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Executive summary 
Reports of ‘record-breaking’ or ‘unprecedented’ floods rarely seem out of the news in 
England and Wales. This has raised questions about whether the probability of floods 
has changed over the 40 to 60 years for which river flow data are available, and 
whether probability might change in the future.  

Flood frequency analysis tells us what flood flows are expected to occur with a given 
probability. This is a fundamental part of cost-benefit analysis which is used to make 
decisions on investment in flood protection. Flood frequency analysis is also important 
for other areas of flood risk management such as mapping flood risk for planning, long-
term investment planning, national flood risk assessment, setting insurance premiums, 
designing river structures and for reservoir safety.  

In UK flood frequency analysis practitioners use the methods in the Flood Estimation 
Handbook. These techniques assume that in a data series each value, for example, 
each annual maximum flow or rainfall, is independent and has the same probability 
distribution as all the other values. If this probability distribution is not constant over 
time (non-stationary), the peak flows are not identically distributed and so this 
assumption cannot be made. This could have significant implications for capital 
investment decisions now and in the future if it means that flood risk has been over or 
underestimated. 

The main aim of this project was to develop interim guidance for dealing with non-
stationarity in annual maximum river flow series. The objectives were to: 

 develop methods for identifying non-stationarity in annual maximum flow series 

 develop a scientifically robust process for carrying out non-stationary flood 
frequency analysis 

 outline how to take account of future climate change under non-stationary 
conditions 

 provide guidance and tools for practitioners to carry out non-stationary flood 
frequency analysis 

 make a high-level assessment of the impact of allowing for non-stationarity on 
flood frequency estimation across England and Wales 

The focus was on fluvial flood frequency using methods that analyse annual maximum 
river flows. It is worth noting that flood studies on some rivers, all reservoirs and all 
surface water flooding investigations are based on rainfall-run-off models that use 
rainfall frequency statistics. The project has not investigated non-stationarity in rainfall, 
but similar methods could potentially be applied. 

This report summarises all the methods applied and results obtained during the project. 
The project has also produced a separate Environment Agency technical guidance 
document for practitioners (), ‘Allowing for non-stationarity in flood frequency 
estimation’ (Ref: FRS18087/IG/R2) and a package of computer code written in the R 
language, nonstat (Ref: FRS18087/IG/R3).   

Method development 

Methods of non-stationary flood frequency analysis are widely applied in a research 
context, but there are few examples of flood management authorities using them in 
decision-making. The project has included an extensive literature review, and these 
findings have been used to develop non-stationary methods that practitioners can 
readily use. The method development is a follow-up to an earlier investigation of trends 
and non-stationarity in north-west England commissioned by the Environment Agency 
following the floods of December 2015.  



 

 Development of interim national guidance on non-stationary fluvial flood frequency estimation v 

The non-stationary methods applied in this project introduce covariates to help explain 
trends in flood flow. These are other variables that are expected to be related to the 
variable of interest. The simplest statistical models use time as a covariate, in other 
words, the probability distribution of flood flows is modelled as changing over 
time. Other models incorporate physical covariates such as measures of rainfall or 
climatic indices. This project has made some breakthroughs in applying non-stationary 
methods, including innovative techniques for extracting design flood estimates from 
statistical models that include physical covariates.   

Some of the method development tasks were more exploratory in nature, and aspects 
such as pooled non-stationary analysis will require further development before being 
suitable for routine application. Non-stationary methods can currently only be applied at 
sites where peak flow data is available, over a suitably long record length. 

Findings from national-scale analysis 

River flow records show general but not universal evidence of an increase in flood 
peaks. Two thirds of gauging stations in England and Wales show upward trends in 
peak flows when tested using the non-parametric Mann-Kendall test. 13% of stations 
show an upward trend that is significant at the 5% level, and this increases to 21% if 
the significance threshold is relaxed to 10%. Positive trends are seen across much of 
England and Wales, with some of the strongest and most statistically significant trends 
in the north and west. Some areas of central and eastern England also display 
negative trends. The analysis included data up to September 2017. The degree of 
upward trend would be expected to increase if the tests were repeated using data that 
included the extensive and severe floods of winter 2019 to 2020.  

When non-stationarity is modelled only in relation to changes over time, around 22% of 
stations preferred a non-stationary over a stationary model. This is similar to the 
findings from the non-parametric trend testing, although there is not complete overlap 
between the stations identified in the 2 different analyses.  

The proportion of stations best fitted by a non-stationary model increases to 36% when 
physical covariates are added along with water year. Physical covariates are almost 
always beneficial to the fit of non-stationary flood frequency models, with annual or 
seasonal rainfall totals proving more beneficial than the indices of atmospheric 
circulation that were tested. This finding indicates that the increase in model complexity 
is nearly always outweighed by the increase in goodness of fit provided by the physical 
covariates.   

On average, across England and Wales, including non-stationarity makes little 
difference to estimating design flows. In individual cases, it can make a large 
difference, leading to an increase in present-day estimates. There are large local 
variations in the comparison between stationary and non-stationary estimates, making 
it difficult to generalise the results across regions.  

The evidence of general increases in flood magnitude is consistent with projections of 
the impacts of climate change. This project has not attempted to attribute trends, which 
may occur due to changes in catchments (such as urbanisation), changes in river 
channels or climate changes. It is quite possible that there is a cyclical element to 
recent trends. However, it would seem unwise, in the face of a warming climate, to 
expect trends to reverse in the near future. 

Non-stationary methods can potentially provide more credible answers that can be 
more easily justified to interested groups. On the other hand, a shift to non-stationary 
techniques can lead to an increase in uncertainty. The methods developed in this 
project all include quantification of uncertainty, and this is output from the nonstat 
package in the form of confidence limits.  
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1 Introduction 

1.1 Background 

Reports of ‘record-breaking’ or ‘unprecedented’ floods rarely seem out of the news in 
England and Wales. 2019 to 2020 saw extreme flooding in many areas, including 
Lincolnshire, Yorkshire, Lancashire, South Wales and the English Midlands. North-west 
England was badly hit with severe floods in 2005 (Carlisle), 2009 (much of Cumbria) 
and 2015 (much of Cumbria and Lancashire). This severe flooding has raised 
questions about whether the probability of these events is now higher than it was and 
how probability might change in the future.  

Answers to these questions are needed to help plan investment in flood alleviation. 
Decisions on investment are made based on cost-benefit analysis, which needs 
information on the likelihood of flood damage occurring. This comes, in part, from flood 
frequency analysis, which tells us what flood flows are expected to occur with a given 
probability. This analysis is also important for other areas of flood risk management 
such as mapping flood risk for planning, long-term investment planning, national flood 
risk assessment, setting insurance premiums, designing river structures and for 
reservoir safety.  

UK practice in flood frequency analysis is to use methods in the Flood Estimation 
Handbook (FEH) (Institute of Hydrology 1999) and its updates (Kjeldsen and others, 
2005; 2008). The techniques in these publications assume that in a data series each 
value, for example, each annual maximum flow or rainfall, is independent and has the 
same probability distribution as all the other values. If the flood frequency behaviour of 
a catchment is not constant over time (non-stationary), peak flows are not identically 
distributed and so this assumption cannot be made.  

Non-stationarity in flood time series may occur due to changes in catchments (such as 
urbanisation), changes in river channels (such as dredging) or climate changes. If non-
stationarity is present, then the flood frequency estimates from commonly applied 
methods are called into question. This could have significant implications for capital 
investment decisions now and in the future. 

1.2 Project scope 

1.2.1 Scope 

This project builds on work carried out by JBA Consulting in 2017, which investigated 
trends and non-stationarity in north-west England following the floods of December 
2015. A peer review of that work by Dr Ilaria Prosdocimi (then at the University of Bath) 
recommended further areas of investigation, which helped define the scope of the 
present project. 

The main aim of this project was to develop interim national guidance for dealing with 
non-stationarity in annual maximum river flow series. The objectives were to: 

 develop methods for identifying non-stationarity in annual maximum flow series 

 develop a scientifically robust process for carrying out non-stationary flood 

frequency analysis 

 outline how to take account of future climate change under non-stationary 

conditions 



2  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

 provide guidance and tools for practitioners to carry out non-stationary flood 

frequency analysis 

 carry out a high-level assessment of the impact of allowing for non-stationarity 

on flood frequency estimation at a national scale  

It was envisaged that the interim guidance would remain in place for at least 2 years, 
until superseded by future work, and would initially be introduced for the planning and 
appraisal of flood risk management schemes. 

The report did not investigate the causes of non-stationarity, but just considered fluvial 
flood frequency using methods that analyse annual maximum flow data. It is worth 
noting that flood studies on some rivers, all reservoirs and all surface water flooding 
investigations are based on rainfall-run-off models that use rainfall frequency statistics.  
This project has not investigated non-stationarity in rainfall. 

1.2.2 Related project: Rapid evidence assessment 

In parallel with this project, the Environment Agency commissioned a rapid evidence 
assessment (REA) on non-stationarity in sources of UK flooding, including surface 
water and tidal flooding as well as rivers. The REA addressed one primary question: 

 What is the evidence for stationarity or non-stationarity in sources of UK 
flooding? 

Three secondary questions were addressed in less detail: 

 What can cause non-stationarity in the sources of UK flooding? 

 What techniques are used to detect and account for non-stationarity in the 
sources of UK flooding? 

 To what extent does assuming stationarity or non-stationarity alter the outcome 
of flood risk analysis? 

These questions were answered from a comprehensive review of published articles. 
The evidence showed a general, but not universal, consensus that both precipitation 
and flood flows on rivers are increasing. Most of these studies analysed series of 
measured data, but about a third included an investigation of future changes, generally 
using modelling techniques.   

The report is called, Rapid Evidence Assessment of Non-Stationarity in Sources of UK 
Flooding (FRS18087/REA/R1). 

1.3 Project outputs 

This report summarises all the methods applied and results obtained during the project. 
As well as this main report, the project has also produced guidance for practitioners 
(FRS18087/IG/R2, ‘Development of interim national guidance on non-stationary fluvial 
flood frequency estimation – practitioner guidance’) and a package of computer code 
written in the R language, nonstat. The nonstat package comes with its own user 
guide. The package provides functions for trend testing and fitting of non-stationary 
flood frequency distributions, with user-friendly input formats and outputs. 

Detailed results of the national-scale tests for trend and non-stationarity are provided 
digitally ‘FRS18087-IG-D2-digital_outputs.zip’.   



 

  

1.4 Report structure 

The main part of this report summarises the work carried out and the results obtained. 
The appendices contain more in-depth reporting. 

Chapter 2 describes how the project data set was developed, and the various 
screening steps carried out, including the application of change point tests. 

Chapter 3 outlines methods used to detect and account for non-stationarity, including 
trend tests. The project included extensive investigation of non-stationary methods of 
flood frequency estimation, including development of new techniques and 
consideration of how to account for climate change. Chapter 3 also gives an overview 
of clustering of floods. Appendices A to F support chapter 3. 

Chapter 4 presents results at a national scale, including a summary of the different 
types of analysis applied. 

Finally, chapter 5 draws the strands of investigation together and makes some 
suggestions for further research, including potentially replacing the interim guidance in 
due course. 
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1.5 Terminology 

Some of the main technical terms used in this report are: 

 Model – in this report model refers to a statistical description of the flood 
frequency relationship, unless otherwise stated. 

 Covariate – another variable that is included because it is related to the 
variable of interest. Here, covariates help to explain trends in flood flow. The 
most straightforward non-stationary models have a single covariate, which is 
time, meaning that the probability distribution changes from year to year. Other 
covariates might represent physical quantities such as measures of the climate 
or the catchment. 

 Return period – for a non-stationary model, the return period T is the reciprocal 
of the annual exceedance probability (AEP) at a particular point in time, t: 

𝑇𝑡 =
1

𝐴𝐸𝑃𝑡
 

 Return level – the value (in this analysis, the river flow) associated with a 
particular return period or probability. Hydrologists often refer to this as the 
design flood, or as a point on the flood frequency curve. The practitioner 
guidance avoids using the terminology of return level because of its potential for 
confusion with water levels. It is used in this project report for consistency with 
the scientific literature. 

 Quantile – a point on a probability distribution; essentially the same as a return 
level when considering annual maximum data. 

 Conditional return level – the return level that would be expected if the 
covariates had a particular combination of values (this means it is conditional on 
those values). For instance, if the covariate was the water year, there would be 
a return level conditional on the water year being 2019 to 2020. 

 Marginal return level – Expected value of a variable (such as flow) for a 
particular probability, without any conditionality on covariate values (contrast 
with conditional return level, above). The marginal return level is calculated by 
averaging the probabilities corresponding to the conditional return levels over a 
sample or a statistical distribution of covariate values. In the practitioner 
guidance, the marginal return level is referred to as an ‘integrated flow 
estimate’. This concept is explained further in this report. 

 Design life level – similar to marginal return level, it is the return level 
corresponding to a particular exceedance probability (the encounter 
probability) over a design period. The concept is presented in Yan and others 
(2017). Rather than being a return level for a particular year (past, present or 
future), it is associated with a period of time, such as the design life of a flood 
alleviation scheme.   

Other terminology is defined as it is introduced throughout the report. 

 



 

  

2 Data 

2.1 Requirements for data 

To analyse non-stationarity flood peak data sets should be as long as possible. This is 
because any underlying trends tend to be masked by variability over short to medium 
timescales. A minimum record length of 30 years was imposed, while recognising that 
at least 40 years would be desirable. The multi-temporal trend tests explicitly 
considered the effect of record length, applying the tests to all combinations of start 
and end year within the period of record. 

The vast majority of the analysis was based on annual maximum flow (AMAX) data. 
Although peaks over a threshold (POT) data might be expected to provide a more 
complete picture of flood characteristics, there are several reasons why POT data were 
not thought appropriate to use in this project. These are listed below: 

1) In the UK, AMAX data have been used and reviewed a great deal more than 

POT data and so form a more reliable flood peak data set. 

2) The reliability of POT data in the pre-digital period is variable. There are several 

sources of data and they are not always consistent with each other or with the 

AMAX series. 

3) About 13% of gauging stations in England do not have POT data, generally 

those on groundwater-dominated rivers.   

4) POT records are shorter than AMAX records at some stations. 

5) There are gaps in POT records but they can be difficult to detect. 

6) The average number of events/year varies between stations. POT extraction 

rules may have been different at different times. 

7) POT time series are more likely than AMAX series to show serial correlation, 

which is undesirable for trend analyses.  

The exception was for a limited investigation of clustering, for which it was possible to 
review the quality of a small number of POT records. 

Some of the analytical methods applied in this project only looked at whether 
successive AMAX flows were increasing or decreasing, without accounting for the 
magnitude of the changes. The Mann-Kendall trend test is an example of this. Other 
methods accounted for the magnitude of change, such as the fitting of non-stationary 
flood frequency distributions. The latter methods demanding higher quality data, and so 
were applied on a higher quality subset of the data.  

The project included gauges throughout England and Wales. 
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2.2 Data screening 

The National River Flow Archive (NRFA) Peak Flow Dataset version 7, containing data 
up to the end of September 2017, was used as the basis for this project. The current 
753 stations in England and Wales in this data set were collated, together with another 
5 stations that were expected to be added to the NRFA Peak Flow Dataset in future, 
making 758 stations in total. 

As a starting point, the data quality for the 2 types of analyses were considered to be 
roughly equivalent to the ‘indicative suitability’ classes in the NRFA data set. Stations 
that were ‘OK for QMED’ were initially listed for the trend analyses, and those ‘OK for 
pooling’ were listed for the flood frequency analyses.  

When testing for non-stationarity it is important that the tests reflect genuine changes 
(or lack of changes) in flow. It is common for measurement structures or rating 
equations to change over the period of record, and it is important that these changes 
do not introduce false changes in the recorded flows.   

For this reason, the gauging stations included in the project were screened carefully. 
The steps involved in the screening were as follows: 

1) The Environment Agency and Natural Resources Wales initially assessed the 
list of gauging stations to identify where the length, quality and consistency of 
the data was good enough to use in the statistical analyses. Gauging authority 
staff with local knowledge of the stations carried out this assessment, following 
consistent guidance. The individual station assessments were reviewed by one 
experienced flood hydrologist to provide national consistency.  

2) JBA Consulting and the National River Flow Archive (NRFA) carried out a 
second stage of screening, considering whether any gauges should be added 
to or removed from the initial list. This assessment included applying statistical 
tests for change points and using knowledge gained from detailed hydrological 
projects.   

3) The measuring authorities commented on the revised list. 

4) The Environment Agency and contractors worked together to produce a near-
finalised list.   

5) The Environment Agency subsequently made a small number of changes to 
this list throughout the project. The trend testing but not the flood frequency 
analysis was revised to account for these alterations. 

A number of authors (for example, Wilby and others, 2017) note the importance of 
sound data and describe some of the possible data biases and errors. Key ways in 
which data may not be consistent are discussed below. 

a) Different ratings, applied to different periods in the record, may vary in their 
applicability to high flows. For example, some ratings may be based on 
gaugings at high flows, others may be based on gaugings at low flows and just 
extended to higher flows. This commonly occurs where stations have changed 
(for example, location, from open-channel to a structure, change in structure 
type, or changes to a structure) or where an open-channel station has a moving 
bed so that there are frequent changes in ratings. 

b) Drowning of weirs may be handled differently over different parts of the record. 
For example, an early record may not have drowning adjustments, some parts 
of the record may use a pressure head, and the later period may be adjusted 
using a downstream level recorder. Drowning may be consistent, may vary with 



 

  

seasonal changes in downstream channel roughness, or may depend on flows 
at a downstream river confluence. 

c) Some stilling-wells and inlet pipes are prone to siltation and blockage. At some 
stations, the under-recording may be slight, but at others this can mean that 
large events are effectively missed. Historically, attempts have been made to 
reduce this by pumping out, but the frequency and effectiveness of this is rarely 
known. In more recent times, in-river pressure transducers are increasingly 
used to provide a check and back-up to the primary in-well recorder. 

d) Pre-digital data: The measuring authorities’ digital archives have powerful tools 
to review data. Plots enable stations to be compared and gaps in the data to be 
identified; the listed validity of ratings identifies the rating source of a flow value. 
In comparison, the quality assurance of pre-digital data is harder - gaps in the 
data may not be apparent, copies of charts showing hydrographs may not be 
readily accessible, and the ratings used may not be clear. There may be 
several sources of pre-digital data, with different flows. 

Stations and periods of record were not excluded due to changes in the catchment, 
because the project aimed to identify non-stationarity whatever its cause. An exception 
to this was when a reservoir with a significant effect on the flood regime was 
constructed during the period of record. In this case, only the longer of the pre- and 
post-reservoir periods was retained. This screening process did not, in general, 
account for the construction of smaller flood storage schemes. 

Stations with gaps in their records were not excluded from the project data set. 
However, some of the statistical tests excluded stations with long gaps, as discussed in 
the relevant sections of this report. Appendix H shows the reasons why individual 
gauges were excluded. 
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2.3 Change point tests 

2.3.1 Purpose 

Change point tests were applied to help screen the data sets, to identify gauges where 
apparent trends in peak flows may be false, for example due to changes in rating 
equations or alterations to a gauging structure or river channel that have not been 
accounted for in the rating. It is expected that, in some cases, change points may 
represent genuine sudden changes in peak flows, for example due to rapid 
urbanisation, clear felling of forestry or a shift between a flood-rich and flood-poor 
period, or vice versa.  

2.3.2 Pettitt's test 

Pettitt’s test is designed to detect a sudden change in the mean of a time series. It 
outputs the time of the shift as well as the significance level. It is a non-parametric test, 
which means it makes no assumption about the distribution followed by the data. 

The null hypothesis H0 is that there is no difference between the means of the earlier 
and later portions of each annual maximum (AMAX) flow series. The tests output a p-
value, or probability, and if this is less than a chosen significance level then H0 is 
rejected. The conventional approach is then to (provisionally) accept a single 
alternative hypothesis H1, in other words, that there is a sudden change.  

2.3.3 PELT test 

One limitation of Pettitt's test is that it can only detect a single change point. It has been 
criticised for its tendency to classify gradual trends as sudden changes (Rougé and 
others, 2013). 

An alternative to Pettitt's test is the PELT (Pruned Exact Linear Time) test. Like with 
most change point algorithms, PELT (Killick and others, 2012) tries to find the optimal 
segmentation in a time series. Optimality is usually determined by minimising a cost 
function. Where a parametric model, for example, a normal distribution, is assumed, 
the cost function is typically related to the likelihood function, which expresses the 
probability that the observed data arise from a particular assumed distribution. The 
change point algorithm finds the segmentation, with varying parameters across 
segments, that minimises the cost function. The likelihood is usually combined with a 
penalty term to prevent overfitting to the data; it stops too many unrealistic change 
points being identified. 

PELT is based on the idea of optimal partitioning by recursive minimisation of segment-
wise cost functions in a time series. This is an exact algorithm in that it always finds the 
optimal solutions, but typically these approaches come at a high computational cost. 
PELT requires a pruning step that discards candidate change points that will not lead to 
optimal segmentations, which leads to a computational complexity that scales linearly 
with the number of data points. As a result, PELT can give optimal segmentations in a 
reasonable length of time. 

PELT is implemented through the 'changepoint' R package (Killick and Eckley, 2014) 
and allows for detecting one or more changes in the mean, the variance or both. The 
approach requires an assumption that the data follow a known distributional form. 
Since the flood time series are not generated from any known distribution, a log 
transformation is applied to transform the data to approximate normality (Box and Cox, 
1964). In effect, it was assumed that the underlying AMAX flows follow a log-normal 



 

  

distribution, as assumed in previous studies (for example, Prosdocimi and others, 
2013). It would be desirable in future to modify the PELT test so it can assume specific 
extreme value distributions such as GEV or GLO. 

A minimum segment length is required, which prevents additional overfitting and false 
positive changes at short time scales. Ten years was chosen to be a suitable length for 
local stationarity pre- and post-change. 

2.3.4 Data sets for change point tests 

Both the change point tests were applied twice: first to all the stations initially proposed 
to be included in the project, to help screen stations, and then again to a near-final 
project data set.  

All AMAX flows marked as rejected were excluded from the analysis.  

2.3.5 Results 

 

Table 2.1 summarises the results of the change point tests applied to a near-final 
version of the project data set, which comprises 471 stations, plus 6 files containing 
alternative versions of the AMAX data set at 5 stations. A further 4 stations were 
excluded from the analysis because their record length was under 30 years. 

 

Table 2.1 Summary of change point test results 

 % of stations with 
positive change (at 5% 
significance level) 

% of stations with 
negative change (at 
5% significance 
level) 

Pettitt test: Change in mean 10% 1% 

PELT test: Change in mean 4% 1% 

PELT test: Change in 
standard deviation 

3% 2% 

 

In summary, the vast majority of stations in the final project data set showed no 
significant step changes. The PELT test is more stringent than the Pettitt test and so 
detected a smaller number of stations with significant changes. It did not find any 
stations with more than one change point. 

 

Figure 2.1 shows the timing of the change points. From the PELT test, many of the 
change points occur between 1995 and 2003. Similarly, from Pettitt's test, the highest 
density of change points is between 1996 and 1998. This period is sometimes referred 
to as the time when much of the UK transitioned from a flood-poor to a flood-rich 
period, with the widespread events of Easter 1998 and autumn 2000 being the most 
obvious signs of that transition. 

 

Figure 2.1 also shows a tendency for longer records to show earlier change points. The 
opposite would be impossible, because nearly all shorter records cover recent decades 
and so could not contain earlier change points. The longest record that contains a 



10  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

change point is the 131-year data set on the Ouse at Skelton (York), for which an 
upward shift in flood magnitude occurred in 1943. There have been several changes in 
rating at this gauge, to account for alterations in the channel and flood defences. It is 
difficult therefore to be confident that the change in 1943 represents a genuine step up 
in flood magnitude. Similar comments may apply for some of the other change points 
that have been detected. However, in each case, a decision has been made to retain 
the gauge in the project, balancing the findings from the change point tests with the 
knowledge of staff from gauging authorities and the NRFA. 

 

 

 

Figure 2.1 Years corresponding to change points 

 

 

 

Figure 2.2 Magnitude of changes in the mean annual maximum flow 
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Figure 2.2 indicates that the vast majority of changes in the mean annual maximum 
flow are positive. The typical magnitude of change is an increase in the mean by a 
factor of 1.2 to 1.6 (this is, an increase of 20 to 60%). The largest changes are seen at 
a small number of stations in 1996, 1997 or 2007. Where there are reductions in the 
mean, they are generally -20 to -30% and do not appear to be clustered in time. 
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2.3.6 Example: the most extreme change 

The most extreme step change in both mean and standard deviation occurs at station 
27055, the Rye at Broadway Foot. This catchment drains the North York Moors. Both 
the Pettitt and PELT tests detected the largest change in mean AMAX flow at this 
station; the change point dates differing by a year (1996 for Pettitt and 1997 for PELT).  

 

Figure 2.3 shows the flood peak series and the change point. The mean AMAX flow 
more than doubles at the change point. The large increase in the mean is mainly 
caused by the outstanding flood of June 2005. However, the floods of March 1999 and 
November 2000 were also exceptional compared with the earlier record, and, in fact, all 
top 10 floods in the record occur after the change point.  

 

 
 

Figure 2.3 Change point for the Rye at Broadway Foot 

 

The standard deviation increases by a factor of 8 at the change point as a result of the 
exceptional floods mentioned above.  

The PELT and Pettitt tests do not detect changes in the median. Flood Estimation 
Handbook (FEH) methods use the median rather than the mean because the former is 
more robust in the presence of outliers. At Broadway Foot, the median annual 
maximum flow (QMED) is 46% higher after the change point than before it. This is a 
more modest increase than in the mean, but still substantial.  

Local Environment Agency staff have suggested that the change seems likely to be 
due to climatic reasons, exacerbated by the Corallian limestone geology of the 
catchment. 
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2.4 Final project data set 

A total of 375 gauges across England and Wales were selected as suitable for the 
flood frequency analysis. A further 100 were used just for trend testing. The gauges are 
listed in Appendix H. 

The AMAX series from the NRFA Peak Flow Dataset (version 7) was selected at most 
stations. Replacement series were produced for 80 stations. Of these, compared to the 
NRFA Peak Flow Dataset, 31 had different ratings and different periods of record, 13 
had new or amended data, 3 were combined with earlier stations, and at 2 stations 
post-reservoir data were used because the data length was longer than the pre-
reservoir data selected in the NRFA. 

88 stations, which are classed as ‘Not OK for pooling’, were included within the flood 
frequency analyses. This was considered acceptable because the aim of the project 
was to study the effect of any changes over time. Therefore, a lower standard of 
accuracy of high flows than normally applied in flood frequency estimation by the Flood 
Estimation Handbook (FEH) statistical method was acceptable, as long as the methods 
of deriving the flows were consistent over the period applied. 

The median length of record of the selected stations was 49 years, with the longest 
record (Thames at Kingston) being 134 years, and 95% of the stations having 37 years 
or more of record. 

The Environment Agency made some amendments to the data set during the project. 
The trend tests and split sample tests were rerun using this revised data set. The non-
stationary frequency analysis was not repeated. This was not thought necessary as the 
frequency analysis was never intended to be applied to an identical data set given the 
less stringent data quality requirements imposed for gauges. 
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3 Methods 

3.1 Trend tests 

The methodology for trend testing was based on the National River Flow Archive 
(NRFA) trend testing toolkit as described by Harrigan and others (2018). There is a 
detailed account of the tests and their results in Appendix A. The appendix also 
includes information on how the tests handle gaps in the data series. 

To test for trends, the non-parametric Mann-Kendall (MK) test was applied. This is a 
very widely used method for monotonic trend testing which has been applied 
extensively in hydrological change applications in the UK and elsewhere. It is a non-
parametric test, in that it makes no assumption about the statistical distribution of the 
data. The test is not dependent on the magnitude of the data, but is based on the 
proportion of increases and decreases between pairs of values. A consequence of this 
is that it tests the statistical significance of the trend but does not directly measure the 
strength of the trend. 

The test produces a score, known as MKZ. Positive values of MKZ indicate increasing 
trends, while negative ones refer to decreasing trends. MKZ scores are standardised, 
in order to compare the different periods of interest and stations. For identifying 
whether the results are statistically significant at a 5% significance level, a two-tailed 
MK test was chosen, meaning that if the absolute value of MKZ exceeds 1.96, the null 
hypothesis H0 of no-trend is rejected. To test for significance at a 10% level, the critical 
value of MKZ is 1.645. 

If H0 is rejected, the conventional approach is then to (provisionally) accept a single 
alternative hypothesis H1, in other words, that a statistically significant trend exists. 
This is not always the correct conclusion to draw: the discrepancy of the observations 
from H0 may actually be due to factors not included in the formulation of H0 and 
different from H1 (Serinaldi and others, 2018). One particular factor could be 
dependence between the observations, as the MK test assumes that each data value 
is independent of the others. This assumption may not hold due to the occurrence of 
flood-rich and flood-poor periods, or on some groundwater-dominated catchments 
where high baseflow persists for more than one year. To satisfy this assumption, the 
AMAX time series were first analysed for significant lag-1 serial correlation using the 
autocorrelation function. For instances with significant lag-1 serial correlation, block 
bootstrapping was applied for the significance testing. 

The magnitude of trends was calculated using the Theil-Sen approach (TSA). This 
helps focus attention on the direction and strength of changes and not entirely on 
statistical significance relative to arbitrary p-value thresholds (Nicholls 2001).  

The Theil-Sen (sometimes referred to as Kendall-Theil) robust line is widely used for 
quantifying trend magnitude, and is similar to the gradient of a least-squares linear 
regression line, but is preferred due to being less sensitive to the presence of outliers 
(for example, Stahl and others, 2012).  

For a data set (𝑡𝑖, 𝑄𝑖 ∶ 𝑖 = 1,…𝑁) with all different values of Qi, the Theil-Sen estimator 

of the slope of 𝑄 = (𝑄1, … , 𝑄𝑁) is given by: 

𝑇𝑆𝐴 =  𝑚𝑒𝑑𝑖𝑎𝑛 {(
𝑄𝑗−𝑄𝑖

𝑡𝑗−𝑡𝑖
) : 𝑖 ≠ 𝑗 = 1,… ,𝑁}    (1) 

TSA is the median of all pairwise slopes between all points with different times.  

To make a relative comparison between sites, the trend magnitude TSArel (%) for each 
time series was expressed as a percentage of the long-term mean annual maximum 



 

  

flow 𝜇 over the period of record of 𝑛 years where 𝛽 is the TSA slope, given by Stahl 
and others (2012) as: 

TSArel = (
𝛽×𝑛

𝜇
) × 100     (2) 

Hannaford and Buys (2012) found this approach preferable compared to expressing 
trend magnitude as a simple percentage change over the full record, which can yield 
larger changes in the presence of abnormally large start or end values. 

Given the confounding effect of hydrological variability over decades, trend tests do not 
necessarily provide evidence of long-term variation. The analysis has been set in 
context by applying in a multi-temporal framework, whereby trends are analysed for all 
possible combinations of start and end points rather than just for the entire period of 
record at each gauge. The results are visualised using heatmaps.  

The results are summarised in section 4.1. 
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3.2 Split sample tests 

3.2.1 Purpose and significance tests 

Split sample tests were carried out as requested by the Environment Agency. The flood 
peak series at each gauging station was split into 2 portions, before and after a fixed 
change point. Statistics of the earlier and later portions of the record were calculated, 
and tested for significant differences. 

The Mann-Whitney U test was used to test for significance of changes between the 
distributions of AMAX flows in the earlier and later periods. The test determines 
whether 2 independent samples were selected from populations having the same 
distribution. The null hypothesis is that the distributions of the 2 populations are 
identical.  

The Brown-Forsythe test (Brown and Forsythe, 1974) was used to test for significance 
of changes between the variances of AMAX flows in the earlier and later periods. The 
null hypothesis is that the samples of AMAX flows are drawn from populations with 
equal variance.  

The results are given in section 0. 

3.2.2 Determining the split point 

The Pettitt and PELT change point tests both determine the point in time (if any) at 
which a change occurs in a data set. For the split sample tests, the timing of the split 
point was predetermined. It was calculated as the typical midpoint of the flood peak 
series, that is, the point in time that lies midway between the median start year (1967) 
and median end year (2016). This gave a midpoint of approximately 1991. The annual 
maximum (AMAX) flows up to the water year 1990 were taken as the earlier portion of 
the record, and those from 1991 onwards were taken as the later portion. 

Gauges were included in the tests if they had at least 15 AMAX flows before and after 
the split point. 400 AMAX series met this criterion. 

All years of record were included in the tests; this means that for long record stations 
the earlier period may be much longer than the later period. All AMAX flows marked as 
rejected were excluded from the analysis.  

  



 

  

3.3 Non-stationary flood frequency analysis 

3.3.1 Scope of method development tasks 

The scope of the project was to investigate and develop methods of non-stationary 
flood frequency analysis, following the earlier trial of non-stationary methods in north-
west England. To do this, the project team would: 

 carry out a literature review 

 investigate methods to identify best model fit and test the realism of the flood 
frequency results 

 investigate suitable distributions for non-stationary flood frequency analysis   

 investigate a non-stationary model form with correlation between the location and 
scale parameters 

 investigate the application of covariates other than time 

 investigate methods for reconciling non-stationary analysis with FEH pooling 
techniques   

 investigate the feasibility of deriving generalised allowances for non-stationarity 
based on spatial statistics 

3.3.2 Literature review 

The objective was to review literature relevant to methods of applying non-stationary 
frequency analysis. The review did not, in general, include literature on trend testing or 
investigations of trend in UK flood peak data, the latter of which was covered by the 
rapid evidence assessment project (see section 1.2.2). There is some literature that 
recommends avoiding non-stationary analysis; this was not included in the review apart 
from where it appears to provide useful pointers for practitioners. The review was not 
limited to UK literature. 

References were particularly sought on the topics of: 

 regional/pooled non-stationary analysis, including work on spatial trend/non-
stationary analysis 

 non-stationary analysis using physical covariates, both techniques for incorporating 
covariates and suggestions of useful covariates to try 

34 papers, research reports or presentations were included in the review. Relevant 
papers are referred to throughout this section and in the supporting appendices. 

Non-stationary frequency estimation is a popular topic for research, with new papers 
appearing every few days. This report includes reference to a few papers that 
appeared during the course of the research, as potential sources of ideas for further 
development of the methods. 
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3.3.3 General approach to analysis 

Extreme value distributions were fitted to annual maximum flow series using the 
method of maximum likelihood estimation (MLE). This involves calculating a statistic 
known as the ‘log-likelihood’ and attempting to find its maximum value by varying the 
parameters of the model over their feasible ranges. It is a numerical method and 
convergence to a true maximum is not guaranteed. In contrast, FEH methods use L-
moments to fit extreme value distributions. These are not readily adapted to work in 
non-stationary conditions.  

Section 3.3.5 discusses choice of distribution. In conventional flood frequency analysis, 
for a particular gauging station, the distribution parameters are thought of as fixed 
quantities that need to be estimated. In non-stationary analysis, one or more of the 
parameters is not fixed. It might be changing over time, or changing in response to 
changes in some variable other than flow. These variables that may affect flood 
frequency are known as covariates (refer to section 3.3.6). 

When developing methods, analysis using the GEV distribution was carried out using 
the extRemes package in R (Gilleland and Katz, 2016) and separate code was written 
to implement the GLO distribution. When implementing in the nonstat package, the 
texmex package (Southworth and others, 2020) was used in preference for statistical 
analysis, to enable full consistent implementation of the GEV and GLO distributions.  
This was also used for the national analysis. 

3.3.4 Methods for judging goodness of fit 

In non-stationary flood frequency analysis, there can be a large variety of models to 
choose from. Even if there is only one covariate, there is a need to choose between 
models in which only the location, only the scale, both or neither vary. If there are 
several potential covariates, the number of candidate models can grow rapidly.  

The following methods are suitable for selecting between models, and practitioners are 
recommended to apply them all. The nonstat package in R produces outputs to help 
with the first 4 methods and the final one. The practitioner guidance provides more 
pointers and examples of how to apply them. 

Likelihood ratio testing 

Likelihood ratio testing is a hypothesis test that is carried out under a pre-specified 
significance level (usually 5%, as applied in this project). It can only be applied to sets 
of nested models, that is, the parameters of one model must be a subset of the 
parameters of the other models (Coles, 2001). The test statistic, or deviance, is 
calculated as: 

D = -2(y - x) 

 where y is the negative log-likelihood for the more complex model and x is the 
same for the simpler model 

 the null hypothesis is that D=0, in which case the simpler model would be 
preferred. If the null hypothesis is rejected, the more complex model can be 
selected 

This is a preferred approach when comparing a small number of candidate models, 
when the likelihood ratio can be calculated for each nested pair of models. It is 
impractical when comparing hundreds, which can be the case when several covariates 
are being considered.   



 

  

AIC (Akaike information criterion) 

The AIC establishes a trade-off between the goodness of fit and the simplicity of the 
model, measured by the number of parameters. It can be readily compared across a 
large number of candidate models, the lowest AIC indicating the preferred model. AIC 
and BIC (below) are derived from the information-theoretic approach (Burnham and 
Anderson, 2002). 

BIC (Bayesian information criterion)  

BIC gives more weight than AIC to model simplicity. In calculating AIC, the penalty for 
the number of parameters 𝑘 is 2𝑘; for the BIC the penalty is 𝑙𝑛(𝑛)𝑘 where 𝑛 is the 

sample size, so if 𝑛 >8 then the penalty for a more complicated model is greater and so 
there is a preference for simpler models. 

Visual inspection of P-P and Q-Q plots 

Visual inspection of model fit plotted on probability-probability (P-P) and quantile-
quantile (Q-Q) plots 

A probability-probability (or P-P) plot compares the following 2 quantities, calculated for 
each annual maximum flow in a series: 

a) the value of the distribution function (that is, the non-exceedance probability) of 
the flow value, estimated from a statistical model 

b) equally spaced points spanning the interval (0,1) 

More formally, it is a plot of the points: 

{(�̂�(𝑥(𝑖)),
𝑖

𝑛+1
) : 𝑖 = 1,…𝑛}  

where 𝑥(𝑖), 𝑖 = 1,…𝑛 is an ordered sample of independent observations and �̂� is a 

candidate model for the true probability function 𝐹. The quantity 𝑖/(𝑛 + 1) corresponds 

to the empirical distribution function evaluated at 𝑥(𝑖), that is, a plotting position. If �̂� is a 

reasonable model for the true distribution, then the points in the probability plot will lie 
close to the unit diagonal. 

A quantile-quantile (or Q-Q) plot compares the following, again calculated for each 
annual maximum flow: 

a) the flow estimated using the statistical model from the empirical probability at 
step (b) above 

b) the measured flow 

More formally, it is a plot of the points: 

{(�̂�−1(
𝑖

𝑛 + 1
), 𝑥(𝑖)) : 𝑖 = 1,…𝑛} 

The quantity �̂�−1(
𝑖

𝑛+1
) gives a model-based estimate of the i/(n + 1) quantile provided 

by the candidate distribution �̂�, while 𝑥(𝑖) itself provides an empirical estimate of this 

quantile. Again, a well-fitting model would provide points on this plot lying close to the 
unit diagonal. 

These visual comparisons are feasible when a small number of candidate models is 
being compared. 
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Hydrological reasoning 

It is important that the statistical model makes physical sense. For instance, if rainfall is 
included as a covariate, its coefficient should be positive so that higher rainfall is 
associated with higher peak flows. It would be all too possible to fit a model with 
covariates that were correlated with peak flow, without any causal relationship being 
present. Another consideration is that the covariates should not be too correlated with 
each other. 

Consistency of model form across locations 

A consistent choice of covariates and type of relationship between covariates and 
parameters is expected for nearby and similar catchments, and particularly for gauges 
on the same river. For example, if all neighbouring gauges have a significant trend in 
the location parameter, it is likely that the trend should be included for a nearby gauge 
even if the trend is not statistically significant at that site. We expect results should 
have a level of spatial cohesion and this should be considered ahead of the random 
(stochastic) nature of hypothesis testing.   

Consistency has been considered when it comes to choosing covariates. It is desirable 
to have a model that uses the same covariates at all locations, even if at some sites 
some of the estimated regression coefficients are not statistically significantly different 
from zero. Therefore, the research has given priority to covariates that are important at 
many locations. 

Visual inspection of the return levels in comparison with the recorded 
flood peak data 

A final check is to see if the model outputs look sensible. Often it is interesting to 
examine the exceedance probability of the largest flood(s) that have been observed. 
This judgment can be conceptually more difficult in a non-stationary setting, where a 
flood that occurred in a particular year might have a different exceedance probability if 
it occurred earlier in the record, or in a year in which the annual rainfall or NAO, for 
example, were different. The concept of the marginal return level can help. 

For further considerations on model choice, refer to Xavier and others (2019), which 
was published towards the end of this project. Of the methods they tested, one finding 
was that the BIC performs best, when the true distribution is non-stationary with varying 
location, but the AIC should be preferred if the scale is varying. 

3.3.5 Distributions for non-stationary analysis 

Under stationary conditions the generalised extreme value (GEV) is the only possible 
limit distribution of maximum values of a sequence of independent and identically 
distributed random variables. A limit distribution models how large (or small) a variable 
will probably get. Therefore, there is a strong mathematical justification for the GEV 
distribution, and it is widely used by statisticians for extreme value analysis.  

The generalised logistic (GLO) distribution is recommended by the FEH, where it is 
typically fitted using L-moment estimation.  

The GEV and GLO are 3-parameter distributions. The definitions of both the GEV and 
GLO in this section represent how the distributions are implemented in the nonstat 
package. The notation here is slightly different from that of the FEH, and the shape 
parameter (ξ) has been set to be equal to −𝑘 in the FEH definition, so that the finite 

upper end point occurs with negative ξ and infinite upper tail with positive ξ.  



 

  

The kappa distribution is a generalisation of the GEV and GLO distributions with an 
additional, fourth parameter (h) that influences the shape of the body of the distribution. 

In accordance with most previous work (for example, O’Brien and Burn, 2014), the third 
(shape) parameter of the GEV and GLO distributions was assumed to be constant 
because there is too much error in its estimation to include a covariate. This leaves the 
location and/or the scale parameters that can vary with covariates. The scale 
parameter was log-transformed to ensure it remains positive for all possible covariate 
values. 

 

GEV 

The GEV distribution function is of the form: 

𝐹(𝑥) = 𝑒𝑥𝑝 {− [1 + 𝜉 (
𝑥−𝜇

𝜎
)]
+

−1/𝜉
}                                                                        (3) 

where 𝜇 is the location parameter, 𝜎 is the scale parameter, ξ is the shape parameter, 

𝑦+= max{𝑦, 0}, ξ ≠  0 and 𝜎 >  0.  

For simplicity, it was assumed that the location μ and the logarithm of the scale σ vary 
linearly with covariates. This assumption of linearity, while allowing for easily 
interpretable results and straightforward model-fitting, may not always be suitable. 
Additive models, where parameters are only restricted to be smooth functions of the 
covariate (Chavez-Demoulin and Davison 2005, Jonathan and others, 2014) offer 
greater flexibility despite reduced extrapolation capability.  

For a vector of covariates 𝑥: 

μ(𝑥) = μ0 + μ1𝑥1  + μ2𝑥2 +⋯    (4)  

σ(𝑥) = exp(𝜙0 + 𝜙1𝑥1 + 𝜙2𝑥2 +⋯)       (5)  

Therefore, for a non-stationary fit there are 2 or more elements of the location 

parameter to estimate; a constant component μ0 and μ1, μ2, which represent the 
influence of the covariates on the parameter, and the same for the scale parameter. 

There are methods intended to estimate more realistic values of the shape parameter, 
which can be poorly estimated from small samples. The ‘geophysical prior’ of Martins 
and Stedinger (2000) is sometimes used to restrict the range of shape parameters 
based on previous hydrological experience (Renard and others, 2013). This is a beta 
distribution bounded to the interval (-0.5, +0.5). This method can be adapted to the 
case of MLE, where the prior information is added as a penalty to the likelihood 
function. It is implemented in the extRemes package as an option known as 
generalised maximum likelihood estimation (GMLE). 

The effect of GMLE on the estimation of the shape parameter was tested at a sample 
of stations. It was found to lead to an increase in the parameter; in some cases, a large 
increase when the estimate from the standard MLE is close to zero. This can lead to a 
large and, sometimes unrealistic, increase in the estimated return levels for long return 
periods.   

It appears that, far from helping to constrain the range of shape parameters, GMLE, as 
implemented in extRemes, can exaggerate the shape parameter. For the present 
study, the shape parameter was therefore not constrained, that is, the GEV was fitted 
using the standard MLE method. It was subsequently found that the default 
implementation in the extRemes package may be using a beta distribution bounded to 
the interval (0, 1), rather than (-0.5, +0.5), which may be pushing the estimates towards 
more positive values. Further investigation could look into determining a penalty weight 
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for the GEV shape parameter from UK flood peak data, using an approach given by 
Gabda and Tawn (submitted).   

 
GLO 

The GLO distribution function is of the form: 

𝐹(𝑥) =
1

1+[1+𝜉(
𝑥−𝜇

𝜎
)]
+

−1/𝜉                                                                             (6)  

where all parameters are defined in the same way as for the GEV distribution, and the 
same assumption was made that location and scale vary linearly with covariates for 
non-stationary fits (Equations 4 and 5).   

 
Kappa 

Kjeldsen and others (2017) recommend wider use of the kappa distribution, stating that 
it renders 3-parameter distributions ‘obsolete’ on most UK catchments. A drawback is 
that the fourth parameter introduces another degree of freedom, leading to the danger 
of overfitting. In their analysis, Kjeldsen and others (2017) fixed the value of the fourth 
parameter (h) to a national value of -0.40. Therefore, the distribution for fitting became 
a 3-parameter distribution lying somewhere between a GLO (h=-1) and a GEV (h=0).  
Further, Kjeldsen and others (2017) fitted this distribution in a pooled analysis, in which 
enough data are available to obtain relatively stable estimates of the parameters. 

This project included development of code for fitting both stationary and non-stationary 
versions of the kappa distribution. Early results of stationary fitting produced some 
unrealistic extrapolations when all 4 parameters were allowed to vary, an example of 
the overfitting problem mentioned above. Further work would be needed to fit a version 
of the kappa distribution with a fixed fourth parameter, but it was decided not to take 
this further within the project. 

 

Comparison of GEV and GLO fit 

Tests at 5 trial gauging stations compared the fit of stationary and non-stationary 
(varying location parameter) versions of the GEV and GLO models. Model fits were 
compared using AIC, BIC and inspection of P-P, Q-Q and return level plots. Figure 3.1 
shows an example. Overall, there was little to choose from between the 2 distributions. 
The fit statistics were generally slightly better for the GLO, which is in accordance with 
findings in the FEH.  

The nonstat package offers functionality to fit either the GEV or GLO distributions, so 
practitioners are able to choose an appropriate distribution for their data. 

 

Correlation of distribution parameters 

An alternative formulation of the GEV distribution was investigated, which accounts for 
the correlation of the location and scale parameters. This was suggested in Ilaria 
Prosdocimi's peer review of the non-stationarity project in north-west England. The 
idea of linking the variation of the scale to that of the location parameter was also 
explored in Coles and Tawn (1990) and suggested by Steirou and others (2019), 
although the latter authors ended up assuming a constant scale parameter. 

In the FEH method, the coefficient of variation (L-CV) is pooled across stations after 
the peak flow data is standardised by the index flood, a measure of the scale. Under 
this approach, the scale parameter would be linked to the location:   



 

  

μ(x) = exp(μ0 + μ1x1  + μ2x2 +⋯)    (7) 

σ(x) = τ exp(μ0 + μ1x1  + μ2x2 +⋯)   (8) 

where τ is a measure of the coefficient of variation. Unlike in the standard formulation 
(Equations 4 and 5), an exponential function is used for both the location and the scale 
parameter, so that the scale can be more straightforwardly related to the location. This 
could be improved by imposing a constraint to ensure that τ remains positive. 

 
 

 

 

Figure 3.1: Comparing non-stationary GEV and GLO models fitted to station 
24004, Bedburn Beck at Bedburn, using a Q-Q plot (upper) and P-P plot (lower) 

 

 

An alternative with more orthogonal parameters might be: 

σ(x) = τ exp(μ1x1  + μ2x2 +⋯).    (9) 

There was an expectation that one of these formulations might help avoid some of the 
unrealistic extrapolations that could occur when both the location and scale parameters 
independently vary with time. A more complex formulation would allow τ  to vary with 
time. 
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To investigate this relationship between location and scale, non-stationary GEV models 
were fitted at 5 trial gauges using both the standard form and the linked version, 
defined in Equations 7 and 8. Model fits were compared using AIC and diagnostic 
plots. 

Overall, the 2 versions of the GEV model showed a similar fit. For 3 out of 5 gauges, 
the standard parameterisation model had a better fit as judged by AIC. At one gauge, 
there was a convergence problem with the linked model. This can occasionally happen 
given the exponential form in the location parameter (Equation 7); any poor starting 
value could make subsequent maximisation difficult due to the high correlation between 
the scale and location forms. 

In light of these results, it was decided that the linked model did not offer a clear benefit 
and so subsequent investigation used the standard non-stationary GEV model, as 
defined in Equations 4 and 5. A linked version of the GLO model was not investigated. 

3.3.6 Covariates for modelling non-stationarity 

One of the largest areas of the investigation was to select physical covariates, 
investigate ways of incorporating them into non-stationary models and, crucially, 
develop methods for extracting useful results for practitioners. Appendix B has a full 
report of this work. A summary is given here. 

 

Reasons for incorporating covariates 

Two reasons are sometimes given for modelling non-stationarity of floods using 
physically-based covariates. The reasons are: 

1. Physical covariates help remove some of the year-to-year variability in AMAX 
flows, allowing time-based trends to be better identified and better fit of the 
distribution. For example, in Equation 4, if covariate 𝑥1 represents time and 

covariate 𝑥2 is a measure of rainfall, μ1 would express how floods change over 
time, once variations in rainfall are taken into account by μ2 (Prosdocimi and 
others, 2014). 

2. They provide a more physically meaningful model of non-stationarity, since time 
on its own has no physical influence on flooding. As a covariate, time is merely 
a substitute for some other physical quantity that is influencing floods. Some 
physical covariates may open up the prospect of predicting the future evolution 
of the flood frequency curve (Sraj and others, 2016). 

Reason (1) leads to models that include both time and physical quantities as 
covariates. To avoid correlation between the covariates, it is desirable that any trend in 
the physical covariates is removed before they are included in the non-stationary 
model. The time covariate will then represent the presence of any temporal trend in the 
flood peak series. 

Reason (2) tends to lead to a rather different approach in which the physical variables 
replace time as a covariate. Within this approach, to model a flood series that has a 
trend over time, it would be preferable to include at least one physical covariate in the 
model which exhibits a time trend1. This then introduces a need to model the trend in 
that covariate in order to understand how flood magnitudes are changing over 
time. The hope here is that a covariate can be found for which the trend is easier to 

                                                
1 Without this, the fitted model is another another version of a stationary model, one with covariates that do not have a 
time trend. 



 

  

model than that in the flood series, perhaps because it has less variability and more 
predictability into the future. An example might be the extent of urbanisation in a 
catchment, which can be typically expected to show a monotonic increase over time.  
Additionally, urbanisation can be reasonably predicted into the future under a range of 
scenarios.   

A risk associated with this second approach is confusing correlation with causation. In 
principle, it would be possible to include any covariate with a trend, whether or not it 
had any physical connection with the processes that cause floods. This could lead to a 
false sense of confidence about the ability to estimate the future evolution of the flood 
frequency curve. It might be possible to end up with a covariate for which future values 
can be confidently predicted, but which is no more useful than the date as a way of 
explaining observed trends in flood magnitudes. Therefore, it is necessary to 
demonstrate a strong causal relationship for physical covariates if they are to be used 
for predictions. 

 

Choice of physical covariates 

In light of findings from the literature review, the following were selected as trial 
covariates:  

 catchment-average rainfall, calculated over the water year, the autumn and the 
winter seasons. Rainfall accumulations were calculated from the Centre for 
Ecology & Hydrology Gridded Estimates of Areal Rainfall (CEH-GEAR) data 
set, which provides daily rainfall on a 1 km grid across the UK from 1890 
(Tanguy and others, 2016). 

 North Atlantic Oscillation (NAO) index, averaged over the winter, summer and 
autumn 

 East Atlantic (EA) index, averaged over the winter 

 global mean temperature anomaly, averaged over the year and over the winter.  
This covariate was discarded after trend analysis showed a near-linear trend 
over the period of flow records. Although superficially it might be thought that 
temperature is a useful covariate as its future evolution can be predicted with 
reasonable confidence by climate models, this reasoning could equally apply to 
using time as a covariate, since its future values can be predicted 
perfectly. Since there is no clear causal connection between global temperature 
and UK flood magnitudes, it was not considered further as a covariate.  

These covariates, although physically-based, do not directly represent the physical 
processes that cause floods. For instance, none of the covariates measures the 
strength and direction of atmospheric rivers, which have been linked with the 
occurrence of winter flooding in the UK (Lavers and others, 2011). However, they 
represent a potential step forward from the simplistic approach of modelling non-
stationarity as a change over time. 

The research considered only covariates that are expected to be significant across 
many catchments in preference to those that represent locally-specific effects such as 
urbanisation or changes in forest cover. The nonstat package is flexible, allowing 
practitioners to include any covariates they can obtain. 

The 7 remaining candidate physical covariates were included in fitting of non-stationary 
models on some trial catchments in accordance with the following options: 

 

1. In a group, allowing any number of physical covariates plus water year to be 
included, with the physical covariates being detrended. 
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2. Up to 2 covariates per model, with a maximum of one being a physical 
covariate, the other being water year, with the physical covariate being 
detrended. 

3. Up to one physical covariate per model, with no detrending. 

4. Only time allowed as a covariate. 

 

In all these cases, covariates were considered for modelling either or both of the 
location and scale parameters.  

This leads to a large number of candidate models. Even when only one physical 
covariate is allowed at a time, there are 22 models fitted (7 physical covariates times 3 
for location, scale and both varying, plus one with no covariates). With up to 2 
covariates, there are 88 models fitted. The number can grow to many thousands when 
more covariates are considered, which can lead to unfeasibly long run times. 

Appendix B presents results on the trial catchments. 

 

Incorporating physical covariates into estimating design flows 

One of the biggest challenges the project faced was how practitioners could extract 
estimates of design flows from models fitted to physical covariates. Design flow 
estimates from a non-stationary model that uses physical covariates will change not 
only over time, if water year is included as a covariate, but also with the value of the 
other covariates. For instance, if the covariate is annual rainfall, then the 1% AEP 
design flow given 1,200 mm of rainfall is the expected flow under the (clearly 
hypothetical) conditions that the annual rainfall is always 1,200 mm. This quantity is 
known as the conditional flow estimate, or more formally as the conditional return 
level. 

The conditional flow estimate may be useful when examining the probability of past 
floods, but it is less informative when thinking about design. 

The integrated flow estimate, formally the marginal return level (Eastoe and Tawn, 
2009) removes the dependence on a particular value of the covariates. It is defined as 
the return level corresponding to the encounter probability2 averaged over covariates in 
a period of interest. The marginal return level should be understood as applying over a 
period rather than instantaneously. This is a useful concept for planning investment 
decisions in flood risk management, which need to consider the probability of floods 
occurring over the period of the planning horizon. Appendix B provides a formal 
mathematical definition of the marginal return level.  

The marginal return level is normally calculated by averaging over the covariate values 
observed during the period of flow record. In theory, it can also be calculated by 
averaging over a different distribution of covariate values, for instance one that is 
intended to represent future conditions. This is not recommended for practical 
application because it is only valid if the physical covariates provide a complete causal 
description of the non-stationarity in peak flows. For example, if the covariate was 
annual rainfall, this calculation would assume, wrongly, that future changes in peak 
flow can be entirely explained by changes in annual rainfall. Although it is expected that 
climate change may affect annual rainfall, and therefore catchment wetness, it can also 
be expected to influence other factors that control flood magnitudes. These include 
storm intensity and evapotranspiration (which influences soil moisture).   

                                                
2 An encounter probability is the probability of an event occurring in a given number of years. The concept is explained 
further in the practitioner guidance. 



 

  

If the covariates include both water year and physical variables, it is possible to 
calculate a marginal return level by averaging the probabilities corresponding to the 
observed physical covariate values, but setting the water year covariate to a single 
value, such as the final year of record. This gives what the project has termed a single-
year integrated flow estimate. If the flow record runs up to the present day, this 
estimate represents the present-day expected flow for a particular exceedance 
probability, without being conditional on any particular value of a covariate. The single-
year integrated flow estimate can be more easily compared with alternative estimates 
such as those from a model that uses only water year as a covariate. 

The nonstat package can calculate the various statistical outputs mentioned above, 
along with suitable graphical outputs. The single-year integrated flow estimate is 
calculated only for the final year of record. The output from the package refers to this 
quantity as the present-day marginal return level. 

 

Confidence limits 

Confidence limits are estimated using a parametric bootstrapping procedure. This is a 
method of deriving confidence limits in situations where the underlying statistical 
population is unknown or where an analytical solution is impractical. For the integrated 
flow estimate and single-year integrated flow estimate, the process involves resampling 
the covariates (drawing randomly from the covariates with replacement), keeping the 
time covariate fixed, then re-estimating the parameters of the fitted distribution. New 
process values (flows) are then sampled from the distribution with the new parameter 
estimates, to generate a new flow time series. Finally, the model is refitted to the new 
sampled data and return levels are estimated from this final estimated model. This 
process is repeated a large number of times and confidence intervals are extracted 
from appropriate quantiles of the results. 

For the stationary and conditional return levels, the process is the same, but missing 
the first 2 steps (that is, omitting the resampling of covariates and subsequent refitting 
of the model with the resampled covariates). Process values (flows) are resampled 
from the original fitted model (which either has no covariates, in the stationary case, or 
has fixed covariates, in the conditional case), then model parameters are re-estimated 
by refitting the model to the new resampled data, and return levels are estimated from 
this model. 

3.3.7 Pooled non-stationary analysis 

Pooled analysis was another major part of the research, since it is considered 
important to build bridges between non-stationary analysis and the widely-used FEH 
method. A particular aspiration was to be able to apply non-stationary methods at 
ungauged locations. This section gives an overview, and the details are in Appendix C. 

The research considered how to apply non-stationarity within the pooling-group 
framework. This included 2 parts:  

 how to account for trend when forming pooling groups, developing a new similarity 
distance metric 

 how to estimate index floods and flood growth curves that incorporate trend 

Both parts compared the developed methods with existing approaches to check for 
improved performance. 

The first part investigated including trend descriptors as components in the similarity 
distance metric (SDM) currently used in the UK to form pooling groups. Alternative 



28  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

similarity distance metrics were investigated, based on using the Theil-Sen estimator of 
trend as a component. These were based on fitting L-CV and L-SKEW models, and 
recalibrated using existing pooled uncertainty optimisation. The SDM based on an L-
CV model performed similarly to the existing FEH. The Theil-Sen estimates of slope 
were slightly more accurately predicted when using a similarity metric which included 
trend as a component. The 20-, 50- and 100-year floods seem to be predicted with 
similar accuracy with the old and new SDMs. 

The second part built on the first, looking into the most appropriate method of using 
index flood methods and growth curve formulations within pooling group methods. This 
was primarily to improve flood frequency curves where non-stationarity may be 
present, and secondly to improve estimates of trend (or confirm the absence of trend) 
at locations with short or no gauged records of flow. Methods of choosing stationary 
and non-stationary index floods and growth curves were investigated. When trialled on 
observed data, mixed signals were observed, though trends in the scale parameter led 
to consistently larger estimates in the 20-year flood. By using simulations with realistic 
dependence structures, it was observed that correctly modelling trend is important for 
accurate parameter estimates, particularly in modelling GLO scale parameters. 

The investigation recommended that the current FEH SDM should still be used for 
forming pooling groups, but if regions or pooling groups are generated to account for 
trend, care should be taken to select stations with like trend (positive, negative or no 
trend). Non-stationarity in growth curves can be helpful in very specific cases with 
consistent pooling groups in terms of like trend. However, non-stationary analysis 
should be used with caution, due to problems in fitting of such curves through 
maximum likelihood methods on short records, and should not be used for 
extrapolation beyond the present until further work is conducted. 

More work must be done before it can be recommended that practitioners solely use 
non-stationary index floods or growth curves. If all stations within a pooling group have 
similar trend, then incorporating a trend into the growth curve is reasonable, and should 
be considered and compared with the stationary growth curve.  

In the meantime, practitioners will face challenges in reconciling the results of non-
stationary analysis, at individual gauging stations, with those of pooled analysis using 
FEH methods.  

3.3.8 Spatial statistics 

The research included some exploratory work to fit a spatial statistical model. The 
motivation was to boost the strength of the trend signal by combining data from multiple 
sites, helping to remove some of the ‘noise’ introduced by year-to-year variability in 
peak flows. A Bayesian hierarchical model was fitted, applying a gauge-specific GEV 
distribution with time covariate, whose parameter μ1 (defined in Equation 4) is modelled 
as a normal distribution with shared variance across a predefined region such as a 
hydrometric area. 

Appendix D contains a description of this investigation. The model shows promise but 
is not ready for incorporating into the interim guidance for practitioners.  

  



 

  

3.4 Allowing for the impacts of climate change 

3.4.1 Scope of investigation 

The project included an investigation of different approaches for applying climate 
change allowances to the results of non-stationary flood frequency analysis. Appendix 
E contains a detailed report of this investigation. The sections below provide a 
summary.  

The report discusses various ways in which climate change allowances are, or could 
be, applied. It compares how different extrapolations to 2025, 2050, and 2080 are 
affected on a regional scale, depending on which baseline is chosen and whether the 
baseline is assumed to be stationary.  

3.4.2 Existing guidance on climate change allowances for 
England 

Agencies across the UK have been providing guidance on the potential impacts of 
climate change on floods for many years, so that these can be accounted for by flood 
management authorities and local planners aiming to reduce flood risk (Reynard and 
others, 2017). The most recent guidance adopts a regional risk-based approach 
(Environment Agency 2016 a,b), and is based on combining the UK Climate 
Projections 2009 (UKCP09) (Murphy and others, 2009) with a sensitivity-based 
approach to modelling the impacts of climate change on peak flows (Kay and others, 
2011; 2014). 

The guidance for flood management authorities (Environment Agency, 2016a) provides 
a set of 5 numbers (lower, central, higher central, upper and H++) for each of 11 
regions covering England for 3 future time slices (2020s, 2050s and 2080s). The 
‘lower’, ‘central’ and ‘upper’ numbers represent the main range of estimated impacts of 
climate change on flood peaks from the UKCP09 projections. The H++ numbers 
represent plausible but unlikely high-end impacts of climate change.  

The guidance recommends that the central estimate of change should be used to 
define the risk over the decision lifetime, with the upper and lower estimates provided 
to encourage the options required to manage the fuller range of risk to be considered, 
for example, building flexibility into the plan to allow future adjustments, if necessary 
(Reynard and others, 2017).   

3.4.3 Issues when applying the guidance 

Current guidance on applying climate change allowances (CCAs) is somewhat open to 
interpretation. Some of the issues are listed below.  

 Climate change allowances are derived from climate projections from a 1961 to 
1990 baseline, typically using hydrological modelling for the baseline period 
1961 to 2001 (Kay and others, 2014). 1961 to 1990 continues to be the 
standard baseline in new research updating CCAs using UKCP18 climate 
projections. 

 The impacts for the 2020s time slice are based on the potential climate change 
between the baseline period and the period 2010 to 2039, therefore raising the 
question of whether some of the climate change has ‘already happened’. If so, 
is applying the full allowance still valid? 
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 Even if a clear trend is apparent in the AMAX data for a particular catchment, it 
could be for a range of reasons other than climate change, including natural 
climate variability. 

 The impacts of any of these effects can be difficult to spot given the large 
natural variability seen in peak flow data. 

 While anthropogenic climate change may be a major driver of non-stationarity in 
peak flow data, it is very important that global change impacts are attributed 
reliably and the risk of ‘climatisation’ is avoided by taking non-climatic factors 
into account (Wine and Davison 2019). 

3.4.4 Methods investigated 

Five methods of accounting for climate change were trialled, and these are listed 
below. Each method was applied across the full project data set of gauging stations 
suitable for non-stationary frequency analysis.   

 

Table 3.1 Methods of accounting for climate change 

Code Period of 
record 
analysed 

Type of flood 
frequency 
analysis 

Baseline 
year for 
extraction of 
results 

Method for 
adjusting for 
potential future 
conditions 

Comment 

STFULL Full Stationary n/a (any) Current climate 
change (CC) 
allowances 

Current approach 
used by 
practitioners 

ST6190 1961 to 
1990 

Stationary n/a (any) Current CC 
allowances Results intended 

to be 
representative of 
1961 to 1990 
baseline 

NSTREP Full Non-
stationary 

1990 Current CC 
allowances 

NST6190 1961 to 
1990 

Non-
stationary 

1990 Current CC 
allowances 

NSTEXT Full Non-
stationary 
(varying 
location with 
time) 

n/a Extrapolation of 
non-stationary 
model 

Purely for 
comparative 
purposes. Not to 
be applied in 
practice. 

 

3.4.5 Findings from investigation 

 On average, using full periods of record with climate change allowances applied 

(STFULL) leads to the largest estimates of flow among those methods 

considered. This means that the present method of applying CCAs to the full 

record tends to lead to the most conservative estimates, since this report shows 

that Q50 and Q100 estimates are typically largest in most regions using this 

method. 

 The non-stationary representative method (NSTREP) gives a reasonable 

compromise; using non-stationary peak flow estimates representative of 1961 to 

1990 (the baseline period for CCAs), but also accounting for trends in more 

recent data within the analysis. This method should be considered to use if a 

more precise estimate of trend is important, even if that gives smaller future 



 

  

estimates of QT, but only in circumstances where trends are thought to be driven 

by climate change. 

 Stations with significant positive trend tend to show a mixed picture; STFULL 

does not always produce the largest estimates of flow for these stations. This is 

most evident in the south west and Wales. Multiple methods with and without 

non-stationary approaches should be consulted to get a fuller picture of possible 

future flow. 

 Methods that analyse only 1961 to 1990 data are not recommended as the more 

recent data are invaluable in giving a more accurate present-day picture. Always 

try to use a method of future flow estimation which includes as much good quality 

data as are available.  

3.4.6 Implications for practitioners 

Although it is very difficult to make general recommendations from the results, the 
following comments may help practitioners choose an approach in cases where climate 
change rather than any other factor is believed to be a driver of non-stationarity: 

 No evidence was found to suggest that the existing climate change allowances 

should be revised other than to apply the new UKCP18 probabilistic climate 

projections. This update is already under way based on the outputs of the 

project ‘Providing more locally-appropriate information on potential impacts of 

climate change on flood peaks in England and Wales’ (Kay and others, 2019). 

The intention is for the outputs of the project to be made available via a web 

tool. However, the Environment Agency has not yet made any decisions on 

updates to guidance on flooding and climate change. 

 To assess whether climate change has already started to affect flood 

frequency, QMED and/or a higher quantile estimated over the 1961 to 1990 

baseline period could be compared to that estimated from the full record. If the 

two differ substantially, the effect of applying the climate change allowances to 

the baseline and full record estimate could be explored. The split sample tests 

carried out within this project make this type of comparison (section 0).  

The guidance for practitioners includes 2 suggested approaches for adjusting non-
stationary flood frequency estimates for future climate change, based on the comments 
above.  

For any applications where it is only the short-term future that is of interest, an 
alternative approach would be to adopt the present-day estimate from a non-stationary 
model, treating this as a new baseline, which might be representative of the next few 
years, into the 2020s. This approach would amount to an updated stationary model, 
assumed to be applicable over the short term. Research in the USA using split-sample 
testing (Luke and others, 2017)1 has shown that this can be a better assumption than 
either extrapolation of a non-stationary fit into the future or fitting of a stationary model 
in the presence of changes in flood frequency (albeit caused by changes in land use in 
that case). 

Ultimately, it will not be possible to develop definitive guidance without tackling the 
challenge of trend attribution. 
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3.5 Clustering 

The primary focus of the project was on long-term trends in flood magnitude. It can be 
notoriously difficult to distinguish between persistent trends and cycles of flood-rich or 
flood-poor periods, some of which can operate over several decades. As well as 
clusters of flood-rich years, shorter-term clusters are also seen, for example in wet 
years such as 2012, winter 2015 to 2016 and winter 2019 to 2020. These sequences of 
events can pose challenges for managing flood incidents.  

Understanding temporal clustering better may help the attribution of trends and 
therefore understanding whether and how they might continue. It could help determine 
whether practitioners are relying on an unrepresentative period spanned by peak flow 
data sets. Knowledge of clustering on a shorter timescale may help plan response and 
communication in the aftermath of flood incidents, and perhaps have implications for 
designing storage-based schemes.   

Within the current project, the scope for investigating temporal clustering was limited to 
an initial exploratory analysis. This involved: 

 literature review covering both clustering and also identifying flood-poor and 
flood-rich periods using longer-term sources of information 

 developing data sets, screening long-term series of POT (peaks over threshold) 
flow data. Fourteen gauges were selected for the investigation, all with at least 
60 years of reliable POT data 

 quantifying the degree and duration of clustering using the index of dispersion 

Appendix F contains a report on the investigation. 

Statistically significant clustering was found at all gauges. The strongest clustering 
tended to occur between 2 and 6 years, and up to 10 years on some rivers.   

If clustering is present successive POT data may not be independent, despite applying 
rules of thumb intended to ensure that POT data are independent, as described in the 
FEH and modified for the NRFA data set3.  It may even be the case that some 
successive annual maximum flows are not independent. The methods of both 
stationary and non-stationary flood frequency analysis described in this report all 
assume that peak flows are independent. Attributing any dependence may help in 
fitting more appropriate statistical models. 

There are several possible avenues for follow-up work. A more in-depth investigation 
could answer some of the following questions: 

 How does the degree of clustering vary with flood magnitude, with catchment 
type or location?    

 Is clustering primarily due to hydrological or meteorological causes?  

 What information do we have on the typical duration of flood-rich or flood-poor 
periods?  

 How much more likely is a flood to occur in the aftermath of another large 
flood?  

 How can we quantify the probability of a sequence of floods as opposed to a 
single event? 

                                                
3 https://nrfa.ceh.ac.uk/peaks-over-threshold, accessed 25 March 2020. Accessed 12 May 2020 

https://nrfa.ceh.ac.uk/peaks-over-threshold


 

  

 Do the rules of thumb for identifying independent POT data need to be 
improved? 

Appendix F provides some pointers as to how these questions could be answered. 



34  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

4 National results 

4.1 Introduction 

This chapter presents the results of the methods described in the previous chapter, 
applied to the set of gauging stations described in chapter 2. Results are presented for 
trend tests, split sample tests and non-stationary flood frequency analysis. Section 0 
discusses some of the similarities and differences between the findings of all these 
analyses. 

4.2 Trend tests 

4.2.1 Results 

Records of suitable length and completeness were available at 471 gauging stations. 
Appendix A and the digital outputs (FRS18087-IG-D2-digital_outputs.zip) contain the full 
results. A summary is provided here. 

Three periods were selected to compare results from all stations and assess the spatial 
variability of the trends in England and Wales. These periods are short (starting 1987), 
long (starting 1967) and full. For full consistency, results were also produced using a 
fixed start and end year (that is, 1987 to 2016 and 1967 to 2016). In this case, all 
stations have an identical record length and so can be compared fairly.  

For the 5 fixed periods over which trends were analysed, most stations have increasing 
trends ( 

Table 4.21). There are more than twice as many stations with increasing trends as 
decreasing trends. Depending on the record length examined, 10 to 21% of gauges show 
increasing trends that are significant at a 10% or 5% level. 

 

Table 4.1 Summary of MKZ trends for 5 periods of interest. Each cell shows the 
number of gauges within the category 

 
 

Short 
(1987-) 

Long 
(1967-) 

Full 1987 to 
2016 

1967 to 
2016 

Number of gauges 
with suitable data 

435 272 471 403 202 

Direction of trend 

Positive (MKZ>0) 287 186 318 261 132 

None (MKZ=0) 14 6 4 14 5 

Negative (MKZ<0) 134 80 149 128 65 

Significance of trend 

Positive, 10% 48 52 99 42 26 

Positive, 5% 30 37 63 25 22 

Negative, 5% 5 8 12 5 7 



 

  

Negative, 10% 10 13 22 10 12 

 

Similar conclusions are found by examining the results for all the combinations of start 
and end years in Appendix A. The median percent of positive trends is over 74%, 
meaning that half of the stations have more than 74% of positive trends for all the 
examined combinations. There are some stations with persistent positive/negative 
trends for all the combinations. For example, at station 54040 (the Meese at Tibberton), 
about 40% of combinations of start and end years show a significant negative trend. 
There are 29 stations with positive trends for all combinations of start and end years, 
while 5 of them have over 80% of these trends classed as significant. 

However, the multi-temporal analysis, the results of which are provided digitally, more 
typically illustrates how trends in fixed periods are not representative of the full range of 
hydrological variability. There are often changes in the magnitude and even direction of 
trends over the course of the period of record. This sensitivity to start and end years is a 
very widely known issue and discussed at length in the literature (see Hannaford, 2015 
and references for a UK context on this issue).  

A map of the Theil-Sen approach (TSA) measure of trend magnitude for the full period 
of record at each gauge (Figure 4.1) shows the propensity for positive trends in peak 
flows across much of England and Wales. Large areas of central and eastern England 
also display negative trends, but these are often non-significant (except for a coherent 
cluster in the Thames catchment and some in the north-east and Midlands at the 10% 
significance level). In comparison, significant increasing trends are prevalent across 
some areas, especially in northern England, Wales and parts of western central England.  
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Figure 4.1 Maps of trend results for the full period of record and the short and 
long periods 

 

For the fixed periods of record, short (1987 onwards) and long (1967 onwards), the 
patterns are broadly similar, despite the sparser coverage.  

Cumbria has been a focus of attention regarding trends in peak flows, and hydrometric 
areas 73 to 76 cover Cumbria and parts of surrounding counties. Looking at the full 
period of record, all 32 stations in Cumbria have a positive trend, of which 56% are 
significant at a 10% significance level and 41% are significant at a 5% level. 

  



 

  

4.2.2 Discussion 

If we take the long period as the most robust outcome (balancing the length of record, 
while also being a fixed period allowing comparison between sites) to compare with other 
work, we can conclude that the national picture broadly agrees with previously published 
research on trends in AMAX and other flood indicators (Hannaford, 2015). That is, there 
has been a tendency towards higher flows in northern and western areas over the last 4 
to 5 decades. The majority of that work was carried out in study periods ending in the 
mid to late 2000s, so the current study provides an update of around a decade.  

Echoing other studies published in the last few years (for example, Brady and others, 
2019; Prosdocimi and others, 2019), it appears that the previously identified gross 
patterns of change in the UK are fairly resilient, that is, these tendencies have not been 
countered by adding new data. Indeed, if anything, the results show an increase in 
positive trends and in the proportion of significant trends. To a degree, this is unsurprising 
given that the recent decade includes some very major flood events (for example, the 
winter 2015 to 2016 floods, which have a strong influence on the number of significant 
positive trends in northern England).  

The results accord with Harrigan and others (2018), who, using the same testing 
methodology reported primarily positive trends in high flows (the Q5 flow in each year), 
with significant trends in northern and western areas. However, the current study uses 
peak flow data as opposed to daily flow data. It also uses the NRFA Peak Flows (v7) 
data, which includes AMAX data up to the 2016 water year, whereas Harrigan and others 
(2018) featured data up to 2014. The higher (relative) number of significant trends in 
England and Wales in the current study may reflect the addition of the 2015 to 2016 
floods.  

The current study also features the entire peak flows data set (that meets the agreed 
study criteria) rather than focusing on near-natural catchments. The agreement with 
Harrigan and others (2018) is encouraging, as that study deliberately focused on near-
natural, high quality stations to prevent spurious trends arising from poorer quality data 
or human effects. Here, there are similar geographical patterns using the whole peak 
flows data set, including very heavily influenced catchments. This suggests that, at the 
national scale, a similar ‘headline’ picture emerges even when all catchments, of varying 
properties and degrees of disturbance, are mixed together.  

One important spatial contrast with Harrigan and others (2018) is that there are more 
negative trends in the present study, particularly in central England, than in the results 
for the UKBN. This is discussed in Appendix A. 

The general dominance of positive trends for the UK agrees with several recently 
published studies of spatially coherent trends in flooding at the national scale (Brady and 
others, 2019, Prosdocimi and others, 2019). These studies use a novel Bayesian 
approach to characterise regional and national-scale trends, rather than focusing on at-
site trends. While these studies show that the signal towards positive trends in flooding 
is prevalent at the large (national) scale, Prosdocimi and others (2019) also show 
significant regional variations in the strength of trends, with broadly similar patterns to 
those shown here. 
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4.2.3 Trends over the longer term 

There is considerable discussion in the literature about how long a period is needed to 
adequately quantify trends, with 50 years sometimes cited (for example, Kundzewicz 
and Robson, 2000). Arguably, no single period can reliably be used to characterise 
trends given the presence of interdecadal variability.  

Such variability between ‘flood-rich’ and ‘flood-poor’ periods is clearly prevalent in UK 
hydrometric records, as shown in the smoothed LOESS (local polynomial regression 
fitting) series presented in the trend outputs in Appendix A. Even in a 50-year record, 
longer periods than the extant record could give different results still. A range of studies 
has shown that historical flood events reconstructed from epigraphic, documentary or 
other sources are often larger than events in contemporary gauging station records, and 
flood-rich and flood-poor periods exist in reconstructed records covering centuries (for 
example, Wilby and Quinn, 2013; MacDonald and Sangster, 2017).   

For this reason, the multi-temporal analysis provides important context. It is important to 
underline that a trend in a fixed period should be seen as a descriptor of non-stationarity 
in that period alone. Trends should not be extrapolated, because, as the multi-temporal 
analysis makes abundantly clear, variability over a range of scales (years to decades) 
means that the strength and direction of trends could change in future.  

The multi-temporal analysis also helps overcome the issue of ‘stopping rule bias’, which 
refers to the tendency for analyses such as this project to take place in the aftermath of 
large events. This tends to mean that stronger trends are found than if the timing of the 
analysis were unrelated to the occurrence of recent floods. 

An important question is whether a trend for any given period is representative of a long-
term change rather than short-term variation. This question is difficult to avoid if we want 
to use non-stationary techniques to support investment in future flood alleviation 
schemes, as discussed in section 0. The question cannot be answered by any of the 
techniques for detecting trend or estimating non-stationary flood frequency applied in this 
project. It should be addressed by moving from detection to attribution, in other words, 
identifying the processes driving the trend Merz and others (2012). 

This is, however, a much more challenging scientific task and one that requires blending 
observational data sets with hydrological models. This is typically extremely resource 
intensive even at the catchment scale (for examples, see Harrigan and others, 2015; 
Prosdocimi and others, 2017), and therefore is beyond the scope of the present study. 

  



 

  

4.3 Split sample tests 

4.3.1 Change in location of the distribution 

400 AMAX series have enough data both before and after the split point of 1991 to be 
included in the split sample tests. 

 

Figure 4.2 is a histogram summarising the variety of ratios of the median of AMAX 
flows, QMED, calculated from the earlier and later parts of the record. The categories 
on the x axis are calculated using a geometric scale, so as to give equal visual 
prominence to ratios representing decreases and those representing increases. Ratios 
greater than 1 (that is, bars to the right of the red line) indicate an increase in the 
median in the later part. 

71% of gauges show an increase in QMED. The lowest ratio is 0.73 and the highest 
1.52. These opposite extreme changes occur at gauges 29009 (Ancholme at Toft 
Newton) and 41023 (Lavant at Graylingwell) respectively. 

 

 

 

Figure 4.2 Histogram of changes in the median AMAX flow, QMED 

 

At a 5% significance level, the null hypothesis of no significant change in distribution 
was rejected for 52 gauges, representing 13% of the total with long enough records.  
Provisionally, an alternative hypothesis can be accepted for these gauges, that there is 
a difference in the distributions of the populations of AMAX flows represented by the 
periods before and after 1991. At 47 of these 52 gauges, QMED is higher for the later 
period. 

At a 10% significance level, the null hypothesis was rejected for 23% of gauges. 

There is a wide range in the results between Environment Agency Areas. The north-
east, the Solent and South Downs, and Cumbria and Lancashire have more than 90% 
of stations where QMED is higher in the later series. In Cumbria (as defined in section 
4.2.1), all but one of the 28 stations have a higher QMED in the later series. 
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4.3.2 Change in spread of the distribution 

 

Figure 4.3 summarises the ratio of variances of AMAX flows calculated from the earlier 
and later parts of the record. As for QMED, the variance is higher for the later period at 
the majority of gauges (70%). The implication is that the general increase in QMED is 
not just an upward shift in the location of the distribution; rather, the large floods are 
tending to become larger in the later part of the records.  

 

 

 

Figure 4.3 Histogram of changes in the variance of AMAX flows 

 

The variance is highly sensitive to the presence of outliers, which is one reason why 
flood frequency estimation techniques, such as those used in the FEH, avoid using 
conventional statistical moments such as the variance in fitting flood frequency curves.  
A single outstanding flood in the earlier or later parts of the record can be enough to 
change the variance by an order of magnitude or more.  

The lowest ratio of variances estimated from the earlier and later parts of the record is 
0.04 and the highest is 41. These opposite extreme changes occur at gauges 40012 
(Darent at Hawley) and 27023 (Dearne at Barnsley) respectively and can be explained 
by outliers in 1968 and 2007 respectively. 

At a 5% significance level, the null hypothesis of no significant change in variance was 
rejected for 40 gauges, representing 10% of the total with long enough records.  
Provisionally, an alternative hypothesis can be accepted for these gauges, that there is 
a difference between the variances of populations of AMAX flows represented by the 
periods before and after 1991. At 36 of these 40 gauges, the variance is higher for the 
later period. 

At a 10% significance level, the null hypothesis was rejected for 18% of gauges. 

These results complement those produced from the PELT and Pettitt tests and also the 
results of the multi-temporal trend testing.   
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4.4 Non-stationary flood frequency analysis 

4.4.1 Methods applied 

The following methods were applied to estimate a flood frequency curve at each of the 
375 stations: 

1 SS-STAT-MLE: Single-site stationary analysis, fitted using MLE. These 
results help identify how much of the difference between the FEH results 
and the non-stationary analysis are due to differences in the methodology 
other than the assumption of stationarity. Both GLO and GEV distributions 
were fitted, for comparison. 

2 SS-NONSTAT-MLE: Single-site non-stationary analysis, using the following 
approaches. In each case, both a GLO and GEV distribution was fitted. 

a. Using time (the water year) as a covariate. Four model variants were 

fitted, in which the location, scale, neither and both parameters were 

allowed to vary with time. The results from the best fitting model, 

judged by likelihood ratios, were output. In some cases, this is the 

stationary model, in which case the results are identical to those of 

(2).  

b. Using physical quantities as covariates, either as well as or instead 

of time. Up to 2 covariates are allowed per model, with a maximum 

of one being a physical covariate (the other being water year). The 

results from the best-fitting model, judged by the BIC, were output. 

In some cases, this is the stationary model, in which case the results 

are identical to those of (2). In others, the preferred model has only 

time as a covariate, in which case the results are identical to those 

of (3a). 

Note that the criterion is up to one physical covariate per model, 
not per model parameter.  So, models with one physical covariate 
for the location parameter and a different physical covariate for the 
scale parameter are not considered. 

3 P-FEH: Using the pooled FEH method, in which the flood growth curve is 
estimated from a pooling group composed of gauge sites of similar 
catchment characteristics, with additional weight given to data at the subject 
site. Also known as the enhanced single-site approach, this is commonly 
applied when estimating flood frequency at gauging stations within the FEH 
methodology. The growth curve is a GLO distribution fitted using L-moment 
ratios as most commonly applied with the FEH. As with all FEH methods, 
this is a stationary analysis. 

The 7 physical covariates are explained in section 3.3.6. 
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4.4.2 Results and ways of comparing them 

The first type of comparison was to note at which sites a non-stationary model was 
preferred (as judged by likelihood ratios).   

Results, that is, estimates of flow, were output for a range of annual exceedance 
probabilities (AEPs). The comparisons in this report focus on 3 AEPs: 50%, 10% and 
1%. The 10% AEP is expected to be most influential in the economic assessment of 
flood damages, and the 1% most influential in calculating costs for flood alleviation 
scheme development. 

For the non-stationary models with time as a covariate, results were output for each 
year of record, and the results for the most recent year were used in the comparison.  

For the non-stationary models with physical covariates, integrated flow estimates have 
been output. Section 4.4.7 shows a discussion of these results. 

Maps of the results are provided in Appendix G. Results at each gauge are provided in 
the digital outputs (see section 4.6). 

4.4.3 Extent of non-stationarity across the data set when 
considering only time as a covariate 

At about 80% of gauges, a single-site stationary model (SS-STAT-MLE) was preferred 
over any of the non-stationary models that use time as a covariate. See  

Table 4.2 for the breakdown of results, which differ slightly between the GEV and GLO 
distributions. 

At the gauges where a non-stationary model gave a better fit, the trends could mostly 
be modelled using either a varying location parameter or a varying scale. Only 2% of 
the national data set ended up being modelled, with both the location and scale 
parameters varying. 

 

Table 4.2 Types of flood frequency model selected: time as covariate 

Flood frequency model (GEV distribution) Number of gauges 
where model is 
preferred 

% 

Stationary (SS-STAT-MLE) 287 76% 

SS-NONSTAT-MLE (varying location) 48 13% 

SS-NONSTAT-MLE (varying scale) 32 9% 

SS-NONSTAT-MLE (varying location and scale) 8 2% 

 

Flood frequency model (GLO distribution) Number of gauges 
where model is 
preferred 

% 

Stationary (SS-STAT-MLE) 302 81% 

SS-NONSTAT-MLE (varying location) 47 13% 

SS-NONSTAT-MLE (varying scale) 18 5% 

SS-NONSTAT-MLE (varying location and scale) 8 2% 

 



 

  

As mentioned earlier, the best model fit was judged using likelihood ratios. The findings 
were extremely similar if the BIC statistic was used to select the preferred model. At 
97% of gauges it gave the same preference as the likelihood ratio method. 

The finding can be compared with that from Faulkner and others (2019), who applied a 
similar analysis to a large data set of 509 gauges in England, Wales and Scotland, with 
much less screening than was applied in the present project. A stationary model was 
found to fit best at two thirds of gauges in Great Britain. 

The findings from this analysis can be interpreted as another type of trend test, to 
complement those carried out elsewhere in this project. Where a non-stationary model 
is found to fit better, this is evidence of a statistically significant trend. Unlike the Mann-
Kendall test, the non-stationary distribution fitting is a parametric trend test, which 
accounts for the magnitude of the trend rather than only its direction. The results of the 
different types of test are compared in section 0. 

The direction of trend is indicated by the sign of the GEV or GLO model parameters, 
μ1, which indicates how the location parameter varies with time, and 𝜙1, which 
indicates how the logarithm of the scale parameter varies with time. Equations 3 to 6 
contain the relevant definitions.  

Table 4.3 shows the findings. Trends in the location parameter, where present, are 
overwhelmingly positive. Trends in the scale parameter are mainly positive, but there 
are a fair number of gauges with a negative trend, indicating that, at those gauges, the 
variability of floods appears to be decreasing over time.  

 

Table 4.3 Direction of trends in flood frequency model parameters 

Direction of trend in GEV location 
parameter 

Direction of trend in GEV scale 
parameter 

Positive 47 Positive 29 

No trend 319 No trend 335 

Negative 9 Negative 11 

Direction of trend in GLO location 
parameter 

Direction of trend in GLO scale 
parameter 

Positive 45 Positive 17 

No trend 320 No trend 349 

Negative 10 Negative 9 

 

 

 

Figure G-1 Spatial distribution of preferred model fit 

in Appendix G) shows the geographical distribution of the types of flood frequency 
model that were found preferable. There are few clear geographical patterns in the 
results. Stationary models are generally preferred in all areas. Non-stationary models 
are seen in the north of England, but also in the Home Counties, Wales and the south-
west. Large numbers of non-stationary models are found in hydrometric areas 39 
(Thames, 10 out of 25 gauges) and 54 (Severn, 9 out of 22 gauges). 

There are 23 gauges within Cumbria (as defined in section 4.2.1). Looking at these 23 
gauges, the majority (61%) show the stationary model as fitting better than non-
stationary models with time as the covariate. The stationary models include all gauges 
on the River Eden and also on the River Derwent and its tributaries. This finding 
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implies that although there may be non-stationarity in peak flows across Cumbria, at 
about 60% of stations the non-stationarity is not strong enough to justify the increase in 
model complexity associated with adding time as a covariate. (When physical 
covariates are added, the picture changes, with non-stationary models providing the 
best fit at 75% of stations). 

  



 

  

4.4.4 Comparison of FEH and stationary at-site results 

Before comparing the SS-NONSTAT-MLE results with those obtained from the P-FEH 
method, it is worth examining other ways in which the results might differ, apart from 
including non-stationarity. There are several other methodological differences, which 
are inevitable given that non-stationary analysis cannot currently be carried out using 
the type of methods generally applied within the FEH methodology: 

a) The analysis carried out using the methods developed in this project is single-
site; the FEH growth curves are derived using pooling (albeit giving extra weight 
to the at-site data). 

b) The non-stationary analysis uses MLE; FEH uses L-moment ratios. 

c) The non-stationary analysis does not standardise the annual maximum flow 
data. The FEH method standardises the data by the median, QMED, fits a 
dimensionless growth curve and then multiplies it by QMED, which is estimated 
as the median of the annual maximum flows at the gauge. This is the reason 
why the 2 approaches can give different results for an AEP of 50%: one method 
estimates it as the sample median and the other as a point on the probability 
distribution. Standardisation by an index flood in a non-stationary context is 
awkward since the index flood may not take a constant value. 

d) The analysis fits both the GEV and GLO distributions; the FEH results created 
for this project use the GLO only. 

These variations between the 2 methods may be expected to lead to differences in the 
results even when non-stationarity is not modelled. Although the project team has not 
attempted to quantify the relative contributions of all 4 factors listed above, the first one 
can be expected to be quite significant at some short-record gauges where most of the 
weight in the FEH pooling is given to other gauges in the pooling group. 
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Table 4.4 provides some summary statistics of the differences. On average across the 
whole data set there is very little difference between the results of the 2 methods when 
applied in a stationary framework. The mean ratios between the 2 sets of design flows 
are very close to 1. This is encouraging, indicating that there is little bias associated 
with any of the methodological differences listed above.   

At individual gauges, some large differences are seen, and these increase with 
reducing AEP, as might be expected. Differences are nearly all within ±10% for small 
floods (50% AEP).  

For more extreme floods (1% AEP), there are 13 gauges where the GLO stationary 
estimate is over twice as high as the FEH estimate. These tend to be locations where 
outliers are present in the AMAX series. As expected, the influence of the outliers is 
moderated by the FEH pooled analysis, leading to the large difference between the 
gradient of the flood frequency curves. Places where the single-site stationary 
estimates greatly exceed the FEH stationary estimates tend to correspond to areas that 
have experienced exceptional floods.   

 

  



 

  

Table 4.4 Summary statistics calculated over the full data set: Ratios of 
SS-STAT-MLE to P-FEH estimate  

 AEP (%) 50 10 1 

GEV distribution Maximum ratio 1.11 1.26 2.15 

Geometric mean 
ratio 

1.00 1.01 0.95 

Minimum ratio 0.79 0.82 0.60 

GLO distribution Maximum ratio 1.10 1.44 2.86 

Geometric mean 
ratio 

1.00 1.02 1.11 

Minimum ratio 0.89 0.82 0.62 
Note: GLO model results from station 37031 have been excluded in calculating 
these ratios: the model fit at that station is not believable, with standard errors 
of zero for all parameters. 

 

It is typical for the GLO distribution to fit a steeper flood frequency curve than the GEV 
distribution. This effect can be seen in all the tables of results, where for lower AEPs 
the single-site GLO tends to show higher ratios than the GEV when compared with the 
pooled results from the FEH (which are all from the GLO). 

4.4.5 Comparison of stationary and non-stationary results with 
time as covariate 

One of the important questions that this report addresses is the extent to which non-
stationary analysis gives different estimates of design flows compared with 
conventional methods. 

The project team carried out 2 sets of comparisons: one in which the baseline results 
were from an equivalent stationary model fitted using the same techniques as the non-
stationary model (SS-NONSTAT-MLE), and the other in which the baseline results 
were from the FEH method (P-FEH). In both cases, the results that were compared 
with these baselines were those from the ‘preferred model’, that is, the one chosen 
using likelihood ratios. This is stationary at some gauges and non-stationary at others.  
All non-stationary results are evaluated for the most recent year of record at the gauge; 
this is 2016 to 2017 at most sites.   
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Table 4.5 summarises the findings.  

 

  



 

  

Table 4.5 Summary statistics calculated over the full data set: Ratios of flood 
estimates from preferred model (time covariate only) to estimates from 

stationary models 

 Preferred model 
compared with SS-

STAT-MLE  

Preferred model 
compared with P-

FEH 

AEP (%) 50 10 1 50 10 1 

GEV  Maximum ratio 1.65 1.51 1.64 1.74 1.92 2.73 

Geometric mean ratio 
(all gauges) 

1.02 1.02 1.02 1.02 1.03 0.96 

Geometric mean ratio 
(only gauges with non-
stationary model 
preferred) 

1.09 1.10 1.07 1.09 1.11 1.00 

Minimum ratio 0.71 0.62 0.52 0.61 0.63 0.41 
 

GLO  Maximum ratio 1.62 1.80 2.67 1.65 1.99 4.04 

Geometric mean ratio 
(all gauges) 1.01 1.02 1.03 1.01 1.04 1.14 

Geometric mean ratio 
(only gauges with non-
stationary model 
preferred) 

1.08 1.12 1.15 1.07 1.14 1.28 

Minimum ratio 0.66 0.65 0.60 0.61 0.62 0.55 

 

The table shows 2 sets of mean ratios: one evaluated over all gauges and the second 
only over gauges at which a non-stationary model was the preferred fit. The means 
evaluated over the entire data set indicate the overall effect of accounting for non-
stationarity in flood frequency analysis. The data set includes many gauges where the 
preferred model is a stationary model, and so the ratio of model results is 1. This pulls 
the average close to 1.  

The means evaluated only over gauges where non-stationary models are chosen 
indicate the average effect of moving from a stationary to a non-stationary model at 
locations where there is enough evidence of non-stationarity to justify preferring that 
model. On average, this leads to an increase in design flows of about 10% when 
comparing with the equivalent stationary model, SS-STAT-MLE. 

At individual locations, the non-stationary models can give results that differ greatly 
from the equivalent stationary model, up to a factor of 2.67 higher or a factor of 1.9 
lower (1/0.52).  

The last 3 columns of   
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Table 4.5 compare the preferred model results with those from the pooled FEH 
analysis. Differences between these 2 sets of results are influenced both by including 
non-stationarity in some models and by the other methodological differences 
mentioned earlier. Taken together, these lead to some larger differences, up to a factor 
of 4.0 higher or 2.4 lower (1/0.41). 

The frequency distribution of the ratios between the various sets of results is shown in  

Figure 4.4. 

 

 

 

Figure 4.4 Distribution of ratios of results across the data set: (left) comparing the 
preferred version of the GEV model with an equivalent stationary model (SS-NONSTAT-

MLE); (right) comparing the preferred GEV model with the P-FEH results 

 

The left-hand plot on  

Figure 4.4 compares results from equivalent models, the only difference being that one 
may be non-stationary whereas the other is always stationary. That is why there are 
many gauges where the ratio is 1. Ratios above 1 are more common than those below, 
that is, the non-stationary analysis, where it is preferred, tends to increase design 
flows. There are more gauges at which the results for lower AEPs increase when non-
stationarity is modelled, compared with those for higher AEPs. 

If the non-stationarity is due to climate change, then it is worth noting that at some 
gauges the estimated design flows for the most recent year of record have increased 
above their stationary equivalents by more than 20%. This is the upper (90th percentile) 
climate change factor currently recommended for 6 river basin districts (Environment 
Agency, 2016a). 

The plot on the right compares with the FEH results. There is a wider spread of ratios, 
particularly for the lower AEPs where the contrast between at-site and pooled analysis 
becomes more influential.  

Figure G-2 to Figure G-4 (in Appendix G) compare the design flows estimated from the 
preferred model at each gauge with those from the equivalent stationary model, for 3 
AEPs. At most gauges, the results are identical because the stationary model is the 
preferred one. Gauges where the preferred model gives increased flows are widely 
scattered across England and Wales. The smaller number of gauges that see a 
decrease are concentrated in East Anglia.  
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In interpreting the maps, it is worth remembering that the results are plotted where the 
gauges are located, not catchment centroids. Two adjacent gauges may have 
contributing catchments with headwaters that are far away from each other. There is a 
large variation between some results even at some nearby gauges. For example, 
around London there are gauges showing both an increase and a decrease when the 
non-stationary and stationary models are compared. Further investigation would be 
needed to find out the reasons for this, but likely explanations include differences in 
geology, record lengths and urban influence.  

Figure G-5 to Figure G-7 (in Appendix G) compare the design flows estimated from the 
preferred model at each gauge (whether stationary or non-stationary) with those from 
the FEH pooled analysis for 3 flood probabilities. The ratios shown on these maps are 
an important output of the project, because they compare (within the constraints of a 
national, automated analysis) the current best estimate of design flows using stationary 
methods with an alternative non-stationary estimate.    

The geographical patterns on these maps are the combination of those seen on the 
previous set of maps and those summarised in section 0. There is little sign of spatial 
variation in the ratios that is consistent nationally: local factors appear to dominate. 
Local clusters are evident, such as in Cumbria at the 1% AEP. This finding is 
consistent with that of the National Flood Resilience Review (HM Government, 2016), 
that natural variability is expected to dominate underlying trends over the next 10 
years. 

4.4.6 Preferred physical covariates 

Including physical covariates in the non-stationary model adds an extra dimension to 
comparing results.   

The results are summarised as follows:  

 numbers of gauges showing different types of model fit as preferable, that is, 
stationary, physical covariates only, time as covariate only, or both time and 
physical covariates (Table 4.6 and Figure G-8 in Appendix G) 

 which covariates proved to be the most ‘popular’ across the gauge network ( 

 Table 4.7 and Figure G-9 in Appendix G), that is, those that were selected in 
the largest numbers of models 

  

Table 4.6 Proportions of model types preferred across the data set (GEV 
distribution) 

Stationary: 
No 
covariates  

Temporally 
stationary with 
physical 
covariates 

Non-
stationary: 
time the only 
covariate 

Non-stationary: 
time and physical 
covariates 

2% 61% 1% 36% 

 

The findings of this assessment raise the question of what is meant by non-stationarity. 
There are many gauges where the preferred model is one that includes only a physical 
covariate, with the parameters showing no dependence on time. The findings for these 
gauges indicate that flood magnitude is statistically associated with the value of the 
covariate. If the covariate is, for example, winter rainfall, then this may not be surprising 
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news to most hydrologists, and does not necessarily imply any non-stationarity over 
time.  

In fact, these models, without time as a covariate, should be regarded as temporally 
stationary. All the physical covariates are detrended by the model fitting routine, even 
when fitting models that involve only physical covariates. This is statistically advisable 
since for the model comparison to be valid it is necessary to be fitting to the same input 
covariates. It would not be necessary to detrend the covariates if fitting models only 
using physical covariates, although the concept of the integrated flow estimate (see 
section 4.4.7) would not be valid in that case as it relies on an unchanging distribution 
of the covariates. 

In nearly all cases, the chosen physical covariate is water year rainfall. The project 
team has not attempted to test the individual catchment-average rainfall series for 
trend, but that would be an interesting avenue for further investigation.  

A model with only water year as a covariate is preferred at only 1% of gauges. This 
finding indicates that physical covariates are adding useful information in nearly all 
cases. The increase in model complexity is outweighed by the increase in goodness of 
fit provided by the physical covariates. At the very few gauges where the parameters of 
the flood frequency distribution are found to vary with time but not with the physical 
covariates, one possible explanation is that the non-stationarity is driven by effects not 
represented by the covariates, such as changes in land use or flood alleviation works. 
These 4 gauges, widespread across the country (Figure G-8 in Appendix G), are: 

 23017 (Team at Team Valley) - decreasing trend, part-urban catchment 

 37019 (Beam at Bretons Farm) - increasing trend, substantial urban 
development in lower catchment 

 68018 (Dane at Congleton Park) - increasing trend, largely rural 

 76008 (Irthing at Greenholme) - increasing trend, rural, upland headwaters, 
afforestation and felling 

Further investigation of these exceptional results would be of interest. 

When physical covariates are selected, the annual rainfall is the most popular choice ( 

Table 4.7). It is included as a covariate for the location parameter at 65% of all gauges, 
and for the scale parameter at 21% of all gauges (the scale is modelled as fixed, with 
no covariate, at most gauges). In some cases, annual rainfall is included alongside 
time as a covariate, and in others it is the only covariate. 

The second most useful physical covariate was the winter rainfall, chosen at 22% of 
gauges for the location parameter and at 4% for the scale parameter. 

 

Table 4.7 Most commonly selected covariates (GEV distribution) 

 

Covariates for the location 
parameter 

Covariates for the scale parameter 

Rank Covariate % of 
gauges 
where 
chosen 

Rank Covariate % of 
gauges 
where 
chosen 

1 Annual rain 65 1 None (where 
parameter is fixed) 

57 

2 Time 28 2 Annual rain 21 



 

  

3 Winter rain 22 3 Time 15 

4 Autumn rain 5 4 Winter rain 4 

Note: Percentages in the columns add up to more than 100, because models can 
include both time and a physical covariate together. 
More models included covariates for the location parameter than for the scale 
parameter. 

 

Figure G-9 (in Appendix G) shows that, while the annual rainfall is widespread as a 
preferred physical covariate across the country, the winter rainfall tends to be preferred 
in some parts of southern England. There appears to be some correspondence 
between these gauging stations and the locations of chalk outcrops, that is, they are 
concentrated in central southern England and along a band running up into East 
Anglia. This makes sense physically since flood flows on groundwater-dominated 
catchments are expected to be strongly linked with the level of the water table, which is 
determined mainly by the volume of winter recharge. On chalk catchments, rainfall 
outside the winter recharge season may be lost due to evaporative demands and so 
have little impact on flood flows. Chalk aquifers, which have much lower specific yield 
than sandstone for instance, tend to respond more rapidly to recharge over a single 
winter season.   

It is worth noting that the rainfall covariates associated with each annual maximum flow 
are calculated by accumulating rainfall within the same water year as the annual 
maximum flow.  For annual total rainfall, this means rainfall between 1 October one 
year and 30 September the following year. It is likely that some of this rainfall will have 
occurred after the annual maximum flood. Despite this, the annual rainfall appears to 
be a widely-preferred covariate.  

The small number of catchments where autumn rainfall is chosen as a covariate are 
widely scattered. 

4.4.7 Comparison of stationary and non-stationary results with 
time and/or physical covariates 

Results from models that include physical covariates have been calculated in the form 
of integrated flow estimates. These represent conditions during the whole period of 
recorded flow data, rather than being associated with one particular point in time.  

The integrated flow estimate for a particular AEP can be compared with the stationary 
estimate, although it is important to take care in interpreting it. For instance, if the 
integrated flow estimate is 20% higher than the stationary result for a particular AEP, this 
does not mean that the current flood magnitudes for that exceedance probability are 
expected to be 20% higher. Rather, it means that over the observed period of record, 
the flow with some particular probability of being exceeded is 20% higher than the flow 
of the same probability if the non-stationarity is ignored.   

This probability associated with a period of N years is referred to as the ‘encounter 
probability’. The AEP is the encounter probability for a period of one year. 

The results in   
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Table 4.8 and Figure 4.5 compare the integrated flow estimates with the stationary SS-
STAT-MLE results. The integrated estimates for each station are calculated from the 
model with lowest BIC. This may be: 

 a stationary model, in which the ratio is 1 

 a model with only time as a covariate (there are very few), in which case the 
integrated flow estimate is calculated using the same procedure as for physical 
covariates. It is representative of the whole period of record rather than any 
particular year 

 a model with only a physical covariate, in which case the integrated estimate is 
representative of the observed sample of covariate values 

 a model with both water year and a physical covariate, in which case the 
integrated estimate is representative of the observed sample of covariate values 
and water year values 

 

  



 

  

Table 4.8 Summary statistics calculated over the full data set: Ratios of 
integrated flow estimates from preferred model (time and/or physical covariates) 

to estimates from SS-STAT-MLE model 
 

Preferred model (GEV) compared 
with SS-STAT-MLE model (GEV) 

AEP (%) 50 10 1 

Maximum ratio 1.15 1.31 3.13 

Geometric mean ratio (all gauges) 1.00 0.98 1.03 

Geometric mean ratio (only gauges with 
temporally non-stationary model 
preferred) 

1.00 0.99 1.06 

Minimum ratio 0.90 0.79 0.43 

 

As for the comparison of results with time as the covariate, there are 2 sets of mean 
ratios provided in the table: one evaluated over all gauges and the second only over 
gauges at which the preferred fit was a temporally non-stationary model, that is, one 
with time as one of the covariates. The means evaluated over the entire data set 
indicate the overall effect of accounting for non-stationarity in flood frequency analysis. 
In this case, there is little difference between the 2 sets of means. Both show that, on 
average, there is little difference between the preferred model and the stationary 
estimates. In individual cases, there can be a large difference, particularly for low-
probability floods, where the integrated flow estimate is, in one case, 3 times larger 
than the stationary estimate; this is for gauge 47020, Inny at Bealsmill, which is an 
outlier (see Figure 4.5), the second highest ratio being 1.78. 

 

Figure 4.5 Box and whisker plot showing ratios of integrated flow estimates from 
preferred model (time and/or physical covariates) to estimate from SS-STAT-MLE 

model 
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A more meaningful comparison could involve calculating the single-year integrated flow 
estimate, defined in section 3.3.6. This could be more readily compared with the results 
of the analysis using time as a covariate. This was not included in the scope of the 
project. 

4.4.8 Concluding remarks on non-stationary flood frequency 
results 

One headline message is that when non-stationarity is modelled only in relation to 
changes over time, a stationary model is found to fit best at about 80% of gauging 
stations. At the remaining gauges where a non-stationary model gave a better fit, the 
trends were mostly modelled using either a varying location (representing the typical 
size of floods) or a varying scale (representing the variability in flood sizes). Only 2% of 
the national data set gave the best fit, with both the location and scale parameter 
varying. The proportion of stations fitted by a non-stationary model increases to 37% 
when physical covariates are added to the fitting in addition to water year.   

Another headline is that on average, across England and Wales, including non-
stationarity makes little difference to estimating design flows. In individual cases, it can 
make a large difference, usually but not always, leading to an increase in present-day 
estimates. 

The big local variations in the findings of this national analysis make it difficult to 
generalise the results across regions, for example, Environment Agency areas or 
hydrometric areas. This project has included trials of 2 pooled versions of non-
stationary analysis, but neither is currently recommended as ready to be practically 
applied. In the meantime, it seems wise to consider each case of apparent non-
stationarity individually, looking at local circumstances, trying to find physical reasons 
for the trends, and asking whether nearby gauges support or oppose the hypothesised 
attribution. For instance, if trends are thought to be caused by increases in rainfall, yet 
are not apparent on some neighbouring and similar catchments, why is this? The case 
study in the practitioner guidance on the River Eden uses annual rainfall as a covariate. 
This decision is supported by the finding that non-stationary models fitted to peak flows 
on other nearby rivers also find rainfall to be a useful covariate. 

Physical covariates are almost always beneficial to the fit of non-stationary flood 
frequency models, with annual or seasonal rainfall totals proving more beneficial than 
indices of atmospheric circulation. The annual rainfall is the most commonly chosen 
covariate. The time-varying model is preferred over those that include physical 
covariates at only 4 gauges. This finding indicates that the increase in model 
complexity is nearly always outweighed by the increase in goodness of fit provided by 
the physical covariates.   

  



 

  

4.5 Overall comparison of results 

The various analyses have produced a wealth of results that are worth exploring 
further. As would be expected, there is much consistency between the results of the 
different statistical tests and model fitting procedures. Where there are differences 
between the results they are mostly due to: 

 the contrast between non-parametric methods, like the MK test, which measure 
the direction of trends, and parametric methods like the TSA and non-
stationary frequency analysis, which also account for the strength of trends 

 the fact that some tests detect changes in the magnitude of typical floods 
(measured by the mean, the median or the location parameter of a fitted 
distribution) and others are more tailored to detecting changes in the variability 
of floods (measured by the variance or the scale parameter) 

 the different approaches that the analytical methods take for assessing 
statistical significance, where applicable  

Results from the various analyses have been compared, for example as summarised in  

Table 4.9. Comparisons with the non-stationary analysis are limited to the set of 375 
gauges classed as suitable for frequency analysis. It was not possible to produce 
results at every one of these gauges from the MK and TSA tests due to gaps in the 
record. In addition, the split sample tests could only be applied at gauges with at least 
15 years of data both before and after 1991.  

 

Table 4.9 Comparison of national average results from a range of analyses 

Preferred version 
of GEV 

distribution fit 
(with time as 

covariate) 

Results from trend tests over full 
period of record 

Geometric means of 
results from split sample 

tests: ratio of statistic after 
split point to statistic 

before split 

Mean 
MKZ 

Mean 
absolute 

MKZ 

Mean 
TSA 
(%) 

Mean 
absolute 
TSA (%) 

Ratio of 
medians 

Ratio of 
variances 

Stationary 
(n=287) 0.40 0.91 6.7 15.8 1.06 1.47 

Non-stationary 
(varying location) 
(n=48) 1.48 2.17 20.9 34.7 1.14 1.39 

Non-stationary 
(varying scale) 
(n=32) 0.62 1.08 12.0 20.0 1.09 1.77 

Non-stationary 
(varying location 
and scale) (n=8) 3.42 3.42 51.0 51.0 1.28 2.28 
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For simplicity, this cross-comparison only considers non-stationary models that 
incorporate time as a covariate. Care is needed in interpreting some of the averages in  

Table 4.9 because it would, in theory, be possible to obtain an average indicating little 
overall change from a data set that included many gauges with large positive changes 
and many with large negative changes. The mean absolute MKZ and TSA statistics 
avoid this potential pitfall, considering only the degree of change rather than its 
direction.  

As would be expected, the gauges where the stationary model is the preferred fit (as 
judged by the likelihood ratio) are those that show, on average, the lowest absolute 
MKZ scores, the lowest absolute TSA scores and the smallest differences between 
medians from the split sample tests. 

The gauges where the varying-location model is preferred show much higher MKZ and 
TSA scores, and an average difference of +14% between the pre-1991 and post-1991 
estimates of the median, QMED. There is a good correlation between both the MKZ 
and TSA scores and the ratio of change in the median from the split sample tests, as 
shown in Figure 4.6. The correlation with TSA is stronger. 

Also consistent with expectations, the gauges where the varying scale or varying 
location and scale models are those that show, on average, the largest increase in 
variance in the split sample tests. At the 8 gauges where the varying location and scale 
model fits best, the MKZ and TSA scores are particularly high, indicating the most 
extreme (and all positive) trends. There is little correlation between either MKZ or TSA 
scores and the ratio of change in the variance from the split sample tests (plots not 
shown here). This is because the trend tests are not designed to measure changes in 
the variance. 

 

Figure 4.6 Comparison of trend test and split sample test results for change for 
median 

 

One way to extract a numerical result from the non-stationary frequency analysis is to 
examine the value of the parameter that controls the rate at which the location of the 
distribution changes over time (μ1 in Equation 4) and the equivalent for the scale of the 

distribution (𝜙1 in Equation 5). These parameters are compared with the TSA score for 
each gauge in Figure 4.7. The many points lying on the x axis are for gauges where the 
best-fitting model did not include any change in the location or scale parameters, 
respectively for the left and right plots. There is close correlation between the TSA and 
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the rate of change in the location, but much more scatter in the right-hand plot that 
shows changes in the scale parameter.   

 

Figure 4.7 Comparison of trend test (TSA score) and results of the non-stationary 
GEV fitting with time as covariate 

 

Figure 4.7 also shows results from some gauges with large positive TSA scores, 
indicating a strong upwards trend, and yet no temporal change in the GEV parameters, 
that is, a stationary model was found to fit best, according to the likelihood ratio 
method. A brief investigation found no obvious factors that might explain this apparent 
paradox. Conversely, there are a few sites with apparently little trend as measured by 
TSA and at which a non-stationary model was fitted. 

When non-stationarity is modelled only in relation to changes over time, a non-
stationary model is found to be the preferred fit at about 20% of stations. This 
proportion closely matches the 21% proportion of gauges for which the Mann-Kendal 
test shows increasing trend significant at a 10% level, over the full period of record. 
There is not complete overlap between the lists of stations identified in the 2 different 
analyses, partly because the Mann-Kendal test was applied on a larger data set. 

To conclude this section, the project team considered 2 questions: 

1) Can non-parametric trend tests be a useful screening measure to decide 
whether non-stationary flood frequency analysis is worth trying?   

The MK trend test provides only a partial picture of trend. As a non-parametric 
test, it does not account for the magnitude of the trend, nor can it detect 
changes in the variance of floods. It is recommended that non-stationary 
analysis is considered on its own merits rather than only after screening using 
trend tests. Thanks to the tools developed in this project, non-stationary 
analysis can now be applied rapidly. 

2) Can non-parametric trend tests be a helpful addition in choosing between a 
stationary or a non-stationary model? 

On balance, it seems that the answer may be yes. Non-parametric analysis has 
an advantage in terms of robustness compared with parametric methods, and 
so it does appear to be useful to add this to the decision-making process. For 
example, if numerical measures like AIC or BIC favour a more complex non-
stationary model and yet the MKZ score is not far from zero, this might prompt a 
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more in-depth review of the results, taking into account some of the other 
factors suggested in section 3.3.4. 

4.6 Digital outputs 

The digital results (FRS18087-IG-D2-digital_outputs.zip) that accompany this report 
comprise: 

1) outputs of the change point tests: 

a) a spreadsheet containing the full outputs of the Pettitt and PELT tests at all 
gauges 

b) two image files per gauge containing plots showing the time series of annual 
maximum flows and the position of the change point(s) detected, if any 

2) outputs of the multi-temporal trend testing: 

a) a spreadsheet giving results at all gauges 

b) a shapefile enabling mapping of the results 

c) a set of image files, one per gauging station, showing the detailed results of the 
multi-temporal test visually, alongside a time series plot and a table of statistical 
outputs 

3) outputs of the split sample tests:  

a) a spreadsheet containing the full outputs of the Mann-Whitney and Brown-
Forsythe tests at all gauges 

4) outputs of the non-stationary flood frequency analysis, all as text files in comma-
separated format: 

a) with only water year considered as a covariate: 

i) a pair of files containing distribution parameters and measures of goodness 
of fit for each version of the GEV and GLO models fitted with time as a 
covariate at all gauges 

ii) a set of files, 2 per gauge, containing flow estimates for each year of record 
at that gauge for each version of the GEV and GLO models fitted with time 
as a covariate 

iii) a pair of files containing flow estimates for the final year of record for each 
version of the GEV and GLO models fitted with time as a covariate at all 
gauges. This concatenates the final line of all the individual files at 4(a)(ii) 

b) considering both time and physical quantities as covariates: 

i) a set of files, one per gauge, containing measures of goodness of fit and 
distribution parameters for all 88 versions of the GEV model fitted to 
different combinations of covariates 

ii) a file containing the covariates chosen and the distribution parameters for 
the best-fitting version of the GEV model, at all gauges 

iii) a set of files containing flow estimates in the form of stationary, conditional 
and marginal return levels, along with confidence limits, for the best-fitting 
version of the GEV model (based on BIC) 



 

  

iv) a file containing flow estimates, in the form of marginal return levels (without 
confidence intervals), for the best-fitting version of the GEV model, at all 
gauges 

v) a set of images, one per gauge, containing plots of the best-fitting version of 
the GEV model, as a time series showing the stationary and conditional 
return levels 

vi) a set of images, one per gauge, containing plots of the best-fitting version of 
the GEV model, comparing the stationary and marginal return levels in the 
form of an encounter probability plot 

c) various other plots showing diagnostic information for the fitted models 

d) various other files containing any error or warning messages generated by the 
code 
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5 Conclusions and 
recommendations 

5.1 Conclusions 

Some communities in England and Wales have experienced severe flooding many 
times in the last few years. For example, Calderdale in South Yorkshire was badly 
flooded in 2012, 2015 and 2020. There is a widespread perception that floods are 
increasing in these areas and in other parts of the UK. In light of this, there is 
understandably concern over making decisions about investment in flood protection 
based an assumption that there has been no change in the probability of flooding.  

The perceptions of an increase in flood magnitude and/or frequency are consistent with 
projections of the impacts of climate change. This project has not attempted to attribute 
trends. It is quite possible that there is a cyclical element to recent trends. However, it 
would seem unwise, in the face of a warming climate, to expect trends to reverse in the 
near future. 

Using data up to September 2017, river flow records show general but not universal 
evidence of this perceived increase. Two thirds of gauges in England and Wales show 
upward trends in peak flows. Nationally, 13% of gauges show upward trend that is 
significant at the 5% level, with another 8% showing significance at the 10% level but 
not the 5% level. Positive trends are seen across much of England and Wales, with 
some of the strongest and most significant trends in the north and west. Some areas of 
central and eastern England also display negative trends. The analysis included data 
up to September 2017. The degree of trend would be expected to increase if the tests 
were repeated using data that included the extensive and severe floods of winter 2019 
to 2020.  

This project has made some breakthroughs in the applicability of non-stationary 
methods of flood frequency estimation, including some innovative techniques for 
extracting design flood estimates from statistical models that include physical 
covariates. Non-stationary methods can now be used in practice and can potentially 
provide more credible answers that can be more easily justified to interested groups. 
On the other hand, a shift to non-stationary techniques can lead to an increase in 
uncertainty, as well as a need to choose between numerous analytical techniques 
(which distribution, which covariates, which method of selecting the preferred model?).   

Identifying trends and fitting non-stationary models is complicated due to temporal 
clustering in flood series. The investigation of clustering detected clusters at all 14 long-
record gauges, with a typical cluster duration of 2 to 6 years, and up to 10 years. 

Non-stationary fluvial flood frequency estimation remains an active area of research. It 
is expected that the interim guidance developed in this project will need to be updated 
to account for scientific developments. A particular challenge, on which this project has 
made a start, is to develop techniques that can be applied at ungauged locations. 

  



 

  

5.2 Recommendations for practitioners 

It is recommended that non-stationary analysis is adopted alongside conventional 
methods, and that the uncertainty of the results from both types of analysis is 
considered when deciding on a preferred approach.   

Specific recommendations for practitioners are provided in the separate Environment 
Agency guidance document produced as part of this project. 

5.3 Recommendations for further research 

Despite the wealth of research worldwide into trend analysis and non-stationary flood 
frequency estimation, there are many areas that are worth investigating further. This 
includes developing approaches that practitioners in the UK can routinely apply. Other 
research would examine trend and non-stationarity in other aspects of flood hazards, 
such as the frequency of floods (using POT data) or the characteristics of extreme 
rainfall. Other areas of research are relatively minor updates, such as including the flow 
records from the many record-breaking floods during winter 2019 to 2020. 
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Table 5.1 summarises the recommendations, including the immediacy of relevance to 
practitioners, the amount of time and money that might be needed, and a suggested 
rank to help prioritise further research. 

 

  



 

  

Table 5.1 Summary of recommendations for further research 

Recommendation (NS = non-
stationarity/non-stationary 
as appropriate) 

Immediacy of 
relevance to 
practitioners 

Amount of time 
and resources 
needed 

Suggested rank 

1. Develop practical method of 
pooled NS analysis, including 
for ungauged catchments. 

High High High 

2. Analyse NS in extreme 
rainfall and develop NS rainfall 
frequency estimation. 

High High High 

3. Attribution of trends. High High High 

4. Seamless integration of 
modelling past and future NS. 

High High High 

5. Further analysis of national-
scale results.  

Moderate Low High 

6. Update analysis to include 
floods up to winter 2019 to 
2020 (taking due account of 
stopping rule bias). 

High in some areas? Low High 

7. Further work on clustering, 
including examining how 
occurrence of a flood changes 
probability of another occurring 
over the short term. 

Moderate Moderate High 

8. Continue investigating 
spatial statistics to boost signal 
strength of trends. 

Less obvious Moderate Medium 

9. Adding dates of AMAX flows 
into NS models. 

Less obvious  Moderate  Medium 

10. Investigation into use of the 
Markov Chain Monte Carlo 
method for fitting models and 
calculating confidence 
intervals. 

Less obvious Moderate Medium 

11. Further work on 
constraining shape parameter 
of GEV or GLO distributions. 

Less obvious Low Medium 

12. Analyse trends and NS in 
POT data. 

Moderate High Lower 

13. Analyse NS in flood 
frequency, duration, spatial 
extent as well as peak 
magnitude. 

Less obvious High if national 
scale 

Lower 
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The recommendations are expanded on below. Other recommendations may emerge 
from an ongoing piece of work commissioned by the Environment Agency that aims to 
investigate overseas practice and related research initiatives in applying non-stationary 
methods. 

1. Develop practical method of pooled non-stationary analysis, including for 
ungauged catchments. 

This would continue the investigations reported in Appendices C and D. It would 
be desirable to develop either a spatial model of non-stationarity or an equation 
that would allow a measure of non-stationarity to be estimated from catchment 
descriptors. Either of these could enable non-stationary analysis at ungauged 
locations. The investigation would benefit from including physical covariates into 
pooled analysis, taking a spatially coherent view of model acceptance or 
rejection in which the same covariate(s) are included at all locations in a group 
or region. 

2. Analyse trends in extreme rainfall and (if necessary) develop non-stationary 
rainfall frequency estimation. 

Flood studies on some rivers, all reservoirs and all surface water flooding 
investigations are based on rainfall-run-off models that use rainfall frequency 
statistics as input. If extreme rainfall is non-stationary, as would be expected 
from understanding of climate change impacts, then it could be important to 
account for such non-stationarity in rainfall frequency statistics. 

3. Attribution of trends. 

The need for this has been mentioned several times in this report. Essentially, 
without knowing what is driving trends, there is little chance of knowing how 
they will evolve in the future. Robust attribution takes much effort. It is 
necessary to demonstrate that the observed trends are consistent with the 
proposed cause, that they are inconsistent with alternative causes, and to 
provide a measure of confidence in the attribution (Merz and others, 2012). 

A first step towards attribution would be to test for trends in extreme rainfall over 
the same period of record as peak flows (see recommendation 2 above). 

A related suggestion is given in recommendation 4 below, attributing past 
trends is broadened to cover dynamic modelling of both past and future trends. 

4. Seamless integration of modelling past and future non-stationarity. 

This project has taken a statistical approach to modelling past non-stationarity 
and recommends that future climate change is accounted for using the standard 
approach based on the output of climate models. A more seamless approach 
might be desirable, merging the statistical analysis of past floods with the 
physics-based modelling of future changes. One approach would be to apply 
dynamic statistical models, which could potentially account for the physical 
drivers of change, including both climatic effects and catchment land use (for 
example, Slater and others, 2019). 

5. Further analysis of national-scale results. 

This could follow up the work of this project, examining the national results that 
have already been produced. It could include investigating any relationships 
between non-stationarity and catchment properties, which would complement 
the analysis of spatial patterns in the results and could help develop a method 
for ungauged catchments (see recommendation 1 above). 



 

  

It would also be interesting to examine the results of the non-stationary models 
at all gauges, that is, including those where the stationary models were judged 
to fit best. 

6. Update analysis to include floods up to winter 2019 to 2020 (taking due account 
of stopping rule bias). 

This could be achieved with minimal effort using the R package. 

7. Further work on clustering. 

Further work could address questions such as: 

a) How does the degree of clustering vary with flood magnitude, with 
catchment type or location?    

b) Is clustering primarily due to hydrological or meteorological causes?  

c) What information is there on the typical duration of flood-rich or flood-poor 
periods?  

d) How much more likely is a flood to occur in the aftermath of another large 
flood? This question has come up several times during recent sequences of 
storms, including in February 2020. 

e) How can we quantify the probability of a sequence of floods as opposed to a 
single event? 

f) Do the rules of thumb for identifying independent POT data need to be 
improved? 

Any larger-scale investigation of clustering would need to address the major 
challenge of developing a fit for purpose archive of UK POT data. See also 
recommendation 12, below. 

8. Continue investigating spatial statistics to boost signal strength of trends. 

Appendix D suggests some next steps. 

9. Adding dates of annual maximum flows into non-stationary models. 

The dates of flood peaks provide a valuable source of information to 
complement their magnitudes. Dates can provide evidence of spatial 
dependence and may help identify physically meaningful covariates, for 
example, winter floods being related to winter or autumn rainfall. Dates are 
readily available and generally accurate for most AMAX series. This type of 
analysis would be a step towards analysis of POT data (see recommendation 
12 below) but would avoid the need for a major data-cleaning effort. 

10. Investigation into use of the Markov Chain Monte Carlo (MCMC) method for 
fitting models and calculating confidence intervals. 

A potential problem with using MLE for fitting statistical distributions is that 
sometimes there can be non-convergence during the optimisation step. This 
can have a particular impact when using bootstrapping to estimate confidence 
intervals as this involves a large number of calls to the maximum likelihood 
estimator function, some of which may not converge. Non-convergence is more 
likely to happen when including lots of covariates, and seems to occur more 
frequently when fitting the GLO distribution than when fitting the GEV 
distribution. For bootstrap estimation to work properly, all of the bootstrap 
samples need to converge. One solution is to work out good starting points for 
the optimiser for each bootstrap sample, but this is not practical for lots of 
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model fits. Another option would be to use the MCMC method for fitting the 
models and calculate posterior distributions of return levels, and from this, 
credible intervals. Using MCMC would mean however that there would be a 
number of extra technical considerations before the results can be accepted. 

11. Further work on constraining shape parameter of GEV or GLO distributions. 

As discussed in section 3.3.5, the shape parameter can be poorly estimated for 
small samples. It would be worthwhile looking into determining a penalty weight 
for the shape parameter from UK flood peak data. 

12. Analyse trends and non-stationarity in peaks over a threshold (POT) data. 

POT data can be expected to provide a more complete picture of flood 
characteristics than AMAX data. Analysis of POT offers an increased sample 
size and the opportunity to examine non-stationarity in aspects such as the 
frequency of floods. Examples of non-stationary analysis using POT are given 
by Burn and others (2016) in Canada and Eastoe (2019) in the UK. 

Reasons why the analysis focused on AMAX data are given in section 2.1. Any 
nationwide analysis of POT data would require a major effort to clean up the 
archive: detecting and infilling gaps, checking for consistency with AMAX series 
and across different portions of the record, particularly before the start of digital 
data.  

13. Analyse non-stationarity in flood frequency, duration, spatial extent as well as 
peak magnitude. 

Aspects of this could perhaps follow on from recommendations 8, 9 and/or 12. 

One important question that this project has not attempted to address is the impact that 
adopting non-stationary analysis might have on the Environment Agency’s programme 
of capital spending on flood protection. There are likely to be effects both on calculating 
scheme costs and scheme benefits. The Environment Agency is planning to investigate 
this question internally. 
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List of abbreviations 
AEP Annual exceedance probability. 

AIC Akaike information criterion. A measure of the quality of a statistical model, which 
establishes a trade-off between the goodness of fit and the simplicity of the model.  

AMAX Annual maximum (for example, the highest river flow in a water year). 

BIC Bayesian information criterion. A measure of the quality of a statistical model, which 
establishes a trade-off between the goodness of fit and simplicity.  

EA East Atlantic pattern: an index of atmospheric variability, like a southwards shifted 
version of the NAO. 

FEH Flood Estimation Handbook. 

GEV Generalised extreme value: a statistical distribution fitted to extremes such as floods. 

GLO Generalised logistic: another statistical distribution. 

GMLE Generalised maximum likelihood estimation. 

LOESS 

MK 

Local polynomial regression fitting 

Mann-Kendal, a non-parametric test for trend. 

MKZ Mann-Kendall Z score. 

MLE Maximum likelihood estimation. A way of fitting a statistical model by maximising 
something known as the likelihood function. 

NAO North Atlantic Oscillation: an index of the north-south difference in air pressure between 
the north and central Atlantic Ocean, associated with changes in the direction and 
strength of the jet stream. 

NRFA National River Flow Archive. 

PELT Pruned exact linear time: a test for a sudden step change in a time series. 

POT Peaks over a threshold. 

P-P Probability-probability plot. 

QMED Median annual maximum flood. 

Q-Q Quantile-quantile plot. 

REA Rapid evidence assessment. 

SDM Similarity distance metric. 

TSA Theil-Sen approach to determining strength of a trend. 

UKBN 

UKCP09 

United kingdom Benchmark Network 

UK Climate Projections 2009. 

UKCP18 UK Climate Projections 2018. 

 

  



 

  

Appendix A:  Multi-temporal trend 
tests 

Introduction  

The objective of this part of the project was to quantify trends (specifically in annual 
maximum peak flow) in flooding in England and Wales. This was to support the wider 
aim of developing approaches and guidance for flood frequency estimation in the 
presence of non-stationarity in observed flood records. 

There is a large body of previous work on non-stationarity in flooding in the UK. 
Hannaford (2015) reviewed the literature up to the early 2010s in detail and this is a 
useful starting point for appraising past work. Since then, a number of other studies 
have also quantified trends in flood series, including Prosdocimi and others (2014), 
Harrigan and others (2018), Spencer and others (2018), Brady and others (2019), 
Griffin and others (2019), Prosdocimi and others (2019) and Faulkner and others 
(2020). 

The distinctive feature of the present study is that it provides a site-by-site analysis of 
non-stationarity for a large number (>480) of gauging stations across England and 
Wales, a significant proportion of the NRFA Peak Flows Dataset, using more up-to-
date peak flow data than any previous study. 

The main purpose of the study was to characterise monotonic (that is, changing in the 
same direction, either increasing or decreasing) trends over the period of record, in 
other words, the full operational period, for each gauging station. However, another 
defining feature of this study is the use of a ‘multi-temporal’ analysis to examine the 
sensitivity to changing timeframes for the analysis. This follows the recommendation of 
Hannaford and others (2013) who argue that trends in any fixed period need to be put 
into a longer term context, given the confounding role of decadal-scale hydrological 
variability that hampers the interpretation of linear trends. These authors, along with 
many others, advocate a multi-temporal approach, where trends are evaluated for all 
possible study periods, that is, varying the start and end year of the analysis and 
looking at the sensitivity of the results to such changes. 

This appendix contains a brief description of the methodology used for the analysis, 
and basic results are presented and discussed. Accompanying this report is a series of 
analytical outputs, including a spreadsheet containing trend results for all featured 
stations, and a graphical output containing a range of results plots, one for each 
featured gauging station. An annex describes these outputs and provides a sample 
results page, with information about layout and interpretation. 

Methodology 

The methodology followed in this work is based on the standard National River Flow 
Archive (NRFA) trend testing toolkit as described by Harrigan and others (2018), who 
examined trend characteristics for the near-natural catchments of the UK Benchmark 
Network version 2 (UKBN2). In this section, the project team describes the data set, 
methods for trend assessment and the multi-temporal approach. 

Data set 

The data set used was the agreed project data set (finalised on 17 Feb 2020), 
consisting of 471 stations. This was the data set agreed on after review by the 
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Environment Agency, the UK Centre for Ecology & Hydrology (CEH) and JBA 
Consulting.  

The NRFA Peak Flow Dataset (v7, released October 2018) was the default data set 
used, as being the most up to date available at the time analysis began (spring to 
summer 2019). The Environment Agency provided new time series for some stations in 
accordance with its ongoing reviews of peak flow time series. 

Changes were made to the data set at numerous points, with the final analysis runs 
eventually carried out in February 2020. While a new Peak Flows Dataset (v8, Sept 
2019) was available at this time, the V7 data were retained as the source data, for 
consistency with other analysis carried out within the wider project. A spreadsheet of 
the data set used and audit trail of the various changes is available on request. 

Before analysis, the annual maximum flow (AMAX) time series for the stations of 
interest (whether from NRFA version 7 data set, or provided by the Environment 
Agency) underwent a missing-value criterion analysis. Missing data can result in 
misleading outcomes of trend analysis, so it is important to set some sensible criteria to 
include in the study. Ideally, visual inspection and infilling would be applied to minimise 
gaps, but this was not possible when applying analysis to such a large data set given 
available resources. An automated approach was therefore needed.  

In common with Harrigan and others (2018), 30 years is considered the minimum time 
series required for trend analysis, and 10% as an acceptable criterion for missing data. 
Periods with less than 27 years non-missing data or with missing values totalling more 
than 10% of the expected length of the data were excluded from any of the analyses 
described in the following section. For longer records, for the multi-temporal analysis, 
periods within the record that do not meet this criteria were also excluded. 

Primarily, the missing data criteria were selected for consistency with past NRFA 
studies (Harrigan and others, (2018)) rather than any particular standard. Any 
automated procedure involves arbitrary decisions to some extent, and there is no 
readily available standard or guidance on missing data criteria. Slater and Villarini 
(2016) conducted a simulation study to examine the impacts of gaps on trend 
detection. The project team could not directly apply their guidance as it requires 
assumptions to be made about acceptable test accuracy and trend strength (that 
theoretically could not be known), but in general the 10% criteria for a 30+ year record 
is reasonable given their results. They acknowledge also that the location of gaps is 
important, with gaps in the middle of series having less impact than gaps at the start 
and end. The project team’s criteria ensure that long gaps are unlikely at start or end 
points of relatively short records. 

Trend significance  

The trend analysis method used is the Mann-Kendall test, a very widely used method 
for monotonic trend testing, which has been applied extensively in hydrological change 
applications in the UK and elsewhere (for example, as recommended by World 
Meteorological Organisation Guidance: Kundzewicz and Robson, 2000). The method is 
not described in detail here as it is outlined in these reports and various standard 
statistical textbooks. The equations are succinctly presented in the ‘R’ statistical 
package for Mann Kendall trend detection which was used in the present study: 

https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf 

The Mann-Kendall test is a test for statistical significance of trends, that is, whether an 
observed trend is significantly different from zero (a null hypothesis of ‘no trend’). Here, 
2 significance thresholds are used: 5% and 10%.  

For identifying whether the results are statistically significant at 5% (or 10%) 
significance level, a two-tailed MK test was chosen, meaning that, for 5% significance, 
at |MKZ| > 1.96 (for 10%, > 1.645) the null hypothesis of no-trend is rejected.  

https://cran.r-project.org/web/packages/trend/vignettes/trend.pdf


 

  

As the MK test requires serial independence of data, the AMAX time series were first 
analysed for significant lag-1 serial correlation using the autocorrelation function (ACF). 
Because of the potential for confounding trend and serial correlation, the serial 
correlation test was applied to detrended series, specifically to the residuals from the 
Theil-Sen trend line (see below) for estimating trend magnitude.  

For instances with significant lag-1 serial correlation, block bootstrapping (BBS) was 
applied. More specifically, following Harrigan and others (2018), a block length of 4 
time steps was selected to preserve any short-term autocorrelation structure, and 
1,000 resamples were generated and their MKZ values calculated. For 5% 
significance, if the MKZ value of the original data set for the selected temporal 
coverage lay outside the 25th and 975th ranked values of the MKZ calculated from the 
resamples, this was interpreted as indicating a statistically significant trend in the 
original data set.  

Trend magnitude 

As the focus here is on the direction and strength of changes and not entirely on 
statistical significance relative to arbitrary p-value thresholds (Nicholls 2001), trend 
magnitudes were also estimated in order to corroborate and map the strength and 
regional coherence of trends.  

The magnitude (strength or steepness) of trends was quantified by the Theil-Sen 
approach (TSA). The Theil-Sen (sometimes referred to as Kendall-Theil) robust line is 
widely used for quantifying trend magnitude, and is similar to the gradient of a least-
squares linear regression line (Beta, β), but is preferred due to being less sensitive to 
the presence of outliers (for example, Stahl and others, 2012).  

For a data set (𝑡𝑖, 𝑄𝑖 ∶ 𝑖 = 1,…𝑁) with all different values of Qi, the Theil-Sen estimator 
of the slope of 𝑄 = (𝑄1, … , 𝑄𝑁) is given by: 

𝑇𝑆𝐴 =  𝑚𝑒𝑑𝑖𝑎𝑛 {(
𝑄𝑗 − 𝑄𝑖

𝑡𝑗 − 𝑡𝑖
) : 𝑖 ≠ 𝑗 = 1,… , 𝑁} 

In p, the TSA is the median of all pairwise slopes between all points with different 
times.  

To make a comparison between sites, the trend magnitude TSArel (%) for each time 

series was expressed as a percentage of the long-term mean flow 𝜇 over the period of 
record of 𝑛 years where 𝛽 is the TSA slope, given by Stahl and others (2012) as: 

TSArel = (
𝛽 × 𝑛

𝜇
) × 100 

Hannaford and Buys (2012) found this approach preferable compared to expressing 
trend magnitude as a simple percentage change over the full record, which can yield 
larger changes in the presence of exceptionally large start or end values. 

Study periods and the multi-temporal approach  

Three fixed study periods were selected to compare results from all stations and 
assess the spatial variability of the trends in England and Wales. These periods are: 
short (starting in 1987), long (starting in 1967) and full. The latter means that for each 
station the results are derived by applying trend analysis to all the available data 
(period of record). For the short and long period, the trend statistics are derived by 
having a fixed start year, and using all the data from that point up to the last available 
data for each station. For full consistency for spatial comparisons, the project team also 
used a fixed start and end year (that is, 1987 to 2016 and 1967 to 2016). In this case, 
all stations have an identical record length and so can be compared fairly.  
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The periods were selected by Harrigan and others (2018) after an appraisal of record 
lengths on the NRFA, to reflect the trade-off between spatial coverage (optimised in the 
‘short’ period) and record length (optimised in the latter).  

The project team also carried out a multi-temporal analysis for all stations. Harrigan 
and others (2018) carried out a limited multi-temporal analysis in high flows (rather than 
AMAX) data for the UKBN2 by varying the start date of UK river flow trends. Here, 
trends are analysed in all possible start/end points, and visualised using heatmaps – as 
used in the European-scale study of Hannaford and others (2013). Figure A-1 shows 
an example.  

For all non-rejected periods, the non-parametric Mann-Kendall (MK) test was 
implemented. The results of this test are standardised (Mann-Kendall Z score, MKZ) in 
order to compare the different periods of interest and stations. Positive values indicate 
increasing trends, while negatives ones refer to decreasing trends.  

 

 

 

Figure A-1 Sample figure of the multi-temporal trend analysis for a long record, 
the Thames at Kingston (39001). 

 

The bottom left plot of Figure A-1 shows a multi-temporal analysis, where each cell in 
the plot shows the result of a trend analysis with a given start year (as shown on the x 
axis) and end year (show in on the y axis). The colour scale shows the trend output 
(the MK Z statistic, with blue = positive and red = negative, and darker colours showing 
stronger trends. Significance values are shown with green (5% significance level) and 
yellow (10% significance) dots. Note that the black cells indicate where trend analysis 
periods are excluded because of duplication (that is, due to missing data in 1984, 



 

  

analysis periods starting or ending in 1984 must be excluded as they contain the same 
information). For further information on the tables, see Appendix 1, Annex 1. 

 

Results and discussion 

Summary of trends across data set 

For the 5 fixed periods of interest, it is evident that the majority of the stations had 
increasing trends (Table A-1). There were more than double the number of stations 
with increasing trends compared with decreasing trends. Nevertheless, while there is a 
clear dominance of positive trends, it must be emphasised that a majority of these 
trends are non-significant (around a quarter of positive trends were significant at either 
5% or 10%). 

 

Table A-1 Summary of MKZ trends for 5 periods of interest. Each cell shows the 
number of cases 

 
 

Short Long Full 1987 to 
2016 

1967 to 
2016 

>0 287 186 318 261 132 

>0 & Sign. 10% 18 15 36 18 7 

>0 & Sign. 5% 30 37 63 24 19 

=0 14 6 4 14 5 

<0 134 80 149 128 65 

<0 & Sign. 10% 5 5 10 5 5 

<0 & Sign. 5% 5 8 12 5 7 

SUM 435 272 471 403 202 

 

By analysing the results for all the combinations of start~end year, the conclusions are 
similar to above (Table A-2). The median percent of positive trends is over 74%, 
meaning that half of the stations have more than 74% of positive trends for all the 
examined combinations. On the other hand, there are considerably fewer negative 
trends, and only around a quarter of the stations (3rd quantile – 57%) have more 
negative trends than positive. 

 

Table A-2 Summary statistics of MKZ for all combinations of start~end year 

 

% Positive 
(%) 

Sign. 
Pos. 

(10%) 

Sign. 
Pos. 
(5%) 

Negative 
(%) 

Sign. 
Neg. 
(10%) 

Sign. 
Neg. 
(5%) 

Zero 
(%) 

Min. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

1st Qu. 39.9 0.0 0.0 4.8 0.0 0.0 0.3 
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Median 74.2 1.8 0.1 23.8 0.0 0.0 1.1 

Mean 65.6 5.6 9.5 32.9 1.7 1.6 1.5 

3rd Qu. 94.8 8.6 9.1 57.6 0.8 0.0 2.2 

Max. 100.0 100.0 97.5 100.0 38.3 43.1 10.9 

NAs 4.0 4.0 4.0 4.0 4.0 4.0 4.0 

 

 

 

Multi-temporal analysis  

From the same table, it can be concluded that there are stations with persistent 
positive/negative trends for all the combinations.  

Examples of stations showing negative trends are 54040, 27010, 31004, 30015 and 
28086. Especially for station 54040 (the Meese at Tibberton), about 40% of 
combinations of start and end years show a significant negative trend (Figure A-2). 

 

 

 

Figure A-2 Multi-temporal trend for station 54040 (the Meese at Tibberton) 

 

There are 29 stations with positive trends for all combinations of start and end years, 
while 5 of them have over 80% of these trends being significant (for example, station 
58007, Llynfi at Coytrahen, Figure A-3). 



 

  

 

 

 

Figure A-3 Multi-temporal trend for station 58007 (Llynfi at Coytrahen) 

 

However, the multi-temporal analysis more typically illustrates how trends in fixed 
periods are not representative of the full range of hydrological variability. There are 
often changes in the magnitude and even direction of trends over the course of the 
period of record (as can be seen for the long Thames series in Figure A-5).  

This sensitivity to start and end years is a very widely known issue and discussed at 
length in the literature (see Hannaford, 2015 and references to a UK context).  

There is considerable discussion in the literature about how long a period is needed to 
adequately quantify trends, with 50 years sometimes cited (for example, Kundzewicz 
and Robson, 2000). However, while as long a record as possible is favoured, arguably 
no single period can reliably be used to characterise trends given the presence of 
interdecadal variability.  

Such variability between ‘flood rich’ and ‘flood poor’ periods is clearly prevalent in UK 
hydrometric records, as shown in the smoothed LOESS series presented in the trend 
outputs. Even in a 50-year record, longer periods than the existing record could give 
different results still. A range of studies has shown that historical flood events 
reconstructed from epigraphic, documentary or other sources are often larger than 
events in contemporary gauging station records, and flood-rich and flood-poor periods 
exist in centennial scale reconstructed records (for example, Wilby and Quinn, 2013; 
MacDonald and Sangster, 2017).   

As such, the multi-temporal analysis provides important context for the fixed periods 
(which allow fairer spatial comparisons between sites and therefore are better suited to 
national-scale ‘headline’ results) and should be used in association with those results.  
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It is important to underline, therefore, that a trend in a fixed period should be seen as a 
descriptor of non-stationarity in that period alone. Trends should not be extrapolated 
into the future, because, as the multi-temporal analysis makes abundantly clear, 
variability over a range of scales (between years to between decade) means that the 
strength and direction of trends could change in future.  

Variability in trends over time can influence the outcomes of flood frequency estimates 
(Griffin and others, 2019), which underlines the importance of contextualising results 
from any fixed period analysis and communicating sensitivity to changing study period 
in any outcomes. It also supports the case for investigating non-stationary frequency 
estimation (Faulkner and others, 2020).  

An important question is whether a trend for any given period is representative or 
meaningful, in terms of reflecting a long-term change rather than short-term variation. 
However, this cannot be answered by trend detection using linear, monotonic trend 
tests, and should be addressed by moving from detection into attribution, that is, 
identifying the processes driving the trend (Merz and others, 2012). 

This is, however, a much more challenging scientific task and one that requires 
observational data sets to be combined with hydrological models. It is typically 
extremely resource intensive even at the catchment scale (for examples see Harrigan 
and others, 2015, Prosdocimi and others, 2017), and therefore is well beyond the 
scope of the present study. 

 

Spatial patterns 

The maps (Figure A-4) for the full period again show the propensity for positive trends 
in AMAX across much of England and Wales.  

Large areas of central and eastern England also display negative trends, but these are 
often non-significant (except for a coherent cluster in the Thames catchment and some 
in the north-east and Midlands at the 10% significant). In comparison, significant 
increasing trends are prevalent across the UK, especially in northern England, Wales 
and parts of western central England.  

For the long period, the patterns are broadly similar, despite the sparser coverage. For 
the short period, again results are similar. Note that in Figure A-4 the results for the 
short and long periods are shown with no fixed end year, because the results for the 
same periods, but ending in 2016, were so similar, but there are more sites included in 
the former. These alternative periods are provided in an accompanying map, see 
Appendix1, Annex 1.  

 



 

  

 

Figure A-4 Maps of trend results for the full period of record and the short and 
long periods 

 

If the long period is assumed to have the most robust outcome (balancing the length of 
record while also being a fixed period allowing comparison between sites) to compare 
with other work, it is possible to conclude that the national picture agrees with 
previously published research on trends in AMAX and other flood indicators 
(Hannaford, 2015). That is, there has been a tendency towards higher flows in northern 
and western areas over the last 4 to 5 decades. The majority of that work was carried 
out in study periods ending in the mid to late 2000s, so the current study provides an 
update of around a decade.  

Echoing other studies published in the last few years (for example, Brady and others, 
2019, Prosdocimi and others, 2019), it appears that the previously identified gross 
patterns of change in the UK appear to be fairly resilient. In other words, these 
tendencies have not been countered by the addition of new data. Indeed, if anything, 
the results suggest an increase in the prevalence of and in the proportion of significant 
positive trends. To a degree, this is not surprising given that the recent decade includes 
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some very major flood events (for example, the winter 2015 to 2016 floods, which have 
a strong influence on the number of significant positive trends in northern England).  

The results accord with Harrigan and others (2018), who, using the same testing 
methodology reported primarily positive trends in high flows (the Q5 flow in each year), 
with significant trends in northern and western areas. However, the current study uses 
peak flow data as opposed to daily flow data. It also uses the latest NRFA Peak Flows 
(v7) data, which includes AMAX data up to the 2016 water year, whereas Harrigan and 
others (2018) featured data up to 2014. The higher (relative) number of significant 
trends in England and Wales in the current study may reflect the addition of the 2015 to 
2016 floods.  

The current study also features the entire peak flows data set (that meets the agreed 
study criteria) rather than focusing on near-natural catchments. The agreement with 
Harrigan and others (2018) is encouraging, as that study deliberately focused on near-
natural, high quality stations to prevent spurious trends arising from poorer quality data 
or anthropogenic effects. Here, similar geographical patterns are shown using the 
whole peak flows data set, including very heavily influenced catchments. This suggests 
that, at the national scale, a similar ‘headline’ picture emerges even when all 
catchments, of varying properties and degrees of disturbance, are mixed together. Of 
course, at individual catchments, trends may still be influenced by data quality issues 
or human disturbances rather than hydro-climatic variations, so the picture from the full 
peak flows data set is inevitably a ‘noisier’ one than for the benchmark network. 

One important spatial contrast with Harrigan and others (2018) is that there are more 
negative trends in the present study, particularly in central England, than in the results 
for the UKBN. A straightforward comparison is difficult because the studies used 
different indicators and there is a different end year (while there are only 2 years, major 
record-defining floods in both these years, but in different parts of the country, could 
impact on spatial comparisons). Nevertheless, the lack of agreement warrants further 
investigation to determine whether the negative trends in the current study affect 
catchment disturbances (which seems unlikely given their spatial coherence) or 
whether the absence of negative trends in the UKBN reflects a bias in that set. Most 
importantly, however, these differences in central and eastern areas are mostly 
between non-significant trends and so could reflect chance differences. However, the 
greater feature of this study are the increases in northern and western areas, which is 
in agreement with both Harrigan and others (2018) and other published research. 

The present study also shows that there are positive trends in other areas, and that 
some of these trends are significant (for example, in the far south-east of England and 
parts of east Anglia). The general dominance of positive trends for the UK agrees with 
several recently published studies of spatially coherent trends in flooding at the national 
scale (Brady and others, 2019, Prosdocimi and others, 2019). These studies use a 
novel Bayesian approach to characterise regional- and national-scale trends, rather 
than focusing on at-site trends. While these studies show that the signal towards 
positive trends in flooding is prevalent at the large (national) scale, Prosdocimi and 
others (2019) also show significant regional variations in the strength of trends, with 
broadly similar patterns to those shown here. 

  



 

  

Annex 1: Outputs provided 

The results of the analysis are provided in the ‘FRS18087-IG-D2-
digital_outputs.zip’ file, in the ‘2. Multi-temporal trend testing’ 
directory. This file contains various subfolders and files as shown on 
the adjacent figure. More specifically, there is one folder with the 
processed data used for the analysis (Data_Input), one folder with 
the results for the multi-temporal analysis (Results) and one folder 
with compiled figures for England and Wales (Trend_maps). 

 

Data input 

The ‘AMAX_Info.csv’ provides basic statistical data for the AMAX time series of the 
stations, while the ‘AMAX_matrix.csv’ is a compiled file with all the AMAX time series 
for the stations of interest. 

 

Results 

The ‘Multi-temporalPlots.zip’ provides a figure for each station of interest. A sample of 
this figure is presented in Figure A-5 and a brief explanation about the various sections 
of the figure follows: 

 

 A: Title providing information about the river, the gauge location, and the station 
ID based on the NRFA website. 

 B: Time series with the actual AMAX data (black) and smoothed data (by locally 
weighted regression smoothing (LOESS) using a span of 15 years; Harrigan and 
others (2018). 

 C: Location of catchment and gauge on the map of England and Wales. 

 D: Heatmap with the results of the MKZ multi-temporal analysis. Each pixel 
shows the result of the trend analysis for the corresponding start year (x axis) 
and end year (y axis), with the colour reflecting the direction and strength of the 
trend according to the MK Z statistic. The values for the MKZ ‘bins’ in the colour 
scale are derived from the quantiles of the MKZ scores for every combination of 
start and end year across every gauge (positive data are used for the positive 
quantiles, and negative for the negative ones). The values correspond to the 25th 
quantile, 50th quantile (median) and +/- 1.96. The value of 1.96 is selected since 
this indicates statistical significance at the 5% level. Coloured dots also show 
cells significant at the 5% or 10% level. The significance is based on the MKZ 
value derived from either conventional significance testing or using the block 
bootstrap, as explained in the methodology section. 

 E: Information about the record length and the percent of missing values for the 
station. 

 F: The information in this table is derived from all the multiple combinations of 
start~end year for which the station of interest has sufficient data (as shown on 
the heatmap, section B). This particular table summarises these results, and 
shows how many of them are positive, negative, both significant and positive, 
and both significant and negative. 

 G: This table provides information about the MKZ and TSA for 3 particular periods 
of interest, as described in the methodology section. 
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Figure A-5 Sample figure of the multi-temporal trend analysis 

 

The ‘AMAX_StationsSummaryTable.csv’ file provides basic statistical information for the 
trend testing. More specifically, there is information about the total number of years 
(columns B, C), the percent of missing data (column D), and the percent of positive, 
significantly positive, negative and significantly negative combinations of start~end year 
for each station (columns E:H respectively).  

Finally, there is information related to the MKZ value for 3 particular periods and the 
significance of these values (columns I:N). This file is essentially a summary of the tables 
E, F, G from the above figures. Where results are marked as ‘NA’ for some periods, it is 
generally because there is too much missing data for the testing to take place. 

The ‘Statistics.xlsx’ file provides summary information about the MKZ results for the 5 
fixed periods of interest (short, long, full, 1967 to 2016, 1987 to 2016) on the 
‘FixedPeriods’ spreadsheet. On the ‘Multi-temporal’ spreadsheet, statistics from all the 
combinations of start~end year are provided. 

Trend maps 

This file has a range of maps of England and Wales with the MKZ results for each station. 
These maps are also reproduced here in the results and discussion. 
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Appendix B:  Developing 
methods for incorporating 
physical covariates in non-
stationary analysis 

Trial set of catchments 

The effectiveness of physical covariates was tested on 8 trial catchments, listed in 
Table B-1. All provide high-quality measurements of flood flows with long records. They 
were chosen to show a variety of trend behaviours, catchment locations and types.  
The climate index data run from 1950, and so the tests described in this section are 
restricted to the years since 1950. The list deliberately includes one catchment with 
known land use change, Bedburn Beck, where it is possible that trends are influenced 
by afforestation and felling. 

 

Table B-1 Trial catchments for testing physical covariates 

 

Station 
number 

River Station Record 
length 
(years)4 

Mann-Kendall 
test result at 5% 
significance 
level5 

PELT 
change 
point test 

24004 Bedburn Beck Bedburn 57 Upward, 
significant 

Positive 
change in 
1982 

27034 Ure Kilgram Bridge 50 Upward, 
significant 

No change 
point 

33034 Little Ouse Abbey Heath  48 Downward, 
significant 

No change 
point 

42010 Itchen Highbridge & 
Allbrook Total 

59 Upward, not 
significant 

No change 
point 

45001 Exe Thorverton 61 Upward, not 
significant 

No change 
point 

55002 Wye Belmont 109 Upward, 
significant 

Positive 
change in 
1977 

                                                

4 Excluding missing years and years classed as rejected. 

5 The Mann-Kendall test results are taken from the multi-temporal trend testing carried 
out as part of this project. Results quoted here are those for the full period of record. 
The PELT tests were carried out as part of the data screening. Several catchments 
have a trend that is not significant according to the non-parametric Mann-Kendall test, 
but is expected to be more significant when judged using parametric tests. 
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60002 Cothi Felin Mynachdy 56 Upward, not 
significant 

No change 
point 

76005 Eden Temple Sowerby 53 Upward, not 
significant 

No change 
point 

Choice of covariates 

The first task was to determine which covariates to focus on and to obtain the data 
needed to create a covariate observation to pair up with each AMAX flow in each trial 
catchment.  

Example physical covariates in the literature include: 

 annual rainfall (Sraj, 2016, Yan and others, 2017) 

 99th percentile of daily rainfall values during a year or season 
(Prosdocimi and others, 2014) 

 urban extent (Prosdocimi and others, 2015) 

 population of the catchment (Yan and others, 2017) 

 climatic indices such as the NAO (Steirou and others, 2019), EA 
(Francois and others, 2019), El Nino Southern Oscillation (El Adlouni 
and others, 2007) or Interdecadal Pacific Oscillation (Franks and others, 
2015). 

The research considered only covariates that are expected to be significant across 
many catchments rather than those that represent locally-specific effects such as 
urbanisation or changes in forest cover.  

On the face of it, rainfall is an attractive covariate. Rainfall covariates can be useful for 
identifying interannual variation in extreme flows. Rainfall is expected to be well 
correlated with fluvial flood flows, particularly when it is accumulated over a duration 
similar to the critical storm duration of the catchment. However, this can lead to a dead 
end in that if a covariate is very closely correlated with peak flow, this can result in the 
circular logic of needing to know the frequency distribution of something like peak flow 
in order to estimate the frequency distribution of peak flow. The problem of estimating 
high quantiles has been shifted to another part of the hydrological cycle rather than 
being solved. A more useful role for rainfall as a covariate is to consider longer duration 
totals (annual or seasonal), which can be associated with catchment conditions such 
as soil moisture and groundwater storage.   

Global mean temperature was also considered as a covariate, although for reasons 
discussed later it was not considered further. The intention was to include an index of 
the changing climate. 

River flows can vary according to large-scale patterns of atmospheric circulation, 
sometimes referred to as ‘teleconnections’. These patterns can be described by modes 
which indicate the position and magnitude of large-scale atmospheric waves. Over 
Europe and the north Atlantic the modes control the strength and location of the 
northern hemisphere jet stream, therefore strongly affecting near-surface climate 
conditions (Steirou and others, 2019).  

A recent comprehensive study (Steirou and others, 2019) investigated the influence of 
5 climatic covariates on flood flows across Europe: North Atlantic Oscillation (NAO), 
east Atlantic pattern (EA), east Atlantic–western Russian pattern (EA/WR), 
Scandinavia pattern (SCA) and polar–Eurasian pattern (POL). The authors fitted GEV 
distributions, whose parameters varied according to these 5 covariates, at 600 river 
flow gauges in Europe on catchments larger than 200 km2. The authors allowed only 
the location parameter to vary, after finding similar results when allowing both location 



 

  

and scale to vary. They found a generally better fit if seasonal average indices are 
used, rather than indices from the month in which the peak discharge occurs. This may 
be because catchment wetness is more influenced by the seasonally-averaged climate 
state. 

The results, visualised in Figure B-1 showed that for Great Britain the most influential 
covariate in winter is the EA. There is also a large influence, in most seasons, from the 
NAO. In spring, there is relatively little influence of atmospheric circulation indices on 
flood magnitudes, perhaps due to local convective rainfall processes starting to 
dominate. 

Steirou and others (2019) found that the effect on estimated quantiles is that between 
years with medium and high values of the NAO or EA, peak flows can differ by 10 to 
20% in Britain for some seasons. 

 

 

Figure B-1 The maps, from Steirou and others (2019), show best overall models 
for each season, using mean seasonal covariates. ‘Classical’ refers to a model 

without covariates 

Material reproduced under a Creative Commons Attribution 4.0 License.  

https://creativecommons.org/licenses/by/4.0/
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The results are consistent with the findings of Brady and others (2019) who found a 
clear association between the EA index and annual maximum flows in Great Britain. In 
contrast, although NAO on its own was influential, its influence vanished when time 
was included as a covariate because of the strong temporal trend in NAO. 

In light of these results, the project team considered the following as covariates:  

 catchment-average rainfall (annual, autumn and winter) 

 NAO index (winter, summer, autumn) 

 EA index (winter) 

 temperature (global mean, annual and winter) (later discarded) 

 

Catchment-average rainfall accumulations were calculated from the CEH-GEAR data 
set, which provides daily rainfall on a 1 km grid across the UK from 1890 (Tanguy and 
others, 2016). 

NAO and EA indices were obtained from NOAA6. The indices are calculated from 
anomalies that are standardised by monthly means and standard deviations calculated 
over a 1950 to 2000 baseline period. 

Global mean temperature was obtained from the Hadley Centre7, in the form of 
anomalies from a 1961 to 1990 baseline period. 

In all cases, annual values of the covariates were calculated using water years. 

The rainfall data were centred and scaled, subtracting the mean from each observation 
and dividing the result by the standard deviation. This transformation is expected to 
reduce computational problems in which the likelihood optimisation algorithm 
converges to local maxima; each of the covariates is essentially on the same scale, so 
the regression parameters are more comparable over covariates for numerical 
purposes. The other covariates were already standardised in a similar way. 

These covariates, although physically-based, do not directly represent the physical 
processes that cause floods. For instance, none of the covariates measures the 
strength and direction of atmospheric rivers, which have been linked with the 
occurrence of winter flooding in the UK (Lavers and others, 2011). However, they 
represent a potential step forward from the simplistic approach of modelling non-
stationarity as a change over time. 

Screening covariates using trend analysis 

One important consideration is the effect of collinearity and confounding variables on 
results when including multiple covariates. Although it does not matter for fitting if there 
is dependence between the covariates, the greater the dependence between 
covariates, then (i) the harder it is to interpret the regression coefficients and (ii) the 
more numerical instability/convergence issues that will arise. 

Therefore, to avoid or reduce these problems, it is desirable, although not essential, if 
the covariates are orthogonal (uncorrelated). In order to look for causal relationships 
through the regression modelling, the fitted models should be as meaningful and 
interpretable as possible. This therefore leads to having as orthogonal covariates as 
possible. When time is one of the covariates, this is achieved by detrending the 
physical covariates before including them in the statistical model to ensure that they 

                                                

6 https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml (viewed 14 May 2020) 

7 
https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html#regional_se
ries (viewed 14 May 2020) 

https://www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml
https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html#regional_series
https://www.metoffice.gov.uk/hadobs/hadcrut4/data/current/download.html#regional_series


 

  

are orthogonal. For example, if physical covariates include a time trend, they are 
correlated with the water year which may be another covariate. 

Figure B-2 to Figure B-4  

Figure B-2 Time series of annual and seasonal rainfall over an example 
catchment (the Itchen), with linear trend lines fitted 

show how the covariates change over the water years 1950 to 2016. A common colour 
scheme is used across the 3 figures to indicate the season over which the covariate is 
calculated. Table B-2 summarises the statistical significance of the trend in each 
covariate. Some of the chosen physical covariates show a strong trend over time; for 
others, there is no trend evident during the observed period. 

There is a strongly significant trend in the mean global temperature, as would be 
expected. Since the trend appears to be reasonably linear over the period of record, it 
may be that this covariate provides little more information than would be provided by 
adopting the year of each flood as a covariate. Although superficially it might be 
thought that temperature is a useful covariate as its future evolution can be predicted 
with reasonable confidence by climate models, this reasoning could equally well apply 
to using time as a covariate, as its future values can be predicted perfectly. Since there 
is no clear causal connection between global temperature and UK flood magnitudes, 
global temperature was no longer considered as a covariate. This leaves 7 candidate 
physical covariates. However, in the future, water year and global temperature are 
likely to become non-linearly related, so it is possible that global temperature could 
become a more useful covariate for future periods. 

The NAO and EA indices show a mixed picture in terms of trend. The EA (annual and 
winter) and the NAO (winter) show trends towards more positive values over the period 
of record. When these indices are included alongside time as a covariate, they need to 
be detrended. In contrast, there is little or no evidence of significant trend (at the 5% 
level) in the annual, summer or autumn NAO. 

There is no evidence of trend in annual, winter or autumn rainfall over most of the 
example catchments. These rainfall covariates can be incorporated alongside time in a 
non-stationary model, with no need for detrending. The exceptions are the Ure and 
Eden, both upland northern catchments. Over the Ure there is an upward trend in 
winter rainfall; over the Eden there is an upward trend in both annual and winter 
rainfall. 
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Figure B-2 Time series of annual and seasonal rainfall over an example 
catchment (the Itchen), with linear trend lines fitted 

 

 

 

 

Figure B-3 Time series of atmospheric circulation indices, with linear trend lines 
fitted 
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Figure B-4 Time series of global temperature anomaly, with linear trend lines 
fitted 

 

 

Table B-2: Trend tests of covariates 

 

 

Screening covariates using correlations 

A wide variety of combinations of covariates has been investigated for the 8 
catchments listed in Table B-1. As a first step, correlations were calculated between 
covariates and annual maximum flows, and cross correlations between covariates.  
The results for correlations of the following covariates with AMAX flow (not tabulated 
here) indicated: 

 annual rainfall: moderate to strong positive correlations (strongest on the Itchen, 
with a coefficient of 0.70, where river flow is dominated by the groundwater 
level, which will be strongly influenced by annual rainfall) 

 winter rainfall: moderate correlations on most catchments, an exception being 
Bedburn Beck, with little correlation 

 autumn rainfall: low to medium correlations on most catchments 

 NAO: little correlation between AMAX flow and annual NAO. Winter NAO shows 
little to moderate positive correlation for most catchments, strongest on the 
Wye. Summer and autumn NAO show little to moderate negative correlation, 
strongest on the Bedburn Beck (summer) and Exe (autumn) 

Covariate Annual 
NAO 

Annual EA Winter 
NAO 

Winter EA Summer 
NAO 

Autumn 
NAO 

Mann-
Kendal Z 
statistic 

1.943 6.326 3.453 4.524 -1.634 -1.001 

2-sided p-
value 

5.2% 0.0% 0.1% 0.0% 10.2% 31.7% 

Provisional 
interpretation 

Borderline 
trend 

Trend Trend Trend No trend 
No 
trend 

Covariate Annual 
temperature 
anomaly 

Winter 
temperature 
anomaly 

Winter 
rainfall, 
Ure 
catchment 

Annual 
rainfall, 
Eden 
catchment 

Winter 
rainfall, 
Eden 
catchment 

 

Mann-
Kendal Z 
statistic 

8.139 7.230 2.392 2.738 2.500 

 

2-sided p-
value 

0.0% 0.0% 1.7% 0.6% 1.2% 

 

Provisional 
interpretation 

Trend Trend Trend Trend Trend 

 

For catchment rainfall: only showing results where there is trend evident at the 5% significance level 
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 EA: little to moderate positive correlation for both annual and winter EA, 
strongest on the Wye (annual) and Itchen (winter). Less correlation between 
summer EA and AMAX flow 

 water year (and global temperature anomaly): positive correlation on most 
catchments, strongest on the Wye and Bedburn Beck. Negative on the Little 
Ouse 

As expected, strong cross correlations were observed between annual and seasonal 
versions of the same variables, such as rainfall or NAO. Correlations were also seen 
between atmospheric circulation indices and rainfall for most catchments, when 
averaged over the same season, in particular between winter rainfall and winter EA. It 
is desirable that the covariates included in a non-stationary statistical model are 
orthogonal, so highly correlated covariates should not be included. This is one 
consideration, along with the others listed in section 3.3.4, that helps select covariates. 

Incorporating physical covariates into estimating 
design flows 

One of the biggest challenges the project faced was how practitioners could extract 
estimates of design flows from models fitted using physical covariates to inform design 
specifications, given the different ways of defining risk. Typically, flood risk estimates 
are defined using return periods, but in non-stationary models, this becomes more 
complicated. Given a model with time covariates, one could use the conditional return 
level (or conditional flow estimate) given the current year, that is, the design flow is 
conditional on the year being 2019. 

This is less useful when using physical covariates, as for example, the 100-year return 
level given the 2019 rainfall amount is the expected return level under the (clearly 
hypothetical) conditions that the rainfall always takes the value that is observed in 
2019. Therefore, the conditional flow estimate may be useful when examining the 
probability of past floods, but it is less informative when thinking about design. 

In this case, an alternative approach would be to define a marginal return level, as 
used in Eastoe and Tawn (2009). This is also referred to as an integrated flow 
estimate. It is defined as the return level corresponding to the averaged encounter 
probability8, where averaging is over covariates in a period of interest. Specifically, it is 
the return level where the average encounter probability is equal to the reciprocal of the 
return period.   

This is distinct from the stationary estimate of return level, even though the two might 
appear superficially similar because both will plot as horizontal lines on a time series 
graph. The marginal return level could also be calculated separately for different 
portions of the record, for example, 10-year blocks. It is also possible to calculate the 
marginal return level by integrating over a sample of covariates that spans a period 
different from that covered by the river flow data. For instance, the record of the 
covariates might be longer, enabling a more confident estimate of the distribution of the 
covariates.   

Another situation might be incorporating information on predicted future covariates 
such as scenarios of land use or climate. This may be useful for planning future flood 
protection, although it would only be justifiable in situations where there is a 
demonstrated causal link between the covariates and flood peaks, and so is not 
recommended for current application. If this approach were to be applied, it would be 
possible to use the Eastoe and Tawn (2009) approach to derive levels corresponding 

                                                

8 An encounter probability is the probability of an event occurring in a given number of 
years. 



 

  

to the expected annual exceedance probability over the design period. This is 
equivalent to the 'average design life level' presented in Yan and others (2017). Rather 
than aiming to estimate a flood frequency curve for a particular year (past, present or 
future), they estimate quantities that are associated with a period of time, such as the 
design life of a flood alleviation scheme. The output from the analysis is similar to a 
probability of a particular flood flow being exceeded during the lifetime of a scheme or a 
development.   

The candidate covariates vary in their future predictability. Annual and seasonal 
rainfalls are included in the UKCP09 and UKCP18 data sets. Large-scale atmospheric 
circulation indices are more difficult to predict. Changes in the latitude and speed of the 
jet stream over the North Atlantic can be described using a combination of the NAO 
and EA patterns. Climate models show large bias in predictions of the NAO and EA 
over the baseline period. While there is some agreement between models on a future 
northern shift of the jet stream, there is considerable spread between different model 
projections (Woollings and Blackburn, 2012). Some studies project a slight positive 
shift in the probability distribution of NAO phase and a small north-eastward 
displacement of its centre by the end of this century (Deser and others, 2017). The 
UKCP18 reports (Met Office, 2019) mention future evolution of the NAO index but not 
of the EA. 

In summary, it does not appear to be currently feasible to obtain scenarios of future 
atmospheric circulation indices that will be useful to practitioners. Scenarios of future 
rainfall total are available, and were used in the non-stationary project in north-west 
England. However, in that project it was decided that the information was not helpful for 
predicting future flood frequency because impacts of climate change on peak flows 
cannot be simply modelled by a statistical relationship between peak flow and seasonal 
rainfall. This calculation would assume, wrongly, that future changes in peak flow can 
be entirely explained by changes in seasonal rainfall. Although climate change is 
expected to affect rainfall, and therefore catchment wetness, it can also be expected to 
influence other factors that control flood magnitudes. These include storm intensity and 
evapotranspiration (which influences soil moisture). Given that using future predictions 
of covariates over the design life of a flood alleviation scheme is only valid if the 
physical covariates provide a complete causal description of the non-stationarity in 
peak flows, this is not recommended for practical application.   

In light of the cautionary notes about extrapolation into the future, there may be a 
desire to extract a ‘present-day’ return level from these non-stationary models. This can 
be done by calculating the marginal return level, setting the time covariate to the most 
recent water year for which data are available, and integrating over the full observed 
distribution of the physical detrended covariate.  

Such an estimate would represent the present-day expected return level for a particular 
exceedance probability, without being conditional on any particular value of a covariate 
such as annual rainfall. It could probably represent the short-term future too. For the 
longer term, it could perhaps be adjusted using outputs from climate models, as long 
as an appropriate baseline period can be identified and the concerns about causal 
relationships can be overcome.  

It would also be possible to set the water year covariate to other years within the 
record. However, this functionality is not available in the nonstat package. The project 
has termed these estimates single-year integrated flow estimates. The single-year 
integrated flow estimate can be more easily compared with alternative estimates such 
as those from a model that uses only water year as a covariate. 
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Calculating return level estimates 

This section sets out the methods for calculating both marginal and conditional return 
levels, in each case for a non-exceedance probability value of p. 

 

Notation: 

 Let 𝐹(𝑦|𝑥; 𝜃) be the distribution function of annual maximum flow, where 𝑥 is a 
vector of covariates and 𝜃 is the vector of parameters of the distribution, 
including the regression coefficients for the covariates. 

 Define the marginal return level for probability p (the marginal pth quantile) by 
𝑦𝑝 and the conditional return level for probability p (the conditional pth quantile), 

that is, conditional on a particular set of values for the covariates, by 𝑦𝑝(𝑥). 

 Let 𝑓(𝑥) be the joint density of the covariates for the time period of interest. For 
the purposes of this work, this is the period spanned by the river flow record, 
but it could also be some future period if information is available about how the 
covariates might evolve, and if the covariates provide a complete causal 
description of the non-stationarity in peak flows. 

 Let Φ be the set of possible covariates. 

 

The marginal distribution function for AMAX flow in the period of interest is 𝐹(𝑦; 𝜃). 
Note that this distribution function does not depend on the covariates, that is, unlike 
𝐹(𝑦|𝑥; 𝜃) there is no conditionality on covariates, as this distribution is required 
irrespective of the covariates that occur in the period of interest. 

 

The marginal distribution can be obtained by integrating out the covariates: 

 𝐹(𝑦; 𝜃) =  ∫  𝐹(𝑦|𝑥; 𝜃) 𝑓(𝑥) 𝑑𝑥
Φ

.                                                    (B1)                           

 

The marginal quantile for the period of interest is then 𝑦𝑝, which is such that 𝐹(𝑦𝑝; 𝜃) =

𝑝. 

Inverting F (which needs to be solved numerically), 𝑦𝑝 = 𝐹−1(𝑝;  𝜃) is obtained. 

 

In practice, the parameters 𝜃 of this distribution are not known, nor is the true density 
𝑓(𝑥) of the covariates. Therefore, to get an estimated marginal quantile (return level), 

they need to be replaced with estimates in Equation B1. Here, 𝜃 is estimated by 𝜃, the 
maximum likelihood estimate of the parameters, and the joint density of the covariates 

𝑓(𝑥) needs to be replaced by some estimate 𝑓(𝑥), for example, the empirical density of 
the data or a kernel density estimate (which smooths the empirical estimate). 

 

The estimated marginal pth quantile 𝑦�̂� is found from 𝑦�̂�  = �̂�−1(𝑝; 𝜃).  Similarly, the 

estimated conditional pth quantile is obtained from 𝑦�̂�(𝑥)  = �̂�−1(𝑝|𝑥; 𝜃). 

  



 

  

Calculating confidence limits for return level estimates 

Confidence limits are calculated using a parametric bootstrapping procedure. This is a 
method of deriving confidence limits in situations where the underlying statistical 
population is unknown or where an analytical solution for return levels is impractical.  
The following bootstrap method is proposed by Eastoe and Tawn (2009). 

 

The following is a general algorithm for parametric bootstrapping from a parametric 

model with assumed distribution function 𝐹(𝑦; 𝜃), with parameters 𝜃 and an estimate 𝜃 
of the parameters derived from the independent and identically distributed data sample 
𝑦1, … , 𝑦𝑛. 

 

1. Generate data sample of size 𝑛 from the fitted model, by using 𝐹(𝑦; 𝜃 ). 

2. Fit the model for the data simulated in step 1 to give a new estimate 𝜃(1). 
3. Repeat steps 1 to 2 𝑘 times to give a set of estimates 𝜃(1), … , 𝜃(𝑘), called a 

bootstrapped sample. 
4. Use the sample of 𝑘 estimates to derive the confidence interval for each 

element of 𝜃, by ranking the bootstrapped sample for each element and picking, 
for example, the 2.5% and 97.5% quantiles to give a 95% confidence interval.  

5. If interest is in some function of 𝜃, say g(𝜃), then the bootstrap sample 

 𝑔(𝜃(1)),… , 𝑔(𝜃(𝑘)) can be used to construct the confidence interval for g(𝜃). 

 

Notes: 

 This work has used 𝑘 = 200, so the selected quantiles from the bootstrap 
sample for a 95% confidence interval, for example, would correspond to the 5th 
and 195th ordered values in the sample. 

 When there are covariates in the model, step 1 differs depending on the type of 
confidence interval required. For conditional return levels, covariates remain 
fixed in step 1, but for marginal return levels, the covariates are sampled first 

(with replacement or from 𝑓(𝑥)) and then the data are simulated conditional on 
the covariates. In all other cases, the bootstrap method remains unchanged. 

 

Confidence limits for the conditional return levels 

Let �̂�𝑝
(𝑖)
(𝑥)  = 𝐹−1(𝑝|𝑥; 𝜃(𝑖)) for 𝑖 = 1,… , 𝑘, where during the bootstrapping procedure, 

the covariates are not resampled in step 1 before estimating the model parameters 

𝜃(𝑖). 

Then �̂�𝑝
(𝑖)
(𝑥), for 𝑖 = 1,… , 𝑘, gives a sample to build confidence intervals, taking, for 

example, the 2.5% and 97.5% quantiles of this sample to obtain the 95% confidence 
interval. 

Confidence limits for the stationary and conditional return levels are calculated using 
the in-built bootstrapping code in the texmex R package. 

Confidence limits for the marginal return levels 

There are 2 sources of uncertainty in the marginal distribution: the parameter estimates 

𝜃 and the estimated distribution of the covariates 𝑓(𝑥). Firstly, ignoring the latter source 
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gives �̂�𝑝
(𝑖)
= 𝐹−1(𝑝; 𝜃(𝑖)) for 𝑖 = 1,… , 𝑘, from which confidence limits are derived as in 

step 5 above. 

 

If the uncertainty in the distribution of the covariates is to be included, the sample of 

distribution estimates 𝑓(1), … , 𝑓(𝑘) , needs to be used, either from the same bootstrap 
sample or from some independent source if the covariates are being set to represent a 
future period.   

 

The following is then obtained: 

𝐹(𝑦; 𝜃(𝑖), 𝑓(𝑖)) =  ∫  𝐹(𝑦|𝑥; 𝜃(𝑖)) 𝑓(𝑖)(𝑥) 𝑑𝑥
Φ

  for 𝑖 = 1,… , 𝑘, 

 

where in each of the 𝑘 bootstrap samples, uncertainty in the covariate distribution is 
incorporated in the uncertainty of the estimated model parameters via the sampled 
covariates in step 1, and by including the same sampled covariates in the terms in the 
above integral. The resulting sample of estimated return levels (from the following 
equation) is used to build confidence limits in the usual way. 

 

�̂�𝑝
(𝑖)
 = 𝐹−1(𝑝; 𝜃(𝑖), 𝑓(𝑖)) for 𝑖 = 1,… , 𝑘. 

 

Notes:  

 The uncertainty in 𝑓(𝑥) can be ignored when time is the only covariate, since 
𝑓(𝑥) in that case forms a uniform distribution with no uncertainty. 

 One challenge with this approach is that it involves a large number of calls to 
the maximum likelihood estimator function, some of which may not converge. 

 

  



 

  

Covariates selected for trial catchments 

All non-stationary frequency analyses reported here use the GEV distribution. Results 
from alternative distributions are not expected to show any significant differences in 
terms of covariates selected. 

The 7 candidate physical covariates were included in fitting of non-stationary models 
on some trial catchments in accordance with the following options: 

1. In a group, allowing any number of physical covariates plus water year to 
be included, with the physical covariates being detrended. 

2. Up to 2 covariates per model, with a maximum of one being a physical 
covariate (the other being water year), with the physical covariate being 
detrended. 

3. Up to one physical covariate per model, with no detrending. 

4. Only time allowed as a covariate. 

In all these cases, covariates were considered for modelling either or both of the 
location and scale parameters.  

This leads to a large number of candidate models: even when only one physical 
covariate is allowed at a time, there are 22 models fitted (7 physical covariates, times 3 
for location, scale and both varying, plus one with no covariates). With up to 2 
covariates, there are 88 models fitted. The number can grow to many thousands when 
more covariates are considered, which can lead to long run times. 

The AIC and BIC were calculated for each model. Testing indicated that the BIC is a 
more useful measure because it tends to give preference to simpler models (see 
section 3.3.4). However, even the BIC is not an appropriate way to select models 
without considering other factors such as physical interpretability and spatial 
coherence.  

For example, on the Little Ouse, when all covariates are considered to be included, the 
model with the lowest BIC includes the following covariates: 

 for location: water year, winter EA, winter NAO, autumn NAO, summer NAO, 
annual rain, winter rain and autumn rain (that is, all 8 covariates) 

 for scale: water year, summer NAO, annual rain and winter rain 

In contrast, the lowest BIC model for the Wye includes: 

 for location: water year and annual rain 

 for scale: none 

There is therefore large variation between catchments with respect to the covariates 
included in the model with the lowest BIC. This varies from 2 to 8 in the location 
parameter, and from 0 to 5 in the scale parameter (the total number of covariates 
varies from 2 to 12). This implies inconsistency across the catchments and those with 
more covariates produce warnings during the model fitting and are likely to be too 
complex to be useful. Therefore, to guide the model selection towards simpler versions 
with greater interpretability and spatial consistency, subsequent analysis was restricted 
to options 2 and 3 above, that is, a maximum of one physical covariate. 

Table B-3 summarises the choice of covariates for each trial catchment; in each case 
listing the covariates corresponding to the model with the lowest BIC from the 
combinations available. Results are given for options 2 and 3 listed above, that is, with 
and without water year as a potential covariate. In addition, the final 2 columns show: 

 the lowest BIC from models that use only water year as a covariate (for either 
location, scale or both parameters) 

 the BIC for a stationary model, with no covariates 
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The BIC values in Table B-3 should be compared only within each row, not between 
the catchments. 

 

Table B-3 Choice of covariates for each trial catchment (lowest BIC in bold) 

Catch-
ment 

Lowest-BIC model considering 
time (water year) plus up to one 
physical covariate (detrended) 

Lowest-BIC model considering up 
to one physical covariate (not 
detrended) 

BIC for 
model 
with only 
time as 
co-
variate 

BIC for 
statio-
nary 
model 

Covariate
s for 
location 

Covariate
s for 
scale 

BIC Covariate 
for 
location 

Covariate 
for scale 

BIC 

Bedburn 
Beck 

Time, 
autumn 
NAO 

Time 439.1 Autumn 
NAO 

None 452.2 439.9 452.3 

Ure 
Time, 
annual 
rain 

None 542.8 Annual 
rain 

None 538.9 558.6 557.1 

Little 
Ouse 

Winter 
rain 

Time 314.2 Annual 
rain 

None 320.5 334.4 337.2 

Itchen 
Time, 
winter rain 

None 264.8 Winter 
rain 

Winter 
rain 

263.2 294.2 293.8 

Exe 
Time Annual 

rain 

659.5 Winter 
NAO 

None 662.7 665.2 667.1 

Wye 
Time, 
annual 
rain 

None 754.2 Annual 
rain 

None 775.6 769.6 792.2 

Cothi 
Time, 
annual 
rain 

None 613.5 Annual 
rain 

None 612.5 628.5 628.8 

Eden 
Time, 
annual 
rain 

None 638.9 Annual 
rain 

None 635.0 659.4 658.2 

 

There are some interesting patterns that emerge from the results in Table B-3. Firstly, it 
is generally the case that the location parameter includes more covariates than the 
scale parameter. Annual rainfall is by far the most commonly chosen physical 
covariate. It is the preferred physical covariate in 10 out of 16 models that include 
physical covariates (2 per catchment, one with and one without water year included as 
a potential covariate). Winter rainfall is chosen in 3 models, autumn NAO in 2 (for the 
Bedburn Beck catchment) and winter NAO for the other one. There are no cases where 
EA is chosen. On the basis of these results, the project team suggests that the 
covariates representing atmospheric circulation patterns are no longer considered. As 
discussed in section 3.3.4, it is desirable to have a model that uses the same 
covariates at all locations. 

In fact, there is an argument for retaining only annual rainfall as a single physical 
covariate worth considering at a national scale. On the Bedburn Beck, Itchen and Exe, 
the models using annual rainfall as a covariate achieve a BIC extremely close to the 
models with the lowest BIC reported above. 

There are no cases where the model with only time as a covariate has a lower BIC 
than any model that uses a single physical covariate. For half of the catchments, the 
lowest BIC model is one that includes both water year and a physical covariate. For the 
Bedburn Beck catchment, however, the physical covariate appears to add little to the 
quality of model fit, since the model with only water year achieves a similar BIC. This is 



 

  

as expected since the non-stationarity is thought to be due mainly to changes in tree 
cover.   

On most catchments, there is little difference in BIC between a stationary model and 
one that uses water year as a covariate (the exceptions being the Wye and Bedburn 
Beck catchments). The Itchen is a case in point. The Itchen is the catchment that 
shows the greatest benefit (in terms of lowering BIC) from including physical 
covariates, probably because the groundwater dominance results in a stronger link 
between long-term rainfall accumulations and peak flow. 

In many cases, there is also only a small difference in BIC between models that 
consider only physical covariates and those that consider both physical and time-based 
covariates. As previously discussed, if time is excluded as a covariate to model a non-
stationary flood series, it would be preferable to include at least one physical covariate 
in the model which ideally exhibits some trend. The covariate that gives the lowest BIC 
is generally annual rainfall, and yet over most of the catchments this does not show a 
significant trend during the period of record. In this case, a model fitted using only 
annual rainfall as a covariate gives conditional return levels that show no evidence of 
trend, although the marginal return levels differ from the stationary estimates, at least 
for longer return periods. 

This type of model, with no time-variation of parameters, has the theoretical advantage 
of not having to resort to crude extrapolation to estimate return levels for a future 
period. It could, in theory, be applied together with an estimated future distribution of 
annual rainfall, from a climate model. However, as discussed earlier, this sort of 
application would only be valid in the case of a causal relationship between annual 
rainfall and peak flow. Future changes in peak flow would need to be entirely explained 
by changes in annual rainfall. Although climate change may be expected to affect 
annual rainfall, and therefore catchment wetness, it can also be expected to influence 
other factors that control flood magnitudes, including storm intensity and 
evapotranspiration (which influences soil moisture). These influences are not included 
in the current non-stationary statistical models considered.  

In conclusion, physical covariates (generally, annual rainfall) appear to add useful 
information to the models on all trial catchments. As hoped, the physical covariates are 
helping to remove some of the year-to-year variability in AMAX floods, allowing better 
time-based trends to be better identified. In some cases, however, the model 
performance is not much improved compared with a model fitted only with water year 
as a covariate. Because time is retained as a useful covariate on some catchments, it 
is not advisable to apply those models outside the observed period. There are reasons 
for being similarly cautious in extrapolating even the models based only on physical 
covariates.   

If covariates representing atmospheric circulation patterns were to be ignored, there 
would no longer be a need to restrict the analysis to the period starting in 1950. Some 
of the trial catchments have AMAX flow data from earlier decades that could be 
incorporated. This would require data sets to be reworked and reanalysed, and so was 
not attempted. 

Model results for trial catchments 

Some example results are provided in the practitioner guidance. 
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Appendix C:  Exploring methods 
of pooled non-stationary analysis 

C.1 Outline of problem 

The current version of the FEH statistical method (Kjeldsen, Jones, and Bayliss 2008) 
can be used to assign return periods or average recurrence intervals to peak flows at 
any location on the digital river network of the UK. The method is based on the index 
flood technique, where the index variable is the median annual flood (QMED), and this 
is combined with a statistical growth curve relating flood peak to return period. For 
ungauged sites, QMED can be estimated via a regression equation based on 
hydrological catchment descriptors, while the dimensionless growth curve is derived 
from a flexible regionalisation procedure within which annual maximum flow data 
(AMAX) from hydrologically similar sites (pooling groups) are pooled together.  

This method does not take into account any changes in the flood regime. More 
specifically, the concept of the index flood, and the methods for estimating it, assume 
stationarity in the average behaviour of the AMAX series, as does the choice of 
probability distribution, the generalised logistic distribution (GLO). Secondly, the growth 
curve method makes use of L-moments (Hosking and Wallis 1997) which rely on 
stationary time series. Finally, the hydrological similarity distance metric used in the 
formation of pooling groups does not account for variability in flow regime change 
spatially. 

It would be beneficial to know how and where to apply non-stationarity within the 
pooling group framework. This includes how to account for trend when forming pooling 
groups, and what to do in terms of calculating flood frequency curves, index floods and 
growth curves, incorporating trend once the pooling group has been formed. 

The present work focused on 2 aspects. Firstly, it investigated whether including trend 
as a criteria for pooling groups can improve current stationary estimates of T-year 
floods. To do this, a new similarity distance metric (SDM) to determine pooling group 
members was investigated which included descriptors of trend. This was developed in 
a similar way to the previous SDM. It was then compared to the currently used SDM, 
and previously published results. Secondly, the use of non-stationarity was investigated 
for its usefulness in computing index floods and growth curves to improve pooled 
estimates of flood frequency. To achieve this, new pooling group methods were trialled 
on real and synthetic data, drawing on various methods currently in peer-reviewed 
literature. 

Outline of work 

This report consists of 2 parts: developing a new similarity distance metric, and 
comparing choices of index flood method and growth curve generation. Both compare 
the developed methods to existing approaches to check for improved performance. 
Figure C-1 demonstrates the pooling group method graphically. 

The first part investigates including trend descriptors such as the Theil-Sen estimator 
(Sen 1968) as components in the similarity distance metric (SDM) currently used in the 
UK to determine pooling groups for estimating regional flood frequency.  

In previous work, the SDM was constructed using a linear regression to model L-CV to 
select components. Components were sequentially weighted to minimise a pooled 
uncertainty measure (PUM). The new SDM is compared to the old SDM using the PUM 
as a performance metric.  



 

  

The second part of the current work looks into the most appropriate method of using 
index flood methods and growth curve formulations within UK pooling group methods 
to improve estimates (or confirm the absence of) trend at locations with short or no 
gauged records of flow, and generally to improve the estimates of long return period 
flood events.  

To do this, the work compares a set of different approaches to applying a non-
stationary index flood method to pooling groups (using both the current pooling SDM 
and that devised in the present work). To obtain the non-stationary index flood, a time-
varying location parameter (for GLO) is used. For the non-stationary pooled growth 
curve, both location and scale were modelled as potentially changeable over time. 
Parameters were estimated using maximum likelihood methods. Since the ‘true’ flood 
frequency curves are unknown, it is useful to offer a method that can show how well 
methods perform on an artificial data set. Therefore, the pooling methods were trialled 
on the simulated data set to give a baseline to compare methods. The existing method 
was also compared to the new methods on the real observed data set. 

Technical points 

Non-stationary generalised logistic distribution 

Throughout, a modified version of the generalised logistic distribution (Hosking and 
Wallis 1997) will be used which allows for the parameters to vary over time. This leads 
to the following formulation of the cumulative distribution function of flow 𝑄(𝑡): 

𝐹(𝑥, 𝑡) = 𝑃𝑟𝑜𝑏[𝑄(𝑡) ≤ 𝑥] = (1 + (1 −
𝜅(𝑡)

𝛼(𝑡)
(𝑥 − 𝜉(𝑡)))

1

𝜅(𝑡)

)

−1

 (1) 

where the location parameter 𝜉(𝑡), the scale parameter 𝛼(𝑡), and the shape parameter 
𝜅(𝑡) are functions of time which take the following forms: 

𝜉(𝑡) =  𝜉0 + 𝜉1𝑡 

𝛼(𝑡) = exp (𝛼0 + 𝛼1𝑡) 

For this piece of work, the shape parameter 𝜅(𝑡) = 𝜅 is taken to be a constant value 
over time, since the associated uncertainty linked to estimating the shape parameter is 
much greater than that associated with the other 2 parameters. The short length of the 
AMAX records available makes estimating a non-stationary shape parameter with any 
useful amount of uncertainty unachievable in this work.  

Other covariates could be used in place of or as well as time. The present work does 
not include these in order to focus on one issue at a time; alternative covariates are 
discussed elsewhere in this project. 

Non-stationary return periods 

Flood frequency curves in all parts of this work are plotted by fixing a reference year, 
and computing return periods based on an expected number of events definition (Salas 
and Obeysekera 2014). A reference year, y0 is the year against which extreme events 
are estimated. For example, the 100-year flood measured against reference year 2000 
is the flood expected to occur once between 2000 to 2099. 

In this case, the ‘T-year event’ is defined as the largest event which is expected to be 
exceeded just once in the next T years. In practice, the ‘T-year event’ depends on the 
reference year selected, and the length of time for which any particular model is 
appropriate; that is, for the length of time one can possibly expect the catchment to 
follow the modelled trends. For example, one would not expect a linear growth in 
extreme flows indefinitely, and so such a model would not be valid for all time. 



106  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

For the present work, the size of the T-year event relative to a reference year y0 is 
computed to be the value Q which solves the equation: 

1 = ∑ (1 − 𝐹(𝑄, 𝑦0 + 𝑡))
𝑇
𝑡=0    (2) 

where F is the cumulative density function for the GLO in year (y0 + t). Under 
stationary conditions where no trend is present, this agrees with the stationary 
definition of a T-year return period event. 

Theil-Sen estimator 

The Theil-Sen estimator of slope (Sen 1968) describes the average of the set of 
pairwise slopes. For a data set (𝑡𝑖, 𝑄𝑖 ∶ 𝑖 = 1,…𝑁) with all different values of Qi, the 

Theil-Sen estimator of the slope of 𝑄 = (𝑄1, … , 𝑄𝑁) is given by: 

𝛽 = 𝑇𝑆𝐸 =  𝑚𝑒𝑑𝑖𝑎𝑛 {(
𝑄𝑗−𝑄𝑖

𝑡𝑗−𝑡𝑖
) : 𝑖 ≠ 𝑗 = 1,… ,𝑁}  (3) 

In words, the TSE is the median of all pairwise slopes between all points with different 
times. This is typically seen as more robust to outliers than a standard linear regression 
of flow against time. It has been used in several other studies, such as those analysing 
trends in the UK Benchmark Network (Harrigan and others, 2017). It is implemented in 
this section using the mblm R package (Komsta 2019). 

For the present work, the focus is on the normalised TSE (𝑇𝑆𝐸𝑛𝑜𝑟𝑚) which uses 
 𝑄 =  𝐴𝑀𝐴𝑋/𝑄𝑀𝐸𝐷. This allows simple comparison between sites of different sizes, 
and gives a value of ‘average percent change relative to QMED.’ 

 

Data used 

The data used in this work are the same as for the rest of this project. Within this data 
set, catchment descriptors are as published on the FEH Web Service 
(fehweb.ceh.ac.uk) and the National River Flow Archive (NRFA) website 
(nrfa.ceh.ac.uk). AMAX records are primarily from the NRFA with some additions, 
alterations and exclusions from measuring authorities and other parties. Each record 
was considered over the period 1977 to 2016, with only the 296 stations used which 
were suitable for flood frequency analysis and had fewer than 2 missing values in the 
1977 to 2016 period. 

The main catchment descriptors considered for pooling are outlined in Table C-1. In 
addition to this, the Theil-Sen estimator has been computed for each catchment for 
each station, both normalised and unnormalised. 

https://fehweb.ceh.ac.uk/
https://nrfa.ceh.ac.uk/


 

  

 

Figure C-1 Flowchart indicating pooling group index flood method, incorporating 
non-stationarity. Blue regions indicate data, grey regions indicate choices to be 

made by the practitioner 

  



108  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

 

Table C-1 Summary of catchment descriptors used in this study 

 

 

C.2 Developing new similarity distance metrics 

Currently, the FEH pooling method in England and Wales groups stations of sufficient 
quality (as determined by the NRFA and measuring authorities) by hydrological 
similarity, measured using a weighted average of area, average annual rainfall, flood 
plain extent, and attenuation due to storage. This allows the generation of pooling 
groups of catchments with similar coefficients of variation (L-CV) and skew (L-SKEW). 
It does not, however, account for possible trends in the AMAX data at each station. 

This section investigates the effect of including trend in estimating long return period 
events by using pooling groups. To this end, a new metric to measure similarity of 
catchments is developed, one which includes trend as a component. This is then 
compared to the currently recommended version (Kjeldsen and Jones 2009) in terms of 
estimating the at-site Theil-Sen estimator and in terms of estimating the 20, 50 and 
100-year return period events. 

  

Descriptor Units Range Definition 

AREA km2 x ≥ 0 Catchment area (as defined by DTM) 

SAAR mm x ≥ 0 Standard-period average annual rainfall (1961 
to 1990) 

FPEXT - 0 ≤ x ≤ 1 Flood plain extent as fraction of catchment 

FARL - 0 ≤ x ≤ 1 Flood attenuation due to lakes and reservoirs 

BFIHOST - 0 ≤ x ≤ 1 Baseflow index derived from HOST soil classes 

SPRHOST - 0 ≤ x ≤ 
100% 

Standard percentage run-off derived from 
HOST soil classes 

URBEXT2000 - 0 ≤ x ≤ 1 Combined fraction of urban and suburban 
within catchment, based on Land Cover Map 
2000 

DPSBAR m/km x > 0 Mean catchment drainage pathway slope 

DPLBAR km x > 0 Mean channel length to catchment outlet 

PROPWET - x > 0 Proportion of time soil moisture deficit is below 
6 mm (1961 to 1990, based on MORECS) 

CEasting 

CNorthing 

m  Catchment centroid easting (northing) as 
derived from British National Grid 

TSE - - Theil-Sen estimator based on a given length of 
record 



 

  

Similarity distance metrics 

The current method for forming pooling groups uses FEH catchment descriptors and 
transformations of them (for example, log(AREA)) to compute the similarity between 
catchments. The SDM formulation developed in (Kjeldsen, Jones, and Bayliss 2008) 
took a weighted average of the distance in difference catchment descriptors between 2 
stations, scaled by the variance of that catchment descriptor. The SDM between 2 
stations i and j with n descriptors is defined by: 

𝑆𝐷𝑀(𝑖, 𝑗) = √∑ 𝜔𝑘 (
𝑥𝑖
𝑘 − 𝑥𝑗

𝑘

𝜎𝑘
)

2
𝑛

𝑘=1
 

       
     (4) 

where 𝑥𝑖
𝑘 and 𝑥𝑗

𝑘 are the k’th catchment descriptor values at stations i and j, ωk is the 

weight of the k’th catchment descriptor and σk is the variance of the k’th catchment 
descriptor. 

Catchment descriptors to include in the similarity metric were selected by applying 
linear regression models to L-CV (the ratio of the second and first L-moments) and L-
SKEW (the ratio of the third and second L-moments) to determine the best catchment 
descriptors for explaining the variance in these L-moment ratios. Despite the relatively 
poor performance of these linear regression models in the original work (Institute of 
Hydrology, 1999) (R2 = 0.375 for L-CV, and R2 < 0.09 for L-SKEW), this led to the 
following catchment descriptors being selected: log(AREA), log(SAAR), FPEXT and 
FARL for the SDM.  

To determine the weights (𝜔𝑘 in equation (4)) to associate to each catchment 
descriptor, the pooled uncertainty measure (PUM) was used to compare pooled and at-
site estimates of various points of the growth curve. The pooled uncertainty metric for a 
set of M catchments for a return period of T years is defined by equation (5): 

𝑃𝑈𝑀𝑇 = (
∑ ℎ𝑖(log𝑧𝑇,𝑖−log𝑧𝑇,𝑖

(𝑃)
)
2

𝑀
𝑖=1

∑ ℎ𝑖
𝑀
𝑖=1

)

1

2

  (5) 

where ℎ𝑖 are pooling group member weightings, 𝑧𝑇,𝑖 are at site-i growth factors for the 

T-year event, and the superscript (P) indicates a pooled estimate for the same. In 
Kjeldsen, Jones, and Bayliss (2008), the SDM coefficients were determined 
sequentially to minimise uncertainty. This lead to the final similarity metric of: 

𝑆𝐷𝑀 (𝑖, 𝑗) = √
3.2 (

ln𝐴𝑅𝐸𝐴𝑖−ln𝐴𝑅𝐸𝐴𝑗

1.28
)
2

+ 0.5 (
ln 𝑆𝐴𝐴𝑅𝑖−ln𝑆𝐴𝐴𝑅𝑗

0.37
)
2

+ 0.1 (
𝐹𝐴𝑅𝐿𝑖−𝐹𝐴𝑅𝐿𝑗

0.05
)
2
+

0.2 (
𝐹𝑃𝐸𝑋𝑇𝑖−𝐹𝑃𝐸𝑋𝑇𝑗

0.04
)
2

          

(6) 

which is the currently recommended version, and the one implemented in WINFAP 4 
(Wallingford Hydrosolutions 2019). It will be denoted SDM08 from now on. 

To determine the number of catchments required, investigation suggested a ‘5T rule-of-
thumb’ (Institute of Hydrology 1999) for the number of station-years (the sum of the 
length of record in all stations in the pooling group). Subsequent development decided 
on a uniform 500 station-years for flood frequency estimates up to a return period of 
100 years (Kjeldsen, Jones, and Bayliss 2008). The present work uses the fixed 500 
station-year requirement to determine the number of stations for a pooling group. 

  



110  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

Method 

New prospective similarity metrics (SDMs) have been developed using roughly the 
same methodology as described above. Descriptors were selected to be included 
based on their importance in linear regression models describing L-CV and L-SKEW. 
These linear models were determined using a stepwise regression model as 
implemented in the leaps R package (Lumley 2017); for this work the Theil-Sen 
estimator (TSE) was forced to be included in all models.  

For each station consistent values of TSE, L-CV, L-SKEW and stationary estimates of 
Q20, Q50, and Q100 were used throughout model development, and similar patterns were 
observed in all cases. 

The coefficients 𝜔𝑘 were optimised simultaneously to minimise pooled uncertainty, 
rather than sequentially as was the case in previous work, to avoid an exhaustive 
search of all possible coefficient combinations. Pooled uncertainty (PUM) was 
calculated for the 20-year event to determine the final coefficients. This was 
implemented using optim from the base R software (R Core Team 2016), and BBoptim 
from the BB R package (Varadhan and Gilbert 2015). 

Throughout this section, stationary estimates for growth curves are used. Section C.3 
addresses whether non-stationary growth curves are indeed an improvement. 

Results 

Covariate selection 

Performance of the new models including normalised-TSE as a component was similar 
to previously documented work; Table C-2 summarises the final components chosen 
for each prospective similarity metric. 

Figure C-2 and Figure C-3 show examples of the subset diagram used to select the 
models for investigation. Each row shows a prospective model, with shaded squares 
indicating a component’s inclusion. Darker shading shows a higher adjusted R2 value, 
labelled on the vertical axis. 

Under the stepwise regression models, similar catchment descriptors were obtained 
when trying to fit a model to explaining L-CV across all record periods. The best in 
terms of maximising the adjusted R2 value for each of the choices of record length were 
FARL, URBEXT2000, log(AREA), log(SAAR) and normalised-TSE. This matches up 
fairly well with the catchment descriptors in SDM08, which highlighted FPEXT rather 
than URBEXT2000. This may be down to the fact that the original development restricted 
itself to only considering rural catchments, where there is limited variation in URBEXT-

2000. Although TSE was forced to be included in the model by user choice, it produced 
model coefficients that were not significantly different from zero (at the 10% 
significance level). When the inclusion of TSE was not enforced, it was never selected 
for the L-CV model. It would be worth seeing if trend would be included in a covariate if 
the fitting target (instead of L-CV or L-SKEW) had non-stationarity incorporated in 
some way. 

Including TSE did not seem to reduce the success of the linear models used to 
describe L-moment ratios. Table C-3 shows the fitting statistics for the final models 
chosen for each record period. At best, the L-CV model achieved an adjusted-R2 value 
of 0.39, which is similar to the value reported in Kjeldsen, Jones, and Bayliss (2008). 
For comparison, the 2008 model was also fitted to L-CV and reported in Table C-3, 
showing slightly poorer statistics of fit on the present data set (adjusted-R2 values of 
0.33-0.35). 



 

  

When trying to fit a model explaining the variance in L-SKEW, it was noted that even 
the best performing model showed an adjusted R2-value of less than 5% and so it was 
expected that these models would not provide suitable SDM components. This fits with 
Kjeldsen and others (2008) who found that the model explained 8% of the observed 
variation. However, the model selected was fairly consistent, identifying FARL, 
BFIHOST, SPRHOST and FPEXT as the best catchment descriptors. 

 

Table C-2 Summary of components in different SDM models 

 

L-CV L-SKEW SDM08 

 FARL 

 URBEXT2000 

 log(AREA) 

 log(SAAR) 

 Normalised TSE 

 FARL 

 BFIHOST 

 SPRHOST 

 FPEXT 

 Normalised TSE 

 log(AREA) 

 log(SAAR) 

 FARL 

 FPEXT 

 

Table C-3 Fitting statistics for final models chosen for SDM calibration 

 

Model  Model 
components 

Record 
period 

R2 RMSE significance 
of TSE (p-
value) 

  

SDMLCV FARL, 
URBEXT2000, 
log(AREA), 
log(SAAR), TSE 

77-16 0.37 0.055 0.353  

SDMLSKEW DPLBAR, 
BFIHOST, 
DPSBAR, 
SPRHOST,TSE 

77-16 0.040 0.068 0.975  

SDM08 

(to describe 
L-CV) 

Log(AREA), 
log(SAAR), FARL, 
FPEXT 

77-16 0.33 0.056 NA  
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Figure C-2 Subset diagram showing performance of different L-CV regression 
models under stepwise regression. Shows the top 2 models of each model from 

2 to 5 terms, excluding Intercept 

 

 

Figure C-3 Subset diagram showing performance of different L-SKEW regression 
models under stepwise regression. Shows the top 2 models of each model 

length from 2 to 5 terms, excluding Intercept 

 



 

  

Calibration of similarity metrics 

Each of the models in Table C-3 was calibrated by selecting coefficient values using 
the simultaneous coefficient optimisation mentioned earlier. This included the SDM08 
model, since the new coefficient selection method and the new data set may lead to 
different results. Pooling group members were weighted (weights ℎ𝑖, equation (5)) as in 
(Kjeldsen, Jones, and Bayliss 2008), using weights based on record length. Final 
estimates for the growth curves were also computed using weighted averages for L-CV 
and L-SKEW as in Kjeldsen, Jones, and Bayliss (2008), based on similarity of L-
moments within each pooling-group. 

Table C-4 Pooled uncertainty values for different models using the long record 
period 

 

Model PUM (T=20) PUM (T=50) PUM (T=100) 

L-CV 0.224 0.370 0.540 

L-SKEW 0.233 0.384 0.544 

SDM08 0.207 0.346 0.503 

 

Table C-4 highlights that the recalibrated SDM08 model still outperforms both the L-CV 
and L-SKEW models in terms of pooled uncertainty. For longer return periods, pooled 
uncertainty increases in all cases. All 3 models give very similar results under the 
different record periods, so results from other record periods are not presented here. 
Equations (7) to (9) show the calibrated similarity metrics based on the 20-year PUM 
calibration, using the long record period (1957 to 2016). AREA and FARL are weighted 
strongly where they appear (as for SDM08), but TSE is also weighted similarly strongly 
for the L-CV model. The recalibrated version of SDM08 shows that the difference in the 
method of optimisation does not have a significant effect on the final results; compare 
to equation (6). 

Since the L-CV model performs similarly to the L-SKEW model in terms of pooled 
uncertainty, one could argue that they both perform well in determining pooling groups. 
However, the poor performance in selecting the L-SKEW model suggests that the 
similarity metric generated from this model may not work as well in practice, as the L-
SKEW linear model is almost no better at prediction than a constant value. Additionally, 
the increased measurement uncertainty inherent in estimated values like BFIHOST and 
SPRHOST means that including these terms may not be appropriate in regions where 
baseflow and soil data are poor. 

𝑆𝐷𝑀𝐿𝐶𝑉(𝑖, 𝑗)

=

√
  
  
  
  
  

0.592(
𝐹𝐴𝑅𝐿𝑖 − 𝐹𝐴𝑅𝐿𝑗

0.044
)
2

+ 0.882(
𝑈𝑅𝐵𝐸𝑋𝑇𝑖 − 𝑈𝑅𝐵𝐸𝑋𝑇𝑗

0.086
)
2

+ 2.230(
ln(𝐴𝑅𝐸𝐴)𝑖 − ln(𝐴𝑅𝐸𝐴)𝑗

1.29
)

2

+

1.194(
ln(𝑆𝐴𝐴𝑅)𝑖 − ln(𝑆𝐴𝐴𝑅)𝑗

0.367
)

2

+ 0.035(
𝑇𝑆𝐸𝑛𝑜𝑟𝑚,𝑖 − 𝑇𝑆𝐸𝑛𝑜𝑟𝑚,𝑗

0.0063
)
2

 

(7) 
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𝑆𝐷𝑀𝐿𝑆𝐾𝐸𝑊(𝑖, 𝑗)

= √
0.990(

𝐷𝑃𝐿𝐵𝐴𝑅𝑖 − 𝐷𝑃𝐿𝐵𝐴𝑅𝑗

0.217
)
2

+ 1.03 (
𝐵𝐹𝐼𝐻𝑂𝑆𝑇𝑖 − 𝐵𝐹𝐼𝐻𝑂𝑆𝑇𝑗

0.164
)
2

+ 1.02 (
𝐷𝑃𝑆𝐵𝐴𝑅𝑖 − 𝐷𝑃𝑆𝐵𝐴𝑅𝑗

0.053
)
2

+

0.990 (
𝑆𝑃𝑅𝐻𝑂𝑆𝑇𝑖 − 𝑆𝑃𝑅𝐻𝑂𝑆𝑇𝑗

0.110
)
2

+ 0.962(
𝑇𝑆𝐸𝑛𝑜𝑟𝑚,𝑖 − 𝑇𝑆𝐸𝑛𝑜𝑟𝑚,𝑗

0.0063
)
2  

(8) 

 

𝑆𝐷𝑀08(𝑖, 𝑗)

=

√
  
  
  
  
 

2.94(
ln𝐴𝑅𝐸𝐴𝑖 − ln𝐴𝑅𝐸𝐴𝑗

1.29
)

2

+ 0.46(
ln 𝑆𝐴𝐴𝑅𝑖 − ln 𝑆𝐴𝐴𝑅𝑗

0.367
)

2

+ 0.11 (
𝐹𝐴𝑅𝐿𝑖 − 𝐹𝐴𝑅𝐿𝑗

0.044
)
2

+

0.49 (
𝐹𝑃𝐸𝑋𝑇𝑖 − 𝐹𝑃𝐸𝑋𝑇𝑗

0.0017
)
2

 

(9) 

Variations in Theil-Sen estimators within pooling groups 

Here, the pooled average Theil-Sen estimators are compared to the at-site versions, 
based on the pooling groups derived from SDM08 and SDMLCV. In the interests of 
clarity, and based on the observations above, the L-SKEW-based similarity metric is 

not pursued further. The weightings of pooling group members (ℎ𝑖, equation (5)) are 
based on record length: 

 

ℎ𝑖 =
𝑛𝑖

1+
𝑛𝑖
16

       (10) 

where 𝑛𝑖 is the record length at site i, and TSE pooled estimates are calculated using 
these weights. This is based on discussion in Kjeldsen, Jones, and Bayliss (2008). 

In Figure C-4 and Figure C-5 it can be seen that the results are fairly similar between 
the 2 similarity metrics SDMLCV and SDM08. As expected, the pooled estimates of 
normalised TSE are much smaller than the large at-site estimates, as the significant 
trends are many fewer in number than the non-significant trends. Additionally, in 
general one sees less intragroup variance in TSE and less difference between at-site 
and pooled TSE estimates when using SDMLCV. There is more intragroup variation in 
the north-west, and more difference between the at-site and pooled estimates of trend 
in this area. The effect is less pronounced as one moves south and east. Additionally, it 
can be seen that many of the pooled estimates gave positive trend for both SDM08 and 
SDMLCV. Note that most of these pooled TSE estimates are not significant trends over 
the 1977 to 2016 period. Due to the lack of significant negatively trending stations, 
pooling groups typically consist of near-zero trend station, leading to near-zero pooled 
estimates of trend across the region. 

The more geographically consistent patterns in variance and accuracy when using the 
L-CV similarity metric match up with some opinions that positive trend is more likely to 
be observed in the north-west. 

See additional note 1 for a brief investigation into the prospect of a catchment 
descriptor SDM to make pooling groups with matching TSE, making use of Easting and 
Northing. 

 



 

  

 

 

Figure C-4 a) At-site normalised TSE, (b) Pooled normalised TSE using SDM08, 
(c) Pooled normalised TSE using new SDMLCV, (d) Pooled normalised TSE using 

TSE distance metric (see additional note 1)  

 

(a) (b) 

(c) (d) 
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Figure C-5 Within-pooling-group variance of Theil-Sen estimators using (left) 
SDMLCV and (right) SDM08 metrics, based on 1977 to 2016 data 

 

Example pooling group 

To demonstrate the proposed similarity metric as calibrated on the L-CV model 
(SDMLCV), it is applied to a specific station. The pooled parameter estimates and T-year 
event estimates are reported for the different methods. This includes the FEH at-site 
estimate, and both the SDMLCV and SDM08 including the target site, and excluding it 
(treating it as ungauged). 

Here, it is applied to NRFA station 76005, Eden at Temple Sowerby. The single-site 
estimates are based on the 1977 to 2016 period, and use SDM08 to determine the 
pooling group. The results are summarised in Table C-5. In all cases, the growth curve 
location parameter 𝜉 is given, rather than QMED, for comparability. 

For this specific example, compared to the single-site, the parameter estimates when 
the target site is gauged are fairly close under both choices of SDM. For both choices 
of similarity metric, the ungauged estimates are slightly worse, as expected, particularly 
for the scale parameter. The SDMLCV, however, seems to offer closer estimates to the 
at-site analysis. Note this is only one example, other locations show much worse 
estimates for both SDMs when considering the site as ungauged. 

The Gini coefficient reported in Table C-5 describes the homogeneity of the pooling 
group: how similar the pooling group members are to each other based on the value of 
L-CV. (0 is perfect homogeneity, 1 is total heterogeneity). It can be seen that ungauged 
pooling groups are typically less homogeneous than the gauged pooling groups. This 
can be thought of as pooling group members being similar to the target, but not 

(c) 
(d) 



 

  

necessarily each other. Between choices of SDM, the Gini coefficient is fairly similar, 
but is smaller for the SDMLCV. 

Table C-6 and Table C-7 show a comparison of the constituent catchment descriptors 
in the pooling groups formed under the 2 methods (including the target site). A large 
overlap is clearly visible, although difference, particularly in ordering in terms of SDM 
(decreasing SDM from top to bottom) is clear. Smaller, drier catchments appear to rank 
higher, possibly due to the emphasis on like trend in the SDM.  

 

Table C-5 Summary of parameters and significant growth curve estimates 
starting from 2000. 

 

Method ξ  α κ Q20 Q50 Q100 Gini of 
LCV 

Single site 1.006 0.212 -0.315 2.04 2.63 3.19 NA 

SDM08 

(gauged) 
1.011  0.210 -0.245 1.91 2.37 2.79 0.180 

SDM08 

(ungauged) 
1.008  0.215 -0.237 1.93 2.38 2.80 0.200 

SDMLCV 

(gauged) 
1.010 0.205 -0.257 1.91 2.38 2.81 0.147 

SDMLCV 

(ungauged) 
1.012 0.219 -0.259 1.98 2.48 2.95 0.148 

Concluding remarks on developing a new similarity distance metric 

This section investigated the scope for including trend as a catchment descriptor to 
inform pooling group formation, and its effects on pooled estimates of trend and long 
return period events. Overall, the work seems to suggest that although including trend 
provides a slightly more spatially consistent estimate of trend, the estimates for 
parameters and flood frequency curves are not improved. This lack of conclusive 
evidence towards using a new similarity metric suggests that, for the time being, the 
currently published SDM08 is still recommended for generating pooling groups, even in 
the presence of trend. This should be compared to other literature on trend. O’Brien 
and Burn (2014) conclude that, “The results indicate that there is less uncertainty in 
quantile estimates found through the application of the trend centred pooling approach 
when compared to a regional stationary analysis of the same regions.” 

It does, however, show the potential for improvement. This could be further extended to 
include making use of non-stationary return periods and using different weighting 
methods. Additionally, it would be useful to use some sort of spatial model to estimate 
trends at an ungauged location, and reanalyse the pooled data.    

Using peaks-over-threshold data in computing at-site trends may also be worth 
investigating, as previously lost ‘second-biggest’ floods may provide valuable extra 
data into quantifying trend. 
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Table C-6 Pooling-group for 33034 from SDMLCV 

 

Station AREA BFIHOST FARL FPEXT SAAR SPRHOST URBEXT2000 PROPWET TSE TSEnorm 

22001 578.25 0.393 0.993 0.0403 850 42.53 0.002 0.44 1.039 0.006 

27029 340.75 0.455 0.931 0.0256 1257 38.53 0.0477 0.57 1.364 0.010 

27043 430.01 0.366 0.975 0.0351 1385 46.68 0.0036 0.62 0.306 0.001 

43008 448.17 0.937 0.976 0.0518 830 6.92 0.0102 0.35 -0.243 -0.002 

45001 608.16 0.526 0.985 0.0314 1249 36 0.0061 0.46 -0.150 -0.0008 

53008 305.17 0.622 0.988 0.093 804 27.97 0.009 0.34 0.162 0.004 

56001 913.25 0.597 0.98 0.0445 1367 28.86 0.0064 0.56 0.594 0.002 

71011 203.18 0.382 0.998 0.0987 1446 46.04 0.0071 0.61 0.090 0.0007 

76005 618.21 0.474 0.998 0.06 1142 37 0.0039 0.66 1.727 0.006 

76017 1371.7 0.509 0.955 0.0615 1273 36.89 0.0049 0.65 3.297 0.007 

 

Table C-7 Pooling-group for 33034 from SDM08 

 

Station AREA BFIHOST FARL FPEXT SAAR SPRHOST URBEXT2000 PROPWET TSE TSEnorm 

27007 912.58 0.42 0.981 0.0674 1120 43.66 0.0078 0.41 2.685 0.010 

27028 687.01 0.408 0.968 0.0586 1048 38.51 0.1051 0.49 0.231 0.002 

27034 510.94 0.386 0.99 0.0452 1337 46.93 0.0043 0.63 1.544 0.006 

43008 448.17 0.937 0.976 0.0518 830 6.92 0.0102 0.35 -0.243 -0.002 

50002 664.26 0.425 0.996 0.0496 1184 40.52 0.0036 0.49 1.367 0.005 

54005 2026.77 0.47 0.977 0.0919 1147 38.49 0.0042 0.5 1.338 0.004 

54008 1124.62 0.612 0.994 0.0635 841 28.53 0.006 0.36 0.477 0.003 

56001 913.25 0.597 0.98 0.0445 1367 28.86 0.0064 0.56 0.594 0.001 

76005 618.21 0.474 0.998 0.06 1142 37 0.0039 0.66 1.727 0.006 

  

C.3 Non-stationary pooling methods 

This section looks into the most appropriate method of using pooling groups within the 
UK to improve estimates of flood frequency in the presence of potential non-stationarity 
in flow regimes. 

To do this, a set of different approaches to applying a non-stationary index flood 
method to pooling groups were investigated (using the SDMLCV as it includes at-site 
trend as a pooling covariate). The methods which were compared are: 

1. (ALLSTA) Using a stationary index flood and stationary growth curve. 

 This is the existing stationary method that is compared against. 

2. (NSTGC) Using a stationary index flood and non-stationary growth curve.  

 This assumes trends are regional in nature, and so the description of at-

site index floods can be kept simple. 

3. (NSTIF) Using a non-stationary index flood and stationary growth curve.  

 This makes the assumption that trends are site-specific and only 

observed in median behaviour. Therefore, once this at-site trend is 

accounted for, the dimensionless growth curve is regionally consistent 

and stationary. 



 

  

4. (ALLNST) Using a non-stationary index flood and non-stationary growth curve.  

 This is the most generalised form of including non-stationarity; all the 

above are special cases of this one. It allows for regional patterns in trend, 

along with at-site variability of this trend. 

Figure C-6 provides a graphical summary. 

These 4 methods are compared using the 381 stations appropriate for flood frequency 
estimation. The focus is on the ‘short fixed period’ of 1977 to 2016. Only stations with 
fewer than 2 missing values are included. 

 

A simulation study using artificially constructed pooling groups of theoretical stations 
has also been carried out to test the methods, to allow the assumption that the ‘true’ 
values of normalised annual maximum series are known. The different pooling 
methods are used to estimate the at-site GLO parameters, under simulated trend and 
stationarity. 

Literature review 

FEH pooling method 

The FEH pooling group method, as previously mentioned, was developed by the 
Institute of Hydrology (1999), and updated by Kjeldsen, Jones, and Bayliss (2008). It 
uses a stationary index flood and stationary growth curve, and provides stationary 
estimates for T-year events. Pooled estimates of parameters are based on pooled 
estimates of L-moment ratios, specifically L-CV and L-SKEW (Hosking and Wallis 
1997), weighting L-moment ratios according to station record lengths and intragroup 
similarity of L-CV and L-SKEW.  

This stationary index flood method has been used globally with different distributions, 
such as the generalised extreme value (GEV) distribution and the Gumbel distribution. 
The pooling group selection is also frequently referred to in the literature as a ‘region of 
influence’ approach. This is an alternative to fixed geographical regions within which 
growth curves are assumed to be consistent, as in the FSR (1975). 

Non-stationary index floods 

Several works in academic literature describe regional flood frequency by adopting a 
non-stationary index flood and a stationary growth curve, typically by including a trend 
in the location parameter in the distribution used to fit the at-site data, 𝜉(𝑡) =  𝜉0 + 𝜉1𝑡, 
and applying this to a preformed region or group of stations. 

Cunderlik and Burn (2003) apply a non-stationary index flood to a group of stations in 
South British Columbia by fitting a linear trend in the mean and variance and obtaining 
a pooled shape parameter from the detrended data, finding that neglecting the slight 
negative trend in mean could lead to overestimation of the 200-year design value by up 
to 13% by 2020. This was only performed on a single region, however. O’Brien and 
Burn (2014) analysed 4 regions in Canada, split by regional trend. Linear trends were 
fitted to the location parameter for generalised normal and GEV distributions. Including 
trends in scale and shape led to less well fitting models in terms of AIC (a goodness of 
fit statistic based in information theory, (Akaike 1974)). It is also noted that having 
pooling group members with at-site parameter estimates with mixed scale trends (that 
is, some positive, some negative) may lead to an incorrect estimate of trend at-site. 
Both studies were only involving sites with previously identified significant trends in 
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AMAX behaviour, and how effective it is to apply trends to an entire country, for 
example, is unknown. 

Non-stationary growth curves 

As an alternative to having a non-stationary index flood, one could consider trends to 
be regional in nature, with non-stationary growth curves scaled by at-site index floods. 
Similar to the present work, Nam and others (2015) trialled putting a trend in the GEV 
location parameter of the index-flood, the growth curve, and both in a basic simulation 
study using Monte Carlo simulation. This suggested that, as record length increased, 
including non-stationarity in the fitted model reduced model error in RMSE. 

Including trend in the index flood and growth curve is a fourth option (Nam and others, 
2015). As mentioned above, the rationale behind this is more complex, but allows for 
large-scale regional trends, with at-site adjustment. Cunderlik and Ouarda (2006) 
investigate a flood-duration-frequency model which incorporated non-stationarity in 
index-floods and growth curves, making use of Theil-Sen estimates for a single 
homogeneous region in Québec over a 30-year period. Significant trends in mean and 
variance were observed, leading to smaller T-year event magnitudes for the 5-day 
duration events. When assuming a stationary ‘truth’, leaving out 10 years of data 
(leaving estimates based on a 20-year period) gave an overestimate with bias, and 
RMSE of up to 5%. If one assumes the non-stationary data to be more ‘true’, then the 
stationary estimate based on 20 years of data overestimates with bias of up to 29%.  

Hanel, Buishand, and Ferro (2009) make use of seasonal global temperature, rather 
than linear time, to fit trends to. Applying trend to the at-site location parameter and the 
regional dispersion parameter (ratio of location and scale), 5 regions in the Rhine basin 
were fitted with non-stationary flood frequency curves for winter and summer AMAX 
series. Spatial pooling reduced the uncertainty in all the parameters across all the 
regions by at least 30%. However, with no ‘true’ value to compare to, as with most of 
the other studies, the accuracy cannot be well assessed. In practice, fitting large scale 
trends first across pooling groups is challenging, and has to happen before the index 
flood is computed. 

Methods 

Comparing non-stationary pooling methods against the FEH method 

The pooling methodology has a number of choices. This includes SDM, the weighting 
function for pooling group members, and the choices of stationary and non-stationary 
index floods and growth curves. In this study, the weight function will be restricted to 
weights scaling with record length (equation (10)), based on scaling methods outlined 
in Kjeldsen, Jones, and Bayliss (2008). The pooling metric used was SDMLCV, due to its 
inclusion of TSE, based on the literature strongly suggesting that like-trended 
catchments are key when computing regional flood frequency estimates with non-
stationary models (O’Brien and Burn 2014) 

For each of the 4 methods above and summarised in Figure C-6 (ALLSTA, NSTIF, 
NSTGC, ALLNST), an index flood will be generated, and a pooling group will be 
generated using the ‘normalised’ data (AMAX divided by the index flood).  

To obtain the non-stationary index flood, a time-varying location parameter (for GLO) is 
used, 𝜉(𝑡) = 𝜉0 + 𝜉1𝑡. These parameters are estimated using normalised TSE for 

𝜉1 and maximum likelihood estimation methods (MLE) for the other parameters, as L-
moments are not currently applicable under non-stationarity; see (Jones 2013) for a 
discussion of attempting to define non-stationary L-moments. For consistency, MLE 



 

  

methods are also used for estimating the stationary index flood, rather than using the 
median (QMED) or the first L-moment. In this case, the stationary index flood is equal 
to the fitted at-site GLO location parameter (ξ). 

For the stationary pooled growth curve, the normalised (and detrended in the case of 
NSTIF) at-site values are fitted to a GLO distribution using MLE methods. In this case, 
detrending refers to the fact that the flow is divided by (𝜉0 + 𝜉1𝑡), theoretically 
removing the trend if such a trend is linear in the original time series. Regional 
estimates for the growth curve are determined by taking averages of the at-site 
parameters weighted by a function of record length (equation (10)). This is a diversion 
from the FEH method where the L-moment ratios are averaged. Since there is no 
obvious analogue for these ratios in the non-stationary setting, and due to the use of 
maximum likelihood estimators rather than L-moment estimators, averaging 
parameters is a common approach in much of the literature. For consistency, all pooled 
averages are computed this way in this section. 

To obtain a non-stationary growth curve, trends in the location and scale parameters 
are considered using a linear form for the location, and an exponential form, 𝛼(𝑡) =
exp(𝛼0 + 𝛼1𝑡) for the scale parameter. Growth curves are estimated using the annual 
maximum series normalised by the location parameter, be that stationary or non-
stationary. So, this means that in the non-stationary case, the AMAX flow for each year 
is normalised by the location parameter for that year Throughout this work, the shape 
parameter 𝜅 is assumed constant in time both at-site and regionally. An alternative 
where the scale parameter is also stationary at-site and regionally is also considered. 

For each choice of index flood and growth curve, pooled-estimate flood frequency 
curves are compared to at-site estimates (computed for the reference year 2000). The 
pooled estimates under the current FEH statistical methodology framework are also 
documented, to verify that the stationary index flood and growth curves coincide with 
currently accepted methods. Pooling groups in this section consist only of those 
stations that were both determined suitable for flood frequency analysis in this study 
and suitable for pooling by the NRFA. Therefore, they may not match pooling groups 
as generated in practice by, for example, WINFAP 4.
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Figure C-6 Step-by-step for the 4 methods. White highlights indicate steps involving non-stationarity 

 



 

  

Simulation study 

As mentioned above, it is not possible to compare the methods to a known ‘true’ value when 
applying them to real data, as the ‘true’ values are not known. To allow a fairer comparison, 
the methods presented now are compared to each other when they are applied to an 
artificial data set. To generate this artificial data set with known trends in the location and 
scale parameters, a set of simulated pooling groups was generated, and for each pooling-
group, the at-site flood frequency curve was compared to the pooled average. 

In order to make this simulation worthwhile and appropriate, each simulated pooling group 
was given a dependence structure which reflects real-world dependence between AMAX 
series at gauging stations. A simple approach would be to treat the AMAX series for all the 
stations to be totally independent, but this would be unrealistic as, for example, if a very 
large storm hits in a particular year, all the stations in that region may record a very high 
AMAX value for that year. Similarly, if one catchment is nested in another, one might expect 
both catchments to have similar AMAX series, unless the scale of the catchments is very 
different. 

To achieve this, an empirical copula is used. Copulas are commonly used to describe the 
relationship between random variables. Under some simple conditions on the functions, 
every multivariate cumulative distribution function can be decomposed into a copula and a 
set of marginal univariate distributions (Moore and Spruill 1975). In the case of this project, 
the team looked at the rankings of the events in each pooling group member’s AMAX series. 
From these, it determined an empirical copula that describes how similar and dissimilar the 
rankings of the pooling group members are; see Box 1 for details. 

The empirical dependence structure copulas were determined from 3 good-quality stations 
and their pooling groups in different areas of England: north-west England, south-east 
England and south-west England. Once the copula was estimated, each station within a 
pooling group was simulated with a 100-year record. 

Since only the target site needs to have an index flood, the simulation method only needs to 
estimate the ‘normalised flow’; the flow following scaling by the at-site index flood. Under the 
index flood method, growth curves are assumed to be regional in nature, so all stations in 
the pooling group were treated as identically distributed after normalisation. This study used 
‘true’ parameters which are the same for each pooling group. Three alternatives were 
simulated: 

 stationary simulation: all growth curves have 𝜉 = 1, 𝛼 = 0.25, 𝜅 = −0.3 

 positive trend: all growth curves have 𝜉(𝑡) = 1 + 0.03𝑡, 
𝛼(𝑡) = exp(−1.38 + 0.01𝑡), 𝜅 = −0.3 

 negative trend: all growth curves have 𝜉(𝑡) = 1 − 0.007𝑡, 
𝛼(𝑡) = exp(−1.38 − 0.01𝑡) , 𝜅 = −0.3. 

The simulation tested the following cases, summarised in Table C-8. Pooling groups were 
simulated under stationary conditions; with a positive trend and with a negative trend. Then 
estimates were made under stationary and non-stationary assumptions. This gives 6 cases, 
where stations were correctly or incorrectly classified as having trend. 

Plots are shown for the parameter estimates in each case, along with uncertainty estimates 
(5% and 95% quantiles) and boxplots. 
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Box 1: Details of empirical copula algorithm 

 

Table C-8 Simulation methods and estimation approaches. Parameters are (location, 
scale, shape) in order. t is number of years since simulation year zero 

  Simulated ‘true’ behaviour with parameters 

  Stationary 

(1,0.25,-0.3) 

Positive trend 

(1+0.03t, 𝑒−1.38+0.01𝑡, 
 -0.3) 

Negative trend 

(1-0.007t, 𝑒−1.38−0.01𝑡, 
 -0.3) 
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Stationary 

 

Correct Misclassified Misclassified 

Non-stationary 

 

Misclassified Correct Correct 

 

  

Algorithm for simulation of catchment normalised AMAX values 

1. For each timestep with complete observations for the pooling group, 
calculate the ranks of the scaled observations Ri(t). 

2. For each timestep s to be simulated, draw one uniformly at random 
from the observed timesteps, and note the ranks associated to that 
time Ri(s). 

3. Draw N values U1,…, UN from a Unif[0,1] distribution, where N is the 
number of pooling group members. 

4. Order the Un by size, and assign them to the station with the 
corresponding rank. 

5. Using the simulation distribution for the normalised AMAX values, 
compute Qi(s) = Q(F=Ui, s). 

6. Repeat for each timestep. 

7. Estimate the GLO distribution parameters θi(s) for each site, based on 
the simulated Qi(s). 

8. Using a record-length based weighting, determine the pooled estimate 
for the GLO parameters θ*(s) at the target site. 



 

  

Results 

Comparison of non-stationary pooling methods against the FEH method 

For all the stations determined for this study to be suitable for flood frequency estimation 
(381 stations) the index floods and at-site growth curve estimates were computed for each of 
the 4 methods outlined at the start of section C.3.  

Figure C-7(a) shows the difference between the at-site estimates for a 20-year return period 
under stationary and non-stationary assumptions (trend in the location parameter). For this 
short return period, little difference can be seen between the stationary and non-stationary 
at-site estimates at most locations. This seems reasonable, as even for the most extreme 
trends, the amount of change in flood regime in 20 years is quite small. To put this in 
perspective, most stations have a trend parameter 𝜉1 of less than 0.01, so one might expect 
a change in the median flood of 1 m3/s per 100 years based on this. There are a handful of 
stations with big differences, both positive and negative. Typically, the stationary estimate is, 
in some sense, an average of the non-stationary estimates (assuming a linear trend). For 
longer return periods, the patterns are magnified, but are ultimately similar. Places where 
positive trend has been observed tend to show an increase in at-site estimate when 
including non-stationarity; likewise, negative trends occur in the same places as decreased 
estimates. 

 

 

Figure C-7 (a) Comparison between at-site Q20 under stationary and non-stationary 
calculations. Positive percentage indicates larger estimates from the non-stationary 

fitting. (b) Comparison between at-site and stationary pooled estimates. Positive 
values indicate pooled estimates are larger. Please note the different scales in (a) and 

(b) for readability 

  

(a) (b) 
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Once the pooled estimates are included in Figure C-7(b), one sees a big difference between 
at-site and stationary pooled estimates of Q20 (ALLSTA). The other pooling methods perform 
relatively similarly to ALLSTA. For NSTGC, 2 versions are presented in Figure C-8: one 
including a trend in scale and growth curve location (a), and one including a trend in growth 
curve location only (b). Here, the combined location-scale trends create a greater amount of 
difference (up to 20%, usually increasing Q20) than the location trend alone, which matches 
very well with ALLSTA. Including a trend in scale is not pursued further, and is advised 
against at this time, due to the much greater uncertainty involved in estimating such a trend 
in scale. 

Using a non-stationary index-flood alone (NSTIF, Figure C-8(c)) gives more variable results 
compared to NSTGC (Figure C-8(b)). Here, there are a lot of smaller estimates, but nearly 
all are within 15% of the stationary pooled estimate. ALLNST (Figure C-8(d)) only used a 
trend in the location parameter for index flood and growth curve, and quite neatly combined 
the differences of NSTGC and NSTIF, leading to more estimates smaller than those under 
ALLSTA. 

This may be due to inconsistencies in the trends present at the sites within the pooling 
group. However, there may be ‘double-fitting’ of trends in the location parameter, once at the 
index flood stage, once at the pooling stage. If this is the case, the uncertainty in the trend 
estimated in the first stage is compounded by the uncertainty in the second. It may be the 
case that the ‘true’ curve is much less extreme. Note that in all cases the members of each 
pooling group are the same, only the parameter estimates change. 

In all methods, the fitted trends in the location and scale parameters were quite sensitive to 
the record period chosen. Due to the short length of records, there was also high uncertainty 
in the parameter estimates. 

Example station 

In this section, the focus returns to the example station on the Eden at Temple Sowerby 
(76005). Figure C-9 shows the flood frequency curves for the years 1970, 2000 and 2020 
under the 4 methods, alongside the at-site estimate. Only key return periods were calculated 
(10, 20, 30, 50, 75 and 100 years), but for the purpose of presentation, they have been 
unrealistically connected with straight lines. In reality, one cannot expect a true ‘GLO-like’ 
flood frequency curve due to the changing probabilities. 

Here, one can see that, for 2020 in particular, the non-stationary index flood has the biggest 
impact in future flood frequency estimates, with the growth curve actually reducing 
estimates. ALLSTA (stationary index flood and growth curve) is also, as expected, the 
closest to the at-site estimates in 1970, but not for the later estimates. The fact that methods 
NSTGC and ALLNST show more inconsistent growth curves may be partly due to the 
complexity in a) finding maximum likelihood estimates for the non-stationary parameters and 
b) in solving the return period equation (equation (2)). See Table C-9  for the parameters 
used to calculate the flood frequency curves. 

It is probable that within pooling groups, positive trends in scale were underestimated and 
negative trends overestimated; this is investigated in the following section. 



 

  

 

 

Figure C-8 Comparison of NSTGC, NSTIF and ALLNST against ALLSTA (the standard 
FEH method), showing percentage difference in pooled estimate of Q20: (a) non-

stationary growth curve with varying location only, (b) non-stationary growth curve 
with varying location and scale, (c) non-stationary index flood with varying location 

only, (d) non-stationary growth curve and non-stationary index flood with 
independently varying location 

  

(a) (b) 

(c) (d) 
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Figure C-9 Flood frequency curves for station 76005 on the Eden under different 
pooling methods as calculated for (a) 1977, (b) 2000 and (c) 2020. Trends are only 

included in location parameters, using the TSE 

 

  



 

  

 

Table C-9 Index flood and growth curve parameters under different methods 

 Pooled STA  
(𝝃, 𝜶, 𝜿) 

Pooled NST 
(𝝃(𝒕), 𝜶, 𝜿) 

STA  
Index flood 

NST 
Index flood 

1977 (1.01, 0.205, -0.255) (1.005, 0.206, -0.245) 295.5 263.3 

2000 (1.01, 0.205, -0.255) (0.980, 0.206, -0.245) 295.5 306.6 

2020 (1.01, 0.205, -0.255) (0.958, 0.206, -0.245) 295.5 344.3 

Simulation study 

Figure C-10 illustrates the effectiveness of correctly identifying whether a trend needs fitting 
in a pooling group; the box representing the inter-quartile range, and the points representing 
the 5%, 50% and 95% quantiles. These quantiles were calculated by using the same ‘true’ 
distribution and re-simulating pooling groups 100 times to generate confidence intervals. 

Each plot shows the estimates for one parameter (notice that one cannot estimate 𝜉1 or 𝛼1 
using stationary models). Each block of 3 bars shows the 3 dependency structures 
(simulated pooling groups) under identical conditions. From left to right, the bars correspond 
to the stationary model (bars 1 to 6), the positive trend simulations (bars 7 to 12) and the 
negative trend simulations (bars 13 to 18). Orange bars indicate the model was fitted with 
stationary parameters, purple with non-stationary parameters. 

All 3 dependency structures behave very similarly, as hoped. For all parameters, the 
stationary fitting is typically much tighter, giving smaller confidence intervals. In all cases, the 
stationary model was fairly accurately modelled when it was correctly specified. When the 
stationary model was incorrectly specified as non-stationary, one can see that 𝜉0 and 𝛼0 are 
fitted less successfully. This is due to the fact that the model is trying to fit these along with 
the slope, and so both are compromised.  

When the non-stationary models are fitted as stationary, a compromise seems to occur. The 
single location (or scale) parameter fits to the average of the whole data set, and so seems 
to fit only with the behaviour towards the middle of the record, since both location and scale 
are fitted with linear functions of time. If classed correctly, 𝜉0 and 𝛼0 should describe the 
behaviour of the time series at the start of the record, t=0. Consequently, this leads to 
overestimation of 𝜉0 and 𝛼0 for positive trends, and underestimation for negative trends. 

In all the simulations with trend (positive and negative) the scale parameter 𝛼0 is 

overestimated and the slope 𝛼1 is underestimated. This problem with the fitting method is 
likely present in the true data set as well, and so trends in that section should be treated with 
more caution. ‘Significant’ negative trends in scale may still be incorrect, if the 90% 
confidence points in Figure C-10 are representative of the larger observed data set. On the 
whole however, trends in location parameter were produced with much smaller confidence 
intervals, and showed fairly good agreement with the truth. 

For all the methods, there is much greater uncertainty in fitting the shape parameter 𝜅. This 
is a known issue in flood frequency analysis: for a fixed record length, the shape parameter 
will have a greater confidence interval than either the location or scale. Despite this, most of 
the methods had a 90% confidence interval containing the true value of 𝜅. The only 
exception was fitting a non-stationary distribution to the stationary simulation. 
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Finally, it should be noted that these are based on 100-year records. In the observed data 
set, most records are less than 60 years, and so the uncertainty and accuracy in practice will 
be worse. This should be accounted for when making use of such analyses. 

 

Figure C-10 Boxplots of parameter estimates from simulated data under different 
pooling approaches. Red lines indicate true parameter values 

  



 

  

Concluding remarks on non-stationary pooling 
methods 

Pooling groups can be valuable in improving the estimates at ungauged or poorly gauged 
locations. However, correctly assessing whether a trend is present across a pooling group 
can be challenging. Under current similarity metrics (SDM08), the stations in the pooling 
group are not guaranteed to exhibit the same trends. Indeed, most stations do not show 
significant trends at all.  

Under the 4 approaches, consisting of combinations of index-flood and growth curve 
choices, pooling seems to give moderately consistent results, possibly due to the lack of 
strong trend in many of the stations investigated. The difference between choosing a 
stationary or non-stationary index flood seems to be important, as can be seen in Figure 
C-7, where a strong difference in Q20 can be observed. 

When the ‘truth’ is known, much more can be said about the effectiveness of the pooling 
approaches and the ability of the maximum-likelihood methods used. When correctly 
specified, pooling methods can give good estimates of the true value of at-site parameters. 
However, when models are not correctly specified (assigning trend where there is none, or 
vice versa), this can lead to quite poor fitting of the parameters of interest (Figure C-10). To 
address this, it would be interesting to specifically force different models depending on the 
observed at-site trend, or the trend of the pooling group members, but that would be a more 
substantial project than the present one. 

One argument against the proposed method of investigation was described in (O’Brien and 
Burn 2014), where it was discussed that mixed messages regarding trends in the pooling 
group can be quite detrimental. It was also suggested that, where possible, restriction to like-
trended pooling groups would help, or only fitting stationary distributions where this trend 
may be uncertain. However, restricting this present study just to those stations with 
significant trends would have vastly reduced the sample space and led to potentially 
unrepresentative pooling groups due to the small number of stations to choose from. The 
SDMLCV developed above can improve the consistency of trend, but not ensure it. 

 

C.4 Conclusions 

This chapter summarises the findings and recommendations, and suggests future work that 
would be most beneficial. 

Alternative similarity distance metrics were investigated, based on using the normalised 
Theil-Sen estimator (TSE) as a pooling variable. These were based on fitting the pooling 
groups using stationary estimates of L-CV and L-SKEW. In terms of improving stationary 
flood frequency estimates, no method performed better than the existing method as 
developed in Kjeldsen, Jones, and Bayliss (2008).  

The Theil-Sen estimates of slope were slightly more accurately predicted when using a 
similarity metric which included trend as a component. This was not however, a statistically 
significant improvement and using TSE in the SDM components may be impractical, 
requiring observed flow of sufficient length. 

Methods of choosing stationary and non-stationary index floods and growth curves were 
investigated. When trialled on the observed data, mixed signals were observed, but it 
seemed as though trends in the scale parameter led to consistently larger estimates in, for 
example, the 20-year event. Just using trend in location, rather than both location and trend, 
gave more consistent results with less associated model uncertainty. 
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By using simulations with empirically derived correlation and covariance structures, it was 
observed that correctly modelling trend is important. Incorrectly assuming the presence or 
non-presence of significant trend at a site gave strongly different results. Scale parameters 
seemed to be most affected by this, but seemed to show poor fit in modelling trend over 
time, even when correctly specified. Trend in location parameter (median behaviour) 
seemed to be quite accurate for observed records of 100 years; in practice, this good 
performance should not be expected, due to shorter records, and less well quantified 
uncertainty in real records. 

Continued research is needed. Pooling groups making use of non-stationary index floods 
seem most promising, but a new distribution test under the influence of non-stationarity is an 
important step. The present work used the GLO as the recommended distribution, but it is 
not known whether there is a better distribution to choose when trend is observed. Moreover, 
the existing Hosking-Wallis method of distribution choice based on L-moments does not 
apply in the non-stationary case. Overall, this work recommends that the current SDM 
(SDM08) should still be used for forming pooling groups, but if regions or pooling groups are 
generated to account for trend, care should be taken to select stations with like trend 
(positive, negative or no trend). Non-stationarity in growth curves should be used with 
caution, due to problems in fitting these curves through maximum likelihood methods. For 
now, stationary growth curves and index floods are the recommended method, using all 
available data. However, if a given pooling group is of entirely like trend, then incorporating a 
trend into the growth curve is reasonable, and should be considered and compared to the 
stationary growth curve. It is not recommended to use this non-stationarity for future 
projection, as the validity of a linear trend into the future cannot be assured. At this point, 
more work must be done before solely using non-stationary index floods or growth curves 
can be recommended. Specifically, more informed trend functions, such as climate-model-
informed trend functions, should be investigated to improve the model for future prediction. 

A spatial model of trend, a catchment descriptor equation, or both, to describe the likely 
trend at ungauged locations would be invaluable. The present work can only provide 
estimates at gauged locations, although could be of benefit if the record for the target site is 
short. A more comprehensive spatial model could possibly make use of large scale 
meteorological trends in, for example, the North Atlantic Oscillation. 

The provided description of return period is complex and unintuitive. One alternative that is 
already used in many applications would be to use stationary return periods based on the 
moving parameters. These would give, for example, a ‘2020 level for a design life of 50 
years.’ This does not account for change over time, but is simpler to calculate, and easier to 
understand. It could however, be simply calculated for different horizons to see change over 
time. A design life level, as described in (Yan and others, 2017), could be a plausible 
alternative. 

  



 

  

Additional note: Linear catchment descriptor modelling 
of at-site TSE 

 

 

 

Figure C-11 Stepwise model selection diagram (left) and modelled pooled estimate of 
TSEnorm (right) 

 

Using the same methods to develop SDMs to have pooling groups with similar L-CV or L-
SKEW, a distance measure was developed to generate pooling groups with similar TSE (see  
Figure C-11 above). The stepwise regression method highlighted FPEXT, URBEXT2000 and 
PROPWET as possible factors to include, but Euclidean distance (EUCL) was also included, 
due to the spatial pattern seen in at-site TSE. 

This gave the following distance metric: 

𝑑𝑖𝑠𝑡𝑇𝑆𝐸(𝑖, 𝑗) = √
0.724(

𝐹𝑃𝐸𝑋𝑇𝑖 − 𝐹𝑃𝐸𝑋𝑇𝑗

0.041
)
2

+ 0.347(
𝑈𝑅𝐵𝐸𝑋𝑇2000,𝑖 − 𝑈𝑅𝐵𝐸𝑋𝑇2000,𝑗

0.086
)
2

+

1.106(
𝑃𝑅𝑂𝑃𝑊𝐸𝑇𝑖 − 𝑃𝑅𝑂𝑃𝑊𝐸𝑇𝑗

0.130
)
2

+ 0.823(
𝐸𝑈𝐶𝐿(𝑖, 𝑗)

115.8
)
2

 

 

 

The model for estimating TSEnorm had an adjusted R2 value of less than 10%, even weaker 
than the L-SKEW model. This leads to the conclusion that the model should not be used for 
any trend estimation at ungauged sites at present, and more work needs to be done. 

As can be seen in Figure C-11, the pooled estimates led to extremely strong spatial patterns, 
stronger than is to be reasonably expected. Also, as before, the pooling procedure led to 
much less strong values for TSE.  
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Appendix D:  Exploring spatial 
statistics 

Introduction 

This project has investigated spatial aspects of non-stationary flood frequency analysis in 2 
ways: 

 reconciliation of non-stationary flood frequency estimation and the FEH pooling 
approach, that is, regional frequency analysis 

 exploring fitting a spatial statistical model that weights information by distance 

The first has been investigated in much more depth, since it is considered important to build 
bridges between non-stationary analysis and the widely-used FEH method. This appendix 
records the trialling of a spatial statistical model, which shows promise, but is not proposed 
as something that is ready for incorporating into the interim guidance for practitioners.  

 

Spatial variation in extreme values 

When considering the distribution of extreme flows at multiple gauges, comparison of model 
parameters should reveal similarity between neighbouring gauges, implying that 
neighbouring gauges are exposed to similar physical processes. Fitting independent models 
between gauges relies on the data to reveal this similarity. However, with short record 
lengths often associated with annual maximum series, this signal can be hidden by sampling 
uncertainty.   

An alternative approach is to explicitly incorporate information from other sites into an 
extreme value analysis. This is typically done using 2 methods: 

 assuming statistical homogeneity over all sites within a region, that is, information is 
shared equally from all sites 

 defining a spatial structure that weights information by distance, that is, the 
probability of extreme flood events will be more similar at neighbouring gauges than 
for those separated by large distances 

This appendix explores some approaches for incorporating spatial information into extreme 
value models and outlining the merits and disadvantages of each. Extensions of these 
models for non-stationary processes and issues regarding parameter uncertainty are 
discussed. Finally, 3 models are proposed to explore and develop further and an example is 
presented to illustrate the benefits of spatial extreme value models. All discussion assumes 
the generalised extreme value (GEV) distribution is being used to model annual maximum 
flows. 

Regional frequency analysis 

One approach that incorporates spatial information into extreme value modelling is regional 
frequency analysis (RFA). This is the approach taken in the FEH pooling approach, in which 
the regions are defined using catchment similarity rather than proximity. 

RFA pools information across gauged catchments with homogeneous statistical behaviour, 
with the aim of reducing uncertainty in parameter estimates (Hosking and Wallis, 2005). 
Failure to account for spatial dependence between sites in a pooling group can lead to 



 

  

artificial and false reductions in uncertainty. As mentioned in Appendix C, simulations with 
realistic dependence structures have been used to overcome this difficulty. 

Bayesian hierarchical models 

More recently, Bayesian hierarchical models have been used as a way of incorporating 
spatial information into an extreme value analysis. Bayesian methods infer the probability 
distribution of the parameters of a statistical model, assuming that the data are fixed. This is 
in contrast to frequentist methods, which focus on finding fixed estimates of parameters that 
best describe the probability distribution of the data. Bayes' theorem states that the posterior 
probability distribution of a parameter is proportional to the product of a prior probability 
distribution and the likelihood. The prior distribution can be used to define the user's prior 
belief about the parameter that is independent of the data being analysed. This can be 
especially useful for incorporating expert domain knowledge about the process being 
studied. For complex models, inference is carried out using Markov Chain Monte Carlo 
(MCMC) methods, which consists of iterative sampling from the posterior distribution of 
interest. 

Hierarchical models are statistical models written on multiple levels that can be used to 
model grouped or nested data. Historically, these methods have been typically used for 
modelling spatial count and binary data (Diggle and others, 1998) before being extended for 
modelling extreme values at multiple locations. Fawcett and others (2006) proposed a 
hierarchical model for wind speeds with exchangeable spatial effects, that is, that all sites 
provide equally-weighted information regardless of distance. Cooley and others (2007), 
Sang and Gelfand (2009) and Cooley and Sain (2010) all assume a Gaussian process prior 
distribution for the model parameters, explicitly weighting information from other sites based 
on distance. Recent studies following this general approach include Wang and So (2016), 
Barlow and others (2018) and Sharkey and Winter (2019). 

These approaches tend to produce a smooth and spatially cohesive map of parameter 
estimates and return levels that are perhaps more representative of the underlying physical 
process. Incorporating spatial information helps to prevent neighbouring sites from having 
very different statistical models of extreme flow.  

Spatial models for non-stationarity 

The studies mentioned above are focused mainly on modelling spatial variation in extreme 
values, but recent studies have also looked at modelling temporal non-stationarity on 
regional scales. Eastoe (2019) assumes regional homogeneity in the inter-annual variability 
of the model parameters, which improves estimation of site-specific non-stationarity through 
spatial pooling. Prosdocimi and others (2019) model the test statistic of the regression 
coefficient of a log-normal distribution using a random effect for the hydrometric area 
corresponding to each gauge, which is assumed to be homogeneous nationally. This model 
allows for an overall UK trend, a regional trend for each hydrometric area and a random 
variation specific to each gauge. 

To be consistent with the scope of this project, which calls for an investigation of feasibility, 
the project team explored a GEV model where only the location parameter μ is time-

dependent, and where the parameter that expresses this time variance (μ1) has some sort of 
spatial structure. Three approaches to Bayesian spatial models are presented here that 
would be useful to explore further and possibly develop in the future, but only option 1 has 
been implemented as part of this project. Any of these models could be adapted to impose a 
spatial structure on other GEV parameters such as the scale. The 3 models considered 
were: 
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1. A gauge-specific GEV distribution with time covariate, whose parameter μ1 can be 
modelled as a normal distribution with shared variance across a pre-defined region 
such as a hydrometric area. All gauges are assumed to be statistically homogenous 
over the region. Given the parameters, the observations in a year over sites are 
assumed to be independent. 

2. A gauge-specific GEV distribution with time covariate, whose parameter μ1 can be 
modelled as a normal distribution with structure imposing that gauges that are 
spatially or hydrologically similar are more likely to have similar coefficients. Let Xs,t 
denote the annual maximum flow at gauge s in year t.  One then assumes: 

 

Where 𝑥𝑠 is the spatial location, or some measure of catchment similarity, for gauges. 
This approach is theoretically the same as kriging, except the spatial smoothing 
becomes part of the inference rather than a post-hoc step. 

3. A regional GEV random effects model with regression coefficient estimated for a pre-
defined region such as a hydrometric area. Let Xj,s,t denote the annual maximum flow 
at gauge s in hydrometric area j in year t.  One then assumes: 

 

This approach assumes a gauge-specific intercept term in the location parameter but 
a regional trend term. Spatial pooling of this type would help to increase the signal 
across a region. 

Results 

Option 1 has been implemented on a set of 12 gauges in north-west England. Modelling the 
parameter μ1 as following a normal distribution that is common across all gauges has the 
effect of pooling information from all gauges within the region and producing a spatially 
smooth set of trend estimates. This is shown in Figure D-1, where posterior means from the 
spatial model are compared with maximum likelihood estimates from analysis of the 
individual sites. μ1 varies between 0 and 1.2 when estimated separately at each gauge. 
When estimated via the Bayesian spatial process, μ1 varies over a smaller range, between 
0.2 and 0.6. The more extreme estimates are moderated.  



 

  

 

Figure D-1 Comparison of trend estimates in the location parameter of a GEV model: 
maximum likelihood estimates made separately at each gauge versus posterior 

means from the Bayesian spatial model 

 

 

This model appears to provide a promising way to boost the detection of non-stationarity by 
removing some of the ‘noise’.   

Uncertainty 

A logical next step would be to explore the effect of the spatial analysis on parameter 
uncertainty. A common misconception with spatial pooling approaches is the perceived 
reduction in uncertainty gained from extra information used in the analysis. This would be 
true if the method pooled over independent sources of information, but annual maximum 
river flows are likely to be spatially correlated (see the discussion of the simulation study 
carried out to evaluate the performance of the various non-stationary pooling methods 
discussed in Appendix C). An assumption of independence is required for Bayesian 
hierarchical models, but it means that resulting confidence widths are likely to be 
underestimated. There are 2 potential approaches for deriving correct confidence intervals: 

1. A spatial nonparametric bootstrap – first, the trend at each gauge is estimated and the 
residuals are calculated. These residuals are resampled and the trend added back in, before 
the model is refitted to the resampled data. Repeating this action multiple times builds up the 
sampling distribution of the trend parameter, from which confidence intervals can be 
extracted.  

2. A likelihood correction - Sharkey and Winter (2019) estimate a measure of spatial 
dependence in the data that is used to correct confidence intervals for the false assumption 
of independence over locations. This measure, referred to as a magnitude adjustment, 
scales the independence likelihood to match the asymptotic properties of the 'true' likelihood, 
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which is unknown. This results in a widening of confidence intervals and a more correct 
representation of parameter uncertainty. 

Further work on spatial statistics would involve implementing one of these methods to 
quantify uncertainty. However, considerable work would be needed to develop an approach 
that could be readily applied by practitioners, and it may be preferable to concentrate efforts 
on developing a non-stationary framework for the FEH pooling method. 

  



 

  

Appendix E:  Testing approaches to 
applying climate change 
adjustments 

E.1 Introduction 

This appendix considers existing guidance on making allowance for the effects of climate 
change on fluvial flood frequency estimates in the light of the current analysis of non-
stationarity in annual maximum peak flow (AMAX) data in England and Wales. 

The study of non-stationarity in flood peak data is complex, not least because of the impact 
of multiple and interacting factors such as land cover and land-use change, particularly 
urbanisation, hydraulic changes to river channels and the high degree of natural variability in 
the data. Francois and others (2019) discuss example catchments in the USA and the 
Netherlands where the influence of anthropogenic climate change and natural climate 
variability are difficult to disentangle. The influence of the latter is further confounded in the 
UK by so-called flood-rich and flood-poor periods. Prosdocimi and others (2015) used 
change in urban extent as well as a number of climate-based covariates to model changing 
flood regime over time in 2 catchments in England. Increasing urbanisation was shown to 
have a significant effect on high flows in one of the catchments, particularly in summer. 
Therefore, while anthropogenic climate change may be a major driver of non-stationarity in 
peak flow data, it is very important that global change impacts are attributed reliably and the 
risk of ‘climatisation’ is avoided by taking non-climatic factors into account (Wine and 
Davison 2019).  

 

Existing guidance on climate change allowances for 
England 

Agencies across the UK have been providing guidance on the potential impacts of climate 
change on floods for many years, so that these can be accounted for by flood management 
authorities and local planners aiming to reduce flood risk (Reynard and others, 2017). The 
most recent guidance adopts a regional risk-based approach (Environment Agency, 2016a, 
b), and is based on combining the UKCP09 climate projections (Murphy and others, 2009) 
with a sensitivity-based approach to modelling the impacts of climate change on peak flows 
(Kay and others, 2011; 2014). 

The guidance for flood management authorities (Environment Agency, 2016a and Table E-1) 
provides a set of 5 numbers (lower, central, higher central, upper and H++) for each of 11 
regions covering England (Figure E-1), for 3 future time slices (2020s, 2050s and 2080s). 
The ‘lower’, ‘central’ and ‘upper’ numbers represent the main range of estimated impacts of 
climate change on flood peaks from the UKCP09 projections. The H++ numbers represent 
plausible but unlikely high-end impacts of climate change. The guidance for flood risk 
assessments (Environment Agency, 2016b) is similar but without the ‘lower’ number, but the 
focus here is the guidance for flood management authorities. 

The guidance (Environment Agency, 2016a) recommends that the ‘central’ estimate of 
change should be used to define the risk over the decision lifetime, with the ‘upper’ and 
‘lower’ estimates provided to encourage consideration of the options required to manage the 
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fuller range of risk, for example, building flexibility into the plan to allow future adjustments if 
necessary (Reynard and others, 2017).   

 

 

 

 

 

Figure E-1 The 11 regions covering England used in developing climate changes 
allowances (CCAs) 

 

 

  



 

  

 

Table E-1 Regional guidance for England, for 3 time slices 

  2020s 2050s 2080s     2020s 2050s 2080s 

Solway       
 

Tweed       

H++ 25 45 95   H++ 20 35 75 

Upper (90th) 20 30 60   Upper (90th) 20 25 45 

Higher Central (70th) 15 25 30   Higher Central (70th) 15 20 25 

Central (50th) 10 20 25   Central (50th) 10 15 20 

Lower (10th) 5 10 10   Lower (10th) 0 5 5 

NW England       
 

Northumbria       

H++ 25 45 95 
 

H++ 20 35 65 

Upper (90th) 20 35 70 
 

Upper (90th) 20 30 50 

Higher Central (70th) 20 30 35 
 

Higher Central (70th) 15 20 25 

Central (50th) 15 25 30 
 

Central (50th) 10 15 20 

Lower (10th) 10 10 10 
 

Lower (10th) 5 5 10 

Dee       
 

Humber       

H++ 20 30 60 
 

H++ 20 35 65 

Upper (90th) 20 30 45 
 

Upper (90th) 20 30 50 

Higher Central (70th) 15 20 25 
 

Higher Central (70th) 15 20 30 

Central (50th) 10 15 20 
 

Central (50th) 10 15 20 

Lower (10th) 5 5 5 
 

Lower (10th) 5 5 10 

Severn       
 

Anglian       

H++ 25 45 90 
 

H++ 25 40 80 

Upper (90th) 25 40 70 
 

Upper (90th) 25 35 65 

Higher Central (70th) 15 25 35   Higher Central (70th) 15 20 35 

Central (50th) 10 20 25 
 

Central (50th) 10 15 25 

Lower (10th) 0 5 5 
 

Lower (10th) 0 0 5 

SW England       
 

Thames       

H++ 25 50 105 
 

H++ 25 40 80 

Upper (90th) 25 40 85 
 

Upper (90th) 25 35 70 

Higher Central (70th) 20 30 40 
 

Higher Central (70th) 15 25 35 

Central (50th) 10 20 30 
 

Central (50th) 10 15 25 

Lower (10th) 5 5 10 
 

Lower (10th) -5 0 5 

    
 

SE England       

    
 

H++ 30 60 120 

    
 

Upper (90th) 25 50 105 

    
 

Higher Central (70th) 15 30 45 

    
 

Central (50th) 10 20 35 

      Lower (10th) -5 0 5 
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Issues when applying the guidance 

Some of the issues that occur when applying climate change allowances for peak flows are 
listed below. Some of these issues are complex, and several are interrelated:  

 Climate change allowances are derived from climate projections from a 1961 to 1990 
baseline (typically using hydrological modelling for baseline period 1961 to 2001 (Kay 
and others, 2014)). 

 The impacts for the 2020s time slice are based on the potential climate change 
between the baseline period and the period 2010 to 2039, therefore prompting the 
question of whether some of the climate change has ‘already happened’. If so, is the 
application of the full allowance still valid? 

 Even if a clear trend is apparent in the AMAX data for a particular catchment, it could 
be for a range of reasons other than climate change, including natural climate 
variability. 

 The AMAX records for different catchments are very variable in length; some only 
have data for more recent years, while a small number of catchments have very long 
records. The Flood Estimation Handbook (FEH) statistical method for ungauged sites 
(Kjeldsen and others, 2008) pools the flood peak data from a network of 
hydrologically similar sites, and therefore the pooling group may contain data for 
different time periods with differing amounts of variability and trend. 

 Applying the full climate change allowances immediately can result in large increases 
for the earliest time slices. However, the Environment Agency guidance does 
suggest applying a linear increase in the allowance for the period up to 2025 (see 
Figure E-2).  

  

 

Figure E-2 Changes in river flows for the Northumbria river basin district and their 
application in assessments (from Environment Agency, 2016a) 

 



 

  

Current methods of applying allowances 

Current guidance on applying climate change allowances (CCAs) is somewhat open to 
interpretation. The allowances themselves were derived from climate projections from a 
1961 to 1990 baseline. This appendix discusses various ways in which CCAs are, or could 
be, applied. It compares how different extrapolations to 2025, 2050, and 2080 are affected 
on a regional scale, depending on which baseline is chosen and whether the baseline is 
assumed to be stationary. The above issues are also investigated via a set of case studies.  

 

E.2 Methods 

CCA applications 

CCAs and statistical extrapolation will be applied to 5 baselines: 

 full record stationary (STFULL): stationary flood frequency estimates are calculated 

based on the whole period of record, then CCAs are applied. This is the method to 

which the other 4 will be compared 

 61 to 90 stationary (ST6190): stationary flood frequency estimates calculated based 

on 1961 to 1990, then applying CCAs 

 61 to 90 non-stationary (NST6190): non-stationary flood frequency estimates 

calculated based on 1961 to 1990 

- flood frequency estimates are based on the fitted parameter values as 

evaluated in 1990. CCAs will be applied to the 1990 estimate 

 full record representative non-stationary (NSTREP): non-stationary flood frequency 

estimates calculated based on the whole period of record 

- flood frequency estimates are based on the fitted parameter values as 

estimated in 1990. CCAs will be applied to this 1990 estimate 

 full record non-stationary (NSTEXT): non-stationary flood frequency estimates 

calculated based on the whole period of record. Extrapolations are used instead of 

applying CCAs, and so may report quite different patterns in change 

- the extrapolations to 2025, 2050 and 2080 are calculated without CCAs, using 

values of the fitted parameters (baseline location, trend in location, scale, 

shape) evaluated at the 3 horizons to calculate Q50 

In all non-stationary cases, trend is introduced through a linear trend over time in the location 
parameter of the fitted distribution (generalised logistic distribution). For ST6190 and 
STFULL, GLO parameters are estimated using standard L-moment methods. For NSTEXT 
and NSTREP, the trend is computed using the Theil-Sen estimate based on the whole 
period of record. Non-stationary parameters are then estimated using maximum likelihood 
methods to generate (ξ(t), α, κ) using the Theil-Sen estimate of trend for the location 
parameter. Scale and shape parameters are left stationary for the period of record. For 
NSTEXT, ξ(2019) is used, and for NSTREP, ξ(1990) is used. For NSTEXT, a constant trend 
out to 2080 is assumed for the purposes of this report.  

For the purpose of example, only the 50-year and 100-year events are discussed here. In 
each case, Q50 (or Q100) is calculated for the 5 cases above for all of the 381 stations 
determined to be ‘suitable for non-stationary flood frequency analysis’; see Table 3 for a 
breakdown by region. Then the CCAs (central estimates) will be applied to obtain estimates 
for 2025, 2050 and 2080. For 1961 to 1990 baselines, estimates are given for values as in 
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1990. Preliminary work suggested that these results were generally invariant for this choice 
of year. 

To compare these approaches, ST6190, NST6190, NSTREP and NSTEXT (NSTEXT 
extrapolated to 2025, 2050 and 2080) will be compared to STFULL. See Figure E-3 for an 
illustrative example of these different values of Q50. Percentage differences between 
STFULL and the alternatives will be calculated. These percentage differences will be 
summarised regionally, taking the median over each of the river basin districts. 

NB: None of these methods is claimed to be ‘the truth’, only different possible ways of 
projecting future extremes. 

 

Figure E-3 Illustrative example of baseline periods and Q50 modified by CCAs using a 
station from the Environment Agency data set (Eamont at Udford). Bold green line 

indicates STFULL method, the most commonly used approach, to which everything 
else will be compared 

  



 

  

Case study selection 

A set of 3 catchments was selected from the data set constructed for the project (see details 
in Table E-2). 

The 3 catchments were chosen for their long records and on the basis of trends found by 
Faulkner and others (2019). The AMAX data for Little Ouse showed a negative trend, with 
only the scale parameter changing over time. The record at Kennal displayed a positive 
trend, with only the scale parameter changing over time, while the data for the Eden showed 
a positive trend, with only the location parameter changing over time. 

 

Table E-2 Details of case study catchments 

 

Station number Station name Years of record Region (Figure E-1) 

33034 
Little Ouse at 
Abbey Heath 

48 Anglian 

48007 
Kennal at 
Ponsanooth 

48 SW England 

76005 
Eden at Temple 
Sowerby 

54 NW England 

The characteristics of the 3 catchments are described below: 

 

33034: Little Ouse at Abbey Heath 

Predominantly arable, with the urban development of Thetford just upstream of the station 
(URBEXT = 0.0503), linked to groundwater abstraction for industry and agriculture, 
experiences some effluent returns. Fairly dry catchment (SAAR6190 = 607 mm). Small but 
significant (p < 0.05) negative trend in median peak flow. Rejected and missing data around 
2000 to 2002. Reasonably large catchment of 688 km2. 

 

48007: Kennal at Ponsanooth 

Small catchment (26.5 km2) in SW Cornwall. No significant (p > 0.05) trend in the location 
parameter using peak flow data (1968 to present). Affected by exports from Stithians 
Reservoir 4 miles upstream, and abstraction for public water supply. Small urban extent 
(URBEXT = 0.0466) mostly grassland with high baseflow (BFIHOST = 0.74). Responsive to 
heavy rainfall (SAAR = 1294). Low FARL (0.867) due to 32.8% of catchment drained by 
Stithians Reservoir. High data quality. 

 

76005: Eden at Temple Sowerby 

Large, steep catchment in Cumbria (616 km2) with little anthropogenic influence, especially 
above low flows. Subject to a number of highly extreme rainfall events in the last 20 years, 
leading to exceptional events. Nearly all rural (URBEXT = 0.0125) with no significant land 
use change and moderate rainfall average (SAAR = 1142 mm). No large water bodies 
affecting storage, and baseflow is moderate (BFIHOST = 0.47). Shows significant (p < 0.05) 
positive trend in peak flow according to Mann-Kendall tests. 
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Single-site analysis 

Stationary flood frequency curves were fitted using the generalised logistic distribution to the 
AMAX data for each of the 3 case study catchments, and the existing climate change 
allowances were applied. The uplifted frequency estimates were then compared with those 
derived from a non-stationary frequency analysis. The importance of period of record was 
explored by fitting stationary flood frequency curves to data from 1961 to 1990 (reflecting the 
baseline used in the climate change impact modelling studies that underlie the existing 
guidance) and comparing them with stationary flood frequency curves fitted to all the AMAX 
data at each site. 

E.3 Results 

CCA applications 

Figure E-4 and Figure E-5 illustrate the percentage difference described above for Q50 and 
Q100, with Figure E-6 restricting the Q50 differences to stations with a significant trend 
which is positive (p < 0.05). Estimates for different horizons (2025, 2050, and 2080) are in 
different columns; estimates for different baselines (ST6190, NST6190, NSTREP, NSTEXT) 
are in different rows. Note that positive percentage differences indicate that the alternative is 
higher than STFULL. Negative percentages indicate the alternative is lower than STFULL. 

Figure E-4 and Figure E-5 show similar patterns. Compared to other alternatives, ST6190 
seems to provide small percentage decreases in some places and even shows increases in 
places such as Wales. However, NSTREP showed more consistent small percentage 
decreases consistently across all regions. The Tweed region only contains one station, so 
should not be considered pivotal in the overall patterns. This is consistent across horizons, 
which is not surprising given the same CCAs used for STFULL, ST6190 and NSTREP. 
NST6190 (as evaluated in 1990) seems to be similar to the stationary equivalent, but all the 
regions show a greater percentage reduction. For NSTEXT, which does not have CCAs 
applied, there is, on average, less difference than seen for NST6190, and the overall spatial 
pattern is more consistent. The increase over time in difference between NSTEXT and 
STFULL is particularly clear. 

Figure E-6 restricts the set of stations to those with a significant trend according to Mann-
Kendall (p-value less than 0.05), and that trend is positive according to the Theil-Sen 
estimator. Table E-3 shows here that there are many fewer stations that satisfy this, and 
many regions contain very few stations with a significant and positive trend (for example, 9% 
of stations in the south-west have significant and positive trend). Figure E-6 shows a starkly 
different picture to Figure E-4. The ST6190 estimates actually produce larger estimates 
compared to STFULL in some westerly areas, though the massive difference in the south-
west is only based on 7 stations, so this is not necessarily particularly representative of the 
region. For NST6190 the pattern of nationwide negative difference occurs in nearly all 
locations, and for the NSTEXT the difference is negative in all regions, except the single 
station in the Tweed region. 

Finally, it should be pointed out that this linear extrapolation used by NSTEXT to 2050 and 
2080 is not to be applied in practice, and is just generally indicative of one alternative way of 
considering future change by extrapolating historical changes. More informed future 
projections should be used, but the amount of difference between common practice and the 
alternatives suggest that there does need to be more guidance on how the CCAs developed 
from UKCP09 should be applied. This guidance should also be updated with the 
development of UKCP18. 



 

  

 

Figure E-4 Q50 percentage differences for various horizons and baseline calculations 
compared to STFULL (full record stationary estimates + CCAs) 
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Figure E-5 Q100 percentage differences for various horizons and baseline 
calculations compared to STFULL (full record stationary estimates + CCAs) 



 

  

 

Figure E-6 Q50 percentage differences for various horizons and baseline calculations, 
restricted to stations with positive trend, compared to STFULL (full record stationary 

estimates + CCAs) 
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Figure E-7 Map of river district basins 

 

Table E-3 Distribution of location of stations studied 

Region Number 
of 
stations 

Number of stations 
with significant 
positive trend 

Percentage of stations in region 
with significant  
positive trend (p<0.05) 

Anglia 87 6 6.9% 
North-east 62 10 16.1% 
North-west 70 20  28.6% 
South-east 20 3 15% 
Severn 33 4 12.1% 
South-west 78 7 9.0% 
Trent 26 2 7.7% 
Wales 30 5 16.7% 
Thames 40 4 10% 
Tweed 1 1 100% 

 

  



 

  

Case study 1: Little Ouse at Abbey Heath 

Figure E-8 shows the AMAX data for Little Ouse plotted as a time series (spanning 1968 to 
2016), together with the effect of period of record on the estimate of QMED. The data show 
a negative trend, with QMED estimated over the 1961 to 1990 period (early in the AMAX 
record) indicated by a red line lying above the value of QMED estimated over the entire 
record. Also shown in Figure E-8 are non-stationary estimates of Q2, Q30, Q50 and Q100 
fitted to all the AMAX data (using time as a covariate and allowing only the location 
parameter to change with time).  

 

Figure E-8 AMAX data and QMED estimates for 1961 to 1990 and for the whole period 
of record (Little Ouse) 

 

 

Stationary single-site flood frequency curves are shown in Figure E-9 fitted to data from 
1961 to 1990 (in black) and for the full AMAX record (in mauve). The AMAX data points are 
plotted according to the Gringorten plotting position without accounting for any non-
stationarity. The negative trend detected in the data is reflected in the position of the 
frequency curve for the full record which lies below that of the 1961 to 1990 curve. The 
currently recommended climate changes allowances (central) for the 2020s, 2050s and 
2080s are plotted relative to the stationary curve based on the full period of record since this 
represents current best practice. Because of the negative trend in the data, it can be seen 
that the percentage uplifts for the 2080s time slice bring the frequency estimates roughly into 
line with the 1961 to 1990 frequency curve in this particular case. There is a single AMAX 
value that is plotted above both stationary frequency curves, and this represents the highest 
AMAX value recorded in 1968 at the beginning of the gauge record, which has a dominant 
influence on the trend in the data series. 
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Figure E-9 Stationary flood frequency curves based on different periods of record 
showing climate change allowances (Little Ouse) 

 

 

Figure E-10 Comparison of stationary and non-stationary models (Little Ouse) 

 

 

Figure E-10 presents a comparison of stationary and non-stationary frequency curves for the 
Little Ouse. A single non-stationary model was fitted to the data set with a linear trend in the 
location parameter over the whole record. This has been extrapolated as far as 2080 (note 
that this is not advised in practice since the linear trend may not continue). The dashed lines 
show the evolution of the resultant non-stationary flood frequency curve over time, showing 
snapshots of it in 1990, 2020, 2050 and 2080. Since the trend is negative, the non-stationary 



 

  

flood frequency curve moves ‘down’ the graph over time. Compared to the stationary model, 
it can also be seen that the non-stationary flood frequency curves are ‘flatter’, suggesting a 
shape parameter closer to zero. This is because the stationary model has to account for all 
the points at once equally, so has to fit both the new, smaller extremes with the older, larger 
ones using a single set of stationary GLO parameters. The non-stationary model can, in 
some sense, exchange ‘variance’ for ‘change over time’ in a way that the stationary 
distribution cannot. One can think of the non-stationary distribution being fitted by looking at 
the start, then the middle, then the end of the data; since there is less difference in the most 
extreme events over these shorter periods, the curve is flatter9. 

The final figure for this case study (Figure E-11) compares the non-stationary estimate for 
the 50-year return period (Q50) with the current climate change allowances applied to the 
stationary flood frequency curve. The negative trend causes the non-stationary estimates to 
be considerably lower than the stationary estimates, including the allowances for climate 
change for future time slices. 

 

 

Figure E-11 Comparison of non-stationary Q50 estimates with stationary estimate 
plus climate change allowance (Little Ouse) 

 

  

                                                

9 Note that in theoretical and computational terms, the model is fitted all at once, not 
sequentially as this analogy suggests. 
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Case study 2: Kennal at Ponsanooth 

Similar sets of figures are presented for the Kennal case study below. The AMAX data spans 
1968 to 2016. This time the trend in the data is relatively small and there is little difference 
between the QMED estimate for the 1961 to 1990 baseline period and that for the complete 
period of record. However, the flood frequency curve for the baseline period lies below that 
of the full record for return periods from 2 to 50 years. Applying the climate change 
allowances increases the Q30, Q50 and Q100 estimates above the range of the observed 
data and above the non-stationary estimates for different time slices. The non-stationary 
Q50 estimates are broadly in line with the equivalent stationary estimates uplifted by the 
‘lower climate’ change allowance for the 2080s.  

 

 

Figure E-12 AMAX data and QMED estimates for 1961 to 1990 and for the whole period 
of record (Kennal) 

 

 



 

  

 

Figure E-13 Stationary flood frequency curves based on different periods of record 
showing climate change allowances (Kennal) 

 

 

 

Figure E-14 Comparison of stationary and non-stationary models (Kennal) 



156  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

 

Figure E-15 Comparison of non-stationary Q50 estimates with stationary estimate 
plus climate change allowance (Kennal) 

 

  



 

  

Case study 3: Eden at Temple Sowerby 

Results for the third case study of the Eden at Temple Sowerby are presented in the figures 
below. The AMAX data spans 1964 to 2016. There is little difference between QMED values 
calculated over the 1961 to 1990 period and the full period of record. The very high AMAX 
values recorded in the catchment in recent years are largely responsible for the marked 
positive trend apparent in the time series. In this example, the highest observations are 
much closer to the stationary frequency estimates when the ‘central’ climate change 
allowances are added and they exceed the non-stationary estimates.  

 

 

Figure E-16 AMAX data and QMED estimates for 1961 to 1990 and for the whole period 
of record (Eden) 

 

Figure E-17 Stationary flood frequency curves based on different periods of record 
showing climate change allowances (Eden) 
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Figure E-18 Comparison of stationary and non-stationary models (Eden) 

 

 

Figure E-19 Comparison of non-stationary Q50 estimates with stationary estimate 
plus climate change allowance (Eden) 

 

Figure E-19 compares the stationary estimate of Q50 for the Eden catchment with the non-
stationary Q50 estimate, assuming that the trend continues into the future. Despite the 
strength and significance of the trend, the non-stationary estimate lies below that of the 
stationary estimate with the ‘central’ allowance for climate change added into the 2080s 
period.  

To assess the uncertainty associated with the flood frequency curves, and the effect that this 
uncertainty may have on the appropriateness of climate change allowances, 95% confidence 



 

  

intervals10 were obtained using non-parametric bootstrapping as developed in Yan and 
others (2017). Figure E-20 shows this confidence interval for the stationary flood frequency 
curve based on the whole period of record for the Eden catchment. Here, it can be seen that 
the confidence interval exceeds the climate change allowances by some margin, especially 
as the return period increases. This suggests that, although the project team’s best estimate 
gives reasonable allowances, there is still some chance that these allowances will be 
exceeded, and that such extreme floods are possible (though unlikely) to occur during future 
engineering design lives. 

Figure E-21 shows the 95% confidence interval for the non-stationary flood frequency curve 
as it appears in 2020. Here, it can be seen that the flatter curve gives a narrower confidence 
interval, but note that for 2050 and 2080, this whole confidence region will be lifted up to 
make more extreme flood frequency curves more plausible given the data. The key point to 
observe however is that, although the allowances are larger than the non-stationary 
estimates (the point estimates which give rise to the plotted flood frequency curves), the 
confidence interval greatly exceeds them, offering the possibility that the flood magnitudes in 
2020 (or 2050/2080) may be much greater than predicted. 

 

Figure E-20 Stationary flood frequency curve for the full record shown with 95% 
confidence interval (Eden) 

 

                                                

10 For reference, recall that a 95% confidence interval is a set of bounds which have a 95% 
probability of being around the ‘true’ values of the parameter of interest, assuming such a 
‘truth’ exists. In other words, the true value has a 5% probability of being not contained by 
this band. 
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Figure E-21 95% Confidence interval for the non-stationary frequency curve as it 
appears in 2020 (Eden) 

 



 

  

E.4 Discussion 

The aim of the investigation presented here was to consider how best to apply climate 
change allowances to flood frequency estimates for catchments where non-stationarity has 
been detected in gauged flow records. There are some regional summaries of those 
methods that perform most similarly to stationary methods, and these have some 
interesting outcomes. 

On average, using baselines other than the 61 to 90 stationary baseline in conjunction with 
the CCAs leads to smaller estimates of flow compared to STFULL. This is the same for 
both Q50 and Q100.  

Restricting the analysis to only those stations with positive trend does not change this 
general observation, although the message is more mixed; some positive percentage 
differences are seen in the south-west and Wales. 

Compared to STFULL, NSTEXT has greater negative differences for more distant horizons, 
suggesting the 2 approaches are diverging for estimating far into the future. However, 
compared to ST6190 and NST6190, NSTEXT gives more spatially consistent differences, 
which are also smaller on average for the near-future horizon.  

South-east England stands out as a region for which there is the most variability between 
approaches. This could, however, be because of the greater impact of urbanisation, for 
example. 

NSTREP shows high similarity with STFULL, and so could be considered as a method of 
compromise between ignoring more recent trends, while focusing on the period of record 
used to develop CCAs. 

For a risk-averse (bigger flood estimates) approach, the present method of applying climate 
change allowances to a stationary estimate based on the whole period of record gives 
larger values of Q50 and Q100 on average in the northern regions, compared to the other 
methods examined except for NSTREP. 

Using CCAs on the stationary 61 to 90 baseline is not recommended, as the more recent 
data is invaluable in giving a more accurate present-day picture. 

However, the detailed analysis of only 3 case study catchments with different degrees and 
directions of trend cannot be easily generalised. Although it is very difficult to make general 
recommendations, the following comments may help practitioners choose an approach in 
cases where climate change rather than any other factor is believed to be a driver of non-
stationarity. 

No evidence has been found to suggest that the existing climate change allowances should 
be updated other than to apply the new UKCP18 probabilistic climate projections (see 
below).  

To assess whether climate change has already started to affect flood frequency, QMED 
and/or a higher quantile estimated over the 1961 to 1990 baseline period should be 
compared to that of the full record. If the 2 differ substantially, the effect of applying the 
climate change allowances to the baseline and full record estimate should be explored. An 
alternative approach would be to add a percentage of the full climate change allowance to 
the stationary estimate from the complete period of record, although it is not clear how this 
proportion should be chosen. 

Central (50th percentile) climate change allowances appear to be appropriate in the 
examples presented here where no negative trend is observed. However, the uncertainty 
associated with statistical flood frequency is high, as indicated by the plotted confidence 
intervals in Figure E-20 and Figure E-21. 

For major engineering projects with a long design life, current CCAs give design levels 
much larger than those determined using a linear extrapolation of current trends. Current 
CCAs should be used as a risk-averse upper limit. 
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The existing guidance on climate change allowances for flood peaks (Environment Agency 
2016 a,b) is in the process of being updated. The update will be based on a recent 
Environment Agency-funded project ‘Providing more locally-appropriate information on 
potential impacts of climate change on flood peaks in England and Wales’ (Kay and others, 
2019), which used the sensitivity framework approach of the previous work (Kay and 
others, 2011, 2014) but with a national-scale grid-based hydrological model. The project 
applied the UKCP18 probabilistic projections for river-basin regions (Met Office Hadley 
Centre 2018), to assess the potential range of impacts of climate change on flood peaks on 
a 1 km grid across GB (for non-tidal 1 km cells with catchment area ≥ 100 km2). This was 
done for 3 future 30-year time slices (2020s, 2050s, 2080s) and 4 emissions scenarios 
(RCP2.6, RCP4.5, RCP6.0, RCP8.5). As for the previous work, the baseline period for the 
projections was 1961 to 1990, with a longer baseline for the hydrological modelling (Oct 
1961 to Sep 2001). The intention is for the outputs of the project to be made available via a 
web tool. However, the Environment Agency has not yet made any decisions on what 
information will be used, or in what form, regarding updates to guidance on flooding and 
climate change. 

 

  



 

  

Appendix F:  Investigating clusters of 
floods over time 

F.1 Introduction 

Background and scope 

Better understanding of clustering and flood-rich or flood-poor periods may help attribute 
trends and therefore improve knowledge of whether and how they might continue. It could 
help determine whether the project team is relying on an unrepresentative period spanned 
by its peak flow data sets. Knowledge of clustering on a shorter timescale may help plan 
response and communication in the aftermath of flood incidents, and perhaps have 
implications for design of storage-based schemes.   

Within the current project, the scope for investigating clustering has been limited to an 
initial exploratory analysis. The following tasks are included in the scope: 

 literature review covering both clustering and also identifying flood-poor and 
flood-rich periods using longer-term sources of information 

 data set development, screening long-term series of POT (peaks over 
threshold) data 

 calculating clustering indices 

 reporting 

Evaluating temporal clustering - index of dispersion 

A commonly used approach to investigating the presence of clustering of events in time 
series is the index of dispersion (D), defined as: 

𝐷 =
𝕍𝑎𝑟(𝑍(𝑇))

𝔼(𝑍(𝑇))
− 1 

where Z(T) is the series of POT counts, that is numbers of floods, within a time window of 

length T,  𝕍𝑎𝑟(𝑍(𝑇)) is the variance of the flood counts and 𝔼(𝑍(𝑇)) is the expected 

(mean) value.  

This methodology interprets the occurrence of a flood event as a point process in which a 
randomly occurring event is independent of any events that may have occurred 
previously. This is referred to as a homogeneous Poisson process, and the degree to 
which a series of events conforms to the homogeneous Poisson can be evaluated using 
the index of dispersion.  

In a time series where events occur more regularly than might be expected at random, D 
is negative. This is described as underdispersion. Time series with events that are more 
clustered than random exhibit overdispersion and D is positive. 

For readers familiar with the FEH, D is used in the FEH (Volume 3, section 12.3.3), 
although defined without the minus 1, so FEH values of D will be 1 higher. The FEH 
calculated a UK-average value of 1.38 for D (that is, 0.38 using the definition above), 
using a 1-year time window.   
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The following section provides a summary of literature that has investigated temporal 
clustering of flood events, using the index of dispersion or alternative methodologies. 

F.2 Literature review 

Temporal clustering 

 

Villarini and others (2012): On the temporal clustering of US floods and its relationship to 
climate teleconnection patterns. International Journal of Climatology. 

Data used: 

 41 non-nested gauges in Iowa on the Missouri and Mississippi rivers. Maximum period of record 
1950 to 2009 (30/41 gauges); shortest record is 38 years. 

 POT defined flood events with thresholds selected to achieve an average of 2 events per year in 
the period March to October only; 15-day independence required. Assume stationarity based on 
previous trend investigations. 

 Climate indices PNA, NAO used as covariates as 14- and 28-day means from daily values. 

 Rainfall also used as a covariate for investigating 2 specific flood events 

 

 Temporal clustering methods: 

 Assume homogeneous (Poisson) point process as the null hypothesis. 

 Use Cox regression model with time-varying covariate (climate indices) describing the variation of 
rate of POT event occurrence from Poisson process. 

 Utilise ‘survival’ R package. 

 Interaction between covariates is allowed; AIC used to define formulation of covariates in final 
model. 

 

Results: 

 Time-varying model preferred at 27/41 stations. 

 Climate index covariates in monthly form are best descriptors of variability. 

 Cox model based on covariates can be used in a forecast sense to predict above/below normal 
floodiness. 

 

  



 

  

Merz and others (2016): Temporal clustering of floods in Germany: Do flood-rich and flood-poor 
periods exist? Journal of Hydrology. 

Data used: 

 68 catchments across Germany, 1932 to 2005 period; 4 gauges with > 160-year records. 

 The minimum record length was 70 years, and even then, the authors concluded that was not 
enough information to detect whether there is significant clustering at the multi-decadal scale.  

 POT defined flood events with thresholds selected to achieve an average of 1 and 3 events per 
year, then also 1 event every 3, 5 and 10 years. 

Temporal clustering methods: 

 Global view: Presence of temporal clustering - index of dispersion for varying time windows with 
Monte Carlo based significance testing [Method 1]. 

o Time windows investigated: 1, 2, 3, 5 and 7 years for all series, and also 10 years for the 
4-long series. 

o Field significance test (false discovery rate approach) also used to evaluate proportion of 
false rejections of null hypotheses. 

o All significance evaluated at the 5% level. 

 Local view: Timing of temporal clustering - Time-variation of flood occurrence rate (kernel 
occurrence rate) with significance of clustering based on non-parametric [Method 2] and 
parametric [Method 3] tests 

o Time windows (as bandwidths) investigated: 1, 3, 5 and 10 years for all series. 

o Non-parametric significance evaluated using confidence intervals (CI) determined for the 
time-varying kernel occurrence rate through bootstrap approach. Departures of 
upper/lower CI bounds below/above Poisson occurrence rate indicates significant flood-
poor/flood-rich clustering in the specified time window (bandwidth) at the indicated point in 
the time series. 

o Parametric significance evaluated again using CI defined for the Poisson occurrence rate 
(time-invariant). Departures of kernel occurrence rate beyond the lower and upper CI 
indicates significant flood-poor/flood-rich clustering in the specified time window 
(bandwidth) at the indicated point in the time series. 

 Other methodology notes: 

 Seasonality of clustering also investigated; comparisons between annual, winter and summer 
results presented. 

 Spatial variation of temporal clustering is also presented. 

Comments on methodology: 

 Different methods give different results; recommend using multiple measures. 

 Method 1 cannot identify flood-rich or flood-poor periods, only the presence in the time series of 
clustering of events in time windows. 

 Method 3 is more conservative at identifying clustering, especially for flood-poor periods. 

 Method 2 may be biased towards finding flood-poor periods as the CI narrow in periods with 
below average occurrence of floods.  
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 Results for Germany: 

 Across Germany, method 1 finds clustering at most (>50%) gauges in the annual time series 
with the lowest threshold (3 events in one year), but at very few gauges (<=10%) at the higher 
threshold (1 event in 5 years). This signal is stronger/weaker in summer/winter. 

 By methods 2 and 3, show >70% gauges show clustering on the interannual timescale 
regardless of the threshold. Also, the proportion of gauges showing clustering with either method 
2 or 3 decreases with threshold and time window (bandwidth). Less difference is evident 
between winter and summer with methods 2 and 3. 

 For low thresholds and short time windows, clustering is very pronounced. Hypothesised to be 
related to catchment memory effects and intra- and interannual climate variability. The paper 
postulates that catchments with deeper soils and more aquifer storage show more persistence. 
Small floods may cluster due to hydrological memory effects, over a short time scale, and large 
floods due to low-frequency climatic variations. 
 
 
 

Gu and others (2016): Temporal clustering of floods and impacts of climate indices in the Tarim 
River basin, China. Global Planet. Change. 

Review based on abstract only. 

 Data used: 

 POT series for Tarim River basin, China. 

 Climate indices AO and NAO used as covariates as monthly means. 

 Temporal clustering methods: 

 Dispersion index to investigate interannual clustering of floods. 

 Monthly frequency analysis to identify seasonal clustering of floods. 

 Cox regression with climate indices as covariates to investigate intra-annual clustering of floods. 

 Results: 

 Temporal clustering of floods is present on intra-annual timescales; flood events are not 
independent. 

 Seasonal clustering of floods in June to August. 

 Inter-annual clustering of floods more evident when pooling gauges regionally than at individual 
stations; regional floods are temporally clustered (over-dispersed) on inter-annual timescales. 

 

 

Liu and Zhang (2017): Multi-temporal clustering of continental floods and associated 
atmospheric circulations. Journal of Hydrology. 

 Data used: 

 413 unregulated catchments across Australia for the period 1976 to 2010. Excluding 367 
catchments with >10% missing data, and any years with >15% missing data. Missing data gap-
filled using modelled flows. 



 

  

 POT defined flood events with thresholds selected to achieve an average of 1, 2 and 3 events 
per year, then also 1 event every 2 years. 

 Climate indices ENSO, IOD, IPO, SAM used as covariates as 14- and 28-day means from daily 
values. 

 Temporal clustering methods: 

 Intra-annual: 

o Cox regression model with climate indices as covariates; AIC used to identify optimal set of 
covariates. Utilise ‘survival’ R package. 

o Monthly frequency analysis to identify the relative proportion of POT events by month to 
identify seasonal floods. 

 Inter-annual: 

o Dispersion index for varying time windows with significance evaluated using the Lagrange 
multiplier statistic at 95% significance level. 

 Time windows investigated: one to 5 years. 

o Kernel occurrence rate with significance of clustering based on a non-parametric test. 

 Non-parametric significance evaluated using confidence intervals (CI) determined for the time-
varying kernel occurrence rate through bootstrap approach. Departures of upper/lower CI 
bounds below/above Poisson occurrence rate indicates significant flood-poor/flood-rich 
clustering in the specified time window (bandwidth) at the indicated point in the time series. 

 Cross-validation is used to identify appropriate time windows (bandwidths). 

 Other methodology notes: 

 Present a summary table of studies investigating temporal clustering. 

 Results: 

 Intra-annual: 

o Cox regression identifies that ENSO and SAM are most important covariates on sub-
annual timescales. For AMAX and higher threshold, IOD and IPO are comparable. 

o Monthly frequency analysis picks out monsoon flooding in tropical north Australia in austral 
summer and austral winter/spring in southern Australia. 

o Results suggest the flood occurrence is non-independent and temporal clustering exists 
within one year. 

 Inter-annual: 

o For Australia as a whole, temporal clustering is evident at the majority (>50%) gauges in 
all time windows for AMAX and lower thresholds. Regionally, temporal clustering is most 
evident in southern gauges. 

o Flood-poor periods are identified in most southern gauges during the 2000s and flood-rich 
during the early 1990s. Northern gauges tend to be opposite to this. 
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Liu and others (2017): Nonstationarity and clustering of flood characteristics and relations with 
the climate indices in the Poyang Lake basin, China. Hydrological Sciences Journal. 

 Data used: 

 Daily streamflows at 6 gauges in Poyang Lake basin, China, covering the maximum period of 
1952 to 2005. At one station, 2 years of missing data were filled through linear regression using 
neighbouring stations. 

 POT, AMAX, seasonal maximum flow. POT defined to achieve an average of 2.4 to 3 events per 
year, depending on the station. 

 Climate indices ENSO, NAO, IOD, PDO considered possible influential variables. 

 Temporal clustering methods: 

 Monthly frequency analysis to identify the relative proportion of POT events by month to identify 
seasonal floods. 

 Dispersion index with confidence intervals determined using bootstrapping and significance 
evaluated using the Lagrange multiplier statistic at 95% significance level. 

 Kernel occurrence rate with significance of clustering based on a non-parametric test. 

 Other methodology notes: 

 Trends investigated with the modified rank-based nonparametric Mann-Kendall test. 

 Change points investigated with the rank-sum test. 

 POT thresholds selected to ensure the distribution conforms to a Poisson distribution. 

 Influence of climate modes of variability of analysed through Pearson correlation coefficients of 
annual/seasonal climate indices (lag 0 and lag 1-year) with magnitude, occurrence rate and 
timing of annual and seasonal floods. 

 Results: 

 AMAX, autumn and winter seasonal maximum floods, and POT peak flows mainly exhibit an 
increasing tendency. 

 Seasonal variations in trends are evident and trends vary between stations. 

 Flood-rich periods identified during late 1960s to early 1970s and mid-1990s. 

 A persistent increase in flood occurrence rates can be detected after the 1990s, especially in 
1998. 

 Dispersion index indicates presence of temporally clustered floods at all stations. 

 Strong seasonal clustering of floods evident from the timing of AMAX and POT floods, with a 
peak April to July. 

 Significant correlations between flood indices and climate indices exist. 

 ENSO and IOD are the main climate indices having significant impacts on flood activities of the 
basin. ENSO has a significant impact on the flood occurrence rate and on annual maximum 
streamflow during spring. 

 

 



 

  

Mallakpour and others (2017): On the use of Cox regression to examine the temporal clustering 
of flooding and heavy precipitation across the central United States. Global Planet. Change. 

Review based on abstract only. 

 

 Data used: 

 Daily streamflow and precipitation in central USA. 

 Climate indices AO and PNA used as covariates. 

 Temporal clustering methods: 

 Cox regression applied to both streamflow and precipitation with climate indices as covariates. 

 Results: 

 Climate indices (either or both) influence temporal clustering at 78% of streamflow gauges; 
results are consistent for precipitation also. 

 Conclusion is robust regardless of thresholds applied to define flood events. 

 

Alternative methods of time series analysis 

 

Wu and Lye (1994): Identification of temporal scaling behaviour of flood: A study of fractals. 
Fractals. 

Review based on abstract only. 

 Data used: 

 Daily flow records (107 years) at Yichan Station on the Yangtze River, China. 

 Methodology: 

 Functional box counting procedure evaluating threshold exceedance. 

 Results: 

 The number of threshold exceedances results in a power law behaviour for a specific range of 
time intervals, that is, threshold exceedance counts do not conform to the assumption of an 
independent Poisson process. 

 Evaluation of saturation and break-points in the probability-scale-threshold can yield physically 
meaningful results. 
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Eastoe and Tawn (2010): Statistical models for overdispersion in the frequency of peaks over 
threshold data for a flow series. Water Resources Research. 

 Data used: 

 POT series for River Thames at Kingston derived from daily flow series assuming an average of 
3.3 events per year. 

 Daily rainfall data at a site in Oxford used to test dependence of flow data on covariates. 

 Methodology: 

 Does not assume homogeneous (Poisson) point process as the null hypothesis due to empirical 
evidence to the contrary (the variance in POT counts is usually larger than the mean). 

 Investigate other models to describe the expected POT distribution, for example, regression and 
mixed models, retaining some assumptions of the Poisson process, but modelling events as 
inhomogeneous with a time-varying parameter. 

 Results: 

 Autocorrelation of an example POT series suggests dependence. Postulated that this is due to 
dependence in underlying covariates (climatic influences) rather than in the POT counts 
themselves. 

 Inclusion of time-varying parameter and use of covariates in regression models improves model 
fit and therefore confidence in extrapolated return levels. 

 

  



 

  

Clustering over the longer term: historical flood chronologies 

 

Macdonald N and Sangster H. 2017 ‘High-magnitude flooding across Britain since AD 
1750. Hydrology and Earth System Sciences, 21(3), 1631 to 1650 

 Data used:  

 Detailed historical records, merged with systematic river flow measurements, spanning the 
period 1750 to 2014.  

 Study covered 12 catchments across England, Wales and Scotland.  

 Results: 

 discernible flood-rich periods were found at a national and catchment-scale   

 these included 1765 to 1780, 1850s, late 1940s, mid-1960s and 2000 to present 

 the recent flood-rich period (considering data up to 2014 only) is not unprecedented 

 historical patterns of flooding were found to be linked to drivers including the NAO, the Atlantic 
Meridional Oscillation (AMO) and solar activity 

 

Clustering over the short term: flood-rich seasons 

Several recent years have seen multiple floods affecting the same locations in the UK. For example, 
2012 saw repeat flooding in locations as widespread as Calderdale and Devon. Over the winter 2015 
to 2016, a series of storms brought flood after flood to locations in Cumbria and elsewhere in north-
west England. The paper below describes a method developed in response to these floods. 

 

Towe R, Tawn J, Eastoe E and Lamb R. 2019 ‘Modelling the Clustering of Extreme Events for 
Short-Term Risk Assessment JABES. https://doi.org/10.1007/s13253-019-00376-0 

 Key points: 

 develops a ‘relative risk’ measure to account for short-term increased likelihood of another flood 
occurring in the aftermath of a flood  

 uses covariates and random effects to account for short-term non-stationarity of the flood-
generating process 

This sort of research can potentially help equip flood risk managers to better manage sequences 
of floods. However, it has been excluded from the scope of the present study. 

 

  

https://doi.org/10.1007/s13253-019-00376-0
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Key points from literature review 

 

 Summary of methodologies 

In the literature reviewed above, the index of dispersion is frequently used to identify and quantify the 
degree of temporal clustering in POT series. Evaluating the dispersion index using several sizes of 
time window means the most dominant clustering timescales can be quantified. This index, however, 
can only identify the presence of, and degree of, clustering, but not the location of temporal clusters 
in the tested time series. 

To identify relative flood-rich and flood-poor periods, the kernel occurrence rate analysis is frequently 
used in the literature above. Non-parametric confidence intervals, based on the bootstrap approach 
applied to the kernel occurrence rate estimate, is most frequently used to identify significant 
departures from the homogeneous Poisson occurrence rate. However, Merz and others (2016) 
showed that this method could be biased toward flood-poor periods as the confidence intervals are 
narrower during these periods due to a lower sample size. Therefore, using parametric confidence 
intervals, based on applying the bootstrap approach to the homogeneous Poisson occurrence rate, is 
also recommended. Merz and others (2016) also recommend using multiple methods to investigate 
temporal clustering as each method may give slightly different answers. Conclusions can then be 
drawn from robust commonalities between the methods and individual results, considering the 
caveats of each method. 

Several studies investigate temporal clustering in different seasons, as the processes underlying the 
clustering may be different. The dispersion index or the monthly frequency analysis method can be 
used to investigate this. 

Several studies also investigated the spatial variability of temporal clustering, frequently grouping 
individual stations and interpreting the results over the members of each region. This generally led to 
more robust signals of temporal clustering making flood-poor and flood-rich periods better defined. 

The variability of flood frequency and attributing temporal clustering to atmospheric influences was 
frequently investigated using the Cox regression approach. In this methodology, climate indices or 
precipitation are used as time-varying covariates in a regression model, along with the time-varying 
flood occurrence rate. Selection of the optimal (set of) covariate(s) is tested, usually, using the AIC. 
Note this approach can be used to investigate intra-annual as well as inter-annual temporal 
clustering. Additionally, the Pearson correlation coefficient can be used to quantify the degree of 
similarity between a possible covariate (including at lagged timescales) and the flood frequency 
series. The benefit of the Cox regression model over the Pearson correlation coefficient is that it can 
also be used to predict likely future flood-rich or flood-poor periods. 

Eastoe and Tawn (2010) note that a null hypothesis using the homogeneous Poisson is unwise as 
empirical evidence has shown it is generally not valid; POT counts are nearly always over-dispersed 
(variance larger than mean). This implies that POT series do exhibit clustering, the reasons for 
clustering in POT series require investigation. Eastoe and Tawn (2010) have suggested some 
approaches for characterising and investigating both POT and AMAX series where dependence in 
the series is attributed to covariates (for example, climatic influences). Merz and others (2016) have 
also suggested that of catchment memory effects influence clustering in POT series, which suggests 
POT series, and potentially AMAX series, are not comprised of independent events. Therefore, it 
may also be wise to approach the topic of temporal clustering, and flood frequency analysis, using 
extremal dependence approaches, or from a completely different angle, such as multifractal analysis, 
in order to test if conclusions really are robust. 

  



 

  

Note on data quality for temporal cluster analysis 

For the purposes of the temporal clustering analysis, only the most reliable and consistent records 
should be used at present. The full impact of the presence of missing data in records has not been 
investigated.  

While in many of the studies summarised above, the POT series has been derived specifically for the 
study from daily flow records, the current study makes use of the POT series derived a priori. In 
some cases, the POT series for a given station may originate from a number of different sources, 
where the specification of the threshold used based on a desired POT frequency may not be 
consistent. The Merz and others (2016) study has demonstrated that measures describing temporal 
clustering can be sensitive to changes in the POT frequency, the record length, and to the starting 
point of the record. If there are artificially-introduced inconsistencies in the frequency of POT events 
in the records, the conclusions derived from the temporal cluster analysis will not necessarily be 
robust. 

F.3 Summary of data review 

The peaks over threshold (POT) data used in this study originate from the NRFA Peak Flow Dataset 
- Version 8. Since the FEH methods largely use AMAX data, relatively little effort has been put into 
improving the quality of the national POT data set in recent years. Problems with POT data can be 
more difficult to spot than those with AMAX: for example, it is obvious if an AMAX value is missing.   

The steps carried out to screen the data set are described in the additional note. After this, a set of 
16 stations with suitably long and reliable POT series was retained for analysis. 

Any national-scale study using POT data would require a major effort on data quality. 

 

F.4 Temporal clustering analysis 

Using an R script with the NRFA Peak Flow Dataset V8 and the final selected station list as inputs, 
the POT files for final selection of stations were read in and the POT series restricted appropriately 
(rejected POT values and duplicated dates removed and series truncated, if needed).  

Further to this, the percent complete for each water year for the remaining continuous water year 
period was determined. If any year had a percent complete below 69.5% (relaxed from 70% to 
accommodate a single deviation at one station) or if the record length did not exceed 60 years, the 
station was rejected. This resulted in an additional 2 stations being rejected from the temporal cluster 
analysis: 

 station 27023 (Dearne at Barnsley Weir) - record length 53 years 

 station 32003 (Harpers Brook at Old Mill Bridge) - record length 53 years 

The stations for which temporal clustering results are presented are shown in Figure F-1. 



 

174  Development of interim national guidance on non-stationary fluvial flood frequency estimation 

  

 

Figure F-1 Stations with temporal clustering results presented. Stations are symbolised 
with varying colours dependent on their use in an earlier unpublished study by Emma 

Raven11, and by varying sized symbols dependent on their catchment area 

 

For the current study, the temporal cluster analysis is limited to an investigation of the index of 
dispersion.  

The methodology of the dispersion index analysis generally follows that of Merz and others 
(2016), whereby the time series of aggregated POT counts (Z(T)) is derived for multiple time 
windows (that is, multiple values of T) as a running sum of annual POT counts within the width of 
the specified time window (that is, the value of T). Note the use of a running sum may differ from 
the methodology used by Merz and others (2016), who appear to have constructed the series for 
each value of T as discrete block sums of POT counts. 

Merz and others (2016) found that the dispersion index and associated significance can be 
sensitive to both the length of the underlying annual POT series, and also the starting point of the 
series. Therefore, following Merz and others (2016), considering this sensitivity is also 
incorporated into the current study. For each time window or value of T, the dispersion index is 
calculated T times, with the starting point of the series shifted by +1 year each time, such that the 
POT series is 1 year short with each integration in the range 1 to T. 

The significance of all calculated dispersion index values is evaluated using Monte Carlo 
simulations, following Merz and others (2016). For each series (Z(T)), 1,000 comparable series of 

                                                

11 Raven EK, Vitolo R, Lane SN, Stephenson DB (unpublished): ‘Characterising high river flow clustering in the UK’ 



 

  

the same length as Z(T) are generated by drawing randomly from a Poisson distribution derived 
using the mean of Z(T). The critical value of D associated with a specified significance level 
(several are used) is identified using the 1,000 samples, and the null hypothesis (D=0) rejected if 
D for Z(T) exceeds the critical value. In this situation, significant overdispersion is present in Z(T), 
therefore events exhibit clustering within the specified time window (T) at some point in the series. 

The time windows used to evaluate temporal clustering using the dispersion index by Merz and 
others (2016) were less than 7 years for series up to 74 years. For longer series (>160 years), a 
time window of 10 years was also used. As the appropriateness of window size the series length 
is at present a subjective decision, all window sizes in the range 1 to 10 years have been 
evaluated here, but caution should be used for all windows greater than, for example, 5 years. 

The index of dispersion is presented below as a function of window size for all stations for which 
the dispersion analysis was completed. For each window size, the various values of D for each 
starting point are shown, with the maximum significance level indicated by the type of symbol and 
colour. For reference, the annual POT count series used in the dispersion analysis (that is, not 
necessarily the full series available) is also presented for each station, with the mean and variance 
for that series annotated. 

Information for each station relating to the dispersion analysis is summarised in Table F-1. 
Included in this summary is a note of any trends (non-stationarity) identified at the station based 
on other work in the current non-stationarity project. The variance to mean ratios in Table F-1 are 
calculated for the annual POT counts. 
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Table F-1 Summary of dispersion analysis results 

Station 
ID 

Station name Trend Variance 
to mean 
ratio 

Record 
length 
(years) 

Approx. peak D  Comments 

Value or 
range 

Time 
windows 

27002 Wharfe at Wetherby 
Flint Mill 

No significant trend 
identified. 

1.62 80 0.5 to 1.0 4 to 6 years Significance at 99.9% level for all windows > 3 years. 

28008 Dove at Rocester 
Weir 

No significant trend 
identified. 

1.54 65 0.5 to 1.0 2 to 4 years Significance at 99.9% level for 2 to 5 year windows, 
relatively low significance for windows > 7 years. 

32004 Ise Brook at 
Harrowden 

No significant trend 
identified. 

2.49 62 1.0 to 1.5 one to 5 
years 

Significance at 99.9% level for one to 6 year windows, 
relatively low significance for windows > 8 years. 

32007 Nene/Brampton at St 
Andrews Total 

No significant trend 
identified. 

3.22 78 1.5 to 2.5 2 to 4 years Secondary peak for the largest windows; significance 
at 99.9% level for all windows. 

37001 Roding at Redbridge No significant trend 
identified. 

2.63 68 1.0 to 1.5 one to 4 
years 

Significance at 99.9% level for one to 6 year windows, 
relatively low significance for windows > 8 years. 

39001 Thames at Kingston No significant trend 
identified. 

1.46 73 0.5 2 to 6 years Index of dispersion relatively low for all time windows; 
significance at 99.9% level only for 3 and 5 year 
windows, relatively low significance for windows > 7 
years. 

39002 Thames at Days Weir No significant trend 
identified. 

1.54 78 0.5 3 to 4 years Index of dispersion relatively low for all time windows; 
significance at 99.9% level only for 4-year window, 
relatively low significance for windows > 7 years. 

39006 Windrush at 
Newbridge 

No significant trend 
identified. 

1.46 68 0.5 4 to 10 
years 

Index of dispersion relatively low for all time windows, 
peaks at longest time windows but may not be 
appropriate; no significance at 99.9% level, significance 
mostly at 99% level, relatively low significance for 
windows < 3 years. 

47001 Tamar at Gunnislake No overall significant 
trend identified, but 
Mann-Kendall identified 
some negative trend for 
full period. 

1.34 62 0.5 2 to 3 years Index of dispersion is negative (no clustering) for 
windows > 3 years and low for other shorter windows; 
no significance at 99.9% level, significance mostly at 
95% level. 

68001 Weaver at Ashbrook Mann-Kendall identified 
significant negative trend 
for long and full periods. 

1.76 74 1.5 to 2.0 2 to 10 
years 

Index of dispersion is large for all windows > one year; 
significance at 99.9% level for all windows except one 
year. 

69023 Roch at Blackford 
Bridge 

Significant positive 
trends identified using 
Mann-Kendall for long 
and full periods and 
Pettitt change-point test. 

1.63 70 1.0 to 1.5 2 to 10 
years 

Index of dispersion is large for all windows > one year; 
significance at 99.9% level for all windows except one 
year. 

69024 Croal at Farnworth 
Weir 

No significant trend 
identified. 

1.80 70 0.5 to 1.0 2 to 4 years Significance at 99.9% level for windows < 6 years. 

69027 Tame at Portwood No significant trend 1.46 66 0.5 to 1.0 2 to 10 Index of dispersion is relatively large for all windows > 
one year; significance at 99.9% level for all windows 
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Station 
ID 

Station name Trend Variance 
to mean 
ratio 

Record 
length 
(years) 

Approx. peak D  Comments 

Value or 
range 

Time 
windows 

identified. years except one-year. 

69028 Mersey at Brinksway No significant trend 
identified. 

2.03 63 1.5 to 2.0 one to 4 
years 

Index of dispersion relatively large for all time windows; 
significance at 99.9% level for one to 9 year windows. 
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Summary  

Significant trend in AMAX flows identified: 

 68001 - Weaver at Ashbrook 

 69023 - Roch at Blackford Bridge 

 

Dispersion index > 1: 

 32004 - Ise Brook at Harrowden 

 32007 - Nene/Brampton at St Andrews Total 

 37001 - Roding at Redbridge 

 68001 - Weaver at Ashbrook 

 69023 - Roch at Blackford Bridge  

 69028 - Mersey at Brinksway 

 

Dispersion index small/negative: 

 39001 - Thames at Kingston  

 39002 - Thames at Days Weir  

 39006 - Windrush at Newbridge 

 47001 - Tamar at Gunnislake 

Conclusions 

Stations with large variance to mean ratio (>2) based on their annual POT counts also 
exhibit larger values for the peak dispersion index (>1), as anticipated. These stations 
are geographically dispersed, have a range of catchment sizes (186 to 622 km2), with a 
range of catchment characteristics in terms of steepness and permeability.  

The analysis above using varying time windows provides a step beyond this low order 
analysis to identify the timescales on which floods events cluster, which may not be 
readily identifiable by looking at the series of annual POT counts alone. However, it is 
not readily apparent how the dispersion index results can be interpreted in terms of the 
character of clustering in a given time window. For example, if clustering on the 
timescale of 4 years is indicated by a high D value, does this mean there is a cyclic 
pattern of flooding with a period of 4 years, or just that one period of 4 years in the data 
set exhibited larger POT counts? 

This question could partially be addressed using the kernel occurrence rate method, 
which would highlight periods with higher or lower than expected flood counts. 

The presence of temporal clustering of floods in a given POT series may also suggest 
that the flood peaks are not independent. Methods proposed by Eastoe and Tawn 
(2010) or the use of the Cox regression method could help identify the source of the 
dependence. Attribution of any dependence may then help to fit more appropriate 
models describing the extremes, and therefore design flows with smaller associated 
uncertainties.  
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F.5 Future work 

There are several possible avenues for follow-up work. A more in-depth investigation 
could seek to answer some of the following questions: 

 How does the degree of clustering vary with flood magnitude, with catchment 
type or location?    

 Is clustering primarily due to hydrological or meteorological causes?  

o What information do we have on the typical duration of flood-rich or flood 
periods? (If we think that a flood-rich period started in the late 1990s, can we 
estimate when it might end?) 

 How much more likely is a T1-year flood to occur within a period of N months 
after a T2-year flood?   

o How does this relative risk measure vary with catchment type or location?   

o Are there some types of floods or meteorological drivers for which it is 
possible to predict a greater likelihood of more flooding in the short-term? For 
example, if another event like June 2012 occurred, could flood risk managers 
have any knowledge to help them prepare for successive floods? 

 How can the probability of a sequence of floods as opposed to a single event be 
quantified? 

Here, the project team offer some specific suggestions as a follow-up to the work 
carried out within this investigation. 

Data quality: 

 Identify POT extraction methodology used for each data source across the period 
of record. Add specific information regarding POT methodology for time periods 
and data sources to NRFA station pages. 

 Investigate obvious step changes in POT frequency, possibly associated with 
changes in data source, but requires confirmation. 

 Investigate reasons for rejection of AMAX and POT records and cross-reference 
between the two data sets. 

 Attempt to re-derive the POT records using a consistent method across period of 
record at each station. This would take considerable effort at stations where the 
full period of record is not availably digitally. 

 Attempt to maximise the length of records to be used in temporal clustering 
analysis, considering the degree to which missing data may decrease the 
robustness of any results. 

Methodology: 

 Investigate impact missing data may have on effectiveness of temporal clustering 
analysis. 

 Add confidence intervals to dispersion analysis plots for each time window. 

 For dispersion analysis, determine maximum time window appropriate given 
length of record; this will be station dependent. 

 Perform kernel occurrence rate analysis using both non-parametric and 
parametric confidence interval significance testing to identify flood-poor and 
flood-rich periods at each station. 
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 Evaluate the results from the dispersion analysis, and subsequent kernel 
occurrence rate analysis in the context of catchment location, size and geology, 
and through neighbourhood comparisons with nearby stations. 

 Following the kernel occurrence rate analysis, evaluate the timing of flood-poor 
and flood-rich periods in terms of catchment rainfall, antecedent conditions, and 
correspondence with climate indices describing modes of atmospheric variability 
relevant to the UK (for example, NAO, EA). 

 Perform Cox regression applied to both streamflow and precipitation with climate 
indices as covariates to further investigate the attribution of clustering of floods 
into flood-poor and flood-rich periods. 

 Extend the Cox regression to build flood clustering prediction models to identify 
future periods of temporal clustering of floods. 

 Evaluate the impact of non-stationarity (long-term trends) on temporal clustering 
results. 

 Investigate the applicability of the assumption of the Poisson process for POT 
evaluation, and, by extension, for flood frequency analysis of annual maximum 
flows. The presence of temporal clustering of floods implies the events are not 
necessarily independent. This is particularly relevant for very slowly draining 
catchments and those that are groundwater-influenced. 
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Additional note: Details of data review 

Notes on AMAX files 

The AMAX files in the NRFA data set include the list of AMAX dates and flow values 
(and sometimes the level) for each year where an AMAX has been determined. The 
files also include a list of years where the AMAX has been rejected (for whatever 
reason, possibly due to too much missing data in the year, a poor rating or other gauge 
issues).  

Note the dates listed in the AMAX files are for the actual date the AMAX value was 
recorded; no time values for the observation are present. This presents an issue due 
the fact that AMAX values are derived for water days (9am to 9am); if the AMAX value 
occurs before 9am on 1 October, the date in the AMAX file will put the AMAX value in 
the incorrect water year.  

An example of this occurring is for station 69024 (Croal at Farnworth Weir) for the 
AMAX in the 1966 to 1967 water year. 

Notes on POT files 

The POT files include the list of POT dates and flow values (and sometimes the level) 
for each POT in the record. The files also include a list of POT values that have been 
rejected (for whatever reason), a list of periods where there is missing data, the start 
and end dates of the record, and the flow threshold used to define the POT series. 

Inconsistencies have been identified between the noted data gaps and the presence 
(or lack) of POT values.  

Examples of missing data being declared but POT values present are: 

 Station 37001 (Roding at Redbridge) for the 1969 to 1970 and 1970 to 1971 
water years. This issue has been corrected in v8 of the data set. 

 Station 55002 (Wye at Belmont) for the 1956 to 1957 and 1957 to 1958 water 
years where all data are listed as missing but one POT exists for each year, 
which is also the AMAX for that year, neither of which are rejected. 

One example of potentially missing POT values but (virtually) no missing data being 
declared is for station 73010 (Leven at Newby Bridge) for the water year period 1969 to 
1970 to 1974 to 1975. During this period only one year has around 10% missing data, 
but only one POT value is reported in each year. Each of these POT values is also the 
AMAX value for the year. The source of the POT records during this period is listed as 
‘Mfiche’ on the NRFA. 

Potential inconsistencies have also been identified between the AMAX values listed as 
rejected and POT values, which are the AMAX value for the year but are not rejected in 
the POT file. Sometimes this may occur due to the proportion or location of missing 
data in a water year, making the AMAX unrepresentative for the year, but the POT is 
still valid.  

Examples where the record is listed as 100% complete, the AMAX is rejected, and the 
POT is not rejected are:  

 1953 to 1954 water year for the station 38022 (Pymmes Brook at Edmonton 
Silver Street) 

 1955 to 1956 water year for the station 47001 (Tamar at Gunnislake) 

 1955 to 1956 water year for the station 54008 (Teme at Tenbury) 

 1936 to 1937 water year for the station 68001 (Weaver at Ashbrook) 
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 1942 to 1943 and 1951 to 1952 water years for the station 69027 (Tame at 
Portwood) 

Potential issues relating to multiple POT values recorded on the same day (with 
different flow values) or POT values recorded on sequential days have also been 
identified. In some cases, such as for very small, flashy catchments, these may 
represent true independent POT events. However, duplicated POT dates and 
sequential POT dates have been identified in very large catchments, where they are 
much less likely to represent independent events. 

Examples of small catchments with duplicated POT dates: 

 station 38007 (Canons Brook at Elizabeth Way; 21.4 km2) for POT values on 
21 November 1974 and 15 October 1987 

 station 69024 (Croal at Farnworth Weir; 145 km2) for POT values on 10 
December 1965 and 11 March 1981 

 station 39093 (Brent at Monks Park; 117.6 km2) for POT values on 9 separate 
occasions 

 station 38022 (Pymmes Brook at Edmonton Silver Street; 42.6 km2) on 10 
separate occasions 

Examples of large catchments with duplicated POT dates: 

 station 55007 (Wye at Erwood; 1,282.1 km2) for POT values on 18 December 
1965 

Initial station selection 

An initial subset of all NRFA peak flow stations was derived from the following lists of 
stations: 

 a selection of 20 POT series in the UK that was used by Emma Raven in an 
(unpublished) study of flood clustering and impacts on reinsurance at Durham 
University. All these series start before 1940, and all were closely examined 
for errors and anomalies 

 additional long record stations suggested by Peter Spencer of the 
Environment Agency 

 those previously identified as having long records (>60 years) in this project 

These lists were combined, and duplicates removed. This was used as the station list 
for filtering the NRFA Peak Flow Dataset. 

Initial record length assessment 

Using an R script with the NRFA Peak Flow Dataset V8 and the initial station list as 
inputs, the AMAX and POT files for each of the initial selection of stations were read in 
and evaluated. 

Using the AMAX files, the following are determined: 

 total number of AMAX values in the record 

 number of AMAX values that are rejected 

 number of AMAX values that are not rejected 

Using the POT files, the following are determined: 

 total number of POT values in the record 
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 number of water years represented in the POT record (for water years 
with at least one POT) 

 average number of POT per water year (for water years with at least 
one POT) 

 number of POT that are rejected 

 total number of POT values in the record that are not rejected 

 number of water years represented in the POT record (for water years 
with at least one POT) after rejected POT values are removed  

 average number of POT per water year (for water years with at least 
one POT) after rejected POT values are removed 

 percent complete for each water year over the length of the record 

By linking the information retrieved from both the AMAX and POT files the following are 
determined: 

 total number of POT values in the record after rejected POT values and 
POT values in years where the AMAX value has been rejected are 
removed 

 number of water years represented in the POT record (for water years 
with at least one POT) after rejected POT values and POT values in 
years where the AMAX value has been rejected are removed 

 average number of POT per water year (for water years with at least 
one POT) after rejected POT values and POT values in years where the 
AMAX value has been rejected are removed 

 number of AMAX values that are less than the threshold used to define 
the POT series 

 number of AMAX values that are present in the POT series 

 number of the AMAX values (after removing rejected AMAX values) with 
years with at least 90, 75, 50 and 10% complete daily data 

Not every station has a POT series, therefore, for some stations only the AMAX files 
are evaluated. 

Using the information determined above, the initial station selection was filtered further 
to retain only those stations where POT records exist, the number of water years 
represented in the POT record (for water years with at least one POT) after rejected 
POT values are removed is greater than 60, and the number of the AMAX values (after 
removing rejected AMAX values) with years with at least 90% complete daily data is 
greater than 60. After these filters are applied, 28 stations remain. 

POT data quality assessment 

Using an R script, the AMAX and POT files for secondary selection of stations were 
evaluated and the POT and AMAX series plotted. The AMAX and POT data sets were 
also cross-referenced with one another to identify any matching records rejected in the 
other data set. The presence of any duplicated dates in the POT series was also noted. 

Data quality plots were produced for each station, and visually assessed. An example 
is shown below. Each plot contained the following: 

Top panel: 

 the number of POT values (y-axis) in each water year (after rejected 
POT values and duplicated POT dates are removed; x-axis) with a 10-
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year moving average applied. The bars are centred on the mid-point of 
the water year, with the starting water year identified 

Bottom panel: 

 grey bars show the percent complete of daily data, as determined based 
on the data gaps in the POT files. The height of the bar indicates the 
percent complete, with the scale on the right-hand y-axis 

 blue diamond points show the AMAX values with red diamonds 
indicating AMAX values identified as rejected in the AMAX files 

 blue crosses show the POT values with red crosses indicating POT 
values identified as rejected in the POT files 

 for both the AMAX and POT data, points are located on the x-axis based 
on the date they occurred. The starting water year is indicated, identified 
at the mid-point of the water year 

 

 

Figure F-2 Example POT data quality assessment plot 

 

For the purposes of the temporal clustering analysis, only the most reliable and 
consistent records were retained. The impact missing data may have on the POT 
series, and any subsequent analysis, is not fully known at present. Therefore, the 
current study has imposed strict criteria on the quality of data used in the temporal 
cluster analysis. 

Based on the information interpreted from the data quality plots, and comments on the 
NRFA website, 12 further stations were filtered out as unsuitable for temporal cluster 
analysis.  

For the retained 16 stations, the data quality plots and comments on the NRFA website 
also resulted in truncation of the time series for some stations to exclude periods with 
suspect or missing data.   
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Appendix G:  Maps of non-
stationary model results 
 

 

 

 

Figure G-1 Spatial distribution of preferred model fit 
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Figure G-2 Ratios of estimate from preferred model (GEV) to estimate from 
stationary GEV model, AEP 50% 
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Figure G-3 Ratios of estimate from preferred model (GEV) to estimate from 
stationary GEV model, AEP 10% 
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Figure G-4 Ratios of estimate from preferred model (GEV) to estimate from 
stationary GEV model, AEP 1% 
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Figure G-5 Ratios of estimate from preferred model (GEV), considering water 
year as covariate, to estimate from FEH: AEP 50% 
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Figure G-6 Ratios of estimate from preferred model (GEV), considering water 
year as covariate, to estimate from FEH: AEP 10% 
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Figure G-7 Ratios of estimate from preferred model (GEV), considering water 
year as covariate, to estimate from FEH: AEP 1% 
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Figure G-8 Type of covariates chosen (by lowest BIC) at each gauge 
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Figure G-9 Best-fitting physical covariate chosen at each gauge 

 

 

‘None’ is used when the best-fitting model is stationary.  
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Appendix H:  Project data set 
 

Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

21032 Glen Kirknewton 45 
1961 to 
2009 Yes Yes 

No - data quality 
limited 

22001 Coquet Morwick 54 
1963 to 
2016 Yes Yes Yes 

22006 Blyth Hartford Bridge 57 
1960 to 
2016 Yes Yes Yes 

22007 Wansbeck Mitford 52 
1962 to 
2013 Yes Yes Yes 

22009 Coquet Rothbury 42 
1973 to 
2016 Yes Yes Yes 

23001 Tyne Bywell 61 
1956 to 
2016 Yes Yes Yes 

23003 North Tyne Reaverhill 37 
1980 to 
2016 Yes 

Not enough 
data Yes 

23004 South Tyne Haydon Bridge 58 
1959 to 
2016 Yes Yes Yes 

23006 South Tyne Featherstone 51 
1966 to 
2016 Yes Yes Yes 

23007 Derwent Rowlands Gill 53 
1964 to 
2016 Yes Yes Yes 

23008 Rede Rede Bridge 48 
1968 to 
2016 Yes Yes Yes 

23011 Kielder Burn Kielder 46 
1970 to 
2016 Yes Yes Yes 

23017 Team Team Valley 40 
1974 to 
2016 Yes 

Not enough 
data Yes 

24001 Wear Sunderland Bridge 60 
1957 to 
2016 Yes Yes Yes 

24003 Wear Stanhope 58 
1958 to 
2015 Yes Yes Yes 

24004 Bedburn Beck Bedburn 59 
1959 to 
2018 Yes Yes Yes 

24005 Browney Burnhall 60 
1954 to 
2014 Yes Yes Yes 

24008 Wear Witton Park 43 
1974 to 
2016 Yes Yes Yes 

24009 Wear Chester le Street 40 
1977 to 
2016 Yes 

Not enough 
data Yes 

25001 Tees Broken Scar 61 
1956 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

25003 Trout Beck Moor House 27 
1990 to 
2016 Yes 

Not enough 
data Yes 

25004 Skerne South Park 59 
1957 to 
2016 Yes Yes Yes 

25005 Leven Leven Bridge 48 
1959 to 
2007 Yes Yes Yes 

25006 Greta Rutherford Bridge 57 
1960 to 
2016 Yes Yes Yes 

25008 Tees Barnard Castle 50 
1964 to 
2016 Yes Yes Yes 

25009 Tees Low Moor 47 
1969 to 
2016 Yes Yes Yes 

25012 Harwood Beck Harwood 48 
1969 to 
2016 Yes Yes Yes 

25018 Tees 
Middleton in 
Teesdale 46 

1971 to 
2016 Yes Yes Yes 

25019 Leven Easby 39 
1971 to 
2016 No - gaps Yes Yes 

25020 Skerne Preston le Skerne 44 
1973 to 
2016 Yes Yes Yes 

26003 Foston Beck Foston Mill 57 
1959 to 
2016 Yes Yes Yes 

27001 Nidd Hunsingore Weir 82 
1934 to 
2016 Yes Yes Yes 

27002 Wharfe Flint Mill Weir 81 
1936 to 
2016 Yes Yes Yes 

27006 Don Hadfields Weir 61 
1956 to 
2016 Yes Yes Yes 

27007 Ure Westwick Lock 62 
1955 to 
2016 Yes Yes Yes 

27009 Ouse Skelton 131 
1886 to 
2016 Yes Yes Yes 

27010 Hodge Beck Bransdale Weir 41 
1936 to 
1976 Yes 

Not enough 
data Yes 

27021 Don Doncaster 59 
1958 to 
2016 Yes Yes Yes 

27023 Dearne Barnsley Weir 64 
1953 to 
2016 Yes Yes Yes 

27025 Rother Woodhouse Mill 55 
1961 to 
2016 Yes Yes 

No - data quality 
limited 

27026 Rother Whittington 57 
1960 to 
2016 Yes Yes Yes 

27028 Aire Armley 57 
1960 to 
2016 Yes Yes Yes 

27029 Calder Elland 47 
1971 to 
2017 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

27030 Dearne Adwick 54 
1963 to 
2016 Yes Yes 

No - data quality 
limited 

27031 Colne Colne Bridge 53 
1964 to 
2016 Yes Yes Yes 

27032 Hebden Beck Hebden 51 
1965 to 
2016 Yes Yes Yes 

27033 Sea Cut Scarborough 52 
1965 to 
2016 Yes Yes Yes 

27034 Ure Kilgram Bridge 50 
1967 to 
2016 Yes Yes Yes 

27041 Derwent Buttercrambe 44 
1973 to 
2016 Yes Yes Yes 

27043 Wharfe Addingham 44 
1973 to 
2016 Yes Yes Yes 

27051 Crimple Burn Bridge 45 
1972 to 
2016 Yes Yes Yes 

27052 Whitting Sheepbridge 41 
1976 to 
2016 Yes Yes Yes 

27053 Nidd Birstwith 41 
1976 to 
2016 Yes Yes 

No - data quality 
limited 

27055 Rye Broadway Foot 37 
1977 to 
2016 Yes 

Not enough 
data Yes 

27059 Laver Ripon 40 
1977 to 
2016 Yes 

Not enough 
data Yes 

27065 Holme Queens Mill 38 
1979 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

27073 Brompton Beck Snainton Ings 36 
1980 to 
2016 Yes 

Not enough 
data Yes 

27079 Calder Methley 29 
1988 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

27080 Aire Lemonroyd 32 
1985 to 
2016 Yes 

Not enough 
data Yes 

27081 Oulton Beck Farrer Lane 31 
1986 to 
2016 Yes 

Not enough 
data Yes 

27084 Eastburn Beck Crosshills 30 
1988 to 
2017 Yes 

Not enough 
data Yes 

27088 Calder Mytholmroyd 28 
1989 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

27092 Esk Briggswath 42 
1976 to 
2017 Yes Yes Yes 

28003 Tame Water Orton 62 
1955 to 
2016 Yes Yes Yes 

28008 Dove Rocester Weir 64 
1953 to 
2016 Yes Yes 

No - data quality 
limited 

28009 Trent Colwick 59 
1958 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

28010 Derwent Longbridge Weir 82 
1935 to 
2016 Yes Yes 

No - data quality 
limited 

28011 Derwent Matlock Bath 45 
1958 to 
2002 Yes 

Not enough 
data 

No - data quality 
limited 

28018 Dove Marston on Dove 56 
1961 to 
2016 Yes Yes 

No - data quality 
limited 

28019 Trent Drakelow Park 56 
1959 to 
2016 Yes Yes Yes 

28022 Trent North Muskham 49 
1968 to 
2016 Yes Yes Yes 

28023 Wye Ashford 53 
1964 to 
2016 Yes Yes Yes 

28024 Wreake Syston Mill 50 
1966 to 
2016 Yes Yes Yes 

28026 Anker Polesworth 50 
1967 to 
2016 Yes Yes 

No - data quality 
limited 

28027 Erewash Sandiacre 50 
1965 to 
2016 Yes Yes Yes 

28031 Manifold Ilam 47 
1970 to 
2016 Yes Yes Yes 

28039 Rea Calthorpe Park 45 
1972 to 
2016 Yes Yes Yes 

28040 Trent Stoke-On-Trent 50 
1967 to 
2016 Yes Yes Yes 

28046 Dove Izaak Walton 47 
1970 to 
2016 Yes Yes Yes 

28047 Oldcotes Dyke Blyth 47 
1970 to 
2016 Yes Yes 

No - data quality 
limited 

28049 Ryton Worksop 47 
1970 to 
2016 Yes Yes Yes 

28053 Penk Penkridge 45 
1971 to 
2016 Yes Yes Yes 

28056 Rothley Brook Rothley 45 
1972 to 
2016 Yes Yes Yes 

28060 Dover Beck Lowdham 41 
1972 to 
2016 Yes Yes Yes 

28061 Churnet Basford Bridge 40 
1976 to 
2016 Yes Yes Yes 

28070 Burbage Brook Burbage 56 
1925 to 
1981 Yes 

Not enough 
data 

No - data quality 
limited 

28082 Soar Littlethorpe 44 
1970 to 
2016 Yes Yes Yes 

28085 Derwent St Mary's Bridge 32 
1985 to 
2016 Yes 

Not enough 
data Yes 

28086 Sence South Wigston 31 
1986 to 
2016 Yes 

Not enough 
data Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

29001 Waithe Beck Brigsley 57 
1960 to 
2016 Yes Yes Yes 

29002 Great Eau Claythorpe Mill 54 
1963 to 
2016 Yes Yes Yes 

29003 Lud Louth 50 
1967 to 
2016 Yes Yes Yes 

29004 Ancholme Bishopbridge 49 
1968 to 
2016 Yes Yes Yes 

29009 Ancholme Toft Newton 43 
1974 to 
2016 Yes Yes Yes 

30001 Witham Claypole Mill 58 
1959 to 
2016 Yes Yes Yes 

30003 Bain Fulsby Lock 55 
1962 to 
2016 Yes Yes Yes 

30004 Lymn Partney Mill 55 
1962 to 
2016 Yes Yes Yes 

30005 Witham Saltersford Total 33 
1984 to 
2016 Yes 

Not enough 
data Yes 

30006 Slea Leasingham Mill 32 
1984 to 
2016 Yes 

Not enough 
data Yes 

30011 Bain Goulceby Bridge 49 
1966 to 
2016 Yes Yes Yes 

30013 Heighington Beck Heighington 41 
1976 to 
2016 Yes Yes Yes 

30014 Pointon Lode Pointon 45 
1972 to 
2016 Yes Yes Yes 

30015 Cringle Brook Stoke Rochford 38 
1979 to 
2016 Yes 

Not enough 
data Yes 

30017 Witham Colsterworth 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

31004 Welland Tallington Total 46 
1967 to 
2012 Yes Yes Yes 

31005 Welland Tixover 46 
1971 to 
2016 Yes Yes Yes 

31010 Chater Fosters Bridge 50 
1967 to 
2016 Yes Yes Yes 

31021 Welland Ashley 42 
1970 to 
2012 Yes Yes Yes 

31023 West Glen Easton Wood 45 
1972 to 
2016 Yes Yes Yes 

31025 Gwash South Arm Manton 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

31026 Egleton Brook Egleton 36 
1978 to 
2013 Yes 

Not enough 
data Yes 

32002 Willow Brook Fotheringhay 59 
1938 to 
1997 Yes 

Not enough 
data 

No - data quality 
limited 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

32004 Ise Brook Harrowden 72 
1944 to 
2016 Yes Yes 

No - data quality 
limited 

32007 Nene/Brampton St Andrews Total 77 
1940 to 
2016 Yes Yes 

No - data quality 
limited 

32008 Nene/Kislingbury Dodford 48 
1969 to 
2016 Yes Yes Yes 

32010 Nene Wansford 51 
1963 to 
2016 Yes Yes Yes 

33007 Nar Marham 35 
1981 to 
2016 Yes 

Not enough 
data Yes 

33014 Lark Temple 57 
1960 to 
2016 Yes Yes Yes 

33018 Tove 
Cappenham 
Bridge 54 

1963 to 
2016 Yes Yes Yes 

33019 Thet Melford Bridge 57 
1960 to 
2016 Yes Yes Yes 

33021 Rhee Burnt Mill 55 
1962 to 
2016 Yes Yes Yes 

33022 Ivel Blunham 52 
1965 to 
2016 Yes Yes 

No - data quality 
limited 

33023 Lea Brook Beck Bridge 53 
1963 to 
2016 Yes Yes 

No - data quality 
limited 

33024 Cam Dernford 53 
1963 to 
2016 Yes Yes 

No - data quality 
limited 

33027 Rhee Wimpole 52 
1965 to 
2016 Yes Yes 

No - data quality 
limited 

33031 Broughton Brook Broughton 44 
1970 to 
2016 Yes Yes Yes 

33032 Heacham Heacham 49 
1966 to 
2016 Yes Yes Yes 

33034 Little Ouse Abbey Heath 48 
1967 to 
2016 Yes Yes Yes 

33037 Bedford Ouse 
Newport Pagnell 
Total 48 

1969 to 
2016 Yes Yes Yes 

33039 Bedford Ouse Roxton 45 
1972 to 
2016 Yes Yes Yes 

33044 Thet Bridgham 38 
1979 to 
2016 Yes 

Not enough 
data Yes 

33051 Cam Chesterford 48 
1969 to 
2016 Yes Yes Yes 

33052 Swaffham Lode Swaffham Bulbeck 43 
1973 to 
2016 Yes Yes 

No - data quality 
limited 

33054 Babingley Castle Rising 41 
1976 to 
2016 Yes Yes Yes 

33055 Granta Babraham 39 
1978 to 
2016 Yes 

Not enough 
data Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

33057 Ouzel Leighton Buzzard 37 
1976 to 
2016 Yes 

Not enough 
data Yes 

33058 Ouzel Bletchley 37 
1978 to 
2016 Yes 

Not enough 
data Yes 

34001 Yare Colney 59 
1958 to 
2016 Yes Yes Yes 

34003 Bure Ingworth 57 
1959 to 
2016 Yes Yes Yes 

34005 Tud Costessey Park 56 
1961 to 
2016 Yes Yes Yes 

34006 Waveney Needham Mill 38 
1979 to 
2016 Yes 

Not enough 
data Yes 

34007 Dove Oakley Park 41 
1966 to 
2006 Yes Yes Yes 

34008 Ant Honing Lock 49 
1966 to 
2016 Yes Yes Yes 

34011 Wensum Fakenham 51 
1966 to 
2016 Yes Yes Yes 

34012 Burn Burnham Overy 51 
1966 to 
2016 Yes Yes Yes 

35003 Alde Farnham 56 
1961 to 
2016 Yes Yes 

No - data quality 
limited 

35008 Gipping Stowmarket 50 
1964 to 
2016 Yes Yes Yes 

36003 Box Polstead 56 
1961 to 
2016 Yes Yes Yes 

36004 Chad Brook Long Melford 50 
1967 to 
2016 Yes Yes Yes 

36006 Stour Langham 42 
1962 to 
2003 Yes 

Not enough 
data Yes 

36007 Belchamp Brook Bardfield Bridge 52 
1965 to 
2016 Yes Yes Yes 

36008 Stour Westmill 57 
1960 to 
2016 Yes Yes 

No - data quality 
limited 

36009 Brett Cockfield 50 
1967 to 
2016 Yes Yes 

No - data quality 
limited 

36010 Bumpstead Brook Broad Green 50 
1967 to 
2016 Yes Yes Yes 

36012 Stour Kedington 50 
1967 to 
2016 Yes Yes Yes 

37001 Roding Redbridge 67 
1950 to 
2016 Yes Yes Yes 

37003 Ter Crabbs Bridge 52 
1963 to 
2016 Yes Yes 

No - data quality 
limited 

37005 Colne Lexden 57 
1960 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

37006 Can Beach's Mill 55 
1962 to 
2016 Yes Yes Yes 

37007 Wid Writtle 51 
1964 to 
2016 Yes Yes Yes 

37008 Chelmer Springfield 51 
1965 to 
2016 Yes Yes Yes 

37009 Brain Guithavon Valley 55 
1962 to 
2016 Yes Yes Yes 

37010 Blackwater Appleford Bridge 55 
1962 to 
2016 Yes Yes Yes 

37011 Chelmer Churchend 51 
1963 to 
2016 Yes Yes 

No - data quality 
limited 

37012 Colne Poolstreet 53 
1964 to 
2016 Yes Yes 

No - data quality 
limited 

37013 Sandon Brook Sandon Bridge 51 
1963 to 
2016 Yes Yes Yes 

37014 Roding High Ongar 54 
1963 to 
2016 Yes Yes Yes 

37016 Pant Copford Hall 52 
1965 to 
2016 Yes Yes Yes 

37017 Blackwater Stisted 48 
1969 to 
2016 Yes Yes Yes 

37018 Ingrebourne Gaynes Park 47 
1970 to 
2016 Yes Yes Yes 

37019 Beam Bretons Farm 52 
1965 to 
2016 Yes Yes Yes 

37020 Chelmer Felsted 47 
1970 to 
2016 Yes Yes Yes 

37031 Crouch Wickford 41 
1976 to 
2016 Yes Yes Yes 

37033 Eastwood Brook Eastwood 42 
1974 to 
2016 Yes Yes Yes 

38001 Lee Feildes Weir 40 
1977 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

38002 Ash Mardock 76 
1939 to 
2016 Yes Yes Yes 

38003 Mimram Panshanger Park 65 
1952 to 
2016 Yes Yes Yes 

38004 Rib Wadesmill 58 
1959 to 
2016 Yes Yes Yes 

38007 Canons Brook Elizabeth Way 67 
1950 to 
2016 Yes Yes Yes 

38018 Upper Lee Water Hall 46 
1971 to 
2016 Yes Yes Yes 

38020 Cobbins Brook 
Sewardstone 
Road 44 

1971 to 
2014 Yes Yes 

No - data quality 
limited 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

38021 Turkey Brook Albany Park 46 
1971 to 
2016 Yes Yes Yes 

38022 Pymmes Brook 
Edmonton Silver 
Street 61 

1954 to 
2016 Yes Yes Yes 

39001 Thames Kingston 134 
1882 to 
2016 Yes Yes Yes 

39002 Thames Days Weir 78 
1938 to 
2015 Yes Yes Yes 

39003 Wandle South Wimbledon 53 
1964 to 
2016 Yes Yes 

No - data quality 
limited 

39005 Beverley Brook 
Wimbledon 
Common 56 

1961 to 
2016 Yes Yes Yes 

39006 Windrush Newbridge 67 
1950 to 
2016 Yes Yes 

No - data quality 
limited 

39007 Blackwater Swallowfield 64 
1953 to 
2016 Yes Yes Yes 

39010 Colne Denham 65 
1952 to 
2016 Yes Yes Yes 

39011 Wey Tilford 45 
1972 to 
2016 Yes Yes Yes 

39012 Hogsmill 
Kingston upon 
Thames 62 

1955 to 
2016 Yes Yes 

No - data quality 
limited 

39014 Ver Hansteads 61 
1956 to 
2016 Yes Yes Yes 

39019 Lambourn Shaw 55 
1962 to 
2016 Yes Yes Yes 

39020 Coln Bibury 54 
1963 to 
2016 Yes Yes Yes 

39022 Loddon Sheepbridge 52 
1965 to 
2016 Yes Yes Yes 

39023 Wye Hedsor 53 
1964 to 
2016 Yes Yes Yes 

39025 Enborne Brimpton 32 
1986 to 
2017 Yes 

Not enough 
data Yes 

39026 Cherwell Banbury 50 
1966 to 
2017 Yes Yes Yes 

39028 Dun Hungerford 49 
1968 to 
2016 Yes Yes Yes 

39033 
Winterbourne 
Stream Bagnor 55 

1962 to 
2016 Yes Yes Yes 

39036 Law Brook Albury 50 
1967 to 
2016 Yes Yes Yes 

39037 Kennet Marlborough 45 
1972 to 
2016 Yes Yes Yes 

39042 Leach 
Priory Mill 
Lechlade 45 

1972 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

39049 Silk Stream Colindeep Lane 41 
1978 to 
2016 Yes Yes 

No - data quality 
limited 

39052 The Cut Binfield 56 
1957 to 
2016 Yes Yes Yes 

39053 Mole Horley 56 
1961 to 
2016 Yes Yes 

No - data quality 
limited 

39056 Ravensbourne Catford Hill 43 
1974 to 
2016 Yes Yes 

No - data quality 
limited 

39057 Crane Cranford Park 33 
1985 to 
2017 Yes 

Not enough 
data Yes 

39086 Gatwick Stream Gatwick Link 42 
1975 to 
2016 Yes Yes Yes 

39088 Chess Rickmansworth 43 
1974 to 
2016 Yes Yes Yes 

39089 Gade Bury Mill 43 
1974 to 
2016 Yes Yes Yes 

39090 Cole Inglesham 41 
1976 to 
2016 Yes Yes Yes 

39096 Wealdstone Brook Wembley 41 
1975 to 
2016 Yes Yes Yes 

40005 Beult Stilebridge 42 
1958 to 
2000 Yes 

Not enough 
data 

No - data quality 
limited 

40007 Medway 
Chafford / 
Colliersland Bridge 56 

1960 to 
2016 Yes Yes Yes 

40010 Eden 
Penshurst / 
Vexour Bridge 56 

1961 to 
2016 Yes Yes Yes 

40012 Darent Hawley 27 
1990 to 
2016 Yes 

Not enough 
data Yes 

40016 Cray Crayford 27 
1990 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

41005 Ouse Gold Bridge 56 
1960 to 
2016 Yes Yes Yes 

41011 Rother Iping Mill 50 
1967 to 
2016 Yes Yes Yes 

41012 Adur E Branch Sakeham 50 
1967 to 
2016 Yes Yes 

No - data quality 
limited 

41015 Ems Westbourne 50 
1967 to 
2016 Yes Yes Yes 

41016 Cuckmere Cowbeech 50 
1967 to 
2016 Yes Yes Yes 

41020 Bevern Stream Clappers Bridge 48 
1969 to 
2016 Yes Yes 

No - data quality 
limited 

41022 Lod Halfway Bridge 47 
1970 to 
2016 Yes Yes Yes 

41023 Lavant Graylingwell 44 
1971 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

42007 Alre 
Drove Lane 
Alresford 44 

1974 to 
2017 Yes Yes Yes 

42008 Cheriton Stream Sewards Bridge 46 
1970 to 
2016 Yes Yes 

No - data quality 
limited 

42009 Candover Stream Borough Bridge 47 
1970 to 
2016 Yes Yes Yes 

42010 Itchen 
Highbridge & 
Allbrook Total 59 

1958 to 
2016 Yes Yes Yes 

42011 Hamble Frogmill 45 
1972 to 
2016 Yes Yes Yes 

42012 Anton Fullerton 44 
1973 to 
2016 Yes Yes Yes 

42014 Blackwater Ower 41 
1976 to 
2016 Yes Yes 

No - data quality 
limited 

43003 Avon East Mills Total 46 
1965 to 
2016 No - gaps Yes Yes 

43005 Avon Amesbury 52 
1965 to 
2016 Yes Yes Yes 

43006 Nadder Wilton 50 
1966 to 
2016 Yes Yes Yes 

43007 Stour Throop 44 
1973 to 
2016 Yes Yes Yes 

43008 Wylye South Newton 51 
1966 to 
2016 Yes Yes Yes 

43009 Stour Hammoon 49 
1968 to 
2016 Yes Yes Yes 

43012 Wylye Norton Bavant 48 
1969 to 
2016 Yes Yes Yes 

43014 East Avon Upavon 46 
1970 to 
2016 Yes Yes Yes 

43017 Allen Upavon 47 
1970 to 
2016 Yes Yes Yes 

43018 Allen Walford Mill 43 
1974 to 
2016 Yes Yes Yes 

44004 Frome Dorchester Total 47 
1969 to 
2016 Yes Yes 

No - data quality 
limited 

44006 Sydling Water 
Sydling St 
Nicholas 43 

1969 to 
2016 No - gaps Yes 

No - data quality 
limited 

44009 Wey Broadwey 40 
1975 to 
2016 Yes 

Not enough 
data Yes 

45001 Exe Thorverton 61 
1956 to 
2016 Yes Yes Yes 

45002 Exe Stoodleigh 56 
1960 to 
2016 Yes Yes Yes 

45003 Culm Wood Mill 55 
1962 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

45004 Axe Whitford 53 
1964 to 
2016 Yes Yes Yes 

45005 Otter Dotton 56 
1961 to 
2016 Yes Yes Yes 

45008 Otter Fenny Bridges 43 
1974 to 
2016 Yes Yes Yes 

45009 Exe Pixton 51 
1966 to 
2016 Yes Yes Yes 

45012 Creedy Cowley 52 
1965 to 
2016 Yes Yes Yes 

46003 Dart Austins Bridge 59 
1958 to 
2016 Yes Yes Yes 

46005 East Dart Bellever 53 
1964 to 
2016 Yes Yes 

No - data quality 
limited 

46006 Erme Ermington 43 
1974 to 
2016 Yes Yes Yes 

46007 West Dart Dunnabridge 27 
1990 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

46008 Avon Loddiswell 27 
1990 to 
2016 Yes 

Not enough 
data Yes 

46013 Bovey Bovey Parke 13 
2004 to 
2016 No - gaps 

Not enough 
data 

No - data quality 
limited 

47001 Tamar Gunnislake 61 
1956 to 
2016 Yes Yes Yes 

47004 Lynher Pillaton Mill 56 
1961 to 
2016 Yes Yes Yes 

47005 Ottery Werrington Park 33 
1985 to 
2017 Yes 

Not enough 
data Yes 

47006 Lyd Lifton Park 29 
1988 to 
2016 Yes 

Not enough 
data Yes 

47007 Yealm Puslinch 54 
1962 to 
2016 Yes Yes 

No - data quality 
limited 

47008 Thrushel Tinhay 28 
1989 to 
2016 Yes 

Not enough 
data Yes 

47009 Tiddy Tideford 48 
1969 to 
2016 Yes Yes Yes 

47014 Walkham Horrabridge 44 
1973 to 
2016 Yes Yes Yes 

47015 Tavy Ludbrook 36 
1981 to 
2016 Yes 

Not enough 
data Yes 

47020 Inny Bealsmill 28 
1988 to 
2016 Yes 

Not enough 
data Yes 

48001 Fowey Trekeivesteps 48 
1969 to 
2016 Yes Yes Yes 

48003 Fal Tregony 54 
1961 to 
2016 Yes Yes Yes 
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Record 
length 

Record 
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Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

48004 Warleggan Trengoffe 48 
1969 to 
2016 Yes Yes Yes 

48005 Kenwyn Truro 49 
1968 to 
2016 Yes Yes Yes 

48007 Kennal Ponsanooth 49 
1968 to 
2016 Yes Yes Yes 

48011 Fowey Restormel 34 
1983 to 
2016 Yes 

Not enough 
data Yes 

49001 Camel Denby 53 
1964 to 
2016 Yes Yes Yes 

49002 Hayle St Erth 60 
1957 to 
2016 Yes Yes Yes 

49003 De Lank De Lank 51 
1966 to 
2016 Yes Yes Yes 

50001 Taw Umberleigh 59 
1958 to 
2016 Yes Yes Yes 

50002 Torridge Torrington 56 
1960 to 
2016 Yes Yes Yes 

50005 West Okement Vellake 43 
1974 to 
2016 Yes Yes 

No - data quality 
limited 

50006 Mole Woodleigh 52 
1965 to 
2016 Yes Yes 

No - data quality 
limited 

50007 Taw Taw Bridge 44 
1973 to 
2016 Yes Yes 

No - data quality 
limited 

51001 Doniford Stream Swill Bridge 51 
1966 to 
2016 Yes Yes Yes 

51003 Washford Beggearn Huish 50 
1966 to 
2016 Yes Yes Yes 

52003 Halsewater Halsewater 56 
1961 to 
2016 Yes Yes 

No - data quality 
limited 

52004 Isle Ashford Mill 55 
1962 to 
2016 Yes Yes Yes 

52005 Tone Bishops Hull 56 
1961 to 
2016 Yes Yes Yes 

52006 Yeo Pen Mill 55 
1962 to 
2016 Yes Yes Yes 

52007 Parrett Chiselborough 51 
1966 to 
2016 Yes Yes Yes 

52009 Sheppey Fenny Castle 50 
1964 to 
2016 Yes Yes Yes 

52010 Brue Lovington 34 
1983 to 
2016 Yes 

Not enough 
data Yes 

52014 Tone Greenham 51 
1966 to 
2016 Yes Yes 

No - data quality 
limited 

52016 Currypool Stream Currypool Farm 47 
1970 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
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Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

52017 Congresbury Yeo Iwood 42 
1973 to 
2016 Yes Yes 

No - data quality 
limited 

53004 Chew Compton Dando 57 
1958 to 
2015 Yes Yes Yes 

53005 Midford Brook Midford 56 
1961 to 
2016 Yes Yes Yes 

53006 Frome (Bristol) Frenchay 56 
1961 to 
2016 Yes Yes Yes 

53007 Frome (Somerset) Tellisford 56 
1961 to 
2016 Yes Yes Yes 

53008 Avon Great Somerford 54 
1963 to 
2016 Yes Yes Yes 

53009 Wellow Brook Wellow 51 
1966 to 
2016 Yes Yes Yes 

53013 Marden Stanley 47 
1970 to 
2016 Yes Yes Yes 

53017 Boyd Bitton 44 
1973 to 
2016 Yes Yes Yes 

53018 Avon Bathford 48 
1969 to 
2016 Yes Yes Yes 

53023 Sherston Avon Fosseway 41 
1976 to 
2016 Yes Yes Yes 

53025 Mells Vallis 38 
1979 to 
2016 Yes 

Not enough 
data Yes 

53026 Frome (Bristol) Frampton Cotterell 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

53028 By Brook Middlehill 36 
1981 to 
2016 Yes 

Not enough 
data Yes 

53029 Biss Trowbridge 34 
1983 to 
2016 Yes 

Not enough 
data Yes 

54001 Severn Bewdley 94 
1923 to 
2016 Yes Yes Yes 

54002 Avon Evesham 80 
1937 to 
2016 Yes Yes Yes 

54004 Sowe Stoneleigh 38 
1979 to 
2016 Yes 

Not enough 
data Yes 

54005 Severn Montford 65 
1952 to 
2016 Yes Yes Yes 

54007 Arrow Broom 40 
1977 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

54008 Teme Tenbury 61 
1956 to 
2016 Yes Yes Yes 

54011 Salwarpe Harford Hill 59 
1958 to 
2016 Yes Yes 

No - data quality 
limited 

54012 Tern Walcot 58 
1959 to 
2016 Yes Yes Yes 
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Record 
length 

Record 
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Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

54014 Severn Abermule 49 
1968 to 
2016 Yes Yes Yes 

54016 Roden Rodington 40 
1977 to 
2016 Yes 

Not enough 
data Yes 

54018 Rea Brook Hookagate 55 
1962 to 
2016 Yes Yes Yes 

54019 Avon Stareton 54 
1962 to 
2016 Yes Yes 

No - data quality 
limited 

54020 Perry Yeaton 54 
1963 to 
2016 Yes Yes Yes 

54022 Severn Plynlimon flume 38 
1971 to 
2008 Yes Yes Yes 

54024 Worfe Burcote 46 
1969 to 
2016 Yes Yes Yes 

54025 Dulas Rhos-y-pentref 48 
1969 to 
2016 Yes Yes Yes 

54027 Frome Ebley Mill 47 
1970 to 
2016 Yes Yes Yes 

54028 Vyrnwy Llanymynech 48 
1969 to 
2016 Yes Yes Yes 

54029 Teme Knightsford Bridge 47 
1970 to 
2016 Yes Yes Yes 

54034 Dowles Brook Oak Cottage 46 
1971 to 
2016 Yes Yes 

No - data quality 
limited 

54036 Isbourne 
Hinton on the 
Green 44 

1972 to 
2016 Yes Yes Yes 

54038 Tanat Llanyblodwel 45 
1972 to 
2016 Yes Yes 

No - data quality 
limited 

54040 Meese Tibberton 44 
1973 to 
2016 Yes Yes Yes 

54041 Tern Eaton upon Tern 43 
1972 to 
2014 Yes Yes Yes 

54044 Tern Ternhill 45 
1972 to 
2016 Yes Yes 

No - data quality 
limited 

54052 Bailey Brook Ternhill 43 
1972 to 
2016 Yes Yes 

No - data quality 
limited 

54057 Severn Haw Bridge 45 
1972 to 
2016 Yes Yes Yes 

54091 Severn Hafren Flume 34 
1975 to 
2008 Yes Yes Yes 

54092 Hore Hore Flume 36 
1973 to 
2008 Yes Yes 

No - data quality 
limited 

54102 Avon Lilbourne 32 
1985 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

54106 Stour (Warks) Shipston 31 
1986 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

54114 Avon Warwick 42 
1972 to 
2016 Yes Yes Yes 

54906 Stour (Worcs) 
Kidderminster Gilt 
Edge 33 

1952 to 
1984 Yes 

Not enough 
data 

No - data quality 
limited 

55002 Wye Belmont 52 
1966 to 
2017 Yes Yes Yes 

55007 Wye Erwood 78 
1938 to 
2016 Yes Yes Yes 

55008 Wye Cefn Brwyn 58 
1951 to 
2008 Yes Yes Yes 

55012 Irfon Cilmery 48 
1966 to 
2016 Yes Yes 

No - data quality 
limited 

55013 Arrow Titley Mill 49 
1966 to 
2016 Yes Yes Yes 

55014 Lugg Byton 49 
1966 to 
2016 Yes Yes 

No - data quality 
limited 

55016 Ithon Disserth 42 
1972 to 
2016 Yes Yes 

No - data quality 
limited 

55018 Frome Yarkhill 49 
1967 to 
2016 Yes Yes 

No - data quality 
limited 

55021 Lugg Butts Bridge 46 
1969 to 
2016 Yes Yes Yes 

55023 Wye Redbrook 47 
1969 to 
2016 Yes Yes Yes 

55025 Llynfi Three Cocks 46 
1970 to 
2016 Yes Yes Yes 

55026 Wye Ddol Farm 48 
1969 to 
2016 Yes Yes Yes 

55029 Monnow Grosmont 44 
1973 to 
2016 Yes Yes Yes 

55033 Wye Gwy flume 33 
1973 to 
2008 Yes Yes Yes 

55034 Cyff Cyff flume 34 
1973 to 
2008 Yes Yes 

No - data quality 
limited 

56001 Usk Chainbridge 56 
1957 to 
2016 Yes Yes Yes 

56002 Ebbw Rhiwderin 58 
1957 to 
2016 Yes Yes Yes 

56012 Grwyne Millbrook 42 
1971 to 
2016 Yes Yes 

No - data quality 
limited 

57004 Cynon Abercynon 56 
1961 to 
2016 Yes Yes Yes 

57005 Taff Pontypridd 50 
1967 to 
2016 Yes Yes Yes 

57006 Rhondda Trehafod 48 
1968 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

57007 Taff Fiddlers Elbow 44 
1973 to 
2016 Yes Yes Yes 

57008 Rhymney Llanedeyrn 45 
1972 to 
2016 Yes Yes 

No - data quality 
limited 

57009 Ely St Fagans 43 
1974 to 
2016 Yes Yes Yes 

57015 Taff Merthyr Tydfil 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

58001 Ogmore Bridgend 34 
1983 to 
2016 Yes 

Not enough 
data Yes 

58002 Neath Resolven 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

58005 Ogmore Brynmenyn 48 
1969 to 
2016 Yes Yes Yes 

58006 Mellte Pontneddfechan 46 
1971 to 
2016 Yes Yes Yes 

58007 Llynfi Coytrahen 47 
1970 to 
2016 Yes Yes Yes 

58008 Dulais Cilfrew 45 
1972 to 
2016 Yes Yes Yes 

58012 Afan Marcroft Weir 37 
1979 to 
2016 Yes 

Not enough 
data Yes 

59001 Tawe Ynystanglws 43 
1973 to 
2016 Yes Yes Yes 

59002 Loughor Tir-y-dail 50 
1967 to 
2016 Yes Yes Yes 

60001 Tywi Ty Castell 45 
1972 to 
2016 Yes Yes Yes 

60002 Cothi Felin Mynachdy 56 
1961 to 
2016 Yes Yes Yes 

60003 Taf Clog-y-Fran 48 
1964 to 
2011 Yes Yes 

No - data quality 
limited 

60006 Gwili Glangwili 49 
1968 to 
2016 Yes Yes Yes 

60007 Tywi Dolau Hirion 45 
1972 to 
2016 Yes Yes Yes 

60009 Sawdde Felin-y-cwm 38 
1970 to 
2007 Yes Yes Yes 

60012 Twrch Ddol Las 27 
1990 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

61002 Eastern Cleddau Canaston Bridge 43 
1974 to 
2016 Yes Yes 

No - data quality 
limited 

61003 Gwaun Cilrhedyn Bridge 48 
1968 to 
2016 Yes Yes 

No - data quality 
limited 

62001 Teifi Glanteifi 60 
1959 to 
2018 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

63001 Ystwyth Pont Llolwyn 56 
1961 to 
2016 Yes Yes Yes 

64001 Dyfi Dyfi Bridge 54 
1962 to 
2015 Yes Yes 

No - data quality 
limited 

64006 Leri Dolybont 40 
1974 to 
2013 Yes Yes 

No - data quality 
limited 

65001 Glaslyn Beddgelert 49 
1967 to 
2016 Yes Yes 

No - data quality 
limited 

65005 Erch Pencaenewydd 45 
1972 to 
2016 Yes Yes Yes 

65006 Seiont Peblig Mill 32 
1984 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

65007 Dwyfor Garndolbenmaen 43 
1974 to 
2016 Yes Yes 

No - data quality 
limited 

66001 Clwyd Pont-y-Cambwll 42 
1973 to 
2016 Yes Yes 

No - data quality 
limited 

66004 Wheeler Bodfari 43 
1974 to 
2016 Yes Yes Yes 

66005 Clwyd Ruthin Weir 43 
1972 to 
2018 Yes Yes Yes 

66006 Elwy Pont-y-Gwyddel 43 
1974 to 
2016 Yes Yes Yes 

66011 Conwy Cwmlanerch 52 
1964 to 
2016 Yes Yes 

No - data quality 
limited 

67006 Alwen Druid 57 
1960 to 
2016 Yes Yes 

No - data quality 
limited 

67008 Alyn Pont-y-Capel 53 
1964 to 
2016 Yes Yes Yes 

67009 Alyn Rhydymwyn 61 
1956 to 
2016 Yes Yes Yes 

67010 Gelyn Cynefail 27 
1990 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

67015 Dee Manley Hall 47 
1969 to 
2016 Yes Yes Yes 

68001 Weaver Ashbrook 80 
1937 to 
2016 Yes Yes 

No - data quality 
limited 

68003 Dane Rudheath 38 
1979 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

68005 Weaver Audlem 48 
1969 to 
2016 Yes Yes 

No - data quality 
limited 

68007 Wincham Brook Lostock Gralam 54 
1960 to 
2015 Yes Yes 

No - data quality 
limited 

68018 Dane Congleton Park 50 
1967 to 
2016 Yes Yes Yes 

69007 Mersey Ashton Weir 59 
1958 to 
2016 Yes Yes 

No - data quality 
limited 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

69008 Dean Stanneylands 50 
1966 to 
2016 Yes Yes Yes 

69012 Bollin Wilmslow 50 
1967 to 
2016 Yes Yes Yes 

69015 Etherow Compstall 48 
1968 to 
2016 Yes Yes Yes 

69017 Goyt Marple Bridge 47 
1969 to 
2016 Yes Yes Yes 

69020 Medlock London Road 48 
1969 to 
2016 Yes Yes Yes 

69023 Roch Blackford Bridge 69 
1948 to 
2016 Yes Yes Yes 

69024 Croal Farnworth Weir 69 
1948 to 
2016 Yes Yes Yes 

69025 Irwell 
Manchester 
Racecourse 76 

1941 to 
2016 Yes Yes Yes 

69027 Tame Portwood 65 
1952 to 
2016 Yes Yes Yes 

69028 Mersey Brinksway 62 
1955 to 
2016 Yes Yes Yes 

69032 Alt Kirkby 39 
1977 to 
2016 Yes 

Not enough 
data Yes 

69041 Tame Broomstairs 50 
1967 to 
2016 Yes Yes Yes 

69044 Irwell Bury Ground 44 
1973 to 
2016 Yes Yes Yes 

70004 Yarrow Croston Mill 42 
1975 to 
2016 Yes Yes Yes 

71001 Ribble Samlesbury 56 
1960 to 
2016 Yes Yes Yes 

71004 Calder Whalley Weir 47 
1970 to 
2016 Yes Yes Yes 

71006 Ribble Henthorn 49 
1968 to 
2016 Yes Yes Yes 

71008 Hodder Hodder Place 48 
1969 to 
2016 Yes Yes Yes 

71009 Ribble 
New Jumbles 
Rock 47 

1970 to 
2016 Yes Yes Yes 

71010 Pendle Water Barden Lane 45 
1972 to 
2016 Yes Yes Yes 

71011 Ribble Arnford 47 
1970 to 
2016 Yes Yes Yes 

71013 Darwen Ewood 44 
1973 to 
2016 Yes Yes Yes 

71014 Darwen Blue Bridge 42 
1975 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

72004 Lune Caton 49 
1968 to 
2016 Yes Yes Yes 

72005 Lune Killington 48 
1969 to 
2016 Yes Yes Yes 

72007 Brock upstream of A6 39 
1978 to 
2016 Yes 

Not enough 
data Yes 

72009 Wenning Wennington 46 
1971 to 
2016 Yes Yes Yes 

72011 Rawthey Brigflatts 48 
1968 to 
2015 Yes Yes Yes 

72014 Conder Galgate 50 
1966 to 
2016 Yes Yes Yes 

72015 Lune Lunes Bridge 39 
1979 to 
2016 Yes 

Not enough 
data Yes 

72807 Wenning Hornby 60 
1956 to 
2016 Yes Yes Yes 

73002 Crake Low Nibthwaite 53 
1962 to 
2016 Yes Yes Yes 

73005 Kent Sedgwick 50 
1968 to 
2017 Yes Yes Yes 

73008 Bela Beetham 48 
1969 to 
2016 Yes Yes Yes 

73009 Sprint Sprint Mill 48 
1969 to 
2016 Yes Yes Yes 

73010 Leven Newby Bridge 78 
1939 to 
2016 Yes Yes Yes 

73011 Mint Mint Bridge 48 
1969 to 
2016 Yes Yes Yes 

73012 Kent Victoria Bridge 39 
1978 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

73014 Brathay Jeffy Knotts 40 
1975 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

73017 Kent Bowston 36 
1981 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

74001 Duddon Duddon Hall 50 
1967 to 
2016 Yes Yes Yes 

74002 Irt Galesyke 48 
1968 to 
2016 Yes Yes 

No - data quality 
limited 

74003 Ehen Bleach Green 44 
1973 to 
2016 Yes Yes 

No - data quality 
limited 

74006 Calder Calder Hall 44 
1973 to 
2016 Yes Yes Yes 

74007 Esk Cropple How 43 
1974 to 
2016 Yes Yes 

No - data quality 
limited 

74008 Duddon Ulpha 44 
1973 to 
2016 Yes Yes Yes 
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Gauge  River Location 
Record 
length 

Record 
period 

Included 
in trend 
tests? 

Included in 
split sample 
tests? 

Included in non-
stationary model 
fitting? 

75001 St Johns Beck 
Thirlmere 
Reservoir 44 

1974 to 
2016 Yes Yes Yes 

75002 Derwent Camerton 57 
1960 to 
2016 Yes Yes Yes 

75003 Derwent Ouse Bridge 50 
1967 to 
2016 Yes Yes Yes 

75004 Cocker Southwaite Bridge 51 
1966 to 
2016 Yes Yes Yes 

75005 Derwent Portinscale 44 
1972 to 
2015 Yes Yes Yes 

75007 Glenderamackin Threlkeld 31 
1986 to 
2016 Yes 

Not enough 
data 

No - data quality 
limited 

75009 Greta Low Briery 46 
1971 to 
2016 Yes Yes Yes 

75017 Ellen Bullgill 41 
1976 to 
2016 Yes Yes 

No - data quality 
limited 

76003 Eamont Udford 55 
1961 to 
2015 Yes Yes Yes 

76004 Lowther Eamont Bridge 55 
1962 to 
2016 Yes Yes Yes 

76005 Eden Temple Sowerby 53 
1964 to 
2016 Yes Yes Yes 

76007 Eden Sheepmount 52 
1966 to 
2017 Yes Yes Yes 

76008 Irthing Greenholme 50 
1967 to 
2016 Yes Yes Yes 

76010 Petteril Harraby Green 45 
1970 to 
2015 Yes Yes Yes 

76014 Eden Kirkby Stephen 46 
1971 to 
2016 Yes Yes Yes 

76015 Eamont Pooley Bridge 41 
1976 to 
2016 Yes Yes Yes 

76017 Eden Great Corby 58 
1959 to 
2016 Yes Yes 

No - data quality 
limited 

77001 Esk Netherby 42 
1961 to 
2002 Yes 

Not enough 
data 

No - data quality 
limited 
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