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Evidence at the Environment 
Agency 
Evidence underpins the work of the Environment Agency. It provides an up-to-date 
understanding of the world about us, helps us to develop tools and techniques to 
monitor and manage our environment as efficiently and effectively as possible.  It also 
helps us to understand how the environment is changing and to identify what the future 
pressures may be.   

The work of the Environment Agency’s Evidence Directorate is a key ingredient in the 
partnership between research, guidance and operations that enables the Environment 
Agency to protect and restore our environment. 

This report was produced by the Research, Monitoring and Innovation team within 
Evidence. The team focuses on four main areas of activity: 
 

• Setting the agenda, by providing the evidence for decisions; 

• Maintaining scientific credibility, by ensuring that our programmes and 
projects are fit for purpose and executed according to international standards; 

• Carrying out research, either by contracting it out to research organisations 
and consultancies or by doing it ourselves; 

• Delivering information, advice, tools and techniques, by making 
appropriate products available. 

 

 

Miranda Kavanagh 

Director of Evidence 
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Executive summary 
Overview 
This is the technical methodology report for the Environment Agency R&D project 
SC060088 ‘Spatial coherence of flood risk’, which is a scoping study to identify, 
develop and trial methods for determining the likelihood of spatially extensive floods 
from single or multiple sources.  

The project is about how we can estimate the risk (likelihood, severity and 
consequences) of flooding in more than one location. We need to be able to 
understand this spatial aspect of risk in order to properly estimate the probabilities of 
catastrophic emergencies and economic losses at a regional and national scale. 

The overall objective of this project is to develop and test methodologies to assess the 
risk of widespread flooding, incorporating both the analysis of sources and 
consequences of flooding at different spatial scales, up to regional or national level. 

The first objective is to review and develop methods for analysing and modelling 
dependence between multiple variables that affect flood risk, in particular the spatial 
dependence in extremes of river flow or level and sea levels.  

The second objective is to show how the spatial and between-variable dependence can 
be extended to include risk pathways (such as defence failure) and receptors of risk to 
add a spatial dimension to probabilistic flood risk assessment methods that are being 
used or developed elsewhere. 

Project reports 
This technical methodology report contains a detailed description of the methods 
investigated in the project.  

This report should be read in conjunction with the final proof of concept report which 
contains results from three demonstration case studies and a discussion of how the 
findings of this project can be used to realise benefits for flood risk management. 

Technical methodology  
This report reviews the statistical concepts and theory that are needed to understand 
spatial aspects of flood risk. It also reviews how spatial dependence can be important 
in flood risk management and how it has previously been studied. Following the review 
sections, the report sets out a methodology for modelling the risk of flooding that 
includes the risk of widespread floods by modelling spatial dependence in river flows 
and storm surge. We show how it can be integrated with current procedures used in 
the National Flood Risk Assessment to obtain estimates of aggregated economic 
damage over a whole country. Techniques for quantifying uncertainty within modelling 
approaches are discussed. 

The final section of the report sets out a programme of work for implementation of the 
technical methods to deliver benefits through three business applications. 
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1 Introduction 
In recent years Defra (Department for Environment, Food and Rural Affairs) and the 
Environment Agency have led the way in promoting risk-based policies and practices 
for flood management through Making Space for Water, the Flood Foresight project 
and changes to policy and process. Many of these changes have been supported by 
projects in the R&D programme. 

Historically, the methods used for flood risk management had limited capability to deal 
with the spatial dependence structure in the sources of risk since they focussed on 
single points or local systems rather than on a wider area. In other words, it has not 
been possible to answer questions such as ‘what is the chance that many different 
locations will be affected by severe flooding?’ or ‘what is the chance that widespread 
river flooding will coincide with high tides and storm surge?’ 

This limits our ability to manage flood risk. We have not previously had tools to identify 
and assess the range of possible flood events that we must manage, and we do not 
have reliable tools to assess the national risk ‘profile’ to describe the relative likelihoods 
of different scales of flood event. 

1.1 Overall objectives 
This project is a scoping study to identify, develop and trial a method for assessing 
flood risk when aggregated over large spatial scales.  

The overall objective of this project is therefore to develop and test methodologies to 
assess the risk of widespread flooding, incorporating both the analysis of sources of 
flooding and the consequences at different spatial scales, up to regional or national 
level. 

The first objective is to review and develop methods for analysing and modelling 
dependence between multiple variables that affect flood risk, in particular the spatial 
dependence in extremes of river flow or level and sea levels, so as to assess the 
likelihood of spatially extensive floods from single or multiple sources. 

The second objective is to show how the spatial and between-variable dependence can 
be extended to include risk pathways (such as defence failure) and receptors of risk to 
add a spatial dimension to probabilistic flood risk assessment methods such as the 
Risk Assessment for System Planning (RASP) approach that underlies the 
Environment Agency’s National Flood Risk Assessment (NaFRA). 

1.2 Approach 
Meeting the objectives of this project requires understanding and quantification of the 
probability and consequences of flooding at different spatial scales. A suitable 
statistical approach is needed to meet these aims. 

After a review of requirements and possible approaches, the project has built upon a 
statistical method developed by Heffernan and Tawn (2004) and first applied to river 
flow and rainfall data by Keef (2007). The method provides a very flexible model for the 
joint probability of large sets of inter-related variables, including the probability of 
extreme values being experienced in more than one of those variables. This makes it 
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well-suited to model the physical sources of flooding, such as high river flows and sea 
levels.  

The work in this project has shown how the existing statistical model can be linked 
conceptually into an integrated flood risk model, based on the source – pathway – 
receptor approach adopted by the Environment Agency. This provides a conceptual 
framework for adding a spatial dimension to assessments of flood risk that consider 
defence system performance (‘pathways’) and economic or other consequences of 
flooding (‘receptors’), which has the potential to enhance our assessment of flood risk 
regionally and nationally. The scope for realising these benefits has been 
demonstrated in three case studies, which are presented in the accompanying proof of 
concept report. 

1.3 Scope 
The scope of the project is to examine fluvial and coastal (tide and surge) flooding. 
Urban ‘surface water’ flooding and groundwater flooding are excluded.  

Rainfall is not included in this study because the primary requirement for river flooding 
is to model the statistics of high river flows and observations from river gauges are 
therefore a much more direct measure. It is important to note that the modelling 
approach is not a time series model for river flows but instead captures the statistics of 
observed high flow events. Hence it has not been necessary to model antecedent 
conditions because river flow data in effect gather together temporal and spatial 
variations in rainfall.  

However, the statistical methodology that has been used is based on a general 
approach to representing the joint probability of multiple variables. It should therefore 
be suitable, in principle, for extension to include rainfall information or other sources of 
flooding. 

1.4 Contents of the technical methodology report  
This report outlines a generic conceptual model for flood risk analysis and methods that 
can address the above objectives and technical requirements. The contents of the 
methodology report are as follows: 

Section 1 Background  

Section 2 Conceptual model Overview of the generic conceptual model 
adopted for the project. 

Section 3 Flood risk methods 
review 

Review of existing methods and tools for 
flood risk analysis. 

Section 4 Statistical methods 
review 

 

Review of the statistical features required for 
a spatial flood risk model and relevant 
statistical methods.  

Section 5 Statistical model for 
observed locations 

Outlines the statistical model adopted for this 
study and shows how it can be used to 
model the spatial distribution of flood risk at 
the source level. 

Section 6 Implementation of the 
statistical model 

Describes the steps needed to implement the 
statistical model so that it can be linked with 
pathway and receptor models.    
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Section 7 Integration of pathway 
and receptor models 

The proposed method for linking the spatial 
model to existing tools to represent flood 
defence systems and consequences of 
flooding.  

Section 8 Uncertainty and 
confidence 

Commentary on sources of uncertainty and 
quantification of confidence in the results. 

Section 9 Methodology conclusions  

1.5 Contents of the proof of concept report 
(accompanying report) 

An accompanying report summarises the proof of concept results that were presented 
at a stakeholder workshop on 18 March 2009. It also discusses the aims of the project 
further and how it supports the Environment Agency’s flood risk management business.  
The report is structured as follows: 

Section 1 Background  

Section 2 Proof of concept 
approach 

Summary of how proof of concept has been 
established. 

Section 3 Fluvial flood risk Proof of concept results for river flooding in 
North East Region of the Environment 
Agency. 

Section 4 Coastal flood risk 

 

Proof of concept results for five coastal 
locations on the north east coast. 

Section 5 Joint inland and coastal 
flood risk 

Initial findings from joint analysis of regional 
river flood risk and coastal flooding. 

Section 6 Integration with NaFRA Commentary on proposed approach to 
integrate spatial analysis into NaFRA. 

Section 7 Stakeholder workshop Report and discussion of a workshop help to 
seek feedback from interested stakeholders 

Section 8 Proof of concept 
conclusions 

 

1.6 Project management 

1.6.1 R&D programme 

The project was managed through the ‘Modelling and Risk’ (MAR) theme of the 
Defra/Environment Agency joint Flood and Coastal Erosion Risk Management 
(FCERM) research programme. The MAR theme leader is Suresh Surendan. 
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The Environment Agency’s project manager for this contract was Stefan Laeger. Ian 
Meadowcroft was the Environment Agency’s project executive. 

1.6.2 Research contractors 

The research was carried out by a consortium of JBA Consulting (Dr Rob Lamb, Dr 
Caroline Keef, Paul Dunning, Dr Crispian Batstone) and Professor Jonathan Tawn. The 
contractor’s project manager was Rob Lamb of JBA Consulting. 

1.7 Scoping study programme and outputs 
The project started in January 2008 and completed in Autumn 2009. The main outputs 
of the project are listed below. 

• Environment Agency R&D summary. 

• Final summary and proof of concept report.  

• Final methodology report (this document). 

• Paper at FCM>08 conference, Manchester (July 2008). 

• Paper at ‘UK Extremes’ statistics conference, Lancaster (September 2008). 

• Paper at FloodRisk2008 conference, Oxford (October 2008). 

1.8 Strategic programme 
This scoping study is phase one of a potential longer term initiative to support a more 
integrated approach to flood risk management and will be particularly relevant to 
national policy and investment, catchment, coastal and estuary strategies, asset 
management, flood incident management, development control and mapping process.  

Depending on the findings of this study and the prevailing development priorities, a 
second phase would see the proposed techniques integrated with Flood Risk 
Management tools such as the National Flood Risk Assessment (NaFRA), and the 
Modelling and Decision Support Framework (MDSF2). 
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2 Conceptual model overview 
In this section of the report we introduce a generic conceptual model for spatially 
aggregated flood risk. Starting with the simplest outline structure, we describe an 
approach using the source – pathway – receptor (S-P-R) concepts for flood risk and set 
the scene for linking with the RASP methods for flood risk modelling, and therefore with 
tools that implement RASP. 

2.1 The source – pathway – receptor framework 
This source – pathway – receptor concept allows the analysis of flood risk to be 
approached by characterising three components separately: 

Sources: The conditions that create a load on flood defence systems.  

Pathways: The physical mechanisms by which flood waters and hence risk are 
propagated from a source to a receptor. 

Receptors:  The consequent impacts of the hazard.   

In source – pathway – receptor terms, the loading on the flood defence system is the 
‘source’, the response of the system is part of the ‘pathway’, and the impacts are felt by 
the ‘receptors’, which may include population, property, business, infrastructure, 
insurance and others. 

2.2 Generic conceptual model 

2.2.1 Single (localised) source of flooding 

A good starting point to describe the proposed generic approach is a statistical model 
for the ‘source’ component of the S-P-R flood risk model. In the simplest case, where 
we consider only one source of flooding, the model must describe the probability 
distribution of the physical variable that represents the source term. Two obvious 
examples are the probability distributions of water levels at a given location in a river or 
at the coast. For flood risk analysis, we are particularly interested in finding a good 
model for the large extremes of the source variable. 

The overall aim of the risk model is to estimate the consequences of flooding, that is, 
the ‘receptor’ term in the S-P-R concept. Consequences are represented by one or 
more variables that we will refer to generically as a ‘cost function’. Examples of the cost 
function could be financial loss from property damage, economic loss, an index of 
social impacts or simply maximum flood water depth. The desired outcome here is the 
probability distribution of impacts on the receptor, especially at the extremes.   

If the statistical distribution representing the source variable is simple and the cost 
function is also simple, then it might be possible to derive the distribution of the cost 
function (that is, whatever we chose to represent receptor impacts) directly by algebraic 
manipulation. This might be possible, for example, if the source component was 
represented by a simple univariate distribution such as the Gumbel distribution and the 
cost function was a direct and simple function of the source variable such as a fixed 
proportion. An integration of this type is the simplest and most generic expression of 
our conceptual model, illustrated in Figure 2-1. 
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Figure 2-1: Simple generic risk model structure. 

  

In general, the source distribution and cost function are much too complicated for the 
integration to be done analytically. In particular, to capture the joint occurrence of 
flooding over large areas (or to capture the joint occurrence of multiple sources) the 
source distribution has to be a multivariate distribution that can capture the 
dependence between the multiple locations or variables (the consequences of not 
doing so correctly can be serious bias in risk estimates, as shown in Section 4.5). 
There are few multivariate distributions that could be integrated analytically and so it is 
necessary to use some form of numerical integration to calculate the distribution of the 
cost function.  

The simplest approach is a ‘brute force’ Monte Carlo simulation. The basic generic 
conceptual model can then be represented as in Figure 2-2. 

 

Probability 
distribution of 
‘source’ variable, 
e.g. water level in 
river 

Integration with cost function Probability 
distribution of 
‘receptor’ impact 
variable, e.g. 
economic loss 

Probability 
distribution of 
‘source’ variable, 
e.g. water levels 
in river 

Monte Carlo simulation Probability 
distribution of 
‘receptor’ impact 
variable, e.g. 
economic loss 

Simulated 
water levels 
 
i = 1, 
 2  
 3 
 4 
… 
i = n 

Cost 
function 
e.g. FHRC 
economic 
damages 
calculation 
 
i = 1, …, n 
 

Figure 2-2: Simple generic risk model structure with a numerical approximation of the integration. 

 

In the generic structure given above we have continued to make a very simple 
assumption, for the sake of argument, that the cost function can be calculated directly 
for any given value of the physical source variable. However, this is unlikely to be valid 
in most flood risk analysis, where the consequences of the flooding depend on the 
physical source variable via complex processes of flow routing and flood defences. 
Together, these modifying processes are the ‘pathway’ for the flood risk, and their 
complexity is a further reason why some type of numerical integration is needed. 

To incorporate the risk pathway, we must add components to the generic model to 
represent the modification of the physical source variable on the cost function. For flow 
routing, this may be done by using a hydraulic model (or several linked models) to 
‘translate’ the source water level values into flood depths that can be used in the cost 
function. Now, the generic risk model may look like Figure 2-3. 
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Figure 2-3: Generic risk model structure incorporating flow routing within the risk ‘pathway’. 

 

Here, hydraulic modelling is being used to represent a deterministic flood risk pathway,  
where a given water level loading from river or sea would always produce the same 
flood depths and hence cost function. However, not all aspects of the flood risk 
pathway can be considered in this way. In particular, there is generally insufficient local 
information (or physical understanding) to represent the performance of flood defences 
in a purely deterministic manner.  

Instead, a stochastic approach is commonly taken where the defence performance is 
represented by a probability distribution. In the RASP methodology, the defence 
performance is represented by a fragility curve, which is a distribution of failure 
probability conditional on the water level loading and asset condition. We can 
generalise this to express the probability of the defence being in a certain state (failed 
or not failed, but potentially others as well) conditional on the ‘intensity’ of the loading 
(which may be measured physically by the water level but could potentially also include 
other source variables such as velocity and wave direction). 

Because the modifying effect of flood defences on flow routing and depths is also 
complex, the integration of the conditional defence performance distribution into the 
basic scheme involves another Monte Carlo simulation step, where the defence state 
for each Monte Carlo sample is generated such that the simulated states correspond to 
the conditional failure distribution given by the fragility curve. The basic S-P-R 
conceptual model can then be represented as in Figure 2-4. 
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Figure 2-4: Generic risk model structure incorporating flood defence performance and routing in 
the pathway component. 
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The Monte Carlo simulation outlined in Figure 2-4 is a numerical approximation of the 
integration of the probability distributions of the source variable and defence failure 
state. The approximation introduces the potential for errors in the integration. The 
simulation can be carried out until some convergence has been achieved (see, for 
example, Dawson and Hall, 2006; Gouldby et al., 2008). 

It may be necessary to strike a balance between the density of the Monte Carlo 
simulation (the number of simulations) and the level of physical detail in the 
engineering models of the risk pathway. In our conceptual model for spatially 
aggregated risk we propose an approximation that allows for high spatial resolution 
(physical detail) at points within the Monte Carlo simulation space but relies on 
interpolation between those samples. It is important to bear in mind that this is not a 
fundamental decision about the conceptual basis of the model, but rather a practical 
choice based on available computing power and data. Different choices are possible 
within the same conceptual framework, for example use of a cruder but fast rapid flood 
spreading model (as proposed in MDSF2) or even greater use of more detailed, but 
more costly 2D modelling. 

2.2.2 Multiple (distributed) sources of flooding 

In Figure 2-4 above the source of flooding is considered as a univariate distribution 
corresponding to one physical variable. This may be defined at one location or at a set 
of locations that are deterministically dependent on each other (which effectively 
means treating those locations as if they were one point).  

Conceptually it is straightforward to extend the generic model above to include a 
source variable that is spatially distributed. This extension is necessary if we are to 
calculate risk over arbitrarily large spatial scales of aggregation. For a spatial source 
component, we need to extend the basic model so that the integration takes place over 
a vector-valued source variable; that is, a source of flooding that can exist at multiple 
locations in any one event.  In the Monte Carlo approximation, it will then be necessary 
to simulate a vector representing the physical source variable for each Monte Carlo 
sample. The structure is illustrated in Figure 2-5. 
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Figure 2-5: Spatially aggregated generic risk model structure with pathway and multiple (spatial) 
source variables. wi = {w1,I, w2,I, …, wk,i} is a spatial vector of hydraulic loads (such as water levels) 
at each of k locations (such as river network nodes) for the ith of n Monte Carlo samples. 

 

The description of the joint probability distribution of the flood source variable is critical 
in this calculation. There are three important cases that need to be considered in view 
of their impact on both the realism of the analysis and the simulation approach. These 
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three cases describe the degree of dependence between the physical source variable 
at different locations. The possibilities are: 

• Complete independence, in which case values of the source variable can be 
simulated independently from the marginal distribution at each of the k 
locations. 

• Complete dependence, in which case the value at the first location is simulated 
from its marginal distribution (giving the q-th quantile) and then the value at all 
other locations are set equal to their respective q-marginal quantile. If all 
locations have the same marginal distribution this simulation gives equal values 
at all locations.  

• Partial dependence, in which case the water level vectors must be simulated 
from the joint distribution in a way that preserves the dependence between 
locations. 

An assumption of independence is straightforward but unrealistic for flood risk. An 
assumption of complete dependence may be valid for localised analysis. For regional 
or national scale analysis, the joint distributions of important source variables such as 
river flows, sea levels or rainfall exhibit dependence. The focus of this project is on 
effective and efficient methods to represent the joint distribution function for rivers and 
sea levels, and generating data from these distributions that can be used within a 
simulation framework as outlined above.  

In this scheme, the statistical model is effectively ‘interfaced’ with deterministic 
hydraulic models for the pathway and receptor. The statistical model can be used to 
generate sample vectors from the joint distribution of boundary conditions for a broad 
scale hydraulic model (for example at gauged tributaries to a major river or the tidal 
boundary plus river(s) inflowing to an estuary). These can then be used to drive a 
corresponding number of hydraulic model runs to obtain water levels throughout the 
system, with consequential damage and hence risk. The modelling for TE2100 was a 
bivariate version of this. A direct link between the statistical model and hydraulic 
models may be conceptually straightforward but not necessarily efficient or flexible. We 
discuss in Section 2.3.2 and Section 7 how the integration can be done in a modular, 
efficient and flexible way. 

It is likely that if the load on the flood management system is defined over a number of 
different locations then the defence system may also be split into sections. In this case, 
there may be a very large number of combinations of defence states to consider and in 
the simple generic model this would have to be reflected in the size of the Monte Carlo 
sample (the value chosen for m in Figure 2-5). It may be a reasonable approximation to 
consider only those scenarios up to a specified number of defence failures. It is also 
possible to calculate probabilities of failure scenarios directly using a reliability analysis 
approach. Both points are discussed by Hall et al. (2003). 

For the calculation of spatially aggregated risk, there is also an additional step required 
within the Monte Carlo procedure where the cost function is aggregated over the area 
of interest. This may add to the computational load required for modelling the risk 
pathway, for example if economic damage calculations are needed for every property 
in a national database. Again, there may be scope for making approximations to the 
aggregated cost function for large spatial scales.  
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2.3 Conceptual model development 

2.3.1 Joint distribution of the source variables 

The scope of this project is to concentrate on flooding from rivers and the sea 
(including storm surge but not wave action). The data and analysis methods are 
discussed in detail in later sections of this report. A brief overview is given here. 

For river flows we will work with daily mean flow data. This is because quality checked 
daily mean flows are readily available via the National Water Archive maintained by the 
Centre for Ecology and Hydrology and daily flows are suitable for characterising the 
spatial and temporal dependence in most catchments. (Note that the statistical 
methods used here are not restricted to daily flows and is possible to incorporate sub 
daily data for the dependence analysis or instantaneous peak flows for marginal 
distributions). 

For sea levels the variable of most interest is the skew surge, defined on a daily 
maximum scale from hourly sea level data. Using skew surge allows for statistical 
separation of the surge and astronomical tide components of the sea level.  

The statistical method to be used to model the joint (spatial) distribution of the variables 
is the conditional exceedance model of Heffernan and Tawn (2004), which has been 
chosen for its flexibility in representing a range of features observed in the data.  

2.3.2 Integration approach 

The simplest implementation of the conceptual model would be a brute force Monte 
Carlo simulation evaluating randomly generated combinations of source variables 
(spatially distributed water levels, or related variables) and defence states with a 
suitable ‘hazard’ model, such as a gridded 2D hydraulic model and cost function. 
However, this would require an enormous computing effort to work for large scales and 
is therefore considered impractical.  

It is not desirable to build a ‘black-box’ system where the entire simulation engine is 
closed because it is then difficult to take a modular approach, where choices can be 
made about how to implement different components of the model depending on 
priorities and available resources. 

We therefore suggest an approach that breaks the generic model down into separate 
parts and introduces useful approximations wherever possible. This is already a feature 
of the statistical model for the joint distribution of river or sea ‘loading’ in that the 
marginal distributions of the physical variables are separated from the dependence 
structure. It is also an approach that allows for future enhancements of the methods. 

Source, receptor and simple hydraulic pathway 

To begin with, assume for simplicity that the flood defence ‘pathway’ can be ignored. 
The most time-consuming part of the simulation process is then likely to be the 
hydraulic modelling of floodplain depths (assuming that a relatively high resolution, 
dynamic model is used). In practice, small changes in the boundary conditions for the 
hydraulic model may often result in small changes in the depth and extent. In this case, 
it is reasonable to evaluate the hydraulic model for set points within the Monte Carlo 
simulation space and to approximate its behaviour for points in between. A quick and 
simple approximation is to interpolate between the depth data produced by detailed 
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evaluations of the hydraulic model. This is, in effect, a simple form of statistical 
emulator for the full hydraulic model.  

A straightforward approach is to run the hydraulic model ‘off line’ for a number of 
prescribed load conditions corresponding to set probabilities of the load, and then to 
use the resulting depth grids as a lookup table for events simulated in the Monte Carlo 
procedure. There could be thresholds where the hydraulic model response does not 
vary smoothly with the boundary conditions and the Monte Carlo approximation could 
be improved by carrying out further evaluations between points where there is a high 
rate of change in its response.   

The approach is illustrated in Figure 2-6, where the shaded boxes replace the original 
direct simulation using the hydraulic model. The structure is modular, allowing different 
choices to be made if refinements are needed. The process starts with a large set of 
vectors simulated from the multivariate distribution of the source variable. Physically, 
this corresponds to vectors containing water levels for all locations within the 
aggregation area. Each simulated set of water levels can be thought of as representing 
a plausible event that could occur. We therefore refer to the set of load vectors as an 
‘event set’. 

Probability 
distribution of 
‘source’ variable, 
e.g. water level in 
river at the k 
locations given 
by l = 1, …, k  

Monte Carlo simulation Probability 
distribution of 
‘receptor’ impacts 
variable, e.g. 
economic loss for 
the area A 

‘Event set’ of simulated water level vectors,  
 
wi = {w1,i, w2,i, …, wk,i}, i = 1, …, n 
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 within the pre-
defined array of 
depth grids.   
 

Cost function, 
aggregated over 
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2D hydraulic 
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specified loads. 

 

Figure 2-6: Generic spatial risk model structure with exhaustive evaluation of the pathway model 
replaced by emulation (shaded boxes). wi = {w1,I, w2,I, …, wk,i} is a spatial vector of hydraulic loads, 
such as water levels, at each of k locations, for the ith of n Monte Carlo samples. 

 

The interpolation method used within this procedure is also open to choice. One option 
may be to interpolate based on volumes flowing onto the floodplain. This is the method 
that has been used for the Environment Agency’s north east region to provide a 
regionally-consistent flood risk assessment for 65 flood risk management and 
catchment change scenarios for 10,000km of watercourse. 

Although the most obvious physical variable to represent the source of flood risk is the 
water level, it is difficult to construct useful water level estimates for risk analysis over 
large areas because of the lack of comprehensive data to describe river channel 
hydraulics or rating curves. Working with levels is difficult when a model may have to 
combine uncertain representation of the river channel with floodplain topographic 
(DTM) data of varying accuracy and precision. These problems are also faced by 
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NaFRA, where volumetric approaches have been used to avoid having to specify water 
levels when there is too much uncertainty.  

Another option, that may be efficient for large-scale risk modelling, is to define the 
event set not in terms of direct physical loading (such as water level) but instead in 
terms of the ‘intensity’ of the load. The most convenient measure of intensity is the 
probability of the load. In this case, depth data per event can be interpolated using 
probability as the indexing variable. This provides a convenient opportunity to make 
use of existing flood depth grids produced, for example, for flood mapping projects. The 
model structure is illustrated in Figure 2-7, where the shaded boxes again represent 
the module that stands in for the full evaluation of a hydraulic model. 
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Figure 2-7: Generic spatial risk model structure with emulation (shaded boxes) of pathway model 
and hydraulic load expressed using an ‘intensity’ variable, such as probability, rather than water 
level.  w*i = {w*1,i, w*2,i, …, w*k,i} is a spatial vector of the ‘intensity’ variable at each of k locations, 
for the ith of n Monte Carlo samples. 

 

We have used this approach in the demonstration cases for this project. However, by 
exposing the event set as a complete entity, the generic approach above does allow for 
other choices to be made about how the simulation method is carried out. 

Flood defence system ‘pathway’ 

The addition of flood defence systems to the risk ‘pathway’ adds greater complexity to 
the above model. In the generic model, it would be straightforward, if expensive, to 
generate defence states and compute flood depths for each Monte Carlo step. To 
reduce the computational expense, an approximation could be made, similar to the 
approach described above, based on simulating defence states and then interpolating 
the resulting flood depths between evaluations of a hydraulic model for pre-defined 
combinations of defence failure scenarios and load ‘intensity’.  

Depending on the number of defences within a defence system, this could greatly 
increase the required number of hydraulic model evaluations, but some constraint 
could reasonably be put on the number of defence failure scenarios (as in Hall et al., 
2003) because of the very low probability of the most ‘extreme’ failure cases. For 

12  SC060088 Technical Methodology Report  



 

rivers, this is further justifiable because there is limited volume available to flow to the 
floodplain, regardless of how many defences fail. 

The Environment Agency has adopted the RASP approach to represent the 
performance of flood defence systems in modelling flood risk. It is therefore important 
to explore how the generic model for spatially aggregated flood risk can be aligned with 
RASP. In this project we have established that a link is possible in principle. This is 
discussed further in Section 7. 
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3 Flood risk methods review 
In Section 2 we outlined a generic conceptual flood risk model based on the source – 
pathway – receptor concept. In this section we review previous research projects to 
identify which aspects of flood risk they relate to and how they are relevant to analysis 
of widespread flooding. 

3.1 Methods reviewed 
Table 3-1 summarises the projects reviewed. We have also included a number of more 
academic studies of flood risk variables, which are referred to in the text. 

FD2308 Joint probability: 
dependence mapping and best 
practice 

Review of existing (as of 2002) methods of joint 
probability analysis and extremal dependence 
estimation. Analysis and mapping of pairwise 
dependence between variables that relate to 
river, tidal and precipitation. 

FD2105 Improved methods for 
national spatial-temporal rainfall and 
evaporation modelling for broad 
scale modelling 

Development of a complex statistical model that 
can be used to simulate rainfall at differing 
temporal and spatial scales. A method of 
modelling potential evaporation at a single site 
was also developed.   

FD2113 Spatial-temporal rainfall 
modelling with climate change 
scenarios 

Applied the method developed in FD2105 under 
a wide range of climate change scenarios. 

Environment Agency rainfall and 
weather impacts generator 
(EARWIG) and UKCP09 weather 
generator 

Weather generators that, although intended to 
be used at a single site, can be used to 
generate weather data for small catchments. 
Incorporated into the UKCP09 climate change 
projections.   

FD2020 Regionalised impacts of 
climate change on flood flows 

An examination of the ways in which changes in 
monthly weather may affect changes in flood 
flows. 

Risk assessment for flood and 
coastal defence for strategic 
planning (RASP) 

Family of methods based on simulation of flood 
risk source and pathway using the fragility curve 
concept to represent dependence between the 
two.  

Modelling and decision support 
system 2 (MDSF2) 

Software application being developed on behalf 
of the Environment Agency to provide a flood 
risk analysis tool that includes probabilistic 
treatment of defence systems (using RASP). 

Social vulnerability mapping Mapped high concentrations of people with high 
vulnerability to flooding and critical 
infrastructure. 

Table 3-1: Summary of flood risk management projects reviewed. 
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3.2 Dependence in the source - pathway - receptor 
model 

Although it is convenient to break the analysis of risk down into source, pathway and 
receptor, it is also important to take account of the interactions, or dependence, 
between the components. To date, attention in the flood risk management literature 
has concentrated only on certain aspects of dependence.   

One area that has been considered is the relationship between source and pathway, 
which has been represented using the fragility curve concept where the failure 
probability of defences is made conditional on the magnitude of the loading. Another 
important aspect of dependence that has been studied in detail is the relationship 
between tide levels, wave and storm surge. 

In both cases, established approaches only provide a limited description of the full 
spatial and temporal structure of the dependence between variables. Two examples 
are the RASP approach for modelling flood risk in the presence of defences and the 
POL112 method for sea level extremes. The RASP approach includes the fragility 
curve concept and also builds in some spatial structure by considering systems of 
defences, though the structure is a fixed one, imposed a priori by the analyst. More 
sophisticated approaches to represent spatial dependence in defence failure have 
been discussed but are not routinely available. The POL112 joint probability approach 
for extreme sea levels is essentially based on a point in space, though there is a 
deterministic interpolation of the marginal probability parameters over space to account 
for the spatial coherence of the surge process. 

3.3 Projects investigating the flood risk ‘source’ term 
The projects that relate mainly to characterising the source component of flood risk are 
FD2308, FD2105, FD2113, EARWIG and FD2020. The projects FD2105, FD2113 and 
EARWIG all simulate spatially and temporally coherent rainfall which can then be used 
in conjunction with a rainfall-runoff model to simulate river flows. The extremes of these 
river flows can then be analysed to assess the likelihood of multiple floods. Project 
FD2308 looked at existing (as of 2002) methods of joint probability analysis and 
extremal dependence estimation and mapped the pairwise dependence between 
extreme river flows, precipitation and sea surge. The ongoing project FD2020 is 
examining the ways in which changes in climate may affect flood flows. 

3.3.1 Rainfall 

Defra project FD2105 (Improved methods for national spatial-temporal rainfall and 
evaporation modelling for broad scale modelling, Wheater et al., 2006) developed a 
complex suite of statistical models that can be used to simulate rainfall at differing 
temporal and spatial scales. A method of modelling potential evaporation at a single 
site was also developed. The rainfall simulation method can be used to simulate rainfall 
at time intervals of greater than an hour and at spatial scale up to a medium sized 
catchment.   

The project FD2113 (Spatial-temporal rainfall modelling with climate change scenarios) 
uses the outputs from different climate models to change the parameters of the rainfall 
simulation model. The differences in simulated rainfall for different climate models were 
examined and a method of combining these outputs was also developed. One of the 
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findings of the FD2113 project was that predicted changes in rainfall vary greatly 
depending on the chosen climate model.  

The main output from the EARWIG project is a combined stochastic rainfall model and 
weather generator. The rainfall model is a non-spatial point process stochastic 
approach based on the Neyman-Scott rectangular pulses model. A ‘weather generator’ 
approach is used to generate data for temperature, vapour pressure, sunshine and 
wind speed conditional on the simulated rainfall. The rainfall model is essentially a 
point model, where the ‘points’ are defined on a 5km grid. However, it also incorporates 
a facility to work with precipitation averaged over an area to generate data for small 
catchments (areas less than ~1000km2 are suggested in the EARWIG documentation).  

A similar model is included with the UKCP09 climate change projections. It can also be 
used to simulate weather data for a large number of defined future climate change 
scenarios. This is done by applying change factors, derived from the climate model 
outputs, to perturb the rainfall statistics that are built into the model. The change factors 
are defined at the climate scenario grid scale (25km). Spatial patterns in the change 
factors are fixed. The spatial grids of UKCP09 projections are not spatially coherent, 
and therefore do not support generation of large scale rainfall fields. This and other 
aspects of the use of UKCP09 are being considered by the Environment Agency under 
R&D project SC080004. 

The method used to simulate rainfall developed in project FD2105 has two stages.  
The first stage is to generate a wet/dry state at a site, that is, whether or not that site 
has any rain, and then to generate a rainfall amount.  Different generalised linear 
models (GLMs) are fitted for the two stages. The spatial structures of the two linear 
models are also modelled separately.   

For each simulated rainfall event the number of wet sites is modelled using a beta-
binomial distribution. This distribution can then be used to generate number of wet sites 
for each rainfall event. The positions of these wet sites are then allocated in such a way 
as to preserve the marginal probabilities of rain at each site. An algorithm for achieving 
this is described in Chandler (2002).   

The amount of rainfall on each wet day is modelled using logistic regression at each 
site. The daily spatial dependence structure is then modelled by assuming a 
multivariate normal distribution structure for the Anscombe residuals. At each site these 
Anscombe residuals have a univariate normal distribution and are equal to , where 

 is the amount of rainfall on the  wet day and  is the mean of the fitted model.    

Buishand et al. (2008) estimated the total areal rainfall that is exceeded once in 100 
years. The approach taken was to simulate a large number of synthetic daily rainfall 
fields that can be used to estimate the total areal rainfall that can be expected to be 
exceeded once in 100 years. The data used in this study were from 32 rainfall stations 
records located in North Holland. The length of record used was 30 years and the data 
were recorded at daily intervals. Only the autumn months were examined. In simulating 
the data three assumptions were made. The first was that sites that are located close 
together are asymptotically dependent. The second was that the dependence between 
sites that are far apart can be wholly explained by the intervening sites. Taken together 
these imply asymptotic dependence over the whole set. The third assumption was that 
the only factor affecting dependence is distance, this would not be appropriate for river 
flow modelling or for precipitation over substantial hills.   

3.3.2 River flow 

Donner (in press) used the standard multivariate statistical technique of principal 
component analysis to assess the overall level of dependence of river flows in a spatial 
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region. In this work the proportion of principal components that are needed to explain a 
specified proportion of the total variance was used as a dependence measure. It was 
found that fewer principal components were needed to explain the variance within a 
flood event than are needed when the flows are at a more usual level. This suggests 
that the dependence structure becomes simpler as the river levels become more 
extreme. It also shows that any method used to describe the spatial dependence of 
extreme river flows must be able to handle this change in dependence at extreme 
levels. 

The aim of the research in Troutman and Karlinger (2003) was to estimate the 
probability of any site in a region having a T-year flood in any given year. They called 
this probability the regional flood probability (RFP). The data used in this study were 
annual maxima data from Washington State. A variety of different methods were used 
to estimate the RFP. The first was to transform the data so that it had standard normal 
marginal distributions. The empirical distribution function was used to estimate the 
marginal distributions of the data. Then a multivariate normal copula was assumed, 
from which artificial data could be simulated. Another method was to use the average 
between-station correlation to directly influence the RFP.   

3.3.3 Sea levels 

A study that used the Heffernan and Tawn (2004) conditional method to examine 
spatial dependence is that of Latham and Tawn (2007). This paper is an application of 
the method to sea level data in the North Sea. One of the findings of the paper was that 
there was lower dependence between sites at the far south eastern corner of Britain 
with other sites on the east coast of Britain than between sites at the far north eastern 
corner of Britain with other sites on the east coast of Britain.  

This is a feature of the spatial dependence of sea surges that was not clear from the 
work of Svensson and Jones (2002, 2004); the reason for this is probably because of 
the fact that the Heffernan and Tawn method is capable of providing more information 
on the extremal dependence. Another finding in Latham and Tawn (2007) is that as the 
sea surge events become more extreme, the effects of dependence were seen to 
become more localised. 

3.3.4 Multiple variables 

The aim of the project FD2308 (joint probability: dependence mapping and best 
practice) was to review current methods of joint probability analysis and extremal 
dependence estimation and to encourage the wider industry to use these methods.  
Another part of the FD2308 project was to analyse and map pairwise dependence 
between variables that relate to river, tidal and precipitation. This dependence mapping 
looked at same day and lagged extremal dependence.   

It is preferable to look at dependence between variables that arise from the same 
meteorological event because it is this dependence that affects the probability of 
widespread floods. The work of Svensson and Jones (2002, 2004) is an investigation 
of the pairwise dependence between extreme sea surge, river flow and precipitation 
around the coast of Britain. Svensson and Jones (2002) focuses on the east coast. 
Their 2004 work, which forms part of FD2308, focuses on south and west coasts. The 
dependence measure used in these papers is , defined in equation (4.6.1). This 
measure has been described in detail by Buishand (1984) and Coles et al. (1999).  
Buishand used it previously to describe the dependence in precipitation data in the 
Netherlands. By using the dependence measure , one of the main outcomes of these 
studies was a set of maps describing pairs of variables that exhibit asymptotic 
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dependence. The variable pairs that were examined were all possible same-variable 
pairs (surge-surge, flow-flow and precipitation-precipitation) and also all different 
variable pairs (surge-flow, and so on). Same day dependence was examined along 
with dependence at a lag of plus or minus one day.     

The main findings of these studies of Svensson and Jones are as follows. Dependence 
in extreme sea surges is higher on the west and east coasts than on the south coast.  
The dependence in extreme river flows from different catchments was found to be 
higher in areas draining to the west coast than the east coast, whereas the 
dependence of extreme precipitation is higher on the east coast than the west. It was 
also found that there was evidence of asymptotic dependence of sea surges over 
longer distances than for river flow or precipitation. It is expected that this should be the 
case due to the physical nature of the processes involved. The highest dependence for 
flow-surge and precipitation-surge pairs was found on the east coast of Scotland and 
the western half of the south coast of England. The seasonal analysis revealed that 
there was no consistent change in dependence between winter and summer for sea 
surges. However, both precipitation and river flows exhibited higher levels of 
dependence for the winter months.   

Another approach to examining the dependence used in the Svensson and Jones 
papers was to look at how the differing storm tracks of mid-latitude cyclones cause 
extreme observations in single, or multiple variables. It was found that differing routes 
and speeds of storm tracks have an effect on which variables have simultaneous 
extreme observations.  

Ancona-Naverrete and Tawn (2002) use the coefficient of tail dependence, , 
developed by Ledford and Tawn (1996) to describe how extremal dependence 
changes with distance. The two variables studied were rainfall in south-west England 
and sea surges on the east coast of Britain. They found that rainfall was asymptotically 
independent but strongly correlated; that is, many sites are likely to experience an 
extreme event at the same time, but unlikely to experience their very largest event at 
the same time. The sea surge variable used in this analysis was the surge at high tide. 
They found evidence of asymptotic dependence of surges at distances up to 250km. At 
distances between 250km and 400km they found evidence of decreasing extremal 
dependence. At distances of greater than 400km they found that the level of extremal 
dependence was stable.   

The work of Keef (2007) and Keef et al. (2009b) uses the Heffernan and Tawn model 
(Heffernan and Tawn, 2004) to estimate the risk measure , defined in equation 
(4.7.4) to examine the strength of spatial dependence in extreme daily river flows and 
extreme daily rainfall over Britain. The dependence of these two types of hydrological 
variable was examined in two separate studies. We define the set of variables of 
interest as  and we condition on variable .  The risk measure  can be 
thought of as the expected proportion of variables in  that are extreme within a 
certain time window of  given that  is extreme at time . For the river flow analysis 
the time window was taken to be plus or minus three days and for the rainfall analysis 
the time window was taken to be zero days (in other words, same day dependence).  
The site  was taken to be each measuring station in turn and the set of variables  
was taken to be all other measuring stations of the same type within a certain radius of 
the site . These radii were taken to vary between 30km and 120km. A number of 
different probabilities, , were also examined, these ranged from the probabilities 
corresponding to the 0.1 year to 55 year return periods for the river flow analysis and 
0.1 year to 548 year return periods for the rainfall analysis. These probabilities are the 
probability of a certain daily mean flow or daily precipitation being exceeded on a 
particular day.   
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For river flows the spatial dependence was highest for areas that had homogeneous 
catchments, such as the steep valleys of South Wales, for example. Areas such as the 
upper reaches of the Thames catchment, which has both permeable and impermeable 
sub catchments, and the Lake District, where some gauges are located upstream of 
lakes and some downstream, have much lower levels of spatial dependence. Other 
findings from the river flow analysis were that dependence decreased as the probability 
threshold increased and also that the dependence decreased with distance. The effect 
of seasonality on the dependence structure was not examined. For rainfall, the overall 
level of spatial dependence was lower than that for river flow. The main factor that 
seemed to affect the spatial dependence of rainfall was the hilliness of the region. The 
flatter areas of south-east England exhibited a higher level of dependence than the 
more upland areas of the north and west. Similar to the river flow analysis, the level of 
dependence decreased with increasing threshold and increasing distance. In addition 
to the whole data series analysis, the data from the summer months and the data from 
the winter months were analysed separately. In general, the level of spatial 
dependence in summer was less than that in winter. 

3.3.5 Climate change 

The project FD2020 (Regionalised impacts of climate change on flood flows) takes an 
alternative approach to assessing the impacts of climate change. Instead of examining 
the outputs of existing climate models and seeing how they vary from each other and 
the present day, the project FD2020 will look at ways in which changes in monthly 
weather may affect changes in flood flows. By taking this approach it is hoped that the 
results can be used with both current and future climate models. The FD2020 project 
will look at both small and large catchments over the whole of Britain (England, 
Scotland and Wales). It will examine the effect of climate change on different types of 
catchment where catchments are classified according to their catchment descriptors.  

The project FD2308 also looks at the effect of climate change on dependence. To do 
this it looks at the outputs from two climate models and how the dependence 
associated with these outputs differs from the current records. 

3.4 Projects investigating the flood risk ‘pathway’ 
term 

3.4.1 The RASP family 

The Environment Agency and Defra initiated development of the risk assessment for 
flood and coastal defence for strategic planning (RASP) methodology in 2001, with the 
aim of providing a hierarchical risk-based analysis framework to help assess flood risk 
and in particular how flood defences, and investment in flood management, influence 
flood risk. There have been numerous reports and other outputs produced since then 
and the RASP approach has come to be regarded as a ‘family of methods’ for flood risk 
analysis. Key reports are Environment Agency (2004, 2007). 

In principle, the RASP methods are quite simple. The idea is to represent flood risk by 
integrating the probability distributions of the source (which is usually interpreted as 
water level loading), the pathway (flood defences) and, where relevant, the receptor 
(for example by including economic damages as a function of flood depth).  
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Conceptually, the approach follows on closely from the methods proposed by the US 
Army Corps of Engineers in the 1990s (National Research Council, 2000) and thereby 
represents a significant shift in thinking away from deterministic ‘standards of 
protection’ towards a risk-based methodology for flood management.   

The integration of the various probability distributions is most easily accomplished 
using a stochastic simulation approach, and the ‘RASP family’ is in effect a set of 
related simulation tools that allow the underlying concept to be applied at different 
levels of detail and with different types of data. The stochastic simulation consists, in 
the most basic form, of a large number of possible ‘flood events’ being generated from 
the probability distribution of the source variable (such as water level), which are then 
taken as inputs to a model of the defence system behaviour. The complexity of the 
published reports and methods stems largely from the need to accommodate a range 
of different circumstances within the simulation approach. 

Whilst the aims of the RASP method were quite general, one central aspect is the 
influence of flood defences on risk. There can be a spatial dimension here, because 
the risk at a particular location is generally influenced not just by defences at a single 
point, but by a whole defence system. There are also important dependencies to 
consider, which could include: 

• Local dependence between loading (the flood ‘source term’) and probability of 
defence failure. 

• System wide dependence in the relationship between loading and probability of 
defence failure. 

• Spatial dependence of loading, in the presence or absence of defence failure. 

The RASP methods use the fragility curve concept to represent the first bullet point. A 
fragility curve specifies how likely a defence failure is given specified water level 
loading. The last two items are not fully included, as we will discuss below. 

3.4.2 Dependence assumptions in RASP 

Current RASP implementations make assumptions of ‘Dependence of load’ and 
‘Independence of defence strength’. More sophisticated versions of RASP may 
progressively relax these two assumptions. Pointers to future development were given 
in an Environment Agency report ‘Scoping the development and implementation of 
flood and coastal risk models’, which is the main output from R&D project SC050065. 

Dependence of load 

This assumption means that the load applied to a defence system has been taken to 
be equal over the system. It is a fixed, deterministic dependence. A ‘defence system’ is 
taken here to mean the combination of flood defence assets that together provide 
some protection from flooding along a river or coastline. 

Future RASP tools are likely to allow for spatially varying loads. An example of how this 
could be important is where local features in bathymetry and the direction of storm 
travel can lead to significantly different conditions at adjacent positions on a coastline.  
Incorporating this kind of spatial variation is relatively straightforward as forecast loads 
are generally known (from a numerical model output) and hence can be included within 
the RASP analysis without changing its basic form. 

It should be noted that this is a fixed form of dependence rather than the association 
between random variables that is implied by the term ‘dependence’ elsewhere in this 
report. Hence although allowing spatial variation in loading would relax the original 

20  SC060088 Technical Methodology Report  



 

assumption of equal loading on a defence system, the relaxation envisaged by 
SC050065 remains purely deterministic. Over a relatively small scale this is 
reasonable. However over larger scales, particularly for fluvial flood risk, it would be 
implausible to assume a deterministic variation in loading within a probabilistic method. 

Independence of defence strength 

This assumption means that the probability of failure in a given defence system 
component (which is in effect a point-wise estimate) is taken as not having any 
influence on other components. The two main sources of dependence in defence 
systems are the effect of breaching on the loads (water levels) that neighbouring 
defences are subject to and the spatial dependence in statistical variation in strength. 

Relaxing the assumption of independence of strength increases the computational 
complexity of the risk simulation, requiring secondary influences on asset strength to 
be included.  For example, it could be necessary to model the probability of failure in 
several different locations given dependency in the physical condition of the defence 
asset and also in the loading over the system. The scoping study for future RASP 
methods concluded that it is likely to be sometime before such a capability exists. 

A physical example of this type of problem could be a defence system where failure of 
a flood gate allows scour and progressive failure of an earth bank, simultaneously 
changing water levels experienced on another part of the defence system a short 
distance downstream. Representing this type of scenario in a deterministic simulation 
is difficult enough. A stochastic simulation method would then have to represent 
numerous possible scenarios of this type, each with a realistic frequency of occurrence 
within the set of simulated events. 

3.4.3 Spatial scale and dependence 

The discussion of dependence in RASP is concentrated at the spatial scale of a 
discrete defence system (that is, a collection of defence assets, gates, embankments 
and so on that can be treated as a single system protecting a given flood area). Large 
scale spatial variation of loading, in the stochastic sense that we understand it for this 
project, is not included. This is unlikely to be a limitation for a small scale analysis at 
the asset system level.  

However, for larger scale analysis, in particular the development of national or regional 
‘risk profiles’, it is not realistic to assume a deterministic spatial pattern (including 
constant loading) for the stochastic simulation of the source of flood risk. It is at the 
larger geographical scale that the present project can make the most significant 
contribution to risk assessment that may currently use RASP-based methods. There is 
no conflict between the approaches; rather the development of models for spatial 
dependence in sources of risk enhances the capability of RASP or other risk 
assessment methods. 

This issue of dependence over different scales is clearly very relevant to the continuing 
development of NaFRA. Without accounting for the dependence, there would be bias in 
aggregated risk profiles, for the reasons discussed in Section 2 of this report. 
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3.5 Projects investigating the flood risk ‘receptor’ 
term 

3.5.1 Modelling and decision support framework (MDSF) 

The modelling and decision support framework (MDSF) tool was developed initially in 
2001 to provide a tool for quantifying economic and social impacts of flooding at a 
catchment scale for present day conditions, future scenarios and with flood 
management options. It draws on water levels generated from external hydraulic 
models and includes simple methods for linearly spreading these water levels and 
evaluating flow depths. It has been applied widely for flood and erosion risk 
assessment as part of catchment flood management plans (CFMP) and shoreline 
management plan (SMP) programmes and has also been used on strategy studies, 
pre-feasibility studies and other similar scheme appraisals. 

The present version of MDSF, however, uses a simplified representation of the role of 
defences and does not properly take account of defence performance in the analysis of 
risks and their management. This is a particularly crucial point in the context of 
understanding and managing actual risk. The Environment Agency has therefore 
commissioned the development of a second version, MDSF2, to incorporate RASP 
methods to take into account the performance of flood defences. (The project also 
addresses a number of software issues, such as GIS platform, which have been 
obstacles to widespread uptake within the Environment Agency). The MDSF2 will 
therefore include probabilistic flood modelling algorithms, based on rapid, physically 
approximate flood spreading (though it is also planned to have the capability to add in 
more detailed, external model data where this is useful). 

MDSF2 will incorporate the National Property Database (NPD2) dataset (amongst 
others such as the Valuation Office Database and Multi-coloured Manual) for 
estimating property damages, however, the user will have the flexibility to edit or 
change these values. It will allow estimation of impacts such as property and 
agriculture damage, indirect infrastructure costs, risk to people and a range of 
indicators such as numbers of properties at risk, length of rail or road at risk (using 
simplified methods).  

The MDSF2 has been referred to in its design report (Environment Agency R&D report 
SC05001/SR ’Task 1g - MDSF2 System Design’, undated) as a tool that can 
implement the RASP methods ‘at any scale’. From the perspective of this report, it 
should be apparent that there is a gap in current probabilistic risk methodologies at 
scales large enough for dependence in the source of flood risk to become important. 
The current project will identify methods to account for the spatial dependence of 
sources or risk that will be capable of linking with the algorithms in MDSF2. This would 
provide the capability to allow a scale-independent analysis of risk within software 
applications such as MDSF. 

3.5.2 Broad scale modelling data for the North East 

In 2007 the North East Region of the Environment Agency commissioned a broad 
scale modelling study to produce consistent flood risk data for the region using a 2D 
modelling approach. The completed data set assimilates 1,250,000 separate 2D 
gridded flood depth models into risk information suited to CFMP or strategic studies 
ranging from regional spatial strategies to strategic flood risk assessments. The data 
produced for the study were built into a database containing 19 new flood depth grids 
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and 19 indicative hazard index grids over the North East Region, covering 190,000km 
of river length. These depth grids were completed in four months using a parallelised 
2D diffusion wave flood model run on a 10x10m spatial grid. The flow data used in the 
modelling was derived from automated Flood Estimation Handbook (FEH) estimates 
licensed by the Environment Agency (but interpolated to intermediate return periods) 
with some local adjustments based on more detailed comparisons with existing 
modelling studies. Defences were represented using simple standard-of-protection 
assumptions. 

The data were supported by GIS-based software to allow scenario exploration, 
including climate change scenarios, vulnerability maps, flood risk to people, and 
probability maps. Reporting was per asset system area, but other spatial aggregations 
could also be adopted. The spatial (grid or outline) and frequency distribution outputs 
include: 

• Flood depths at properties. 

• Damage at properties (based on the Flood Hazard Research Centre depth-
damage curves giving the same output as MDSF NPD2). 

• Hazard ratios at properties. 

• Vulnerability indices based on spatial analysis of Census data. 

• Consequence scores that combine hazard with vulnerability. 

• Annual average damages expressed as a function of defence standard for 
property and for agriculture. 

• Agricultural damages aggregated over asset system areas (calculated as per 
MDSF1). 

• Depth grid statistics. 

• Probability maps. 

Although the database produced for this study was designed to assist with scenario 
exploration, it is also well suited to demonstrating this link with receptor impacts within 
an efficient simulation framework, which, as we will discuss in Section 7, offers a 
potential route to deliver a spatially aggregated model of flood risk.  

3.6 Flood risk analysis in the insurance sector 

3.6.1 Catastrophe models 

The large scale spatial aspects of flood risk are of direct concern to the insurance and 
reinsurance industries. The insurance companies take reinsurance cover (or use 
equivalent financial instruments) to ensure sufficient capital is available in the event of 
a catastrophic loss. Reinsurers need to know the probabilities of extensive flood 
scenarios in order to guide their pricing. Reinsurance pricing is generally guided by a 
combination of actuarial analysis of historical events and the outputs from catastrophe 
(‘cat’) models. Here we provide an outline of the general principles of cat modelling and 
give three examples. For a detailed description of cat modelling and more examples 
see Sanders et al. (2002).   

The details of each cat model differ, however there are certain broad principles that 
emerge. In general, cat models are made up of four different modules. The first is a 
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stochastic model which randomly generates a synthetic sample of catastrophic events, 
corresponding to the ‘source’ of risk in S-P-R terms. The second component, the 
hazard module, takes each random catastrophic event and derives its physical impact 
(for example, flood depth). The third module is a vulnerability function that calculates 
the damage to buildings and other structures, likely business interruption and other 
financial implications of each event. The final component is a financial analysis module 
that, in the simplest case, adds up the total financial loss for each event (though in 
practice the calculations are more complicated). The financial losses from each 
randomly generated event can then be ranked in size order and used to produce a risk 
profile, which can then be used to asses total exposure and hence inform pricing 
decisions.   

3.6.2 Examples 

Detailed information about the workings of individual cat models is generally 
commercially privileged.  However, the principles of models produced by major risk 
analysis firms are published or presented at technical seminars. Here we summarise 
information known about three models.  

One example is the river flood model developed by Risk Management Solutions 
(RMS). The probabilistic component of the RMS model is produced by simulating 
spatial and temporal weather data (precipitation, potential evaporation and 
temperature). The simulation is carried out by stochastic perturbation of meteorological 
data from historical patterns, with variations in season and altitude taken into account. 
We have not been able to find sufficient published details of the mechanism for 
modelling dependence and for simulation of spatial rainfall fields to comment at this 
time on how well the simulation would account for the statistical properties discussed in 
Section 4.2 of this report. In general, it is worth noting that simulation based on 
perturbing observed data leads to a dependence structure that will not weaken as 
larger events are produced, and so implicitly assumes asymptotic dependence.  

The hazard component of the RMS river flood model incorporates a soil moisture 
component, a rainfall-runoff component and a flood depth model. The soil moisture 
must be treated as a random variable and can be expected in reality to have a complex 
dependency on the rainfall history - it is not known whether this is represented by the 
model. The flood depth model takes into account the probability of defence failure 
using the fragility curve concept. The vulnerability model includes information on the 
vulnerability of different types of buildings and the location of these buildings.  

The ABI East Coast Flood Study, carried out by Entec, RMS and Risk & Policy 
Analysts, examined the spatial impact of storm surge events on the east coast of 
England using the RMS storm-surge model (Thurston et al., 2007, Muir-Wood, 2005).  
Three storm surge scenarios were considered, focussing in turn on the Humber 
Estuary, the East Anglian coast and the Thames Estuary.  Each had a return period of 
200-250 years.  The model used by RMS generates storm surges for the whole of the 
east coast of Britain based on a stochastic wind storm model and correlation analysis 
of surge heights. It also incorporates aspects of defence failure. This study also 
examined the effect that sea level rise and how possible changes in the distribution of 
ages in the population may affect the likely impact of storm surge events. Another 
aspect of the study was to assess the economic benefit of improving coastal defences. 

A third cat model example is the Swiss Re exposure calculation tool for the Czech 
Republic. Unlike the RMS model, the Swiss Re approach is to produce spatially 
realistic events using river flow data. The Czech Republic is split into Administrative 
Units (AUs). Each of the simulated flood events consists of a synthetic flow 
‘observation’ at each AU. The data used to derive the model are monthly maxima 
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records from gauging stations over the Czech Republic. These records were then 
transformed to have standard normal marginal distributions. The spatial dependence is 
modelled using a multivariate normal copula. Monthly maxima flows at AUs that do not 
contain a gauging station are obtained by interpolating the gauged data using kriging.  
So, to generate stochastic flow events, the covariance matrix of the observed flow data 
is calculated and events are then generated from the multivariate normal distribution 
with this covariance matrix. These generated, normally distributed, events can then be 
used to work out a corresponding water depth and return period of flooding at each AU.  

3.7 Discussion 
Both recent advances in flood risk management and insurance industry cat models 
adopt stochastic simulation to perform the integration of the complex joint distributions 
of sources of flood risk and the defence pathways and ‘receptors’ (vulnerability 
functions). The basic structure of the simulation approach is also relevant for the 
conceptual model development in this project. 

Within this common basic framework, the various cat models and flood risk 
management models can differ greatly in the assumptions made about the distributions 
of the variables, whether explicitly or implicitly. In particular, assumptions about the 
dependence structure can be quite subtle, but ,as we show in Section 4.5 of this report, 
have a conspicuous effect on the results of the risk analysis. This is why we propose to 
adopt an approach that is designed to be flexible enough both to test and represent the 
dependence structure found in the data. 

 SC060088 Technical Methodology Report 25 



4 Statistical methods review 
In this section we discuss the statistical science relevant to understanding and 
modelling the spatial structure of data for flood risk analysis, in particular river flows (or 
levels) and sea level.  

In the statistical review, we start by identifying features of the data that need to be 
considered and then assess how well the available and developing statistical 
techniques can incorporate these features. 

We then summarise the theory behind fitting marginal distributions to extremes of 
variables and the principles behind the techniques of separating marginal and 
dependence characteristics (the theory of copulas). 

This section also describes relevant groups of statistical techniques. These groups are, 
broadly speaking: 

• Methods that are only suitable for asymptotically dependent data (where the 
largest values of each variable tend to occur together). 

• Methods than can only be used for pairs of variables. 

• Multivariate methods that do not account for changes in dependence at extreme 
levels. 

• Multivariate extreme value methods that do account for changes in dependence 
at extreme levels. 

4.1 ‘Dependence’ and ‘coherence’ 
Two variables are statistically dependent if the value of one of the variables affects the 
likely values of the other variable. Dependence between different locations is arguably 
the most important feature in a statistical model of flood risk if it is to work over a wide 
range of spatial scales. The spatial dependence structure is a description of the 
strength and type of dependence between one or more variables over a range of 
distance scales. 

We use the term ‘spatial coherence’ to describe the dependence between the 
parameters of the marginal distributions of variables at sites that are geographically 
close together. In other words, the coherence tells us about how smoothly the 
probabilities of an individual ‘flood risk variable’ would vary between a given location 
and its neighbouring region.  

The coherence can therefore be seen as a ‘by-product’ of a model for how the full joint 
distribution varies over space. Although the project is called ‘Spatial coherence of flood 
risk’, it is in fact the dependence structure that has to be studied rather than the 
coherence alone.  

4.2 Key statistical issues 
A suitable model for use in this project must be able to give estimates of the likelihood 
of spatially extensive floods and of simultaneous floods from different sources. In order 
to do this it must take account of the following features.   
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4.2.1 Joint distribution function 

The chosen model should describe the full tail structure of the joint distribution. This 
joint distribution is required so that the probability of all possible combinations of the 
source variables, either simultaneously or at various time lags of interest, can be 
estimated. Consequently we require a model for both the marginal distributions and 
dependence structure (both simultaneously and at different lags) between of a set of 
variables.   

4.2.2 Multidimensionality and consistency in marginal 
distributions   

The model should be able to handle multivariate datasets of high dimensionality.  
Another desirable feature is that the absence (or presence) of any variable should not 
affect the marginal characteristics of, or dependence between, the remaining variables.  
It must also be able to handle multivariate data sets of low dimensionality,  such as, 
sets with only two or three variables.   

4.2.3 Change in dependence at extreme levels 

As a pair, or set, of variables become extreme the dependence between them may 
change. If a pair of variables is highly dependent at lower levels it does not 
automatically follow that they will be highly dependent at extreme levels. Two differing 
examples are flood flows in different areas of the country and extreme sea levels and 
river flows. On a normal day-to-day basis river flows in different areas of the country 
are likely to be highly correlated. This correlation is largely due to the fact that flows are 
dominated by seasonality and average previous rainfall, both of which are largely 
consistent over the whole country. However, extreme flows are usually precipitated by 
a single heavy rainstorm on wet ground. The spatial extent of rain that is heavy enough 
to cause extreme flows is much less likely to cover large areas, and so we would 
expect a decrease in dependence in extreme flows.   

The opposite change in dependence is true for river flow and total sea level. There is 
evidence for extremal dependence between river flow and sea surge. However, total 
sea level is usually dominated by the variation of the tidal component so when the sea 
level is lower, sea levels and river flows may appear to be independent as the tide is 
independent of the river flow. But the highest sea levels are caused by large surges 
occurring with the highest tides. As the largest tidal levels are similar to each other the 
dependence between large river flows and large sea surges is likely to become 
apparent through a stronger dependence between sea levels and river flows in the 
largest events. A similar feature can also be deduced from the increases in 
dependence observed between wave height and sea level for increasing threshold 
levels in the FD2308 R&D project (Defra/Environment Agency, 2005a). 

4.2.4 Incorporating both extreme and non-extreme values 

The chosen model should be able to model events where some variables are extreme, 
other variables are moderately large, and some are non-extreme. Most established 
approaches for modelling the joint tail distribution, or associated summary measures, 
make an inappropriate assumption (at least for river flows) that the very biggest events 
in all the variables have a possibility of occurring together. Hence, they can only handle 
occurrences when all the variables have an extreme observation and are restricted in 
practice to small numbers of sites that are close together in space. There is further 
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discussion of the different types of dependence, and how dependence assumptions 
can be checked, in Section 4.6 of this report. 

4.2.5 Differing temporal and spatial scales 

The chosen method should be able to model dependence of different temporal and 
spatial scales. It must be able to handle temporal data observed at a temporal 
resolution capable of resolving flood peaks up to the duration of large flow events. It 
must also be able to handle temporal dependence in order to identify which physical 
occurrences qualify as single events, for example when we ask whether flooding within 
the same hour, day, week or month counts as a single ‘event’. In terms of spatial scale 
it must be able to handle dependencies over distances ranging from a few kilometres 
up to hundreds of kilometres. It must also be possible to express these dependencies 
in an understandable way at each of these temporal and spatial scales.   

4.2.6 Covariates 

A model suitable for the objectives of this project should ideally be able to incorporate 
covariates to bring additional information about spatial patterns. These covariates could 
include seasonality, meteorological indices, spatial location and geological information. 
This is a desirable feature although perhaps less important than those discussed 
above. 

4.2.7 Impacts of flooding on ‘receptors’ 

Methods of describing these impacts at the receptor are discussed in Section 3.5. One 
way to handle impacts of flooding on receptors spatially is to use a statistical model for 
the spatial source variables that can be integrated with existing methods for modelling 
pathway and receptor. 

4.3 Marginal models 
When fitting a statistical model to a single source variable it is tempting to fit a standard 
statistical distribution to the whole data. However, this approach is very unlikely to lead 
to a good fit in the tails of the distribution, which is the region of most concern when 
extrapolating. Instead, it is common to focus on the extreme values. When working with 
univariate extreme values there are two main approaches: block maxima (or minima) 
and threshold exceedances (often termed the ‘peaks over thresholds’ method). It is 
widely known that the block maxima method is less efficient in estimating return levels 
than the threshold exceedance approach.   

The standard approach for modelling threshold exceedances is to specify a high 
threshold, for example the 95th or 99th per centile of the marginal variable, and to 
estimate the rate of exceedance of that threshold and the distribution of the excesses 
of that threshold. The model used for the excesses of the threshold is the Generalised 
Pareto Distribution (GPD) (see Davison and Smith, 1990), as this model has the 
following properties:  

• Following asymptotic probability theory it is the only distribution with which it is 
possible to describe the excesses as the threshold tends to the maximum 
possible value of the threshold.  
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• If excesses of some threshold follow a GPD then excesses for any higher 
threshold will also follow a GPD. For marginal variable  the generalised 
Pareto has cumulative distribution function  with 

  

where  and  are scale and shape parameters respectively.   

No attempt is made to fit a parametric model to the distribution of values below the 
threshold in this case. Davison and Smith (1990) show that the threshold exceedance 
rate and GPD parameters can be extended to include covariate effects.   

Often in spatial studies the key covariate information is in the formulation of knowledge 
that the process being modelled is spatially coherent. The standard methods used to 
exploit this information are to impose that the rate and GPD parameters change 
smoothly over space. Two examples of the implementation of this type of strategy are 
given by Coles and Tawn (1990) and Butler et al. (2007), with the former using explicit 
parametric models based on distance between sites to impose smoothness and the 
latter imposing it through non-parametric smoothing. In both cases the key is that the 
shape parameter of the GPD is constrained to change very slowly over distance. 
Incorporating this information leads to improvements in estimates of return levels at 
different sites, particularly when some sites have more data than others and that data 
from longer records is implicitly transferred to the neighbouring sites.  

There are a number of different approaches used in the flood risk management 
industry to estimate the return period of different river or sea levels. The approach 
recommended in the Flood Estimation Handbook (FEH) to estimate flood flows is to fit 
the generalised logistic distribution to the annual maxima. These fitted distributions can 
then be used to estimate the median annual flood (QMED) and the growth curve, which 
defines how flows at larger return periods relate to QMED. The FEH also contains 
methods for estimating QMED from catchment characteristics and for pooling data from 
different sites to estimate the shape of the growth curve. Another approach used to 
estimate the return period of different flows is to fit the Generalised Extreme Value 
(GEV) distribution to the annual maxima data.   

Various approaches are used to estimate the return period of different sea levels. The 
simplest of these is to fit the GEV distribution to the annual maxima or a variant of this 
(the asymptotic distribution of the r-largest order statistics) to the r-largest total sea 
level data (Tawn, 1988). For sea level data this approach has the drawback that 
variation in the annual maxima sea level is often dominated by year to year 
deterministic variations in tide. So, in using this approach the fitted distribution is 
dominated by the tidal cycle, masking the contribution of the surge component to the 
total sea level. Hence extrapolation of the fitted distribution to long period return levels 
is biased and tends to underestimate return levels (see Dixon and Tawn, 1999).    

Related approaches for estimating the return periods of total sea level that overcome 
this disadvantage are the Joint Probabilities Method (JPM) of Pugh and Vassie (1979, 
1980) and the Revised Joint Probabilities Method (RJPM) of Tawn and Vassie (1989).  
Both of these methods separate the sea level into the tide and surge components and 
analyse the distribution of each separately. In the JPM the empirical distribution of the 
hourly surges is used, and in the RJPM a combination of the empirical distribution 
function for the non-extreme surges and a modelled distribution function for the 
extreme surges is used. The RJPM also takes account of the serial dependence of 
hourly tidal and surge measurements and tide-surge interaction. Dixon and Tawn 
(1994, 1997) illustrate the r-largest method, JPM and RJPM for a range of UK A class 
gauge sites.  Dixon et al. (1998) apply a spatial extension of the RJPM to exploit 
similarity in the surge characteristics over sites. A version of the RJPM is currently 
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being updated and systematically implemented for UK sea levels as part of 
Environment Agency project SC060064.  

4.3.1 Transforming margins 

Most methods for estimating the dependence structure of extreme variables rely on an 
assumption that the variables have a standard marginal form. This assumption is, in 
general, inappropriate for most data sets. However, it is possible to change the 
distribution of any univariate random variable. The transformation is performed by use 
of the probability integral transform.   

The probability integral transformation states that if any continuous random variable  
has distribution function , then the random variable , defined by , has 
a Uniform(0,1) distribution, so , and the converse also holds.  

If we start with random variable , with distribution function , and we wish to 
transform this variable to a random variable  which has distribution function  we 
apply the probability integral transformation in two steps. The first step is to transform 
the variable  to the random variable , with , where  has a uniform 
marginal distribution. The distribution function  that is used can be estimated by the 
methods described above for the marginal models or by use of the empirical 
distribution function. To transform the uniformly distributed variable  to a random 
variable , which has distribution function , we take ,  that is, the 
inverse of the distribution function .   

4.4 Copulas 
It is possible to separate the features of any multivariate distribution into marginal 
characteristics and dependence structure. This can be useful when examining the 
extremes of a multivariate process. For instance, if we are interested in the joint tail of a 
multivariate process where the variables have very different scales, or some of the 
variables have light tails and some heavy tails, then the extremes will be dominated by 
these variables with heavy tails, and/or larger scales. By examining the dependence 
characteristics separately from the marginal characteristics it is possible to obtain a 
clearer picture of the dependence structure.   

This separation of marginal and dependence characteristics can be achieved using the 
copula function (Nelsen, 1999) which can be described as follows. Let 

 be a -dimensional multivariate distribution function with 
marginal distributions , . Then we can write  as  

 

The function  is called the copula. It has domain  and contains all the 
information about the dependence structure of . Each multivariate distribution has 
a unique copula so it is possible to construct any multivariate distribution using just its 
copula and marginal distributions.   

A commonly used copula is the multivariate normal copula. Using this copula is 
equivalent to assuming the data have a standard multivariate normal distribution when 
the marginal variables are each transformed to following a normal distribution. One of 
the major attractions of the multivariate normal distribution is its flexibility; each 
marginal variable has a normal distribution, each linear combination of marginal 

30  SC060088 Technical Methodology Report  



 

variables has a normal distribution, all conditional distributions are multivariate normal 
and each subset of variables has a multivariate normal distribution.  

Figure 4-1 shows scatter plots of data from bivariate variables with different 
dependence structures after transformation to uniform margins (which is, a simple 
standardisation of the data). Figure 4-2 shows scatter plots of the same data, but after 
transformation of the marginal distribution to Gumbel margins. When Figures 4-1 and 
4-2 are compared we can see that the type of extremal dependence between pairs of 
variables is much easier to see when the data are plotted after transformation to 
Gumbel margins. For example, if we examine the plot of the data in Figure 4-2 (top 
right panel) simulated from a bivariate extreme value distribution we can see that the 
largest values of both variables occur together. This is a feature of asymptotic 
dependence, discussed in more detail in Section 4.6.1 below. However, if we examine 
the plot of data simulated from a bivariate normal distribution (Figure 4-2, top left) we 
can see that the largest values in both variables do not occur together (this is a feature 
of asymptotic independence, again see Section 4.6.1).  

 

 

 
Figure 4-1: Data from different distributions on uniform margins. Clockwise from top left, 
Bivariate normal with ρ = 0.5, bivariate extreme value distribution with logistic dependence 
structure, α = 0.5, complete dependence and complete independence. 
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Figure 4-2: Data from different distributions on Gumbel margins. Clockwise from top left, 
Bivariate normal with ρ = 0.5, bivariate extreme value distribution with logistic dependence 
structure, α = 0.5, complete dependence and complete independence. 

 

4.5 Consequences of incorrect estimation of 
dependence 

The importance of correctly estimating the dependence structure can be seen in Figure 
4-3. Here we show combinations of the bivariate variables discussed above plotted 
against return period (in relation to flood risk management, the bivariate data we have 
generated could, for example, be water levels at different locations).  

If the minimum of the two variables is of interest (for example in assessing the risk of 
crossing a threshold) and we assume that they are independent when they are not, 
then we can see that we will underestimate the chance of large values. The same is 
true when the sum of two variables is of interest, for example to assess the risk of an 
aggregated cost function. Another feature it is possible to see from Figure 4-3 is that if 
we overestimate the dependence by assuming perfect dependence we will 
overestimate the maximum possible value of the minimum or sum of two random 
variables. The same is true with models for partial dependence, with different 
dependence models leading to different return level curves for the impacts at the 
receptor.   
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Figure 4-3: Distribution function of functionals of simulated data shown in Figure 4-2. The 
variables X and Y have been standardised onto the Gumbel scale.  

 

Figure 4-3 illustrates a number of key aspects of the analyses to be undertaken in this 
project. Each subplot corresponds to the impact on a receptor, with different 
combinations of the source variables being important depending on the nature of the 
receptor. In Figure 4-3, it is large combinations as determined by the minimum and the 
sum of the source variables that is important. In applications the function of the source 
variables that is important will be determined by the form of the receptor and the 
pathway distributions. By controlling the design, the combinations of source variables 
that determine impacts on the receptor can be affected.  

Here we have illustrated the evaluation of the distribution of the impacts on the receptor 
using a very large sample size, 1000 years of synthetic data. Of course in practice we 
typically have only between 5 and 30 years of data in any application so we cannot 
estimate these distributions beyond the five-year level with any reliability unless we 
adopt a statistical model. If a statistical model is adopted then we can simulate a large 
sample from that model and derive empirically any characteristics of the joint 
distribution of the source variables we are interested in, such as the distribution of 
impacts on the receptor.   

Simulation from the fitted joint distribution of the source variables is therefore key to our 
evaluation of properties of interest. To be able to simulate in this way, we require a 
statistical model for the joint distribution of the source variables. This joint distribution of 
source variables will be fixed, but unknown, for a given problem. As discussed above, 
the joint distribution for the source variables requires models to be adopted for both 
marginal and dependence characteristics. Here we considered the margins to be 
known to be Gumbel distributed so that we can focus on illustrating the dependence 
characteristics. 

Figure 4-3 illustrates that there can be considerable sensitivity on the distribution of 
impacts of receptor for different forms of dependence between the source variables. In 
practice a statistical model for the dependence structure has to be selected, so Figure 
4-3 can be considered an illustration of the importance of this aspect of the statistical 
modelling; in other words, to avoid bias, the dependence model that is used must 
possess sufficient flexibility to model a full range of different dependence 
structures between the source variables. 
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From any model for the joint distribution of the source variables (however complex its 
marginal distributions or copula function) it is possible to simulate repeated realisations 
and hence integrate this with pathway information to derive the distribution of impacts 
at the receptor. As the marginal distributions of the source variables are likely to be 
similarly modelled by most analysts, it is tempting to think that the simulated impacts 
are realistic as they produce an impact distribution and have every element of the 
process modelled required in their derivation of this impact distribution.  

However, even in the simple bivariate example, the results in Figure 4-3 show that the 
choice of statistical dependence model (copula) is fundamental in this process with 
careful selection necessary. The importance of this selection is magnified as the 
dimension of the problem is increased. In many applications, simple copulas have been 
used because of limited exploration of the importance of this step, of other possible 
copulas or of how they can be simulated from. For example, Buishand et al. (2008) 
simulate rainfall over the whole of the Netherlands using a dependence model that only 
allows a particular form of spatial dependence (asymptotic dependence, defined in 
Section 4.6.1) but no check on the adequacy of this model is made and if, as is likely, 
the process does not exhibit this particular dependence structure over the whole 
country then spatial dependence would be overestimated in this case.   

To reduce the risk of making biased estimates of the impact distribution we propose an 
approach to statistical modelling of dependence that has two benefits: 

• Specialist statistical tools are used to ensure that the selected models for 
dependence between variables captures adequately the observed dependence 
in data and any knowledge there exists about the physical structure of this 
dependence. 

• We use a class of statistical dependence models that have proven 
mathematical properties giving them greater statistical flexibility than any other 
model for extreme values so that they can capture a very wide range of 
dependence forms between the source variables. 

Details of the models we propose and some of the measures of dependence that we 
plan to exploit as tools for assessing the adequacy of the selected models for the data 
are described in the following section. 

4.6 Multivariate extreme value methods 
As in the univariate case, modelling the whole dependence structure via copula 
methods is likely to lead to substantial bias as the extreme events may possess a 
different dependence structure than the typical day to day values. Therefore simply 
taking a multivariate normal copula is not likely to be a sufficiently good model of 
dependence for the extreme events.  

For example, extreme river flow events at different sites often show weaker 
dependence than non extreme events and so fitting a multivariate normal copula to all 
the river flow data in this case would lead to an over estimate of the joint probability of 
large river flows occurring simultaneously at the different sites. Therefore specific 
methods are required for describing the dependence of the extreme values. 
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4.6.1 Classes of extremal dependence – asymptotic dependence 
and asymptotic independence 

Asymptotic dependence 

There are two main classes of extremal dependence. The first is asymptotic 
dependence. If two variables are asymptotically dependent then the largest 
observations in both variables would occur together with a positive probability. Note 
that ‘largest observations’ in this context, and below, means the values approached 
asymptotically and not the largest real observations in a given sample. 

Asymptotic independence 

If two variables are asymptotically independent then the probability of the largest 
observations of each variable occurring together is zero. There are three sub classes of 
asymptotic independence: positive extremal association, near independence, and 
negative extremal association. These three classes correspond respectively to joint 
extremes of two variables occurring more often than, approximately as often as, or less 
often than joint extremes if all components of the variable were independent. Variables 
that have a multivariate normal dependence structure with correlation function, , 
greater than zero are examples of asymptotic independence with positive extremal 
association.   

Implications 

It is important to know which class of extremal dependence a pair of variables falls into. 
For example, if river flows on neighbouring catchments are asymptotically dependent 
then there is a chance that they will both experience severe flooding at the same time 
and so this possibility should be taken into account in modelling the flood risk. If two 
rivers are asymptotically independent, but have positive extremal association, then the 
risk of joint flooding can be considerably greater than if the river flows at the different 
sites were independent, but severe flooding at both sites in the same flood event is less 
likely (particularly for long period return level events) than if the variables are 
asymptotically dependent. How close asymptotically independent variables are to being 
independent and to asymptotically dependent is important to quantify as any form of 
positive extremal association can significantly raise the receptor risk relative to an 
approximation of that risk when assessed under an independence assumption.  

4.6.2 Pairwise dependence measures 

The first collection of methods that are based on multivariate extreme value theory are 
those that describe asymptotic dependence and asymptotic independence but are only 
defined in a bivariate context. The simplest of these methods are the dependence 
measures  and , these are both described fully by Coles et al. (1999) although the 
measure  had been used previously (Buishand, 1984). These measures can be 
described as follows.  Let  be a bivariate pair of random variables, not 
necessarily identically distributed. We can transform  to uniform margins using 
the probability integral transform. Let  and  denote the variables 
after transformation to uniform margins and let them have copula function .  The 
dependence measure  is defined as: 
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  (4.6.1) 
 

So,  is equal to the limiting probability that the variable  is above a high probability 
threshold conditional on the variable  being above the same probability threshold. It is 
more convenient to obtain  using the following, asymptotically equivalent, function:   

 

We define 

 

and it follows that  So, if ,  then  are 
asymptotically dependent and if  then  are asymptotically independent.  
Also if  are independent then  for all . 

Figure 4-4 contains plots of estimates of  for the bivariate data shown in Figure 4-2 
and Figure 4-1. The estimates of the copula function  are obtained using the 
empirical joint distribution of the data in Figure 4-2. Estimates of  for each of the 
four data sets show quite different behaviour:   

• For the multivariate normal data the value  decreases to zero as  (the 
maximum possible value), suggesting that  but as  for all  
then the variables are asymptotically independent but exhibit positive extremal 
association.  

• For the bivariate extreme value data as  then  suggesting that 
 so the variables are asymptotically dependent.  

• For the complete dependence data  for all  so  and the variables 
are asymptotically dependent.  

• Finally for completely independent data  for all  and so  and the 
variables are asymptotically independent.  

In all cases the sampling variability increases as  making it difficult to estimate  
precisely from this approach. As  for all pairs of asymptotically independent 
variables (for example the multivariate normal and the completely independent data) it 
is necessary to define a second dependence measure to provide information on the 
relative strength of dependence under asymptotic independence. We denote the joint 
survivor function of  as . The copula survivor function  is defined as 
follows: 

 

So .  By analogy with ,  is defined (Coles et al., 
1999) as: 
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Figure 4-4: Estimates of χ for simulated data. Solid line bivariate extreme value distribution, α = 
0.5, dashed line bivariate normal distribution, ρ = 0.5, dotted complete independence, dot-dash 
perfect dependence. 
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Figure 4-5: Estimates of χ bar for simulated data. Solid line bivariate extreme value distribution, α 
= 0.5, dashed line bivariate normal distribution, ρ = 0.5, dotted complete independence, dot-dash 
perfect dependence. 
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We have that  and define  as . If  are asymptotically 
dependent then , if  are asymptotically independent then . So we can 
see that both  and  are needed to describe the extremal dependence of bivariate 
random variables.   

Figure 4-5 contains plots of  for the bivariate data shown in Figure 4-2 and Figure 4-1. 
Again the estimates of  show different behaviour for the different dependence 
assumptions: 

• For the completely dependent data set the value of .   

• For the bivariate extreme value data the estimate of  suggests that  
asymptotic dependence, as  increases to 1 as .  

• For the completely independent data the  suggesting near independence 
in the asymptotic independence class.  

• For the multivariate normal data then  as , so the variables are 
asymptotically independent but with positive extremal association.  

Again the sampling variability of the estimates is poor as . The sudden jump to a 
value of -1 for the complete independence case is due to the fact that above a certain 
threshold the estimated value of  is equal to zero. 

The dependence measure  is used in Svensson and Jones (2002, 2004), however in 
only using  without also estimating  it is not possible to use their results to 
completely classify the extremal dependence of the flood risk variables around the 
coast of Britain. Estimating  when the variables are asymptotically independent 
frequently leads to the false conclusion that  (that is, that the variables are 
asymptotically dependent) as the alternative used is that the variables are completely 
independent (instead of the correct alternative that the variables are asymptotically 
independent). 

A theoretical foundation for both  and , and other pairwise dependence measures, 
and an improved framework for their estimation is given by Ledford and Tawn (1996).  
This theory can be stated as follows.  Let  be bivariate random variables with unit 
Fréchet marginal distributions so that  for large . It is 
possible to assume unit Fréchet margins without loss of generality as it is possible to 
change the marginal distributions of any random variables using the probability integral 
transform (see Section 4.3.1). 

Also let  be the joint survivor function of . Under certain 
modelling assumptions about the distribution of  as  gets large then following 
Ledford and Tawn (1996), we may model  as: 

 (4.6.2)

 

where  is called the coefficient of tail dependence and  is a function that 
can be treated as if it is approximately constant as  gets large (a slowly varying 
function).   

From asymptotic property (4.6.2) we have that: 

   

 (4.6.3)
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Using expression (4.6.3), we can classify the dependence pattern of  as  
as follows 

 

It is also possible to identify subclasses of asymptotic independence: 

 

Ancona-Naverrete and Tawn (2002) show how it is possible to use  to show how 
dependence changes with distance. They applied this method to rainfall and sea 
surges and we discuss these findings in Section 3.3.4.  

It is easy to see links between  and  and the measures  and . If  and  
then  and asymptotic dependence between the variables is measured by 

. If  then  and the asymptotic independence between 
the variables is measured by . 

Ledford and Tawn (1996) show how  and  can be estimated using data from the joint 
tail in an efficient way. As a consequence of the connections between  and  with  
and  that are identified above these methods can be used to estimate  and . 

4.6.3 Models based on an asymptotic dependence assumption 

A large proportion of the previous work of multivariate extreme value theory is based 
upon the assumption that the data exhibit asymptotic dependence. This is equivalent to 
assuming that the probability of the largest values of each variable occurring 
simultaneously is greater than zero. Over short distances this assumption may be 
appropriate for rainfall and sea surge (Svensson and Jones, 2002, 2004), however 
over longer distances and for river flows this assumption is inappropriate. We have 
discussed in Section 3.3.1 the findings of Buishand et al. (2008), who used the theory 
of continuous stochastic processes to describe the spatial extremes of rainfall under 
the assumption of asymptotic dependence.   

4.6.4 Models based on an asymptotic independence assumption 

Two variables are asymptotically independent if the probability of the largest 
observations on each variable occurring simultaneously is zero. The multivariate 
Gaussian tail model of Bortot et al. (2000) is a dependence model that makes the 
assumption that all variables are from a multivariate normal copula in the joint tail 
region. This corresponds to assuming that the variables are asymptotically independent 
of each other. This is the methodology on which the JOINSEA software was based. 
However, this is a highly restrictive assumption that limits the form of dependence, for 
example the dependence is symmetrical in variables and computational problems 
restrict application to 3-4 dimensional problems. For JOINSEA this model is only 
available in two variables (with dependence on a third variable produced through a 
different method). 
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JOINSEA also has a more sophisticated dependence model, termed the ‘mixture of 
normals’ model. This model comes from using a copula corresponding to a mixture of 
two biviarate normal distributions.The mixture of normals model allows changing 
association with the level of the variables (unlike the Gaussian tail model) but is 
restricted to being asymptotically independent. 

4.7 Conditional model 

4.7.1 Introduction 

Heffernan and Tawn (2004) present asymptotic theory which provides the basis for a 
model for the behaviour of the conditional distribution of , when  is large, under 
the assumption that observations of  and  are independent, identically distributed, 
and without missing values. From this theory they developed a method for multivariate 
extreme values that can be used for both asymptotically dependent and asymptotically 
independent data. It is a conditional approach that uses all the observations such that 
the conditioning variable is above a certain threshold. This approach separates the 
marginal and dependence characteristics of the data and models them separately. The 
dependence characteristics of the data are accounted for by use of a specialised 
regression model. This model has the property that its residuals are independent of the 
size of the conditioning variable so that it can be used to extrapolate beyond the range 
of the data.   

The method is based on a model of the distribution of  when  is large. Here 
 is a vector variable, , of dimension one and  of dimension , with known, 

identical, Gumbel margins.  So  is a single variable and  is a set of variables.   

4.7.2 General method 

The method involves the relatively weak assumption (compared with distributional 
assumptions made in some other extreme value methods) that there exist vector-
valued normalising functions,  and , such that  

  (4.7.1) 

   
where the  marginal distribution  of  is a non-degenerate distribution function for 
all  where  is the set . Here and throughout the vector algebra is to 
be interpreted as componentwise. To ensure that  is well-defined the following 
additional condition is required: 

 
so there is no mass at  in any margin. 

The model is based on the approximation that limiting relationship (4.7.1) holds exactly 
for all values of  for a suitably high threshold  which has probability  of being 
exceeded. A consequence of this assumption is that when , with , the 
random variable , defined by 
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is independent of  and has distribution function . It is this assumption of 
independence that allows us to extrapolate the model beyond the range of the data.   

The assumption of the existence of normalising functions can be expressed simply as 
the assumption that the distribution function of the normalised variables, , does not 
tend to a constant as the conditioning variable  tends to infinity. This is equivalent to 
the assumptions made in using the GPD distribution to model the marginal distributions 
of the data. The assumption of independence of the random variables  and the 
conditioning variable  is much more important. If this assumption is invalid then any 
results inferred above the range of the observations of  will be invalid. Therefore a 
key step in the method is the assessment of the validity of this assumption. This simply 
requires a test of independence between  and  when . 

The theory suggests that there should always be some level  above which 
independence of  and  is an appropriate assumption. Therefore  needs to be 
selected large enough to achieve this independence. 

4.7.3 Choice of normalising functions 

In Heffernan and Tawn (2004) the normalising functions  and  were derived for 
a number of different distributions. They found that the functions were all special cases 
of the parametric family  

  
 

where, on the right hand side, , ,  and  are vector constants and  is an indicator 
function. The vectors of constants have components such that , 

,  and  for all .  

The dependence class into which pairs of variables  fall can be determined by the 
vector parameters in the following way: if  and  then  and  are 
asymptotically dependent, otherwise the variables are asymptotically independent. If at 
least one of  or  holds then the variables exhibit positive extremal 
dependence; if  and  then the variables exhibit extremal near 
independence; and if ,  and  then the variables exhibit negative 
extremal dependence. In practice, for most flood risk applications it is possible to 
assume that the variables exhibit either asymptotic dependence or asymptotic 
independence with positive extremal association. So we can set  and so the 
normalising functions are simply 

 

4.7.4 Bivariate features 

For a pair of variables  it is possible to think of the Heffernan and Tawn model as 
a regression model of  upon  conditional on  being above a certain threshold.  
The constant parameters  and  describe the strength of dependence between  and 

. Two examples are given in Figure 4-5 showing samples of  when  > 4.5.  In 
the left hand plot both large and small values of  can occur with large , with large 
values of  more likely than if  and  were independent. In the right hand plot, only 
large values of  occur with large values of . 

 SC060088 Technical Methodology Report 41 



The parameter  describes the overall strength of dependence between the two 
variables, as  increases the overall strength of dependence between  and  
increases. The main purpose of parameter  is to describe how the dependence 
changes with threshold; for positive values of  the variance of  increases as 

 increases. Consequently large values of  can occur with large values of  if either 
 is large or if  is large. However, small values of   occur with large  only when  is 

large. 
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Figure 4-6: Plots of data simulated for Heffernan and Tawn model, solid lines median value of Y|X, 
dashed lines 2.5th and 97.5th percentiles of the distribution of Y|X.  Left plot a = 0.3, b = 0.7, right 
plot a = 0.9, b = 0.1.  In both Z follows a normal distribution with mean 0.5, variance 0.25.  

4.7.5 Multivariate features 

Figure 4-7 shows how the dependence model is structured for more than two variables. 
The dependence of  and each variable in  is modelled parametrically using the 
Heffernan and Tawn model. So, in this case, we estimate the distribution of  

  (4.7.2) 

By modelling the dependencies of the individual variables  with  we remove 
some of the dependence between the  variables. This is because, if all variables in 

 are positively associated with , if  is big all variables in  are also likely to be 
big. This tendency is captured by the  and  parameter constants. However, not all 
the dependence between the  variables is captured in the  and  parameters. This 
additional dependence is captured by the  variables, which are modelled as being 
correlated with each other. The dependencies between the  parameters are 
modelled non-parametrically.   
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Figure 4-7: Diagram of modelled dependencies, solid lines indicate dependencies modelled 
parametrically (through a and b), dashed lines indicate dependences modelled non-parametrically 
(through the random variable Z).   

4.7.6 Inference 

The method of fitting the Heffernan and Tawn model to a set of variables  is as 
follows. 

Stage 1 Obtain Gumbel margins. 

The data are transformed onto Gumbel margins by repeated use of the probability 
integral transform separately for each marginal variable. 

Stage 2 Threshold selection. 

Select threshold, , to be high enough for the asymptotic results to hold and low 
enough to retain as much data as possible. One way to select the threshold is to use 
the lowest threshold so that the estimates of the dependence parameters are 
unchanged for higher thresholds. 

Stage 3 Estimate parameters and residuals. 

To achieve this estimation we assume that each residual random variable , defined 
in equation (4.7.2), has mean  and standard deviation . From this assumption, and 
that of expression (4.7.1), it follows that the variables , , have mean  

 
and standard deviation 

  
 
We then make the false assumption that  are independent random variables from a 
normal distribution. This allows us to use the technique of maximum likelihood to 
estimate the parameters. This is equivalent to minimising the following expression with 
respect to  and . 

  (4.7.3) 
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where  is the number of observations of  when . The estimated residuals at 
time  are defined as  

  
where  and  are the values of  and  that minimise function (4.7.3). By defining 
the residuals in this way we do not need to take  and  into account in the rest of the 
analysis.   

4.7.7 Estimation of summary measures 

Because the Heffernan and Tawn model covers the whole joint distribution of the 
variables  conditional on  being above the chosen threshold it is possible to 
use it to estimate a wide variety of summary measures. Two such summary measures 
which have been used in practice are: 

 
 

 
 

Here  is equal to the probability that variable  is extreme and  is the 
expected proportion of variables in  that are extreme both conditionally given that  X 
is extreme. 

4.7.8 Missing data 

One of the main limitations of the original Heffernan and Tawn method is that it does 
not deal with missing data. This has the implication that for estimating the joint 
distribution of a set of variables it is only capable of using data when all the variables 
are observed, all other data must be discarded. For flow data this often results in a data 
set that has too few observations to be of any use. To overcome this problem we use 
the extension to the Heffernan and Tawn method of Keef et al. (2009a). The principle 
behind this extension is that the observed data tell us something about the unobserved 
data.   

0 20 40 60 80 100

Observation number of x > vp

X

Y1

Y2

Y3

Y4

 

Figure 4-8: Illustration of missing data pattern 
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To illustrate the method we use the set of variables shown in Figure 4-7, where we 
have a conditioning variable  and four non-conditioning variables . Figure 
4-8 shows an illustration of a typical missing data pattern. The first 25 per cent of 
variable  is missing, along with the last 25 per cent of variable , and so if the 
original Heffernan and Tawn approach is used only the central 50 per cent of data can 
be used.    

The main strategy behind the method of accounting for missing data is to estimate the 
distribution function of the missing observations of  conditional on  and , 
when  and similarly for  conditional on  and , when . These 
conditional distributions are estimated from the conditional distributions of the residual 
random variables,  and . This is done by assuming a 
multivariate normal copula for the  variables. The main reason this copula is used is 
convenience, if a set of variables  have a multivariate normal distribution then it is 
very simple to compute the conditional distribution of any subset , where , 
of these variables, conditional on the other variables in .     

This treatment of missing data means that we can make the most use of the available 
data. There is less uncertainty than if we only used the data for days where all sites 
were observed, but more uncertainty than if we had complete records for all sites. For 
the case study example for North East Region reported in the accompanying proof of 
concept summary report, the range of record lengths was from 19 to 47 years, with a 
median of 9 years of non-overlapping data. 

4.7.9 Temporal dependence 

The method of handling temporal dependence is to use the Heffernan and Tawn model 
to model the joint distribution of  where ,  with  
and  being the upper and lower limits that define a set of lags of interest between the 
variables  and  for all . It is then possible to extend the definitions of  
and  to  

  

 

  (4.7.4) 

 
The value  is the probability that  has at least one threshold exceedance within 
a specified window of time around a threshold exceedance of . The quantity  in 
equation (4.7.4) is the expected proportion of variables in  that have at least one 
threshold exceedance within a window of time around a threshold exceedance of .  

To simulate a single event we need to simulate at different locations, and at different 
time points. We therefore model the dependence between different variables at the 
same time point (  and ), and at different time points (  and  where ). 
Figure 4-9 illustrates this approach; the variables  at lags  are simply treated 
as additional variables. We model the distribution of  for all  and all 

 using the same method. Because we wish to simulate ‘events’ it is sensible to 
take  to be the same for all .      
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Y2(t)X(t)

Y1(t+1)

Y2(t+1)X(t+1)

Y1(t-1)

Y2(t-1)X(t-1)
 

Figure 4-9: Extended version of Figure 4-7 to show modelled temporal dependencies. Solid lines 
show dependencies modelled parametrically (through a and b), dashed lines indicate dependencies 
modelled non-parametrically (through the random variable Z). Bold lines indicate dependencies 
modelled for no time lag, so directly equivalent to those in Figure 4-7. 

It is also possible to define the univariate dependence measure,  where 

  (4.7.5) 
 

is the probability that  is big at time  given that  is big at time . 

The main limitations of using the Heffernan and Tawn method are as follows. The first 
is the amount of data that is needed to produce reliable estimates, however, this 
limitation is common to all statistical extreme value methods. Typically periods of 
overlap in record length should be at least 20 years. In theory the Heffernan and Tawn 
model extends to any number of variables, and any number of time lags. However, due 
to computational issues in fitting the model (the process is memory intensive), in 
practice the number of variables/time lags it is possible to model is limited. These limits 
are in the region of around 50 variables/site with time lags of +/- 5 time steps 
( ), or more variables with fewer time steps.   

4.8 Summary of statistical methods to model 
dependence 

Table 4-1 contains a summary of which techniques meet the original criteria set out 
earlier in this section. The method that looks most promising is the conditional model of 
Heffernan and Tawn. The only criterion that it does not meet is that of incorporating 
dependence covariates into the model. However, this is also true for all other method 
groups examined in this study.   
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Method groups 
 
 Copula 

methods 
Asymptotic 
dependence 

Pairwise 
dependence 
measures 

Gaussian 
tail model 

Conditional 
model 

Joint distribution 
function   -   

High 
dimensionality   - -  

Change in 
dependence at 
extreme levels 

-     
Different types of 
extremal 
dependence 

- -  -  

Extremes and 
non-extremes - -    
Differing spatial 
and temporal 
scales 

     

Covariates - - - - - 

Table 4-1: Summary of statistical methods. Ticks indicate established capability to handle the 
requirements shown in the left most column of the table. 

 
 
Based on ideas in Davison and Smith (1990), the addition of covariates into extreme 
value models has been accomplished in many different univariate applications. Due to 
the semi-parametric nature of the Heffernan and Tawn model, including covariates in 
this analysis would require additional work, however this would not preclude a method 
to include covariates from being developed. 
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5 Statistical model for sources 
of flooding – analysis of gauged 
data 
In this section of the report we describe a statistical model for the joint distribution of 
river flows or sea levels that will be used to supply the source (hydraulic load) 
component for a source-pathway-receptor flood risk model. This section therefore 
describes in detail the proposed form of the probability distribution for the ‘source’ 
variables (the first box in the generic model illustrated in Figure 2-1 to Figure 2-7). 

5.1 Introduction 
In Section 4 we outlined the statistical requirements of a model to estimate the spatial 
dependence of flooding. We also identified a method that is capable of meeting these 
requirements. This is the conditional method of Heffernan and Tawn. This has two 
components: models for the marginal distribution of the variables, and a separate 
model for the dependence structure.   

For any vector variable  where  is the set  with 
continuous marginal distribution functions , for  i.e.  the joint 
distribution can be written as 

  (5.1.1) 
 

where  is a unique function, known as the copula, which determines the dependence 
structure of  (see Joe, 1997 and Nelsen, 1999). The copula formulation separates 
the joint distribution into the  marginal distribution functions and a joint distribution 
function  for the variables on a common marginal distribution. In expression (5.1.1),  
is the joint distribution function for uniform  variables, however the choice of 
common marginal distribution does not matter and so in different studies different 
common marginal distribution forms are selected for the convenience of the problem. 

To model the joint distribution of  we need models for  and . We present 
our marginal models in Section 5.2. These are standard models which describe the 
behaviour each variable alone.  

To study the dependence structure through a copula we initially transform our data, for 
example river flow or sea levels, to a common marginal distribution. For the purposes 
of modelling extreme values it is best to use standard Gumbel margins as this scale 
induces the most linearity in the dependence (Heffernan and Tawn, 2004). Suppose we 
are most interested in the extremes at site i = 1, that is, the values of . This is not 
restrictive as later we will consider each site in turn. We term  after it has been 
transformed to follow a Gumbel distribution by , and collectively term , 
after it has been transformed to follow Gumbel margins by , where  is a vector of 
dimension . Details of how these transformations are made are given in Section 4.3.1.  

The aim is to be able to estimate features of the distribution of the  variables when 
the  variable is large. The strategy is first to model the distribution of , which is 
given due to our choice of Gumbel marginal distribution. Then we model the conditional 
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distribution of  for large values of . Here the conditional distribution is the 
distribution of all the elements of  given that  is fixed equal to . 

We propose a model for  motivated by asymptotic probabilistic theory for this 
conditional distribution as .  We assume that this model will be appropriate for all 
values of  above a high threshold , where  has probability  of being exceeded, 
and use the observations of  with  to fit the model. The key step in all our 
dependence modelling is the modelling of the conditional distribution of  for 
large  as all subsequent aspects of the inference hinge on this step. 

Having fitted the conditional distribution the next stage is the estimation of features of 
the distribution of  when  where .  To illustrate this consider the feature 

  (5.1.2) 
 

which describes the dependence between two variables, that is, the probability that a 
variable exceeds a high level provided that the other variable has exceeded the same 
high level. This corresponds to the probability that variable  exceeds its  year 
return level given that  exceeds its  year return level, with  being determined by 
the value of . 

The simplest way to evaluate probability (5.1.2) numerically using the fitted model is to 
generate a large sample from the fitted distribution: first simulate  giving a value 

 say, second simulate  (for probability (5.1.2) only  is needed), 
repeat these first two steps to simulate replicate samples, and then estimate the 
feature of interest empirically from this simulated sample. For estimating probability 
(5.1.2) the Monte Carlo estimate is simply the proportion of simulated points with  
out of the subset of the simulated sample with . The sample size of the simulated 
sample is taken to be sufficiently large that the Monte Carlo estimate has very small 
uncertainty. The threshold  will necessarily be inside the range of the data sample to 
facilitate inference about the conditional distribution of . However, the level  
can be arbitrarily large and so the proposed strategy provides estimates of features 
about the distribution of  within the observed tail of  through to extrapolation beyond 
the maximum  observation. 

For more general functions of the simulated sample, which are required for converting 
a loading into a damage cost, we need to transform back from ( ) to . This can 
simply be achieved by using the inverse of the transformation we used to convert the 
data into Gumbel margins (see Section 4.3.1 for details). 

5.2 Marginal models 
The approach that we use to model the marginal distributions of river flow data is to fit 
a parametric distribution (GPD) to the exceedances of a threshold, and to simply use 
the empirical distribution below the threshold.   

To model the marginal distributions of the sea level data we use the version of the 
revised joint probability method (RJPM) of Tawn and Vassie (1989) that is being 
developed as part of the Environment Agency project SC060064 (Development and 
dissemination of information on coastal and estuary extremes). The RJPM models the 
deterministic tide component of sea level data separately from the stochastic surge 
component. The surge residuals are modelled using a distribution for threshold 
exceedances. 
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It is worth noting that because of the separation of the marginals from the dependence 
structure, other choices of marginal distribution could be used within the proposed 
model. For example, it would be possible to replace the marginal distributions we use 
with distributions taken from an FEH analysis. There is a chance that this could 
introduce some inconsistency between the marginal and dependence models, although 
it is unlikely to change the results of the analysis significantly. This is a point that would 
be suitable for investigation outside of this project but is not considered essential.  

5.2.1 River flow marginal model 

There are two reasons we fit a parametric distribution to the threshold exceedances 
rather than just use the models contained in the Flood Estimation Handbook (FEH). 
Both are related to the use of daily mean flow data. 

The FEH includes distributions suitable for representing annual (block) maxima and 
threshold exceedances (peaks over threshold, or PoT, data). In general the annual 
maximum procedures are preferred by FEH users as they are simpler and considered 
good enough for most flood estimation studies in practice. The distribution function of 
the exceedances of a threshold is different to the distribution function of block maxima. 
Our model is fitted to exceedances on the daily mean flow scale, not to annual maxima 
(which cannot capture the dependence on an event-by-event basis).   

The second reason is that the data we have are daily mean flows, rather than 
instantaneous peak flow rates. It is likely that the distribution function of daily mean flow 
will be slightly different to the distribution function of (for instance) daily maximum flow, 
especially for small or flashy catchments. The daily maximum must always be at least 
as big as the daily mean flow.   

5.2.2 Still water sea level marginal model 

For coastal flooding we require a method to estimate the probability of flooding from 
extreme still sea water levels and to derive the probability of joint occurrence of 
extreme still water levels at different coastal sites. Still water sea levels are made up of 
two components, tide and surge, with the predicted astronomical tidal component being 
deterministic and the surge component being a random process.    

For evaluating the distribution of extreme still water levels at a site it is best to separate 
the still water level into its tide and surge components, analyse each of these 
individually, and recombine them to give the distribution of still water level. This 
approach allows for the extrapolation of still water levels to be influenced by the 
extrapolation of surges, all the possible combinations of tide and surge, and the nodal 
cycle structure of the tidal series. Similarly, the analysis of still water levels at more 
than one site is best achieved by studying separately the dependence between surges 
at the sites and the dependence between tide and surge at the sites. Precise details of 
how the different aspects of these analyses will be developed in this project are 
discussed below. 

Skew surge 

The surge residual is equal to the actual, observed, still water sea level, minus the 
predicted astronomical tidal level at a particular point in time, as illustrated in Note: 
TSL – total sea level 
AST – astronomical tide  
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Figure 5-1. The surge residual has traditionally been used in the statistical analysis of 
extreme sea levels. This however leads to a complication in that the complex tide-
surge interaction needs to be accounted for. Whilst tides and surges are driven by 
completely different physical processes, tidal currents and surge currents interact in 
shallow water, affecting the timing of each other (Horsburgh and Wilson, 2007). The 
result of this interaction is that the maximum surge residuals tend to occur at low to mid 
tidal levels on the rising tide, see Note: 
TSL – total sea level 
AST – astronomical tide  

Figure 5-1. Consequently, if the full probability distribution of surge residuals is used in 
a joint probability analysis, then careful statistical modelling is required to ensure that 
large surge residual values recorded at low to mid tidal levels are not coupled with high 
tidal levels, as to do so would lead to an overestimation of the probability of very 
extreme events.   
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Note: 
TSL – total sea level 
AST – astronomical tide  

Figure 5-1: Definition of skew surge.  

 
What is important in terms of flooding is how much a storm event raises the sea level 
above the predicted tidal level and whether this would lead to flooding. If a very large 
surge residual is recorded at low tide, it is irrelevant given that flooding would be 
unlikely.   

Increasingly, there has been a move to use the skew surge in preference to surge 
residual, particularly for operational forecasts (for example, see Verlaan et al., 2005).  
This term refers to the difference between the maximum recorded sea level during a 
tidal cycle and the predicted maximum tidal level for that cycle, irrespective of their 
timing, as illustrated on Note: 
TSL – total sea level 
AST – astronomical tide  
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Figure 5-1. Modelling the distribution of skew surge, rather than surge residual, has the 
advantage that we can avoid having to account for the complex issue of tide-surge 
interaction. Skew surge also has the advantage that its magnitude is largely 
independent of the associated tidal height. This is indicated by the scatter plots in 
Figure 5-2, which plot skew surge magnitude against tidal height. There is a clear lack 
of relationship shown in these plots which suggests that it is reasonable to model the 
skew surge as being independent of the high tide level in the associated tidal cycle. 

In the Environment Agency project SC060064 (Development and dissemination of 
information on coastal and estuary extremes) the use of statistical models for the 
distribution of skew surge is being compared with the modelling of the more complex 
surge residuals for the evaluation of return levels for still water level. Preliminary results 
suggest that the usage of skew surge gives similar results to the established surge 
residual methods but requires much less statistical modelling and expertise, and hence 
results are more robust to statistical assumptions. 

Therefore in this study we will focus on using the skew surge. It is of practical 
relevance for flooding, less complicated than the surge residual to use, and it captures 
better the element of a storm surge that is most important in terms of flooding.  

 

Figure 5-2: Plots of skew surge against tide for three sites on the east coast of England. 

5.3 Event definitions – fluvial 
An event is defined here as a period of time in which floods at different sites can be 
classed as ‘simultaneous’ (that is, belonging to the same event). This period of time 
could either be defined hydrologically or by the user. Examples of users who might 
have differing definitions of which events would be classified as ‘simultaneous’ are 
transport planners and the reinsurance industry. For planning diversions around 
flooded areas it may only be important to know if two possible transport routes are 
flooded on the same day (or even shorter time spans). In the reinsurance industry there 
are fixed periods of time in which flood events are classified as the same event. Any 
events that last longer than this period of time are classified as separate events for the 
purpose of financial analysis.   

The hydrological definition of an ‘event’ may seem obvious but is also open to choice. 
To define events in the hydrological sense we first need to analyse the data to define a 
time interval at which events at the same or different sites can be classed as 
independent. A fixed time period could easily be chosen if a user wished to concentrate 
on a particular type of event, for example flooding over the timescale of one or two 
months, as in Summer 2007.   
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In this section we illustrate methods that can be used to assess duration and travel 
time. When conducting a study into spatial dependence for a given region it will be 
necessary to perform an analysis to examine these temporal aspects of flooding in 
order to be able to assess the true level of spatial dependence in that region.   

5.3.1 Duration 

The flows or water levels taken to be a single ‘event’ in our model may in fact occur at 
different points in time because the physical event may have a different duration in 
different places. Temporal dependence in river flows is largely a function of the 
catchment characteristics of the river. In particular, the permeability and size of the 
catchment have large effects  Figure 5-3 shows empirical estimates of 

 for  equal to the 0.99 probability threshold of gauging station  
against BFI and catchment area for gauging station . The relationship between 

 and BFI is clear, the relationship between  
and catchment area is less clear, however for the largest catchment the temporal 
dependence in high flows does appear to be slightly higher.   

Figure 5-4 shows plots of the correlation between  and  using Spearman’s  (a 
standard non-parametric dependence measure) and  for three 
gauging stations . The three stations chosen were 39020 which has a BFI value of 
0.94 (high) and area of 106.7 km2; 27025, which has a BFI value of 0.53 (medium) and 
area of 352.2 km2; and 72002, which has a BFI value of 0.32 (low) and area of 275.0 
km2.  We chose these three stations as they had neither very large nor very small 
catchments and they had very different BFI values.   

We can clearly see that the dependence in the extremes is much lower than the 
dependence in the main body of the data, and falls to zero much more rapidly. The 
relationship between temporal dependence and BFI is also clear. We can also see that 
for the medium and low BFI stations the dependence in high flows drops to near zero 
(independence) for very small lags. However, for the station with high BFI the temporal 
dependence is much higher, and drops to zero at a much slower rate. This suggests 
that for some sites it will be difficult to define a short window of time at which threshold 
exceedances can be classed as belonging to different events. However, for most sites 
a time window of around plus or minus five days would be sufficient. 

The sequencing of flood events is also of importance, especially if defence system or 
economic damage calculations need to differentiate between a single event and 
multiple events occurring in succession (for example to avoid double counting 
damages).  If a given catchment experiences a number of floods within a short time of 
each other, then other catchments that have some dependence are also more likely to 
experience floods around the same times. To a certain extent this will be dealt with by 
that fact that we use the flow data directly to estimate the spatial dependence. 
Occurrences of sequences of events will be present within the data, and so will be 
included in the modelling process. However, this feature has not been examined in 
further detail for this project.   
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Figure 5-3: Top row   against BFI, bottom row against catchment area.  Left 

, middle , right  days. 
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Figure 5-4: , and acf shown in black and blue respectively.  Solid lines high 
BFI, dashed lines medium BFI, dotted lines low BFI. Threshold  equal to 99% on the daily scale.   
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5.3.2 Travel time 

In addition to the effect of duration, an ‘event’ may also occur physically at different 
times in different places because of the pure time lag as the flood travels downstream. 
The definition of travel time that we use is the lag at which dependence between two 
stations on the same river peaks. It is important to note that this is not the same as the 
physical travel time for a single flood wave to travel down a river. We use the lag at 
which dependence peaks because it is more relevant to modelling the joint probability 
distribution and implicitly captures influences of catchment characteristics and rainfall 
patterns.   

The data that we use are daily data, so we are unlikely to see any travel time effects for 
shorter rivers. The river that we use to illustrate travel time is the Severn. The reasons 
we chose the Severn are that it is well gauged, is one of the longest rivers in the 
country and that it has a relatively homogeneous catchment. The Thames is longer and 
is also well gauged but is has a very diverse catchment. The three gauging stations on 
the Severn that we use are 54012 (most upstream of the three), 54095 (located in the 
middle of the three), and 54001 (most downstream of the three), these stations are 
illustrated in the Appendix in Figure A-3. 

Figure 5-5 shows plots of the lagged correlation between 54012 and 54095; 54012 and 
54001; and 54095 and 54001. The correlation measures that we use are Spearman’s  
correlation measure and  where  is the 0.99 
probability threshold for  and . The first thing to note is that temporal dependence in 
the extremes of the flow data is much lower than that in the main body of the data. We 
can also see that the dependence between 54012 and the other stations appears to 
peak when 54095 and 54001 are at a lag of plus one day to station 54012. This 
suggests that there is a travel time effect between 54012 and the other stations. 
Additionally, the dependence between 54095 and 54001 is almost the same for no lag 
and a lag of plus one day. One way to interpret this is that there is a travel time effect 
between 54095 and 54001, but that this lag is between 12 and 24 hours and so cannot 
be fully identified from daily data.  

From this analysis we can see that although there does seem to be a travel time effect 
on dependence, for these stations at least the dependence falls off within plus or minus 
three to five days. We adopt a time window of plus or minus three days in the analysis 
for this project (this is in addition to working with the five-day maxima to account for 
differing event durations, as described in the previous section).   
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Figure 5-5: Left plot X = 54012, Y = 54095, middle plot X = 54012, Y = 54001, right plot X = 54095, 
Y = 54001.  Blue lines Spearman’s ρ, black lines  . 
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5.4 Event definitions – coastal 
The issues surrounding event definition for coastal events are the same as those for 
fluvial events. Surges last for a period of time, and, at least on the east coast, they 
reach different sites at different times as surge waves travel down the coast. The 
methods used to take this temporal dependence into account when simulating events 
are the same as those used for fluvial events. So we need to be able to define a 
window of time within which extreme surges can be classed as dependent.   

Figure 5-6 shows plots of the highest ten surge events at North Shields. All events are 
clearly defined and the duration of each is around 30 hours. Although not all coastal 
sites have surge events that are as well defined as here, the duration of surge events 
are generally shorter than the duration of most fluvial events. When we repeated the 
analysis shown in Sections 5.3.1 and 5.3.2 for sea level data we found that a time 
window of plus or minus one day was sufficient to capture full events. 
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Figure 5-6: Top ten surges for North Shields plotted so that their peak value occurs concurrently. 

5.5 Seasonality 
A useful way to investigate seasonality is to examine the number of high flow days 
observed in each month. We define high flow days as days on which the daily mean 
flow exceeds the 99 per cent probability threshold for the whole year. If there were no 
seasonal effect we would expect the proportion to be constant for each month, and 
equal to 0.01.   
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Figure 5-7 shows plots of the proportion of high flow days for selected months. The 
gauging stations used in this analysis are a subset of the whole data set that have long 
records. The reason we carried out the analysis on this subset was to ensure that there 
was enough data at each site to obtain accurate results. These plots show clearly two 
aspects of flooding that are well known: first that there are more high flow days in the 
winter months; and second that the actual number of high flow days in a particular 
month varies over the country. In general the south east of the country experiences 
more high flow days later in the water year (running Autumn to Autumn) than the north 
and west.   

 

January March May

July September November

 

Figure 5-7: Proportion of days each month exceeding 99 per cent probability threshold for selected 
months for each gauging station. Colouring of sites gives the value of the observed proportion in 
relation to what that proportion would be if there were no seasonality. Purple: more than four 
times less likely than no seasonality; blue: between two and four times less likely; green: between 
two and one times less likely; yellow: between one and two times more likely; orange: between two 
and four times more likely; red: more then four times more likely.   

 
The second stage of the analysis of seasonality is to see if there are any common 
factors that appear to affect whether or not a station has a high proportion of high flow 
days in the summer months. From the first stage of the analysis we split the year into 
two seasons, ‘winter’ running from 1 October to 30 April and ‘summer’ running from 1 
May to 30 September. In choosing these seasons we looked at the number of high flow 
days in each month, rather than trying to get seasons of equal length. Table 5-1 shows 
all stations where the proportion of high flow days that occur in the summer months is 
greater than 15 per cent. If high flow days occurred without any seasonality all stations 
would have around 42 per cent of high flow days in the summer months. From Table 
5-1 we can see that although some of these stations are highly urbanised, many are 
not. However, when the gauging station descriptions are examined (Marsh and 
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Hannaford, 2008) many of these stations (27030, 28003, 28080, 30001, 38003, 39005, 
39012, 39014, 54006, 71004) have large artificial influences on the flow regime and 
one is tidally influenced at spring tide (twice a month). 

 

Station 
number Station name AREA BFI URBEXT1990 

Proportion of 
high flow days 
in summer 
months 

25005 Leven at Leven Bridge 196.3 0.44 0.01 0.153
27030 Dearne at Adwick 310.8 0.61 0.097 0.155
28003 Tame at Water Orton 408 0.62 0.403 0.365
28080 Tame at Lea Marston Lakes 799 0.69 0.268 0.202
30001 Witham at Claypole Mill 297.9 0.67 0.19 0.157
38003 Mimram at Panshanger Park 133.9 0.94 0.043 0.265
38007 Canons Brook at Elizabeth Way 21.4 0.41 0.173 0.174
39005 Beverley Brook at Wimbledon Common 43.5 0.64 0.379 0.299
39012 Hogsmill at Kingston upon Thames 69.1 0.74 0.207 0.211
39014 Ver at Hansteads 132 0.86 0.079 0.185
39023 Wye at Hedsor 137.3 0.93 0.07 0.294
52009 Sheppey at Fenny Castle 59.6 0.68 0.029 0.155
54006 Stour at Callows Lane, Kidderminster 324 0.72 0.165 0.192
65001 Glaslyn at Beddgelert 68.6 0.31 0 0.158
68004 Wistaston Brook at Marshfield Bridge 92.7 0.62 0.083 0.168
71004 Calder at Whalley Weir 316 0.43 0.098 0.151
72002 Wyre at St Michaels 275 0.32 0.006 0.152

Table 5-1: Gauging stations with high proportion of high flow days in summer months. 

 

One of the ways of accounting for seasonality in our analysis is to split the data up into 
two parts, summer and winter. However, due to the small number of high flow days in 
summer, for most stations there are not enough data points to accurately estimate the 
spatial dependence for the summer months. So, to see if ignoring seasonality had any 
effect we estimated dependence measure   (defined in equation (4.7.4)) 
empirically from the data for all observations, and for observations from the winter 
months, keeping the threshold, , to be the 99 per cent probability threshold for the 
whole dataset for both analyses.   

Figure 5-8 shows the correlation between the estimates of  obtained for the winter 
months and for all months. There is clearly a strong correlation between the two, with 
only four sites having a large difference (greater than 0.05) between the winter months 
and all months. These were 28003, 39005, 39023 and 54006, which all have a 
relatively high proportion of summer high flows. However, for almost all sites the 
estimates obtained for all months were slightly lower than those obtained for the winter 
months. This suggests that the level of spatial dependence is lower in summer than in 
winter, but that ignoring seasonality does not have a huge influence on the results of 
the spatial dependence analysis.  We do not, therefore, include seasonality in the rest 
of the analysis. 

This analysis of seasonality is likely to be influenced by the use of daily flow data and 
might not be fully representative of ‘flash flood’ events. However, these events are also 
not necessarily captured by river flow gauges. Accounting for localised, rapid onset 
flood events is one of the motivations to examine extending the modelling to include 
rainfall data, which is recommended as a further research topic. 
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Figure 5-8: Plot of dependence measure  obtained for winter months against that obtained for 
all months. Solid line perfect correlation, dashed lines +/- 0.05. 

 

5.6 Large scale dependence 
One of the requirements of the conceptual model is that it can estimate dependence 
over large spatial and temporal scales. For England and Wales, following quality 
checking, we have data from 432 flow gauging stations, so to estimate the dependence 
at the highest level of detail for a whole year would involve estimating 432 * 431 * 365  
and  parameters with associated residuals. The method to handle missing data 
increases these numbers.   

Although in theory there is no limit to the number of dimensions in which the Heffernan 
and Tawn model can be applied, in practice most computers would struggle with 
allocating memory to data arrays of the size needed for the highest level of detail, even 
with careful programming. The approach that we adopt to overcome this problem is to 
thin the data and so reduce the level of detail of the model. Up to a point it is possible 
to do this without any loss of useful information. However, there are situations in which 
a thinned dataset will not be able to capture the details required. These situations are 
generally smaller scale. For instance if we wish to set inputs to a hydraulic model, 
either at an estuary or for a large scale river model; or if we wish to inform emergency 
planners about how likely two roads are to be blocked by flooding at the same time; 
then it may be important to use as much detail as possible. In these situations a 
separate, detailed analysis using the full dataset for the region of interest would be 
appropriate. Note that the more detailed analysis would, in this situation, be consistent 
with the larger scale model, that is it would add to, rather than replace, the large scale 
data.   

The first way in which it is possible to thin the data is to reduce the number of stations 
included in the fitted model. A sensible way to do this is to remove stations of shorter, 
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lower quality records and which have very high dependence with other stations. In this 
way it is possible to reduce the number of gauging stations used in the analysis. For 
example, Keef et al. (2009b) used a set of 271 gauging stations over Great Britain 
(including Scotland) with a separation of around 25-30km between them.   

The second way in which it is possible to thin the data is to look at time intervals of 
greater than one day. For instance it would be possible to fit models to five-day 
maxima. The main drawback with this approach is that it is inevitable that we will split 
some events. An alternative to setting fixed time windows is to fit the model to local 
maxima of the individual time series, where the window of time corresponds to 
particular events. This approach means that the average length of an event can vary 
considerably over the country. For permeable catchments the time window over which 
to look for local maxima should be around 20 days, whereas for impermeable 
catchments it should be around five days. It therefore requires some skill to match up 
the maxima from different parts of the country and to work out which values should be 
taken for non-extreme time periods.   

Figure 5-9 shows an example based on five day maxima. The plot shows time series 
from summer 2007 for two flow stations in the Yorkshire Ouse catchment (27002, 
Wharfe at Flint Mill Weir and 27041, Derwent at Buttercrambe) and two in the Thames 
catchment (39001, Thames at Kingston and 39016, Kennet at Theale). Along with the 
daily time series we have plotted the five-day maxima from this series. If we look at the 
bottom three plots we can pick out instances when flood peaks have been split into two 
time windows – for instance the highest peaks for all three. However, for the first time 
series plots the five-day separation appears to capture all the major peaks in the flow 
series.     

In summary, we estimate large scale dependence by applying the fitted model to a 
carefully selected subset of the gauging stations to maxima of blocks of a certain 
number of days. The actual length of the blocks should be as short as possible (to 
obtain independent events) but can be set to a specified interval if required to ensure 
that certain types of events are included, such as the flooding of summer 2007. The 
number of gauging stations chosen in the analysis should be as large as is feasible 
computationally.   
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Figure 5-9: Lines show daily time series, red dots show five-day maxima.  Grey dashed lines 
indicate the first day of the five-day window. 

5.7 Model checks 
An important feature of the Heffernan and Tawn model is that due to its asymptotic 
derivation it requires relatively few assumptions about the underlying form of the 
marginal distributions or the dependence structure. Specifically, the variables can 
follow essentially any distributional form as for large enough values of these variables 
all possible marginal and dependence structures must follow the Heffernan and Tawn 
model. The key decision is therefore deciding what ‘large enough’ corresponds to - this 
is determined by the threshold level that we will use (so far we have used the 99 per 
cent probability threshold). 
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To be able to apply the Heffernan and Tawn model in any application, the validity of the 
assumptions needs checking for the required application data. This corresponds to 
determining if the selected threshold is large enough for the asymptotic derivation to be 
justified. Clearly the assumptions are more likely to be valid the higher the threshold 
chosen. However, the higher the threshold the less data we have to make inferences 
about the statistical model, so for model fitting we require the threshold to be a low as 
possible. Therefore we are looking for the threshold to be sufficiently high for the 
asymptotic derivation to be justified yet sufficiently low for there to be enough data to 
reliably fit the statistical model. 

If for a selected value of the threshold the assumptions appear appropriate that gives 
us confidence in using the associated statistical model, whereas if some assumptions 
are found to be inappropriate then further investigation is usually required, and typically 
a higher threshold needs to be used. Here we list the assumptions that are made and 
outline how these modelling assumptions can be assessed by use of data. 

5.7.1 Assumption 1 – Tails of the marginal distributions are 
generalised Pareto distributions 

Our marginal model assumes that a generalised Pareto distribution is an appropriate 
form of statistical distribution to describe the exceedances of a threshold . This is 
consistent with the assumption that the annual maxima follow a generalised logistic 
distribution or the generalised extreme value distribution. For marginal variable  the 
generalised Pareto has cumulative distribution function  with 

  

where  and  are scale and shape parameters respectively. If the generalised 
Pareto distribution is appropriate above the threshold  then for a higher threshold  

 the exceedances of  have cumulative distribution function  where 

  

where . Thus the exceedances of  also follow a generalised Pareto 
distribution with shape parameter also being  but scale parameter . Thus both  and 

 are invariant to the choice of threshold . 

A detailed way to assess if a selected threshold  is sufficiently large enough is to 
check if the estimates of both  and  are stable over different choices of threshold , 

. Lack of stability in these parameter estimates suggests a higher threshold is 
required. For example, Figure 5-10 shows plots of estimated  and  against the non-
exceedance probability of different thresholds  for the tide gauge data at Whitby. Two 
features are clear; there is a slight increase in  and corresponding slight decrease in 
 around a probability threshold of 0.97, which suggests a lower probability than this 

would be too low; and that as we get to much higher thresholds (above a probability 
threshold of 0.99) the parameter estimates change rapidly. This is due to the small 
numbers of exceedances above this threshold. From this plot we can see that taking a 
threshold equal to the 0.97 probability threshold is likely to be sufficient.   
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Figure 5-10: Plots indicating stability of parameter estimates over different thresholds. Top plot 
indicates scale parameter estimates  for fitting a GPD model to skew surges at Whitby. Lower 
plot indicates shape parameter estimates  for the same fitted models.   

 

Once a threshold has been selected that satisfies the stability property above, the 
second stage of the diagnostic method is to check if the distribution of the exceedances 
follows a generalised Pareto distribution. Q-Q plots, which compare the observed 
quantiles of the sample data of exceedances, with the predicted quantiles from the 
fitted generalised Pareto distribution, are the standard tool for making this assessment. 
Figure 5-11 shows a Q-Q plot for a fitted GPD to skew surge data, again from Whitby, 
above the 0.97 probability threshold. We can see that the fitted points lie close to the 
line of perfect fit. We have visually inspected Q-Q plots of this type for all of the (river 
and coastal) stations used in the analysis. 
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Figure 5-11: Q-Q plots showing quantiles on empirical scale versus quantile on modelled scale 
(fitted GPD) left hand plot skew surge at Whitby above the 0.97 probability threshold, right hand 
plot daily mean flow data for the Tyne about the 0.99 probability threshold. Solid line perfect fit, 
crosses data points, horizontal lines modelled 95 per cent confidence intervals for the data points. 
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5.7.2 Assumption 2 – The correct threshold for fitting the 
Heffernan and Tawn model has been selected 

There are two features of the Heffernan and Tawn method that it is possible to test to 
ensure that the asymptotic assumptions the model is based on are correct. The first is 
the assumption that the standardised residuals  are independent of the conditioning 
variable . The second is that the parameter estimates are constant above the fitted 
threshold. A method to test this second feature is related to the parameter stability plots 
used in threshold selection for the GPD. You fit the Heffernan and Tawn model at a 
series of different thresholds and select the lowest threshold above which the 
parameter estimates are stable.   

Independence of the conditioning variable and the standardised residuals 

The dependence structure component of the Heffernan and Tawn model requires the 
selection of a threshold  such that the joint distribution of standardised residuals , 
defined by 

  

 
is independent of the conditioning variable , where  and . 

To make an assessment of this independence assumption we examine the distribution 
of  for different ranges of . Typically it is sufficient to split the range of  for  
into three equally likely, non-overlapping ranges and then to plot the associated 
samples of  for each range. Monte Carlo tests of independence are then used to 
formally test for differences between these three distributions.  

If the  and  data are found to exhibit dependence, and hence violate the 
independence assumption, then this may indicate that the selected forms  
and  may not be suitable or a higher threshold is required than . In most 
cases we have identified a failure of the independence assumption; the best solution 
has been to raise the threshold to be used. 

5.7.3 Assumption 3 – The marginal distributions of the 
standardised residuals are non-degenerate with no mass at infinity 

This assumption of non-degeneracy and no mass at infinity are of theoretical relevance 
and included for completeness. Constraints are applied in fitting the model to ensure no 
values of any component of  can be infinity for any given sample. Provided more than 
one different value of  is obtained for each different marginal variable of  then the 
assumption is satisfied. In practical terms, the assumption will be met for any plausible 
input data. 
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5.7.4 Assumption 4 – The fitted joint distribution is consistent 
with the data 

Key to all aspects of model checking is that the fitted distribution is consistent with the 
observed data. We check this by simulating from the fitted model (see Section 6) a 
large sample and then comparing empirically quantities from the data sample and 
simulated sample. The features that we compare include: marginal distributions; the 
copula; distributions of combinations of the variables, such as , for some function 
of interest . 

As the simulated sample can be of any length, we typically generate samples which are 
much larger than the data sample. This allows us to derive rare return period events. 
An important part of the assessment of the assumptions of the model we use is that 
these large return level events are consistent with broader knowledge (not contained in 
the data) of the variables being simulated, this may correspond to knowledge of 
historical flooding events. 
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6 Implementation of statistical 
model for rivers and coasts – 
event simulation 

6.1 Introduction 
Given a suitable model for the joint probability distribution of the ‘source’ variables (that 
is, hydraulic loads), our generic conceptual risk model requires a procedure to simulate 
random samples from this distribution in order to integrate with ‘pathway’ and ‘receptor’ 
models. In the previous section of this report we have described a suitable joint 
distribution model. Now, we discuss the simulation of a set of ‘events’ from that 
distribution, corresponding to the Monte Carlo process illustrated in the generic model 
in Figure 2-6.  

The events will consist of simulations of data representing the severity of the source 
variables (flows and/or sea levels) for selected study areas. There are two reasons that 
we use a simulation approach. The first is the semi-parametric nature of the statistical 
model that we propose to use. The second is that this method will fit in with complex 
pathway and receptor models such as in RASP and NaFRA.   

Each simulated event will consist of standardised flows or sea levels for all points of 
interest. Each of these standardised flows/sea levels will have standard Gumbel 
distributions, so can be transformed to any scale of interest, for example the original 
daily scale or annual exceedance probability scale.   

Note that the simulation is of a sample of independent flood events (with temporal 
dependence having already been accounted for in the distributional model). It is 
important to realise that the event set is not a time series simulation. 

6.1.1 Pointwise simulation at gauging sites 

The choice of method used to simulate a large event set of artificial data for a set of 
gauging stations is independent of the choices of time window and subset of gauging 
stations. The method is as follows. 

Before simulating data we fit the Heffernan and Tawn model using each station as the 
conditioning station in turn. This means estimating sets of  and  parameters and 
residuals, , taking  to be each gauge in turn and  to be all other gauges. These 
parameter sets and residuals will cover same-day dependence and also lagged 
dependence in the way demonstrated in Section 4.7.9. Each of these sets of 
parameters will contain estimates of  and  for all  and for all  where  
is the set of all non-conditioning gauging stations and  is the set of lags of interest. 
Because we are simulating an ‘event’ we set the lags of interest to be the same for the 
whole dataset, based on the findings of the temporal dependence analysis (see 
Section 5.3) or user-supplied definitions. Each of the sets of residuals will consist of  
subsets, , for all ,  and  where  is the number of 
exceedances of the threshold by .   
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The procedure for simulating a single event is to select a conditioning site, simulate a 
value at that site and then generate values at other sites preserving the dependence 
structure captured by the model through the parameters  and , and the residuals, .  

These steps are repeated many times to get a large event set. In order to generate the 
correct number of threshold exceedances at each site each conditional gauging station 
(model) must be simulated from the correct number of times. In simulating each single 
event, the value at the conditional gauging station is the maximum value over all sites. 
So in generating the event set the proportion of events for which a particular site is 
conditioned upon should be the same as the true proportion of events where that site is 
the maximum. For any particular site this proportion can be estimated by first 
generating a large number of events conditioning on that site; these events will be 
representative of all events where this site is above the threshold. The proportion of 
these events where the conditioning site is the maximum can be used to estimate the 
true proportion of events where this site is the maximum. Because each event has at 
least one threshold exceedance, a site cannot be the maximum if it is below the 
conditioning threshold.   

The distribution function of spatially aggregated damages can then be obtained by 
combining the distribution function of aggregated damage for the simulated events with 
a distribution for occurrences of events, as discussed further in Section 7.  

6.2 Fluvial events 

6.2.1 Simulated events at gauging stations 

The simulation procedure outlined above results in an event set defined at gauging 
station locations. Figure 6-1 shows three events simulated in this way. Each event 
consists of ‘flows’ (on the chosen transformed scale) at each gauging station. Of 
course to model flood risk we need to have information about the event severity at any 
location on a river or coast, not just the gauged points. Before these events can be 
used to assess the associated impacts on receptors we must therefore first interpolate 
the event data between the gauging stations and into headwater catchments.   

 
  

Figure 6-1: Three events, the size of the circles reflect the size of the flows at each gauging station, 
larger circles indicate higher flows. Only gauging stations with flows greater than QMED are 
shown.   
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6.2.2 Flows between gauging stations 

The method used to estimate dependence is applied to gauging station flow records; it 
is not capable of directly estimating the probability of multiple floods at ungauged sites. 
But for a large scale risk analysis we need to include locations in between gauging 
stations and on ungauged rivers. There are two possible ways of overcoming this 
difficulty. The first is to build covariates into the model; this would create a model that 
could be used to predict the dependence at a set of ungauged flow sites. The second is 
to use the flows simulated at the gauged sites to predict the flows at ungauged sites. 
This prediction should be carried out using information about the catchment.   

There are advantages and disadvantages to both approaches. The main advantage of 
including covariates in the dependence model is that the resulting regression model 
could be used in catchments that were completely ungauged. The main disadvantages 
of including covariates in the dependence model are that it is difficult to define 
quantitative relationships between catchment descriptors and the parameters of the 
dependence model, and the numerical difficulty of including covariates in the Heffernan 
and Tawn model.   

Two examples of investigations into obtaining quantitative relationships between 
pairwise dependence of extreme river flows and catchment descriptors are Keef et al. 
(2009b) and Office of Public Works (OPW, 2008). In both investigations although 
correlations with differences in catchment descriptors were found, the predictive 
capability of all differences in catchment descriptors was very low. The strongest 
relationships found were whether or not two sites were ‘connected’ (that is, had the 
same water flowing through them) and the geographical separation between the 
catchments of the sites. Instead of building ungauged sites directly into the joint 
distribution model, we therefore consider two interpolation methods to use the flows 
simulated at gauging stations to predict flows at ungauged sites.  

Interpolation methods 

The two interpolation methods we consider are:   

• Interpolating the flows along the flow network using shared catchment area.  

• Estimating the flows at ungauged sites, based on the distance between the 
catchment centroid of the ungauged site and the catchment centroids of the 
gauged sites. 

An obvious method of interpolating through the river network is to use distance along 
the river, for example defined as stream length from any point to the sea. These 
changes in river length are always smooth. However, we would expect changes in 
relative flood severity to change more suddenly in some places, for example at 
confluences, where upstream catchment area can also change abruptly. This could be 
particularly visible when moving from a main river to a tributary, especially if that 
tributary is small compared to the size of the main river. One of the chosen methods for 
predicting flows at ungauged sites is therefore to use differences in catchment area, 
which can be calculated from a DTM for any ungauged river location as well as at the 
gauged sites. 

Alternatively, we can use geographical distance between catchment centroids as a 
distance measure to represent the position of ungauged locations relative to gauged 
sites in order to estimate the scaled ‘flow’ variable. One reason for using catchment 
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centroids is that there could be two flow sites located close to each other but with 
catchments that are relatively far apart, an example could be tributaries descending 
from opposite sides of a valley that join the main river close to each other. We would 
expect that the flows at these points are more different to each other than for nearby 
flow sites located on the same river. Conversely, headwater sites that are close 
together but in different catchments would appear closer using the centroids distance 
measure. Catchment centroids have recently been adopted in the revised FEH 
procedure for data transfers from gauged to ungauged sites, partly for the above 
reasons (Environment Agency project SC050050/SR; Kjeldsen and Jones, 2007). 

Both methods that we use to predict flows at ungauged sites can be viewed as 
interpolation. The first simply along the river network by viewing catchment area at 
points along the network as a 1D surface, the second by viewing the geographical area 
of interest as a 2D surface with distances on the surface represented by distances 
between catchment centroids.   

When interpolating river flows it is necessary to ensure that the interpolated flows at 
each site along the river are sensible given the range of possible flows at that site. The 
interpolated flows must take into account the probability distribution of flows at each 
site. One way to do this is to interpolate on a standardised scale. Possible standardised 
scales are the return period scale, the probability scale and the Gumbel scale.   

In this study we have used the Gumbel scale because, for most flow sites, the tail of 
the Gumbel distribution is a similar shape to the tail of the true distribution of the 
gauged sites. The relative changes in flow with return period are similar on both the 
Gumbel scale and for the original flow data. The method used to transform data onto 
the Gumbel scale is given in Section 4.3.1. 

For both distance measures used to interpolate (difference in catchment area and 
distance between catchment centroids) we use simple linear interpolation to obtain the 
expected flow at intermediate points. For distance between catchment centroids this 
equates to a simple weighted average, given in equation (6.2.1): 

  (6.2.1) 
   
where  is equal to the geographical distance between the catchment centroids for 
sites  and the site of interest ( ), and  is the value on the Gumbel scale at site .   

For the difference in catchment area the interpolation formula is more complicated. The 
reason for this is that we have to take account of the connectivity of the river system. 
We cannot use this method to interpolate points that are not directly connected to each 
other.  We define connected in the following way; two flow sites are connected if they 
have the same water flowing though them. In the left plot of Figure 6-2 there are two 
connected gauging stations, one upstream and one downstream. We denote the flow 
at the upstream gauging station  and the flow at the downstream gauging station 

. Similarly we denote the catchment area of the upstream gauging station  
and of the downstream station . The formula we use to interpolate flow at point 

 using catchment area is given in equation (6.2.2): 

  (6.2.2) 

   
The interpolation formula given in equation (6.2.2) is insufficient if, for a given 
interpolation point, there is more than one upstream gauging station. In this case we 
define  as the sum of all upstream catchment areas, so , where 
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 is the number of upstream gauging stations, and  as a weighted average of all 
upstream flows, so .   

 

  

Figure 6-2: Illustration of interpolation method. Left plot one upstream gauge, right plot two 
upstream gauges. 

Interpolation method checks 

To check the performance of our method of interpolation we have used the method of 
‘leave one out’ cross-validation on five river catchments from the UK. These are the 
Bristol Avon, the Yorkshire Ouse, the Severn, the Thames, and the Wye. These were 
selected to provide a wide range of differing types of catchment in terms of 
geographical location, size, shape, relief and geology. Maps of these catchments are 
given in the Appendix to show the distribution and number of gauging stations in each 
case. Figure 6-3 shows an event on the Wear catchment in north east England before 
and after interpolation.Two possible methods of interpolating these flows are given in 
Section 6.2.2.  

 

  
Figure 6-3: An event on the Wear catchment. Left plot shows flows simulated at gauging stations 
(larger discs indicates higher flow), right plot shows the interpolated event (thicker lines indicate 
high flows).   

The two interpolation methods were assessed separately and also for each catchment 
in turn. We carried out two cross validation studies for each catchment. The aim of 
these studies was to evaluate how good each interpolation method is at predicting the 
flows at ungauged flow sites.Obviously the only data to make this comparison is at 
gauged sites. Hence, the principle of the cross validation technique is to remove each 
gauging station in turn, predict the flows at the removed gauging station (by 
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interpolating from the other stations) and then compare the predicted flows with the real 
flows.   

The method used in these studies is as follows. For each catchment we denote the set 
of gauging stations to be  where ,  being the number of gauging 
stations in the whole catchment. For each site  we then used equations (6.2.1) 
and (6.2.2) to estimate the flows at site .   

Figure 6-4 shows summaries of the correlation between the observed ‘flows’ (on the 
Gumbel scale) and the ‘flows’ obtained by interpolating from the other gauging stations. 
To obtain these summaries we first used both methods of interpolation to predict ‘flows’ 
at each gauging station. We then calculated the correlations (Spearman’s ) between 
the observed ‘flows’ and the interpolated ‘flows’ for each station in turn. We present the 
results as boxplots, grouped for each catchment. We can see that, for most sites, both 
interpolation methods perform well. With the exception of the Thames and the Severn, 
using area interpolation the 25 per cent quantile correlation (lower edge of the box) 
between the real and interpolated flows is well above 0.9 for all catchments.   
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Figure 6-4: Boxplots showing range of estimated correlation (Spearman’s ) coefficients between 
observed flows on Gumbel scale and interpolated flows on Gumbel scale for each method, for each 
river.  Results are grouped into each catchment. Box indicates upper and lower quartiles of the 
data (estimated correlation coefficients), thick lines median of the data, whiskers indicate the 
largest and smallest data points that are no more than 1.5 times the length of the box away from the 
box. Circles indicate outliers. 
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The gauging station on the Thames that is not well represented by either of the 
interpolation methods is station 39065, Ewelme at Ewelme Brook, which has an area of 
13.4km2 and BFI 0.98. This gauging station has no upstream stations and the nearest 
downstream gauging station is 39072, the Thames at Windsor Park, which has an area 
of 7046.0km2 and BFI 0.72. The station with the nearest catchment centroid is 39002, 
the Thames at Days Weir, which has an area of 3444.7 km2 and BFI 0.64. When this 
information is examined it is not that surprising that station 39065 is poorly interpolated. 
It is likely to respond at a very different rate to the nearest flow station using catchment 
centroids, and it is very small compared to the nearest flow station using catchment 
area. So the correlation between flows at this site and flows at the other sites is likely to 
be very small. For sites like these, it is probably physically realistic to assume that they 
act effectively independently of the other flow sites. In our further investigation of the 
performance of the interpolation methods we also found that the stations for which 
interpolation was particularly poor were those where there was a large amount of 
significant intervening catchment between the gauge at which the flows are to be 
interpreted, and the nearest site in terms of distance between catchment centroids. The 
implications of this are that there are some locations where the interpolation method 
will not work as well as in other areas.   

We can also see that for most sites the interpolation using catchment area seems to 
perform better, but for some the interpolation using catchment centroids seems to 
perform better. In particular for the neighbouring catchments of the Wye and the 
Severn the catchment centroids method performs best.   

The results presented here will be biased towards suggesting that interpolation using 
catchment area will work better than interpolation using distance between centroids. 
The reason for this is that in each analysis we only use flows contained in the same 
catchment. For interpolation using catchment area this will not change when we 
examine a whole region. However, when using interpolation using distance between 
catchment centroids we will be able to use flows in neighbouring catchments to help 
interpolate the flows. So, assuming that flows in neighbouring catchments will give us 
more useful information we should obtain better results. For downstream gauges the 
difference is likely to be very small. However, for small upstream gauges the 
improvement may be quite large.   

During our work on the proof of concept demonstrations for the north east region we 
found that, in general, the method of interpolation based on catchment centroids 
outperformed the method of interpolation based on catchment area. There were many 
gauges for which the method based on catchment centroids was best, and few for 
which the catchment area method was best. Additionally, the method based on 
catchment centroids can be used for all locations.   

6.3 Coastal events 
To estimate the joint probability of flooding from extreme still water levels at different 
coastal sites we model dependence between the skew surges at the sites using the 
Heffernan and Tawn model and the dependence between the associated tidal levels 
empirically from the predicted tidal series. 

A complication with such an approach is the event definition to account for the duration 
of events and the travel times of surges and tides. For example, high tides do not occur 
at the same time along the whole coastline, also there are usually two high tides each 
day but some days there is only one. We must be able to match a single skew surge to 
a single high tide at site, and for a spatial event also do this between different sites 
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along the coast. Additionally, we also want to be able to associate a still water level 
event with the daily mean river flow. Therefore we reduce the still water level data into 
a daily format, with days defined to run from 9am to 9am so that the river and coastal 
data are concurrent. 

For each day, we select the highest skew surge and the highest tide. Together these 
are used to represent the still water level on that day at a site. They also provide a 
clearly defined set of values from different sites along the coast on that day. By defining 
daily maximum sea level in this way we will never underestimate the maximum sea 
level in the day, but we may overestimate it. Therefore he levels obtained will have a 
positive bias. Given the diurnal cycle in the tides leads to a differential in the two tidal 
levels in a day, we anticipate that the level of bias will be slight. 

Interpolation between the sea level gauge sites is simpler than between the flow gauge 
sites because we only need to interpolate along one line, rather than a series of 
connected lines. One method of using our technique to simulate sea levels at a high 
enough resolution to use in pathway and receptor models is as follows: 

• Using the model data, determine how far along the coast two sites can be 
considered to be highly dependent. The technique we have presented to 
assess at which time lag two flows on the same river can be considered to be 
dependent can be used here. 

• Use the method detailed in Section 6.1.1 to simulate an event at each of the 
points in the network. 

• Use simple linear interpolation between the network points to obtain sea levels 
at any point on the coastline.  

6.4 Joint river and coastal 
If we define daily maximum sea level and use daily mean river flows, then use of the 
Heffernan and Tawn model to estimate the probability of joint fluvial and coastal 
flooding follows automatically. We can model the dependence between flows and 
surge, in exactly the same way as between flows and flows, or surge and surge. So we 
will be able to obtain simulated data sets of spatially coherent river flows and skew 
surges. The skew surges can be combined with high tides in the way described in 
Section 6.3 to obtain an event set of spatially coherent river flows and skew surges. 
The interpolation between the gauge sites can be carried out independently for flows 
and sea levels using the methods described in the previous sections. For sea levels the 
interpolation is in any case easier because the variation is smoother than for river 
flows.  

6.5 Model checks 
The model is checked during fitting via test of the assumptions described in Section 
5.7. In addition, there are some checks made of the event data simulated from the 
model as described in this section. Simulated values at the gauge sites are checked to 
ensure that they have the same distribution as the real values. This is done by 
inspecting plots of the distribution function and also by carrying out a parametric test 
(the Kolmogorov-Smirnov test is suitable). The second aspect of the simulation method 
to check is that the pairwise dependences within the simulated data reflect the pairwise 
dependences within the real data set. This can be checked by estimating pairwise 
dependence measures for both the simulated data and the real data and more simply 

 SC060088 Technical Methodology Report 73 



by inspection of pairwise scatter plots, as shown in Figure 6-5 for an arbitrarily chosen 
set of river gauging stations.   

 

 

Figure 6-5: Scatter plots showing daily river flows on a standardised dimensionless scale for an 
arbitrarily selected set of gauging stations. Black dots are gauged data, red dots simulated data.   

 
These checks are of course possible up to limits implied by the available gauged data - 
it is only possible to check the simulation method up to a threshold for which there is 
enough observed data to make the comparison. Even so, plots such as Figure 6-5 
provide a useful check that the model is generating a plausible extrapolation from the 
gauged data. 
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7 Integration of pathway and 
receptor models 

7.1 RASP (Risk assessment for system planning) 
RASP is a probabilistic method for modelling flood risk that includes the performance of 
flood defences, attempting to take account of location, type, condition and failure 
modes. The RASP method seeks, in principle, to integrate the probability distribution 
for hydraulic loads on a flood defence system with the probability distribution of 
defences failing (conditional on the load) and the translation of the resulting flood 
volumes into depths and damages. It does this for systems of defences, exploring the 
many possible failure scenarios using Monte Carlo simulation as a numerical 
approximation to the probability integration. 

As we will discuss below in more detail, RASP is essentially a univariate model in 
terms of the way the source of flooding (hydraulic load) is represented, although joint 
probabilities of fluvial and tidal load have also been considered. However, it does 
provide a method for representing the ‘pathway’ and ‘receptor’ components of the 
source-pathway-receptor concept for flood risk. 

This section therefore looks at how we may be able to take advantage of the 
established RASP methods to integrate the defence system pathway with the spatially 
aggregated, multivariate risk model outlined in the previous sections.  

The RASP methods are currently implemented in a nation-wide analysis within the 
National Flood Risk Assessment (NaFRA), but can also be applied to smaller study 
areas, such as the Thames Estuary in TE2100. Spatial aspects of risk become more 
relevant when working at large scales of aggregation and we have therefore 
concentrated on how a NaFRA implementation of RASP could be linked with a spatial 
model. However, the principles are generic and could be relevant for smaller scales, for 
example in modelling risk for a future Catchment Flood Management Plan.  

Integration of RASP with the multivariate, spatial model has been considered within this 
project. Section 7.2 describes an approach that we have concluded would make the 
link possible in principle. We have also verified this conclusion in discussions with the 
Environment Agency and consultants working with the organisation on development 
and implementation of RASP and NaFRA (HR Wallingford and Halcrow). 

7.1.1 NaFRA  

The NaFRA methodology is based on assessing the flood risk for individual impact 
zones over the whole country. The description here is based on documentation 
supplied by the Environment Agency relating to recent implementations (to 2007). It is 
recognised that some details may change in the near future or already have changed.  

NaFRA is a broad scale assessment of the likelihood and impact of flooding at a 
national scale. These impact zones are 50m grid squares that are at risk of flooding 
from rivers or the sea.   

The receptors in each impact zone are accounted for by inclusion of three separate, 
national spatial datasets. The first is land use, the second what buildings are on the 
land (national property database), and the third dataset describes who lives in the 
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buildings (social flood vulnerability index, derived from census data). For each impact 
zone the potential economic damage can be calculated from these datasets.   

The flooding pathways to each impact zone are accounted for by inclusion of flood 
defence data from NFCDD. Each impact zone is related to a set of defences that 
protect it. Each impact zone may have multiple pathways by which it can flood. The 
probability of failure for each particular defence, given a certain loading condition, is 
calculated using fragility curves.   

The loadings from the source variables on each defence are calculated differently for 
sea and rivers. For rivers water levels at the 100- and 1000-year return periods are 
obtained from existing hydraulic models or the Flood Zones projects where more 
detailed information is not available. Using the ground level as the two-year level, these 
levels are then interpolated to obtain water levels for other return periods. For coastal 
loadings sea levels and wave heights are obtained from the JOIN-SEA analysis 
method, using data from a variety of different research projects.   

For the coastal analysis the coastline is split up into joint probability regions. These are 
regions in which the distributions of sea levels, wave heights, and dependence 
structure between sea levels and wave heights within each region are similar enough 
to be treated as the same. The regions currently in use are understood to be updates 
of joint probability regions produced originally in Defra R&D project FD2308.  

The average annual damage for each impact zone is calculated by evaluating the 
probability and damage for each flood-causing scenario. The method used in the latest 
version of NaFRA is HR Wallingford’s rapid flood spreading mechanism with a fixed 
volume from breaching formula to create a dataset of flood depths. The corresponding 
damage from these depths are then calculated, and combined with the probability of 
hydraulic load, to obtain the average annual economic damage.   

7.1.2 MDSF (1 and 2) 

The Modelling and Decision Support Framework (MDSF) is a tool originally designed to 
assist in catchment flood management plans and shoreline management plans.   

In principle the datasets contained within MDSF perform the same function as the 
datasets considered within NaFRA. They allow the user to determine land use, building 
type, and social vulnerability of receptors. Within MDSF2 there are planned to be two 
ways of identifying flood depth. The first will be to use the rapid flood spreading 
mechanism embedded within the software, the second will be to import pre-determined 
depth grids produced by an external model.   

The important distinction between MDSF1 and MDSF2 is that MDSF1 is a deterministic 
tool, designed to analyse scenarios, whilst MDSF2 is planned to include a probabilistic 
treatment of defence systems by implementing RASP. The RASP implementation 
appears very similar to that in NaFRA, but should also provide a user-friendly option to 
import water levels to represent the hydraulic load from external modelling.  
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7.2 Integrating RASP with a multivariate, spatial 
flood risk model 

7.2.1 The RASP scheme for expected annual damages 

‘Dependence of load’ is one of the assumptions made in the RASP methodology. 
However, the RASP concepts for defence failure analysis do not, in principle, preclude 
a spatially distributed source variable, or multiple sources. For example, in the Thames 
Estuary analysis described by Gouldby et al. (2008), the tidal nature of the river 
required joint probability analysis of tidal and fluvial boundary conditions, combined 
with a hydraulic model, to provide distributions of the water level loading along the 
river. Here, a joint probability method already existed for the limited case of fluvial/tidal 
boundary conditions in one estuary. But for larger scales of spatial aggregation, no 
such method has previously been available. 

In RASP the assumption of ‘dependence of load’ generally refers to an assumption that 
the process of defence failure somewhere within the system being modelled does not 
have a hydraulic influence on the loading elsewhere. It is easy to think of situations 
where this may not hold true, but more difficult to build such hydraulic interactions into 
the risk model.  

A similar assumption is made in the spatial risk model that we are developing in this 
project. Hydraulic interactions, for example in estuaries or for floodplains with large 
washlands, are implicitly included in the dependence analysis to the extent that they 
are reflected in the observed record, but will not necessarily be included for scenarios 
that have never been observed. This is a challenge for any flood risk model and will 
need further work in future. With the techniques currently available, some progress 
could be made by using hydraulic models within a simulation framework to represent 
the interactions explicitly, although this might only be practical in specific cases like 
TE2100 where there are the resources to allow it.  

The spatial structure of the RASP method is shown in Figure 7-1. In the terminology of 
RASP, the floodplain is divided into ‘impact zones’ which may lie behind a system of 
defences, each of which can have an independent resistance to flood loading. Current 
implementations of RASP further divide the floodplain into ‘impact cells’, which could 
correspond to a hydraulic model or flood spreading algorithm grid, or some aggregation 
thereof. A series of nodes are located along the river or coastline representing the 
locations where the hydraulic load is defined. 
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Figure 7-1: Schematic illustration of the RASP division of the floodplain. 

 

If translated into the simple generic model structure of Section 2, the RASP approach 
corresponds in principle to Figure 2-4. If RASP methods were actually applied using a 
brute force Monte Carlo simulation of this type, then the spatial hydraulic load terms 
could simply be supplied as an additional stochastic input. In practice, even for a 
univariate hydraulic load term, this brute force approach would be inefficient because it 
would require repeated creation of a very large Monte Carlo sample. Instead, RASP 
replaces the exhaustive Monte Carlo procedure with a structured simulation in which a 
set of discrete loading conditions (corresponding to 39 return levels for the analysis in 
NaFRA) are combined with a Monte Carlo simulation of possible defence states and an 
approximate flood spreading algorithm.  

This procedure generates an estimate of the probability distribution of flood depth, 
conditional on loading, incorporating what is known or assumed about the defence 
system performance. The estimate is defined spatially for each cell within a grid 
covering the area associated with a given defence system. In RASP, the primary result 
of interest is the Expected Annual Damage (EAD). Conceptually this is obtained (Hall 
et al., 2003) by integrating the derived probability distribution of flood depths  with 
the cost function, , which is also dependent on depth, where  is a vector of 
depths generated from the Monte Carlo simulation of defence system states.   is 
therefore defined by Hall et al. as: 

 

Gouldby et al. (2008) give the alternative approximation: 
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Here the load distribution has been discretised into  levels , , where 
 is the annual probability of experiencing a load of level  or greater, and  is 

the mean economic damage, for a given hydraulic load, for a given flood impact cell. 

7.2.2 Calculation of expected economic damages conditional on 
hydraulic load 

The calculation of  is conditional on the load and is based on a Monte Carlo 
simulation of defence states, combined with flood spreading, for a given load. Hence 
there is a value of  for each of the  load conditions. The ‘hydraulic load’ is not defined 
precisely in the generic description given by Gouldby et al., but for their case study of 
the Thames Estuary it was the water level derived from a hydraulic river model based 
on detailed physical data.  

We cannot always assume such detailed information about the river channel and so 
the load may have to be expressed more generally, for example in factorial terms 
relative to defence standard as proposed by Hall et al. These authors also set out a 
method for deriving volumes of water flowing onto the floodplain. Although highly 
generalised and approximate, in the absence of better information similar formulae 
could be used to estimate a volume to floodplain based on the return level for locations 
in our spatial model. Alternatively, given a spatial statistical model, river flows and sea 
levels could be computed directly from their marginal distribution at any location. For 
river flows it would then be necessary to define volumes to floodplain via assumptions 
about hydrograph shape and channel capacity. The assumptions needed would be 
similar to those discussed by Hall et al. or currently made in NaFRA.  

Whatever method is chosen to derive a volume to floodplain from the distribution of the 
hydraulic loads, the RASP methodology currently requires the distribution function for 
the load to be specified (both to compute the expected damage per floodplain cell for a 
given load level and also to compute the EAD). In NaFRA we understand that this is 
done using flow frequency distributions based on automated application of the FEH 
methods (CEH flow grids) where more detailed flow data are not available. In Gouldby 
et al. (2008) a hydraulic model for the main channel of the Thames was used. In 
MDSF2 it is proposed that users in effect supply their own distribution via an import of 
water levels for specified return levels from external models, combined with an 
interpolation procedure within MDSF2. The exact choices are not always easy to 
summarise from the literature because the RASP methods have evolved through 
different applications. Details of the current specifications will require clarification 
should the methods in this project be taken forward to link with NaFRA or MDSF2.  

If the joint distribution modelled with the Heffernan and Tawn method were to be used, 
then the required data would be the marginal distributions of the ‘source’ variable, that 
is, hydraulic load, at specified locations along the river or coast. These data are readily 
available from the spatial model. But because the spatial model and event set 
simulation can generate data on a probability scale, or a related scale such as a 
Gumbel reduced variate, it is possible instead to use the marginal distributions that are 
currently applied in NaFRA (that is, derived using FEH methods, if the CEH flow grids 
are applied as the input to RASP). What this means is that it is possible to make direct 
use of the expected damage data produced by NaFRA in combination with a spatial 
event set produced by the models developed in this project. 
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7.2.3 Integration of RASP conditional expected damages with a 
spatial event set 

Given the expected damage per load level ( ), it should be possible to estimate the 
spatially-aggregated distribution of damage by using these conditional expected 
damages in combination with a spatial event set that specifies vectors of load levels 
per event. This requires the values of  for flood cells to be associated with the 
simulated loads for a specified location. Given an assumption that the spatial variation 
in load is at a larger scale than the flood zones used for calculating , then this should 
be a reasonable approximation. Such an assumption is in effect that of ‘dependence of 
load’ at the defence system scale, which is in any case made in RASP.  

Calculation of the damage distribution would be made more accurate by considering 
not just the expected damager per load level, but also the distribution of values around 
the expectation. This distribution could be captured from the Monte Carlo simulation of 
defence states already performed in recent versions of RASP, and summarised as an 
empirical distribution function or, to an approximation, by the variance of that 
distribution.    

For the sake of efficiency, it may be worth exploring the possibility of defining the 
expected conditional damages as the average for an entire flood impact zone, and then 
associating each impact zone with the hydraulic loads at one location, or perhaps the 
mean of the loads at the locations that RASP shows to be contributing to the risk for 
the particular impact zone. A possible configuration is illustrated in sketch form in 
Figure 7-2. Here, the choice is left open about mapping between locations defined in 
the spatial event set and RASP impact cells or impact zones. 

 

 
 

Figure 7-2: Schematic illustration of the an integration of RASP conditional expected damages with 
spatial event set. 
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In summary, an outline algorithm for linking our multivariate risk model to the RASP 
methods is set out as follows: 

 

Integration with RASP 

1. Use an implementation of RASP, for example in NaFRA, to calculate the 
expected economic damage conditional on hydraulic load for every flood 
impact cell or impact zone. This is a parameter that approximately 
captures the flood risk ‘pathway’ through the performance of the defence 
system and the routing of flood water, along with the ‘receptor’ or risk 
through the economic damages calculation.  

2. Establish a suitable spatial connection between RASP impact cells (or at 
a higher level of spatial approximation, impact zones) and locations at 
which our spatial model can simulate the intensity of the hydraulic load. In 
effect this means tying the RASP conditional economic damages data to 
points on the river centre line or coast. This process could be assisted by 
the analysis done using RASP to associate risk with defence assets. 

3. Generate a spatial event set from our multivariate model.  Each event in 
the set consists of the hydraulic load intensity concurrently for each river 
or coastal location (node point).  

4. For each event, calculate the expected damage corresponding to each 
location by combining steps 1, 2 and 3. If the RASP analysis is also used 
to provide information from the Monte Carlo simulation about the variance 
surrounding the conditional expectation of damage, this could be used to 
enhance the method efficiently by sampling values from the distribution of 
damages, rather than always taking the expectation. 

5. For each event, accumulate the expected damages over the required 
spatial units, for example catchment or country. 

6. The ordered event set of accumulated damages provides an empirical 
estimate for the probability distribution of the spatially aggregated 
damage.  

7. Evaluate the distribution of the annual damage and its expectation and 
variance by accounting for the distribution of damage per event and the 
distribution of the number of events per year. 

 

From steps 6 and 7 we can easily calculate a curve relating the damage distribution to 
exceedance probability or return period, in other words a risk profile. Because we use 
the empirical distribution of damages from each simulated event set to build up the risk 
profile we need a large number of events to reduce sampling noise in this risk profile. 

The RASP approach uses the marginal distributions of hydraulic load to calculate EAD. 
Since EAD is the mean damage it is possible to aggregate it over spatial scales to 
estimate, for example, catchment or national expected annual damages. However, it 
does not say anything else about the probability distribution of damages at the 
aggregated scale. This is because calculation of the full distribution of the aggregated 
cost function has to take account of dependence to avoid potentially serious bias, as 
shown for a simple example in Section 4.  
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In contrast, our conceptual model aims to derive the full distribution of event damages, 
including the probabilities of extreme events, for any spatial scale of aggregation. In 
this sense, it should be seen as having the potential to augment RASP-based tools 
such as NaFRA and MDSF2 so that we can understand not just the expected, 
‘average’ risk but also the risk of suffering a much more severe event.  

To estimate expected annual damages, we can compute , where 
 is the expected damage in a flood event and  is the expected number of 

events per year. To evaluate the full distribution of annualised damages, the 
distribution of the event damages is combined with a model for the distribution of the 
number of events per year as described in step 7 above. This is similar to the 
procedures used in single site peaks over threshold models. 
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8 Uncertainty 
In estimating the return period of spatially aggregated loss there are a number of 
sources of uncertainty. In this section we investigate these sources.   

8.1 Natural variability in observed source data  
Because we only have flow observations from the past 40 years or so we only have a 
sample of all possible observations. Like any sample this is subject to sampling error 
which leads to estimation uncertainty of the fitted model. In previous work (Keef et al. 
2009a, b) this sampling error has been accounted for by use of a block bootstrap, in 
Heffernan and Tawn (2004) a standard bootstrapping technique was used. The 
principle behind bootstrapping is to use the variability contained within the observed 
data to inform us about the overall variability in the full data. Block bootstrapping is an 
extension of the basic bootstrapping approach that is suitable for time series data. We 
first define the basic bootstrap method (for more details see Davison and Hinckley, 
1997). Let  be a univariate sample of independent identically distributed (i.i.d.) data of 
size . If we are estimating the value of a parameter  of the distribution from which the 
sample  is taken and we wish to estimate the uncertainty in the estimate  of  then 
the basic bootstrap method is as follows. 

• Re-sample  with replacement to obtain a bootstrapped sample  of size . 

• Calculate  for . 

These two steps are repeated  times, where  is a large number, to obtain a sample 
, of estimates of  of size . The variation in this sample can then be assessed and 

used as the estimate of uncertainty in the parameter estimation. In particular, if we wish 
to obtain a 95 per cent confidence interval then we can take the end points of this 
interval to be the 0.025 and 0.975 quantiles of . 

The basic bootstrap can be extended to multivariate data in the following way.  Let 
 be a sample of i.i.d. multivariate data with  multivariate 

observations.  In the multivariate case, in order to maintain the between-variable 
dependence, it is possible to sample the vector observations ,  with 
replacement.  The observations of all variables  at these re-sampled 
observation points can then be used to create the bootstrapped samples . 

If we used the basic bootstrap to estimate the uncertainty of a multivariate time series 
parameter then we would lose any temporal dependence present in the original series.  
This is because we re-sample the observation point independently of each other.   

The assumption that all data is i.i.d. is invalid for river flow data, and for sea level data, 
which generally display seasonality and short-term dependence. In the block bootstrap 
the original multivariate time series  is divided into blocks. These blocks are then re-
sampled with replacement to create the bootstrapped sample . The blocks are 
chosen to be large enough to preserve the temporal dependence in the time series but 
small enough to allow a large number of possible combinations in each re-sample. Due 
to the seasonality of the data it is sensible to choose blocks that correspond to a whole 
year. In making this choice we make the assumption that floods in one year are 
independent of floods in the previous year. If we chose blocks that corresponded to 
calendar years then this assumption would be invalid. This is because the start date of 
the calendar year falls in the middle of the flood season and what happens in the 
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second half of a flood season is not independent of what happens in the first half. The 
start day of the block year should be chosen so that it is in the middle of the lower 
seasonal flow periods.  In Keef (2007) it was found that a suitable date to choose as 
the start date of a year for the purposes of block bootstrapping river flows was 1 
August, as most UK rivers are in the middle of seasonal low flows on this date. We 
have not investigated a suitable year start date for sea levels, but as highest surges 
generally occur in late winter/early spring this should also be a suitable date for sea 
levels. 

To illustrate the block bootstrap method we show how it can be used to obtain 
confidence intervals for the economic risk profile curves associated with a pair of flow 
gauges, each of which is located close to a city in the north east region. An economic 
risk profile was calculated using depth and damage data as described in Section 3.5.2 
and the simulation methods described in Section 7, as follows: 

Steps in obtaining economic risk profile  

• Step 1: Fit a GPD distribution to the data from each flow gauge. 

• Step 2: Fit the Heffernan and Tawn model, conditioning on each gauging 
station.  This results in two separate fitted models. 

• Step 3: Use the simulation procedure described in Section 6.1.1 to simulate 
events equivalent to  years of data (here we choose  to be 1000). 

• Step 4: For each simulated event calculate the return period at each site. 

• Step 5: For each simulated event calculate the associated expected loss at 
each site, conditional on the return period at that site. Figure 8-1 shows the 
conditional expected damage curves we use in this illustration. 

 

We also compare our results with those that would be obtained if we assumed 
complete dependence or complete independence. When using the Heffernan and 
Tawn model we only simulate events such that at least one of the gauging stations has 
an observation above the modelling threshold. So to make the comparison, we also 
only simulate events for complete dependence and independence where at least one 
of the gauging stations has an observation above the threshold. The simulation 
procedure assuming complete dependence is to replace steps two and three above by 
simulating a single value above the modelling threshold and to use this value for both 
sites. The simulation procedure assuming complete independence is to replace steps 
two and three by simulating two values independently, with one of these values being 
above the threshold. All simulation is carried out so that the simulated values at each 
site have the correct marginal distributions.   
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Figure 8-1: Assumed conditional expected damage curves for two cities in the north east region 
(undefended). 

 

When using block bootstrapping the extension to the procedure defined above needed 
to obtain 95 per cent confidence intervals is as follows: 

• Re-sample the blocks (years running from 1 August to 31 July) with 
replacement to obtain a bootstrapped sample of the flow data at both sites. 

• For this bootstrapped sample carry out steps 1-5 for obtaining an economic risk 
profile as outlined above.   

• Repeat these steps 1 and 2 to get a large number of bootstrapped loss risk 
profile curves. 

• Calculate the 0.025 and 0.975 quantiles of the curves. 

Figure 8-2 shows the resulting risk profile curves and associated confidence intervals. 
For clarity we have plotted these curves twice, first with confidence intervals 
surrounding the modelled risk profiles, and again with confidence intervals surrounding 
the curves obtained using complete dependence and complete independence.The first 
thing to note in Figure 8-2 is that the (hypothetical, undefended) risk profile for the two 
cities is somewhere between the complete dependence and complete independence 
cases. More importantly, for higher return periods the confidence intervals for the 
modelled risk profile curves do not contain the curves for either the complete 
dependence or complete independence cases. Additionally the confidence intervals for 
the complete dependence and complete independence cases do not contain the 
modelled risk profile.   

The implications of this for flood risk management are that it is not appropriate to make 
either of the assumptions of complete dependence, or complete independence. In 
other words, it would not be sensible to assume that floods at the two sites were 
completely independent of each other as that would underestimate the likely losses, or 
that the two sites always experience the same return period at the same time as that 
would overestimate the likely losses. Even allowing for uncertainty, any model of the 
aggregated risk of flooding should include a model of the dependence structure of the 
flood risk variables. 

Another point to note is that that the confidence intervals for the modelled curve are 
wider than those for the false assumptions and also get wider as the return period 
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increases. This reflects that the Heffernan and Tawn model allows a range of 
dependence structures and the information in the data is not sufficient to discriminate 
completely between them. In contrast under the false assumptions of complete 
independence and complete dependence there is no statistical variation in the 
modelling of dependence which gives narrower confidence intervals but biased 
estimates. 
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Figure 8-2: Combined risk profile plots for two cities in the north east region. In both plots the solid 
black line is the fitted model, the dashed line assumes complete dependence, the dotted line 
complete independence. In the left plot the bootstrapped confidence intervals for the modelled 
curve are shown in grey, in the right hand plot confidence intervals assuming complete dependence 
are shown in blue and confidence intervals assuming complete independence are shown in pink. 

8.2 Simulation uncertainty 
Because we simulate events at random from the fitted model there is some additional 
uncertainty involved. This uncertainty can be reduced by simulating a very large 
number of events. There are two ways to go about this. The first is to simply generate a 
very large number of events in one simulation. The second is to simulate a smaller 
number of events replicated many times and then average over these results. As 
methods to reduce simulation uncertainty there is very little to choose between these 
two approaches. However, the second approach is much more efficient 
computationally. This approach was used to produce the plots in Figure 8-2. For each 
bootstrapped sample we repeated the simulation procedure 100 times (steps 3-6 in 
steps in obtaining the risk profile curve), we then took the median of these curves to be 
the value for that bootstrapped sample.   

8.3 Interpolation 
The spatial interpolation procedure used to transfer information from gauged reaches 
to ungauged reaches is also a source of uncertainty. There are two factors to be 
considered here. The first is the potential for bias in the interpolated values, not least 
because in our method of interpolation no value will have a return period higher than 
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the highest simulated value. The second is variation around the expected values at 
each interpolation point.   

It is possible to build realistic variation into the interpolation procedure as a future 
development. In doing this the value obtained at each interpolation point would not be 
simply the expected value at that point, but rather a sample from a distribution around 
that expected value. However, there are a number of difficulties in this approach, 
particularly for river systems. The main difficulty would be ensuring that the implied 
event peak flow values would vary smoothly along the rivers, and also according to 
physical principles at confluences. Building in appropriate constraints would that take 
into account our knowledge of the physical river system is a refinement that should be 
considered in future. This is one of the main sources of uncertainty and one of the most 
difficult to resolve. Adding a more sophisticated method for interpolation is a 
recommendation for further research work, starting with analysis of how different 
choices about the interpolation contribute to uncertainty in the method, which could be 
carried out at a simple level in a phase two implementation project. 

8.4 Measurement uncertainty 
Any study that uses data is constrained by the quality of the data. Where the data are 
measurements of river flows or sea levels, any assessment of data quality must take 
into account measurement error. In this project we have sought to minimise this source 
of uncertainty by only using good records from quality controlled archives and by 
making basic checks on data consistency in preparation for the analysis. The block 
bootstrapping method outlined in Section 8.1 will account for observed random 
measurement error. However, systematic measurement error and bias are assumed to 
be minimal and are not accounted for separately.    

8.5 Non-stationarity  
Our work is based on the assumption that the data observed in the past 40 years is 
representative of what we can expect to observe in the time period over which the 
results are used to make planning decisions. There are several reasons why this 
assumption may be invalid to some degree. The first is natural morphological variations 
such as river channel erosion/deposition and coastal morphological change, including 
wave action and isostatic movement. A second possible source of non stationarity is 
climate change. A third is human intervention, such as urban development. 
Additionally, it is possible that the period of record is simply not representative of 
current conditions or the recent past owing to decadal scale natural variability.  

For coastal flooding there are two features associated with climate change. The first is 
sea level rise, and the second is a possible change in the frequency distribution of mid-
latitude cyclones affecting the UK, and so a possible change in the number of storm 
surge events. Additionally the distribution of future storm surge events may not be the 
same as the distribution of current storm surge events. Changes in extreme sea levels 
have been studied and the uncertainties around projected sea level rises are well 
documented. Changes in sea levels due to human intervention other than climate 
change are less likely. 

For fluvial flooding estimating the influence of climate change is more complicated. The 
main reason for this is that river flows are affected by a number of factors including the 
intensity, frequency and seasonality of precipitation and total evapotranspiration, 
affecting soil moisture. Land use and vegetation changes (whether natural or 
anthropogenic) may also have an effect. To model the spatial structure of river flows 
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the full joint distribution structure of these factors, along with the temporal structure, 
would have to be correctly accounted for. This may require an approach using process 
based models (such as climate models and rainfall runoff models) to generate proxy 
observations. 

An investigation into the effect of non-stationarity on spatial dependence would be a 
suitable topic for further research. Some statistical methods for analysis of extremes 
can be extended to include non stationarity, although this has not yet been done for the 
methods applied here. 

8.6 Pathway and receptor uncertainty 
In this project we have focused on estimating the dependence between flood risk 
source variables at different locations. The reason for this is because the dependence 
of flood risk between receptors’ different locations is caused by the dependence in the 
source variables.   

Our approach to representing the impacts of dependence of flood risk on receptors is 
to use outputs from previous work. In particular we have shown how it would be 
possible to integrate our work with the RASP method used in NaFRA. In terms of 
handling uncertainty this has the advantage that any work done to quantify and reduce 
uncertainty or otherwise improve those methods would be available to link with the 
spatial model adopted here.   

 

 

88  SC060088 Technical Methodology Report  



 

9 Methodology conclusions 
This project is a scoping study to identify, develop and trial a method for assessing 
flood risk when aggregated over large spatial scales. The overall objective of the 
project was to develop and test methodologies to assess the risk of widespread 
flooding. There were also a number of specific tasks within the project; those that we 
have addressed within this report are as follows: 

• To develop a sound theoretical and statistical understanding for assessing the 
spatial joint distributions and associated likelihood of flooding from single or 
multiple sources. 

• To show how the spatial joint distribution can be extended to include risk 
pathways and receptors of risk to add a spatial dimension to probabilistic flood 
risk assessment methods such as RASP. 

In developing the statistical method for assessing the spatial joint distribution of 
flooding we first reviewed a number of different reports of methods that have been or 
could be used to tackle this problem. In general, these reports fell into three categories.  
The first category is academic papers and Environment Agency/Defra R&D reports of 
dependence estimation of flood risk variables (rainfall, sea levels, river flows, and 
multiple variables). The second category is insurance and reinsurance industry 
documentation on catastrophe modelling for flood risk. The third category is statistical 
methods that could be used to estimate the joint distributions of flood risk variables.  

In the review we considered each method against a list of requirements that any 
method to estimate this joint distribution must meet. There was one method that met 
almost all of these requirements - the Heffernan and Tawn model. In this report we 
have investigated this method and shown how it is possible to use it to estimate the 
joint distribution of a large number of flood risk variables. We have also developed this 
method and shown how it is possible to link it to current RASP procedures. In the 
accompanying proof of concept report we have demonstrated that it is possible to use 
this method to develop risk profiles of flooding over a large spatial area.   

The main benefits of the method that we have chosen to use in this project are as 
follows: 

• It correctly estimates the spatial structure of flood events at all gauged 
locations. 

• It is easily verifiable against observed data. 

• It is modular, so components can easily be improved without disturbing the rest 
of the model. 

The method is best suited to capturing the large-scale spatial structure of flood events. 
It has the advantage that it is based on observed flow data, hence avoiding 
uncertainties associated with rainfall-runoff modelling, although this means that the 
spatial structure of floods between observed locations must be interpolated. The 
method that we have used here is a simple linear interpolation which is not intended to 
represent small scale variation in flooding. Another aspect of the flooding process that 
operates over smaller distances is the effect of defence performance; a defence failure 
in one location may affect loading conditions elsewhere, and so the spatial dependence 
structure.   

An alternative method that is able to estimate spatial dependence over small scales is 
continuous simulation, in which simulated rainfall is used as a driver to rainfall-runoff 
models to generate long time series of river flows. Continuous simulation has the 
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disadvantage that the modelling procedure is much more complicated, but has the 
advantage that it can be used on completely ungauged catchments, assuming that the 
runoff model can be parameterised well enough (which is not a trivial matter). In some 
situations, for instance ungauged headwater catchments, continuous simulation could 
be able to represent some of the spatial pattern in flood flows by using rain gauge data, 
which has not been incorporated into the method developed here. It would be more 
difficult to use continuous simulation to estimate a large scale (for example regional or 
national) risk profile for flooding due to the sheer size of the model that would need to 
be run. More fundamentally, such an application would depend of the representation of 
the spatial dependence and marginal statistics in rainfall at a wide range of space and 
time scales, as well as the parameterisation and structure of the chosen runoff model. 
These are all sources of uncertainty. 

A beneficial future extension of our model would be to include covariates. It is not yet 
possible to use additional information to tell us about the spatial aspects of flooding. 
Possible sources of information that it would be useful to include in a model of the 
spatial flooding are rainfall data, soil moisture data (antecedent conditions) and large 
scale atmospheric circulation patterns such as the North Atlantic Oscillation. Inclusion 
of covariate information within the spatial model would also have the potential to add 
assessment of the impact of climate change on widespread flooding based on 
interpretation of precipitation patterns or large scale climatic indices from climate model 
outputs. 

In the meantime, the method described here models flood risk coherently over a wide 
range scales, at both source and receptor level, to support national risk assessment. 
Case study demonstrations are given in the accompanying proof of concept summary 
report, which also describes potential benefits, as identified through stakeholder 
consultation, that could be realised by applying the technical approach. The final 
section of this methodology report outlines a programme of phase two work to 
implement the methods so as to deliver benefits for three such business applications. 
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10 Phase two recommendations 

10.1 Main outputs of the phase one scoping study 
Phase one of this R&D project has defined a method for flood risk assessment that 
accommodates the risk of widespread flooding and is designed to complement existing 
methods based on RASP already in use by the Environment Agency. The new method 
has the potential to augment current national scale risk assessments and provides a 
coherent framework for analysis over a wide range of scales.   

The phase one scoping study has produced the following outputs: 

• Review of existing work on spatial aspects of flood risk, particularly at regional 
or national scales. 

• Review of relevant statistical methods. 

• Detailed statement of a suitable statistical model. 

• Three proof of concept demonstration case studies presented at a stakeholder 
workshop. 

These outputs have been delivered by means of this technical methodology report, a 
proof of concept summary report, an Environment Agency R&D summary, a paper 
submitted to the Journal of Flood Risk Management and several conference papers. 

The method that has been demonstrated is compatible with the ‘source – pathway –
receptor’ concept for risk assessment. It is based on a spatially consistent approach to 
modelling risk at the source level, combined with existing models for the pathway and 
receptor components. 

The phase one scoping study has considered river and coastal flooding and the 
method is intended to be capable of including other sources of flooding. For practical 
reasons, other sources of flooding, wave overtopping and climate change were not 
incorporated in the scoping study.   

The proof of concept demonstration studies include analysis of risk at the receptor level 
and were carried out at a regional scale for practical reasons. A national scale analysis 
at the source level has also been prepared as an extension of the scoping study. 

10.2 Users’ requirements 
The scoping study has engaged with potential users of the science through initial 
consultations, a stakeholder workshop and further consultations to define the 
‘extended’ national demonstration. We identified distinct groups of business user needs 
that are summarised in Table 10-1. The methods demonstrated in this phase one 
scoping study can meet these needs through a programme of further development and 
implementation work set out in this section.   
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Table 10-1. Business user needs, decisions that may benefit from the new methods and relevant 
technical capacity  

Business users Relevant decision making 
processes 

Technical capacity and access to 
data 

Environment Agency 
investment planning 

Economic risk assessment 
to support investment 
planning. 

Strong – Good technical 
understanding of risk assessment 
methods. Possible customers are 
NaFRA and MDSF2 projects. 

Spatially aggregated risk assessment 
presents opportunities for a new view 
on risk but will require some new 
interpretation as well.  

Strategic Emergency 
Response Planners 
for Flood Risk  

Assessing realistic 
expectations for flood 
incident response. 

Planning for realistic flood 
emergency scenarios. 

Capacity to realise benefits from 
analysis products in support of national 
scale assessment of resource needs 
and in preparation of realistic flood 
exercise scenarios.  

End product user - unlikely to have 
requirements or capacity to work with 
the methods or underlying detailed 
information without further support. 

Defra emergency 
planning 

Planning for realistic flood 
emergency scenarios. 

End product user. Would gain benefits 
from better understanding of the 
quantified level of risk associated with 
planning scenarios. 

Cabinet Office Improved understanding of 
risk for ‘catastrophic’ type 
flood events. 

Analysis of risk to critical 
infrastructure at multiple 
locations. 

End product user. Strong capacity to 
incorporate high level information 
about likelihood of high-consequence 
event scenarios. 

 

 

Environment Agency 
strategic planning 

Regional or catchment scale 
flood risk assessment. 

Varying capacity to use methods and 
access to relevant data. Potential 
users for detailed information from 
method to support catchment or 
regional risk assessment and joint 
probability analysis for catchment 
scale river modelling. 

10.3 Business applications 
We indentified three business applications that can be enabled by applying the 
methods developed under this scoping study to meet user requirements: 

• Business application 1: National and regional flood risk profiles incorporating 
the risk of widespread river and coastal flooding. 

• Business application 2: Probabilistic assessment of emergency planning 
scenarios. 

• Business application 3: Spatial joint probability tools for river basin modelling. 
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They were identified with the help of feedback gathered at the stakeholder workshop in 
March 2009 and are described in more detail below. Table 10-2 summarises the three 
applications and their envisaged benefits.  

Table 10-2. Business applications identified following scoping and user consultation  

Application Key outputs Benefits 

National and 
regional risk 
profiles 

Assessment of the return 
period of floods (including 
economic loss or other 
measures of consequence) 
occurring anywhere within a 
region, or anywhere in 
England and Wales.  
 
Analysis of the risk of any 
individual event or of 
damages over any given 
year.  

Enhance current NaFRA products.  

Include quantification of aggregated 
risk for severe, widespread flood 
events.  

Assessment of the resilience of 
investment decisions and 
understanding exposure to risk of 
damaging widespread events. 

Emergency 
planning 
scenario 
assessment 

Assessment of the risk 
(probability and 
consequence) of set spatial 
patterns of flooding. 
 
Generation of plausible 
flood event scenarios with 
quantifiable return periods. 

Improved understanding of the large 
scale exposure to flood risk in 
emergency response planning (for 
example, how likely are current 
arrangements to ‘fail’?) 

Information to support strategic thinking 
about the appropriate deployment and 
overall level of resources for recovery 
from flooding.  

Better quantification of realistic 
scenarios at different levels of risk for 
emergency planning exercises. 

Spatial joint 
probability 
tools for river 
basin 
modelling 

Methods for setting inflows 
to catchment models to deal 
with the joint probability of 
multiple inflows. 

Consistent, scientifically well-founded 
methodology for assessing joint 
catchment model inflows.  

 

The applications and their benefits are described in more detail below. 

10.3.1 Business application 1: National and regional flood risk 
profiles incorporating the risk of widespread river and coastal 
flooding 

Purpose and background  

Historically, assessment methods used for flood management have had only limited 
capability to deal with spatially aggregated measures of risk since they focus on single 
points or local systems rather than considering effects over a wider area.   

But widespread floods do occur (such as those in Autumn 2000 and Summer 2007) 
and can be associated with severe economic and social costs. 
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Whilst current national flood risk assessment methods can provide information on the 
expected, long term average economic losses aggregated over the country (or any 
region), they cannot inform us about the risk of any one, large and damaging event 
occurring. 

This scoping study  has shown how recently developed statistical methods can now 
provide this type of analysis for flood risk, allowing us to assess our exposure to risk 
from widespread flood events in a way that has not previously been possible. The 
analysis can be summarised in the form of a ‘risk profile’, which gives the probability of 
exceeding a certain loss. 

Outcome and business impact  

The work would enhance the current NaFRA products to include quantification of 
aggregated risk for severe, widespread flood events. 

This information has the potential to realise benefits for flood risk managers and policy 
makers in helping assess the resilience of investment decisions and understanding 
exposure to risk within high level flood management policies. 

High level investment planning, policy and strategic management functions will have to 
adjust to using this new information 

Overall objective 

To provide a national and regional assessment of the risk of widespread, severe 
flooding from rivers and coasts.  

The project will extend current Environment Agency tools to include more extreme and 
extensive flood events, and will be based on and hence consistent with NaFRA data. 

Specific objectives 

To implement the spatially aggregated flood risk model, harmonised with current 
Environment Agency risk assessment data incorporated in NaFRA, to develop risk 
profiles for defined administrative regions, including national analysis. 

To develop a communication plan to explain the assumptions behind the results and 
their interpretation. 

To explore scenarios for alternative policy options. 

Outputs/results and key milestones 

0. Inception and project plan. 

1. Extraction of required intermediate results from contemporary NaFRA run.  

2. Regional and national risk profiles, showing the expected economic losses or other 
consequences for return periods up to approximately 1000 years.   

3. Communication plan to help assimilate the results in investment planning and risk 
management policy. 
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Benefits 

The work would enhance the current NaFRA products to include quantification of 
aggregated risk for severe, widespread flood events. It will enable planners and policy 
makers to understand for the first time how likely we are to suffer the damaging 
consequences of severe and widespread events such as Autumn 2000 or 1953. 

This information has the potential to realise benefits for flood risk managers and policy 
makers in helping assess the resilience of investment decisions and understanding 
exposure to risk not just at the level of annual average consequences but also for more 
extreme, widespread events within high level flood management policies. 

10.3.2 Business application 2: Probabilistic assessment of 
emergency planning scenarios  

Purpose and background 

The phase one stakeholder workshop identified a number of pertinent flood risk 
management questions that the new method, developed as part of the Spatial 
Coherence project, can help to answer. These include: 

• What is the probability of two or more critical infrastructure facilities being 
flooded at the same time within a region? 

• What is the maximum number of emergency response resources such as 
pumps or rescue boats that are likely to be needed in any one flood event? 

• What is the best strategy for locating emergency response resources so that 
they are most likely to be in the right place when floods happen? 

• How many flood recovery resources are we likely to need in a ‘worst case’ flood 
event within a given planning time horizon? 

It was also identified that the methods developed for the Spatial Coherence project 
could be used to provide extreme scenarios for emergency planning exercises. 

Outcome and business impact  

The work would improve the Environment Agency’s ability to plan for future widespread 
flood events.   

This information has the potential to realise benefits for high-level emergency planning 
in helping to better understand the implications of the decisions made in planning for 
widespread flood events. 

It will also provide readily available and scientifically well founded reference information 
to help emergency responders communicate about the relative severity and rarity of 
future flood events. This may not require any substantial change in how stakeholders 
operate but would provide an opportunity to provide additional information when 
communicating about risk. 
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Overall objective 

To provide a suite of data products and guidance for emergency planning and incident 
management consisting of: 

• A library of plausible future widespread flood scenarios and guidance for their 
use in emergency planning. 

• An evaluation of the probability of specific historical events to help guide 
emergency planners in understanding preparedness for flooding and to give a 
context for communicating about the severity of future flood events. 

To provide an assessment of the resilience of emergency response resources to 
severe, low probability events using the data. 

Specific objectives 

To develop a methodology statement describing how the techniques applied for phase 
one of this project can be used to generate emergency planning scenarios. 

To assess requirements for scenarios and derive a library of scenarios with associated 
probability and consequence measures. 

To provide risk profiles in terms of populations at risk or emergency response resource 
demands (rather than economic damages). 

To provide quantification of the severity and likelihood of a number of significant past 
flood events. 

To provide guidance on how to assess the resilience of emergency response resources 
to severe, widespread river and coastal flooding. 

Outputs/results and key milestones 

0. Inception and project plan. 

1. Consultation with end-users on scenarios to be considered. 

2. Methodology statement. 

3. Flood scenarios. 

4. Guidance for analysing the resilience of emergency response resources to severe, 
low probability, widespread events. 

Benefits  

Improved understanding of the large scale exposure to flood risk in emergency 
response planning – how likely are current arrangements to ‘fail’? 

Information to support strategic thinking about the appropriate deployment and overall 
level of resources for recovery from flooding.  

Better quantification of realistic scenarios at different levels of risk for emergency 
planning exercises. 
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10.3.3 Business application 3: Spatial joint probability tools for 
river basin modelling 

Purpose and background 

In many applications of hydraulic river models it is necessary to model a flood event of 
specified probability at all points in the river system. For larger catchments or at 
significant confluences this can raise conceptual and practical difficulties because a 
single, unique ‘T-year’ event does not occur in reality at every location in the drainage 
network. For studies such as a CFMP it can be difficult to know what realistic 
combinations of inflows should be used, requiring multiple runs, each of which aims to 
simulate the design condition in part of the river system. One difficulty is that there is no 
guarantee that hydrographs scaled to match design flows at model inflow points will 
result in the preferred design flows being reproduced further downstream within the 
model. 

There are other applications which require simulation of a realistic flood event 
throughout the river system. These include model calibration and simulation of events 
for flood warning studies. The problems boil down to setting combinations of inflows at 
confluences to result in the required design condition downstream. 

The methods used in phase one of this project offer a flexible method for representing 
the joint probability of multiple river reaches that can help with this practical problem of 
setting inflows for catchment modelling. The same approach has already been adopted 
in the Flood Studies Update Guidance for River Basin Modelling (OPW, 2008). 

Outcome and business impact  

An improved method for catchment-wide modelling that will require less time to 
calibrate than current procedures. This has the potential benefit of improving the 
approach used for applying hydraulic river or routing models in catchment scale studies 
such as CFMPs. It would also allow results that are consistent with broader scale 
analysis (if the phase one methods are taken forward into broad scale assessments 
such as NaFRA, for example). 

River modellers in the Environment Agency and consultants would have to adapt to 
revised guidance that incorporated the new methods. Tools or datasets would need to 
be published and maintained. 

Overall objective 

To provide a methodology for representing the joint probability of multiple river inflows 
in catchment modelling. 

To extend current tools for catchment-scale river modelling. 

Specific objectives 

To assess requirements for joint probability analysis of catchment model inflows and 
where the methods used in phase one can help. This would draw on experiences and 
lessons learned from work for the OPW, Ireland. It would also draw upon developments 
applying the same principles as the phase one spatial joint probability method that are 
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underway in FRMRC2, FRACAS and that have now been applied in SFRM2 modelling 
studies. 

To set out a technical approach to meet these requirements. 

To develop datasets, guidelines and optionally software tools to support catchment 
modelling. 

Outputs/results and key milestones 

0. Inception and project plan  

1. Research report giving analysis and classification of catchment model inflow joint 
probability problems.  
 
2. Methodology, data or prototype tool set to provide guidance on setting model 
inflows.   
 
3. Report and guidance on how to use the new method.  

4. Specification for implementation in a software tool  

Benefits 

Consistent, scientifically well founded methodology for assessing catchment model 
inflows.  

Avoidance of cost of unnecessary or inappropriate model inflow scenarios in catchment 
modelling studies. 

Consistency with national scale analysis (if taken forward). 
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10.4 Tasks required to deliver phase two business 
applications 
 

Table 10-3 summarises the work required to implement the proof of concept methods 
from this scoping study in order to deliver the business applications identified above.  

The work is presented in Table 10-3 as a modular set of tasks that are listed in three 
categories as follows: 

 

Foundation 
tasks 

Essential work necessary to underpin the business application and to 
deliver initial results. This includes the basic statistical model 
development, generation of results for the ‘source’ level; that is, river 
flows or storm surge, and consultation and training actions. These 
‘foundation’ tasks alone are sufficient to deliver useful products, but 
not the full range of outputs to meet the user requirements identified 
in this scoping study.  

 

Business 
analysis tasks 

Work needed to deliver the full scope of each of the identified 
business applications, including analysis of economic risk, linkages 
with RASP and NaFRA data and supporting analysis tools, where 
relevant. These work items are not ‘extras’ but necessary elements to 
meet fully the user needs identified in this scoping study and hence 
realise the potential benefits of the applications. 

 

Enhancements Additional work that would significantly enhance the business 
applications or add to knowledge, involving some additional scoping 
and technical development work and also new sources of data.  

These work items would enhance the proposed applications beyond 
the scope initially identified, for example by including surface water 
flooding or research seeking to link extreme flood scenarios to larger 
scale meteorological indices. 

 

Each task is described in detail in the following sections, followed by an indicative 
programme outlining how the tasks could be built into a 23-month work plan to deliver 
against each of the three identified applications. 
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Table 10-3. Summary of modular work items required to deliver the identified business 
applications. 

Application Foundation  
tasks 

Business analysis 
tasks 

Enhancements 
 

National 
and regional 
risk profiles 

F1. Consultation and 
communications.  
 
F2. Conditional 
exceedance model – 
rivers and coasts. 
 
F3. Event scenario 
library.  
 
F4. Probability analysis 
of river flows and sea 
level extremes. 
 
F5. Training and 
handover. 

BA1. NaFRA 
conditional economic 
damages analysis. 

BA2. National/regional 
river and coastal 
economic risk profile 
analysis. 

BA3. Economic 
damages comparison 
checks and validation. 

BA4. Event database 
analysis tools. 

E1. Scope and 
extend conditional 
exceedance model 
with additional 
source variables. 
 
E2. Surface water 
flooding economic 
damages analysis.  

E3. Covariate 
analysis. 

E4. Climate change 
modifications. 

E5. River network 
interpolation 
enhancements. 

Emergency 
planning 
scenarios 

F1. Consultation and 
communications.  
 
F2. Conditional 
exceedance model – 
rivers and coasts. 
 
F3. Event scenario 
library.  
 
F4. Probability analysis 
of river flows and sea 
level extremes. 
 
F5. Training and 
handover. 

BA5. Emergency 
planning threshold 
levels analysis. 
 
BA6. Emergency 
planning scenario 
timing analysis. 

E1. Scope and 
extend conditional 
exceedance model 
with additional 
source variables. 
 
E3. Covariate 
analysis. 

E4. Climate change 
modifications. 

Spatial joint 
probability 
tools for 
river basin 
modelling 

F1. Consultation and 
communications.  
 
F2. Conditional 
exceedance model – 
rivers and coasts. 
 
F3. Event scenario 
library.  
 
F5. Training and 
handover. 
 
F6. River model inflows 
joint probability 
database. 

BA7. River model 
inflows joint 
probability tool. 

E4. Climate change 
modifications. 
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10.4.1 Foundation tasks 

 

F1. Consultation and communications  

What Consultation with business users to ensure suitable definition and 
presentation of outputs and to plan any steps needed to prepare 
users to receive and apply the results.  

Specification of required event definitions. 

Why Ensures relevance and uptake of the products so as to realise 
benefits in full. 

How This task should take place with early consultation activities to confirm 
user needs. It should identify key business customer representatives 
who can work with the project to define and agree specific points of 
detail about issues such as choices of spatial data formats, 
geographical units for analysis, formats for presentation of results, 
choice of database file formats and delivery of software routines. 
Liaison with CIS if appropriate. 

The task should include early planning for and subsequent delivery of 
dissemination activities (such as workshops, seminars), publishing 
and coordination between business users,R&D programme and 
consultants.  

This task should identify and plan for any immediate and on-going 
training needs to complete hand over of products generated by the 
project. It should identify any relevant future updates or 
developments. 

Depends on - 

Application National and regional risk profiles. 

Emergency planning scenarios. 

Joint probability boundary conditions for river models. 

Data required - 

Outcome Detailed specification of formats for presentation of results, 
data/databases and software procedures. 

Communications and training plan. 

An essential outcome of this task is to specify the flood event 
definitions (in terms of durations and temporal resolution) that 
will be analysed during the construction of the conditional 
exceedances model (task F2) and the event simulation task (F3).  

 

 

F2. Conditional exceedance model – rivers and coasts 

What Fitting conditional exceedance model for the joint distribution of 
extremes in gauged river flows and tide gauge data. 
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Why Provides the basic statistical model of spatial dependence in 
extremes. 

How Approach as set out and tested in the phase one scoping study 
technical methodology report and in this report. 

Depends on - 

Application National and regional risk profiles. 

Emergency planning scenarios. 

Joint probability boundary conditions for river models. 

Data required Daily or sub-daily river flow gauge data. 

Sub daily tide gauge data. 

Outcome Implemented statistical model and parameters. 
 

 

F3. Event scenario library  

What  Simulation of flood events from conditional exceedance model.  

Why Primary output from statistical model for river flows and storm surge 
data. 

How Approach as set out and tested in the phase one scoping study 
technical methodology report and in this report. 

Depends on Conditional exceedance model – rivers and coasts. 

Application National and regional risk profiles. 

Emergency planning scenarios. 

Data required Conditional exceedance model. 

Outcome National database of simulated flood events expressed on a physical 
or probability scale for river and coastal model node points. Database 
documentation.  

 

 

F4. Probability analysis for river flows and sea levels 

What  Statistical analysis of event scenario library to provide estimates of 
probabilities for events or summary measures of flood severity at the 
‘source’ level (that is, river flows and sea levels, not accounting for 
flood defence system performance or economic damages).  

Why Primary analysis of outputs from the statistical model for river flows 
and storm surge data at the ‘source’ level. 

How Approach as set out and tested in the phase one scoping study 
technical methodology report, in this report and in subsequent 
extensions to phase one.  

Depends on Conditional exceedance model – rivers and coasts. 

Event scenario library. 

Application National and regional risk profiles. 
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Emergency planning scenarios. 

Data required Conditional exceedance model event scenario library outputs. 

Outcome Analysis of event scenario library at ‘source’ level giving return period 
for different levels of flood severity. 

 

 

F5. Training and handover 

What Formal handover of final products, tools and data. Training, if 
necessary, for specialist users.  

Why To ensure full realisation of benefits from each of the phase two 
projects. 

How Publication (internal or external) of final results, preparation of briefing 
notes, guidance, presentations and so on, Preparation of training 
material and delivery of initial training.  

Depends on Project outputs. 

Application National and regional risk profiles. 

Emergency planning scenarios. 

Joint probability boundary conditions for river models. 

Data required Project outputs. 

Outcome Take-up and full utilisation of project outputs. 
 

 

F6. River model inflows joint probability database 

What Database of joint probability relationships for setting boundary 
conditions to catchment scale river models.   

Why Primary resource to assist with setting multiple inflows in catchment 
river models so as to provide a consistent basis for resolving joint 
probabilities in catchment scale modelling. 

How Catchment based analysis of events simulated from conditional 
exceedance model. This task should create a spatial dataset giving 
the dependence between tributary inflows for selected points on the 
river network and a library of suitable events contributing to a given 
downstream return period. 

Depends on Conditional exceedance model – rivers and coasts. 

Application Joint probability boundary conditions for river models. 

Data required Conditional exceedance model. 

River centre line and logical river network. 

Catchment boundaries. 

Outcome Database and map outputs showing joint probability of river flows 
corresponding to target return periods at specified locations. 
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10.4.2 Business analysis tasks 

 

BA1. NaFRA conditional economic damages analysis 

What  Create database of conditional distributions of flood depths and 
consequence (economic damages) based on RASP calculations 
embedded in NaFRA. 

Why Provides pathway and receptor information for economic risk analysis, 
links with NaFRA. 

How Modification of NaFRA procedures to derive conditional damages 
data as defined in the phase one technical methodology report and in 
this report. This task needs to include a detailed specification for the 
precise format of the derived data, for example whether it is delivered 
in the form of raw RASP simulation outputs, histograms or summary 
statistics (mean and variance of economic damage per depth 
interval). 

Requires close coordination with NaFRA programme and technical 
teams. 

Depends on Close coordination with national/regional river and coastal economic 
risk profile analysis task so as to ensure consistent definition of data 
formats and agreement on methodology. 

Close co-ordination with NaFRA programme. 

Application National and regional risk profiles. 

Data required NaFRA inputs, spatial grid to define resolution at which outputs are 
produced. 

Outcome Database documentation. Technical report detailing algorithm and 
implementation details, validation checks and summary statistics. 
Documented code and validation checks. 

 

 

BA2. National/regional river and coastal economic risk profile analysis 

What  Integrate event scenarios generated from the conditional exceedance 
model with conditional economic damages data to develop economic 
risk profiles at regional and national level. 

Why Key business user output. 

How Monte Carlo simulation approach as set out and tested in the phase 
one scoping study technical methodology report and in this report. 

Depends on Conditional exceedance model. 

NaFRA conditional economic damages analysis. 

Application National and regional risk profiles. 

Data required Outputs from conditional exceedance model and NaFRA conditional 
economic damages analysis. 

Outcome Results giving estimate of return period of differing levels of economic 
damage from flooding for rivers and coasts at a range of spatial 
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scales. 
 

 

BA3. Economic damages comparison checks and validation 

What Comparison with NaFRA results and other economic damages data to 
provide higher-level validation of results. 

Why To help explain the relationship between the spatial risk profile results 
and other broad scale risk assessments. To provide high-level ‘sense 
checks’. 

How? Comparison of annual scale results with NaFRA expected annual 
damages. There is a theoretical correspondence, for a given 
geographical area, between the annual average damage (EAD) 
calculated by the RASP methodology in NaFRA and the mean 
damage on the annual scale calculated using the methodology 
developed in this scoping study. This correspondence should be 
checked to ensure that the approach to extracting economic damages 
data from the NaFRA process and linking it to the conditional 
exceedance model outputs has been correctly implemented. 

Comparison of extreme event scenarios with existing estimates of 
economic consequences from historical events. There are estimates 
available for economic damages for some notable past floods. These 
should be compared with the outputs of the risk profile analysis and 
any discrepancies investigated. It is noted that estimates of economic 
damages from historical events are not necessarily detailed or 
complete.  

Depends on National/regional river and coastal economic risk profile analysis. 

Application National and regional risk profiles. 

Data required NaFRA economic analysis results. 

Economic damage analysis from past flood events. 

Outcome Comparison of expected annual damages with NaFRA results and 
recorded event damages. Comparisons of dependence in losses 
between different sub regions. Sense checks on risk profile outputs.  
Validation report. 

 

 

 

BA4. Event database analysis tools 

What Code and software tools to allow re-running of economic risk profile 
for different damages data, event scenarios or spatial regions. 

Why To provide greater flexibility and capacity to update results in future or 
explore alternative investment planning scenarios. 

How Documentation and technical user guidance on the algorithms and 
software procedures used in analysis of the event scenario library 
produced using the conditional exceedance model. 

Depends on National/regional river and coastal economic risk profile analysis. 
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Application National and regional risk profiles. 

Data required NaFRA economic analysis results. 

Economic damage analysis from past flood events. 

Outcome Algorithm specification, software procedures and guidance. This may 
be in the form of software routines and scripts that are geared towards 
a technical specialist user, rather than a fully featured end-user 
application with a sophisticated front end graphical user interface. 

 

 

 

BA5. Emergency planning threshold levels analysis 

What Analysis of event scenario probability based on defining events in 
terms of river flows and sea levels exceeding set thresholds at 
specified locations. 

Why Provides a rational event definition for emergency planning. 

How Identify suitable locations for use in event definition, such as flood 
warning areas.  

Specify suitable thresholds to use in characterising the occurrence of 
flooding at those locations, such as river flow return period, water 
level. 

Perform return period analysis on scenarios in terms of numbers of 
threshold exceedances. 

Depends on Event scenario library and return period analysis. 

Application Emergency planning scenarios. 

Data required Spatial data to define flood locations. 

Threshold exceedance levels. 

Outcome Comparison of expected annual damages with NaFRA results and 
recorded event damages. Comparisons of dependence in losses 
between different sub regions. Sense checks on risk profile outputs.  
Validation report. 

 

 

 

BA6. Emergency planning scenario timing analysis 

What Additional analysis of flood event scenarios to consider the probability 
of widespread events for different scenarios of event timing, for 
example two regions experiencing extreme flooding within one month, 
or successive months. 

Why User requirement for emergency planning. 

How Application of conditional exceedance model for event definitions that 
include specified patterns in temporal lag. 

Depends on Event scenario library and return period analysis. 
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Application Emergency planning scenarios. 

Data required Event definitions to be agreed with business users. 

Outcome Comparison of expected annual damages with NaFRA results and 
recorded event damages. Comparisons of dependence in losses 
between different sub regions. Sense checks on risk profile outputs.  
Validation report. 

 

 

 

BA7. River model inflows  joint probability tool 

What  Software and database tool to package results of joint probability 
analysis for ease of use by river modelling practitioners. 

Why Promote update and benefits realisation. 

How Define and develop a tool to assist river modellers in setting boundary 
conditions with joint probabilities. May be a combination of software 
application, database, web-based data, GIS layers, maps and 
guidance notes. 

Depends on River model inflows joint probability database. 

Application Joint probability boundary conditions for river models. 

Data required River model inflows joint probability database. 

Background mapping, logical river network. 

Outcome Comparison of expected annual damages with NaFRA results and 
recorded event damages. Comparisons of dependence in losses 
between different sub regions. Sense checks on risk profile outputs.  
Validation report. 

 

10.4.3 Enhancements 

 

E1. Scope and extend conditional exceedance model with additional source 
variables 

What  Development work to extend the conditional exceedance model set 
out in this scoping study to include additional variables, which may 
include: 

• Rainfall (to allow inclusion of surface water flood risk). 

• Wave overtopping (to allow enhancement of coastal risk 
analysis). 

• Wind (to enhance emergency planning scenario analysis). 

This task should comprise initial scoping and feasibility analysis 
followed by implementation. 

Why Provide extension of risk assessment to include surface water 
flooding, wave overtopping and wind storm occurrence for emergency 

 SC060088 Technical Methodology Report 107 



planning scenarios. 

These features have been identified by business users and technical 
reviewers as worthwhile extensions of the scoping study methods. 
The phase one methodology uses a statistical model of the joint 
probability distribution of storm surge or river flows at gauging 
stations. The approach would also be suitable for modelling the joint 
distribution of rainfall based on gauged data. This is required to 
represent the ‘source’ component for surface water flood risk. There 
are a number of rainfall models already available as research outputs 
or operational tools for applications such as continuous rainfall-runoff 
modelling and climate change impacts analysis. These models tend to 
be based on point process approaches, combined using a cellular 
structure that represents some aspects of meteorological patterns.  

How Application of the conditional exceedance model to suitable data sets 
describing rainfall and wind speed or storm occurrence. 

Extension of sea level simulation to include wave overtopping. Waves 
are a main determinant of coastal structural failure, though they may 
often be depth-limited at the coast. As they are driven by storm 
conditions, wave heights do show spatial dependence over scales of 
interest. Good archives of wave data are available on a 25km grid 
from the UKMO wave model.  
Future research should be directed at understanding how best to 
include rainfall in the risk modelling methodology proposed here, 
considering both the statistical modelling approach and the practical 
issues of working with rain gauge or other rainfall information. 
Relevant questions include: 

• What type of rainfall data should be used? For example, 
gauges, gridded averages, radar, accumulations. 

• How should the time variability of rainfall be represented?  

• Can the modelling approach adopted in phase one be 
combined usefully with existing point process stochastic 
rainfall models? At what scales? 

Depends on  

Application National and regional risk profiles. 

Emergency planning scenarios. 

Data required Analysis of surface water flood requires rain gauge or gridded rainfall 
data for the source model and access to information on receptor 
impacts including national surface water flood map data. An atlas of 
swell wave heights has been developed as part of current Defra R&D 
on coastal extremes. Characterising large scale patterns in wind 
waves is likely to involve analysis of Met Office hindcast deep water 
wave model outputs (which may incur licensing costs) or modelled 
and reanalysis wind field data, combined with near shore wave 
transformations. Met Office of ECMWF wind storm data. 

Outcome Tested method and model for extension of conditional exceedance 
model to additional data sets at source. 

Application of model, linked to river and costal data. 
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E2. Surface water flooding economic damages analysis 

What  Development work to provide estimates of economic consequences 
for surface water flooding to be combined with conditional 
exceedance model. 

This task should comprise initial scoping and feasibility analysis 
followed by implementation. It will link to current Environment Agency 
R&D projects developing improved data for surface water flood risk 
assessment. 

Why Provide extension of risk assessment to include economic impacts of 
surface water flooding. 

How Analysis of surface water flood mapping combined with property data 
and economic damages calculations to estimate the distribution of 
damages expected from surface water flood events. Integration with 
simulations of the occurrence of surface water flooding as part of the 
extended conditional exceedance model. 

Depends on Scope and extend conditional exceedance model with additional 
source variables. 

Application National and regional risk profiles. 

Data required National surface water flood mapping. 

National Property Database. 

Outcome Database of event scenario library for estimated economic 
consequences of surface water flooding.  

 

 

E3. Covariate analysis 

What  Technical development of the statistical methodology set out in this 
scoping study to build covariates into the conditional exceedance 
model and event simulation approach. 

Why The current method for modelling the spatially aggregated risk of 
flooding relies on the idea that river flow gauges capture most of the 
important statistical variability in flood flows. However, there is other 
information about the occurrence and severity of flooding that could 
be helpful in refining the accuracy of risk estimates, for example large 
scale weather patterns. 
Saturated soils were cited by Pitt (Cabinet Office, 2008) as being one 
of the contributing factors to the severity and extent of the 2007 
floods, and also in the Bye review of the 1998 floods (Bye and Horner, 
1998). Antecedent coastal storms can draw down beaches making 
them more vulnerable to subsequent storms. This task should test the 
significance of antecedent conditions to see whether they merit 
inclusion in future work, without necessarily embarking down the road 
of continuous simulation. For fluvial flooding a start would be to 
consider soil moisture as a covariate in the model, with the soil 
moisture modelled as dependent between events. 
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How Further research is needed to gain an understanding of how this kind 
of information could be used and what difference it would make to a 
flood risk model, especially in the light of other uncertainties. In 
principle it may be possible to incorporate data about covariates 
directly into the joint distribution within our model. Alternatively, it 
could be beneficial to use covariate data to construct some weighting 
scheme to ‘balance’ the sample of events generated within a Monte 
Carlo simulation to ensure the correct proportion of different types of 
event. This type of approach may also allow future climate risk to be 
handled efficiently. 

Depends on  

Application National and regional risk profiles. 

Emergency planning scenarios. 

Data required Meteorological indices and reanalysis data. 

Outcome Scientific basis for inclusion of covariate information in the statistical 
model for joint distribution of flood risk. 

 

 

E4. Climate change modifications 

What  Technical scoping and development to incorporate climate change. 

Why To allow for climate scenario analysis and relax assumptions of 
stationarity made in the current modelling. 

The phase one methodology seeks to avoid the uncertainties 
associated with models of rainfall-runoff processes by working directly 
with river flow data. Similarly, sea levels have been modelled using 
tide gauge data. One constraint in this approach is the assumption 
that the gauged record is a sample from a stationary process. This 
has two important implications for the method. It means that: (1) any 
non stationarity in the data must either be corrected or modelled, or it 
will inflate the uncertainty about the model, and (2) the model does 
not represent ‘scenarios’ that could be inconsistent with the observed 
joint distribution of extremes in the gauged data. 

 

How The issue of non stationarity has not been addressed in detail within 
the phase one methodology, although data used to fit the model are 
checked for obvious trends or step changes. Further work is 
recommended to look at how to incorporate non stationarity in the 
conditional exceedance model.  There should be an assessment of 
the scope to apply the current approach using perturbed data sets, 
such as river flows developed in Defra project FD2020. 

A second requirement is to deal with scenarios such as changes in 
the source variables or in risk pathways. At the source level, climate 
change is of particular importance for rivers and coasts. Other types 
of change that affect the river flow regime (such as urbanisation) 
should also be considered. At the pathway level, there is a need to 
understand how to incorporate scenarios about changes in defence 
systems within the methodology. 

Depends on  
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Application National and regional risk profiles. 

Emergency planning scenarios. 

Joint probability boundary conditions for river models. 

Data required Climate change scenario/impact data for river flows, sea levels and 
storm surge. 

Outcome Modified analysis results to include climate change scenarios. 
 

 

 

E5. River network interpolation enhancements 

What Improvement to the methods used in the phase one scoping study for 
interpolation of events at gauging stations through the river network. 

Why To provide improved quality in results. 

How Develop improved procedure for river network interpolation to include 
greater variability in the interpolation. 

The interpolation procedures used to transfer information from 
gauged to ungauged reaches are currently deterministic, which places 
some constraints on the hydraulic load that can be simulated at any 
given point. An obvious improvement would be to allow for some 
stochastic variation in the interpolation. It may be possible to build this 
in to the current methods with the addition of some constraints based 
on physical considerations about flow routing. The interpolation 
approach is likely to be more uncertain for rivers that have no gauging 
or are geographically far away from any other gauged river. These 
sites are generally on smaller watercourses or in the headwaters of 
larger catchments. Here, it is also possible that including additional 
information based on a rainfall covariate could improve the model of 
dependence.   

This work is highly recommended as it could provide a relatively cost 
effective technical improvement in accuracy of the economic analysis 
for national and regional risk profiles. 

Depends on - 

Application National and regional risk profiles. 

Data required River flow data at gauging stations. 

Outcome Technical report detailing methodology improvements, tests and 
implementation. Modified source code to implement the improved 
interpolation method. 
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10.5 Options 
The tasks set out above provide the building blocks for implementation of the scoping 
study methodology for each of the business applications. The individual tasks could be 
combined in several ways. Four principal options have been identified, as follows. The 
cost and programme implications are indicated in terms of the seniority of personnel 
required and a realistic programme for delivery (assuming staff inputs may be at less 
than 100 per cent full time equivalent). 

10.5.1 Option 1 – ‘Do nothing’ 

No further R&D or implementation work.  

Cost implications 

Missed opportunity to realise business benefits identified during the scoping study. No 
results linking to economic or other measures of risk at the ‘receptor’ level. No link to 
flood defence performance models and no specific event scenario analysis. No 
capability to apply or adapt the scoping study methodology for further analysis. 

Benefits 

Scoping study outputs adds to scientific knowledge, which could be taken forward into 
business applications in future. 

National analysis of probability of widespread high river flows or storm surge carried 
out in a short case study extension to the scoping study 

10.5.2 Option 2 – Foundation tasks 

Cost/programme implications 

Up to approximately 12-month programme to deliver the common foundation tasks 
conditional exceedance model (F2) and event scenario library database (F3). Senior 
scientist level staff inputs. 

Approximately four-month programme to deliver analysis of probabilities at ‘source’ 
level (F4). Senior scientist level. 

Concurrent consultation activities to define precise user needs (such as choice of event 
definition). Senior scientist and technical director inputs.  

Training or roll out of results – programme dependent on precise definition of outputs 
and user groups. Senior scientist and technical director inputs. Combination of briefing 
notes and workshop presentations. 

Lack of business analysis to deliver full economic risk assessment product, event 
emergency planning scenarios or tool for catchment model inflows. 
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Additional benefits 

Greater knowledge gain through creation of a national model and event 
library/database for Environment Agency use. 

Analysis outputs for ‘source variables’ (river flow and sea level) at national scale 
tailored to each specific business application, greatly extending the demonstration 
outputs from the scoping study. 

10.5.3 Option 3 – Business analysis 

Cost/programme implications 

Up to approximately 12-month programme to deliver the economic damages data from 
RASP/NaFRA (BA1). Senior scientist and graduate level staff inputs. 

Approximately six- to eight-month programme to deliver economic risk analysis, 
validation checks and economic analysis tools. Technical director, senior scientist and 
graduate level. 

Approximately six- to eight-month programme to deliver analysis tool for setting 
catchment inflows. Senior scientist and graduate programmer. 

Additional benefits 

Outputs designed to fully meet user requirements identified by this scoping study, 
including economic risk assessment, detailed emergency planning scenarios and 
catchment modelling inflows tool. 

Capability for Environment Agency to repeat and extend analysis in house or through 
consultants using databases and tools delivered under this option. 

  

10.5.4 Option 4 – Enhancements 

Cost/programme implications 

Between 3- and 18-month programme to deliver enhancements identified above, 
depend on choice of enhancement tasks. Technical director, senior scientist and 
graduate level staff inputs.  

Additional benefits 

Range from ‘quick win’ improvements to some aspects of methodology to significant 
extensions to include climate change and surface water flood risk. 
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10.6 Indicative phase two work plan 
Figure 10-1 shows an indicative programme for phase two projects to deliver all three 
business applications. Milestones are indicated. Should more than one application be 
developed then there will be significant overlap between tasks, particularly the 
foundation tasks and enhancements, but it should be noted that the emphasis and 
precise definition of those tasks might vary slightly, depending on the intended 
application (for example, the precise choice of users to be consulted in task F1: 
Consultation and communication and the flood event definitions specified for use in 
task F2: Conditional exceedance model may vary according to the intended 
application).  

Figure 10-1. Business user needs, decisions that may benefit from the new methods and relevant 
technical capacity  

National and regional risk profiles
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Foundation tasks
F1. Consultation and communications. x x x x x x x x x
F2. Conditional exceedance model - rivers and coasts. x x x x x x
F3. Event scenario library. x x x x x x
F4. Return period analysis (river flows and sea level). x x x x
F5. Training and handover. x x x x x x
Business analysis tasks
BA1. NaFRA conditional economic damages analysis. x x x x x x x x x x x x
BA2. National/regional river and coastal economic risk profile analysis. x x x x x
BA3. Economic damages comparison checks and validation. x x x
BA4. Event database analysis tools. x x x x x x
BA5. BAiver network interpolation enhancements. x x x x x x
Enhancements
E1. Scope and extend conditional exceedance model with additional source variables: x x x x x x x x x x x
E2. Surface water flooding economic damages analysis. x x x x x x x x x x x x
E3. Covariate analysis. x x x x x x x x x x x x
E4. Climate change modifications x x x x x x x x x x x

Milestones
MS1 Inception x
MS2 Conditional exceedance model x
MS3 Event scenario library x
MS4 Extraction of economic damages data from NaFRA (a) progress, (b) completion x x
MS5 Return period analysis (source level) x
MS6 Risk profiles (receptor level) x
MS7 Training and hand over delivered x

Emergency planning scenarios

Foundation tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
F1. Fonsultation and communications. x x x x x x x x x
F2. Fonditional exceedance model - rivers and coasts. x x x x x x
F3. Event scenario library. x x x x x x
F4. Return period analysis (river flows and sea level). x x x x x
F5. Training and handover. x x x x x x
Business analysis tasks
BA6. Emergency planning threshold levels analysis. x x x x x x
BA7. Emergency planning scenario timing analysis x x x x x x x x x
Enhancements
E1. Scope and extend conditional exceedance model with additional source variables: x x x x x x x x x x x
E3. Covariate analysis. x x x x x x x x x x x x
E4. Climate change modifications x x x x x x x x x x x

Milestones
MS1 Inception x
MS2 Conditional exceedance model x
MS3 Event scenario library x
MS4 Emergency planning scenarios produced x
MS5 Training and hand over delivered x

Spatial joint probability tools for river basin modelling

Foundation tasks 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
F1. Fonsultation and communications. x x x x x x x x x
F2. Fonditional exceedance model - rivers and coasts. x x x x x x
F3. Event scenario library. x x x x x x
F6. River model inflows joint probability database x x x x x x
F5. Training and handover. x x x x x x
Business analysis tasks
BA8. BAiver model inflows joint probability tool. x x x x x x x x
Enhancements
E4. Climate change modifications x x x x x x x x x x x

Milestones
MS1 Inception x
MS2 Conditional exceedance model x
MS3 Event scenario library x
MS4 Joint probability database x
MS5 Joint probability boundary conditions tool x
MS6 Training and hand over delivered x

Month

 

 

The indicative programme is designed to allow for production of a new conditional 
exceedance model to the exact specification required by the Environment Agency 
applications, along with time to investigate optional extensions to the model required to 
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handle rainfall, wave overtopping, wind and climate change. The programme allows a 
period of 11 months to build these extensions into the statistical model and simulated 
flood event library. The details of work undertaken within these options would need to 
be specified with a pragmatic view to what can reasonably be achieved within the given 
time frame (for example by consideration of how many rain gauges are proposed for 
inclusion in analysis of rainfall, or whether it is feasible to include wind data to augment 
emergency planning scenarios). 

The potential programme for extraction of economic damages data from the NaFRA 
process is not known with certainty at this time. The indicative programme allows 12 
months for this analysis, but the actual timing of a project would need to be set in 
conjunction with the NaFRA technical programme. There may be scope to stagger the 
delivery of conditional economic damages data, working on a regional basis, for 
example. The methods proposed and tested in this scoping study are capable of 
accepting updates to conditional damages data in a phased manner, although for a 
national analysis it is of course necessary to have a national economic damages data 
set in place. This is also a consideration for local adjustments to NaFRA or future use 
of MDSF2 in generating NaFRA data. Future local modifications to the economic 
damages data could be incorporated in the risk profile analysis without having to repeat 
a full national NaFRA run.  
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12 Appendix 

 
Figure A-1: Avon catchment 

Figure A-2: Ouse catchment 
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Figure A-3: Severn catchment 

Figure A-4: Thames catchment 
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Figure A-5: Wye catchment 
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Glossary 
 

Correlation Two variables are correlated if large values in both 
variables are likely to occur together. 

Dependence Two variables are statistically dependent if the observed 
value of one of the variables affects the likely values of the 
other variable. 

Dependence structure This describes the dependencies between a set of 
variables. 

Joint distribution function The probability distribution function of a set of variables.  
This can be broken down to the marginal distributions and 
the dependence structure of the variables. 

Marginal distribution The probability distribution function of a single variable from 
a set of variables. 

Pathway The mechanism by which a source leads to flooding.  
Pathways could include defence breaching, defence 
overtopping, and failure of warning systems or emergency 
plans. 

Receptor Anything that is at risk from flooding. Receptors include; the 
general public and their houses; public and emergency 
services, critical infrastructure. 

Source  

 

Something that has the potential to cause flooding.  
Sources include rivers, sea, and rainfall. In an extreme 
state all these have the potential to cause flooding. 

Spatial coherence We use this term to describe the dependence between the 
parameters of the marginal distributions of variables at sites 
that are close together spatially. 
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We are The Environment Agency. It's our job to look after 
your environment and make it a better place – for you, and 
for future generations.  

Your environment is the air you breathe, the water you drink 
and the ground you walk on.  Working with business, 
Government and society as a whole, we are making your 
environment cleaner and healthier. 

The Environment Agency.  Out there, making your 
environment a better place. 
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