine diagnostic plots and confidence limits, which are illustrated 
in the other case studies. 

6.1.6 Results and final comments 

The table below compares the design flows from the recommended model with the 
stationary estimates. Results are provided for a range of probabilities, expressed in 3 
ways: return period, AEP and encounter probability over the period of record. 

 

Table 6-2 Design flows from the recommended model with the stationary 
estimates, Eden at Temple Sowerby (station 76005) 

Return period (years) 2 5 10 20 50 100 200 

AEP (%) 50% 20% 10% 5% 2% 1% 0.5% 

Encounter probability over 53-
year length 100% 100% 100% 93% 66% 41% 23% 

Flow (m3/s) from preferred non-
stationary model (BIC rank 3) 268 374 484 637 940 1,282 1,767 

For comparison: flow (m3/s) 
from stationary model 272 387 486 602 791 969 1,183 

 

 

Some of the findings from this case study may seem counter-intuitive. The non-
parametric trend test shows a p-value of 0.06, indicating no trend at a 0.05 significance 
level. When time is considered as a covariate, the preferred model is a stationary one, 
with no covariates. Yet when physical covariates are included, there is a clear 
preference for models that include those covariates. The chosen model yields much 
higher flow estimates for low-probability floods than the stationary model, and yet this 
model has no consistent trend over time. It can be regarded as another version of a 
stationary model, one with a covariate that does not have a time trend. 



 

  

The Eden has experienced 2 major floods this century, in 2005 and 2015, with flows of 
925 and 1,146 m3/s respectively. The results above indicate that neither flood is as 
exceptional as might be thought based on a stationary analysis with no covariates. The 
AEPs of the 2 floods are estimated as 5 to 10% and 1 to 2% respectively, compared 
with 1 to 2% and 0.5 to 1% respectively from the model with no covariates. 

For low-probability floods, design flows from the preferred model are strikingly higher 
than those from a conventional FEH pooled flood frequency analysis. 
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6.2 Kennal at Ponsanooth (station 48007) 

The main purpose of this case study is to illustrate the use of diagnostic plots and 
confidence intervals to help choose between different distributions and types of model 
fit. The only covariate considered for this case study is time. The case study also 
illustrates how to incorporate an allowance for climate change. 

6.2.1 Catchment and data 

The River Kennal at Ponsanooth is a 26 km2 catchment draining a rural area of 
Cornwall. The flow regime is affected by Stithians Reservoir, built before the start of the 
gauged record, which produces significant attenuation (FARL at the gauge is 0.87). 
63% of the land use in the catchment is grassland. 

There are 49 annual maximum flows in the data set used for this project, from 1968 to 
2016.  

Figure 6-6 Catchment location and flood peak time series, Kennal at Ponsanooth 
(station 48007) 

 

 

6.2.2 Trends 

Non-parametric test 

The Mann-Kendall test shows a moderate increasing trend, with a Z score of 0.90. This 
has a low significance (p=0.36), which indicates that there is a 36% chance of 
obtaining a trend at least as extreme as the one in the data set, under a null hypothesis 
of no trend. 

The fact that the highest 4 floods have all occurred in the second half of the record 
gives an impression of an increase. 

Change point tests 

Neither the Pettitt nor the PELT test detect any significant step changes. 
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Other tests 

Another statistical test detects a significant difference between the variance of annual 
maximum flows in the years up to 1990 and the variance for 1991 onwards. This is the 
Brown-Forsythe test (Brown and Forsythe, 1974). The null hypothesis is that the 
samples of AMAX flows are drawn from populations with equal variance. At a 0.05 
significance level, the null hypothesis was rejected for the Ponsanooth data set. 

6.2.3 Non-stationary analysis: time as a covariate 

Both the GEV and GLO distributions were considered. For each distribution, 4 
candidate models were fitted: stationary, location varying with time, scale varying with 
time and both location and scale varying with time.  

Compare the 2 pairs of diagnostic plots below (Figure 6-7 and Figure 6-8), both for the 
stationary fit. On these plots, good-fitting models have points that plot close to the 
diagonal line. Refer to section 4.6 for guidance on interpreting them. 
 

Figure 6-7 Diagnostic plots for GEV stationary fit, Kennal at Ponsanooth (station 
48007) 
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Figure 6-8 Diagnostic plots for GLO stationary fit, Kennal at Ponsanooth (station 
48007) 

 

Selecting the preferred distribution 

There is little difference between the 2 distributions in terms of goodness of fit. The 
probability-probability plots (left) and the quantile-quantile plots (right) both compare 
modelled quantities, on the x axis, with their equivalents directly from data, on the y 
axis. 

The Q-Q plots for the GEV and GLO are very similar. Both the stationary GEV and 
GLO models appear to underestimate most of the higher quantiles (this can be seen 
from the higher points lying to the left of the diagonal line). 

On the P-P plot, some of the points in the middle appear to plot slightly closer to the 
diagonal line when they are modelled using the GLO distribution. For this reason, the 
GLO was selected. 

The 4 Q-Q plots below (Figure 6-9) compare the stationary GLO model with 3 non-
stationary versions of the GLO. 

6.2.4 Discussion of model fits 

AIC and BIC values for each candidate model are included on the Q-Q plots below. 
There is little difference in the goodness of fit of the models. The model with the lowest 
BIC is the stationary version. This model is also preferred when likelihood ratios are 
compared (the information is given in the output from the package). In contrast, the AIC 
is lowest for the model in which the scale parameter varies with time. A drawback of 
the scale-varying model is that its fit does not appear to be as good as some other 
models, as judged from the Q-Q plot. The general underestimation of higher quantiles, 
noted earlier for the stationary model, appears more marked for the scale-varying 
model. 

The points plotted from the stationary and location-varying models appear to fit closer 
to the diagonal line. 



 

  

The next step in selecting a preferred model is to examine the results and their 
confidence intervals. 

 

Figure 6-9 Comparing Q-Q diagnostic plots for non-stationary model types, 
Kennal at Ponsanooth (station 48007) 

 

6.2.5 Results and impacts of climate change 

Discussion of results 

The non-stationary conditional flow estimates all show an increasing trend over time. 
The gradient of the trend line increases with the return period, due to the fact that the 
(increasing) scale parameter has more influence on longer return periods.  

The 90% confidence intervals are similar in width for the 5-year flood, but for the 100-
year, at the end of the record the non-stationary confidence interval is much wider. The 
interval is (8.4,16.2) m3/s for the stationary estimate and (9.0,22.6) m3/s for the non-
stationary estimate.  The stationary estimate falls within the 90% confidence limits of 
the non-stationary result, and vice versa. This can be taken as indicating no significant 
difference between the stationary and non-stationary results, in present-day conditions. 
However, the 2 flow estimates may well give rise to substantial differences in predicted 
flood damages and costs of any flood protection measures.  
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One way to help choose between the alternatives is to examine the local and regional 
pattern of non-stationarity. For all neighbouring catchments around the Kennal, a 
stationary model is preferred over any time-varying model. It seems that the apparent 
non-stationarity at Ponsanooth is something of a local anomaly. Further investigation 
could look at comparison of record coverage at nearby gauges, and local trends in 
rainfall and land use. 

For the purpose of the rest of this case study, to illustrate ways of adjusting for possible 
climate change impacts, we will adopt the non-stationary estimates. For the present-
day, the 100-year estimate is 13.5 m3/s. 

 

Figure 6-10 Plot of GLO model results and confidence intervals for 5-year return 
period, comparing stationary and non-stationary (varying scale), Kennal at 

Ponsanooth (station 48007) 

 

 

  



 

  

Figure 6-11 Plot of GLO model results and confidence intervals for 100-year 
return period, comparing stationary and non-stationary (varying scale), Kennal at 

Ponsanooth (station 48007)5 

 

Return periods of observed floods 

The largest measured flood in the 49 years of record occurred on Christmas Eve 2013, 
with a peak flow of 8.7 m3/s. This was only marginally higher than a flood the previous 
year, which peaked at 8.5 m3/s. 

For the year 2013, the non-stationary model gives a conditional flow estimate for a 
return period of 20 years of 8.8 m3/s. So, the model results imply that both the 2012 
and 2013 floods had a return period of about 20 years. The stationary model gives an 
estimated return period of a little over 30 years.  

Impacts of climate change 

In most practical applications of flood frequency analysis for the planning and 
assessment of flood schemes, it will be necessary to consider future conditions, 

                                                           
5 The annotations, all flows in m3/s, are to help explain the calculation of climate change allowances. 
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therefore allowing for the impacts of climate change. Refer to the guidance in section 
5.7, which introduces 2 approaches for a sensitivity analysis of climate change impacts: 
adjusting a present-day flood estimate and adjusting a 1961 to 1990 baseline estimate. 

Let us say that an estimate is needed for the 2050s epoch, using the central 
allowances. For the south-west river basin, the change factor is 20% relative to a 1961 
to 1990 baseline.  

Option 1 would be to increase the present-day estimate by 20%, giving a 100-year 
estimate of 16.2 m3/s for the 2050s. 

Alternatively, taking option 2 (see section 5.7): 

a) From the non-stationary model, at the mid-point of the 1961 to 1990 baseline 
period the 100-year flow is 9.2 m3/s. The data does not extend as far back as 
1961 so this estimate is only approximately representative of the baseline 
period. 

b) This can be compared with a stationary estimate, representative of the whole 
period of record, of 11.1 m3/s. 

c) The 2 estimates are not significantly different, as 9.2 m3/s falls within the 90% 
confidence interval for the stationary estimate. However, there is a practical 
difference between the estimates, which could lead to different findings from a 
flood study. 

d) One possible explanation for the difference is the impact of climate change, the 
effect of which could be expected to be more pronounced when looking at the 
whole period of record (1968 to 2016) than for the early portion of the record in 
the mid-1970s. Other hypotheses could explain the difference. Urbanisation 
seems unlikely, since the catchment remains largely rural. Natural climatic 
variation is a reasonable hypothesis though, and its effects are difficult to 
separate from progressive climate change. To continue illustrating this 
approach, we will assume that climate change is the reason for the difference. 

e) We then adopt the non-stationary estimate of 9.2 m3/s as a baseline and adjust 
it using the change factor for the 2050s, 20%. The resulting 100-year estimate 
for the 2050s is 11.2 m3/s.   

It now becomes apparent that this option 2 approach can be more risky. It has given an 
estimate for the 2050s (11.2 m3/s) that is lower than the present-day non-stationary 
estimate (13.5 m3/s). In fact, it is almost the same as the result of the stationary model 
without any adjustment for climate change (11.1 m3/s).  

Even the upper (90th percentile) change factor for the 2050s, which is +40% in south-
west England, is less than the +47% increase between the non-stationary model 
results in 1975 and 2016. 

In this case, it is unsafe to assume that the published climate change allowances can 
be effectively reduced to allow for the change that has already occurred, because the 
change in the non-stationary model during the period of record is larger than any of the 
published allowances. Therefore, the outcome would be to infer that there will be no 
more increase in flood flows due to future climate change. If non-stationary analysis is 
to be preferred, the option 1 approach to climate change adjustment is more 
appropriate.  



 

  

Final comments 

For illustrative purposes this case study has presented results from the non-stationary 
model. On balance, there are several reasons for preferring the stationary model at 
Ponsanooth: 

 The Mann-Kendall test outputs a p value of 36%, indicating that there is little 
statistical significance to the trend.  

 When comparing flood frequency models, the recommended statistical 
measures (BIC and likelihood ratio) prefer the stationary model.   

 The diagnostic plots indicate a better fit for the stationary model. 

 The non-stationary model has much a wider confidence interval when 
estimating present-day flows. 

 The non-stationary model implies a large degree of trend over the gauged 
period, larger than even the most precautionary change factors in current 
guidance on impacts of climate change. 

 A non-stationary model is preferred by statistical measures at all surrounding 
catchments. 
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6.3 Little Ouse at Abbey Heath (station 33034) 

The main purpose of this case study is to illustrate how to cope with a situation where 
there is a distinct trend towards decreasing flood magnitude. 

6.3.1 Catchment and data 

The Little Ouse at Abbey Heath is a 688 km2 catchment draining a largely rural 
catchment in Norfolk with chalk geology, largely overlain with superficial deposits. 63% 
of the land use in the catchment is arable. 

There are 50 annual maximum flows in the data set used for this project, from 1967 to 
2016. 

The flood of 1968 is a striking outlier and its magnitude is uncertain in light of non-
modular flow and bypassing of the gauge. 

 

Figure 6-12 Catchment location and flood peak time series, Little Ouse at Abbey 
Heath (station 33034) 

 

 

 

6.3.2 Trends 

Non-parametric test 

The Mann-Kendall test shows a decreasing trend. Over the whole period of record to 
date, the Z score is -1.964, and the corresponding p-value is 0.049. In other words, 
there is only a 4.9% chance of obtaining a trend at least as extreme as the one in the 
data set, under a null hypothesis of no trend. This can be interpreted as a statistically 
significant trend at a 0.05 significance level.   

The exceptional flood in September 1968, at the start of the record, will not have 
contributed much to this finding because of the non-parametric nature of the test (the 
result would have been identical if the 1968 flood was only marginally bigger than the 
second highest flood). The more influential feature of the data set regarding trend is the 
reduction in the frequency of floods exceeding about 20 m3/s over the period of record. 
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The reason for this reduction is not obvious. Most, but not all, nearby catchments also 
show a decreasing trend, so the cause may be climatic. However, an upstream gauge 
on the Thet at Melford Bridge with a longer record back to 1960 shows no trend. 

One possibility is that the decrease on the Little Ouse is exacerbated by groundwater 
abstraction. Another potential explanation is the creation of flood storage in the 1970s 
due to extraction of sand and gravel, creating the Nunnery Lakes which is now a nature 
reserve. 

Change point tests 

Neither the Pettitt nor the PELT test detect any significant step changes. 

6.3.3 Non-stationary analysis: time as a covariate 

Both the GEV and GLO distributions were considered. Diagnostic plots (not shown 
here) indicate that the GLO distribution fits marginally better. 

The highest quality GEV model, according to both likelihood ratios and BIC, is that 
which has the scale decreasing with time. 

The highest quality GLO model, according to the same measures, is the stationary 
model. 

Diagnostic plots (not shown here) show little difference between the goodness of fit of 
the various ways of including time as a covariate. All models struggle to fit the extreme 
flood of 1968.  

In a case like this, physical principles need to be an important factor in selecting the 
preferred model. The fact that some statistical measures point towards the scale 
parameter decreasing over time (at least for the GEV distribution) does not necessarily 
mean that the effect is genuine. There are no known trends in catchment land use or 
climate that might lead to a reduction in the variability of flood magnitude on the Little 
Ouse. The Nunnery Lakes is a possible explanation, and a hydraulic model could 
quantify its impact. 

A relevant question to ask is whether it is possible for a flood like that of September 
1968 to occur nowadays. Few, if any, hydrologists would be willing to rule this out, or to 
say that such a flood is much less likely to occur today, which is what is implied by the 
non-stationary models with decreasing scale parameter. The plot below shows how the 
varying scale model leads to a halving of the estimated 100-year flood over the period 
of record. 
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Figure 6-13 Example model results: GEV distribution with time as covariate, AEP 
1%, Little Ouse at Abbey Heath (station 33034) 

 

6.3.4 Sensitivity test 

Another useful line of enquiry is to test the sensitivity of the analysis to the outlier in 
1968. The flood of September 1968 is notorious across some catchments in south-east 
England, often appearing as an extreme outlier in the annual maximum series. At some 
gauges, the peak flow is estimated with great uncertainty from extrapolated rating 
equations.  

If the 1968 flood is removed from the analysis, the results change, so that for both the 
GLO and GEV distributions the highest-quality model is stationary.  

This sensitivity to a single flood, with uncertain magnitude, helps to justify the decision 
to prefer a stationary analysis for the Little Ouse. The effect of the 1968 flood can be 
limited by carrying out enhanced single-site analysis using FEH methods. 
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Glossary and abbreviations 
AEP Annual exceedance probability. 

AIC Akaike information criterion. A measure of the quality of a statistical model, which 
establishes a trade-off between the goodness of fit and the simplicity of the model.  

AMAX Annual maximum (for example, the highest river flow in a water year). 

BIC Bayesian information criterion. A measure of the quality of a statistical model, which 
establishes a trade-off between the goodness of fit and simplicity. Compared with the 
AIC, the BIC gives more preference to simpler models. 
 

Conditional 
estimate 

Expected value of a variable (such as flow) conditional on covariates being at some 
specified value. For instance, it might be conditional on the year being 2020, or the 
total winter rainfall being 300 mm. 
 

Covariate An observed variable used in a statistical model to help predict the main variable of 
interest. 

EA East Atlantic pattern: an index of atmospheric variability, like a southwards shifted 
version of the NAO. 

Encounter 
probability 

The probability of an event happening (such as a flow rate being exceeded) at least 
once over a specified period of time. The AEP is the encounter probability of a flood 
within a 1-year period. 
 

FEH Flood Estimation Handbook. 

GEV Generalised extreme value: a statistical distribution fitted to extremes such as floods. 

GLO Generalised logistic: another statistical distribution. 

Integrated 
estimate 

Expected value of a variable (such as flow) for a particular probability, without any 
conditionality on covariate values (contrast with conditional estimate, above).  
The integrated estimate is calculated by averaging the probabilities corresponding to 
the conditional flow estimates, over a sample or a statistical distribution of covariate 
values. More formally in statistics it is known as the marginal return level. Refer to 
section Error! Reference source not found. for more explanation. 
 

Mann-
Kendall test 

A non-parametric method for testing for the presence of consistent trend in a time 
series. 

MLE Maximum likelihood estimation. A way of fitting a statistical model by maximising 
something known as the ‘likelihood function’. 

Model In this guidance, all the models mentioned are statistical models, that is, mathematical 
descriptions of a data set. 

NAO North Atlantic Oscillation: an index of the north-south difference in air pressure 
between the north and central Atlantic Ocean, associated with changes in the direction 
and strength of the jet stream. 
 

Non-
parametric 

A type of statistical method which makes no assumption about the statistical 
distribution of the data. 

Non-
stationary 

A time series is non-stationary if its statistical properties change over the relevant time 
scale, for example over the period of record. 



 

  

PELT Pruned Exact Linear Time: a test for sudden step changes in a time series. 

Pettitt test A statistical test for detecting a sudden change in the average of a time series.  

Stationary A time series is stationary if its statistical properties do not change over the relevant 
timescale. 

Single-year 
integrated 
estimate 

An integrated estimate (of flow, for instance) obtained by averaging over the sample of 
observed physical covariate values, but setting the water year covariate to a single 
value. Refer to section Error! Reference source not found.. 

WINFAP Software that implements the FEH statistical method for flood frequency estimation. 
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