
Joint Defra/EA Flood and Coastal Erosion
Risk Management R&D Programme

Software Requirements for Joint
FCERM R&D Programme
Modelling
Outputs and Architecture Specification for
RASP Family Outputs

R&D Technical Report FD2121/TR1

PB11207-CVR.qxd 1/9/05 11:42 AM Page 1

Joint Defra/EA Flood and Coastal Erosion Risk
Management R&D Programme

Software Requirements for Joint
FCERM R&D Programme Modelling
Outputs and Architecture Specification
for RASP Family Outputs

R&D Technical Report FD2121/TR1

Produced: September 2007

Author: Dr. Jon Wicks, Halcrow

ii

Statement of use
The report is intended to guide those involved in software development of joint
Defra/EA Flood and Coastal Erosion Risk Management R&D modelling outputs.

Dissemination status:
Internal: Released internally
External: Released to public domain

Keywords: software requirements, RASP family architecture

Research contractor: Halcrow Group Ltd, wicksjm@halcrow.com

Defra project officer: Prof. Edward Evans

Science Theme Manager: Dr. Suresh Surendran

Publishing organisation
Department for Environment, Food and Rural Affairs
Flood Management Division,
Ergon House,
Horseferry Road
London SW1P 2AL

Tel: 020 7238 3000 Fax: 020 7238 6187

www.defra.gov.uk/environ/fcd

© Crown copyright (Defra) 2007

Copyright in the typographical arrangement and design rests with the Crown.
This publication (excluding the logo) may be reproduced free of charge in any
format or medium provided that it is reproduced accurately and not used in a
misleading context. The material must be acknowledged as Crown copyright
with the title and source of the publication specified. The views expressed in
this document are not necessarily those of Defra or the Environment Agency.
Its officers, servants or agents accept no liability whatsoever for any loss or
damage arising from the interpretation or use of the information, or reliance on
views contained herein.

Published by the Department for Environment, Food and Rural Affairs (Sept
2007). Printed on material that contains a minimum of 100% recycled fibre for
uncoated paper and 75% recycled fibre for coated paper.

PB No. 12794A

iii

Acknowledgements: This document has benefited from the involvement of the
following organisations: Environment Agency CIS, HR Wallingford, Wallingford
Software, EdenVale Modelling Services, JBA, Wallingford HydroSolutions and
Newcastle University.

iv

Executive Summary

Software products form important outputs from many Flood and Coastal Erosion
Risk Management (FCERM) R&D projects and will be used to help implement
the Environment Agency’s Flood Risk Management Modelling Strategy. For
these software products to be readily useable by the Environment Agency,
other operating authorities and their consultants, it is important that the software
adheres to relevant software standards. The FD2121 project has developed
guidance material to assist research contractors in understanding and
conforming to the relevant standards with an emphasis on Environment Agency
standards. In addition, the project has reviewed the software modularity of the
RASP family of decision support tools and has initiated documentation of
common modules and certain enabling architecture.

The primary source of relevant standards for FCERM software is the
Environment Agency’s Corporate Information Services (CIS) ‘Enterprise
Architecture: Technical Reference Model’ (TRM). Guidance material for R&D
contractors has been developed from the TRM and from discussions with CIS
staff and other industry experts. The guidance is presented in R&D Technical
Report FD2121/TR2 ‘R&D Software Development Projects – Guidance for
Research Contractors’. In addition to the objective of guiding the R&D
contractor towards producing conforming software, the guidance documentation
is also designed to foster early informed discussions between the R&D
contractor and CIS.

The utility of the guidance has been demonstrated through three trial
applications: GLIM-CLIM rainfall generator, MDSF2 and the NFFS model
adapter. These represent examples of classes of software ranging from
background university R&D (rainfall generator), through projects focussing on
delivery of new methods to operating authority and consultant staff (MDSF2), to
specific commercial modelling software development for Agency systems
(NFFS model adapter). The development of the guidance has highlighted a
number of areas which could be addressed by improvements to the TRM or
other process documentation, these include: the need for more guidance on
.NET, the need to facilitate end user involvement in the development stage,
improved documentation requirements, and the need for early consideration of
future custodianship, support, maintenance and user training.

The RASP family of decision support tools has been described in the report
‘Scoping the development and implementation of flood and coastal RASP
models’ (SCO50065/SR1, 2007). The scoping report identified a range of
RASP-based bespoke decision-specific tools which, although targeted at
different FCERM business functions, share common data and modules. The
requirements and methods for the RASP family of tools continue to be
developed and currently are not sufficiently well defined to enable a
comprehensive and appropriate conceptual/logical architecture for the RASP
family to be fully identified. However useful steps towards an appropriate
architecture have been made in this report covering: an architectural review of
ongoing RASP-related projects (NaFRA, MDSF2, RACE, PAMS and CRUE),

v

currently identifiable common modules and appropriate enabling technologies.
The review has shown that the tools are being designed to share common data
and some common computational modules. Further action is required in the
areas of defining requirements, analysing commonalities and further
specification of software architecture to better achieve the objectives of
facilitating the efficient production of sustainable and appropriate software tools
and to facilitate competition. As requirements and methods continue to evolve it
will be important to review architectural aspects and maintain an on-going
dialogue with CIS and other Agency/Defra managers to facilitate take up of the
software outputs.

vi

Contents

Executive Summary .. iv
1 Introduction ... 1
1.1 Project Objectives ... 1
1.2 Purpose and Outline of the Report .. 2
2 R&D Software Requirements.. 3
2.1 Introduction.. 3
2.2 Understanding CIS Requirements... 3
2.3 Overview of the Guidance ... 13
2.4 Review of the Guidance .. 13
2.5 Trial Applications of the Guidance... 19
3 RASP Family System Architecture .. 21
3.1 Introduction.. 21
3.2 Overview of RASP Family Functionality .. 21
3.3 Recommendations for RASP Architecture... 23
4 Conclusions and Recommendations... 30
4.1 Conclusions... 30
4.2 Recommendations .. 31
Appendix A Example Applications of the Guidance............................... 33
A1 Application to GLIM-CLIM Rainfall Generator................................... 34
A2 Application to MDSF2 ... 47
A3 Application to NFFS (TRITON Model Adapter).................................. 59
Appendix B NFFS Background Information .. 68
B1 NFFS High Level Solution Architecture... 69
B2 NFFS TRITON Module – Case Study.. 73
References.. 89
Glossary of Selected IT Terms.. 89

1

1 Introduction

1.1 Project Objectives

Defra’s Flood Management Division funds a joint R&D programme with the
Environment Agency to support Flood and Coastal Erosion Risk Management
(FCERM) within England and Wales. The flood and coastal management policy
aims to reduce risks to people, property and the natural environment from
flooding and erosion.

Amongst the important outputs from the joint R&D programme will be a
considerable number of software products. Some of these will be operational or
planning tools which will be mounted on Environment Agency systems. They
will therefore need to conform with Environment Agency standards on
architecture, languages, software platforms (e.g. GIS systems), interface and
data exchange protocols, testing and acceptance.

A second point is that a number of them will be inter-related. The RASP (Risk
Assessment for System Planning) family is perhaps the prime example, but
there are parallel systems being scoped or developed in other fields such as the
NFFS (National Flood Forecasting System) and tools for the WFD (Water
Framework Directive). For efficient development and support these should be
designed so as to use common modules wherever possible, within an open
software architecture.

A third point which follows from the first two relates to competition and access to
the best ideas from a range of originators. This will be greatly assisted by the
availability of a document which sets out clearly an open, common set of
protocols and architecture for the RASP family.

The objectives of this research project were thus to address these points as
follows:

Objective 1: To draw up and agree with Environment Agency IT specialists a
common set of requirements covering standards on enterprise architecture
(languages, software platforms, interface and data exchange protocols), testing
and acceptance, potentially applicable to all software outputs of the joint R&D
programme, in order to permit fair tendering and the efficient production of
conforming software.

Objective 2: To draw up for the RASP family an overall system architecture
which will identify and specify common modules. This will be declared openly in
order to facilitate competition and the support and updating of the various
applications within the family.

At the time of writing, the Environment Agency is drafting a Flood Risk
Management Modelling Strategy. The Strategy aims to ensure that the Agency
is able to achieve its current and future modelling obligations to support flood
risk management in an effective and efficient manner. Key messages from the
Strategy of direct relevance to the objectives of the FD2121 report are:

2

• The need for a risk based approach
• The need to be consistent with the Agency’s IT Strategy and preferred

enterprise architecture
• The need for modularity to facilitate reuse of components

The FD2121 objectives are consistent with the Flood Risk Management
Modelling Strategy and the uptake of the findings will support implementation of
the Strategy.

1.2 Purpose and Outline of the Report

This report provides the formal technical report detailing the outputs of the
research project. The background to the development of the guidance and
initial user feedback is provided in Chapter 2. Example applications of the
guidance are provided in Appendix A. Chapter 3 covers Objective 2 (RASP
family architecture).

In order to facilitate ease of use and future updating, the actual guidance for
research contractors covering Objective 1 is provided in a separate report: R&D
Technical Report FD2121/TR2 ‘R&D Software Development Projects –
Guidance for Research Contractors’.

3

2 R&D Software Requirements

2.1 Introduction

One key deliverable from many FCERM R&D projects is software products.
Historically these software deliverables have not been readily usable by all
members of the anticipated user communities. A particular problem has been
access to the software deliverables by Agency technical staff. A further issue
has been that the software may not have been developed using ‘best practice’
approaches which may result in difficulties in taking the software forward after
completion of the R&D project. The R&D project reported herein was conceived
to help address these issues through the development of guidance on a
common set of software requirements for FCERM R&D projects. The Agency’s
Corporate Information Services (CIS) provided key inputs during the
development of the guidance.

The guidance has been developed through the following tasks:

• Gain a good understanding of CIS technical requirements for software
which is to be installed on Agency systems (through discussions with CIS
and a review of CIS documentation) (see section 2.2)

• Production of an initial draft guidance document
• Review of the draft document by CIS and by selected members of the

anticipated user community (see section 2.4)
• Trial application of the draft guidance to three example software

applications (see section 2.5 and Appendix A)
• Revision of the draft guidance in response to feedback from the review

and lessons learnt from the trial application of the guidance
• Further review of the updated guidance by CIS
• Finalisation of the guidance to meet the requirements of CIS

The finalised version of the guidance is provided in R&D Technical Report
FD2121/TR2 ‘R&D Software Development Projects – Guidance for Research
Contractors’, an overview of which is provided in section 2.3.

2.2 Understanding CIS Requirements

2.2.1 Overview

The documentation provided by CIS has been studied in detail. Key documents
reviewed included “Overarching IS Principles” and “Enterprise Architecture:
Technical Reference Model” (TRM). The TRM contains guidance, policy and
rules to allow (amongst other things) software to be developed for the Agency
taking into account CIS requirements. “Overarching IS Principles” is a set of 15
principles which are generally applicable, mandatory and underpin and reinforce
Agency policies.

From review of the “Overarching IS Principles” and “Enterprise Architecture:
Technical Reference Model” documents, it becomes clear that some of the

4

important themes to come out of those documents are that FCERM R&D
software should be easily modified and extended, reused and supported (with
minimum training requirements) – within the Agency infrastructure. The
Agency will of course wish to get maximum value for money from FCERM R&D
projects. As part of this, they will want software to be written in such a way that
new features can be added easily and bug fixes can be done in isolation from
the overall system as much as possible. To achieve these aims, software
should be developed in a modular fashion, using loosely coupled functions,
probably via Object Oriented development. Interfaces should be separate from
business logic, a typical example would be the “Model, View, Controller pattern”
(see http://java.sun.com/developer/technicalArticles/J2EE/despat/).

Certain FCERM R&D projects will develop software that contains functionality
that it self will be useful for use in other FCERM R&D projects, or Agency
developed software. Wherever applicable, it should be as easy as possible for a
program to be created by one research contractor to make use of functionality
from another contractor’s software, regardless of development environment.
Maximum interoperability can be achieved by following the CIS “Enterprise
Architecture: Technical Reference Model” and various methods such as
creating “wrappers” around software, separating code into libraries, open
communication and implementing data exchange via SOAP and XML. External
interfaces and available functionality should be clearly documented.

Probably the single most important aspect of creating easy to support
applications for the Agency is to create server side, thin client (browser based)
solutions using Agency standard software platforms and development tools. If
the user can use a browser then they have a head start in being able to run the
software.

2.2.2 Agency platforms

Software developed to be run on Agency systems obviously needs to run on the
platforms the Agency already uses (or will have at the time of delivery) and can
support. An overview of the most pertinent information for FCERM R&D
development follows (note that the “Enterprise Architecture: Technical
Reference Model” should be considered the most up to date source for this
information). When embarking on a project the expected timescale of
development must be considered. In the case of a very short development
timescale the current “Enterprise Architecture: Technical Reference Model”
could be expected to be considered up to date and relied on. If, however, the
timescale was much longer a discussion would need to be held with CIS to
consider the possible changes to the CIS requirements over the period of
development.

Applications should run over TCP/IP. Suppliers of proposed systems are to
assume there is no available WAN bandwidth and should indicate the increase
required.

Citrix is the Agency standard thin client enabling software.

5

Current server platforms are HP-UX, Novell Linux or Windows 2003. It should
be noted that HP-UX is being phased out to be replaced with Novell/Suse Linux.
The Windows 2003 servers are “hardened” builds specially configured to
minimise security risks. All software development to run “server side” should run
on Linux or Windows 2003.

Client machines run Windows 2000 (EA Build) v5 SP3, with Novell Client for
Windows 2000/XP. These have a specially configured Internet Explorer 6 and
not all components are available (for instance Javascript is allowed, but ActiveX
components are not).

2.2.3 Application types

The Agency recognises that various types of software will be developed under
the FCERM R&D programme. The type of software project being developed will
have an effect on the application of the CIS “Enterprise Architecture: Technical
Reference Model” standards and how rigorously they need to be followed.
These can be separated into the following categories, though there may be
some overlap and some applications may change category over time.

1. Basic Research & Development projects where the focus is on
development of new methods that are “far from market” and the project
specification does not require that the application is put on Agency
systems. This will often be a “proof of concept” piece of software, which
is likely to require much further work before becoming production
software. As such, there may be scope for the “Enterprise Architecture:
Technical Reference Model” to be applied less stringently. Obviously
there are still good practices to be followed, which if followed will ease
future transition to a fully-developed state.

2. Software developed primarily for non-Agency users, where the

specification states it is not required on standard Agency systems. This
type of software needs to take account of the varying systems in place at
the operating authorities (and their consultants) when referencing the
“Enterprise Architecture: Technical Reference Model” standards. For
instance it is not practical to expect all consultants to install, run and
maintain the standard Agency corporate database.

3. Software developed both for external consultant use and for use on

standard Agency systems. This type of software needs to balance the
requirements of the Agency with the practicalities of external consultants
and other operating authority users being able to install and use the
software.

4. Software developed solely to run on standard Agency systems. As such,

of all the types of software this has to justify any deviations from the
“Enterprise Architecture: Technical Reference Model” the most strongly.

6

5. Public facing systems (i.e. systems exposed to external use by the
general public), have their own special requirements and costs. They are
beyond the scope of this project and are not covered further.

2.2.4 Development Tools & Languages

In order to achieve the Agency’s overall aims, there are standards for
development tools. The most up to date standards can be found in the current
“Enterprise Architecture: Technical Reference Model”. At the time of writing
(May 2006) the (applicable) standards are as shown in Table 2.1 below.

Table 2.1 Key CIS development standards
Area Standard Product (subject to change)
Integration
Hub

BEA Weblogic Integration

Analysis and
Design Tools

Rational Rose Analyst Suite, Rational Unified
Process

Development
Tools

Borland JBuilder,
Visual Basic (enhancement only) v6.0 (SP4),
Oracle Forms and Reports (enhancement only)

Web Page
Design Tools

Macromedia Dreamweaver v4.0

Architecture J2EE for complex systems
JSP & servlets for simpler systems

Application
Server

BEA Weblogic Server v8.1

Web Server Apache v2.0
Database Oracle 9i v2
Browser MS Internet Explorer
GIS ESRI ArcView v8.2, ArcSDE v8.3.1, ArcIMS v4.0.1
Reporting Tools Business Objects v5.0 (under review), Crystal

Reports v7.0 (under review)

The Agency standards are for software development to be undertaken in Java.
For Enterprise scale applications this is component based, n-Tier, using J2EE.
The standard application server that is used is BEA Weblogic Server v8.1.

For smaller scale applications JSP and servlets (including the use of Apache
Tomcat) are the standard development platforms.

Where the exact standards in the “Enterprise Architecture: Technical Reference
Model” cannot be met, there are varying degrees of compliance (which require
mitigating factors & evidence to be presented). For instance, although not the
Agency standard, IIS (Internet Information Server) server side ASP (Active
Server Pages) solutions with browser clients are preferable to Win32 client side
executable code. Generally, for all applications there is a very strong preference
for thin client web browser based architecture with rich client Win32 architecture
only used where web browsed architecture cannot deliver the business
requirements. The software would ideally work in any browser (to ensure

7

maximum usage by contractors and for future proofing), but obviously must
work in the Agency standard browser software.

Fortran: The Agency understands that the Fortran language is still in
widespread use and has its place (Fortran is fast, highly suitable for the sort of
computational tasks required in FCERM R&D projects, there is large user base
in the industry and a lot of pre-existing code). However, where Fortran is used,
the Agency has a strong preference for Fortran “wrapped in Java” using XML,
the hierarchy of acceptability of Fortran solutions in general is shown below:

1. Fortran “wrapped in Java” using XML (strong preference)
2. Fortran with XML inputs/outputs and control.
3. Fortran DLL (documented functionality callable by other languages)
4. Fortran solution

Java: Java is the Agency’s standard development language. This is for both
server side JSP or J2EE solutions and rich client solutions.

C++: For deployment of specialist applications requiring very high performance
characteristics (e.g. modelling applications) which can not be achieved using
the Environment Agency’s general tool sets then the use of C++ may be
justified. But bespoke code in general should be developed in Java.

C# / .NET: The use of C# / .NET would require strong justification and an ASP
server side solution would be preferable to a rich client solution. It is worth
noting that the Agency’s application server solution has an adapter product
which lets .NET functionality be called from Java.

VB: The Agency has some legacy applications written in VB, but VB is only
supported for development in a maintenance role. As with any language other
than Java, use of VB would need strong justification.

Other languages: There are a myriad of languages available, including
emerging languages such as Ruby. The Agency has no specific policy on each
and every language; the general principle is that Java is the language of choice.

2.2.5 Security

The main security issues that may be involved when considering FCERM R&D
projects are:

• limiting access to applications where there is high processor usage and
this needs to be managed

• limiting use to authorised users

Developers should bear in mind there is a management overhead for CIS if the
new software implements its own security system, with users, passwords etc.
This should be agreed with CIS as they will need to assign personnel to support
this.

8

Data sensitivity is an issue. It is assumed FCERM R&D projects will not store
information pertinent to the Data Protection Act – in the case that they do, CIS
will need to be informed and data storage issues will need to be discussed.

When developing (server based) software it is also a good idea to have a
management front end accessible through a browser client to perform
administration, as it will be problematic for research contractors to get direct
access to the host server. It is also extremely unlikely that any kind of dial-up
access to the installed system will be allowed.

Where the Agency have purchased software it is expected that the application
will not be locked down on the desktop for any reason after installation (for
example, some applications require you to connect to the internet to verify the
license).

2.2.6 Hardware Considerations

As part of any FCERM project it is important to consider whether there will be
any hardware requirements as a result of installing the software. For example
the bandwidth required by an application could mean that new hardware is
required.

2.2.7 Migrating Software to Compliance

In updating existing applications or adding new modules there may be the
opportunity to migrate towards a more compliant state. This might include
writing Java wrappers around existing code, further modularisation of code,
support of open format data exchange (e.g. XML). These types of changes
would be supported by CIS, but obviously there may be cost issues and so cost
versus benefit needs to be taken into account.

2.2.8 Databases

The current standard Agency database is Oracle 9i v2. As such, in general, new
database based solutions are expected to be developed to work with this
database. The Agency attaches high importance to this strategy. However,
where solutions are required to run on machines outside of the EA infrastructure
(e.g. contractors) the Agency realises it may not be practical or desirable to
force contractors to install the database in order for the solution to run. The
contractors may not be able to install it due to their own IT policy and systems,
lack of expertise and cost (though it is noted that at this time there is a free
version of Oracle available – Oracle 10g Express Edition). Where such issues
arise it may be advisable to develop database agnostic solutions and as a
general rule it will be advisable for developers to resist from using database
platform specific features, such as stored procedures etc.

The Agency is unlikely to allow corporate databases other than their standard
corporate database onto their systems.

9

There may also be situations when corporate databases are overkill for the task
in hand or unavailable due to financial or personnel resources to buy and
manage them. In these cases there may be limited situations in which MS
Access databases would be accepted, but only with native access from within
the application, i.e. MS Access not installed on the system. In extremely limited
cases MS Access could be used via Citrix.

Embedded databases would need to have the ability to output their data to a
common format (e.g. XML) as well as their proprietary format.

2.2.9 Non Database Data

Some programs will need some ancillary data that may not be suitable for
database storage or the programs themselves will not require the use of a
database. CIS would expect the developer to use XML as the format for both
data and settings storage wherever possible. It is understood that when working
with legacy/3rd party software that there may be a need to read and write
from/to proprietary binary formats and that some of these formats are industry
or de facto standards. However, when designing new software there would
have to be extremely strong justification for using proprietary binary formats –
probably the only example that could apply would be performance issues, but
with availability of serializable XML etc., even this is doubtful. Where binary
formats are proposed the Agency would expect to receive documentation as to
the format of these and also expect some ability to handle/produce XML
input/output.

2.2.10 Testing and Acceptance

The Agency use the “V” model of testing and will generally require research
contractors to do the same. The “V” model is shown in Figure 2.1 which
illustrates the clear alignment of the test stages with the planning and
development stages. Agreeing the testing and acceptance strategy will form
part of the agreement when a new project is begun and should be done before
any test cases are written.

10

Figure 2.1 – IT Project Delivery Process including V-Model testing

When the Agency engages a 3rd party supplier, the 3rd party will take
responsibility for the following testing stages:

Unit Testing: The objective of Unit Testing is to ensure that reliable program
units are produced that meet their requirements and to identify errors in
program logic. Typically, the developer who coded the unit will design and run a
series of tests to verify that the unit meets its requirements. Each unit should be
tested individually and in isolation by exercising its inputs and observing its
outputs or behaviour. There are widely used tools (unit testing frameworks)
available to assist in this task such as JUnit for Java and NUnit for .NET
languages.

Integration Testing (“ITS-In The Small”): Components of code are assembled
into sub-systems and linked to form a complete system. The objective is to test
the relationship and links between individual units of code.

System Testing (inc. FAT - Factory Acceptance Testing): System Testing
incorporates both functional and non functional testing. Functional system
testing is focused on testing the system based on what it is supposed to do as
defined in the functional requirements. Non-functional system testing looks at
those aspects that are important yet not directly related to what functions the
system performs. Non-functional requirements are just as important as

11

functional requirements and in all cases it is vital that these are tested prior to
the launch of the system. It includes aspects like performance and security
which are considered vital for today’s web based applications.

System Test Process (Involvement by 3rd Party Suppliers): As the majority
of projects will be developed away from an EA site by a 3rd party supplier this
stage is likely to be the first opportunity for Agency Staff to see the application.
To ensure quality, prior to delivery to the Agency, the 3rd Party supplier will be
required to demonstrate compliance by hosting Acceptance Testing on their
site, this will in effect be a pre-User Acceptance Test known by the Agency as
Factory Acceptance Testing (FAT). This process will have defined, agreed
acceptance criteria and will be subject to a Test Readiness Review Meeting
prior to deployment on any Agency infrastructure. In addition, the 3rd party
supplier will assist in the installation of the new application on the agency site.
This will be done as part of the Acceptance Testing stage and will again require
the 3rd party supplier to show compliance on the Agency’s infrastructure.

Site Acceptance Testing (SAT): SAT will be used as a quality check to ensure
that when the application is installed onto the EA infrastructure that it functions
correctly with no critical errors. The 3rd Party supplier will be on site to assist
and ensure that the application, specifically the server code, can be deployed
correctly. The 3rd Party supplier will then conduct a subset of their System Tests
to prove that the application can function without any critical errors. If possible,
at this stage the opportunity should be taken for the 3rd party to forward any test
assets such as test scripts that may be re-usable by the Agency.

When dealing with 3rd parties, the Test Management Process should also be
carefully considered. The Agency Test Manager/Coordinator will decide if the
project should produce a combined Test Strategy taking into account all testing
stages or if separate strategies should be produced, one by the Agency and
one by the 3rd party. This will also apply to Test plans and approach
documents.

The 3rd party testing process should provide evidence of the tests run and
results. In particular the Agency would like to see unit and system integration
tests.

Testing methods other than the ‘V’ model would need justification and to form
part of the project agreement. Software updates need to go through proper pre-
production testing and the testing plan should be run against them.

2.2.11 Transition to Support and Maintenance

One of the key support and maintenance considerations is the decision as to
who performs the support function – the supplier, CIS or both. The service level
required for the support must be set as must any need for business lead users,
database administrators etc. Further to this, developers will need to complete
the most up to date “Service Support Requirements Brief” Agency document for
each project that is to be handed over to the Agency. This is then used by CIS
Support as the basis for planning operational requirements and estimating

12

support costs. It is preferred this takes place as early as possible in order that
CIS can plan adequately ahead and spot any potential problems. Once the
software goes into production, the document contents will generally be
translated into a ‘Service Level Agreement’.

The main sections in the “Service Support Requirements Brief” are shown
below:

• Project Information - General information about the project, key
contacts, planned timescales and known risks and issues.

• Overview of Application – Description of the way the application is
used within the business, its technology and functionality.

• Support scope – List of those components of the application which are
in and out of scope for operational service and support.

• Application Component Level Service Requirements – Description of
the requirements of the major IS components delivered.

• Additional Support Services - Description of any additional ‘special’
support services required. For Service Level Management and Supplier
and Support & Maintenance use only.

• Future Development Management - Description of the services
required to support future application developments and enhancements.

Specific supporting documents (such as Entity Relationship Diagrams) may
need to be provided. These will have been previously agreed with the Agency
Project Manager prior to formal product acceptance.

2.2.12 Software Deployment

Configuration and distribution of workstation files will be handled using a Novell
NetWare Application Launcher (NAL) within Novell ZenWorks.

Suppliers of proposed systems must provide documented support for the
application integration task to the standardised Agency desktop. This is
performed using the ZENWorks for Desktops suite of tools which supports the
use of Microsoft Software Installer (MSI) technology as well as its own built in
application snapshot facility (SnAPPShot).

Where desktop software is to be installed on standard Agency desktops, CIS
would expect the research contractor to detail the impact on the workstation,
including the following:

• Assurance that the installation/application makes no changes to or
deletions of protected operating system files.

• A list of dependent components (e.g. Active X controls, DLLs, drivers
etc.)

• A list of Dynamic Link Library (DLL) and Application Programming
Interface (API) calls.

13

• A list of known changes to registry keys

A lot of software is used within the Agency, on many machines, so the impact of
new software on the desktop needs to be known and assessed. This is a major
factor in the preference for browser based thin-client technology.

2.3 Overview of the Guidance

The structure of the guidance document (FD2121/TR2) is outlined below.

Chapter 1 – Introduction: This chapter explains the background, purpose and
format of the guidance. It explains that the guidance document contains blank
‘fields’ which the research contractor should complete to document responses
to the series of ‘questions’ contained in chapters 2 to 4 of the guidance. The
chapter also contains a section highlighting the importance of entering into a
dialogue with CIS (via a strategy analyst and/or project architect) –
consideration and completion of the guidance document itself will not supply the
required level of detail to confirm a satisfactory solution.

Chapter 2 – Pre Contract Award Guidance: This chapter is intended for use
before the formal award of the main part of the research contract in order to
gauge the level of CIS involvement required (and help identify any ‘red flag’
issues) early in the life of the project. Depending on the necessary level of CIS
involvement identified, the Agency may wish to assign a strategy analyst and
project architect to guide the contractor through the project. This will almost
certainly be the case for any software to be installed on Agency systems.

Chapter 3 - Post Contract Award Guidance: This chapter forms the main
part of the guidance and will steer contractors towards ‘good practice’ and
facilitate early and informed discussions with CIS (where software is being
developed for installation on Agency systems). The scope of the chapter is
similar to the topics covered in section 2.2 of this report (understanding CIS
requirements). Tables and decision trees are used to help present the topics.

Chapter 4 - Implementation Planning Guidance: This short chapter provides
guidance for the preparation for implementation, for example, covering the need
for support and maintenance (note that the activities of support, maintenance
and training are not covered by the guidance).

2.4 Review of the Guidance

As stated in section 2.1, an early version of the guidance document was
reviewed by CIS and by the following selected members of the anticipated user
community:

• David Fortune (Wallingford Software)
• Chris Whitlow (EdenVale Modelling Services)
• Rob Lamb (JBA)
• Matt Fry (Wallingford HydroSolutions)

14

All reviewers were positive about the need for the guidance and agreed with the
general approach taken in the draft document. The contribution to the
development of the guidance made by the reviewers is gratefully
acknowledged. The specific feedback from the reviewers is summarised in the
table below (Table 2.2 for the research contractor comments and Table 2.3 for
CIS comments). As noted in the ‘response’ column of the tables, nearly all of
the suggestions made by the reviewers have been implemented in the version
of the guidance contained in FD2121/TR2. In some instances it was decided to
not implement the suggestions in the guidance and where appropriate these
issues are discussed in Chapter 4 – Conclusions and Recommendations.

Table 2.2 Research contractor comments and responses
Reviewers Comment (on draft) Response
Users will need access to the CIS document
“Enterprise Architecture: Technical Reference
Model”.

CIS will need to make this available to research
contractors.

Concerns that ‘forcing’ all software developed
for use on Agency systems to be compliant
may result in ‘inappropriate’ solutions or
‘bypassing’ of procedures.

Guidance has been altered to stress the
importance of early and ongoing discussions
with CIS so that the most appropriate solution
architecture can be agreed.

Concerns that application of the guidance will
increase the cost of some R&D projects.

There may be increases in the initial contract
cost of some R&D projects but there are
expected to significant benefits such as easier
take-up of research outputs and lower ‘whole
life’ costs.

Concerns that application of the guidance, and
particularly necessary discussions with CIS,
will impact on the programme for projects.

Guidance has been altered to recommend that
time for discussions and agreement is built into
the programme.

Concerns that using a ‘thin client browser
based’ solution (the CIS preference) will
present a step backwards in functionality and
usability.

The guidance states the preference for a
browser based architecture but acknowledges
that an alternative architecture may be more
appropriate if there is strong justification –
dialog with CIS is recommended.

Recommendation that the guidance should
acknowledge the gradual take-up of research
outputs within software systems and the need
to ‘think ahead’.

Guidance has been updated to make this
recommendation.

Recommendation that the guidance should
encourage CIS to take non-Agency software
users into account and to encourage Agency
and non-Agency users to use the same
software.

CIS already do take the whole project needs
into account. Use of the guidance document
will facilitate the understanding of the full
project requirements and the relative
importance of Agency and non-Agency
deployment.

Recommendation that .NET applications
should be more fully addressed (and
supported) by the guidance and by the
“Enterprise Architecture: Technical Reference
Model”.

This is an issue for CIS to consider further.
The guidance has been updated to say that
.NET applications may be acceptable with
appropriate justification.

Recommendation that the guidance should
encourage process staff and end-users to be

Whilst this is very good advice, it is considered
outside of the scope of the guidance and

15

Reviewers Comment (on draft) Response
involved in the development phase. should be covered through other aspects of the

R&D project.
There needs to be a mechanism to ensure that
the guidance is readily available, promoted and
used.

The guidance will be available through the
Defra web site and R&D project managers
should be encouraged to ensure it is applied.

Training, support, maintenance and upgrades
are not adequately covered by the guidance.

Minor updates were made to the guidance to
partially cover these topics – however full
coverage was considered outside the scope as
the guidance is intended to cover only the
development phase.

Presentation and ease-of-use of the draft
guidance should be improved.

The guidance was fully reformatted and areas
for recording project information were made
more distinct.

The guidance should state who to contact in
CIS.

Names of CIS contacts have not been included
in the guidance but job titles have been
included.

Recommendation that the section on
discouragement of proprietary data formats be
changed to reflect the appropriate use of some
de facto “standard” (but not fully open) file
formats, e.g. GIS systems formats.

Guidance updated as suggested.

Recommendation to include mentioning the
possibility of CITRIX-type access as an
alternative to the preferred thin client browser
based interface.

Guidance updated as suggested.

Removal of ‘Data formats in use’ topic and
addition of items on ‘end user type’ and
‘security implications’ in the pre contract award
guidance section.

Guidance updated as suggested.

Recommendation to include a ‘question’ on the
use of coding standards.

Guidance updated as suggested.

Concern that predicting network bandwidth and
processor usage is very difficult.

Agree – comment added to guidance
acknowledging this but recommending that
some information is provided as it is useful to
CIS

Comment that it is too restrictive if software is
not allowed to read and write to its own format
files (provided they are not used by any other
programs).

The guidance encourages the use of open (not
proprietary) data formats such as XML even for
data storage that no other programs are
expected to use.

Concern over the potential negative
implications of the requirement to produce all
R&D software in Java.

Guidance updated to stress the need for strong
justification if Java is not to be used.

Concern over the application security
requirements in that they may enable
unlicensed copying of software.

Guidance not altered. Specific concerns will
need to be discussed with CIS during the
project.

Concerns over the details of the software
deployment process (installations being able to
provide later versions of Windows system DLLs
and concerns that developers will not have the

Guidance not altered. Specific detailed
concerns will need to be discussed with CIS
during the project.

16

Reviewers Comment (on draft) Response
precise Windows build that the Agency use).
Concern that XML will not necessarily provide
the expected benefits when used for many data
sets used in flood risk management. Issues
identified include the need for well thought out
schemas, inappropriateness of the tree
structure of XML for multidimensional data
sets, lack of random access to XML data and
the verbosity of XML (leading to potentially very
large files). HDF5 may be more appropriate for
standard for many data sets.

Guidance not altered. Specific concerns will
need to be discussed with CIS during the
project.

Miscellaneous suggested minor changes to the
text of the draft guidance.

Implemented where appropriate.

Table 2.3 CIS comments and responses
CIS Comment (on draft) Response
The document needs to concentrate on
ensuring the correct level of on-going
engagement between the Contractor and CIS
with the Guidance as a key part of the toolkit.
The Enterprise Architecture is constantly
evolving so projects will be at higher risk of
non-compliance on delivery if the Guidance is
taken in isolation.

Guidance revised to give more emphasis to
ongoing engagement and the evolving nature
of Enterprise Architecture

The report should conform to the
documentation standard.

Document revised to conform to Defra R&D
formats.

The report refers to specific products in the
Enterprise Architecture (e.g. Technical
Reference Model) – these should be treated as
part of the overall guidance given by the
Enterprise Architecture products. For example,
the guiding principles of the IT Strategy and
Enterprise Architecture are not mentioned but
should be used from the outset to assess
compliance.

It should also be recognised that the Enterprise
Architecture will constantly evolve and change
– therefore, it is important to note in this report
that contractors will need to acquire the latest
version when embarking on a project.

Both points have been added to the “How to
use this document” section

The report should highlight that the guidance
provided does not constitute a full list of
questions regarding the proposed solution
architecture.

If the project will deliver software that will be

This has now been clearly stated in “The
purpose of this document” section

This is covered in the new “Engaging with CIS”
section.

17

CIS Comment (on draft) Response
deployed within the Environment Agency, it will
be necessary to enter into a dialogue with CIS,
via the Project Architect, to fully review and
understand what compliance to the Enterprise
Architecture specifically means to each project.

The engagement model (in particular with the
CIS project manager and project architect)
should be agreed and defined in this
document. It is important that this aspect of
engaging with CIS, as part of the overall
engagement, is understood by the contractors.
It is suggested that as projects pass the Idea
and Proposition stages of the Improvement
Cycle, the key contact is a Strategy Analyst
(currently Stuart Pomeroy). A CIS project
manager and project architect will be assigned
to each project, where necessary.

This is covered in the new “Engaging with CIS”
section although staff names are not used to
facilitate ‘future proofing’.

The document (section 3.2 onwards) allows
assessment of specific aspects of architecture
at a point in time – e.g. section 3.3 server
processor utilisation communicated to CIS.

Will this questionnaire be used: (a) as an
instrument to kick off the dialogue between the
contractor and CIS regarding Enterprise
Architecture compliance? or (b) is it expected
to maintain this document (e.g. reflect server
processor utilisation communication to CIS
completed?). If so, at what agreed point in
lifecycle is it deemed “completed” and “signed
off”?

It is recommended that option a) will be
adopted. The outcome of those discussions
should be reflected in the normal project
documentation (e.g. requirements specification
or solution architecture) and be subject to
normal sign-off.

Option (a) is recommended and this has been
reflected with a paragraph near the beginning
of section 3 to emphasise this.

Are the workflow diagrams intended to visually
represent the relationships between the various
individual questions? If so, it would be helpful if
the questions were numbered and referred to
in the workflow boxes.

There is no direct correlation and so numbering
has not been added.

The report includes specific items from the
Enterprise Architecture knowledge base (e.g.
appendices A, B & C in draft version). Since
these items, along with the rest of the
Enterprise Architecture, is subject to continual
review and change, it would be better to

Guidance changed as suggested so that
references are quoted.

18

CIS Comment (on draft) Response
reference external documents that will be
maintained.
Appendix D (in draft version) refers to some
particular documents within our Enterprise
Architecture – this is not a complete list.
There are also other relevant guidance
documents (e.g. overarching principles,
information architecture principles etc.) which
will be relevant for contract suppliers.

It should be made clear that the relevant and
up-to-date documentation will be available
through engagement with the CIS (especially
Project Architect).

Guidance updated as suggested (Appendix A
and emphasised elsewhere).

How does the workflow diagram relate to the
Environment Agency “Innovation Cycle”? To
avoid confusion, it is important to map onto the
overall process and ensure the steps and
terminology map consistently.

Guidance updated to include “Innovation Cycle
figure in the new “Engaging with CIS” section,
which will give the research contractor an idea
of where the various stages of the development
fit in.

How does the workflow diagram relate to CIS
“V” life-cycle model for system development? It
is important to ensure consistency with
terminology and map the steps/products within
this process since stage checks are tied to this
process. (In particular, test strategy and
subsequent testing and user acceptance prior
to system implementation will be relevant.)
The V model is a useful tool even for small
projects as a simple checklist. For larger
projects it helps increase the probability of
success.

Guidance updated to include the V-Model
development cycle diagram.

Chapter 1: The contractor steps (“white” boxes)
refer to processes which will need to be
defined and agreed. Will this level of detail be
produced as part of the FD2121 project?
(Note: some of these process steps will need to
incorporate and/or link with existing
processes.)

It is intended that the FD2121 guidance will
provide the contractor with an introduction to
the tasks and processes that are likely to be
involved and the flow of these. Any further
definition of process will be undertaken as a
project specific task and will be guided by the
project architect.

Has the engagement model been discussed or
described? This will determine how CIS (in
particular a project architect) is appointed and
his/her remit.

Guidance updated with new “Engaging with
CIS” section. Note that the Agency R&D
project manager/project executive will need to
define the CIS involvement and, as the
guidance is aimed at the contractor, we have
not been prescriptive in this Agency-internal
area.

Chapter 2: The table highlights some useful
aspects of detailed development that would
need to be reviewed from an Enterprise
Architecture compliance perspective. It will

Attention has been drawn to this in the
preamble (Chapter 1).

19

CIS Comment (on draft) Response
seed the right sort of thinking and discussions.

However, it should not be considered as “full
and complete” since there will be project
specific items which will need to be considered
on a case-by-case basis.
Chapter 2: There are no considerations given
to security – is that intended? The aspects of
security should cover system access by
internal/external/standalone users (from
intranet, Web etc.) as well as information
security from data sensitivity perspective.

Although these may be covered as specific
considerations on the project – it would be
useful to seed the notion of “thinking security”.

Guidance updated as suggested to include an
item in the Chapter 2 table on security.

Section 3.6: Suggest re-title the heading as
Application Architectural Compliance

Guidance updated as suggested.

Section 3.7: As part of the list of justifiable
reasons for exceptions, it mentions “skills not
readily available in the organisation”.
What are the implications of this to the
Environment Agency?
Questions should encourage consideration for
“total cost of ownership” and “essential
business requirements” for the Environment
Agency?

Guidance updated to remove “skills not
available” from the list. Section 3.7 changed to
emphasise “total cost of ownership” and
“essential business requirements”.

Section 3.9: There is mention of the Data
Protection Act. However, there are other
aspects of regulatory and legal compliance –
the guidance is given by the Information
Management Unit (IMU) via the
Project/Enterprise Architect.

Guidance updated to include this comment.

Section 3.10: A paragraph on User Acceptance
Testing should be included to complete the
Testing programme.

Guidance updated as suggested.

Section 3.10: The functional specification
should include a Test Strategy where any
software is to be installed on Agency PCs.
This should adopt the current principles, which
are available on the Agency Easinet site and
can be provided by the project architect

Guidance updated in Section 3.10 to include
this requirement.

2.5 Trial Applications of the Guidance

In order to help develop the Guidance and demonstrate its use, it has been
applied to three trial applications: the GLIM-CLIM rainfall generator, MDSF2 and
the NFFS Triton Adapter. These represent examples of classes of software

20

ranging from background university R&D (rainfall generator), through projects
focussing on delivery of new methods to Agency and consultant staff (MDSF2),
to specific commercial modelling software development for Agency systems
(NFFS Triton Adapter).

Appendix A sections A1 to A3 contain extracts from the R&D Technical Report
FD2121/TR2 ‘R&D Software Development Projects – Guidance for Research
Contractors’ partially completed for the three trial applications. The ‘highlighted’
cells in the tables contain the example information entered for the trial
applications. Note that general figures and supplementary information
contained in the guidance document have been removed to save space. To
assist in cross referencing, the section numbering used in the appendix is
consistent to that used in the guidance document.

It is important to note that these are not intended to be ‘approved’ examples
which, if followed, would be acceptable to CIS – rather they show the type of
information that is likely to be required to facilitate informed discussions with
CIS.

21

3 RASP Family System Architecture

3.1 Introduction

The RASP (Risk Assessment for System Planning) family of decision support
tools has been described in the report ‘Scoping the development and
implementation of flood and coastal RASP models’ (SCO50065/SR1, 2007).
The scoping report identified a range of RASP-based bespoke decision-specific
tools which, although targeted at different FCERM business functions, share
common data and modules. The requirements and methods for the RASP
family of tools continue to be developed and currently are not sufficiently well
defined to enable an appropriate conceptual/logical architecture for the RASP
family to be fully identified. However useful steps towards an appropriate
architecture can be made via an architectural review of ongoing RASP-related
projects (NaFRA, MDSF2, RACE, PAMS and CRUE) to identify common
modules and appropriate enabling technologies. Section 3.2 below provides an
overview of the RASP-related projects and lists selected functional and non-
functional requirements of the software tools expected to be delivered by these
projects. Section 3.3 identifies commonalities and provides recommendations
for aspects of their software architecture informed by software guidance
described in Chapter 2 of this report.

3.2 Overview of RASP Family Functionality

The report ‘Scoping the development and implementation of flood and coastal
RASP models’ (SCO50065/SR1, 2007) is a key document both in terms of
explaining why RASP-based tools are essential for the Agency’s business and
in identifying future development requirements for RASP tools and methods. It
is strongly recommended that the reader studies the scoping report before
reading this chapter. However the scoping report does not (and was not
intended to) provide detail on the required functionality (in software terms) of the
RASP family of tools. The requirements are likely to evolve and become clearer
as Environment Agency Policy and Process develop and as Science (R&D)
develops and proves new techniques.

In order to start the process of identifying potential software commonalities
within the RASP family a review has been undertaken of a sample of RASP
related initiatives which are representative of:

• RASP-related tools in current use (NaFRA)
• RASP-related tools under development (MDSF2, RACE and PAMS)
• RASP-related initiatives about to commence (CRUE)

These RASP-related initiatives are introduced below and Table 3.1 identifies
commonalities in functional and non-functional requirements. (Note that due to
constraints on availability of information, budget and programme the
classification of requirements contained in Table 3.1 should be considered as
preliminary - it will require significant further work before it could be used for
software design.)

22

NaFRA (National Flood Risk Assessment) - a self contained single “model” that
implements RASP concepts to use or assess, at the national scale, selected
source terms, defence performance, spreading of floodwater on floodplains and
calculate selected risk metrics (including direct economic damage).

MDSF2 (Modelling and Decision Support Framework). MDSF2 is currently
under development and will provide a desktop system for quantifying economic
and social impacts of flooding for present and future scenarios with a range of
flood management options. It is targeted at strategic planning (e.g. catchment
flood management plans) but scale is not prescribed and therefore it can be
used at a range of levels. MDSF2 builds on the first version of MDSF to
incorporate new and improved risk-based methods implementing RASP
concepts.

RACE (Risk Assessment of Coastal Erosion, together with Making Space for
Water project HA4b - Risk Mapping Coastal Erosion) – application of the RACE
probabilistic methodology to identify coastal erosion hazards for England and
Wales. The project will include the generation of national hazard and risk data
sets (through a bespoke software tool) and will facilitate local studies through a
desktop tool. The relationship between these two broad requirements is similar
to the roles NaFRA and MDSF2 take for flood impacts (i.e. national scale
results and a separate tool for local studies).

PAMS (Performance-based Asset Management) – a programme of work to
provide a system for assessing the whole life cycle of flood defence systems
and provide an advanced method for decision making in terms of asset
maintenance, renewal and new capital projects. The programme of work
includes the development of RASP-based systems analysis tools with a user
interface primarily designed for use by Environment Agency asset management
staff.

CRUE component: “Effectiveness of non-structural flood risk measures” – a
European collaborative research project which will develop and demonstrate an
approach to simulating and assessing the long term effect of non-structural
measures and their interactions, including land use planning, insurance,
damage prevention, preparedness (e.g. early warning systems) and changed
building practices (e.g. the use of stilts or bunds).

Table 3.1 Preliminary requirements list for selected RASP-related tools

Relevance for RASP-Related Tools: Selected Requirements
NaFRA MDSF2 RACE PAMS CRUE

Functional Requirements
General file and project management
Scenario management
Input and manage loading conditions
Flexible GIS-type processing capabilities
Fragility curve management
Point asset performance analysis
Breach size representation ?

23

Relevance for RASP-Related Tools: Selected Requirements
NaFRA MDSF2 RACE PAMS CRUE

Overtopping calculations ?
System failure states analysis ?
Flood spreading capability ?
Coastal erosion hazard analysis
Coastal erosion risk calculation
Represent structural responses
Represent non-structural responses
Receptor data management ? ?
Economic impact calculations (annual
damages)

 ?

Environmental impact calculations
Social impact calculations
Risk to life calculations

planned

Calculation defence contribution to risk
Manage cost of responses
Benefit-cost calculation
MCA project appraisal calculations

Non-Functional Requirements
Flexible user interface ?
Run on Agency systems ?
‘Fast’ run time (e.g. < 10 minutes)
3rd-party software independence important ? ? ?
Required to be ‘open system’ ? ? ? ?

3.3 Recommendations for RASP Architecture

Where RASP-related applications are being developed for potential use by the
Environment Agency then it is strongly recommended that the software
architecture complies with the FD2121 guidance ‘R&D software development
projects – Guidance for research contractors’. Aspects of the RASP family
architecture are described in this section under the following headings:

• logical component architecture (logical divisions of processing
responsibility between blocks of code) – section 3.3.1

• physical deployment architecture (where components might be installed,
e.g. database servers and client PCs) - section 3.3.2

• miscellaneous architectural/design aspects – section 3.3.3

As requirements and methods continue to evolve it will be important to review
architectural aspects and maintain an on-going dialogue with CIS and other
Agency/Defra managers to facilitate take up of the software outputs.

3.3.1 Logical Component Architecture

Table 3.1 provides a preliminary analysis of commonality of requirements within
the selected RASP-related tools. A simplistic interpretation of Table 3.1 would
be that if there is more than one ‘tick mark’ on a row then that particular

24

requirement is common and therefore should be implemented through a
common module shared between the tools. Unfortunately this approach will not
necessarily result in the most appropriate architecture. For example, while all
tools will require general file and project management functions (e.g. opening
and saving single files or collections of files) it is unlikely to be efficient to use a
common module. It is more appropriate to analyse ‘commonality’ under the
following categories:

• Common input data
• Common algorithms (equations and methods)
• Common software modules (e.g. shared dll’s)

Table 3.2 provides a preliminary analysis of the functional requirements from
Table 3.1 analysed in terms of these categories of commonality.

In the table a strong (mandatory) level of compliance with commonality is
indicated by two ticks. Where there are probable benefits from commonality
one tick is used. However, wherever there is commonality in algorithms then
the presumption is that common software modules should be used – departures
from this approach should only be allowed where there are strong reasons and
with the agreement of the project board.

Table 3.2 Preliminary commonality assessment for selected RASP-related
tools

Recommended level of commonality Selected
Requirements Data Algorithms Software Comments
General file and
project management

 - see
comment

Probably not appropriate to share
code for this functionality (but there
should be a common ‘look and
feel’).

Scenario
management

 A common ‘language’ (data model)
for scenario components is
recommended.

Input and manage
loading conditions

 Use of common input formats
(XML?) is recommended.

Flexible GIS-type
processing
capabilities

 Common software modules should
be used where available.

Fragility curve
management

 Common data formats and
manipulation tools are
recommended.

Point asset
performance analysis

 MDSF2 and PAMS should share
common data, algorithms and
software modules.

Breach size
representation

 ? Currently implemented ‘algorithms’
are very simple and do not warrant
shared software.

Overtopping
calculations

 Common data formats and
equations are recommended.

25

Recommended level of commonality Selected
Requirements Data Algorithms Software Comments
System failure states
analysis

 More analysis required to confirm
there is a benefit in sharing a
software module.

Flood spreading
capability

 Shared internal rapid flood
spreading module(s) strongly
recommended. To be implemented
such that alternatives and/or
enhancements can also easily be
implemented. ‘External’ (e.g.
commercial flood modelling
software) software must also be
able to be used.

Coastal erosion
hazard analysis

? ? Currently only relevant to
RACE/HA4b.

Coastal erosion risk
calculation

 Use RACE/HA4b erosion contours
combined with common impact
calculators. Likely to reuse some of
the economic impact module.

Represent structural
responses

 ? More detailed analysis needed to
understand how the tools will
represent structural responses.
Many structural responses may be
modelled outside the RASP tool.

Represent non-
structural responses

 Methods still need to be developed
– they should be developed to
enable use of shared date,
algorithms and software modules.

Receptor data
management

 Receptor data (e.g. property data)
must be shared. Algorithms for
‘adjusting’ data (e.g. ‘correcting’
floor areas) should be shared.

Economic impact
calculations (annual
damages)

 A shared module for direct property
damages is strongly recommended.
As algorithms for other economic
impacts are developed and proven
then they should also be shared.

Environmental
impact calculations

 As algorithms are developed and
proven over time then the resultant
software modules should also be
shared.

Social impact
calculations

 As algorithms are developed and
proven over time then the resultant
software modules should also be
shared.

Risk to life
calculations

 As algorithms are developed and
proven over time then the resultant
software modules should also be
shared.

26

Recommended level of commonality Selected
Requirements Data Algorithms Software Comments
Calculation defence
contribution to risk

 More analysis required to
understand if there is a benefit in
sharing a software module.

Manage cost data

? ? ?

Benefit-cost
calculation

? ? ?

MCA project
appraisal
calculations

? ? ?

Commonality recommendation will
require review as requirements
evolve.

The expectation is that there will be
a single common appraisal module
(for use with all tools).

Table 3.2 shows that there are many functional requirements which can share
common data and common algorithms - and much of this is already happening
with RASP-related tools such as NaFRA, MDSF2 and PAMS. There is also
potential to share common software modules for most of the requirement items.
The benefits of sharing common software modules are strongly affected by the
‘granularity’ of the modules and the non-functional requirements concerning
processing speed and degree of user intervention. In addition, shared modules
need to be suitably designed so that the functionality required by all ‘users’ of
the module can be provided directly (or by building on inherited features).
Significant further work would be required to fully identify and specify the
requirements of the appropriate common modules. From a cursory analysis of
Table 3.2, the functional requirements that are the strongest candidates for
development as common modules are:

• Rapid flood spreading module(s) (which use DEM data and inflow
volumes to estimate flood depths). Over the next few years there are
expected to be significant improvements in rapid flood spreading
methods (eg from FRMRC2) these improvements and/or alternative
approaches must be able to be ‘plugged in’ to the RASP family in the
future without rewriting of the code which ‘holds’ the modules. Thus the
initial implementation must use a generic interface not constrained by
artefacts of the conceptualisation of the method.

• Economic impact calculation module
• Environmental impact module
• Social/’risk to life’ impact module
• Other modules classified with two ticks in Table 3.2

There may be substantial benefits in the generation of a general probabilistic
flood risk engine which combines many of the smaller core RASP modules
(such as failure state analysis, overtopping calculations and defence
contribution to risk). Further analysis would be required to determining the
optimum ‘granularity’ of the shared engine components and this is
recommended to facilitate the vision of shared components outlined in Figure
3.1.

27

Figure 3.1 RASP family software tools sharing the RASP engine and
common data

A further aspect of logical architecture is the separation of the software
application into discrete layers covering:

• User interface (which provides the user interface to the application logic)
• Application logic (which is further componentised into a range of discrete

modules such as those described earlier in this section)
• Data access layer (which manage the transfer of data from/to the

databases)
• Databases (to store the project data)

It is recommended that RASP-related tools use the n-tier logical architecture
introduced above (separate user interface, application logic, data access and
database layers) as this is compliant with Environment Agency CIS
requirements and will promote software sustainability.

3.3.2 Physical deployment architecture

The physical deployment architecture describes where components might be
installed (i.e. on one or more items of hardware such as database servers or
desktop PCs). It is considered not appropriate to make generic
recommendations for the physical deployment architecture for the RASP family
as this will depend on the specific requirements of the system. For example, for
NaFRA the processing speed is a priority issue and therefore it is designed for

28

deployment across multiple processing servers, whereas MDSF2 needs to be
capable to run on a single high specification PC in a consultant’s office. If the n-
tier logical architecture outlined above is implemented then this will facilitate a
flexible physical deployment.

3.3.3 Miscellaneous Architectural/Design Aspects

Data transfer. RASP-related systems may, in the future, directly link with data
sources (such as NFCDD) to provide their input data although in the short term
it is expected that data links to other systems will not be dynamic (and may
consist of exchange of data contained on CDs, DVDs, hard drives or over the
internet). No recommendation is made here on the form of data transfer.
Perhaps of more importance is to ‘add value’ to data by returning improved data
to Agency enterprise databases following processing by RASP-related tools.
Again there are a number of means for transferring this data back and no
recommendations on the software aspects of this are made here.

Third-party applications. Reliance on third-party applications (such as GIS
systems) should be kept to a minimum. Where links to third-party applications
are appropriate then it is recommended that priority is given to applications that
are already approved for use by the Agency and / or those anticipated to be in
use at the commencement of / for the duration of application use (and where
suitable licensing arrangements already exist).

Use of proprietary data formats. The use of proprietary data formats are
discouraged as they are a hurdle to open and sustainable systems. It is
recommended that XML is used wherever possible. Where use of XML would
be unmanageable (e.g. large GIS datasets) then ‘industry standard’ formats
should be used. No new proprietary data formats should be developed.

Browser-based thin client interface. It is recommended that preference is
given to the use of browser-based (thin client) user interfaces for RASP-related
tools. Only where the use of a browser-based interface is shown to not meet
the project requirements should a rich client interface be considered. In this
case it is recommended that the system is designed so that application logic
can be accessed by either a browser-based interface or rich client interface
(with reduced functionality for the browser-based interface).

Development language. The Agency preference is for development in Java.
Development in other languages (such as C++ or C#) may be permitted if there
is a strong business case. At the time of writing, there is a large code base of
mature, tested RASP code already written in C# and a decision is pending on
whether this can be used (probably with a Java wrapper) or whether it needs to
be rewritten in Java.

Data models. The preliminary assessment of common modules described in
section 3.3.1 has provided one approach at identifying component architecture.
A related approach would be to undertake a data modelling exercise leading to
formal definitions of a common data model for the RASP family of tools. Such a
data model would seek to describe the data structure found in flood risk

29

analysis data sets and computations. Such a data model could provide a solid
foundation for further definition of the RASP family architecture.

3.3.4 Open Systems and IPR

It is recommended that RASP-related tools are developed as open systems (a
restricted open system definition is used here: a software system where the
interface specifications of its components are fully defined and fully available to
the Agency and its contractors).

In addition, it is recommended that source code and IPR in RASP-related tools
is either owned by the Environment Agency or made freely available to the
Environment Agency, its contractors and professional partners.

A further requirement is that full technical documentation is made available of
the methods implemented in RASP-related tools. These requirements are
necessary to help achieve the Agency objective of facilitating competition for
innovation and value, and support/updating of the various applications within
the RASP family. An important component of the documentation should be the
use of ‘pseudo code’ to provide a structured overview for the key calculations
and methods used in the code (without actually requiring someone to
understand memory allocations, numeric solutions, peculiarities of individual
programming languages etc.)

30

4 Conclusions and Recommendations

4.1 Conclusions

For the software products which are delivered by FCERM R&D projects to be
readily useable by the Agency and its consultants, it is important that the
software adheres to relevant software standards. The primary source of
relevant standards appropriate for software to be used by the Agency is the
substantial CIS document ‘Enterprise Architecture: Technical Reference Model’.
Guidance material, based on the Technical Reference Model, has been
developed by this project and is available in the R&D Technical Report
FD2121/TR2 ‘R&D Software Development Projects – Guidance for Research
Contractors’. In addition to the objective of guiding the R&D contractor towards
producing conforming software, the guidance documentation is also designed to
foster early informed discussions between the R&D contractor and CIS.

The development of the FD2121 guidance has been informed by discussions
with CIS and through feedback on initial drafts by selected R&D contractors.
Trial applications of the guidance have demonstrated that full compliance with
Technical Reference Model standards may be lead to conflicts with other
project requirements. Where these conflicts occur it is important that there is
dialogue between the research contractor and the Agency (CIS, Science and
user representatives) and that decisions are made based on business cases
and whole life costs.

The second component of the project was to review the software modularity of
the RASP family of decision support tools and identify common modules and
certain aspects of enabling software architecture. The RASP family of decision
support tools has been described in the report ‘Scoping the development and
implementation of flood and coastal RASP models’ (Science Report
SCO50065/SR1, 2007).

The scoping report covers the background to the RASP method and makes
recommendations for RASP-related research and development. It does not,
however, provide sufficient detail of functional requirements to enable a
definitive identification of common modules. Nevertheless, useful steps towards
an appropriate architecture have been made in the present report from a review
of current and ongoing RASP-related projects and through application of the
FD2121 guidance. The review has shown that the tools are being designed to
share common data and some common computational modules. Further action
is required in the areas of defining requirements, analysing commonalities and
further specification of software architecture to better achieve the objectives of
facilitating the efficient production of sustainable and appropriate software tools
and to facilitate competition. As requirements and methods continue to evolve it
will be important to review architectural aspects and maintain an on-going
dialogue with CIS and other Agency/Defra managers to facilitate take up of the
software outputs.

The findings of project are compliant with the emerging Flood Risk Management
Modelling Strategy (Environment Agency) and will support implementation of

31

the strategy by providing appropriate guidance on the Agency’s preferred
enterprise architecture and through supporting the modularisation of the RASP
family of tools.

4.2 Recommendations

The following recommendations are made.

1. The FD2121 guidance is disseminated to those involved in ongoing
FCERM R&D projects which will deliver software outputs. The potential
impact of the guidance on the projects should be assessed and decisions
made on whether to implement the guidance.

2. Upcoming FCERM R&D projects which will deliver software outputs
should include the requirement to implement the guidance in the project
specification.

3. Where appropriate, project specifications should identify the type of
software that is being produced (e.g. whether the software must run on
the Agency system).

4. During project initiation the FD2121 ‘pre contract award’ assessment
should be undertaken to help identify the likely involvement of CIS in the
project. Resourcing for CIS involvement (e.g. strategy analyst, project
architect) will need to be built into the project.

5. CIS need to clarify and streamline procedures to enable CIS documents
(such as the Technical Reference Model) to be readily passed to R&D
contractors.

6. The CIS requirement to use Java for R&D software development is of
concern to many R&D contractors. It is recommended that further
consideration is given to included .NET languages (such as C#) in the list
of acceptable standards and the guidance updated.

7. General recommendations for R&D projects which deliver software
include: the need to facilitate end user involvement in the development
stage, the need for the project to provide complete software
documentation and the need for early consideration of future
custodianship, support, maintenance and user training. It would be
beneficial to sharing of knowledge if the minimum contents of the
documentation was standardised, for example to include well
documented ‘pseudo code’ (i.e. provide a structured overview for the key
calculations and methods used in the code without actually requiring
someone to understand memory allocations, numeric solutions,
peculiarities of individual programming languages etc.)

8. Further analysis is required to better define an appropriate architecture
for RASP family outputs. This could be addressed through production of
a formal functional and non-functional requirements definition for
expected RASP-related products, combined with an initial outline

32

software design and a formal assessment of appropriate commonality
(as outlined in Table 3.2). An alternative is to build on the modularity
concepts outlined in this report, either using the source-pathway-receptor
modules of a general probabilistic engine (Figure 3.1) or the ‘strong
candidate modules’ listed in section 3.3.1 (including flood spreading,
economic impact, environmental impact and social/risk to life impact).
Currently (January 2007) the Agency is moving forward on this
recommendation via the MDSF2 project (SC050051).

9. Data modelling leading to a formal common data model for the RASP
family of tools should be considered as a useful component of a RASP
family architecture definition. Such a data model would seek to describe
the data structure found in RASP flood risk analysis data sets and
computations. Newcastle University have outlined an architecture
intended to be general across "computational decision support" systems,
in particular tools for conducting risk analysis in the face of uncertainty.
The core of this architecture consists of a data model and language,
together called ‘Reframe’. Reframe is designed explicitly to facilitate
transparency (and thereby also competition) and collaboration in the
definition of individual modules and overall computations. It may be
possible to build on elements of this work, particularly the data model, to
help further develop the RASP family architecture.

33

Appendix A Example Applications of the
Guidance

34

A1 Application to GLIM-CLIM Rainfall
Generator

A1-3.1 General Project Information

Project Ref
Project Title GLIM-CLIM Rainfall Generator
Contact name Robert Bird
Company Halcrow Group Ltd
Tel 01793 812479
Email BirdR@halcrow.com

Target Audience
External contractors (i.e. consultancies undertaking
hydrological analysis for UK and international
projects)

No. of Agency users
(approx) if applicable N/A

Project overview
In software development terms the project will consist of some further development
of existing spatial rainfall modelling software and the development of a user
interface to this software.

The modelling software has been developed by University College London (UCL) in
Fortran and can be compiled for various operating systems (Windows, Unix,
SunOS).

Architectural Diagram
N/A

Other relevant information
The development language choice for the user interface has not yet been finalised.
It is likely to be either Visual Basic or C#, the former because there is existing code
that could be re-used for the pre and post processing of data and the latter because
the target audience will be “Windows based”, the productivity of C# and the skill
base available.

A1-3.2 Agency Software Platforms

Develop software to run harmoniously on existing Agency systems
(hardware/network/software) and non-Agency systems to maximize user
acceptance.

35

Software developed to be run on Agency systems needs to run on the platforms the
Agency already uses (or will have at the time of delivery) and can support (for a
synopsis of Agency platforms, correct at the time of writing see the latest,
“Enterprise Architecture: Technical Reference Model”).
Response Rationale
Will run
Will not run
N/A

[X]
[]
[]

The software will be capable of running on Agency
machines, but it is envisaged the software will mainly be
used by external consultants.

Software to be run on non-Agency machines should be written to maximize uptake
of the software by these 3rd parties, i.e. write the software to run on the most
commonly used platforms.
Response Rationale
Implemented
Not Implemented
N/A

[X]
[]
[]

The software will be written to work on the external
consultant machines, which will mean PCs running a
version of Windows (will cater for Windows 2000 and
above).

Software to be run on both Agency machines and non-Agency machines should
marry the requirements of the two in the best way possible. This issue must be
discussed with CIS.

Response Rationale
Plan in place
Not considered
Agreed with CIS
N/A

[]
[]
[]

[X]

The software is not intended to be run on Agency
machines.

If the timescale of development is very short the information in this document
and the current “Enterprise Architecture: Technical Reference Model” can be
considered up to date and should be your main reference. On larger timescale
developments (over 6 months) discuss possible changing Agency platforms
with CIS.

A1-3.3 Hardware Platforms

Software developed to be run on Agency machines must be developed to run on
existing hardware platforms at the Agency.

Response Rationale
Will run
Will not run
N/A

[]
[]

[X]

Not envisaged to run on Agency machines, but could be.

Any network bandwidth usage by the software must be communicated to CIS,
including details of average and burst activity (see Appendix D.4 for further
information).
Response Rationale

36

Communicated
Not
communicated
N/A

[]
[]

[X]

Software not to be run on Agency machines. Also, it is
generally envisaged that the datasets will be held on user
machines.

(Server) Processor usage should also be communicated to CIS (see Appendix D.4
for further information).
Response Rationale
Communicated
Not
communicated
N/A

[]
[]

[X]

Processor usage will be light when using the interface
generally and high when running a simulation. The
processor usage will take place on the desktop PC and
so will not have an adverse effect on server performance.

The need for any peripherals will need to be agreed with CIS.

Response Rationale
Agreed with CIS
No agreement
N/A

[]
[]

[X]

None required.

A1-3.4 Database Usage

Develop “Enterprise” database based software to run on the Agency standard
database. Develop “Desktop database” software in a way that doesn’t require
client installs and is not locked to a proprietary format.

Database based solutions must run on the standard Agency database (currently
Oracle) if the program is to be run at the Agency. Databases other than the
standard enterprise database will not be allowed onto Agency systems.
Response Rationale
Will run
Will not run
N/A

[]
[]

[X]

This decision will be taken as part of the project. The
developer currently has existing software based on
Microsoft Access (DSF) which has proved useful for
in-house work with the existing Fortran program. The
best way forward will be investigated, which may
mean that Oracle is supported or that the current DSF
code can be reused. Budgetary constraints will be a
key factor in this decision.

If the developed software is to be run at both Agency and non-Agency sites then
if possible develop for the standard Agency database. If this is not possible or
will harm uptake by the non-Agency users then write database agnostic
software which will run on both the standard Agency databases and those in use
by the non-Agency entities (a recommended approach in general).

Response Rationale
Agency standard
DB Agnostic

[]
[]

As above – final decision still to be taken

37

Other
N/A

[X]
[]

Where software is to be developed for use at the Agency and “enterprise”
databases are inappropriate for the task, desktop/embedded databases may be
required. In these cases native access from within the application would be
required, with no application or client installs on Agency desktop PCs. It is also
required that output to a non-proprietary format (e.g. XML) is easily available
from the database.

Response Rationale
Will comply
Will not comply
N/A

[]
[]

[X]

As above – final decision still to be taken

If the software is only to run at non-Agency sites, it is still preferable that it
works with the Agency standard database.

A1-3.5 Non Database Data

Do not create new proprietary data formats; store ancillary data, such as
program settings, using XML file formats (see Appendix D.1 for more details).

Software developed should not write to / read from its own proprietary format; in
general XML should be used for new formats. The only justification for creating
proprietary formats in extreme cases might be due to performance issues, but
this would have to be agreed with CIS beforehand. Where binary formats are
proposed the Agency would expect to receive documentation as to the format of
these and also expect some ability to handle/produce XML input/output. It is
acceptable to use the de facto “standard” file formats that the Agency itself uses
for things such as GIS systems.
Response Rationale
No proprietary
formats
Proprietary formats
N/A

[X]

[]
[]

It is intended that any new functionality introduced
into the interface will adhere to this. The only
“proprietary formats” in use are the text files used
as input to the Fortran modelling program. Any
formats introduced when writing the new interface
software are likely to be XML based, other than if
performance is an issue.

Where ancillary data (program settings etc.) is required to be stored you are
expected to use XML as the format for this data.

Response Rationale
XML used
XML NOT used
N/A

[X]
[]
[]

XML will be used for this.

38

A1-3.6 Application Architectural Compliance

Develop applications using an n-Tier, server side logic, thin client browser
based approach, wherever this can satisfy the project requirements

New software developments to run on Agency machines should follow the
Agency standard application architecture - an n-Tier approach, utilising a
“business logic” server side in conjunction with a browser based thin client.
Where this approach cannot satisfy the project requirements you will need to
agree an alternate strategy with CIS, strong justification will be required (see
Appendix D.6 for one possible alternative - Citrix).
Response Rationale
Will comply
Will not comply
N/A

[]
[X]
[]

As the software is not targeted at an internal Agency
audience and given that this approach would not suit
the majority of potential users, this is not the intended
approach.

Software developed to run both at non-Agency sites and on Agency machines
should follow the above Agency application architecture wherever possible. If
this is not practical for non-Agency entities then a dual interface approach (using
the same basic code base) is preferred, e.g. a rich client application at non-
Agency sites and standard Agency application architecture for Agency
machines.
Response Rationale
Agency standard
Dual interface
Other
N/A

[]
[]
[]

[X]

Not intended for Agency use

The Agency would still prefer software which will not run on Agency machines
to follow the Agency application architecture, but this is not mandatory given
appropriate justification.

Where updating an existing architecturally non-compliant program, the
Agency would encourage a migration to a compliant state.

A1-3.7 Development Tools & Languages

Write software using Agency standard development tools.

The applicable development tool standards can be found in the latest,
“Enterprise Architecture: Technical Reference Model” Agency document. In
line with the application architecture requirements, the Agency standards for
Enterprise scale applications is component based, n-Tier, using an application
server.

When considering the development tool guidelines below, indicate where the
following items are part of the justification for exceptions (research contractors
should bear in mind that the overriding concerns for the Agency are total cost

39

of ownership of the software over its lifetime and whether the software
satisfies essential business requirements):

• The program will use an existing code base written in another language
(consider migration and/or making “callable” from Agency standard
tools)

• Cost implications of implementing and/or developing using Agency
standard tools (e.g. software license costs)

• Negative impact on functionality of software due to use of standard
tools (e.g. non-interoperability with 3rd party libraries)

• Performance considerations
• Impracticality of and resistance to installation at non Agency sites
• Agency standard tools will not deliver software satisfying project

requirements

One of these in isolation may not be justification for exceptions, so
communicate all that apply as well as any other mitigating circumstances you
believe to be relevant.

Ideally, all new development should take place in the standard development language
(currently Java). Any deviation from this requires justification. If the software is not to
run on Agency machines then justification will be easier.
Response Rationale
Will comply
Will not comply
N/A

[]
[X]
[]

It is highly unlikely we will comply in terms of using
Java. The modelling software has been written by
UCL and is a “finished product”, tested and verified
to a good academic level.

The user interface may reuse elements of existing
software (written in Visual Basic based) or otherwise
is likely to be written in C# which can give us
productivity gains, a rich Windows UI and access to
a large developer skill base in the language.

Where the exact CIS standards cannot be met, you should provide justification. Note
that an architecturally compliant solution (i.e. thin client browser based) is preferable
to a strict adherence to specific tools.
Response Rationale
Standards fully met
Architectural
compliance
Other
N/A

[]
[]

[X]
[]

As above.

Where the Agency standard development language cannot satisfy the project
requirements, for example modelling applications, then the use of a different
language could be justified – the Agency standard for modelling applications is
currently C++.
Response Rationale

40

Agency standard
Non standard
N/A

[]
[X]
[]

As above.

Where a non-compliant existing application is being updated, the Agency
would prefer a migration to standard development tools.

Where there is the need for some development in “legacy” languages the
Agency requires that this is done in a sustainable way – as an example
Fortran functionality could be “wrapped in Java” using XML, controlled by XML
inputs/outputs or put into a documented DLL callable by other languages
(preference in that order) to mitigate the risk to the Agency of developing in
that language. If this cannot be done for any reason then a discussion with
CIS will be required.

At the time of writing, the Agency policy regarding applications written for the
.NET framework is to allow “commercial off the shelf” packages to be
installed, but not bespoke development to be undertaken (see Appendix D.2
for more information). Justification for bespoke .NET development must
address total cost of ownership issues as well as technical issues to achieve
essential business requirements.

A1-3.8 Modular, Sustainable Development

Develop modular, easily extensible and reusable software to obtain maximum
value from the Agency’s investment.

Contractors should develop their software in as modular a fashion as possible, using
loosely coupled functions/methods probably via Object Oriented development.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Will do this for all new code, where appropriate.

Develop software so that user interfaces are decoupled from program logic as much
as possible.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Again, will do this for all new code, where
appropriate.

The use of design patterns and other modern programming techniques should be
considered. Use techniques such as inheritance and encapsulation appropriately
and to their best advantage.
Response Rationale
Done/will do
Not appropriate

[X]
[]

As above.

41

Not considered
N/A

[]
[]

Developed software may contain functionality that itself will be useful for reuse in
other software perhaps by another contractor or the Agency itself. You should make
this as easy to achieve as possible and should endeavour to make it possible
regardless of development environment.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

As above.

Achieve maximum interoperability by following the CIS standards along with various
methods such as creating “wrappers” around software, separating code into
libraries/componentisation, open communication and data exchange via SOAP and
XML.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Will do this where appropriate and where it fits in
with budgetary constraints. We will look at creating a
“wrapper” around the
Fortran functionality.

External interfaces and available functionality should be clearly documented.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Will do where applicable when developing the new
interface.

You should consider the use of coding standards and provide details and/or
references to these below.
We will use Halcrow coding standards.

A1-3.9 Security (User & Data)

Only implement application level security where absolutely necessary.

It is recommended developers refrain from implementing application level
security unless absolutely necessary, especially software which is to be run
on Agency systems. Any application that does this will need to be agreed with
CIS. Acceptable reasons for implementing application level security are to
limit access to applications where there is high processor usage which needs
to be managed and where use needs to be limited to authorised users. Any
securing of the system should be communicated (e.g. “the program will use
standard Windows XP security”).

42

It should be borne in mind that a browser based application running on
Agency systems is potentially accessible to all users whether valid or not -
without any user level security.

If the software is to store any information pertinent to the Data Protection Act,
inform CIS of what data is to be stored and how it is to be stored. This is very
important. However, please note, there are other aspects of regulatory and
legal compliance – guidance should be sought and will be given by the
Information Management Unit (IMU) via the CIS Project/Enterprise Architect.

A recommendation when developing (server based) software is to have a
management front end accessible through a browser client to perform
administration.

The Agency expects that applications will not be locked down on the desktop
for any reason after installation (for example, some applications require you to
connect to the internet to verify the license).

It is important to explain the nature of the data that will be used or created by
the program, along with how that data will be managed within the system.

Comments
It is worth noting that the rainfall data used in the simulations typically has licensing
issues. The data is normally licensed to consultants by the Agency (or sometimes
the Met Office) for use on a specific project only.

A1-3.10 Testing and Acceptance

Plan testing from the beginning of the project and follow the Agency testing
model.

The Agency asks that contractors use the “V” model of testing (see Figure 6,
“IT Project Delivery Process (V-Model)” below for an understanding of how
this fits into the Agency development lifecycle).

Agreeing the testing and acceptance strategy will form part of the agreement
when a new project is begun and should be done before any test cases are
written. It is important to identify the contractual significance of acceptance
within the strategy. Testing and acceptance is a conversation with CIS. Where
software is to be installed on Agency PCs, the functional specification should
include a test strategy. This should adopt the current Agency principles, which
will be provided by the project architect.

The contractor testing process should provide evidence of the tests run and
results. In particular the Agency would like to see unit and system integration
tests.

43

Testing methods other than the ‘V’ model would need justification and to form
part of the project agreement. Software updates need to go through proper
pre-production testing and the testing plan should be run against them.

Where software is to be installed on Agency machines, CIS need to be given
ample notice in order for them to set aside time to test the application. The
complexity of the application and the type of architecture will have a bearing
on the time and effort required.

The contractor is responsible for (or will be involved in) the following areas of
testing:

A1-3.10.1 Unit Testing

The objective of Unit Testing is to ensure that reliable program units are
produced that meet their requirements and to identify errors in program logic.
Typically, the developer who coded the unit will design and run a series of
tests to verify that the unit meets its requirements. Each unit should be tested
individually and in isolation by exercising its inputs and observing its outputs
or behaviour. There are widely used tools (unit testing frameworks) available
to assist in this task such as JUnit for Java and NUnit for .NET languages.

A1-3.10.2 Integration testing

Components of code are assembled into sub-systems and linked to form a
complete system. The objective is to test the relationship and links between
individual units of code.

A1-3.10.3 System Testing (including FAT – Factory Acceptance
Testing)

System Testing incorporates both functional and non functional testing.
Functional system testing is focused on testing the system based on what it is
supposed to do as defined in the functional requirements. Non functional
system testing looks at those aspects that are important yet not directly
related to what functions the system performs. Non-functional requirements
are just as important as functional requirements and in all cases it is vital that
these are tested prior to the launch of the system. It includes aspects like
performance and security which are considered vital for today’s web based
applications.

A1-3.10.3 System Test Process (involvement by 3rd Party Suppliers)

To ensure quality, prior to delivery to the Agency, the 3rd Party supplier will be
required to demonstrate compliance by hosting Acceptance Testing on their
site, this will in effect be a pre-User Acceptance Test known by the Agency as
Factory Acceptance Testing (FAT). This process will have defined, agreed
acceptance criteria and will be subject to a Test Readiness Review Meeting
prior to deployment on any Agency infrastructure. In addition, the 3rd party
supplier will assist in the installation of the new application on the agency site.

44

This will be done as part of the Acceptance Testing stage and will again
require the 3rd party supplier to show compliance on the Agency’s
infrastructure.

A1-3.10.4 Site Acceptance Testing (SAT)

SAT will be used as a quality check to ensure that when the application is
installed onto the Agency infrastructure that it functions correctly with no
critical errors. The 3rd Party supplier will be on site to assist and ensure that
the application, specifically the server code (where applicable), can be
deployed correctly. The 3rd Party supplier will then conduct a subset of their
System Tests to prove that the application can function without any critical
errors. If possible, at this stage the opportunity should be taken for the 3rd
party to forward any test assets such as test scripts that may be re-usable by
the Agency.

A1-3.10.5 User Acceptance Testing (UAT)

UAT will take place on the Agency infrastructure and will confirm that the
system meets its business requirements.

When dealing with 3rd parties, the Test Management Process should also be
carefully considered. The Agency Test Manager/Coordinator will decide if the
project should produce a combined Test Strategy taking into account all
testing stages or if separate strategies should be produced, one by the
Agency and one by the 3rd party. This will also apply to Test plans and
approach documents.

Comments
As the software is not intended for installation at the Agency, it is expected the
developer will follow its own testing procedures in the development of the software
(much of which ties in with the Agency guidelines above).

A1-4 Implementation Planning

Follow the Agency deployment procedures, determine who is responsible for
support and enable a smooth implementation with no “nasty surprises”.

A1-4.1 Software Deployment

For software to be installed on Agency machines, the contractor must follow
the Agency standards for software deployment/install – see Appendix C for
more detail.

Suppliers of proposed systems must provide documented support for the
application integration task to the standardised Agency desktop.

45

Where desktop software is to be installed on standard Agency desktops, CIS
expect the contractor to detail the impact on the workstation, including the
following:

• Assurance that the installation/application makes no changes to or
 deletions of protected operating system files.
• A list of dependent components (e.g. Active X controls, DLLs, drivers
 etc.)
• A list of Dynamic Link Library (DLL) and Application Programming
 Interface (API) calls.
• A list of known changes to registry keys

Comments
As the software is not planned for Agency installation we will not generally be releasing
this information to consultants as a matter of course, but can provide it on request.

A1-4.2 Transition to Support and Maintenance

Before implementation, the decision needs to be made as to who performs the
support function – the supplier, CIS or both. In general software which is not
to be run on Agency machines will be the responsibility of the original
contractor.

The service level required for the support must be set as must any need for
business lead users, database administrators etc. Further to this, developers
will need to complete the Agency document: “Service Support Requirements
Brief” for projects that are to be handed over to the Agency. It is preferred this
takes place as early as possible so that CIS can plan adequately ahead and
spot any potential problems. Once the software goes into production, the
document contents will generally be translated into a ‘Service Level
Agreement’.

Specific supporting documents may need to be provided (such as Entity
Relationship diagrams) as agreed with the Agency Project Manager.

Code storage and version control of the software is the responsibility of the
contractor. However, where the intellectual property of the software belongs to
the Agency then the source code of distributed production versions should be
submitted to the Agency library.

Who will support the application?

Response Rationale
Agency CIS
Contractor
Other
Not yet known

[]
[X]
[]
[]

Likely to be sold as a COTS (“commercial off the
shelf”) program.

46

A1-4.4 Storage Requirements

As part of planning for implementation on Agency machines, physical storage
requirements must be evaluated and communicated to CIS. The principal
areas to consider are:

• Frequency of backup – how often the program data needs to be
backed up

• Recovery time – the speed of turnaround required if the program/data
needs to be restored from backup

• Amount of storage required – how much storage the program and data
will require now and how much will it grow in the future.

Storage requirements

Frequency of backup required Will depend on frequency of use of program
Recovery time Will depend on frequency of use of program
Amount of storage required
(now)

Measured in GB, allow 2GB min per project

Amount of storage required
(future)

Measured in GB, allow 2GB min per project

47

A2 Application to MDSF2

Note that standard text from the Guidance document has been deleted from
the following example.

A2-3.1 General Project Information

Project Ref MDSF 2
Project Title Modelling Decision Support Framework 2 (MDSF2)
Contact name Jon Wicks
Company Halcrow Group Limited
Tel 01793 812479
Email wicksjm@halcrow.com

Target Audience
Agency staff concerned primarily with CFMPs, SMPs,
strategy and scheme studies and the consultants
engaged upon these tasks on behalf of the Agency.

No. of Agency users
(approx) if applicable

75 requiring GIS functionality etc., running processes
(estimate)
150 “viewers” – viewing output from processes
(estimate)

Project overview
The overall objective of the project is to extend and improve the existing, first
version of MDSF (MDSF1) to incorporate new and improved risk-based methods in
order to provide a better and more consistent decision support tool for both the
CFMP and SMP programmes, strategies and scheme appraisal.

The Modelling and Decision Support Framework (MDSF) was developed in 2001 to
provide a tool for quantifying economic and social impacts of flooding at catchment
scale for present day conditions, future scenarios and with flood management
options. The present version of MDSF, however, uses only a simplified
representation of the role of defences and does not properly take account of
defence performance in the analysis of risks and their management. This is a
particularly crucial point in the context of understanding and managing the actual
risk. MDSF2 will incorporate the RASP (Risk Assessment for Strategic Planning)
approach that has been developed to take into account the performance of flood
defences. The project will also address a number of software issues such as GIS
platform which have been obstacles to widespread uptake within the Agency.

Main objectives
To improve the present version of MDSF by incorporating an appropriate level of the
RASP methodology to allow MDSF to assess the performance of defences better
and thus support a full range of catchment, estuary and coastal flood planning and
option appraisal tasks in an efficient, consistent and transparent way.

48

Build upon the present MDSF and the work of the RASP methods to produce an
item of software under an approved QA system which can be efficiently used by
operating authorities and their consultants.

To put in links to other strategic systems and projects such as NFCDD, Flood
Mapping Programme and PAMS, and to consider future links to similar systems in
land and water quality.

To facilitate the inclusion (but not to include under this phase) the option appraisal of
non-structural options such as rural and urban land management, flood event
management and flood loss management thus laying a foundation for a tool which
can support the Agency’s policy of integrated flood risk management.

To ensure that software development is as far as possible ‘future-proofed’ by
reducing to a realistic minimum its dependence on specific third party software; and
to ensure that the software is modular, so that individual modules of MDSF2 can be
re-used in other applications in the RASP family and vice versa.

49

Architectural Diagram

50

Other relevant information
The first version of MDSF is not scalable to the requirements for MDSF 2 and as
such large parts of the software will be written from scratch, although a significant
existing (RASP) code base provides a good starting point for risk based elements.
MDSF1 will act as a prototype and lessons learned will be incorporated into MDSF2.

A2-3.2 Agency Software Platforms

Develop software to run harmoniously on existing Agency systems
(hardware/network/software) and non-Agency systems to maximize user
acceptance.

Software developed to be run on Agency systems needs to run on the platforms the
Agency already uses (or will have at the time of delivery) and can support (for a
synopsis of Agency platforms, correct at the time of writing see the latest,
“Enterprise Architecture: Technical Reference Model”).
Response Rationale
Will run
Will not run
N/A

[X]
[]
[]

Software will be designed to run on current Agency
platforms.

Software to be run on non-Agency machines should be written to maximize uptake
of the software by these 3rd parties, i.e. write the software to run on the most
commonly used platforms.
Response Rationale
Implemented
Not Implemented
N/A

[X]
[]
[]

We will write the software to best fit with the target
audience (primarily Windows 2000/XP).

Software to be run on both Agency machines and non-Agency machines should
marry the requirements of the two in the best way possible. This issue must be
discussed with CIS.

Response Rationale
Plan in place
Not considered
Agreed with CIS
N/A

[X]
[]
[]
[]

Still to be agreed with CIS. Our proposed solution is
designed to maximise take-up of the software by non
Agency entities, one of the key project aims. Other
sections of the document explain some of the steps taken
to achieve this, e.g. a database agnostic approach

A2-3.3 Hardware Platforms

Software developed to be run on Agency machines must be developed to run on
existing hardware platforms at the Agency.

Response Rationale

51

Will run
Will not run
N/A

[X]
[]
[]

Will be designed from the beginning to do so.

Any network bandwidth usage by the software must be communicated to CIS,
including details of average and burst activity (see Appendix D.4 for further
information).
Response Rationale
Communicated
Not
communicated
N/A

[]
[X]

[]

Full details not known at this stage. It is expected at this
stage that general network traffic will be quite low, whilst
there are 100MB+ files that will need to be accessed and
processed at times.

(Server) Processor usage should also be communicated to CIS (see Appendix D.4
for further information).
Response Rationale
Communicated
Not
communicated
N/A

[]
[X]

[]

Unknown at this stage. However, there will be periods of
high processor usage – long (e.g. hour long runs)
calculations. The various deployment options will allow for
the main processing to take place on server machines if
required (not recommended due to cost of providing burst
CPU) or on client PCs (the advantage being that this is
inherently self scaling).

It is not a core requirement of the project, but we would
hope to be able to use distributed processing for long
runs (e.g. using Condor), with the system “degrading
gracefully” if clustering is not available.

The need for any peripherals will need to be agreed with CIS.

Response Rationale
Agreed with CIS
No agreement
N/A

[]
[]

[X]

None required.

A2-3.4 Database Usage

Develop “Enterprise” database based software to run on the Agency standard
database. Develop “Desktop database” software in a way that doesn’t require
client installs and is not locked to a proprietary format.

Database based solutions must run on the standard Agency database (currently
Oracle) if the program is to be run at the Agency. Databases other than the
standard enterprise database will not be allowed onto Agency systems.

Response Rationale
Will run
Will not run

[X]
[]

Will be designed from the beginning to work with
Oracle 9i v2 and also the current version (10).

52

N/A []

If the developed software is to be run at both Agency and non-Agency sites then
if possible develop for the standard Agency database. If this is not possible or
will harm uptake by the non-Agency users then write database agnostic
software which will run on both the standard Agency databases and those in use
by the non-Agency entities (a recommended approach in general).

Response Rationale
Agency standard
DB Agnostic
Other
N/A

[]
[X]
[]
[]

Software is to run at non-Agency sites and Oracle
cannot be enforced as the database of choice at
these sites. To maximise uptake it is proposed that
SQL Server (Full + MSDE) is supported at a minimum
as well as Oracle.

Where software is to be developed for use at the Agency and “enterprise”
databases are inappropriate for the task, desktop/embedded databases may be
required. In these cases native access from within the application would be
required, with no application or client installs on Agency desktop PCs. It is also
required that output to a non-proprietary format (e.g. XML) is easily available
from the database.

Response Rationale
Will comply
Will not comply
N/A

[X]
[]
[]

Although MDSF2 will run ‘standalone’ using an
optionally installed database engine this will not be
required for Agency deployment.

If the software is only to run at non-Agency sites, it is still preferable that it
works with the Agency standard database.

A2-3.5 Non Database Data

Do not create new proprietary data formats; store ancillary data, such as
program settings, using XML file formats (see Appendix D.1 for more details).

Software developed should not write to / read from its own proprietary format; in
general XML should be used for new formats. The only justification for creating
proprietary formats in extreme cases might be due to performance issues, but
this would have to be agreed with CIS beforehand. Where binary formats are
proposed the Agency would expect to receive documentation as to the format of
these and also expect some ability to handle/produce XML input/output. It is
acceptable to use the de facto “standard” file formats that the Agency itself uses
for things such as GIS systems.
Response Rationale
No proprietary
formats
Proprietary formats
N/A

[X]

[]
[]

We will adopt XML as our standard format
for storing MDSF2-generated data such as
workflow descriptions. Industry standard native
formats (such as ESRI GIS formats) will be used
where necessary.

53

Where ancillary data (program settings etc.) is required to be stored you are
expected to use XML as the format for this data.

Response Rationale
XML used
XML NOT used
N/A

[X]
[]
[]

MDSF2-generated ancillary data such as program
settings will be stored using XML.

A2-3.6 Application Architectural Compliance

Develop applications using an n-Tier, server side logic, thin client browser
based approach, wherever this can satisfy the project requirements

New software developments to run on Agency machines should follow the
Agency standard application architecture - an n-Tier approach, utilising a
“business logic” server side in conjunction with a browser based thin client.
Where this approach cannot satisfy the project requirements you will need to
agree an alternate strategy with CIS, strong justification will be required (see
Appendix D.6 for one possible alternative - Citrix).
Response Rationale
Will comply
Will not comply
N/A

[]
[X]
[]

Unfortunately, it is anticipated that these standards
would severely harm the project. A browser based
approach will not be able to deliver the integration
with GIS tools that is required by the program. We are
however planning to develop an n-Tier logical
architecture with a variety of different deployment
options.

The deployment would be flexible. It could consist of
a data access layer on one machine, the actual
database on another, the “business logic” on another
and the client on another. At the other extreme it
would be capable of deployment onto a single
machine at its most simple level.

This would satisfy the need for both corporate,
distributed style deployment and single standalone
users.

Software developed to run both at non-Agency sites and on Agency machines
should follow the above Agency application architecture wherever possible. If
this is not practical for non-Agency entities then a dual interface approach (using
the same basic code base) is preferred, e.g. a rich client application at non-
Agency sites and standard Agency application architecture for Agency
machines.
Response Rationale
Agency standard
Dual interface
Other

[]
[]

[X]

This has been considered, but cannot be justified
primarily due to cost issues and time constraints. A
dual interface is technically feasible due to the

54

N/A [] adoption of a clear n-tier logical architecture, but as
stated earlier, the browser based approach is unlikely
to provide the level of interaction with GIS datasets
required, with response times likely to be far too
sluggish.

A2-3.7 Development Tools & Languages

Write software using Agency standard development tools.

Ideally, all new development should take place in the standard development language
(currently Java). Any deviation from this requires justification. If the software is not to
run on Agency machines then justification will be easier.
Response Rationale
Will comply
Will not comply
N/A

[]
[X]
[]

There is already a large code base of mature,
tested, code (RASP) which is written in C# and is
intended to be re-used (no budget to rewrite).

Development is planned to be in C# (using the .NET
framework). Through the .NET framework and its
managed memory model (as with Java), many
performance, reliability and security issues are
handled internally. The use of C# will also make
best use of the skills and tools existing at the
research contactors.

A further contributing issue is that C# skills are
widely available amongst potential research
contractors whereas Java skills are less widely
available.

Where the exact CIS standards cannot be met, you should provide justification. Note
that an architecturally compliant solution (i.e. thin client browser based) is preferable
to a strict adherence to specific tools.
Response Rationale
Standards fully met
Architectural
compliance
Other
N/A

[]
[]

[X]
[]

We will be “architecturally compliant” in terms of an
n-Tier logical architecture, separating out the
business logic and decoupling it from the user
interface etc. We won’t however be fully compliant
due to not developing as a browser based
application.

We will not be able to make use of an application
server such as Weblogic as we need to maximise
the uptake of the software at non Agency sites and
cannot expect them to install this due to
cost/administration/policy issues. If a web user
interface were to be developed at a later stage, it
could sit within such an application server.

55

Where the Agency standard development language cannot satisfy the project
requirements, for example modelling applications, then the use of a different
language could be justified – the Agency standard for modelling applications is
currently C++.
Response Rationale
Agency standard
Non standard
N/A

[]
[X]
[]

As above. Also users (at non Agency sites in
particular) will expect a familiar, “native” Windows
application.

Also, the C# language is similar to Java and
arguably more readable for a Java developer than
C++.

A2-3.8 Modular, Sustainable Development

Develop modular, easily extensible and reusable software to obtain maximum
value from the Agency’s investment.

Contractors should develop their software in as modular a fashion as possible, using
loosely coupled functions/methods probably via Object Oriented development.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

The software will be designed in this way. In addition
it is planned that software components will be
“pluggable”, so that modifications to sub
components will not require core application
changes. New functionality can be added without
opening the core code.

Develop software so that user interfaces are decoupled from program logic as much
as possible.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

This is an integral part of the overall architecture of
the program and the planned “pluggable”
architecture and XML driven workflow will help
deliver this.

The use of design patterns and other modern programming techniques should be
considered. Use techniques such as inheritance and encapsulation appropriately
and to their best advantage.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Design patterns in particular will be used if and
where applicable, in particular the ‘Gang of Four’
patterns. Other modern techniques to be used
include unit testing, and a RUP based process with
UML diagramming.

56

Developed software may contain functionality that itself will be useful for reuse in
other software perhaps by another contractor or the Agency itself. You should make
this as easy to achieve as possible and should endeavour to make it possible
regardless of development environment.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

This will be partially achieved by the separation of
application logic from the user interface. There are
also currently outline plans for a “workflow” design
which would allow developers/power users to “string”
together the blocks of functionality to produce a new
set of processes.

Achieve maximum interoperability by following the CIS standards along with various
methods such as creating “wrappers” around software, separating code into
libraries/componentisation, open communication and data exchange via SOAP and
XML.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Data exchange between modules is currently
planned to take place by both memory (for speed)
and XML for interoperability. Where required for
deployment, components will present SOAP
interfaces. Large datasets (such as GIS data) will
generally be communicated in their native formats to
conserve bandwidth (due to XML ‘bloat’ etc.).

External interfaces and available functionality should be clearly documented.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

This will be done as a matter of course (through both
separate documentation and internal code
documentation tools such as XMLDoc/JavaDoc as
appropriate).

You should consider the use of coding standards and provide details and/or
references to these below.
We will use Halcrow coding standards.

A2-3.9 Security (User & Data)

Only implement application level security where absolutely necessary.

Comments
There will be no data storage requirements pertinent to the Data Protection Act. It is
unlikely that security will need to be implemented beyond restricted access to
associated network storage locations and databases to Agency users. Access to the
system will be via existing rights management systems, i.e. we will not create our
own – access will be secured using standard Windows security.

57

Some data may have licensing restrictions and MDSF2 will support the recording of
such information. This will generally take the form of the Agency granting licenses to
use its data to external consultants.

A2-3.10 Testing and Acceptance

Plan testing from the beginning of the project and follow the Agency testing
model.

Comments
It is currently planned to follow the testing guidelines fully.

A2-4 Implementation Planning

Follow the Agency deployment procedures, determine who is responsible for
support and enable a smooth implementation with no “nasty surprises”.

A2-4.1 Software Deployment

For software to be installed on Agency machines, the contractor must follow
the Agency standards for software deployment/install – see Appendix C for
more detail.

Suppliers of proposed systems must provide documented support for the
application integration task to the standardised Agency desktop.

Comments
We will supply all the required information. We currently plan that the install will be an
XCopy type installation (facilitated by the .NET framework) – that is, a matter of copying
the program files to a folder on the user’s machine – easily accomplished with the
Agency standard deployment tools. This obviously depends on the prerequisite that the
.NET framework is installed (which can also be automated with the Agency standard
deployment tools).

A2-4.2 Transition to Support and Maintenance

Who will support the application?

Response Rationale
Agency CIS
Contractor
Other
Not yet known

[]
[]
[]

[X]

It is probable that Agency CIS will provide first line
support to their users and an agreement on this
and support of non Agency users will be needed.
An SLA will be required to cover non Agency use
and 2nd line support to Agency CIS.

58

A2-4.3 Storage Requirements

Storage requirements
Frequency of backup required Weekly (Backup should be to Agency standards

for project related data).
Recovery time Same day (Recovery should be to Agency

standards for project related data).
Amount of storage required
(now)

Unknown, very dependent on no. of users and
datasets used. However, the amount of storage
required will be very significant if the Agency
decides to store the data returned by consultants
on the live system (this is not done with the
current MDSF1 system)

Amount of storage required
(future)

Unknown, very dependent on no. of users and
datasets used, but will grow. Again it is also
dependent on what is done with the data
returned by consultants.

59

A3 Application to NFFS (TRITON Model
Adapter)

Note that standard text from the Guidance document has been deleted from
the following example.

A3-3.1 General Project Information

Project Ref NFFS
Project Title TRITON Module Adapter
Contact name n/a
Company n/a
Tel
Email

Target Audience Agency staff using the TRITON model within the
NFFS system

No. of Agency users
(approx) if applicable Forecasting staff in many regions

Project overview
For background information on the NFFS and the TRITON module see Appendix B.

The TRITON module, which is addressed in this case study, started life as a fully
interactive stand-alone program running on a number of PCs in various Agency
regions. It was developed long before the idea of NFFS evolved so when the
requirement to implement TRITON as a module in NFFS manifested itself, there
was a considerable amount of work involved to convert the software into something
which could be integrated into the NFFS. The software needed to be upgraded to
comply with the NFFS requirements as summarized in Appendix B.

60

Architectural Diagram

Other relevant information

A3-3.2 Agency Software Platforms

Develop software to run harmoniously on existing Agency systems
(hardware/network/software) and non-Agency systems to maximize user
acceptance.

Software developed to be run on Agency systems needs to run on the platforms the
Agency already uses (or will have at the time of delivery) and can support (for a
synopsis of Agency platforms, correct at the time of writing see the latest,
“Enterprise Architecture: Technical Reference Model”).
Response Rationale
Will run
Will not run
N/A

[X]
[]
[]

Needs to run on the NFFS Forecasting Shell Servers

Software to be run on non-Agency machines should be written to maximize uptake
of the software by these 3rd parties, i.e. write the software to run on the most
commonly used platforms.
Response Rationale
Implemented
Not Implemented
N/A

[]
[]
[X]

TRITON
adapter is one
example of this
module/adapter

61

Software to be run on both Agency machines and non-Agency machines should
marry the requirements of the two in the best way possible. This issue must be
discussed with CIS.

Response Rationale
Plan in place
Not considered
Agreed with CIS
N/A

[]
[]
[]
[X]

A3-3.3 Hardware Platforms

Software developed to be run on Agency machines must be developed to run on
existing hardware platforms at the Agency.

Response Rationale
Will run
Will not run
N/A

[X]
[]
[]

Needs to run on the NFFS Forecasting Shell Servers

Available disk space is not an issue on these systems. A
module would not expect to store e.g. historic forecasts
on the server, for example. These are stored within
NFFS.

Any network bandwidth usage by the software must be communicated to CIS,
including details of average and burst activity (see Appendix D.4 for further
information).
Response Rationale
Communicated
Not
communicated
N/A

[]
[X]

[]

The modular approach is such that NFFS delivers all the
raw data the module needs, the module manipulates this
data and produces forecasts which are finally retrieved by
NFFS which also tidies up the inputs and outputs by
removing them from the server. The result is that there
are two bursts of network use which coincide with the
delivery of module inputs and the retrieval of the module
outputs. NFFS will be configured to only deliver exactly
what the module needs, thereby avoiding unnecessary
traffic. It is the responsibility of the module to ensure that
it only produces the outputs which NFFS requires. Note
that the use of binary data transfer, which is described in
Appendix B, can dramatically reduce the amount of data
being transferred, whilst still adhering to the NFFS
standards. The module should not directly cause any
network traffic to be generated and it should only access
module data which is local to the directory where the
module is installed. It should have no need whatsoever to
communicate directly with "the outside world".

(Server) Processor usage should also be communicated to CIS (see Appendix D.4
for further information).
Response Rationale

62

Communicated
Not
communicated
N/A

[]
[X]

[]

As with the network traffic, the module will be called on a
one-off basis by NFFS, usually under a schedule but
occasionally because of a NFFS user request. In both
cases, the module is invoked by NFFS and runs to
completion and must exit in a controlled fashion. The
amount of CPU use depends on how much processing
needs to be done during this run but it is important to
stress that all modules which are integrated into NFFS
are normally inactive and non-interactive, unlike a stand-
alone R&D application which would most likely be running
all the time, possibly waiting for user input via a keyboard
or mouse.

Modules cannot be left running as NFFS waits for them to
complete and then uses completion as a signal to fetch
the results produced.

The need for any peripherals will need to be agreed with CIS.

Response Rationale
Agreed with CIS
No agreement
N/A

[]
[]

[X]

There should be no need for an NFFS module to interface
to any peripherals as all forecasts produced by the
module are returned to NFFS which is the platform from
which users can view, manipulate and output forecasts as
necessary.

A3-3.4 Database Usage

Develop “Enterprise” database based software to run on the Agency standard
database. Develop “Desktop database” software in a way that doesn’t require
client installs and is not locked to a proprietary format.

Database based solutions must run on the standard Agency database (currently
Oracle) if the program is to be run at the Agency. Databases other than the
standard enterprise database will not be allowed onto Agency systems.

Response Rationale
Will run
Will not run
N/A

[]
[]
[X]

A NFFS module should not be a database based
solution for the simple reason that all the data it
needs is delivered to it by NFFS and all the outputs it
produces are retrieved by NFFS. There should never
be a need for a module to store historic input or
output data. Even if a module uses the results of a
previous forecast to initialise the next one, it is not
correct practice to store the previous forecast on the
local Forecasting Shell Server. Instead NFFS will
maintain a "database" of previous forecasts, stored
as BLOBS, and can be configured to deliver exactly
what the module needs.

63

Most NFFS modules will have a local Module data set
which comprises static information. In the case of
TRITON, for example, this includes matrices which
are complex look-up tables. This data is in a format
which is bespoke / convenient to the module and
does not need to conform to NFFS standards.

There is no reason why a local database (e.g. Oracle)
could not be used to store module data if this is
necessary and preferred. The main criteria should be
that as the module data set will need to be
maintained in the event that changes are necessary,
it is important that the changes can be easily made,
the module data set file formats are well documented
and that any off-line programs which are used to
maintain this local data are also documented and
made available to the Agency as part of the module.

If the developed software is to be run at both Agency and non-Agency sites then
if possible develop for the standard Agency database. If this is not possible or
will harm uptake by the non-Agency users then write database agnostic
software which will run on both the standard Agency databases and those in use
by the non-Agency entities (a recommended approach in general).

Response Rationale
Agency standard
DB Agnostic
Other
N/A

[]
[]
[]

[X]

See response above

Where software is to be developed for use at the Agency and “enterprise”
databases are inappropriate for the task, desktop/embedded databases may be
required. In these cases native access from within the application would be
required, with no application or client installs on Agency desktop PCs. It is also
required that output to a non-proprietary format (e.g. XML) is easily available
from the database.

Response Rationale
Will comply
Will not comply
N/A

[]
[]
[X]

See response above

A3-3.5 Non Database Data

Do not create new proprietary data formats; store ancillary data, such as
program settings, using XML file formats (see Appendix D.1 for more details).

64

Software developed should not write to / read from its own proprietary format; in
general XML should be used for new formats. The only justification for creating
proprietary formats in extreme cases might be due to performance issues, but
this would have to be agreed with CIS beforehand. Where binary formats are
proposed the Agency would expect to receive documentation as to the format of
these and also expect some ability to handle/produce XML input/output. It is
acceptable to use the de facto “standard” file formats that the Agency itself uses
for things such as GIS systems.
Response Rationale
No proprietary
formats
Proprietary formats
N/A

[X]

[X]
[]

TRITON will continue to use own data formats but
NFFS PI XML will be used for all data that needs
to be transferred between NFFS and TRITON

Where ancillary data (program settings etc.) is required to be stored you are
expected to use XML as the format for this data.

Response Rationale
XML used
XML NOT used
N/A

[X]
[]
[]

XML used for transfer of data between TRITON
and NFFS

A3-3.6 Application Architectural Compliance

Develop applications using an n-Tier, server side logic, thin client browser
based approach, wherever this can satisfy the project requirements

New software developments to run on Agency machines should follow the
Agency standard application architecture - an n-Tier approach, utilising a
“business logic” server side in conjunction with a browser based thin client.
Where this approach cannot satisfy the project requirements you will need to
agree an alternate strategy with CIS, strong justification will be required (see
Appendix D.6 for one possible alternative - Citrix).
Response Rationale
Will comply
Will not comply
N/A

[]
[]

[X]

This is not really relevant for NFFS modules as the
modules are only one component (part of the
business logic) of the larger n-Tier NFFS system.
The NFFS architecture can loosely be described as
"slim-client" in that it minimises the band-width
requirement by effectively running processes on
distributed systems, making fully use of their
processing power. The main tasks carried out by
NFFS in running a module are pushing and pulling
data from these distributed systems.

Software developed to run both at non-Agency sites and on Agency machines
should follow the above Agency application architecture wherever possible. If
this is not practical for non-Agency entities then a dual interface approach (using
the same basic code base) is preferred, e.g. a rich client application at non-
Agency sites and standard Agency application architecture for Agency

65

machines.

Response Rationale
Agency standard
Dual interface
Other
N/A

[]
[]
[]
[X]

See above

A3-3.7 Development Tools & Languages

Write software using Agency standard development tools.

Ideally, all new development should take place in the standard development language
(currently Java). Any deviation from this requires justification. If the software is not to
run on Agency machines then justification will be easier.
Response Rationale
Will comply
Will not comply
N/A

[]
[]
[]

Information not available

Where the exact CIS standards cannot be met, you should provide justification. Note
that an architecturally compliant solution (i.e. thin client browser based) is preferable
to a strict adherence to specific tools.
Response Rationale
Standards fully met
Architectural
compliance
Other
N/A

[]
[]

[]
[]

Information not available

Where the Agency standard development language cannot satisfy the project
requirements, for example modelling applications, then the use of a different
language could be justified – the Agency standard for modelling applications is
currently C++.
Response Rationale
Agency standard
Non standard
N/A

[]
[]
[]

Information not available

A3-3.8 Modular, Sustainable Development

Develop modular, easily extensible and reusable software to obtain maximum
value from the Agency’s investment.

Contractors should develop their software in as modular a fashion as possible, using
loosely coupled functions/methods probably via Object Oriented development.

66

Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[]
[]
[]
[]

Information not available

Develop software so that user interfaces are decoupled from program logic as much
as possible.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

All NFFS modules are "black-box" and as such have
no user interaction whatsoever. They reside on
servers which are remote and are only run when
called by NFFS. Users do not normally have access
to the servers and should not even need to know
where the module is installed.

They should ideally be produced as console
applications which have no graphical interface, as
this is an overhead which can be avoided.

The use of design patterns and other modern programming techniques should be
considered. Use techniques such as inheritance and encapsulation appropriately
and to their best advantage.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[]
[]
[]
[]

Information not available

Developed software may contain functionality that itself will be useful for reuse in
other software perhaps by another contractor or the Agency itself. You should make
this as easy to achieve as possible and should endeavour to make it possible
regardless of development environment.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[]
[]
[]
[]

Information not available

Achieve maximum interoperability by following the CIS standards along with various
methods such as creating “wrappers” around software, separating code into
libraries/componentisation, open communication and data exchange via SOAP and
XML.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[]
[]
[]
[]

Information not available

67

External interfaces and available functionality should be clearly documented.
Response Rationale
Done/will do
Not appropriate
Not considered
N/A

[X]
[]
[]
[]

Modules will not need to communicate with external
systems to (e.g.) poll for data via telemetry or access
files on other networked servers. They must be self-
contained and only need to use data which is
provided to them by NFFS.

You should consider the use of coding standards and provide details and/or
references to these below.
Information not available

A3-3.9 Security (User & Data)

Only implement application level security where absolutely necessary.

Comments
There will be no data storage requirements pertinent to the Data Protection Act.

The NFFS Modules, as the executable code, resides on systems which are totally
inaccessible by "normal" users. Likewise, NFFS modules will not be browser based.
The "management front end" is actually in this case NFFS as only authorised users
can access NFFS and in turn the supported modules. NFFS keeps a
comprehensive history of use and any un-authorised running of modules would be
noted and could be diagnosed.

Modules should not have any restrictions as to who can activate them, when or how
often they are run. NFFS in fact becomes the single "user" of the module within the
Agency. Any licence issues need to be addressed during procurement.

68

Appendix B NFFS Background Information

69

B1 NFFS High Level Solution Architecture

B1.1 NFFS Logical Model

The high level user requirements (use cases) were analysed and as a result,
a logical model of the system components has been produced. This is
illustrated below in Figure B1.1.

Figure B1.1 NFFS Client Server Logical Design

Figure B1.1 does not prescribe a particular architecture (i.e. the above could
all exist on a single or multiple physical machines). Note that two module
controllers and associated adapters/modules are shown. In fact, there are
likely to be more than this, subject to the constraints of the modules and the
hardware infrastructure. In addition, the above does not preclude the use of a
single system for all regions or independent systems for each Agency region.
For a standalone system the following configuration would be appropriate
(Figure B1.2):

Figure B1.2. NFFS Standalone Configuration

The logical components are briefly described below.

• System Controller/Dispatcher: This component is responsible for
scheduling and dispatching requests to execute module runs and other

70

defined tasks. It maintains feedback on the status of the system
components and any active module runs in progress.

• Central Storage; This facility provides storage for module datasets,

boundary conditions and output (including predefined reports). This
storage facility has expiration conditions. A separate section is
incorporated to provide archiving facility for critical module runs
(Module datasets, boundary conditions, output (including predefined
reports), executables, logbook).

• Data Manipulation Utilities: Utilities to manipulate the large raw

module output files and to generate “slices” and subsets for analysis
and display.

• Data Import/Export Utilities: Utility to allow the import and export of

data files.

• Module Controller: Component to manage the execution and
monitoring of the module. Usually the Modules are instantiated via the
controller using a predefined script or batch file.

• Adapter: Provides a standard published interface between the NFFS

and third party modules. This enables the system to provide the data
in the required format and location that is expected by the third party
modules.

• Module: The executable(s) encapsulating the modelling physics (e.g.

ISIS or TRITON).

• User Interface (thick): Provides the interface through which the user
can:

• Submit requests for module runs.
• Selecting and modify input datasets
• Select and display subsets of module output etc.

• User Interface (thin): Provides the user interface to browse data sets

published on the web server

• Report Publisher (web compatible): Enables generation of reports
according to predefined layout formats in web compatible file formats
(HTML, JPEG, GIF, PNG)1

B1.2 NFFS System Architecture

The NFFS system is based upon a number of independent Java based clients
and processes. Communication and data transfer between the central system
and the “shell servers” as well as the (thick) clients, is based upon the Java
Messaging Service (JMS).

71

The key system entities, the central system, the Shell servers (the numerical
engines) and thick clients, are all decoupled from each other. This ensures
independent and concurrent operation as well as flexibility in selecting their
location (both in terms of servers and sites).

It allows the system to make appropriate use of available network bandwidth.
Data is trickled down to clients (both end user and to the Shell servers)
effectively as background processes, allowing normal operation to take place
concurrently. All data packets are compressed before being packaged within
JMS. Such decoupling also provides resilience as component failure; the
failure of a single Shell server should not effect the operation of others.

In summary, the NFFS architecture provides a controlled runtime framework
for the associated modules. It ensures that Module processes are managed
and that data and module configurations are held within a controlled
environment.

B1.3 Physical mapping of roles in the NFFS

Figure B1.3 provides an overview of the main components within NFFS.

The MasterController (MC) components are the heart of the server. The MC is
responsible for centralized data storage, data synchronisation. The MC
contains a TaskManager which maintains a task list and schedules and
dispatches tasks to shell servers via JMS.

The Operator Client (OC) components hold the GUI components for
presentation. Data is presented from a local data store which, by messaging
with the MC, is continuously synchronised with the central data store.

The FEWS Shell Servers (Shell servers) executes tasks and runs the
numerical models via adaptors. The tasks are run from a local data store
which is synchronised, by messaging with the MC, with the central data store.
Results data and logging are handed back to the central system via JMS.

72

Figure B1.3 Main components within the NFFS architecture

B1.4 Installations

The NFFS consists of three complete installations of the architecture (see
Figure B1.4):

Online system (Leeds)

• Used for operational forecasting
• The “production system”

Online system (Peterborough)

• Same as Leeds
• Both sites are synchronised with each other

Offline system (Leeds)

• Used for testing and calibration, acceptance of new models etc.

Live data feeds from Telemetry and the Met Office are provided by the Data
Integration Hub, which also acts as a distribution mechanism for NFFS
generated forecast time series.

73

Figure B1.4 High level view of the implementation of NFFS within EA

B2 NFFS TRITON Module – Case Study

B2.1 Overview

This section aims to serve as a guide to producing a module which can be
integrated into the National Flood Forecasting System (NFFS), currently being
implemented for the Environment Agency.

It uses an existing module, TRITON, as a case study. This module is currently
part of the live NFFS system and was developed using the guidelines
produced jointly by the EA and Delft Hydraulics. Because there are some key
elements to module functionality which are not used by TRITON, the
document also refers to a second module (PRTF) when discussing these
extra features.

One of the main aims of the NFFS project was to define standards to enable
3rd. party developers to produce modules which could seamlessly be
integrated into the NFFS. The five key requirements for a module are: -

• Ability to receive data from NFFS in a published standard format.
• (Optionally) convert this data into a format which the module can use.
• Manipulate the (converted) data as part of the module process,

producing a set of results (typically this would be a forecast).
• Convert the results back into the published format for NFFS.

74

• Return module diagnostic information back to NFFS.

A module can be considered to be a "black-box" which is invoked by NFFS as
required. NFFS is the custodian of all the input data a module normally
requires and it is configured to deliver this data to a location which can be
accessed by the module. Once this is done, NFFS activates the module and
waits for it to complete, at which point NFFS fetches the output data from the
module, which was placed at another common location.

Modules may have local configuration information and other bespoke data
which forms part of the module data set. A module is configured to perform a
normal (default) set of tasks, using this module configuration. There is no
direct human interaction with a module but there is a mechanism whereby
users can override the default behaviour of the module, using NFFS to specify
the required overrides. NFFS conveys any changes from the default
behaviour via a parameter file encoded in a published format.

Finally, for modules which use the outputs from the previous run to initialise
the next run, NFFS is able to store this information and deliver the required
files to provide a starting State for the module.

B2.2 Module Adapters

The TRITON module performs all 5 tasks listed above, in the order specified.

However, another approach which can be taken is the Module Adapter
method. An adapter is effectively some specialist software which converts
inputs from NFFS into a format which the module can use and then, once the
module has been completed, converts the bespoke format module outputs
back into a format which is supported by NFFS.

An Adapter is really just another process which must be invoked before the
module is run and then after the module has completed. In the case of
TRITON, the data conversion is performed by the same executable as the
module itself - the Adapter forms part of the module.

Either method is supported. It may be that it is not convenient or possible to
modify the module code so a separate task is required to convert the NFFS
data into the format the module expects.

The flow-chart below shows the module-adapter approach.

75

Figure B2.1 - Adapter - Module - Adapter Method

By following the arrows, it can be seen how NFFS exports data in one format,
the Adapter converts this to something that the module can deal with, the
module works on this data and exports results in its own format which are
finally reformatted by the Adapter into NFFS standard.

Figure B2.2 shows the TRITON (no adapter) method where the module is also
the adapter.

Figure B2.2 - Module only Method

B2.3 Data Exchange

Figures B2.1 and B2.2 show the two possible methods whereby data can be
exchanged between NFFS and a module. It is normal for NFFS to place the
required data into a disk location which is within the module scope. Likewise,
NFFS will expect to find the module results (in NFFS format) and the
diagnostic file in a different location, once again within the scope of the
module. This can be thought of as an "inBox" and "OutBox".

The module (or adapter) should be configured to read from the InBox and
write to the OutBox and these should ideally be set up as relative paths to
where the module is installed. Absolute paths should not be used anywhere in

NFFS

Adapter Module

TRITON

NFFS

76

the module - this allows the module to be located on any server, without
having to rely on paths being specifically configured.

For example, the TRITON hierarchy is as follows: -

Figure B2.3 - TRITON folder structure

Before it calls the TRITON module, NFFS performs the following tasks: -

• Empties the InBox and OutBox folders
• Places all the NFFS data required by the module into the InBox
• Places any Parameter data (to override the default behaviour) into the

InBox

NFFS then invokes the TRITON module by running the TRITON executable
which is located in the "TRITON Module" folder.

NFFS waits for the TRITON module to finish. It is very important that a module
completes in a controlled fashion and does not "hang". NFFS will have a fail-
safe time-out which it will use to terminate the process if it has not stopped
after a pre-determined (configurable) time.

Once the module has completed, NFFS then does the following: -

• Copies all the files from the OutBox to NFFS folders for processing
• Uses the information in the diagnostic file to provide feedback on-

screen to the user and store in the NFFS logs.
• Makes the TRITON forecasts available on NFFS.

The TRITON Module uses the OutBox folder to communicate results back to
the calling module (NFFS). NFFS takes responsibility for clearing out this
folder to ensure that no data remains from the previous module run, but for
completeness, the TRITON Module also ensures that there is nothing in the

TRITON Module

InBox

OutBox

Config

Matrices

Forecasting Shell Server folder

77

OutBox before it starts. On completion of a run of the TRITON module, in this
folder there will normally be: -

TRITON_diag.XML
TritonForecasts.XML
TritonForecasts.BIN

In the rare event that the module fails to complete, has insufficient data to
initialise, the configuration is incorrect or expected files are missing, then only
the TRITON_diag.XML file will be present. It will contain a set of log
messages generated by the module, each with a certain severity (from
diagnostic to critical error) which can then be analysed by NFFS and
presented to the end user.

B2.4 NFFS data formats - Published Interface

As detailed in the above sections, it is important to note that NFFS will use a
standard format to deliver data to any module and also expects the module to
standardise on the outputs placed in the OutBox.

The NFFS Published Interface (PI) can be obtained from Delft Hydraulics or
the Environment Agency in PDF format. It can be downloaded from the DH
Web Site.

XML is used as the approved data exchange method. There are 14 XML
schemas which comprise the Published Interface. Whilst at first glance, the PI
can seem somewhat daunting, in reality, most module developers will only
need to use a small sub-set of the 14 schemas.

The most commonly used is the "pi_timeseries" schema. TRITON also uses
"pi_parameters" and "pi_diag". All three of these are covered in this
document, although it is not intended for the reader to use this case study to
learn how to use the PI.

TRITON uses the schemas as follows: -

• pi_timeseries - raw data required by the module, forecasts returned by
the module

• pi_parameters - overrides set up by the user, via NFFS, to instruct the
module to perform something other than the default behaviour.

• pi_diag - a type of report which is returned to NFFS

There can be a large amount of data provided by NFFS to TRITON (or any
module). Whilst XML can be ideal for the exchange of data in a controlled and
safe way, it does have the overhead that the files can be quite large,
considering the relatively small amount of data you may extract from them. In
the same way, the outputs from a module may also be considerable. For
example, one configuration of TRITON results in forecasts being produced for
more than 200 locations and each forecast in turn comprises more than 10

78

parameters. The outcome is that a file which is almost 50 Mb can be
produced.

Whilst this may not necessarily be a problem if the module is only run e.g.
every 12 hours, there may be a penalty to pay in response time if the NFFS
user has asked for a forecast and urgently needs to see the results (perhaps
as the result of a "What If").

Fortunately, the NFFS published interface allows large datasets to be
transferred in binary format, with the key information only being listed in the
pi_timeseries XML. The use of binary is covered later in this document.

B2.5 Data exchange - not Published Interface

Some modules use state updating (i.e. the output from one run is normally
used to initialise the next run). It cannot be assumed that a module will always
be invoked at regular intervals, however desirable that may be. They will be
times when maintenance is being carried out or a server fails and one or more
state runs are not carried out.

As a result, it is not recommended that a module uses any locally stored
dynamic data to initialise.

The preferred method is that at the end of a run, the module returns the
module state, with relevant time-stamps (in bespoke module format if this is
necessary) to NFFS, via the OutBox. NFFS does not actually process this
data (and besides, it may be in bespoke format). Instead, it can be configured
to store the data in an archive for subsequent retrieval as the initial state for
the next run. It can also be used to initialise hindcast runs, where the state to
be used for a one-off run may be from several days ago.

Whilst TRITON does not use this method, a small example may be useful to
explain how NFFS can provide module state data.

Consider a module which runs every 12 hours, at 01:00 and 13:00.

Assume that the first run takes place at 01:00 on October 1, providing a
forecast from 00:00 October 1 to 23:00 on October 2.

As well as returning the forecast to NFFS, the Module would return any data it
would need to initialise the 13:00 run on October 1. This could in fact be the
whole 01:00 forecast or a subset of the data.

NFFS makes the "proper" forecast available to the end users but also stores
away the 00:00 October 1 state.

At 13:00 on October 1, NFFS retrieves the 00:00 October 1 state and places it
in the InBox for the module, along with any (PI) data required by the module.
Once again, the module generates a forecast and a state for 12:00 October 1.

79

In effect, NFFS ends up with a series of states, as well as the forecasts.

Perhaps on October 5th, you decide to rerun the October 1, 12:00 forecast.
NFFS can retrieve the October 1, 00:00 state and provide this to the module,
unless you decide to reset the module, in which case NFFS would not provide
any state information.

B2.6 Module Dataset

As well as the dynamic data provided in the InBox by NFFS, a module will
require other static data to complete the process. This data is normally
referred to as the Module Dataset. There are no limitations on how much of
this data there can be, which (Module) folders you put it in, the format you use
etc. The important point, however, is that the data is static and the intention is
that it is not frequently revised as this goes against the edict that modules
(along with their datasets) should be thoroughly tested off-line before they are
installed in the "Live" NFFS folders.

The same applies to any Dynamic Link Libraries (DLLs) which the module
executable may use - you cannot expect to update these on an ad hoc basis
as there are strict controls over how and why new releases of modules can be
issued.

We can use TRITON as an example to demonstrate a module dataset.
Consider the folder structure from Figure B2.4 and ignore the InBox and
OutBox as they do not form part of the module dataset.

Figure B2.4 - TRITON Module Dataset

TRITON Module

Config

Matrices

Executable files: -

TritonModuleNFFS.exe
WindWave.dll
Overtopping.dll
Mersey.dll
Shingle.dll

Module configuration
files

Complex look-up files
used by the module

80

The Executable files consist of the main EXE file which is called by NFFS
when the module is to be run, combined with some DLLs which are required
by the module.

Note that there are a number of different instances of the TRITON Module (for
different regions of the EA), each of which has some common executable
code (TritonModuleNFFS.exe is the same for all instances) and also some
regional specific DLL code (e.g. Mersey for NW Region and Shingle for
Southern Region).

Likewise, the module configuration files are Regional specific (or really,
installation specific). It may be that the module serves only one specific
purpose, in which case there may only be one set of configuration files. In the
case of TRITON, the configuration files vary from one installation to the next.

The Config folder is mandatory for all instances of the TRITON Module. It
contains a variable number of files, depending on the region. Some files are
present in all cases, others are common to more than one (but not all)
installation / region and finally, there are some files which are unique to a
specific region. TRITON has been designed to use .INI file formats to store
configuration data to make it easy for the files to be maintained. Note that all
of the module configuration data files are read only - they contain information
which drives the module in default mode. Typically this will be about the
forecast locations and data specific to those as well as a list of input data
which is expected from NFFS so a sanity check can be performed.

A more detailed description of the TRITON Module Configuration can be
found in the document "Triton Module Configuration".

For some regions only, the TRITON Module uses Matrices as complex look-
up tables to convert Offshore Wind and Wave conditions to Nearshore
equivalents and Nearshore values into Overtopping. In those installations, the
matrices folder must exist and contain the relevant matrix files.
In summary, the Module Dataset comprises all files (executable and data)
which the module needs to manipulate the input data provided by NFFS,
producing results which are returned to that system.

B2.7 Module input data

NFFS will be configured to place all of the input data required by the module
in a disk location which is easily accessible by the module. This task is
completed before the module is activated. It is the responsibility of the module
to ensure that all the required data is provided and any missing or erroneous
data issues should be reported back to the calling process (NFFS), using the
Diagnostic XML output file.

In some circumstances, depending on what is wrong with the input data, it
may be possible for the module to complete a full or partial run. Even in those
circumstances, it is important that the module reports back to NFFS that there
were problems with the data provided. It is very likely that subsequent runs

81

will have similar problems and it may be able to be fixed by a change to the
NFFS configuration.

As discussed in Sections B2.4 and B2.5, the inputs from NFFS to any module
will conform to the Publish Interface standards and in some circumstances
they may also involve the delivery of state information (the output from a
previous run of the module), which is in a format which is bespoke to the
module. It should be emphasised that the only files which can be transferred
between NFFS and the module which do not meet the PI standards are those
which are not actually read or written by NFFS - they are simply stored in an
archive for future delivery to the module as initialisation data for the next run.

The following sections should also be read in conjunction with the NFFS
Published Interface standards document. These sections only detail the use
of the files within TRITON but should serve as a useful introduction to data
exchange.

B2.7.1 NFFS Time-series data

This type of XML file forms the basis of most of the data transfer into and out
of modules. The XML Schema definition file is called pi_timeseries.xsd.

They are used to transfer time-series data into the module. Note that NFFS
can be configured to place all of the time-series data into a single input file or,
more likely, it will be split into several files.

In the case of TRITON, two XML files are provided.

• TIDE_DATA.XML
• WIND_DATA.XML

The TRITON module needs Astronomic Tide data, Surge forecasts, Wind and
Wave forecasts from a number of locations. The Astronomic and Surge data
is provided in TIDE_DATA.XML and the Wind and Wave forecasts are
delivered to the module in WIND_DATA.XML

It is important to note that the module should not "Hard-code" any input
filenames as this prohibits flexibility. Likewise, it should not expect certain
time-series in particular files.

Instead, it should be programmed to read all of the XML files found in the
InBox and handle what it finds. This is one of the benefits of using XML.

As an example, the TRITON module would still work if the NFFS configuration
was changed to either: -

• Provide all the data in one file
• Split the Tide and Wind data into multiple files
• Put some of the Astro Time series data into WIND_DATA.XML

82

Sample extracts from the TIDE_DATA.XML file are given.

 <?xml version="1.0" encoding="UTF-8" ?>
- <TimeSeries xmlns="http://www.wldelft.nl/fews/PI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://www.wldelft.nl/fews/PI
http://fews.wldelft.nl/schemas/version1.0/pi-schemas/pi_timeseries.xsd" version="1.2">

 <timeZone>0.0</timeZone>
- <series>

- <header>
 <type>instantaneous</type>
 <locationId>ABDN</locationId>
 <parameterId>Tide.astronomic</parameterId>
 <timeStep unit="second" multiplier="900" />
 <startDate date="2006-08-29" time="00:00:00" />
 <endDate date="2006-08-30" time="12:00:00" />
 <missVal>-30000.0</missVal>
 <longName />
 <stationName>Aberdeen</stationName>
 <units>m</units>
 <sourceOrganisation />
 <sourceSystem />
 <fileDescription />
 <region />

 </header>
 <event date="2006-08-29" time="00:00:00" value="-0.106" flag="1" />
 <event date="2006-08-29" time="00:15:00" value="0.072" flag="1" />
 <event date="2006-08-29" time="00:30:00" value="0.252" flag="1" />
 <event date="2006-08-29" time="00:45:00" value="0.431" flag="1" />

 | | | |

 <event date="2006-08-30" time="11:30:00" value="-0.871" flag="1" />
 <event date="2006-08-30" time="11:45:00" value="-0.792" flag="1" />
 <event date="2006-08-30" time="12:00:00" value="-0.697" flag="1" />

 </series>

 </TimeSeries>

Key points to note: -

• The Schema definition file is pi_timeseries.xsd
• The file comprises one or more <series>
• Within each <series>, there is a <header>, followed by event data.
• The <header> describes the event data that follows and in the above

example, it can be seen that the data is Astronomic Tide data in metres
from ABDN (Aberdeen), it is equidistant with each data point being 900
seconds (15 minutes) apart. The data ranges from 29 August 2006
00:00 to 30 August 2006 at 12:00. Missing data will be given as -
30000.

• Each Astronomic tide value is date and time stamped

There is enough information in this block for a module to extract and validate
the Astronomic Time Series for Aberdeen. There would be multiple <series>
in the file, normally. It is completely the responsibility of the module to ensure
the integrity of the data.

Warning - do not make the mistake of treating XML files as simple ASCII. Use
a proper XML Parser to allow flexibility and structural change. Never assume
some information will be e.g. on line 6, column 15 - this is asking for problems.

83

The above example shows equidistant data over a 36-hour period. TRITON
also uses non-equidistant time-series data from locations where a full 15-
minute Astronomic Tide series is not available (only High Tides or High and
Low Tides). See the following example: -

 <?xml version="1.0" encoding="UTF-8" ?>
- <TimeSeries xmlns="http://www.wldelft.nl/fews/PI" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:schemaLocation="http://nffs.wldelft.nl/schemas/PI http://nffs.wldelft.nl/schemas/pi-
schemas/pi_timeseries.xsd" version="1.2">

- <series>
- <header>

 <type>instantaneous</type>
 <locationId>BIDE</locationId>
 <parameterId>Tide.astronomic</parameterId>
 <timeStep unit="nonequidistant" />
 <startDate date="2005-04-12" time="20:00:00" />
 <endDate date="2005-04-13" time="20:30:00" />
 <missVal>-30000</missVal>
 <units>m</units>

 </header>
 <event date="2005-04-12" time="20:00:00" value="5.370" flag="2" />
 <event date="2005-04-13" time="08:15:00" value="5.080" flag="2" />
 <event date="2005-04-13" time="20:30:00" value="4.880" flag="2" />

 </series>
 </TimeSeries>

In this case, the timeStep unit is set to "nonequidistant", the start and end date reflects
the 3 high tide values which are available.

B2.7.2 NFFS Binary data

In some cases, the input data to the module may be considerable and very
large XML files are necessary to convey all the data. It can be seen that,
whilst XML is an ideal standard for data exchange, there are large overheads
in data size and also the time taken to parse the files should not be under-
estimated.

Each value in a simple 36 hour, 15 minute resolution time-series is date and
time-stamped for completeness and to meet the schema standard. This in
itself adds a large overhead, especially as all you would normally want would
be the start date/time, end date/time and the 144 values, probably around
1200 bytes of data in total (144 * 8 bytes for a real number) + 2 dates / times.

NFFS provides a way to combine XML and binary which can be used both
with exports from and imports to the NFFS.

Consider this simple example (PRTF): -

- <series>
- <header>

 <type>accumulative</type>
 <locationId>208</locationId>
 <parameterId>Rainfall</parameterId>
 <timeStep unit="second" multiplier="900" />
 <startDate date="2006-10-06" time="11:00:00" />
 <endDate date="2006-10-14" time="11:00:00" />
 <missVal>-30000.0</missVal>
 <longName />
 <stationName>Vallis</stationName>
 <units>mm</units>
 <sourceOrganisation />

84

 <sourceSystem />
 <fileDescription />
 <region />

 </header>
 </series>
- <series>

Everything in the series header looks the same as we would normally expect,
equidistant time-series at 15-minute resolution etc.

The main difference, however, is that there is no event data after the header.
This data is provided in a separate binary file. These main points are relevant
if binary is being used as an input method: -

• In the InBox, for every XML file, there will be a matching '.BIN' file with
the same prefix.

• Binary can only be used for equidistant data.
• Parsing the XML file from top to bottom, each time a series header is

read, you must read the appropriate number of binary values (stored as
floating-point numbers) from the .BIN file. The number of values to read
has to be determined from the startDate, endDate and timeStep in the
header. In the example given, this equates to 7 days = 7 * 96 values.

• Note that there is no header information in the .BIN file. It starts straight
away with the first value from the first time-series.

 B2.7.3 NFFS Parameter data

As stated in Section B2.6, the Module dataset, and in particular the
Configuration, should be set up so that once the module is invoked by NFFS,
the input data read and validated, the module knows exactly what to do with
the data in order to provide the results required by NFFS. This is how TRITON
works.

In effect, TRITON does not care too much about the input data values (they
may have been adjusted in some way in NFFS, perhaps a user has added a
constant to each surge value). Provided all the required time-series are
received, it uses that information to produce a set of forecasts which it returns
to NFFS, via the OutBox (See Section B2.8).

A module is only under control of NFFS (there is no User Interface to the
module) so if you want to temporarily change the default behaviour of the
module, then this needs to be done via NFFS. Where a module can be
"controlled" in some way by NFFS, this is described as running a "What If".

For each remotely configurable aspect of a module which is supported, NFFS
can be configured to provide a user-interface to simply allow an override to be
specified. If any such changes are made, they are only temporary and for the
current module run.

These one-off requests to the module are conveyed in parameter files,
conforming the pi_parameter standard defined in the NFFS Published

85

Interface. If your module allows remote configuration of one or more
parameters, then the module should be able to process these parameter files.

As with Input data, the parameter files will be placed by NFFS in the InBox,
the module must be able to differentiate between parameter files and time
series data and no assumptions should be made about the names of the
parameter file or files. Total flexibility should be programmed in, including the
possibility that there will not be any parameter file (in which case the default
behaviour is performed).

Consider the following example from the PRTF module: -

 <?xml version="1.0" encoding="UTF-8" ?>
- <Parameters xsi:schemaLocation="http://www.wldelft.nl/fews/PI http://nffs.wldelft.nl/schemas/pi-

schemas/pi_parameters.xsd" version="1.2" xmlns="http://www.wldelft.nl/fews/PI"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

- <param id="311">
 <name>modelname</name>
- <data>

 <stringData>Wet</stringData>
 </data>

 </param>
 </Parameters>

Note firstly the name of the schema - pi_parameters.xsd

In this case, the <param id="311"> node is specifying an override of the default
behaviour for one of the forecasting sites (ID = 311). Site 311 (Bishops Hull)
normally uses Catchment Wetness index (CWI) at the point where the river
level is lowest (base flow) to decide which rainfall runoff model to run (e.g.
Very Dry, Dry, Wet, Saturated, High Intensity).

It may be that the user wants to force the module to run the Wet model, in
spite of what the CWI may indicate is preferred. This selection could be made
via the NFFS Interface and a parameter file such as the above would be
delivered to the PRTF module along with the input data.

It is the responsibility of the module to detect and process the contents of
these parameter files and to use the information contained therein to drive the
current module run. In this example, the user would expect to see that the
PRTF module had run the "Wet" model for the Bishops Hull forecasting site
(ID = 311).

B2.8 Module output data

This Section should be read in conjunction with Sections B2.7.1 and B2.7.2.

Once NFFS has delivered all the module input data and any parameter files,
called the module, it will then wait until the module has completed before
looking in the OutBox for the module output files which it will then move to the
NFFS system for processing and archiving as necessary.

These files should also conform to the same standard as the pi_timeseries
XML files + Binary files which are imported by the module.

86

Normally a module would return a number of time-series for each forecasting
location. These can be arranged in any order and may be placed in a single
XML file or in multiple files. As with the Input files, there are no restrictions on
the file names you use as NFFS will process all files added to the OutBox.

If there is a lot of data, it is recommended that binary is used. An example
section (single series) from a TRITON output file is given (where binary is
used).

<?xml version="1.0" encoding="UTF-8" ?>
- <TimeSeries xmlns="http://www.wldelft.nl/fews/PI" xmlns:fews="http://www.wldelft.nl/fews/PI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews/PI http://fews.wldelft.nl/schemas/version1.0/pi-
schemas/pi_timeseries.xsd" version="1.2">

- <series>
- <header>

 <type>instantaneous</type>
 <locationId>NE-Berw-Z1-St1</locationId>
 <parameterId>Calculated.Tide.Level</parameterId>
 <timeStep unit="second" multiplier="900" />
 <startDate date="2006-08-29" time="00:00:00" />
 <endDate date="2006-08-30" time="12:00:00" />
 <missVal>-30000</missVal>
 <stationName>Berwick Pier</stationName>
 <units>m</units>

 </header>
 </series>

 </TimeSeries>

In this sample, a Tide Level forecast (metres) at 15-minute (900 seconds)
interval, over a 36-hour period for the location NE-Berw-Z1-St1 is returned.
Because binary is used, there is no associated data (see Section B2.7.2).
Note that the standard is the same as that for the exports from NFFS.

In reality, this configuration of TRITON returns thousands of time-series (data
from > 200 forecast locations, providing perhaps 10 parameters in each case).
In this case, it is very wise to use binary, otherwise the XML file will be very
large.

Note that the pi_timeseries schema does not support text in the "value" field.
Whilst it is unlikely that text values will form part of a time-series, in fact within
TRITON, this is necessary. TRITON makes a decision based on the input
information as to which offshore wind/wave site to use. It needs to tell the end
user which site was chosen. Because it cannot pass back the name (or site
code), it was necessary to define a look-up / cross-reference table within
NFFS which allows the module to return integers which represent the
appropriate sites. These values are looked up in the tables by NFFS to extract
the relevant site name as a text string.

There has to be a means of a module conveying status information back to
the NFFS. Remember that the user will not normally "see" the module being
run - it is run on a remote computer and may just be a console application
which has no visible features at all.

87

There is a PI standard, pi_diag. Think of this as a simple log file, except using
XML. Each line in the XML file contains a warning level and the text
associated with it.

The important warning levels (extracted from the schema) are : -

 3 = info (information, all is well, e.g., :"SOBEK: program ended")
 2 = warn (warning information. e.g. "SOBEK: high number of iterations")
 1 = error (critical problems. e.g. "SOBEK: no convergence")
 0 = fatal (full module crash. e.g. "SOBEK: ooops, what now?")

Higher numbers than 3 can also be used - they will not be listed on the NFFS
screens but may contain essential debug information.

The following are extracts from the PRTF diagnostic file. Note that some of
the entries are generated as a result of the Parameter file discussed in
Section B2.7.3.

 <?xml version="1.0" encoding="UTF-8" ?>
- <Diag xmlns="http://www.wldelft.nl/fews/PI" xmlns:fews="http://www.wldelft.nl/fews/PI"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.wldelft.nl/fews/PI http://fews.wldelft.nl/schemas/version1.0/pi-
schemas/pi_diag.xsd" version="1.2">

 <line level="3" description="Starting PRTF Module at 13-Oct-06 13:41:49.515" />
 <line level="3" description="Site Bishops Hull - default model changed to Wet" />
 <line level="3" description="XML InBox processed" />
 <line level="3" description="Processing Bishops Hull" />
 <line level="3" description="PRTF SMD valid..." />
 <line level="3" description="Calculating SMD using continuous update method using AE MORECS" />
 <line level="2" description="No SMI value to start sequence - using 0.5" />
 <line level="3" description="Generating Outputs" />
 <line level="3" description="Exiting PRTF Module at 13-Oct-06 13:42:06.031" />

 </Diag>

Note the level 3 entry which confirms that the module recognised the request
via a parameter file to override the default model and use the Wet Model.

There is only one Level 2 (Warning) which tells the user that there was not
any Soil Moisture Index data provided to the module so it defaulted to a value
of 0.5.

A module should always generate a diagnostic file, even if it just has one entry
in it to say that it completed successfully.

B2.9 Other Module requirements

Unless a module is being adapted from an existing stand-alone application
and it is difficult to do so, an attempt should be made to create the module as
a console application. In other words it does not use any Windows, graphics,
user interface etc. Apart from the fact that the module runs remotely so there
is no point in there being any graphics or visible elements whatsoever, a
console application will run much more quickly.

It is vital that every attempt is made to ensure that a module completes in a
tidy controlled fashion. NFFS starts a module then monitors the operating

88

system to see when it completes, at which point it fetches the outputs and
makes the results available within NFFS. If a module "gets stuck", then NFFS
will think it is still busy and keep waiting for it to complete. There is a setting
which can be set up in NFFS which is a time-out, after which NFFS assumes
the module is not going to complete. As a fail-safe, this has to be
considerably higher than the normal time taken to complete, to avoid NFFS
stopping the process when it is running normally.

If the module hangs, then the users will have to wait a long time to have this
information and then they will discover that the forecasts were not generated
anyway.

Good coding practice should be adhered to throughout the module - basic
checks such as trapping divide by zeros, file reading / writing errors etc.
should all be included. The module should never assume that all the files it
needs are always present, it should check each time.

Ideally, the software should always come to a controlled stop and tidy up itself
(at the very least write the diagnostic file), even if the fundamental part of the
processing fails. This can be achieved by good coding, even it means putting
an exception handler around the main entry point to catch any problems.

89

References

Agency documents

Enterprise Architecture Approach for the Environment Agency (PowerPoint
presentation – 1st February 2006) – Ash Dattani

Enterprise Architecture: Technical Reference Model (Version 2.0 DRAFT3 -
6/12/05) – Peter Wintle, Enterprise Architecture

Environment Agency Testing Method (Version 1.0 Final – 15/06/2005)

Technical Delivery Process Document (Version 1.3 - 23/08/2005)

Other

http://www.govtalk.gov.uk/schemasstandards/schemasstandards.asp
(including e-Government Interoperability Framework (e-GIF), Version 6.0, 30
April 2004)

OpenMI standards – http://sourceforge.net/openmi

Oracle 10g Express Edition
http://www.oracle.com/technology/products/database/xe/index.html

JUnit Java unit testing - http://sourceforge.net/projects/junit/
NUnit .NET languages unit testing – http://www.nunit.org/

XML standards - http://www.w3.org/TR/2004/REC-xml-20040204/

Glossary of Selected IT Terms

ASP – Active Server Pages
HP-UX – Hewlett Packard Unix
IIS – Internet Information Server
J2EE - Java 2 Platform, Enterprise Edition
JSP – Java Server Pages
LAN – Local Area Network
TCP/IP - Transmission Control Protocol/Internet Protocol)
XML – Extensible Markup Language
WAN – Wide Area Network

PB 12794 A

Ergon House
Horseferry Road
London SW1P 2AL

www.defra.gov.uk

PB11207-CVR.qxd 1/9/05 11:42 AM Page 2

m126208
Rectangle

