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A3. TECHNICAL APPENDIX: METHODS OF ANALYSIS 
 

Peter Young, Renata Romanowicz and Keith Beven 
Environmental Science, Lancaster University, Lancaster LA1 4YQ. 

TP3.1 Detecting Change in Long Term Records:  The Unobserved Component 

Method for Stochastic Trend Extraction 

 

The Dynamic Harmonic Regression (DHR) algorithm (Young et al, 1999) exploits an 

‘unobserved component’ model to optimally decompose the time series into long term 

trend, periodic or quasi-periodic and ‘irregular’ components, including the effect of other 

input variables if this is required. The method is statistically based and so each 

component is extracted, together with associated measures of confidence (standard error 

bounds) that will allow for testing the significance of any changes in the components.  

 

The DHR model has the following form (Young et al., 1999): 

yt = Tt + St + et et : N{0,σ 2 }  (1) 

where yt is the observed time series; St is a seasonal/cyclical component; et is a noise 

component, modelled as mutually independent Gaussian random variables with zero 

mean and variance σ 2  (i.e. discrete time white noise); and Tt  is a smoother, long-to-

medium term ‘trend’ component, without any periodicity, that reflects that part of the 

series not accounted for by the seasonal/cyclical and irregular components. The 

seasonal/cyclical St  components are modelled in the following Time Variable Parameter 

(TVP), trigonometric form: 

St = {ai ,t

i=1

R

∑ cos(ω it) + bi ,t sin(ω it)}  (2) 

whereω i , i=1,..,R are the fundamental and harmonic frequencies associated with the 

seasonality/cycles in the series; and ai ,t ,bi ,t  are the parameters that are allowed to vary in 

time over the observation interval if this is indicated by the analysis and optimization of 

the model. 

 

In order to allow for the non-stationarity of the observed time series, the trend Tt  in (1) 

and the parameters ai ,t ,bi ,t  in (2) are modelled as stochastic TVP’s, each defined as a 

nonstationary stochastic variable. Identification of the model (1)-(2) is based on the Auto 

Regressive (AR) spectrum of the time series, with the AR order identified by the Akaike 

Information Criterion (AIC) (Akaike, 1974). Each parameter (Tt , ai ,t , bi ,t ) is modelled as a 

generalised random walk (GRW) process defined in the state space form: 

xi ,t = Fi xi,t−1 + Giηi ,t i = 1, ..., 2R + 1  (3) 

where 



Fi =
α β

0 λ









 , Gi =

δ 0

0 ε









  

and theηi,t = [ηi,1 ηi,2 ]
T  are mutually independent bivariate normal N(0,Qηi ) random 

variables. 

 

Estimation of parameters and prediction of the unobserved components is accomplished 

using the methods described in Young et al. (1999). The parameters (variances and other 

hyper-parameters in (3)
1
) are estimated by matching the model spectrum to the AR 

spectrum of the data, and the unobserved components St , Tt  and et , are estimated using 

recursive fixed interval smoothing (FIS). 

 

TP3.2  Detecting change in catchment dynamics: the Data-based Mechanistic 

Approach 

Within the history of science, two main approaches to mathematical modelling can be 

discerned; approaches which, not surprisingly, can be related to the more general 

deductive and inductive approaches to scientific inference that have been identified by 

philosophers of science from Francis Bacon to Karl Popper and Thomas Kuhn.   

1. The ‘ hypothetico-deductive’ approach. Here, the a priori conceptual model structure 

is effectively a theory of behaviour based on the perception of the scientist/modeller 

and is strongly conditioned by assumptions that derive from current scientific 

paradigms.   

2. The ‘inductive’ approach. Here, theoretical preconceptions are avoided as much as 

possible in the initial stages of the analysis. In particular, the model structure is not 

pre-specified by the modeller but, wherever possible, it is inferred directly from the 

observational data in relation to a more general class of models. Only then is the 

model interpreted in a physically meaningful manner, most often (but not always) 

within the context of the current scientific paradigms.  

It is this latter inductive type that forms the basis for Data Based Mechanistic (DBM) 

modelling (Young, 2002a and references therein). The main stages in DBM model 

building are as follows: 

1. The important first step is to define the objectives of the modelling exercise and to 

consider the type of model that is most appropriate to meeting these objectives. The 

prior assumptions about the form and structure of this model are kept at a minimum 

in order to avoid the prejudicial imposition of untested perceptions about the nature 

and complexity of the model needed to meet the defined objectives.  

2. An appropriate model structure is identified by a process of objective statistical 

inference applied directly to the time-series data and based on a given general class 

                                                
1
  The term ‘hyper-parameters’ is used here to differentiate these constant parameters 

from the TVPs in the DHR model. 



of linear Stochastic Transfer Function (STF) models whose parameters are allowed 

to vary over time, if this seems necessary to satisfactorily explain the data.  

3. If the model is identified as predominantly linear or piece-wise linear, then the 

constant parameters that characterise the identified model structure in step 2. are 

estimated using advanced methods of statistical estimation for dynamic systems. The 

methods used in the present chapter are the Refined Instrumental Variable (RIV) and 

Simplified RIV (SRIV) algorithms, which provide a robust approach to model 

identification and estimation that has been well tested in practical applications over 

many years. Full details of these methods are provided in Young and Jakeman (1979); 

Young, (1984, 1985). They are also outlined in Young and Beven (1994) and Young 

et al. (1996). 

4. If significant parameter variation is detected then the model parameters are estimated 

by the application of TVP or SDP estimation, as discussed previously 

5. If nonlinear phenomena have been detected and identified in stage 4, the non-

parametric, state dependent relationships are normally parameterised in a finite form 

and the resulting nonlinear model is estimated using some form of numerical 

optimisation, such as nonlinear least squares or ML based on prediction error 

decomposition (Schweppe, 1965).  

6. Regardless of whether the model is identified and estimated in linear or nonlinear 

form, it is only accepted as a credible representation of the system if, in addition to 

explaining the data well, it also provides a description that has direct relevance to the 

physical reality of the system under study. This is a most important aspect of DBM 

modelling and differentiates it from more classical statistical modelling methodology. 

7. Finally, the estimated model is tested in various ways to ensure that it is conditionally 

valid. This involves standard statistical diagnostic tests for stochastic, dynamic 

models, including analysis which ensures that the nonlinear effects have been 

modelled adequately, as well as exercises in predictive validation (i.e., it performs 

well in predicting over data other than that used in the model estimation) and 

stochastic sensitivity analysis (Young, 1999a). 

   

Of course, while step 6 should ensure that the model equations have an acceptable 

physical interpretation, it does not guarantee that this interpretation will necessarily 

conform exactly with the current scientific paradigms. Indeed, one of the most exciting, 

albeit controversial, aspects of DBM models is that they can tend to question such 

paradigms. For example, DBM methods have been applied very successfully to the 

characterisation of imperfect mixing in fluid flow processes and, in the case of pollutant 

transport in rivers, have led to the development of the Aggregated Dead Zone (ADZ) 

model (Beer and Young, 1983; Wallis et al., 1989). Despite its initially unusual physical 

interpretation, the practical success of this ADZ model and its formulation in terms of 

physically meaningful parameters, seriously questions certain aspects of the ubiquitous 

Advection Dispersion Model (ADE), which preceded it as the most credible theory of 

pollutant transport in stream channels (see e.g. Young and Wallis, 1994).   

 

 

 



TP3.2.1 Transfer Function Methods 
 

The objective of Data-Based Mechanistic (DBM) modelling (e.g. Young and Lees, 1993; 

Young, 1998 and the prior references therein) is to infer the nature and structure of such 

models directly from hydrological data, using powerful methods of statistical inference, 

and to then interpret the model equations in physically meaningful terms. One important 

generic model class that facilitates such DBM modelling studies is the Transfer Function 

(TF) family of models, which is the subject of this Section. 

 

First, some of the background to the use of TF models in hydrology is reviewed, 

concentrating on prior publications concerned with the modelling of rainfall-flow 

processes. This is followed by a sub-Section that discusses the formulation of linear, 

constant parameter TF models in the derivative operator /s d dt= , which are simply the 

continuous-time (CT), transfer function form of ordinary differential equations. It then 

proceeds to develop and discuss the discrete-time (DT) equivalents of these CT models, 

namely transfer functions in the backward shift operator   z
−1  (see later), before outlining 

methods for the statistical identification and estimation of both CT and DT models from 

noisy time series data. In this manner, the models take on a natural stochastic form that is 

appropriate to their use in applications such as hydrological forecasting, uncertainty and 

risk analysis. The following sub-Section shows that transfer function models can be 

extended to incorporate time variable and ‘state-dependent’ parameters, so allowing them 

to describe nonstationary and nonlinear stochastic systems, so called State Dependent 

Parameter (SDP) models. Finally, the last sub-Section shows the application of the DBM 

methods to rainfall-flow modelling. 

 

TF modelling is important in the present Report because the analysis of the changes in 

the linear dynamics of the TF models describing the rainfall-runoff processes, as well as 

the changes in nonlinear relationships between the process variables, is used as a tool to 

detect the signatures of the land use changes on the flow regime. 

 
 

TP3.2.2 Linear Continuous-Time TF Models 
 

In order to introduce TF models, let us consider first a conceptual catchment storage 

equation in the form of a continuous-time, linear storage (store, tank or reservoir) model: 

see, for example, the review papers by O’Donnell, Dooge and Young in Kraijenhoff and 

Moll (1986); or more comprehensive treatments, such as the books by Beven (2001) and 

Dooge and O’Kane (2003). Here, the rate of change of storage in the channel is defined 

in terms of water volume entering the linear storage element (e.g. river reach) in unit 

time, minus the volume leaving in the same time interval, i.e., 

0

( )
( ) ( )

i

dS t
GQ t Q t

dt
τ= − −  (1) 

where Qi(t−τ) represents the input flow rate delayed by a pure time or ‘transport’ delay of 

τ time units to allow for pure advection; and G is a gain parameter inserted to represent 

gain (or loss) in the system. Making the reasonable and fairly common assumption that 

the outflow is proportional to the storage at any time, i.e., 



0 ( ) ( )Q t T S t= ⋅  

 

and substituting into (1), we obtain, 

 

0
0

( )
( ) ( )

i

dQ t
T GQ t Q t

dt
τ= − −  (2) 

This equation is a first order, linear differential equation model whose response, from an 

initial steady flow condition, to a unit impulsive change imp

i
Q  of the input flow at time 

0t t= , is given by 

 

0 0( ) exp{ ( ) / }imp

e i
Q t Q Q t t Tτ− = + − −  

 

where 
e

Q is the initial steady flow level. This has a typical hydrograph recession shape, 

with a decay Time Constant, T, that defines the Residence Time of the model. As we shall 

see later, combinations of two or more such first order models, exhibit a typical unit 

hydrograph form (e.g. Dooge, 1959; Beven, 2001). 

 

By introducing the derivative operator s, i.e. 
( )d

s
dt

⋅
= , and collecting like-terms together, 

it is easy to see that equation (2) can be written as (Young, 2004a), 

 

0(1 ) ( ) ( )
i

Ts Q t GQ t τ+ = −  

 

so that, dividing throughout by 1 Ts+ , we obtain the following continuous-time TF form 

of equation (2), 

 

0 ( ) ( ) ( )
i

Q t H s Q t τ= −  (3) 

where,  

( )
1

G
H s

Ts
=

+
 

represents the TF in terms of the derivative operator s. 

 

(a) Physically Interpretable Parameters 

 

The TF model (3) is characterized by three parameters: G, T and τ. However, there are 

five, physically interpretable model parameters associated with the model that are worth 

discussing. The Steady State Gain (SSG), denoted by G, is obtained by setting the s 

operator in the TF to zero (i.e. d/dt = 0 in a steady state). It shows the relationship 

between the equilibrium output and input values when a steady input is applied. For this 

reason, if the input and output have similar units, G is ideal for indicating the physical 

losses or gains occurring in the system. In the case of a flow-routing model, for example, 

it indicates whether water has been added (G > 1) or lost (G < 1) between the upstream 

and downstream boundaries; and the percentage of water lost or gained can be defined by 



Loss Efficiency LE = 100(1−G), which will be negative if G > 1.0. As pointed out above, 

the Residence Time or Time Constant T is the time required for the storage element 

output to decay to   e
−1  or 0.3679 of its maximum value in response to an impulsive input. 

Finally, the pure Advective Time Delay τ indicates the time it takes for a flow increase 

upstream to be first detected downstream: and 
t

T T τ= +  defines the Travel Time of the 

system. These five parameters typify the equilibrium and dynamic characteristics of the 

TF model and provide a physical interpretation of the TF model in terms of its mass 

transfer and dispersive characteristics. 

 

 

TP3.2.3 Linear Discrete-Time TF Models 
 

To date, the most popular form of TF modelling has been carried using the discrete time 

(DT) equivalent of the model (3). Considering the associated differential equation (2) at a 

uniform sampling interval of t∆  time units, an approximate discrete-time form of this 

model can be obtained in the following manner by approximating the first order 

derivative and introducing sampled variables: 

 

  
T

Q
0,k

− Q
0,k −1

∆t
≈ GQ

i,k −δ
− Q

0,k −1
 (4) 

 

Here 0,kQ  is the sampled value of 0 ( )Q t  at the k
th

 sampling instant, i.e. after k t∆  time 

units; and δ is the advective time delay, normally defined as the nearest integer value of 

/ tτ ∆ (thus incurring a possible approximation error). Collecting terms in this equation, it 

can be written as, 

 

0, 1 0, 1 0 ,k k i k
Q a Q b Q δ− −≈ − +  (5) 

 

where 1 1(1 / ) (1 )a t T f t= − − ∆ = − − ∆  and 0 0( / )b G t T g t= ∆ = ∆ . This reveals that, as a 

first approximation in discrete-time, the flow 0,kQ  at the k
th

 sampling instant is a 

proportion -a1 (note that, in the present context, a1 will be a negative number less than 

unity, so that this is a positive proportion) of its value 0, 1k
Q −  at the previous ( 1)thk −  

sampling instant, plus a proportion b0 of the delayed upstream flow input ,i k
Q δ−  measured 

δ sampling instants previously. Although equation (5) is an approximate expression, 

depending on the size of the sampling interval T∆  and the definition of the sampled 

variables, it can be shown that it has the same form as a more accurate discrete-time 

equivalent of (2). In this alternative discrete-time representation, the values of the 

parameters a1 and b0 in equations (5) can be related to the parameters of the model (2) in 

various ways depending upon how the input flow ( )
i

Q t  is assumed to change over the 

sampling interval between the measurement of , 1i k
Q −  and ,i k

Q  (since it is not measured 

over this interval). The simplest and most common assumption is that it remains constant 



over this interval (the so-called zero-order hold, ZOH, assumption), in which case the 

relationships are as follows: 

0
1 1 0 1

1

exp( ) {1 exp( )}
g

a f t b f t
f

= − − ∆ = − − ∆  (6) 

 

The expressions for a1 and b0 in (5) are approximations of these more accurate 

expressions. Note also that, because these relationships are functions of the sampling 

interval t∆ , for every unique CT model such as (3), there are infinitely many DT 

equivalents, depending on the choice of t∆ , all with different parameter values defined in 

(6). With the definitions of equation (3), the equivalent discrete-time TF version of the 

model (5) (now with an equality sign) takes the form: 

 

0
0, ,1

11
k i k

b
Q Q

a z
δ−−

=
+

 (7) 

 

where z
−1

 is the backward shift operator; i.e. 1

0, 0, 1k kz Q Q
−

−=  or, in general terms, 

0, ,

r

k o k rz Q Q
−

−= .  

 

Following from the definition of this first order DT model at the chosen t∆ , the general 

multi-order equivalent of the general CT model is defined by the following discrete-time 

Stochastic Transfer Function (STF) model: 

  

y
k

=
B(z

−1)

A(z
−1)

u
k−δ

+ ξ
k
 (8) 

 

Here, 
 
ξ

k
 is additive noise that represents the effects of any unmeasurable, stochastic 

inputs or measurement errors;  δ  is a pure, advective time delay of  δ∆t  time units, 

while
  
A(z

−1)  and 
  
B(z

−1)  are polynomials in the backward shift operator z
− i : (i.e. 

 
z

− i
y

k
= y

k−i
) of the following form: 

 

 
   
A(z

−1) = 1+ a
1
z

−1 + a
2
z

−2 +L+ a
n
z

− n;     B(z
−1) = b

0
+ b

1
z

−1 + b
2
z

−2 +L+ b
m

z
− m  

 

The orders of the polynomials n and m are identified from the data during the initial 

identification procedure and are normally in the range 1-3. In the following analysis, the 

triad [n m δ] is used to characterize this model structure. 

 

The STF model (8) can be written in the alternative discrete-time equation form, 

 

 
   
y

k
= −a

1
y

k−1
− a

2
y

k−2
−L− a

n
y

k−n
+ b

0
u

k−δ
+ b

1
u

k−δ −1
+L+ b

m
u

k−δ −m
+ η

k
 

 

where 
  
η

k
= A(z

−1)ξ
k
 is the transformed additive noise input. If this model is considered in 

the context of rainfall-flow models, it shows that the river flow at the k
th

 hour 
 
y

k
 is 



dependent on level and effective rainfall measurements 
 
u

k −δ
 made over previous hours, as 

well as the uncertainty 
 
η

k
 arising from all sources. Note that, although the STF 

relationship between effective rainfall and flow is linear, the noise 
 
η

k
 is dependent on the 

model parameters, thus precluding linear estimation; and the complete model between 

measured rainfall and water level is quite heavily nonlinear because of the effective 

rainfall nonlinearity which is a nonlinear function of the measured rainfall (see main 

text).  

 

TP3.2.4 Model Structure Identification 
 

An important aspect of TF modelling, in both continuous and discrete-time, is Model 

Structure Identification (the definition of the model structure triads). This can be 

approached in various ways. For example, Box and Jenkins (1970) discuss the topic at 

length and Akaike (1974) suggested an alternative approach that has since spawned 

several other, related methods. 

 

Within the context of the Instrumental Variable (IV) methods used for the analysis in the 

present Report, however, model structure identification is based conveniently on two 

statistical criteria. First, the Coefficient of Determination, 2

T
R , a normalized measure 

based on the variance of the error between the sampled output data 
k

y  and the simulated 

(CT or DT) model output at the same sampling instants (this is similar to the well known 

Nash-Sutcliffe Efficiency measure: Nash and Sutcliffe, 1970); and 100x 2

T
R  is the 

percentage of the variance of the output data explained by the model. Note that 2

T
R  

should not be confused with its well known relative 2R , as used in classical regression 

and time series analysis, which is defined in terms of the one-step-ahead prediction 

errors. In general, 2

T
R  is a more discerning measure of model adequacy in a dynamic 

systems context than 2R , since it quantifies the ability of the model to explain the whole 

of the simulated output data derived only from the input data, without any reference to 

the output data. In contrast, 2R  only measures the ability of the model to predict one-

step-ahead on the basis of the latest measured input and output data (as in flow 

forecasting). The second statistic is the Young Information Criterion (YIC): this is a 

heuristic measure of model identifiability and is based on the properties of the 

Instrumental Product Matrix (IPM) that is generated as part of the IV estimation 

procedure. These statistics are discussed in more detail in Young (1989), Appendix 3 of 

Young (2001b) and Young (2005). 
 

TP3.2.5 Nonstationary and Nonlinear TF models 
 

Nonlinearity in rainfall-flow and water level models is very important because it defines 

the way in which the model responds under different catchment wetness conditions. In 

general, therefore, it is necessary to consider extensions to the constant parameter, linear 

STF model that allow for the consideration of more complex hydrological processes such 

as this. Fortunately, it is possible to extend STF models to handle ‘nonstationary’ 



situations described by Time Variable Parameter (TVP) models; or ‘nonlinear’ situations 

characterized by State-Dependent Parameter (SDP) models. The latter model class 

encompasses a wide variety of nonlinear, stochastic, dynamic phenomena, including even 

chaotic systems. 

 

Both TVP and SDP types of model can be considered in either continuous or discrete-

time. However, since statistical estimation is more straightforward in the DT case, it often 

provides the more straightforward approach in nonstationary and nonlinear situations. 

Consequently, the brief descriptions that follow are limited to this DT situation. 

 

(a) Nonstationary Time Variable Parameter (TVP) Models 

 

In the DT case, the TVP form of the TF model (8) can be written as follows: 

 
1

1

( , )

( , )
k k k k k

B k z
x u y x

A k z
δ ξ

−

−−
= = +  (9) 

where, 
1 1 2

1, 2, ,

1 1 2

0, 1, 2, ,

( , ) 1 ...

( , ) ...

n

k k n k

m

k k k m k

A k z a z a z a z

B k z b b z b z b z

− − − −

− − − −

= + + + +

= + + + +
 

 

Here, all the parameters are assumed to be functions of the time index k, i.e. it is assumed 

that they may vary over time in an unknown manner that needs to be estimated from the 

data. Some of the latest research on TVP estimation is reported in Young (1999b, 2000, 

2001a) where the reader will find a complete description of the recursive estimation 

algorithms that allow for the estimation of the time variable parameters. 

 

 

 (b) Nonlinear State-Dependent Parameter (SDP) Models 

 

Again in the discrete-time case, the SDP form of the STF model (8) can be written as 

follows: 
1

1

( , )

( , )

k
k k k k k

k

B w z
x u y x

A v z
δ ξ

−

−−
= = +  (10) 

where, 
1 1 2

1 1, 2 2, ,

1 1 2

0 0, 1 1, 2 2, ,

( , ) 1 ( ) ( ) ... ( )

( , ) ( ) ( ) ( ) ... ( )

n

k k k n n k

m

k k k k m m k

A v z a v z a v z a v z

B w z b w b w z b w z b w z

− − − −

− − − −

= + + + +

= + + + +
 

 

Here, the possibility that the parameters may be functions of other ‘state’ variables is 

investigated. In other words, it is assumed that any parameter in the model may vary over 

time as a function of the temporal variation in one or more other variables (e.g. the input 

k
u  or output 

k
y  and their past values), so introducing nonlinear behaviour into the model. 

In the SDP model (10), these variables are denoted by ,j k
v , i = 1, 2, ..., n and ,j k

w , j = 0, 

1, ...,m and they are, respectively, the elements of the vectors 
k

v  and 
k

w . 



 

The first applications of SDP estimation in hydrology are described in Young (1993); and 

Young and Beven (1994); while the latest research on SDP estimation is reported in 

Young (2000, 2001a,b, 2002a, 2003, 2006a,b) and Young et al.(2001). This later research 

exposes a special example of the SDP model that is particularly important in a rainfall-

flow context. This is the ‘Hammerstein’ model, where the SDP nonlinearity only affects 

the numerator parameters in the SDP transfer function model (10) and is of a form where 

it can be factored out of the model and form a single, input nonlinearity that converts the 

measured rainfall into an ‘effective rainfall’ (see next Section 2.6). This model can be 

written in the form: 
1

1

( )
( )

( )
k k k k k

B z
x f u y x

A z
δ ξ

−

−−
= = +  (11) 

where ( )
k

f u δ−  represents the SDP effective rainfall nonlinearity. This is discussed 

further in the next Section. 

 

TP3.2.6 Nonlinear rainfall-flow model 

 
At any flow measurement location, it is assumed that the rainfall and flow measurements 

above the base level, r(t) and y(t), are sampled uniformly in time at a sampling interval of 

 ∆t  time units (here hours) and that these discrete-time, sampled measurements are 

denoted by 
 
r

k
 and

 
y

k
. It has been shown (Young [1993, 2001a,b, 2002a, 2003], Young 

and Beven, [1994], Young and Tomlin [2000], Romanowicz et al., [2004]) that the 

nonlinearities arising from the relationship between measured rainfall 
 
r

k
 and transformed 

(effective) rainfall, denoted here by 
 
u

k
, can be approximated using gauged flow as a 

surrogate measure of the antecedent wetness or soil-water storage in the catchment. In 

particular, the scalar function describing the nonlinearity between the rainfall and the soil 

moisture surrogate 
 
y

k
 is initially identified non-parametrically (graphically) using 

recursive SDP estimation, as described in the above references. Often this estimated non-

parametric relation can be parameterized using a power low or exponential relation. In 

the former case, the effective rainfall relation takes the form: 

0 ;
k k k

u c y r
γ= ⋅ ⋅  (12) 

 

where 
 
u

k
denotes the transformed (effective) rainfall; 

 
r

k
denotes measured rainfall; 

  
c

0
is a 

scaling constant, normally selected so that, with the same units, the total effective rainfall 

matches the total flow. The power-law exponent γ is estimated by a special optimization 

procedure that includes the concurrent optimal instrumental variable estimation (see later 

and Young, 1984) of the linear STF model (9) between the delayed, transformed rainfall 

u
k−δ  and the flow yk . 

 

Combining equations (11) and (12) the complete rainfall-flow model can be written as: 

 



  

y
k

=
b

0
+ b

1
z

−1

1+ a
1
z

−1 + a
2
z

−2
u

k−δ
+ ξ

k
u

k
= c

0
y

k

γ
r

k
     ξ

k
= N (0,σ

k

2 )  (13) 

 

For simplicity, the additive noise term 
 
ξ

k
in (13) is assumed here to be a zero mean, 

normally distributed, white noise sequence (i.e. uncorrelated in time), although an 

extension of the model to incorporate coloured noise is straightforward (Young, 2003). It 

is also assumed that 
 
ξ

k
, which accounts for all the uncertainty associated with the inputs 

affecting the model, including measurement noise, un-measured inputs, and uncertainty 

in the model, is heteroscedastic (i.e. its variance σ k

2  changes over time) and that it is not 

significantly correlated with the rainfall measurement. 

 

The mechanistic interpretation of the model (13) follows from the decomposition of the 

linear STF part of this model in (13) into ‘fast’ and ‘slow’ components that, in broad 

terms, reflect the fast and slow physical processes operative in the catchment (see the 

previous references). These decomposed components, as obtained by partial fraction 

expansion (e.g. Young , 2005), take the following form: 

  

Fast Component:         y
1,k

=
β

1

1+ α
1
z

−1
u

k−δ

Slow Component:       y
2,k

=
β

2

1+ α
2
z

−1
u

k−δ

 (14) 

where 
 
α

1
,α

2
,β

1
,β

2
 are parameters derived from the parameters in the model (13) and the 

total gauged flow is the sum of these two components and a model error, 

i.e.
  
y

k
= y

1,k
+ y

2,k
+ ξ

k
. The associated residence times (time constants),

  
T

1
, T

2
; steady state 

gains, 
  
G

1
, G

2
; and partition percentages,

  
P

1
, P

2
 , are given by the following expressions: 

 

 

  

T
i
=

∆t

log
e
(α

i
)
;  i = 1,2      G

i
=

β
i

1+ α
i

;  i = 1,2      P
i
=

100G
i

G
1

+ G
2

; i = 1,2  

 

The parameters of the above nonlinear STF model are derived from statistical model 

identification and estimation analysis based on the observed rainfall- flow data. Here, the 

statistically optimal RIV (Refined Instrumental Variable) algorithm from the CAPTAIN 

toolbox (http://www.es.lancs.ac.uk/cres/captain/) for Matlab
TM

 and the associated DBM 

statistical modelling concepts are used to identify the order of the STF model (the triad [n 

m δ]) and to estimate the associated parameters (see previous references). In this manner, 

the DBM model efficiently reflects the information content of the data, so that the 

possibility of over-parameterization and associated poor identifiability is avoided.  
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