
Joint Defra / Environment Agency Flood and Coastal Erosion
Risk Management R&D Programme

Risk assessment for flood incident

R&D Technical Report SC050028/SR5

 

Product Code: SCHO0307BMIO-E-P 

management:
Understanding and application of complex 
system risk assessment models



Science Report Risk Assessment for Flood Incident Managementii

The Environment Agency is the leading public body protecting and
improving the environment in England and Wales.

It’s our job to make sure that air, land and water are looked after by
everyone in today’s society, so that tomorrow’s generations inherit a
cleaner, healthier world.

Our work includes tackling flooding and pollution incidents, reducing
industry’s impacts on the environment, cleaning up rivers, coastal
waters and contaminated land, and improving wildlife habitats.

This report is the result of research commissioned and funded by the
Environment Agency’s Science Programme.

Published by:

Environment Agency, Rio House, Waterside Drive, Aztec West,
Almondsbury, Bristol, BS32 4UD
Tel: 01454 624400 Fax: 01454 624409
www.environment-agency.gov.uk

ISBN: 978-1-84432-711-9

© Environment Agency March 2007

All rights reserved. This document may be reproduced with prior
permission of the Environment Agency.

The views expressed in this document are not necessarily
those of the Environment Agency.

This report is printed on Cyclus Print, a 100% recycled stock,
which is 100% post consumer waste and is totally chlorine free.
Water used is treated and in most cases returned to source in
better condition than removed.

Further copies of this report are available from:
The Environment Agency’s National Customer Contact Centre by
emailing enquiries@environment-agency.gov.uk or by
telephoning 08708 506506.

Author(s):

Henk Stolk

Dissemination Status:
Publicly available / Released to all regions

Keywords:
Flood, incident, management, risk, assessment

Research Contractor:
Dione Complex Systems
Business Centre, University Innovation Bangor
University of Wales
9th Floor, Alun Roberts Building
Deiniol Road
Bangor
Gwynedd LL57 2UW

Environment Agency’s Project Manager:
Dr Suresh Surendran, Kings Meadow House,
Reading, Berkshire RG1 8DQ

Collaborator(s):
Dione Complex Systems
Flood Hazard Research Centre, Middlesex University
HR Wallingford Ltd
RM Consultants
Water, Engineering and Development Centre,
Loughborough University

Science Project Number:
SC050028/SR5

Product Code:
SCHO0307BMIO-E-P



Science Report Risk Assessment for Flood Incident Management iii

Science at the
Environment Agency
Science underpins the work of the Environment Agency. It provides an up-to-date
understanding of the world about us and helps us to develop monitoring tools and
techniques to manage our environment as efficiently and effectively as possible.

The work of the Environment Agency’s Science Group is a key ingredient in the
partnership between research, policy and operations that enables the Environment
Agency to protect and restore our environment.

The science programme focuses on five main areas of activity:

• Setting the agenda, by identifying where strategic science can inform our
evidence-based policies, advisory and regulatory roles;

• Funding science, by supporting programmes, projects and people in
response to long-term strategic needs, medium-term policy priorities and
shorter-term operational requirements;

• Managing science, by ensuring that our programmes and projects are fit
for purpose and executed according to international scientific standards;

• Carrying out science, by undertaking research – either by contracting it
out to research organisations and consultancies or by doing it ourselves;

• Delivering information, advice, tools and techniques, by making
appropriate products available to our policy and operations staff.

Steve Killeen

Head of Science
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 1  Introduction
This document reports the results of Work Package 4 (WP4) of the Environment Agency
science project FDB(05)01 – Risk assessment for flood incident management: Phase 1.
Activities within this work package are set out in Table 1.1.

Table 1.1 Activities of Work Package 4.

WP4
activity

Title Description

4.1 Literature review
and analysis of
data

Review literature and collect data and/or information to
identify the key properties and behaviour of all ‘sources–
pathways–receptors’ system components, including the
influence of different drivers for flood incidents and
different responses for flood incident management (FIM)

4.2 Application of risk
assessment and
complex systems
methods

Identify and evaluate different risk-assessment
methodologies and ‘complex system’ models and
analyse the appropriateness for wider FIM

4.3 Conceptual
framework

Propose elements for the conceptual methodology to be
developed, with a focus on systems and component
failures that could have the greatest probability and
impact, as determined by analysis of their causes and
consequences in the whole complex system, including
organisations and individuals involved in FIM

4.4 Requirements
document

Formulate requirements for complex systems simulation
models that capture the essential characteristics of the
systems involved and are able to produce the emergent
behaviour of the whole system; this will focus on simple
frameworks that reflect the human and operational,
rather than physical, FIM system

4.5 Report Stand-alone work package report. This will include
sections that report in detail on each of the above work
package activities, together with scoping
recommendations for Phase 2

This report covers the outputs of all activities of WP4. Chapters in this report correspond to
work package activities as follows. Chapter 2 describes outputs of activities 4.1 and 4.2,
chapter 3 describes outputs of activity 4.3 and chapter 4 describes outputs of activity 4.4.
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 2  Application of risk assessment
and complex systems methods to
flood incident management

This chapter analyses the application of risk assessment and complex systems methods to
flood incident management (FIM) on the basis of a review of literature on the key properties
and behaviour of system components. This literature deals, on the one hand, with the
influence of different drivers for flood incidents and different responses for FIM, and on the
other hand with a representative sample of complex systems approaches.

 2.1  A complex systems approach to flood incident
management is necessary

Complex systems can be defined in many ways (see, for example, Mitchell 2003). At a
minimum, complex systems consist of entities that interact with each other to produce the
behaviour of the system as a whole (see, for example, Bar-Yam 1997, p. 1). An important
characteristic of a complex system is that the properties and/or behaviour of the whole are
emergent, that is they cannot be inferred in a straightforward way from the properties and
behaviour of the components (see, for example, Bar-Yam 1997, p. 10, Holland 1998). Many
relatively simple entities interact in relatively simple ways to give rise to emergent
phenomena that could not have been predicted easily from the definition of the entities and
their interactions. To understand the behaviour of a complex system, we must not only
understand the composing entities and their behaviour, but also how they interact and self-
organise to determine the emerging state and behaviour of the whole (for example, Bar-Yam
1997, p. 1, Lam 1997, p. 359, Holland 1998).

The above implies that a complex system consists of a minimum of two levels, that of its
parts and that of the whole system. Often there are more levels, in the same way that reality
as a whole can be thought of as consisting of a series of different levels, with entities of each
higher level composed of entities of the next lower level (see, for example, Salthe 1985,
O’Neill et al. 1986, Allen and Hoekstra 1992). Examples of such levels are, from the lower to
higher levels, atoms that consist of elementary particles, molecules that consist of atoms,
cells that consist of molecules, organisms that consist of cells and ecosystems that consist of
organisms. This hierarchy is extremely simplified and only illustrative, as many more
intermediate levels, or alternative hierarchies, can be imagined.

 2.1.1  Flood incidents emerge from properties and behaviour of complex
systems

Flood incidents are one category of natural catastrophes, disasters or emergencies. The
occurrence of emergencies is determined by the operation of complex systems. The principal
characteristic of a complex system is that it is composed of many interacting entities. Results
of the interaction of these entities are hard to understand and predict. In the case of natural
disasters this is already apparent at the highest level of system description, where a system
that produces disasters is described as only two interacting subsystems, determining,
respectively:

 extreme natural events (for example, floods, earthquakes, landslides);
 society’s risk taking and vulnerability.
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There are different views of the interaction of these subsystems to produce casualties and
damage, summarised by Alexander (2000, pp. 227-228) as follows:

extreme natural events
act upon

human vulnerability and risk
taking

to produce
casualties and damage

society’s risk taking and
vulnerability
interact with

extreme natural events
to produce

casualties and damage

human risk taking and
vulnerability

produce
casualties and damage

when there are
extreme natural events

It is already apparent that emergencies are produced in complex systems in which it is far
from obvious how to define unequivocal cause and effect relations.

 2.1.2  Flood incident response systems are complex systems

Both the management of and response to emergencies are determined by the operation of
complex systems. Flood incident response systems are one kind of emergency management
system. An incident may be defined as an occurrence, caused by either humans or natural
phenomena, that requires action to prevent or minimise loss of life or damage to property.
Emergency management has been based in the past on a rigid hierarchical structure of
authority, but more emphasis is now given to adaptability, for example, in the incident
command system used in the USA (Alexander 2000, pp. 164-165). This is a standardised on-
scene all-hazard incident management system that allows its users to adopt an integrated
organisational structure to match the complexities of emergency management. Such an
adaptable system must be:

 expandable from the scale of minor emergencies to that of full-scale disasters;
 based on the procedures used by existing agencies;
 simple enough to be inexpensive and easy to learn;
 adaptable to new technologies;
 able to handle a wide variety of different types of emergency;
 functional both for single and multiple organisations and jurisdictions.

Emphasis is placed on coordination through consultation and flexibility, on the constitution of
task forces to deal with problems as they arise and on consensus as to the goals to be
achieved by a process of delegation, participation and mutual involvement (Alexander 2000,
p. 165).

In addition to order and central planning, improvisation is vital for emergency management,
and there will be emergent groups, emergent norms and emergent social structure
(Alexander 2000, p. 166).

The incident command system is an example of the current trend in thinking about
emergency response, which acknowledges that emergency response systems are complex
systems. This trend is also exemplified in current British government regulations on
emergency preparedness and response, as described in Emergency Preparedness:
Guidance on Part 1 of the Civil Contingencies Act 2004, and its associated Regulations and
non-statutory arrangements, and Emergency Response and Recovery: Non-statutory
guidance to complement Emergency Preparedness. These government regulations are the
context in which the work of the Environment Agency is carried out.
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 2.1.3  Integrated flood risk management requires a systems-based
approach

Hall and Dawson (2005) clearly demonstrate the necessity of a systems based approach in a
note for discussion at the third meeting of the urban flood risk assessment working group in
Exeter on 9 June 2005, as:

flooding may have positive or negative impacts on any part of the natural or
built environment. Integrated flood risk management considers all these
different aspects of the flooding system and their influences on each other.

They confirm that ‘a key methodological advancement to enable integrated flood risk
management (IFRM) is the development of a unified systems-based flood risk analysis
methodology’ (Hall and Dawson 2005).

 2.1.4  Conclusion

A complex systems-based approach is necessary for effective FIM because:

 flood incidents emerge from properties and behaviour of complex systems;
 flood incidents and procedures for flood incidents are complex systems;
 emergent behaviour of these systems may not be obvious from more simplified

modelling – complex systems modelling allows emergent behaviour of the system
to be identified;

 it is essential to assess not only the probabilities and consequences of the failure
of individual components, but the impact on the whole, complex system of
individual component behaviour;

 such an approach will help to decide how to mitigate or manage the risk and
uncertainties inherent in the whole system of FIM.

Many approaches to modelling and analysis of complex systems have been proposed, and it
is not immediately clear which particular methods are most appropriate for an application
area such as FIM. In Section 2.2 we quickly review what complex systems are.

 2.2  Complex systems methodologies
The study of complex systems requires methods of analysis and simulation with
characteristics such as (Bar-Yam 1997, pp. 8-9):

 looking at parts of a system in the context of the whole system and its
environment, using adapted experimental tools, theoretical analysis or computer
simulation;

 not assuming that a system is smooth and uniform, as is assumed when a system
is described by differential equations and local details do not matter for larger
scale system behaviour;

 taking into account that the behaviour of complex systems depends on many
independent pieces of information and not on just a few parameters.

A number of widely used methodologies for the study of complex systems are listed in Table
2.1.

In the remainder of this section typical complex systems methodologies are reviewed with
respect to their application to risk assessment in FIM.
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Table 2.1  Methodologies used to study complex systems.

Methodology Remarks Examples

Artificial life Field of scientific study that attempts
to use computer simulation to discover
general principles of life by creating
artificial organisms that capture the
essential characteristics of real
organisms

Emmeche 1994,
Bonabeau et al. 1995a,
1995b, Adami 1998

Bayesian networks Systematic analysis of situations with
many components that involve risk
and uncertainty; in a graphical
representation of a Bayesian network
nodes represent variables and arcs
represent probabilistic relationships
between the variables

Charniak 1991,
Negnevitsky 2002

Cellular automata Very simplified models of system
components and interactions;
appropriate to demonstrate abstract
general principles; can easily capture
spatial aspects, especially in two
dimensions, but in principle also in
three dimensions

Wolfram 2002

Computational
complexity theory

Theoretical approach mainly relevant
for computer scientists

Bar-Yam 1997

Emergent models Complex systems simulation
methodology suitable to study multiple
hierarchical levels in a system

Stolk 2005

Evolutionary
computation

In computer science evolutionary
computation is a subfield of artificial
intelligence (more particularly, of
computational intelligence) that
involves optimisation problems; it
provides a very general method to
solve problems that involve
approximately optimal solutions

Holland 1975, 1998, Koza
1992, Stolk 1992, Bäck et
al. 2000, Luke 2002, Stolk
et al. 2003, Stolk 2005

Game theory Branch of applied mathematics that
studies strategic situations in which
players choose different actions in an
attempt to maximise their returns

Holland 1998

Genetic regulatory
networks

Application area of complex systems
methods

Kauffman 1993, De Jong
2002, Stolk 2005

Hierarchy theory Theory on relationships between
hierarchical levels, especially in
ecology

Allen and Hoekstra 1992
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Methodology Remarks Examples

Individual-based
modelling

Modelling ecological systems starting
from individual organisms

DeAngelis and Gross
1992

Markov processes
and chains

Mathematical approach to risk and
uncertainty

Stroock 2005

Multi-agent
simulation

Systems components and interactions
can be modelled with arbitrary detail

Wooldridge and Jennings
1995, Weiß and Sen
1996, Weiß 1997, Ferber
1999, Ciancarini and
Wooldridge 2001,
Davidsson 2001,
D’Inverno et al. 2002,
Gimblett 2002,
Wooldridge 2002,
Wooldridge et al. 2002,
Ferber et al. 2003, Luck et
al. 2004, Stolk et al. 2003,
Stolk 2005

Network analysis and
graph theory

Demonstration of abstract and general
principles related to network
architecture

Buchanan 2003

Neural networks Interconnected group of artificial
neurons that uses a mathematical or
computational model for information
processing based on a ‘connectionist’
approach to computation; the complex
global behaviour is determined by the
connections between the processing
elements and the parameters; typical
applications include pattern
recognition and classification
problems

Rumelhart et al. 1987,
Bar-Yam 1997, O’Reilly
and Munakata 2000

Non-linear dynamics Methods to study systems based on
mathematical equations

Bar-Yam 1997

 2.2.1  Non-linear dynamics and iterative maps

The classic way to study non-linear dynamics is differential equations. This approach
assumes that the behaviour of the system under study is basically smooth and uniform, in
other words that local details do not matter for larger scale system behaviour. Differential
equations are therefore less adapted to the study of complex systems.
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Iterative maps are another general way to describe dynamic systems (Bar-Yam 1997, p. 35).
An iterative map f  is a function that describes the evolution as a system as (Bar-Yam 1997,
p. 19):

))(()( ttsfts ∂−=

where:

)(ts = state of the system at time t

This approach to dynamic systems is a very general one. Thus, a FIM system could, in
principle, be described by it, assuming that enough information about the state variables of
the system is available. To define an iterative map, it is necessary to have complete
information about the state of a system at time t  and about the function f  that relates the
state at time tt ∂−  to the state at time t . This is an unrealistic assumption in the case of FIM
systems. A dynamic systems approach could be suitable for parts of a FIM system, such as
hydrological or climatological models to describe the environmental conditions that lead to
flooding, but it is unrealistic to expect insight into the whole system using dynamic systems
modelling alone. The dynamic systems approach is also a deterministic one and thus not
suited to risk assessment.

For the description of the whole system a more qualitative approach is needed to capture
essential behavioural characteristics without being overwhelmed by too great a mass of
detail. It is also necessary to adopt a stochastic approach.

 2.2.2  Stochastic iterative maps and Markov chains

Stochastic iterative maps can be used to describe systems for which the values of system
variables at the next time step cannot be predicted with certainty from the present values.
Such stochastic systems can be described as an iterative map using a probability distribution
of random variables to describe system states, as (Bar-Yam 1997, pp. 38-39):

∑
−

−−−=
)1(

''''

'

)1);1(())1(|)(());((
ts

sss ttsPtstsPttsP

where:

));(( ' ttsPs = probability distribution at time t  that describes the likelihood
that random variable s  has the value 's  at time t

))1(|)(( '' −tstsPs = transition probability, or the probability distribution of s  at time
t  given a particular value )1(' −ts  at the previous time

)1);1(( ' −− ttsPs = probability distribution at time 1−t  that describes the likelihood
that random variable s  has the value 's  at time 1−t

This description assumes that the probability distribution of system variable s  only depends
on the value of the system variable at a previous time and that the transition probabilities do
not depend on time. A stochastic system that satisfies these conditions is a Markov chain.
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Stochastic iterative maps and Markov chains have the potential to alleviate some of the
problems of differential equations and iterative maps. Full information on the system state at
a given time is no longer required, but information about the probability distribution of states
is. However, this can still be a formidable requirement.

Despite this, the use of probability distributions could inspire possible approaches to risk
analysis in the context of complex systems. However, stochastic iterative maps and Markov
chains as described here assume, like ordinary iterative maps, exhaustive and exact
information about the system. Such information is not available in the case of the
Environment Agency’s FIM system. Therefore, stochastic iterative maps and Markov chains
could not be realistically applied to it. In the case of the FIM system it is necessary to use an
approach based on probability that can take into account not only objectively defined
probability distributions, but also subjective probability estimates.

 2.2.3  Neural networks

A neural network is an interconnected group of artificial neurons that uses a mathematical or
computational model for information processing based on a ‘connectionist’ approach to
computation. Global behaviour is determined by the connections between the processing
elements and parameters. In most cases a neural network is an adaptive system that
changes its structure based on external or internal information that flows through the
network. A simple example of a neural network is an attractor network or Hopfield network
(Bar-Yam 1997, p. 300-301), schematically represented in Figure 2.1.

Figure 2.1  An attractor neural network with six neurons.

It consists of N neurons (N = 6 in Figure 2.1) and potentially all their connections, or
synapses. The possible states of the neurons are described by binary values 1±=is

),...,1( Ni = . A connection between two neurons is characterised by a value or weight that
determines how they interact. The first neuron activates the second neuron if the weight is
positive (that is, the second neuron becomes active if the first neuron is active). If the weight
is negative, the first neuron inhibits the second one. Activation and inhibition can be weak or
strong, reflected in the numerical value of the weights.
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Neuron states are updated at each time step by the functions:

∑ −=
j

jiji tsJsignts )1(()(

where:

ijJ = matrix of synaptic weights

This network can work as a memory. Training with a particular pattern of neuron states can
set the weights ijJ  to such values that the network can reconstruct a particular pattern from
only a part of the pattern. The pattern has become an attractor state of the network.

This is a property of the network as a whole, and not of any subset of neurons or synapses.
Therefore, it illustrates well the emergent behaviour of a complex system. The system as a
whole exhibits a behaviour that is not present in its components, which is also true of
organisational systems in general and FIM systems in particular.

However, a description of the FIM system as a neural network would, like an iterative map,
require a precise definition of all elements of the system in terms of activation and inhibition
functions. This is not feasible in the case of a FIM system, for the same reasons as cited in
Sections 2.2.1 and 2.2.2.

 2.2.4  Graph theory and complex networks

Graph theory is the mathematical study of graphs. A graph is a set of objects called ‘points’
or ‘vertices’ connected by links called ‘lines’ or ‘edges’. Assigning a weight to each edge of
the graph can extend a graph structure. Weights can be used to represent several different
concepts (for example, the length of a road network).

Complex networks are networks with irregular and complex structures that evolve
dynamically in time. The main focus of research in complex networks has recently moved
from the analysis of small networks to that of systems with thousands or millions of nodes,
and with a renewed attention to the properties of networks of dynamic units (Boccaletti et al.
2006).

Graph theory used to study complex networks attempts to capture the global properties of
systems composed of a large number of highly interconnected dynamic units. The first
approach to such systems is to model them as graphs with nodes that represent the dynamic
units, and with links that stand for the interactions between them. This approach aims to
cope with structural issues, and so reveal the unifying principles that are at the basis of real
networks, and develop models to mimic the growth of a network and reproduce its structural
properties. Other questions arise when studying complex networks’ dynamics, such as
learning how a large ensemble of dynamic systems can behave collectively (Boccaletti et al.
2006).

On the whole, these approaches focus on structural properties of the networks under study.
They have been applied to information and communication networks, such as the internet
and social networks, and could, in principle, be applied to organisational networks, such as a
FIM system. Some results already obtained might be interesting for the design of an effective
system. For example, it was shown that the coupling architecture has important
consequences on the network functional stability and response to external perturbations,
such as random failures (Boccaletti et al. 2006, p. 178).



Science Report Risk Assessment for Flood Incident Management10

Thus, graph theory and complex networks analysis could be applied to a FIM system to the
extent that fundamental restructuring of the existing system is considered an option.

 2.2.5  Computational complexity theory

Computational complexity theory is the branch of the theory of computation that studies the
resources or cost of the computation that is required to solve a given computational problem.
The cost is often measured in terms of abstract parameters, such as time and space, called
computational resources. The time represents the number of steps that it takes to solve a
problem and the space represents the quantity of information required or how much memory
it takes.

This kind of theory of information and computation treats complexity in the context of
mathematical objects, such as character strings or computer programs (see, for example,
Bar-Yam 1997, pp. 703-781). The complexity of a system is defined as the amount of
information necessary to describe it (Bar-Yam 1997, p. 703).

It is mainly a descriptive approach that makes possible the characterisation of systems in
terms of quantitative measures of complexity. While potentially useful to compare different
systems, it does not offer a practical methodology to define or develop real systems such as
those required for FIM.

 2.2.6  Cellular automata

A cellular automaton is a discrete model studied in fields such as computability theory,
mathematics, theoretical biology and geography (see, for example, Wolfram 2002). It
consists of an infinite, regular grid of cells, each in one of a finite number of states. The grid
can be in any finite number of dimensions. Each cell can be in a number of different states.
The cellular automaton is updated during a number of time steps, each cell being updated at
each time step according to a rule that relates the state of the cell at time t to the state of the
cell and its neighbouring cells at time t – 1.

Cellular automata are a useful description of complex systems that enables the study of
many interesting properties of such systems. In particular, because of the focus on
relationships between neighbouring cells or system components, spatial questions can be
studied in a natural way.

For FIM systems a cellular automata technique could be used as a flood mapping method to
model spatial aspects of flooding. However, a FIM system consists of system components
with interactions that are not readily described as cellular automata rules and it is not obvious
how a cellular automata approach could be used to assess ‘weak links’ in a FIM system.

 2.2.7  Game theory

Game theory is a branch of applied mathematics that studies strategic situations in which
players choose different actions in an attempt to maximise their returns. In game theory a
game is described by the set of possible states of the game (see, for example, Holland 1998,
pp. 33-42). Possible states can be reached from the initial state by executing moves, or state
transitions, according to the rules of the game. The rules impose constraints on possible
moves. Players execute moves to try to reach their objective, such as winning the game or
maximising their pay-off.

To describe a FIM system in terms of game theory, we could consider all actors involved as
players who observe the state of the game and determine their next moves. Their strategies
would consist of rules for choosing moves that correspond to all possible states of the
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system. Then we could try to determine which set of strategies would result in desirable
behaviour of the whole system.

In practice, game theory could not be used to model the Environment Agency FIM system
because not enough data are available about all the participants in the FIM system to allow it
to be described as a system of players with well-defined strategies.

 2.2.8  Artificial life

Artificial life is a research area that studies the biology of the possible by synthesising life-
resembling processes or behaviour in computers or other media (see, for example,
Emmeche 1994). It is assumed that artificially created components can exhibit behaviour just
as genuine as that of real-life organisms, because life is a process and the form of this
process, not the matter, is the essence of life. Some artificial life researchers even claim to
create life forms that are just as alive, but differ from life on earth as we know it. Like
exobiology, which studies life that supposedly exists on other planets, artificial life is a
‘biology of the possible’ (Emmeche 1994). Its objective is to discover the general principles of
life, and not be restricted to any particular instance of life. Artificial life is constructed using a
bottom-up method that leads to processes executed in parallel with self-organising, emergent
behaviour (Emmeche 1994). Some researchers conceive life as an emergent property of an
artificial computational chemistry (Adami 1998).

Artificial life offers obvious possibilities to analyse relationships of emergence between
levels. Indeed, numerous articles on emergence have been written by artificial life
researchers, such as Cariani (1989, 1991), Baas (1994, 1997), Bonabeau et al. (1995a,
1995b), Bedau (1997), Rasmussen et al. (2001), Kvasnička and Pospíchal (2002) and Kubik
(2003).

This research on the definition and significance of emergence is relevant on a conceptual
level for FIM systems, regarded as complex systems, as emergent behaviour can arise from
the behaviour and interactions of the components of these systems. To be relevant to the
Environment Agency’s FIM system, a practical approach is needed that makes use of the
concept of emergence.

 2.2.9  Evolutionary computation

In computer science evolutionary computation is a subfield of artificial intelligence (more
particularly, computational intelligence) that involves optimisation problems. Evolutionary
algorithms are general problem-solving algorithms inspired by the evolution of organisms,
interpreted as an optimisation process. They utilise the reproduction, random variation,
competition and selection of contending individuals in a population to find an optimal, or
nearly optimal, solution to a problem (Fogel 2000). In general, evolutionary algorithms do not
find globally optimal solutions, but only approximate solutions.

In an evolutionary algorithm each individual in the population typically represents a potential
solution considered for a given problem. Randomised processes of mutation, or erroneous
self-replication of individuals, and recombination, or exchange of information between
individuals, generate descendants of individuals. Individuals are evaluated according to a
fitness measure related to the problem in a selection process that favours the reproduction of
better individuals (Bäck et al. 2000).

Various kinds of evolutionary algorithms have been developed, such as evolution strategies
(Bäck et al. 2000, pp. 81-88, Schwefel 1995), evolutionary programming (Bäck et al. 2000,
pp. 89-102), genetic algorithms (Bäck et al. 2000, pp. 64-80, Holland 1975) and genetic
programming (Bäck et al. 2000, pp. 103-113, Koza 1992). Evolutionary algorithms are often
a good tool to solve system identification problems. System identification aims to identify the
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essential characteristics of a system, so an approximate fit to given data is an advantage, as
an exactly optimal fit to probably noisy data is undesirable. For example, evolution strategies
can be used to find approximately optimal parameters of a function that describes some part
of the system to be identified. Similarly, genetic programming is a method to find, in general,
a computer program or function that solves a given problem, such as to describe the system
to be identified.

To design an optimal, or at least good, FIM system is a system identification problem, so
evolutionary algorithms could be usefully applied to it. To do this, first we would have to
define what is to be optimised, for example to minimise loss of life, minimise damage,
maximise appropriateness of flood warnings or some combination of these and/or other
success criteria. Further, it would be necessary to define a set of possible changes that could
be made in the FIM system, for example to improve reliability of forecasts, decrease risk of
communication failure, etc. If it is possible to evaluate for each change what the impact is on
the success criteria, evolutionary algorithms can be applied to select the most appropriate
changes to be made in the FIM system.

 2.2.10  Genetic regulatory networks

A genetic regulatory network can be considered to be similar to multi-cellular organisms with
many cells that contain the same set of genes. However, these cells are very different,
because the genes are not expressed in the same way in each of them. Gene products, not
the genes themselves, determine cell architecture and behaviour. Genes can regulate the
production of gene products by other genes in such a way that not all genes are expressed in
all cells all the time (Ptashne and Gann 2002, p. 3). A set of genes and gene products,
together with their regulatory interactions, constitutes a genetic regulatory network. A model
of such a network describes interactions between deoxyribonucleic acid (DNA), ribonucleic
acid (RNA), proteins and small molecules in an organism through which gene expression is
controlled (De Jong 2002).

Various formalisms have been proposed to model genetic networks, including directed
graphs, Bayesian networks, Boolean networks and their generalisations, stochastic master
equations, ordinary and partial differential equations, qualitative differential equations,
stochastic master equations and rule-based formalisms (De Jong 2002, p. 69). These
formalisms all have gene expression and gene product levels that are represented as nodes,
and their interactions as links in a network.

For example, in a Boolean network (Kauffman 1993, De Jong 2002) the state of a gene is
described by a Boolean variable with value true, or 1, for an active gene (gene products
present) and value false, or 0, for an inactive gene (gene products absent). Interactions
between genes are represented by Boolean functions that calculate the state of a gene
which results from activation and/or inhibition by other genes. When the evolution of a
Boolean network is calculated during a number of time steps, an attractor – steady state or
state cycle – is typically reached.

Differential equations have also been used widely to model genetic networks (De Jong 2002,
pp. 77-89). Levels of gene products are modelled more realistically than in Boolean
networks, as real values. Regulatory interactions, such as activation or inhibition, between
gene products are modelled by rate equations.

In the same way as does a genetic network, a biochemical network models interactions in an
organism between molecules that are not directly related to its genes. A genetic or
biochemical network consists of interacting elements and can be considered a complex
system. In a genetic network the micro-level consists of DNA, RNA and protein molecules
that interact with each other in excitatory or inhibitory ways (Bower and Bolouri 2001). The
macro-level is that of the organism’s phenotype as determined by the expression of its
genes.
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Therefore, a genetic or biochemical network can be simulated in a straightforward way as a
multi-agent simulation that represents genes and gene products as interacting agents on the
micro-level. These interacting agents model a genetic and/or biochemical network, which can
describe the properties and behaviour at a higher level of a cell, an organ or a whole
organism.

Methods used in genetic networks are basically methods applicable to any complex system
that can be described as a network, and thus potentially to FIM systems. Genetic networks
are themselves an application area of complex systems methods, rather than a particular
method, so their study can serve to sharpen intuition about the application of complex
systems methods, but it does not provide in itself a method applicable to a FIM system.

 2.2.11  Individual-based modelling and simulation

This section examines individual-based simulation modelling in ecology as a methodology for
complex systems simulation, and focuses on its potential to elucidate emergence in
ecological systems. While multi-agent simulation has been developed in the tradition of
artificial intelligence research, individual-based simulation has been developed in that of
ecological research.

In ecology it has been recognised since the 1980s that many simplifying assumptions used in
mathematical models are not compatible with the reality of ecological systems (see, for
example, DeAngelis and Gross 1992). One of the most important of these unrealistic
assumptions was that individual members of populations can be aggregated into a single
state variable that represents population size, neglecting individual differences. A response
to this inadequacy of models has been to develop models based on processes at the level of
individual organisms, a number of which are reviewed in DeAngelis and Gross (1992). In
many of these models local interactions of individuals with their nearest neighbours are
considered. Some also take into account the hierarchical structure of ecosystems (see also
Ehleringer and Field 1993).

Individual-based simulation in ecology is really the same as multi-agent simulation and is
discussed in a separate section only because it has been developed in a different research
tradition. To model processes at the level of an individual as well as interactions between
individuals and then build a computer simulation on the basis of that model amounts to
nothing else than developing a multi-agent simulation of a natural system.

An FIM system is a system of interacting individuals, so relevant ideas could be gleaned from
the literature on individual-based modelling and simulation. Multi-agent simulation is
recommended in this report as a method applicable to the development of a better FIM
system and Chapter 3 details how this method could be used.

 2.2.12  Bayesian networks

In general, Bayesian networks describe systems in which elements in a situation can be
causally connected, with conditional probabilities associated with the connections. They can
be used to determine the probabilities of particular states of events in the described situation,
when some part of the situation has been observed. A detailed discussion is given in Section
3.3.

Influence diagrams are an extension of Bayesian networks suitable for decision support. An
example is reproduced in Figure 3.5. Most nodes are the same as those in a Bayesian
network, with added decision nodes (rectangles) and a value node (rounded rectangle). The
network can be used to calculate the probable impact of a decision (for example, make a
tactical warning) on the value, that is the final result of the network on something desirable,
such as life or economic value.
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Bayesian networks appear to offer a particularly relevant formalism to describe probability
and risk aspects of a FIM system because:

 they offer an intuitive way to define probabilities of different outcomes at the level
of individual system components;

 these probabilities need not to be defined objectively, but can be based on the
judgement of experts and Environment Agency staff with practical knowledge of
the system;

 they offer a method to integrate component-level knowledge in the outcome at a
whole-system level.

 2.2.13  Multi-agent simulation

In multi-agent simulation active entities in the world and their behaviour are represented in a
computer as software entities called agents. This simulation method makes it possible to
represent a phenomenon as the result of the interactions of a set of autonomous agents (for
example, Ferber 1999, p. 36, Holland 1998, pp. 116-118, Ferber 1999, p. 36, Wooldridge
2002). It can be applied to any system composed of individual entities.

Multi-agent simulation is a special case of multi-agent systems, which were developed in the
field of distributed artificial intelligence in computer science. A multi-agent system is a
computing system of artificial entities in an environment or space. Agents and other objects
are situated at positions in the environment. Relations link these agents and objects to each
other. Agents can perceive, produce, consume, transform and manipulate objects. The
reactions of the world to agents’ actions, or the ‘laws of the universe’, are also represented
(Ferber 1999, pp. 4, 11).

An agent is an entity with tendencies or objectives it tries to satisfy by acting in an
environment and communicating with other agents, using its resources and skills. Its actions
depend on its perception and representation of the environment, and on communications it
receives (Ferber 1999, p. 9). In other words, an agent is proactive, with a goal-directed
behaviour, and takes the initiative to satisfy its objectives. It is also reactive, as it perceives
and responds to its environment. Finally, it has social ability and interacts with other agents
(Wooldridge and Jennings 1995, Wooldridge 2002, p. 23).

According to the degree in which agents possess their defining characteristics, a distinction
can be made between cognitive and reactive agents. Cognitive agents were developed in the
tradition of artificial intelligence, emphasising knowledge and goal-directed behaviour (Ferber
1999, p. 16).

Reactive agents, typically used in the artificial life tradition, are based on the idea that agents
can be very simple and do not need intelligence themselves for the system as a whole to
have intelligent behaviour. They have a stimulus–response behaviour, communicate through
simple signal propagation and have no internal representations of their environment (Ferber
1999, pp. 27-28).

Examples of multi-agent simulation are:

 multi-agent population models that represent individuals as agents and the
number of individuals in a given species as a result of the behaviours of all agents
(Ferber 1999, p. 36);

 multi-agent simulation models of a human society that represent individual people
(or organisations and similar entities) as agents and phenomena, such as growth
of social complexity as a result of their behaviour (Wooldridge 2002, pp. 259-263);

 multi-agent simulations of humans who interact with a technical system
(Davidsson 2001).
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Multi-agent simulation is particularly suitable to simulate complex systems, as it offers a
natural way to describe system components and their interactions and can be used
effectively to simulate such systems to study their behaviour.

A FIM system can also be described in a very natural way as a system of interacting agents.
Therefore, multi-agent simulation could be used to gain insight into such a system. In
Chapter 3 a proposal is made as to how this could be done.

 2.2.14  Emergent models

We have seen how complex systems can be modelled using multi-agent simulation. We
have also seen how evolutionary algorithms, and in particular genetic programming, are
general-purpose algorithms to solve a variety of optimisation problems.

In Stolk (2005) ideas from multi-agent simulation and from evolutionary algorithms are
combined in a novel methodology to discover emergent macro-level regularities or patterns
in simulations of complex systems. These macro-level regularities are models of the
behaviour of macro-level agents, in other words emergent models. Therefore, the new
methodology is called the emergent models methodology.

It defines ways to derive macro-level behaviour from micro-level properties and behaviour,
and discovers models at the macro-level implied by those that describe the micro-level.

This methodology can also be applied to the inverse problem of discovering micro-level
behaviour of the composing entities of a complex system from data on its macro-level
properties and behaviour. Emergent models offer a powerful methodology to study complex
systems in general and FIM systems in particular.

 2.3       A practical complex systems approach to flood
incident management

To be realistically applicable to the FIM system of the Agency, a complex systems approach
should:

 be practical enough to enable modelling of real systems – much complex systems
research is devoted primarily to demonstrating general and abstract principles of
complex systems, which thus rules out approaches such as graph theory and
complex networks, computational complexity theory and artificial life;

 be suitable to be applied to complex systems with the particular characteristics of
a FIM system, which rules out approaches such as genetic regulatory networks;

 be applicable without complete information about the state of a system and a
precise definition of all elements of the system, which rules out approaches such
as non-linear dynamics and iterative maps, stochastic iterative maps and Markov
chains, neural networks, cellular automata and game theory;

 take into account probabilistic aspects of the system, which rules out deterministic
non-linear dynamics and iterative maps;

 be suited to incremental improvements to the existing system, as long as a
fundamental restructuring of the existing system is not considered a realistic option
in the short term, which rules out approaches that focus on general structural
characteristics of complex systems, such as graph theory and complex networks.

Based on the discussion in Section 2.2, it can be concluded that a practical approach to
assess the ‘weak links’ in the FIM process can be developed as follows:

 Use a multi-agent simulation method to model in an intuitive way the systems
involved. Multi-agent simulation is a practical method to model real systems and is
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flexible enough to define models of a FIM system and the agents that manage
such a system. This is a flexible approach and aspects of incomplete information,
uncertainty and probability can, in principle, be incorporated. In a multi-agent
simulation one is free to alter any aspect of the system in a simulation, so the
method can be used to simulate any system alteration, from small improvements
to complete restructuring.

 Combine multi-agent simulation with Bayesian networks to take account of risk
and uncertainty. While multi-agent simulation can be used to model the structure
and operation of an organisational system in an intuitive way, Bayesian networks
can model the probabilistic relationships between different components of the
system. Probability estimates do not need to be objectively defined quantities. In
the absence of objectively determined information, they can be incorporated based
on expert judgements.

 It may be possible to use evolutionary computation to find optimal solutions to
particular problems.

 It may be possible to use geographical information systems and/or cellular
automata to incorporate spatial aspects, such as information provided by flood
mapping.

 The above approaches are used in an extended emergent models methodology
suited to emergency response and, in particular, to FIM.
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 3  Conceptual framework for risk
assessment in flood incident
management based on complex
systems

The Environment Agency’s FIM system is a complex system. Complex systems can be
modelled by multi-agent simulation. Therefore, the proposed methodology includes modelling
FIM using multi-agent simulation. Risk is an important aspect of FIM. In the context of
artificial intelligence much research has been done on Bayesian networks as a method to
analyse uncertainty and risk. Influence diagrams are an extension of Bayesian networks
particularly suited to decision making in circumstances of uncertainty. While Bayesian
networks contain nodes that represent causes and effects with associated conditional
probabilities, influence diagrams in addition contain nodes that represent decision variables
and nodes that represent objective variables. Several algorithms are available to analyse
Bayesian networks and influence diagrams. Therefore, the proposed methodology includes
the use of influence diagrams to model risk and uncertainty.

In the proposed methodology multi-agent simulation and influence diagrams will be
integrated in a coherent conceptual framework for risk assessment in FIM.

 3.1  The Environment Agency’s flood incident
management model

The Environment Agency’s management system defines the FIM model. This model
describes processes at several levels:

 end-to-end process – FIM;
 activity diagram (level 1);
 activity diagram (level 2);
 activity diagram (level 3).

Part of the FIM model defines processes related to flood warning and response. As an
example, these processes are detailed in Figure 3.1, to be used in Section 3.4 as an
illustration of the proposed methodology. We see that FIM processes are described as
interacting components at several levels of detail. The top-level end-to-end process is refined
in successively more detailed sub-processes.
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Figure 3.1  Flood incident management processes (FDO, Forecast Duty Officer;
ODO, Operations Duty Officer).
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 3.2  Multi-agent simulation of complex systems
In multi-agent simulation active entities in the world and their behaviour are represented in a
computer as software entities called agents. This makes it possible to represent a
phenomenon as the result of the interactions of a set of autonomous agents (Ferber 1999, p.
36; see also, for example, Holland 1998, pp. 116-118, Wooldridge 2002). It can be applied to
any system composed of individual entities.

Multi-agent simulation is a special case of multi-agent systems, which have been developed
in the field of distributed artificial intelligence in computer science. A multi-agent system is a
computing system of artificial entities in an environment or space. Agents and other objects
are situated at positions in the environment. Relations link these agents and objects to each
other. Agents can perceive, produce, consume, transform and manipulate objects. The
reactions of the world to agents’ actions, or the ‘laws of the universe’, are also represented
(Ferber 1999, pp. 4, 11).

An agent is an entity with tendencies or objectives it tries to satisfy by acting in an
environment and communicating with other agents. Doing this, it takes account of its
resources and skills. Its actions depend on its perception and representation of the
environment, and on communications it receives (Ferber 1999, p. 9). In other words, an
agent is proactive, with goal-directed behaviour, and takes the initiative to satisfy its
objectives. It is also reactive, as it perceives and responds to its environment. Finally, it has
social ability and so interacts with other agents (Wooldridge and Jennings 1995, Wooldridge
2002, p. 23).

According to the degree in which agents possess their defining characteristics, a distinction
can be made between cognitive and reactive agents. Cognitive agents were developed in the
tradition of artificial intelligence, emphasising knowledge and goal-directed behaviour (Ferber
1999, p. 16). Reactive agents, typically used in the artificial life tradition, are based on the
idea that agents can be very simple and do not need intelligence themselves for the system
as a whole to have intelligent behaviour. They have a stimulus–response behaviour,
communicate through simple signal propagation and have no internal representations of their
environment (Ferber 1999, pp. 27-28).

Examples of multi-agent simulation are a:

 multi-agent population model that represents individuals as agents and the
number of individuals in a given species as a result of the behaviours of all agents
(Ferber 1999, p. 36);

 multi-agent simulation model of a human society that represents individual people
(or organisations and similar entities) as agents and phenomena, such as growth
of social complexity, as a result of their behaviour (Wooldridge 2002, pp. 259-263);

 multi-agent simulation of humans who interact with a technical system (Davidsson
2001).

Agents have some clear advantages compared to traditional approaches to complex systems
models. They provide a sufficiently general framework to model any entity – they observe the
state of its environment and react by executing some action in the same environment.

In an application developed in Stolk (2005), insects are modelled as agents that observe the
presence or absence of plants in their environment, and react by adjusting their movement
behaviour. In another application genes are modelled as agents that observe the state of
their environment (that is, other genes’ expression levels) and react to that environmental
state by updating their own expression levels.
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Figure 3.2  An agent with internal state.

More sophisticated agents are not only reactive, but have an intermediate internal state.
Such agents observe their environment and, depending on the information gathered about
the state of the environment, update their internal state. Their actions in the environment
depend on their internal state, as illustrated in Figure 3.2 (see, for example, Wooldridge
2002, pp. 31-36). This resembles the behaviour of living organisms. Therefore, organisms
can usefully be modelled as agents with internal state. Agents have a conceptual advantage
when modelling of systems of arbitrary complexity. Relatively simple agents interact to give
rise to a complex system. Multi-agent simulations reveal the behaviour of the system as a
whole, so, in principle, a system of agents can discover emergent models that describe the
macro-level behaviour. In particular, group agents can work out an appropriate macro-level
model that corresponds to given micro-level models of individual agents. At the next higher
level, group agents can be individual member agents of the higher level group agent, and the
process can be repeated.

Organisations are good examples of complex systems suitable for simulation using multi-
agent approaches as described, for example, in Ferber (1999), Ciancarini and Wooldridge
2001, Wooldridge 2002, D’Inverno et al. 2002, Wooldridge et al. 2002). When the
characteristics of organisations are examined, it becomes clear why this is so.

First, in an organisation relatively autonomous entities (organisational units, individuals) with
their own behaviour respond to environmental stimuli, as well as satisfying goals. Likewise,
agents have autonomy (that is, they exhibit internal properties only modifiable by some
action of the agent itself), and they have their own behaviour without being under the control
of other program constructs, such as a master program. Unlike an object, which only does
something when a different object calls one of its methods, an agent, when created, starts to
do something on its own. In principle, every entity in the world can be modelled as an agent.

Second, organisational units and individuals in an organisation interact with each other and
with processes in their environment. Agents can simulate this by appropriate communication
capabilities.

Third, organisations are structured hierarchically. Micro-level entities act together to
constitute macro-level entities. Macro-level properties and behaviour are derived from micro-
level properties and behaviour. Yet, the macro-level can be described by a macro-model that
does not include the micro-level. Agents can form groups, which can model macro-level
entities. Properties and behaviour of group agents are emergent properties and behaviour,
derived from properties and behaviour of their members. Yet group agent properties and
behaviour are different from individual agent properties and behaviour.
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A fundamental problem is the emergence problem. How can we derive properties and
behaviour at the group level, or macro-level, from those at the individual level, or micro-level?
Multi-agent approaches with group agents have been used to simulate physical systems, for
example in Servat et al. (1998a, 1998b), in which agents collectively form group agents with
group membership determined from individual agents’ properties and behaviour. In these
simulations, whereas group membership can be said to emerge from individual behaviour,
the multi-agent simulations do not automatically produce a description or model of the
emergent behaviour of group agents. We just observe the results of the simulations and say
they are produced by, or emerge from, all the individual actions. For example, the gathering
of a pond of water is described as an emergent result of actions of water droplets.

To elucidate emergence through computer simulation, we would like to have a systematic
method to derive macro-properties and -behaviour, to obtain models on the level of group
agents in simulations, as illustrated by Figure 3.3.

A group agent has to have a way to derive its properties from the individual properties of its
members. As seen in the introduction of this chapter, to define group properties is a non-
trivial problem. However, if we assume that relevant properties have been defined, their
values can usually be derived using some aggregation mechanism. For example, group
mass is the sum of individual masses, group density the number of individuals divided by
surface, etc.

The derivation of group behaviour is less straightforward. Since a group agent does not have
pre-established rules of behaviour, these rules must be discovered. Group behaviour could
be described in general with a computer program that implements agent behaviour. For
simplicity, let us confine our attention to the case of one method in which the group agent
implements a function that relates some group level properties to other group level
properties, environmental influences, etc. A number of parameters of this function are
unknown and the group agent should employ knowledge discovery and learning techniques
to derive these parameters. In a more general approach, we can even assume that the
shape of the function is unknown and also has to be discovered.
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Macroscopic level: group agents

Microscopic level: individual agents

Figure 3.3  Levels in a multi-agent simulation.

 3.3  Bayesian networks and influence diagrams
A simple example of a Bayesian network is reproduced in Figure 3.4. The arrows represent
causal connections between different elements in a situation. They have probabilities
associated with them. The situation described by this network is that of a family with a dog.
The family can be at home or have gone out. The network can be used to solve problems
such as to determine the probability that the family is at home, having observed that the
lights are on, or that the dog has barked. For example, the dog is left outside when the family
is out, but also when it has a bowel problem. If the dog is outside, one is likely to hear it bark
(p = 0.7), but there is also a small probability of 0.01 of hearing it bark when it is inside.

In general, Bayesian networks describe situations in which elements in a situation can be
causally connected, with conditional probabilities associated with the connections. They can
be used to determine probabilities of particular states of events in the described situation,
when some part of the situation has been observed.
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Figure 3.4  A simple Bayesian network (from Charniak 1991).

Influence diagrams are an extension of Bayesian networks suitable for decision support. An
example is reproduced in Figure 3.5. Most nodes are the same as those in a Bayesian
network, with added decision nodes (rectangles) and a value node (rounded rectangle).

The following nodes are used in a Bayesian network (see, for example, Shachter 2005).

An uncertainty node represents a variable that is uncertain and
that cannot be controlled directly.

A deterministic node represents a variable that is a deterministic
function of the quantities that it depends on.
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An influence diagram, in addition, contains the nodes (see, for example, Shachter 2005):

A decision node represents a variable that the decision maker
has the power to control.

A value node represents an objective variable that is a
quantitative criterion to be maximised or minimised (value nodes
are drawn in many ways).

The network can be used to calculate the probable impact of a decision (for example, make a
tactical warning) on the value, that is the final result of the network on something desirable,
such as life or economic value.
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Figure 3.5  An influence diagram that describes an emergency response system for a
nuclear plant (from Claudio 1985, cited in Shachter 1999).

 3.4  Flood incident management, multi-agent simulation and
influence diagrams

The FIM Model, as defined in the Environment Agency’s Management System, can serve a
basis for modelling the FIM process with multi-agent simulation. Loosely, every box in a
diagram of the model would correspond to an agent.

The behaviour of an agent consists of:

 observing its environment;
 processing information obtained from observations;
 acting on its environment.

Part of the FIM model defines processes related to flood warning and response. Illustrative
examples of agents identified in the process diagrams related to flood warning and response
are shown in Table 3.1. Generic agent behaviour and specific agent behaviour are shown in
the first and second columns, respectively.

Influence diagrams can be superimposed on this multi-agent system to model uncertainty
and risk. Each action of an agent leads to different results with associated probabilities. So
probabilistic nodes of the diagram represent aspects of agent behaviour, including
uncertainties in observations (for example, reliability of observed or communicated
information), information processing (for example, cognitive mechanisms, reasoning errors,
faulty computing equipment) and actions (for example, faulty communication equipment,
physical obstruction). Decision nodes can be incorporated to represent decisions made on
various components of the system. The impact of such decisions on the final expected result
of the system, represented as a value node, can be estimated by evaluating the network.

Of course, it is assumed we can quantify the output as one expected result. We have to
assume this if we want to have a means to make a best decision. In fact, we always make
implicit judgements about the value of the criterion to be maximised or minimised when we
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decide something. To quantify an objective criterion just means to make explicit the value we
attach to things.

Probabilities associated with uncertainties in agent behaviour are shown in the third column
of Table 3.1. Incorporating these probabilities in a multi-agent simulation of flood incident
response would make it possible to model risk and uncertainty in the context of a complex
system model and to take advantage of known algorithms to analyse Bayesian networks and
influence diagrams.

It is, of course, essential to have a way to estimate the probabilities of outputs of each
system component, depending on its inputs. The number should reflect the best information
available. This can be done in several ways, for example, using:

 information on the behaviour of the components as assessed by scientific theory;
 empirical information on past behaviour;
 probability estimates of experts;
 probability estimates of FIM practitioners.

Risk can no longer be defined in the traditional way as probability of event occurring
multiplied by consequences, as it is implicit in all the probabilities and the final outcome of
the system. It is inherent in a whole-system approach that it becomes impossible to
associate risk with a single event. However, it is possible to evaluate the expected effect on
the outcome of the whole system of different decisions.
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Table 3.1  Flood incident management agents.

Warning and response delivery agent
Behaviour Object of behaviour Uncertainties

Observe Detection and forecasting
information

Have correct information: p = ?

Do not have correct information: p
= ?

Process
information

Information processed correctly: p
= ?

Information not processed
correctly: p = ?

Act Issue warning; operate
defences

Warning issued: p = ?

Warning not issued: p = ?

Defences operated: p = ?

Defences not operated: p = ?

Warning decision agent
Behaviour Object of behaviour Uncertainties

Observe Intensified review of
observed information

Intensified review of forecast
information

Intensified review of
condition of assets

Have correct information: p = ?

Do not have correct information: p
= ?

Process
information

Confer with FDO and ODO

Evaluate and verify
information

Identify what other
information is needed

Determine urgency required

Consider external influences

Information processed correctly: p
= ?

Information not processed
correctly: p = ?

Act Make decision to issue a
warning

Make decision not to issue a
warning

Warning issued: p = ?

Warning not issued: p = ?
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Figure 3.6  Example of Bayesian network representation of an Environment Agency process.
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 4  Requirements for complex
systems simulation of flood
incident management

It is proposed to develop a software environment that enables multi-agent simulation of
the FIM process. As indicated in the other Work Packages, the concepts of agents,
objects or functions are broadly consistent and multi-agent simulation can capture the
common elements of the various approaches. The multi-agent simulation environment
will incorporate Bayesian network analysis and, in particular, the influence diagram
extension of Bayesian networks (which allows decision support as a method suitable
for a whole system approach to risk).

In influence diagrams qualitative information is reflected in probabilities. Relationships
between objects, agents or functions are reflected in a network of nodes and relevance
arrows. It is assumed that management decisions can alter the probabilities of
component performance descriptors and that cost information of decisions can be
included. As in the case of quantifying the objective, cost estimates are always made at
least implicitly.

This chapter summarily describes functional requirements of an environment that can
serve as a support tool for decision making to optimise a FIM system. This description
is intended as a basis for discussion to produce a full requirements specification
document at the beginning of Project Phase 2. The full requirements specification
should take account of guidelines such as those established by Institute of Electrical
and Electronic Engineers (IEEE) standards for systems and software engineering (see
IEEE 1998a, IEEE 1998b, Van Vliet 2000). System specification principles for
engineering agent-based systems and software are formulated, for example, in
Padgham and Winikoff (2004).

 4.1  Functional requirements related to system
components

 Goal 1: understand, assess and model the uncertainty and reliability of
different key flood incident management components (detection, forecasting,
warning and response to emergencies):

o define all different system components:

 detection (WP1),
 forecasting (WP1),
 warning (WP1),
 response (WP1), which includes active and passive flood defence

assets (WP2) and reactive mitigation measures in relation to the
supporting infrastructure (WP3);

o enter data on uncertainty and reliability of system components as
estimated probabilities of different system component performance
descriptors, using:

 data on the response part of the FIM process (WP1);
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 reliability data on operational failure of flood defence assets, such as
failure rates (per year and/or on demand), failure modes and failure
causes and consequences (WP2);

 data on probability and consequences of failure of reactive mitigation
measures in relation to the supporting infrastructure (that is, assets
other than flood defence assets) and personnel who manage the
flood incidents, including transport, utilities (for example, gas, water
and electricity), communication networks, emergency services and
health services (WP3).

 4.2  Functional requirements related to the whole
system

 Goal 2: understand and model the integration of operation (both human and
assets) of key components within a complex system during an incident:

o define how all system components are interrelated (WP1, WP2, WP3,
WP4);

o simulate system behaviour using definitions of system components and
their interrelationships, as well as data on uncertainty and reliability of
components’ performance (WP4).

 4.3  Functional requirements related to management
decisions about the system

 Goal 3: understand, assess and model the improvement of reliability and
management of uncertainty via flood incident management planning:

o define various options to improve reliability of performance of system
components;

o estimate costs and performance improvement (in terms of accepted
performance criteria, such as reduction of loss of life, injury to people,
flood damage to properties (WP1), for the different options);

o simulate the system with the different options;

o evaluate which option is the best in terms of overall system performance
improvement in relation to cost.

 Goal 4: support risk assessment and decision-making tool related to FCERM
at different decision levels (National – NaFRA/RASP, Catchment –
CFMPs/MDSF, Local – Development Control/FD2320 and Asset
Management/PAMS):

o enable different user categories to use the decision-making tool with
information available at their level.
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 5   Conclusion and
recommendations

In this chapter conclusions and recommendations are formulated about the kind of
complex systems-based approach to risk management that is considered suitable to
improve FIM.

 5.1  A practical approach to risk management from a
complex systems point of view

For FIM a practical approach to risk management from a complex systems point of
view is required to model real systems. To realise such a practical approach it is
recommended to:

 Use multi-agent simulation to model, in an intuitive way, the systems
involved. As detailed in Chapter 2, multi-agent simulation is particularly
suitable to simulate complex systems, as it offers a natural way to describe
system components and their interactions and can be used effectively to
simulate such systems to study their behaviour. A FIM system can also be
described in a very natural way as a system of interacting agents; therefore,
multi-agent simulation can be used to gain insight into such a system.
Chapter 3 details how this could be done.

 Combine multi-agent simulation with Bayesian networks to capture risk and
uncertainty, and probability estimates can be incorporated via expert
judgements. As seen in Chapter 2, Bayesian networks are a particularly
relevant formalism to describe probability and risk aspects of a FIM system,
because they offer an intuitive way to define probabilities of different
outcomes on the level of individual system components. These probabilities
need not be objectively defined, but can be based on the judgement of
experts and Environment Agency staff with practical knowledge of the
system. They offer a method to integrate component-level knowledge in an
outcome at the whole-system level. In Chapter 3 more details are given on a
possible implementation of such an approach for the FIM system of the
Environment Agency.

 Possibly use evolutionary computation to find optimal solutions to particular
problems.

 Possibly use geographical information systems and/or cellular automata to
incorporate spatial aspects.

 Consolidate the above approaches in an extended emergent models
methodology suited to emergency response and, in particular, to FIM.

 5.2  Applying the approach to flood incident
management by the Environment Agency

The FIM model, as defined in the Environment Agency management system, can serve
as a basis on which to model the FIM process with multi-agent simulation, at least the
part of this process directly under the responsibility of the Environment Agency. Agents
should also be defined to simulate entities outside the Environment Agency involved in
FIM, such as local authorities, communities, enterprises, voluntary organisations and
affected individuals.
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Loosely, every box in the FIM model diagram would correspond to an agent.

The behaviour of an agent consists of:

 observing its environment;
 processing information obtained from observations;
 acting on its environment.

Illustrative examples of agents identified in the process diagrams are given in Chapter
3 of this report.

Influence diagrams can be superimposed on this multi-agent system to model
uncertainty and risk. Each action of an agent leads to different results with associated
probabilities. Thus, probabilistic nodes of the diagram represent aspects of agent
behaviour, including uncertainties in observations (for example, reliability of observed
or communicated information), information processing (for example, cognitive
mechanisms, reasoning errors, faulty computing equipment) and actions (for example,
faulty communication equipment, physical obstruction). Decision nodes can be
incorporated to represent decisions made on various components of the system. The
impact of such decisions on the final expected result of the system, represented as a
value node, can be estimated by evaluating the network.

Probabilities can be associated with uncertainties in the agent. Incorporating these
probabilities in a multi-agent simulation of flood incident response would make it
possible to model risk and uncertainty in the context of a complex system model and to
take advantage of known algorithms to analyse Bayesian networks and influence
diagrams.

 5.3  Developing tools to support decision making on
flood incident management

It is proposed to develop a software environment that enables multi-agent simulation of
the FIM process. The multi-agent simulation environment will incorporate Bayesian
network analysis and, in particular, the influence diagram extension of Bayesian
networks (which allows decision support) as a method suitable for a whole-system
approach to risk.

Influence diagrams can support management decisions to alter the probabilities of
component performance descriptors to achieve better performance of the FIM system,
while controlling the cost of change.

Chapter 4 of this report summarily describes functional requirements of an environment
that can serve as a support tool for decision making to optimise a FIM system. This
description is intended as a basis for discussion to produce a full requirements
specification document at the beginning of Project Phase 2, which takes account of
established guidelines and principles for systems and software engineering and, in
particular, for engineering agent-based systems and software.
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