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Appendix A Moment-based inference for stochastic-
mechanistic models

A.1 Introduction

Within this project, a substantial portion of the research is devoted to the development and application
of models for rainfall based on point processes. These models are ‘stochastic-mechanistic’, in the
sense that they attempt to provide a simplified stochastic representation of the mechanics of the rainfall
process. They are parameterised in terms of physically interpretable quantities (e.g. storm arrival rate
and mean cell intensity). However, estimation of the parameters is difficult, mainly because they are
related rather indirectly to observable properties of rainfall sequences. Likelihood-based inference is
generally infeasible, owing to the difficulty in formulating a likelihood function (this is a consequence of
the complex dependencies induced by the model specification). Moreover, it has been argued by
Rodriguez-Iturbe et al. (1988, Section 3) that likelihood-based inference is not necessarily appropriate
in any case, because the models are necessarily over-simplified so that the joint distribution of an
observed rainfall sequence differs substantially in some respects from that implied by the models. For
example, the rectangular profile of rain cells in a single-site model leads to short-term deterministic
features in model realisations; these are not present in real rainfall. This argument is to some extent
supported by experience with the ‘spectral likelihood’ approach, which attempts to formulate an
approximate Gaussian likelihood based on collections of sample Fourier coefficients. This approximate
likelihood only involves the second-order moment properties of the data (mean, variance and
autocorrelations); models fitted using this method are very good at reproducing these properties of
observed rainfall sequences, but poor when it comes to other properties of interest such as lengths of
dry intervals. Informally, the problem is that the likelihood method tries too hard to achieve a good
match between model and data at very short timescales, whereas in practice this is not to be expected.

In the absence of a suitable likelihood-based approach, stochastic-mechanistic models are usually fitted
using a generalised method of moments: select a set of properties of interest (e.g. mean, variance,
autocorrelations and proportion of ‘dry’ intervals at various levels of aggregation) and choose parameter
estimates that minimise some measure of discrepancy between model and data with respect to these
properties. This measure is usually a (possibly weighted) sum of squared differences. A particular
advantage of this approach is that the model parameterisation can be chosen to reproduce, as closely
as possible, those properties that are deemed to be particularly important in any specific application.
However, a major disadvantage (compared with, say, a likelihood-based approach) is that assessments
of uncertainty are not readily available. This note is an attempt to summarise the available options for
obtaining uncertainty estimates (e.g. confidence intervals) when model parameters are estimated using
a generalised method of moments. The problem can be regarded as an application of the theory of
estimating equations; the relevant aspects are summarised in Section A.3 below. Before this, however,
we review some standard theory of likelihood-based inference, by way of illustrating the general
concepts. In Section A.4, we present the moment-based estimation procedure within the estimating
equation framework; and Section A.5 provides a concise summary along with some practical
suggestions for implementation.

A.2 Inference in a likelihood-based setting

The relevant results from likelihood-based inference are most easily illustrated in the context of a
problem in which a vector of observations y = (y1 . . . yn)

′ has been generated from a joint probability
distribution whose density has the form f (y;θ). The functional form of f is known but the exact value of
θ is not. The LIKELIHOOD FUNCTION for θ given the data y is defined as

L(θ|y) = f (y;θ) ,

and can be interpreted as the probability of obtaining the observed data for any given value of θ. The
MAXIMUM LIKELIHOOD ESTIMATE (MLE) of θ is the value, θ̂ say, for which the likelihood function is
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maximised (i.e. the value that allocates the highest probability to the observations). Equivalently, it is
the value for which the log-likelihood

`(θ|y) = lnL(θ|y)

is maximised. In well-behaved problems, the MLE therefore satisfies the equation

U
(
θ̂|y
)

= 0 , (A.1)

where U (θ|y) = ∂`(θ|y)/∂θ is the SCORE FUNCTION. We assume here that (A.1) has a unique
solution. Note that

U (θ|y) =
∂ ln f (y;θ)

∂θ
=

1
f (y;θ)

∂ f (y;θ)
∂θ

. (A.2)

A.2.1 Properties of the score

Since y has been generated from a probability distribution, it can be regarded as the realised value of a
vector Y of random variables. Hence the score function U (θ|y) is the realised value of a random
variable Uθ = U (θ|Y). The properties of this random variable depend on the true value of θ; call this
θ0. For example, we have

E(Uθ) =
Z

U (θ|y) f (y;θ0)dy =
Z 1

f (y;θ)
∂ f (y;θ)

∂θ
f (y;θ0)dy ,

the last step following from (A.2). This expression is valid for all θ. In particular, the expected score at
the true parameter value is

E
(
Uθ0

)
=

Z 1
f (y;θ0)

∂ f (y;θ)
∂θ

∣∣∣∣
θ=θ0

f (y;θ0)dy =
Z

∂ f (y;θ)
∂θ

∣∣∣∣
θ=θ0

dy. (A.3)

Now, since f (y;θ) is a probability density for all values of θ, we haveZ
f (y;θ)dy = 1 so that

∂

∂θ

Z
f (y;θ)dy = 0 .

In well-behaved problems we can interchange the order of differentiation and integration, to yieldZ
∂ f (y;θ)

∂θ
dy = 0 .

This identity holds for all values of θ, and in particular for θ = θ0. Hence, from (A.3), we have

E
(
Uθ0

)
= 0 . (A.4)

We now turn to the variance of the score function. This can be related to the expected value of its
derivative — or equivalently, of the second derivative of the log-likelihood. For, differentiating (A.2) with
respect to θ, we obtain

∂U (θ|y)
∂θ

=
∂2`(θ|y)

∂θ2 = − 1
f 2 (y;θ)

(
∂ f (y;θ)

∂θ

)2

+
1

f (y;θ)
∂2 f (y;θ)

∂θ2

= −U2 (θ|y)+
1

f (y;θ)
∂2 f (y;θ)

∂θ2 . (A.5)

As before, all of these quantities are the realised values of random variables, so we can consider
replacing y with Y and taking expectations. In particular, let Hθ = ∂2`(θ|Y)/∂θ2. Then we obtain

E(Hθ) =−E
[
U2

θ

]
+

Z 1
f (y;θ)

∂2 f (y;θ)
∂θ2 f (y;θ0)dy .

Evaluated at θ = θ0, the last term here is zero and we obtain

E
[
U2

θ0

]
=−E

(
Hθ0

)
= I (θ0) , say.

But since E
(
Uθ0

)
= 0, we must have E

[
U2

θ0

]
= var

(
Uθ0

)
. Thus we have shown that

var
(
Uθ0

)
= I (θ0) . (A.6)

I (θ0) is called the (FISHER) INFORMATION.
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A.2.2 Large-sample properties of the MLE

The properties of the score function are fundamental to the development of asymptotic results for
maximum likelihood estimators — in particular, to the construction of standard errors and confidence
intervals for the parameters. The theory relies on the fact that, in well-behaved problems, as the sample
size n tends to infinity the following two things happen:

1. The score function Uθ tends, when suitably normalised, to its expectation. For example, if the
random variables in Y are independent and identically distributed (iid) then the log-likelihood is a
sum of n independent contributions; it follows that the score function is also a sum of n
independent contributions, and the law of large numbers dictates that n−1 [Uθ−E(Uθ)]→ 0 as
n→ ∞ in this case.

2. The distribution of [Uθ−E(Uθ)]/
√

I (θ) tends to the standard normal distribution. Again, in the
iid case this is easy to see: Uθ is a sum of independent terms, and the normality follows from the
Central Limit Theorem.

Providing Uθ is continuous in θ, property 1 here implies that for large n, the score equation (A.1) has a
solution in the neighbourhood of θ0 (since, from (A.4), E

(
Uθ0

)
= 0), and that this solution tends to θ0 as

n→ ∞. Hence, providing n is large enough,
∣∣θ̂−θ0

∣∣ will be small so that we can carry out a Taylor
Series expansion for the score function in the neighbourhood of θ0 and write

U
θ̂
≈Uθ0 +

(
θ̂−θ0

)
Hθ0 (A.7)

(recall that Hθ is the second derivative of the log-likelihood at θ). But by definition, U
θ̂
= 0, so that

θ̂−θ0 ≈−
Uθ0

Hθ0

=−
Uθ0

I (θ0)
I (θ0)
Hθ0

.

As n→ ∞, Hθ tends to its expectation which is −I (θ), so that the second factor on the right-hand side
here tends to −1. Hence we can approximate the estimation error θ̂−θ0 by Uθ0/I (θ0). Strictly
speaking, some care needs to be taken over the relative magnitudes of the various approximations here
— for full details, see Cox and Hinkley (1974, Section 9.2).

Having expressed the estimation error in terms of the score, we can use property 2 above to deduce
that for large samples, the estimation error has an approximate normal distribution. Specifically,

√
I (θ0)

(
θ̂−θ0

)
≈

Uθ0√
I (θ0)

=
Uθ0 −E

[
Uθ0

]√
I (θ0)

∼ N(0,1) , (A.8)

since E
[
Uθ0

]
= 0. For practical purposes, an equivalent statement of this result is that for large n, the

distribution of the MLE is approximately normal with mean θ0 and variance 1/I (θ0). This can be used,
for example, to construct approximate confidence intervals for θ0: an approximate 95% interval is

θ̂± 1.96√
I (θ0)

. (A.9)

Hypothesis tests based on (A.8) are referred to as WALD TESTS. As an alternative, inference could be
based directly on the quantity [Uθ−E(Uθ)]/

√
I (θ) at the right-hand side of (A.8), to yield a SCORE

TEST. In general, the results from Wald and score tests will differ slightly due to the first approximation
in (A.8).

A third possibility is to base inference on the log-likelihood function itself. A second-order Taylor
expansion about the MLE yields, for some θ† between θ0 and θ̂,

`(θ0|Y) = `
(
θ̂|Y
)
+
(
θ0− θ̂

) ∂`

∂θ

∣∣∣∣
θ=θ̂

+
1
2
(
θ0− θ̂

)2 ∂2`

∂θ2

∣∣∣∣
θ=θ†

= `
(
θ̂|Y
)
+

1
2
(
θ0− θ̂

)2
H

θ† , (A.10)
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as the first derivative of the log-likelihood is zero at θ̂ by definition. Since θ† is between θ0 and θ̂ we
have H

θ† ≈ H
θ̂
. Moreover, again using the fact that Hθ ≈−I(θ) for large n, we find

2
[
`
(
θ̂|Y
)
− `(θ0|Y)

]
≈
(
θ0− θ̂

)2
I
(
θ̂
)

=
[(

θ0− θ̂
)√

I
(
θ̂
)]2

. (A.11)

But from (A.8), the right hand side here is just the square of a standard normal random variable, and
therefore has a chi-squared distribution with 1 degree of freedom. The asymptotic approximation

2
[
`
(
θ̂|Y
)
− `(θ0|Y)

]
∼ χ

2
1 (A.12)

can therefore be used to test hypotheses and construct confidence intervals. For example, a 95%
confidence interval for θ consists of all values for which 2

[
`
(
θ̂|Y
)
− `(θ|Y)

]
is less than the upper 95%

point of a χ2
1 distribution (which is 3.84).

Hypothesis tests based on (A.12) may be referred to as LIKELIHOOD RATIO TESTS. The three test
procedures (Wald, score and likelihood ratio) are asymptotically equivalent, in the sense that their
results will be very similar for large enough sample sizes. However, since the likelihood ratio test is
derived from approximation (A.11) rather than from (A.7), its results will usually differ slightly, in finite
samples, from both the Wald and score tests. There are grounds for preferring 2

[
`
(
θ̂|Y
)
− `(θ|Y)

]
as

a test statistic, although the accuracy of the χ2 approximation is not guaranteed in finite samples.

A.2.3 More than one parameter

The theory above carries over straightforwardly to the case when there is more than one parameter.
Specifically, denote the unknown parameter vector by θ = (θ1 . . . θp)

′. Then the log-likelihood for θ can
be defined as previously, and the MLE satisfies the system of score equations

U j
(
θ̂|y
)

= 0 ( j = 1, . . . , p)

where now U j (θ|y) = ∂`(θ|y)/∂θ j. These p equations can be written in vector form as

U
(
θ̂|y
)

= 0 . (A.13)

U(θ|y) is the SCORE VECTOR, and can be regarded as the realised value of a vector of random
variables Uθ. Denoting the true parameter by θ0, we can show that

E
(
Uθ0

)
= 0 and var

(
Uθ0

)
= I(θ0) =−E

(
Hθ0

)
, (A.14)

where Hθ is the Hessian matrix of second derivatives of the log-likelihood at θ. For large samples, Uθ

again approaches its expectation and has an approximate normal distribution (this time in p
dimensions):

Uθ0 ∼MV N (0,I(θ0)) . (A.15)

The Taylor expansion corresponding to (A.7) is now

U
θ̂
≈ Uθ0 +Hθ0

(
θ̂−θ0

)
, (A.16)

so that θ̂−θ0 ≈−H−1
θ0Uθ0 ≈ I−1 (θ0)Uθ0 . Hence E

(
θ̂−θ0

)
≈ 0 and

var
(
θ̂−θ0

)
≈ I−1 (θ0)var

(
Uθ0

)
I−1 (θ0) = I−1 (θ0). For large samples we therefore have,

approximately,
θ̂∼MV N

(
θ0,I−1 (θ0)

)
. (A.17)

In the multiparameter case, the equivalent of (A.10) is

`(θ0|Y) = `
(
θ̂|Y
)
+

1
2
(
θ0− θ̂

)′Hθ†
(
θ0− θ̂

)
for some θ

† between θ0 and θ̂. Now for large n, the elements of the matrix Hθ† −E [Hθ† ] are order n1/2

in probability. Also, since
(
θ0−θ

†) is order n−1/2, the elements of E [Hθ† ]−E
[
Hθ0

]
are themselves

(op
(
n1/2

)
. Therefore we can write Hθ† =−I(θ0)+E, where the elements of E are Op

(
n1/2

)
. Hence

2
[
`
(
θ̂|Y
)
− `(θ0|Y)

]
=

(
θ0− θ̂

)′ I(θ0)
(
θ0− θ̂

)
+Op

(
n−1/2

)
=

[
A(θ0)

(
θ0− θ̂

)]′A(θ0)
(
θ0− θ̂

)
+Op(n−1/2) , (A.18)
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where A(θ0) is a matrix such that A′ (θ0)A(θ0) = I(θ0). A(θ0) is not uniquely defined but could be,
for example, the Cholesky square root of I(θ0) (which is guaranteed to exist since I(θ0) is a covariance
matrix and is therefore positive definite). Now, since θ̂∼MV N

(
θ0,I−1 (θ0)

)
, we must have

A(θ0)
(
θ0− θ̂

)
∼MV N

(
0,A(θ0)I−1 (θ0)A′ (θ0)

)
approximately. Now, assuming the information matrix I(θ0) is nonsingular, we must have

A(θ0)I−1 (θ0)A′ (θ0) = A(θ0)
[
A′ (θ0)A(θ0)

]−1 A(θ0)
′

= A(θ0) [A(θ0)]
−1 [A′ (θ0)

]−1 A(θ0)
′ = 1p×p ,

the p× p identity matrix. Together with (A.18), this shows that 2
[
`
(
θ̂|Y
)
− `(θ0|Y)

]
is approximately a

sum of squares of p standard normal random variables. Asymptotically therefore,

2
[
`
(
θ̂|Y
)
− `(θ0|Y)

]
∼ χ

2
p . (A.19)

This is the multiparameter equivalent of (A.12).

Either (A.15) or (A.17) can be used to construct confidence intervals for individual parameters, as well
as confidence regions for subsets of the parameters. Moreover, (A.19) allows the construction of a
confidence region for the entire parameter vector — for example, an approximate 95% confidence
region for θ consists of all values such that 2

[
`
(
θ̂|Y
)
− `(θ|Y)

]
is less than the 95% point of χ2

p. As it
stands however, (A.19) does not allow the construction of confidence regions for subsets of the
parameter vector. We now address this problem.

A.2.4 Profile likelihood

Suppose now that the parameter vector is partitioned into two subsets: θ =
(
ψ′ λ

′)′, with target value

θ0 =
(
ψ′

0 λ
′
0
)′

. Write `(θ) = `(ψ,λ) for the log-likelihood,

U(θ) =
(

Uψ (ψ,λ)
Uλ (ψ,λ)

)
for the score vector,

I =
(

Iψψ Iψλ

Iλψ Iλλ

)
for var [U(θ0)], and H =

(
Hψψ Hψλ

Hλψ Hλλ

)
for E

[
∂2`/∂θ

2
|θ=θ0

]
.

Suppose also that ψ is held fixed, and that the likelihood is maximised with respect to λ alone for this
value of ψ. In general, the resulting estimate of λ will depend on ψ, so call it λ̂(ψ). The value of the

resulting maximised likelihood, `
(

ψ, λ̂(ψ)
)

will also depend on ψ; this is called the PROFILE

LIKELIHOOD for ψ.

Let ψ̂ be the overall MLE for ψ; then the overall MLE for λ is λ̂(ψ̂). By definition, `
(

ψ̂, λ̂(ψ̂)
)

cannot be

less than the maximised log-likelihood at any other value of ψ. Therefore the likelihood ratio statistic

Λ(ψ) = 2
[
`
(

ψ̂, λ̂(ψ̂)
)
− `
(

ψ, λ̂(ψ)
)]

(A.20)

is always positive-valued, although we would expect Λ(ψ0) to be ‘small’ in general, if ψ̂ is close to ψ0.
This suggests that when ψ is unknown, a confidence region could be determined as the set of values
for which Λ(ψ) is less than some threshold — or equivalently, as the set of values for which the profile
likelihood exceeds a corresponding threshold. An appropriate threshold can be determined by
considering the distribution of Λ(ψ0). We have

Λ(ψ0) = 2
{[

`
(

ψ̂, λ̂(ψ̂)
)
− `(ψ0,λ0)

]
−
[
`
(

ψ0, λ̂(ψ0)
)
− `(ψ0,λ0)

]}
. (A.21)

Now, using essentially the same argument as that given in the previous section we find that the term
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2
[
`
(

ψ̂, λ̂(ψ̂)
)
− `(ψ0,λ0)

]
can be written as

−
(
θ̂−θ0

)′H(θ̂−θ0
)
+Op

(
n−1/2

)
= −

(
(ψ̂−ψ0)

′
(

λ̂(ψ̂)−λ0

)′)′( Hψψ Hψλ

Hλψ Hλλ

)(
ψ̂−ψ0

λ̂(ψ̂)−λ0

)
+Op

(
n−1/2

)
= −(ψ̂−ψ0)

′Hψψ (ψ̂−ψ0)−
(

λ̂(ψ̂)−λ0

)′
Hλψ (ψ̂−ψ0)

−(ψ̂−ψ0)
′Hψλ

(
λ̂(ψ̂)−λ0

)
−
(

λ̂(ψ̂)−λ0

)′
Hλλ

(
λ̂(ψ̂)−λ0

)
+Op

(
n−1/2

)
.

(A.22)

For the second term in (A.21), the analysis can repeated as though ψ0 is known and λ is the unknown
parameter vector, to yield

2
[
`
(

ψ0, λ̂(ψ0)
)
− `(ψ0,λ0)

]
=−

(
λ̂(ψ0)−λ0

)′
Hλλ

(
λ̂(ψ0)−λ0

)
+Op

(
n−1/2

)
. (A.23)

We now substitute (A.22) and (A.23) into (A.21). This requires a relationship between λ̂(ψ̂) and λ̂(ψ0).
To find this we use (A.16), which we now write as Uψ

(
ψ̂, λ̂(ψ̂)

)
Uλ

(
ψ̂, λ̂(ψ̂)

) =
(

Uψ (ψ0,λ0)
Uλ (ψ0,λ0)

)
+
(

Hψψ Hψλ

Hλψ Hλλ

)(
ψ̂−ψ0

λ̂(ψ̂)−λ0

)
+op

(
n1/2

)
. (A.24)

If ψ0 is known so that only λ is being estimated, the corresponding expansion is

Uλ

(
ψ0, λ̂(ψ0)

)
= Uλ (ψ0,λ0)+Hλλ

(
λ̂(ψ0)−λ0

)
+op

(
n1/2

)
. (A.25)

Since the left hand sides of both (A.24) and (A.25) are zero by definition, we can equate (A.25) with the
bottom row of (A.24) to obtain

Hλλ

(
λ̂(ψ0)−λ0

)
= Hλψ (ψ̂−ψ0)+Hλλ

(
λ̂(ψ̂)−λ0

)
+op

(
n1/2

)
,

so that
λ̂(ψ0)−λ0 = λ̂(ψ̂)−λ0 +H−1

λλ
Hλψ (ψ̂−ψ0)+op

(
n1/2

)
,

the order of magnitude of the error following from the fact that the elements of Hλλ are Op(n). The
quadratic term in (A.23) can now be written as

−
(

λ̂(ψ̂)−λ0

)′
Hλλ

(
λ̂(ψ̂)−λ0

)
−
(

λ̂(ψ̂)−λ0

)′
Hλψ (ψ̂−ψ0)

−(ψ̂−ψ0)
′Hψλ

(
λ̂(ψ̂)−λ0

)
− (ψ̂−ψ0)

′HψλH−1
λλ

Hλψ (ψ̂−ψ0)+op(1) . (A.26)

We now combine (A.21), (A.22), (A.23) and (A.26), and find

Λ(ψ0) = −(ψ̂−ψ0)
′Hψψ (ψ̂−ψ0)+(ψ̂−ψ0)

′HψλH−1
λλ

Hλψ (ψ̂−ψ0)+op(1)

= −(ψ̂−ψ0)
′ [Hψψ−HψλH−1

λλ
Hλψ

]
(ψ̂−ψ0)+op(1) . (A.27)

Next, observe that
[
Hψψ−HψλH−1

λλ
Hλψ

]−1
is the submatrix of H−1 corresponding to ψ (this is not

immediately obvious, but is a standard result in matrix algebra — see, for example, Horn and Johnson
1985, page 18). For notational convenience therefore, if we write H−1 as

H−1 =
(

H(ψψ) H(ψλ)

H(λψ) H(λλ)

)
,

the likelihood ratio statistic (A.27) can be written as

Λ(ψ0) =−(ψ̂−ψ0)
′
[
H(ψψ)

]−1
(ψ̂−ψ0)+op(1) . (A.28)
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But from (A.17), the distribution of θ̂ is approximately MV N
(
θ0,I−1)= MV N

(
θ0,−H−1), so that the

distribution of ψ̂−ψ0 is approximately MV N
(

0,−H(ψψ)
)

. The development from (A.18) to (A.19) can

now be repeated, to conclude that in large samples

Λ(ψ0)∼ χ
2
q (A.29)

approximately, where q is the dimension of ψ. Therefore, if ψ0 is unknown, a confidence region can be
determined as the set {ψ : Λ(ψ) < c}, where c is the appropriate percentile of the χ2

q distribution.

A.3 Estimating equations

In the likelihood setting above, the asymptotic results depend on the following properties of the score
function:

1. The expected score is zero at the true parameter value.

2. The variance of the score can be calculated at the true parameter value.

3. The score, when suitably normalised, tends to its expectation as n→ ∞.

4. The score is a continuous function of the parameter, in the neighbourhood of the true parameter
value.

5. As n→ ∞, the distribution of the score vector tends to the multivariate normal.

6. The second derivative of the score is bounded in the neighbourhood of the true parameter value
(this was not made explicit in the discussion above, but is necessary to control the magnitudes
of the various approximations leading to (A.8) and (A.17)).

These observations suggest that, as an alternative to likelihood-based inference, we may consider
obtaining parameters by solving the equation

g
(
θ̂|y
)

= 0 , (A.30)

where g is a function such that the associated vector of random variables gθ has properties 1–6 above.
Any such equation is called an ESTIMATING EQUATION; we will call gθ an ESTIMATING FUNCTION. If θ̂

solves an estimating equation of the form (A.30), then the arguments of the previous section can be
repeated. Let H(θ) denote the expected value of the Hessian matrix Hθ = ∂gθ/∂θ, and let J(θ) be the
covariance matrix of gθ. Then for large n,

θ̂∼MV N (θ0,V(θ0)) approximately, (A.31)

where V(θ) = [H(θ)]−1 J(θ)H(θ)−1.

Many numerical optimisation methods (for example, those based around Newton-Raphson iterative
schemes) compute the Hessian H

θ̂
as a by-product of the optimisation procedure. We may therefore

use this to approximate H(θ0) in the calculation of V(θ0). Further simplification is possible if we can
choose g in such a way that H(θ) =−J(θ) (from (A.14), this is the case for score-based estimation),
since in this case V(θ) =− [H(θ)]−1.

As in the case of likelihood-based inference, tests of hypotheses can be based either on (A.31) (which
is the equivalent of a Wald test) or on the multivariate normal distribution of the estimating function itself
(the equivalent of a score test):

gθ0 ∼MV N (0,J(θ0)) . (A.32)

Much of the literature on estimating equations takes (A.30) as its starting point. In this case, the
resulting estimate is not necessarily the maximiser (or minimiser) of a function such as the
log-likelihood, whence there is no obvious equivalent to the likelihood ratio test. However, a
generalisation is possible if gθ is the gradient vector of some objective function. Specifically, suppose
that the estimating equations arise from minimising a measure of discrepancy between data and model,
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S (θ|y) say. In this case, a confidence region could be defined as the set of all values for which S (θ|y) is
less than some threshold. We now establish what this threshold should be.

A second-order Taylor expansion of S about θ̂ yields

2
[
S (θ0|Y)−S

(
θ̂|Y
)]

=
(
θ0− θ̂

)′H(θ0)
(
θ0− θ̂

)
+op(1).

This is dominated by the first term, which is a quadratic form in normal random variables. Distributions
of quadratic forms are difficult to compute exactly. However, it is common (e.g. Bowman and Azzalini
1997, p.88) to approximate their quantiles with those of a scaled and shifted χ2 distribution. The shift,
scale and degrees of freedom of the approximating distribution are chosen to match the first three
moments (or equivalently, cumulants) of the quadratic form. The rth cumulant is given (Kuonen, 1999,
Section 2) by

κr = 2r−1
Γ(r)tr{[V(θ0)H(θ0)]

r} , (A.33)

with tr() denoting the trace operator. The distribution of the quadratic form is then approximated by that
of aX + c, where X ∼ χ2

b and

a =
|κ3|
4κ2

b =
8κ3

2

κ2
3

c = κ1−ab . (A.34)

In practice, it is necessary to replace θ0 in (A.33) with θ̂. Since V
(
θ̂
)

=
[
H
(
θ̂
)]−1 J

(
θ̂
)[

H
(
θ̂
)]−1

, we
therefore compute

κr = 2r−1
Γ(r)tr

{[
H−1 (

θ̂
)

J
(
θ̂
)]r}

, (A.35)

This then yields a reasonably straightforward procedure for constructing confidence regions based on
the values of the objective function. For example, a 95% region consists of the set of values for which

a−1{2
[
S (θ0|Y)−S

(
θ̂|Y
)]
− c
}

is less than the 95th percentile of the χ2
b distribution.

Confidence regions for subsets of the parameters can be constructed in a similar way, following the
theory outlined in Section A.2.4. Specifically, suppose a profile objective function is calculated for a
subvector ψ, by holding this subvector fixed and maximising over the remaining parameters λ, say. With
notation as in Section A.2.4, define a profile test statistic as

Λ(ψ) = 2
[
S
(

ψ, λ̂(ψ) |Y
)
−S
(

ψ̂, λ̂(ψ̂) |Y
)]

, (A.36)

which is positive-valued by definition. Expansion (A.28) holds here, as in the likelihood setting; the
difference is, once again, that for estimating equations the covariance matrix of ψ̂ is not directly related
to the Hessian. It should be clear, however, that the same procedure can be applied as in the case of
the full parameter vector above. All that is required is to replace H

(
θ̂
)

with the estimated value of[
H(ψψ)

]−1
, and to extract the submatrix of V

(
θ̂
)

corresponding to ψ. In fact, once the full matrices

H−1 and V have been estimated, the modification simply consists of extracting the elements
corresponding to ψ from each of these matrices when calculating the κs in (A.33). Notice that, in
general, different choices of ψ will lead to different thresholds. Notice also that the cancellation leading
to (A.35) does not hold in general, when considering subsets of the parameter vector.

If ψ consists of a single parameter ψ, the procedure outlined above is particularly simple. In this case[
H(ψψ)

]−1
is a scalar, as is the corresponding submatrix of V

(
θ̂
)
. Denote these scalars by h and v

respectively; then direct calculation shows that the constants defined in (A.34) are given by a = hv,
b = 1 and c = 0. A confidence interval for ψ can therefore be defined as the set values for which the
profile test statistic (A.36) is less than hv times the appropriate percentage point of a χ2

1 distribution.

There is a substantial body of theory on the use of estimating equations. However, for current purposes
there is no need to go beyond what has been presented above.
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A.4 Estimating equations for the method of moments

We now return to the problem of parameter estimation for stochastic-mechanistic models, using a
generalised method of moments. To formalise the problem, it is necessary to establish some notation.
Specifically:

• Let y be a vector of observations as previously; this is regarded as the realised value of a vector
Y of random variables.

• Let θ = (θ1 . . . θp)
′ be a vector of unknown parameters in the model.

• Let T(y) = (T1 (y) . . . Tk (y))′ be a vector of summary statistics computed from the
observations. T(y) is the realised value of a random vector T = (T1 . . . Tk) say. Denote the
expected value of this random vector by Eθ (T) = τ(θ) = (τ1 (θ) . . . τk (θ))′.

The idea here is that T is a vector of data properties (means, variances, autocorrelations etc.) and that
τ(θ) is the corresponding set of theoretical properties derived from the model. The generalised method
of moments seeks to minimise some measure of disagreement between T and τ(θ). Following the
notation above, denote this measure by S (θ|y). In practice, this is invariably a (possibly weighted) sum
of squares:

S (θ|y) =
k

∑
i=1

wi (θ) [Ti (y)− τi (θ)]2 . (A.37)

for some collection of positive weights {wi (θ) : i = 1, . . . ,k}. For the moment, we allow the possibility
that these may be parameter-dependent, although we will see below that this is actually a bad idea. In
well-behaved problems, the minimiser of this function satisfies the vector equation g(θ|y) = ∂S/∂θ = 0.
We have

g(θ|y) =
k

∑
i=1

{
∂wi (θ)

∂θ
[Ti (y)− τi (θ)]2−2wi (θ)

∂τi (θ)
∂θ

[Ti (y)− τi (θ)]
}

, (A.38)

so that the parameter estimate θ̂ satisfies g
(
θ̂|y
)

= 0, as in (A.30).

To apply the theory of estimating equations here, we need to ensure that properties 1–6 in Section A.3
are satisfied by the random variables gθ whose values are given by (A.38). Properties 4 and 6 (gθ is
continuous in θ with bounded second derivatives) are unlikely to cause problems. The remainder
require some thought.

A.4.1 Zero mean

For gθ to have zero mean, we require

k

∑
i=1

{
∂wi (θ)

∂θ
Eθ [Ti− τi (θ)]2−2wi (θ)

∂τi (θ)
∂θ

Eθ [Ti− τi (θ)]
}

= 0

at θ = θ0. Since E (T) = τ(θ0), this reduces to the requirement that

k

∑
i=1

∂wi (θ)
∂θ

varθ (Ti) = 0 ,

which is trivially true providing the weights are independent of θ. If the weights depend on θ, however,
the requirement is not fulfilled in general. In particular, it is not fulfilled if wi (θ) is set proportional to
1/varθ (Ti) (which is a natural weighting scheme to consider, given the received wisdom that ‘in least
squares problems with unequal variances, observations should be weighted according to the inverse of
their variances’, and that in such problems, the weighted least squares estimates are known to be
unbiased). To see this, consider any collection of weights satisfying

k

∑
i=1

wi (θ)varθ (Ti) = constant, independent of θ.
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Differentiating both sides with respect to θ j yields

k

∑
i=1

∂wi (θ)
∂θ j

var(Ti)+
k

∑
i=1

wi (θ)
∂varθ (Ti)

∂θ j
= 0

in which case, the first term can only be zero if the second is also. But since the ws are positive, the
second term can only be zero if varθ (Ti) is independent of θ j for each i. Also, since each element of gθ

must have zero expectation, the result must hold for all j: hence no collection of weights satisfying the
constraint above will yield a valid estimating equation, unless varθ (Ti) is independent of θ for each i.

At first sight, this appears to contradict the ‘standard’ theory of weighted least squares in regression
problems. The resolution of the problem appears to lie in the fact that in regression problems, the
weights do not depend on the regression parameters (which are the θs in the present context) — hence
∂wi/∂θ = 0 in such problems. I suspect that the difficulty, when the weights depend on θ, is related to
the known problems of bias in estimating equations when nuisance parameters are present (Liang and
Zeger, 1995), although the current setting is slightly different.

The upshot of all this is that if we want to weight the fitting properties, the weights should not depend on
θ; otherwise the resulting estimates will be biased (at least, for the kind of weighting scheme that may
be considered in practice). In many situations, it is likely that the bias will tend to zero as the sample
size (i.e. dimension of Y) increases. However, as a first step in obtaining sampling distributions for
moment-based estimators, it seems reasonable to restrict ourselves to estimators that are exactly
unbiased. Hence the objective function (A.37) becomes

S (θ|y) =
k

∑
i=1

wi [Ti (y)− τi (θ)]2 (A.39)

and the corresponding estimating equation becomes

g(θ|y) =−2
k

∑
i=1

wi
∂τi (θ)

∂θ
[Ti (y)− τi (θ)] = 0 . (A.40)

The factor of -2 is retained here to avoid confusion later on.

θ-dependent weights — a cunning plan

The problems above, regarding the use of weights depending on θ, can be resolved completely if we
modify the objective function (A.37) slightly, to

k

∑
i=1

{
wi (θ) [Ti (y)− τi (θ)]2− lnwi (θ)

}
. (A.41)

If we do this, the estimating function becomes

gθ =
k

∑
i=1

{
∂wi (θ)

∂θ

[
[Ti− τi (θ)]2− 1

wi (θ)

]
−2wi (θ)

∂τi (θ)
∂θ

[Ti− τi (θ)]
}

= 0 ,

which clearly has zero expectation if we set wi (θ) = 1/varθ (Ti). We do not pursue this any further
here; however, it may be prove useful in the future.

A.4.2 Asymptotic normality

From (A.40), it is clear that the estimating function gθ will have an approximate normal distribution if
either of the following conditions hold:

1. k is large, and the components of T are not too strongly dependent. For in this case, gθ is a sum
of a large number of terms and the Central Limit Theorem applies.

2. T itself has an approximate multivariate normal distribution.
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In practice, providing the elements of T are chosen appropriately, condition 2 is likely to be satisfied for
large datasets, since most statistics of interest have an approximate normal distribution in the limit.
Obviously, the closer this approximation, the better will be the normal approximation to the distribution of
gθ. This suggests that we should seek fitting properties with distributions that are ‘as normal as
possible’, for example by transformation.

A.4.3 Consistency

The moment estimator will be consistent if E
[
gθ0

]
= 0 and, when suitably normalised, gθ converges in

probability to its expectation as n→ ∞. Again from (A.40), this convergence will occur if T converges to
τ(θ); and again, most statistics of interest do converge to their expectations in the required sense.

A.4.4 Variance calculation

To complete the estimating equation framework it is necessary to calculate, or at least estimate,
J(θ0) = var

[
gθ0

]
, since this is required for the calculation of V(θ0) in (A.31) and (A.33). A number of

options are available here:

1. Find an analytical expression for J(θ), and use J
(
θ̂
)

as an estimate of J(θ0).

2. Obtain an empirical estimate of J
(
θ̂
)
, and use this to estimate J(θ0).

3. If possible, set up the estimating equation in such a way that J(θ0) ∝ H(θ0). In this case,
V(θ0) ∝ [H(θ)]−1 and we can use the observed Hessian to estimate V(θ0) without ever
needing to calculate J(θ0).

For the first two options, it may be useful to note that gθ can be written in matrix form as

gθ =−2 [W(θ)]′ (T− τ(θ)) ,

where W(θ) is a k× p matrix whose (i, j)th element is wi∂τi (θ)/∂θ j. Standard results for covariance
matrices then give us

J(θ) = 4var
{
[W(θ)]′ (T− τ(θ))

}
= 4 [W(θ)]′ var(T)W(θ) . (A.42)

Hence J(θ) can be calculated from the covariance matrix of T. A specific suggestion for estimating this
covariance matrix empirically is given in Section A.5 below. In practice, the derivatives of τ(θ)
appearing in W(θ) can be evaluated numerically if necessary.

Variance calculation using the Hessian

In the third option above, the idea is to define the objective function in such a way that
J(θ0) ∝ H(θ0) = E [∂gθ/∂θ]. We now investigate how to achieve this. The starting point is the
zero-mean requirement for the estimating function, which implies thatZ

g(θ|y) f (y;θ)dy = 0 .

Differentiating both sides with respect to θ yieldsZ [
∂g(θ|y)

∂θ
f (y;θ)+g(θ|y)

(
∂ f (y;θ)

∂θ

)′ ]
dy = 0 ,

so that

E

[
∂gθ

∂θ

]
= −

Z
g(θ|y)

(
1

f (y;θ)
∂ f (y;θ)

∂θ

)′
f (y;θ)dy

i.e. E [Hθ] = −E

[
gθ

(
∂ ln f (Y;θ)

∂θ

)′ ]
.
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At θ0, we require the right-hand side here to be proportional to J(θ) = var [gθ] = E [gθgθ
′]. It is not

obvious that this is the case, unless g(θ|y) is proportional to the score function

g(θ|y) =
∂ ln f (y;θ)

∂θ
.

However, note that gθ is a function of T, which in turn is a function of Y. Hence we can obtain an
equivalent development to the one above, by taking expectations with respect to T; the only difference
is that f (y;θ) will be replaced by the density of T, fT say, throughout.

This shows that J(θ0) ∝ H(θ0), as required, if g(θ|y) is the θ-derivative of the log density for T. But in
Section A.4.2 above we argued that for large samples, T is likely to have an approximate multivariate
normal distribution. Suppose, for the sake of argument, that we can choose T in such a way that (i) its
elements are mutually uncorrelated (ii) var [Ti] is independent of θ for each i. In this case the
θ-derivative of the log density has jth element

∂ ln fT
∂θ j

=
n

∑
i=1

1
var [Ti]

∂τi (θ)
∂θ

[Ti (y)− τi (θ)]

which, if we take the weight wi = 1/var [Ti], is equal to − 1
2 g(θ|y) in (A.40). In this case, therefore,

var
[
∂ ln fT/∂θ

]
= 1

4 var [gθ], and E
[
∂2 ln fT/∂θ

2]=− 1
2 E [∂gθ/∂θ]. Since the left-hand sides here

differ by a factor of -1, we must have J(θ) = var [gθ] = 2E [∂gθ/∂θ] = 2H(θ).

Of course, it is unrealistic to expect that the elements of T should be uncorrelated and that their
variances should be independent of θ. The argument above does suggest, however, that if we choose
T in such a way that as many components as possible have variances that are independent of θ; and to
set the weights for the remaining components to a ‘ballpark’ figure that roughly reflects their uncertainty,
J(θ0) should be approximated reasonably by 2H(θ0) so that V(θ0) can be calculated as 2 [H(θ0)]

−1.

In passing, it is also worth noting that θ-dependent weights can be accommodated within this
framework, by changing the objective function to (A.41). In this case, the resulting estimating function is
exactly the θ-derivative of a normal density for uncorrelated T s.

A.5 Summary, and implications

The main points to emerge from the discussion above are the following:

1. Using a generalised method of moments, unbiased estimators can be obtained by minimising an
expression of the form

S (θ|Y) =
k

∑
i=1

wi [Ti (Y)− τi (θ)]2

where the T s are properties of the data and the τs are their expected values under the model.

2. The weights {wi} must not depend on the model parameters (or on the data!). If
parameter-dependent weights are used, the objective function must be modified to that given in
(A.41).

3. Under fairly general conditions, the estimator resulting from the above minimisation has a
multivariate normal distribution. This can be used, for example, to construct approximate
confidence intervals for the model parameters. The mean of the distribution is θ0 (the true
parameter vector), and its covariance matrix is V(θ0) where V(θ) = [H(θ)]−1 J(θ)H(θ)−1.
Here, H(θ) is the expected second derivative of the objective function, which can be estimated
from the Hessian output of a numerical minimisation routine. J(θ) is the covariance matrix of the
objective function derivatives.

4. An alternative way to construct confidence regions uses the objective function itself. Specifically,
an approximate confidence region at a specified level consists of all points θ such that

a−1{2
[
S (θ|Y)−S

(
θ̂|Y
)]
− c
}
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is less than the appropriate percentile of a chi-squared distribution with b degrees of freedom.
The constants a, b and c are given by

a =
|κ3|
4κ2

b =
8κ3

2

κ2
3

c = κ1−ab ,

with κr = 2r−1Γ(r)tr
{[

V
(
θ̂
)

H
(
θ̂
)]r}

= 2r−1Γ(r)tr
{[

H−1 (
θ̂
)

J
(
θ̂
)]r}

.

Confidence regions for subsets of parameters can be constructed using profile objective

functions, defined for a subset of parameters ψ as S (ψ) = S
(

ψ, λ̂(ψ) |Y
)

where λ̂(ψ)
minimises the objective function for a fixed value of ψ. The procedure is exactly the same as for
the full parameter vector, except that the κs are calculated from the appropriate submatrices of
H−1 and V. In the case of a single parameter, let v be the appropriate diagonal element of V,
and h−1 the corresponding element of H−1; then a = hv, b = 1 and c = 0 in this case.

5. A final way to carry out tests uses the fact that at the true parameter value θ0, the objective
function gradient vector is distributed as MV N (0,J(θ0)). Any θ where the gradient is ‘large’
according to this distribution is therefore not supported by the data. This does not require
calculation of the Hessian, which may be seen as a potential advantage.

6. The matrix J(θ0) can be estimated in any of three ways:

(a) Find an analytical expression for the covariance matrix of the fitting properties under the
model; then estimate J(θ0) as 4

[
W
(
θ̂
)]′

var
θ̂
(T)W

(
θ̂
)
, where W(θ) is a k× p matrix

whose (i, j)th element is wi∂τi (θ)/∂θ j. If necessary, use numerical differentiation to
evaluate ∂τi (θ).

(b) Calculate an empirical estimate of var(T), and use 4
[
W
(
θ̂
)]′

v̂ar(T)W
(
θ̂
)

as an
estimate of J(θ0). For example, if n > 1 years of data are available, fitting properties
T1, . . . ,Tn can be computed separately for each year: T can then be taken as the mean
over all years, and v̂ar(T) as n−2

∑
n
i=1 (Ti−T)(Ti−T)′. This suggestion follows

Rodriguez-Iturbe et al. (1988). Notice, however, that some components of each Ti, in
particular those relating to daily data, will be computed using relatively small samples. It is
therefore important to use estimators that are, as far as possible, unbiased in small
samples. This applies particularly to estimators of autocorrelation coefficients, for
example — standard estimators can suffer from serious bias problems in small samples.
Methods for correcting this are given by Kendall and Ord (1990, page 79), for example.

(c) Choose fitting properties {Ti} in such a way that (i) the chosen properties are
approximately uncorrelated (ii) as many components as possible have variances that are
independent of θ. Make an educated guess as to the variances of the remaining
properties. Then, in the objective function, set wi = 1/var [Ti]. Throw the result at a
nonlinear minimisation routine that returns the Hessian as a by-product. Multiply this
Hessian by 2, and take the result as an estimate of J(θ0); invert this to obtain an estimate
of V(θ0) without any further matrix multiplication.

For practical purposes, J(θ0) and J
(
θ̂
)

are interchangeable.

The guidelines in (6c) above, regarding choice of fitting properties, apply more generally — indeed, lack
of correlation was one of the criteria given by Rodriguez-Iturbe et al. (1988) for choosing fitting
properties. The theory outlined in the preceding sections also suggests the following considerations:

1. The chosen statistics should be unbiased for the corresponding theoretical properties i.e.
E [Ti] = τi.

2. The chosen statistics should have a normal distribution to a reasonable degree of
approximation. This might involve, for example, taking logarithms of quantities that are
essentially positive (another suggestion of Rodriguez-Iturbe et al. 1988), or applying a
z-transformation to autocorrelations as in Wheater et al. (2000b, Section 2.8.5).

3. The chosen statistics should have variances that are as small as possible. This is intuitively
obvious; in terms of the mathematics, it is easiest to see in the case of a single parameter, so
that all matrices become scalars. In this case the variance of the parameter estimate is
proportional to a weighted sum of variances of fitting properties.
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4. The chosen statistics should vary rapidly with respect to the model parameters. Mathematically,
this requirement corresponds to large values of the Hessian matrix (i.e. the matrix of derivatives
of fitting properties with respect to parameters). For a single parameter, the variance is inversely
proportional to this Hessian.

The theory outlined here represents an alternative to the approach suggested at the bottom of page 290
of Rodriguez-Iturbe et al. (1988). Instead of calculating the covariance matrix V(θ0), they suggested
perturbing each of the fitting properties by a small amount, and re-estimating the model parameters at
each of the perturbed configurations. This determines an approximate linear transformation from fitting
properties to parameter estimates, which can be combined with an estimate of var(T) to estimate the
covariance matrix. The difference here is that we avoid refitting the model many times by transforming
in the opposite direction (from θ to τ rather than from T to θ̂) and using an analytical (or numerical)
linearisation of the transformation in the matrix W

(
θ̂
)
.

A further development is the ability to judge parameter sets on the basis of the objective function itself.
This can be used, for example, to identify the region of the parameter space for which the objective
function is ‘almost’ optimal.
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Appendix B Mathematical expressions of generalised
moments used in single-site rainfall mod-
els

B.1 Introduction

A range of single-site rainfall models are being compared for assessment in Chapter 2 for Work
Package 1. Insofar as the selected fitting method is the generalised method of moments (Lekkas and
Onof, 2003), mathematical expressions for each of these moments are required for input into the
objective function.

Many such expressions are already available in the literature. However, as the result of a fairly high rate
of typographical errors, they cannot be used without some form of checking, which may involve the full
derivation of the formula.

Other expressions are not readily available. This is either because their derivations are unpublished,
because the model in question has not yet been examined, or because the statistic in question has not
yet been used.

This appendix seeks to bring all the relevant expressions together for use within the model comparison
exercise. When useful or interesting, key elements of the derivations are given. To avoid unnecessary
length, the appendix focusses upon models driven by a Bartlett-Lewis point process.

B.2 Background: the Bartlett-Lewis Rectangular Pulse
Model

Since single-site models driven by a Bartlett-Lewis point process are all modifications of the
Barlett-Lewis Rectangular Pulse model (BLRPM), the key expressions for this model are given here.
First, we present the notation used throughout the appendix, as well as that specific for this model.

B.2.1 Notation and model specification

Three levels of description

Single site models represent the continuous-time rainfall Y (t). They are calibrated and validated by
examining properties of one or both the following processes:

• discrete time aggregated process at time-scale h: Y (h)
i =

R ih
(i−1)h Y (t)dt

• continuous-time moving average process at time-scale h: Y(h)(t) = 1
h

R t+h/2
t−h/2 Y (t)dt

Data sets of observed data at time-scale h can be considered as samples of the aggregated process,
but also as providing samples of the continuous-time moving average process.

Model description

The main Bartlett-Lewis point process is a cluster Poisson process characterised by the arrival of
random clusters of points according to a Poisson process. In terms of the representation of rainfall, the
clusters are storms and the points correspond to the arrivals of cells.

Within each cluster, points arrive throughout a period of storm activity which is a random variable.
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To each cell arrival time is assigned a rainfall pulse of random duration and intensity.

Parameters

The following notation is used throughout:

• λ: Poisson cluster (storm) arrival rate

• β: Poisson point (cell) arrival rate activity

In the BLRPM, the storm and cell durations are standardly taken as exponentially distributed:

• γ: Exponential parameter of storm duration

• η: Exponential parameter of cell duration

The cell intensity distribution is characterised by three parameters:

• µx: Mean cell intensity

• µx2 : Mean of squares of cell intensities

• µx3 : Mean of cubes of cell intensities

Three distributions are considered for the intensity: the exponential, Gamma and general Pareto
distributions. Details of the notation used and the main relevant properties of these distributions are
given in B.7.

In the distributions considered here, one or two parameters are sufficient to fully characterise the
distribution. The BLRPM can therefore be characterised by the following set of parameters:

{λ,µx,µx2 ,η,β,γ}

These parameters do not, however, all have direct physical meaning. It is therefore useful to
re-parameterize the model in terms of a set of mechanistic parameters:

{λ,µx,σx,δc,µc,δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Standard deviation of cell intensity σx =
√

µx2 −µ2
x (mm.hr−1)

Mean cell duration δc = 1/η (hr)

Mean number of cells per storm µc = 1+β/γ

Mean duration of storm activity δs = 1/γ (hr)

For the sake of simplicity, the equations are given in terms of the original parameter set. They can easily
be re-expressed in terms of the mechanistic parameters using the following relations:

µx2 = σ
2
x +µ2

x

η = 1/δc

β = (µc−1)/δs

γ = 1/δs
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Properties of the aggregated process

The properties of the process Y (h)
i which are considered for model calibration and validation are

functions of the following:

• M(h): mean of the rainfall depth (in mm)

• V (h): variance of the rainfall depth (in mm2)

• C(k,h): autocovariance lag-k of the depth (in mm2)

• A(k,h): autocorrelation lag-k of the depth (in mm2)

• Mp(h): non-centered moment of order p (p > 1) of the intensity (in mmp)

• Pd(h): proportion of dry periods

• Md(h): mean duration of a dry period (in hours)

• Mw(h): mean duration of a wet period (in hours)

where all the properties are for time-scale h hours.

Properties of the moving average process

Note that the properties below could also be expressed as properties of the aggregated process, since

var
[
Y(h)(t)

]
= var

[
Y (h)

i
h

]
. The main property of interest is the variance of the moving average process.

This variance can be related to the variance of the underlying continuous-time process Y (t) by defining
a variance reduction factor called the variance function and denoted ω(h):

var
[
Y(h)(t)

]
= ω(h)var[Y (t)]

The variance function can easily be calculated (Vanmarcke, 1993)as:

ω(h) =
1
h2

Z h

0

Z h

0
ρ(t1− t2)dt1 dt2 =

2
h

Z h

0

(
1− τ

h

)
ρ(τ)dτ (B.1)

where ρ(τ) is the autocorrelation function at lag τ of process Y (t).

Of particular interest is the behaviour of the variance function as the scale increases. If this is not a long
memory process, we must have:

lim
h→∞

ω(h) = 0

For many processes, the convergence to 0 is in 1/h. Consequently, Vanmarcke (1993) defines the
scale of fluctuation as:

Θ = lim
h→∞

hω(h)

Since:

ω(h) =
1

2h

[Z h

0
ρ(τ)dτ− 1

h

Z h

0
τρ(τ)dτ

]
and since the scale of fluctuation only exists if

lim
h→∞

1
h

Z h

0
τρ(τ)dτ = 0

we therefore obtain (Vanmarcke, 1993):

Θ = lim
h→∞

hω(h) = 2
Z

∞

0
ρ(τ)dτ

The scale of fluctuation is so called since, when h is large, Y(h)(t) has a variance which is approximately
var[Y (t)]Θ/h. Y(h)(t) is therefore equivalent to the mean of h/Θ independent observations from the
continuous-time process.

To summarize, the following moving average process properties can be used in the calibration:
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• ω(h): Variance function at time-scale h

• Θ: Scale of fluctuation

B.2.2 BLRPM Continuous-time properties

The two important properties for the calculation of the aggregated process properties are the mean and
covariance function. From Rodriguez-Iturbe et al. (1987), we have:

E[Y (t)] = λµcµx/η (B.2)

where µc = 1+ β

γ
is the mean number of cells per storm, and

cY (τ) =
λµc

η

[
µx2 +

βγµ2
x

γ2−η2

]
e−ητ− λµc

η

βηµ2
x

γ2−η2 e−γτ (B.3)

B.2.3 BLRPM First- and second order aggregated depth moments

The first two moments of the marginal distribution of rainfall depths are obtained by integration:

M(h) = E[Y (h)
i ] = E[Y (t)] (B.4)

V (h) = var[Y (h)
i ] = 2

Z h

0
(h−u)cY (u)du (B.5)

C(k,h) = cov[Y (h)
i ,Y (h)

i+k] =
Z h

−h
(h−|v|)cY (kh+ v)dv (B.6)

The moments are given by (Rodriguez-Iturbe et al., 1987):

M(h) =
λhµxµc

η
(B.7)

V (h) =
2λµc

η

[
(µx2 +βµ2

x/γ)h
η

+
µ2

xβη(1− e−γh)
γ2(γ2−η2)

−
(

µx2 +
βγµ2

x

γ2−η2

)
1− e−ηh

η2

]
(B.8)

The autocovariance of lag-k is given by:

C(k,h) =
λµc

η

[(
µx2 +

βγµ2
x

γ2−η2

)
(1− e−ηh)2e−η(k−1)h

η2 − µ2
xβη(1− e−γh)2e−γ(k−1)h

γ2(γ2−η2)

]
(B.9)

B.2.4 BLRPM Wet-dry discrete-time properties

The expression for the proportion dry is (Rodriguez-Iturbe et al., 1987):

Pd(h) = exp{−λ(h+µT )+λG∗
P(0,0)(γ+βe−(β+γ)h)/(β+ γ)} (B.10)

where µT is the mean storm duration, given by Onof (1992):

µT =
1
γ

+
γ

η2

Z 1

0
v−1 dv

Z 1

0
t

γ

η
−1
[

1− (1− vt)e−
βv(1−t)

η

]
dt

and

G∗
P(z,s) = η

−1e−
β(1−z)

η

Z 1

0
t

γ+s
η
−1 [1− (1− z)t]e

β(1−z)t
η dt

Since these expressions are not easy to compute, the following approximations can be used. They are
valid if β << η and γ << η (i.e. if there is enough cell overlap and cell durations are much smaller than
storm durations):

µT ≈
1
γ

{
1+

γ(β+ γ/2)
η2 − γ(5γβ+β2 +2γ2)

4η3 +
γ(4β3 +31β2γ+99βγ2 +36γ3)

72η4

}
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and

G∗
P(z,s)≈ 1

γ

{
1− β+ γ

η
+

3βγ+2γ2 +β2

2η2

}
as in Onof (1992).

However, if these requirements on small values of β and γ are not fulfilled, we can approximate these
terms follows:

µT ≈ η
−1

(
1+φ

M

∑
j=1

(−κ) j−1(κ− j2− j)
j( j +1)!

B( j +1,φ)+φ
−1

)
and

G∗
P(0,0) ≈ η

1−e−κ

(
M′

∑
j=0

κ j

j!
B( j +φ,2)+

δM′ (κ)
(M′+φ+1)(M′+φ+2)

)
with

δM′ (κ) = eκ−
M′

∑
j=0

κ j

j!
(B.11)

where κ = β/η and φ = γ/η and the values of M and M’ are to be chosen large enough so as to reduce
the error. For the LR model (discussed further), identical approximations are required. Upper bounds for
the errors involved are estimated in B.11, together with numerical investigations into their values for
different values of κ and φ. B.11 also presents the derivation of these approximations.

The mean duration dry is then a function of the proportion dry Onof et al. (1994):

Md(h) =
Pd(h)

Pd(h)−Pd(2h)
(B.12)

Note we can easily derive another useful statistic, namely the mean number of events at time-scale h in
a period of duration n(h) time-intervals of h hours. Since the probability of the arrival of an event at
time-scale h hours is given by:

pe(h) = Pr{event start in [(n−1)h,nh)}= Pr{Y (h)
n > 0|Y (h)

n−1 = 0}Pr{Y (h)
n−1 = 0}

this yields:

pe(h) =
(

1− Pd(2h)
Pd(h)

)
Pd(h) = Pd(h)−Pd(2h)

If the mean storm duration is very small compared to the duration of the period, i.e.( µT
h +1

)
pe(h) << n(h) (the condition is, for instance, met if the period under consideration is the

month and the time-scale less than 6 hours), then the mean number of events is approximately given by:

ne(h)≈ (Pd(h)−Pd(2h))n(h) (B.13)

since, as the event duration goes to zero, the distribution of the number of events is approximately
binomially distributed B(n(h),Pd(h)−Pd(2h)).

B.2.5 BLRPM Third-order aggregated depth moment

The third-order moment yields information about the asymmetry of a distribution. Because of the need
to obtain a good fit for extreme values, it is useful to include this moment in the fitting process. The main
steps of the derivation are as follows.

General form of the integral

As a first step, we need to relate this moment to moments of the underlying continuous-time process. In
general, we can write that, if
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Y (h)
i =

Z ih

(i−1)h
Y (u)du

then,

E
[
Y (h)

i ,Y (h)
i+ j,Y

(h)
i+k

]
= E

[Z ih

(i−1)h

Z (i+ j)h

(i+ j−1)h

Z (i+k)h

(i+k−1)h
Y (u)Y (v)Y (w)dudvdw

]
The change of variables:

x = u;y = v−u− jh;z = w−u− kh

h

y or z

xih(i–1)h

Figure B.21 Domain of integration in the (x,y) or (x,z) planes

yields the domain of integration shown in figure B.21.

The sum of six integrals must then be computed:

E
[
Y (h)

i ,Y (h)
i+ j,Y

(h)
i+k

]
= I1 + I2 + I3 + I4 + I5 + I6 (B.14)

where:

I1 =
Z h

z=0

Z 0

y=−h+z

Z ih−z

x=(i−1)h−y
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz

I2 =
Z h

z=0

Z z

y=0

Z ih−z

x=(i−1)h
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz

I3 =
Z h

z=0

Z h

y=z

Z ih−y

x=(i−1)h
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz

I4 =
Z 0

z=−h

Z z

y=−h

Z ih

x=(i−1)h−y
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz

I5 =
Z 0

z=−h

Z 0

y=z

Z ih

x=(i−1)h−z
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz

I6 =
Z 0

z=−h

Z z+h

y=0

Z ih−y

x=(i−1)h−z
E[Y (x)Y ((x+ y+ jh)Y ((x+ z+ kh)]dxdydz
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Figure B.22 Domain of integration in the (x,y) or (x,z) planes

This corresponds to the subdivision of the domain of integration according to figure B.22.

For the third-order moment, we have j = k = 0. The computation of the integrand,
E[Y (x)Y (x+ y)Y (x+ z)], requires that third-order properties of counts and of cell intensities be
computed.

Third-order properties of counts

These are obtained for x1 < x2 < x3 as follows:

E [δN(x1)δN(x2)δN(x3)] = (λµc)3 dx1 dx2 dx3

+λµcβ
2e−γ(x3−x1) dx1 dx2 dx3

+(λµc)2
β

[
e−γ(x3−x2) + e−γ(x3−x1) + e−γ(x2−x1)

]
dx1 dx2 dx3

where the first term corresponds to 3 cells in different storms, the second to 3 cells in the same storm
and the third to 1 cell in one storm and two in another. This yields:

E [δN(x1)δN(x2)δN(x3)]
dx1 dx2 dx3

=
{
(λµc)3 +λµcβ

2e−γ(x3−x1) +(λµc)2
β

[
e−γ(x3−x2) + e−γ(x3−x1) + e−γ(x2−x1)

]}
(B.15)

Third-order properties of cell intensities

The following expression is required in the computations:

E [Xt1−u1(u1)Xt1+τ1−u2(u1)Xt1+τ1+τ2−u3(u3)] = µx3 e−η(u1+τ1+τ2)

+µxmux2e−η(u1+u2+τ2)

+µxmux2e−η(u1+u2+τ1+τ2)

+µxmux2e−η(u1+u3+τ1)

+µ3
xe−η(u1+u2+u3) (B.16)
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where the terms correspond to the following respective 5 cases:
1. t1−u1 = t1 + τ1−u2 t1−u1 = t1 + τ1 + τ2−u3
2. u3 = u2 + τ2 u2 6= u1 + τ1
3. u3 = u1 + τ1 + τ2 u2 6= u1 + τ1
4. u2 = u1 + τ1 u3 6= u2 + τ2
5. u2 = u1 + τ1 u3 6= u2 + τ2 u3 6= u1 + τ1 + τ2

Third-order moment of continuous-time process

The main term to compute is the expected value of a product of three rainfall depths of the
continuous-time process. This is:

E [Y (x)Y (x+ y)Y (x+ z)] =

E[
Z

∞

0
Xx−u(u)dN(x−u)

Z
∞

0
Xx+y−v(v)dN(x+ y− v)Z

∞

0
Xx+z−w(w)dN(x+ z−w)] (B.17)

This is evaluated as the following sum:

E [Y (x)Y (x+ y)Y (x+ z)] =Z
∞

u=0

Z
∞

v=0,v6=u+y

Z
∞

w=0,w 6=u+z,w 6=v+z−y
E[Xx−u(u)]E[Xx+y−v(v)]E[Xx+z−w(w)]E[dN(x−u)dN(x+ y− v)dN(x+ z−w)]

+
Z

∞

u=0

Z
∞

v=0,v6=u+y
E[Xx−u(u)]E[Xx+y−v(v)Xx+y−v(v+ z− y)]E[dN(x−u)dN(x+ y− v)]

+
Z

∞

u=0

Z
∞

v=0,v6=u+y
E[Xx−u(u)Xx−u(u+ z)]E[Xx+y−v(v)]E[dN(x−u)dN(x+ y− v)]

+
Z

∞

u=0

Z
∞

w=0,v6=u+z
E[Xx−u(u)Xx−u(u+ y)]E[Xx+z−w(w)]E[dN(x−u)dN(x+ z−w)]

+
Z

∞

u=0
E[Xx−u(u)Xx−u(u+ y)Xx−u(u+ z)]E[dN(x−u)]

The computation of this integral and the final form of its analytical expression are detailled in B.8.

Third-order moment of discrete-time process

The six integrals in B.14 can be rewritten as:

I1 =
Z h

z=0

Z 0

y=−h+z

Z ih−z

x=(i−1)h−y
E[Y (x+ y)Y ((x+ y)− y)Y ((x+ y)− y+ z)]dxdydz

I2 =
Z h

z=0

Z z

y=0

Z ih−z

x=(i−1)h
E[Y (x)Y (x+ y)Y (x+ z)]dxdydz

I3 =
Z h

z=0

Z h

y=z

Z ih−y

x=(i−1)h
E[Y (x)Y (x+ z)Y (x+ y)]dxdydz

I4 =
Z 0

z=−h

Z z

y=−h

Z ih

x=(i−1)h−y
E[Y (x+ y)Y ((x+ y)+(z− y))Y ((x+ y)− y)]dxdydz

I5 =
Z 0

z=−h

Z 0

y=z

Z ih

x=(i−1)h−z
E[Y (x+ z)Y ((x+ z)+(y− z))Y ((x+ z)− z)]dxdydz

I6 =
Z 0

z=−h

Z z+h

y=0

Z ih−y

x=(i−1)h−z
E[Y (x+ z)Y ((x+ z)− z)Y ((x+ z)+(y− z))]dxdydz

where the integrands have been written so as to contain products of Y (r)Y (r + s)Y (r + t) with
0≤ s≤ t. This involves the following transformations:
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For I1: r = x+ y s =−y t = z− y
For I2: r = x s = y t = z
For I3: r = x s = z t = y
For I4: r = x+ y s = z− y t =−y
For I5: r = x+ z s = y− z t = z
For I6: r = x+ z s =−z t = y− z

By introducing this change of variables, we find that all 6 integrals are identical to I so that:

M3(h) = 6I = 6
Z h

s=0

Z h

t=s

Z ih−t

r=(i−1)h
E[Y (r)Y (r + s)Y (r + t)]dr dt ds (B.18)

The final expression for M3(h) = E[(Y (h)
i )3] is given in B.9.

B.2.6 BLRPM moving average properties

Since, for the continuous-time process Y (t), we have:

var[Y (t)] =
λµc

η

[
µx2 +

β

γ+η
µ2

x

]
we have, for the variance function:

ω(h) =
2
[

(µx2 +βµ2
x/γ)

hη
+ µ2

xβη(1−e−γh)
h2γ2(γ2−η2) −

(
µx2 + βγµ2

x
γ2−η2

)
1−e−ηh

h2η2

]
µx2 + β

γ+η
µ2

x

(B.19)

The scale of fluctuation is therefore given by:

Θ =
2
η

µx2 + β

γ
µ2

x

µx2 + β

γ+η
µ2

x

(B.20)

Note that if γ→ ∞, we find the scale of fluctuation of the simpler Poisson Rectangular Pulse Model
(Rodriguez-Iturbe et al., 1987), namely 2

η
.

B.3 The Dependent Depth-Duration Model

B.3.1 Model specification

One way in which the above model can be altered so as to improve its wet-dry properties is by
introducing a dependence between cell intensity and cell duration distributions. This option, the DD
model, has been examined by Kakou (1997).

The model is characterised by the same parameters λ,β,γ,η for the storm and cell arrival rates, storm
activity and cell duration. But the cell intensities X are now specified through the distribution of X
conditional upon the cell duration L, i.e. X |L.

A first way of specifying the dependence is by choosing:

E[X |L = l] = f e−cl

Kakou (1997) assumed an exponential distribution. More generally, we shall consider a second-order
moment specified as:

E[X2|L = l] = ge−dl

404 Appendix B. Mathematical expressions of generalised moments used in single-site rainfall models



Note that this entails the following first- and second-order unconditional moments:

E[X ] =
f η

c+η

E[X2] =
gη

d +η

We shall refer to this as the DD1 model. Since the temporal structure is identical to that of the BLRPM,
we need only examine its depth properties.

Parameters

The proposed DD1 model has 8 parameters:

{λ,c,d, f ,g,η,β,γ}

Note that it is likely we may wish to simplify this and assume a relation between c and d for instance (in
the exponential case considered by Kakou (1997), d = 2c and g = 2 f 2).

The mechanistic parameters for this model are:

{λ,µx,σx,µx|0,σx|0,δc,µc,δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensity µx = f η

c+η
(mm.hr−1)

Std. deviation of cell intensity σx = gη

d+η
−
[

f η

c+η

]2
(mm.hr−1)

Conditional mean cell intensity limit for 0 cell duration µx|0 = f (mm.hr−1)

Conditional std. deviation of cell intensity limit for 0 cell duration σx|0 =
√

g− f 2 (mm.hr−1)

Mean cell duration δc = 1/η (hr)

Mean number of cells per storm µc = 1+β/γ

Mean duration of storm activity δs = 1/γ (hr)

As before, the equations are given in terms of the original parameter set which can easily be
re-expressed in terms of the mechanistic parameters using:

c =
1
δc

(
µx|0
µx

−1
)

d =
1
δc

(
σ2

x|0 +µ2
x|0

σ2
x +µ2

x
−1

)
f = µx|0

g = σ
2
x|0 +µ2

x|0

η = 1/δc

β = (µc−1)/δs

γ = 1/δs

B.3.2 Continuous-time depth properties

As in Kakou (1997), we find that for the DD model, the mean depth is:

E[Y (t)] = λµcE[XL] (B.21)
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For DD1, this yields:

E[Y (t)] = λµc
η f

(η+ c)2 (B.22)

The other important property is the covariance of lag τ, which we derive as:

cY (τ) = λµc

Z
∞

τ

(l− τ)E[X2|l] fL(l)dl +
λβµc

γ2

{2γD(0,τ, l + τ,0)+2γB(0, l + τ,∞,0)−2γτA(0,τ, l + τ,0)
−e−γτA(0,0,∞,0)+ eγτA(0,τ,∞,γ)− eγτA(−γ, l + τ,∞,γ)
+e−γτA(γ,0,∞,0)− e−γτA(γ,0, l + τ,−γ)+ e−γτA(0,0,τ,−γ)

}
(B.23)

where:

A(θ,a,b,ξ) =
Z

∞

0
dl

Z b

a
dl′E[X |l] fL(l)E[X ′|l′] fL(l′)e−θle−ξl′

B(θ,a,b,ξ) =
Z

∞

0
dl

Z b

a
dl′E[X |l] fL(l)E[X ′|l′] fL(l′) l e−θle−ξl′

D(θ,a,b,ξ) =
Z

∞

0
dl

Z b

a
dl′E[X |l] fL(l)E[X ′|l′] fL(l′) l′ e−θle−ξl′

For DD1, this becomes:

cY (τ) =
λµcgηe−(d+η)τ

(d +η)2 +
λµc f 2βη2

[
(c+η)e−γτ− γe−(c+η)τ

]
(c+η)3 [−γ2 +(c+η)2]

(B.24)

B.3.3 Discrete-time depth properties

First- and second-order moments

The following relations (Rodriguez-Iturbe et al., 1987) are used to obtain first- and second-order
properties of the aggregated process:

M(h) = hE[Y (t)]

V (h) = 2
Z h

0
(h− τ)cY (τ)dτ

C(k,h) =
Z +h

−h
(h−|τ|)cY (kh+ τ)dτ

For model DD1, we trivially find for the mean depth at time-scale h:

M(h) = hλµc
η f

(c+η)2 (B.25)

The variance is derived as:

V (h) =
2λµcgη

(d +η)4

(
e−(d+η)h−1+(d +η)h

)
+

2λµc f 2βη2

(c+η)3 [(c+η)2− γ2]

[
c+η

γ2 (e−γh + γh−1)− γ

(c+η)2

(
e−(c+η)h +(c+η)h−1

)]
(B.26)

and the covariance as:

C(k,h) =
λµcgη

(d +η)4 e−(d+η)(k−1)h
(

1− e−(d+η)h
)2

+
λµc f 2βη2

(c+η)3 [(c+η)2− γ2]

[
c+η

γ2 (1− e−γh)2e−γ(k−1)h

− γ

(c+η)2

(
1− e−(c+η)h

)2
e−(c+η)(k−1)h

]
(B.27)
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Wet-Dry properties

These properties are the same as for the BLRPM model, so that equations (B.10) and (B.12) can be
used, as well as the approximations (B.11), where, as above, κ = β/η and φ = γ/η.

Third-order moment

As with the BLRPM model, the calculation of M3(h) first requires the evaluation of

E[Y (x)Y (x+ y)Y (x+ z)] with y > 0z > y.

This integral involves more extensive calculations than for the BLRPM. It is the sum of 14 terms which
are analytically derivable, but are not presented here because they are too cumbersome. To illustrate
this, the first term is shown in B.10. The expressions for all these terms are available in Maple.

The computation of the third-order moment of the discrete-time process involves a triple integral of the
sum of these 14 terms, as in the following expression in equation

M3(h) = 6I = 6
Z h

y=0

Z h

z=y

Z ih−z

r=(i−1)h
E[Y (x)Y (x+ y)Y (x+ z)]dxdzdy (B.28)

which, since (as a result of stationarity) the integrand is not a function of x, reduces to:

M3(h) = 6
Z h

y=0

Z h

z=y
E[Y (x)Y (x+ y)Y (x+ z)](h− z)dxdzdy (B.29)

These integrals can be computed analytically for the DD1 model, and the results are available in Maple.

B.3.4 Moving average properties

Since, for the continuous-time process Y (t), we have, for the DD1 model:

var[Y (t)] =
λµcgη

(d +η)2 +
λµc f 2βη2

(c+η)3(c+η+ γ)

we have, for the variance function:

ω(h) =
2λµcgη

h2(d+η)4

(
e−(d+η)h−1+(d +η)h

)
λµcgη

(d+η)2 + λµc f 2βη2

(c+η)3(c+η+γ)

+

2λµc f 2βη2

h2(c+η)3[(c+η)2−γ2]

[
c+η

γ2 (e−γh + γh−1)− γ

(c+η)2

(
e−(c+η)h +(c+η)h−1

)]
λµcgη

(d+η)2 + λµc f 2βη2

(c+η)3(c+η+γ)

(B.30)

The scale of fluctuation is therefore given by:

Θ = 2
g

(d+η)3 + f 2ηβ

(c+η)4γ

g
(d+η)2 + f 2ηβ

(c+η)3(c+η+γ)

(B.31)

B.4 The N-Cell Model

B.4.1 Model specification

Since empirical observations confirm that rainfall produced by convective and frontal mechanisms have
different features, and that many climates tend to experience both types, the model can be transformed
to generate n types of cells. These are characterised by:
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• n random variables for the intensity distributions {Xi, i = 1, ..,n}, with means {µxi , i = 1, ..,n}
and mean square intensities {µx2

i
, i = 1, ..,n}

• n duration distributions, with exponential parameters {ηi, i = 1, ..,n}
• n probabilities {ψi, i = 1, ..,n} for each cell type

This is a model defined by 4n+3 parameters. Because of the constraint ∑
n
i=1 ψi = 1, there are in effect

4n+2 parameters. In practice, it is likely that n = 2 will be used.

The parameters are:
{λ,µx1 , ...,µxn ,µx2

1
, ...,µx2

n
,η1, ...ηn,ψ1, ...,ψn,β,γ}

For this model, the following mechanistic parameters can be used:

{λ,µx1 , ...µxn ,σx1 , ...,σxn ,δc1 , ...,δcn ,ψ1, ...,ψn,µc,δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensities µxi for i = 1, ...,n (mm.hr−1)

Standard deviations of cell intensities σxi =
√

µx2
i
−µ2

xi
for i = 1, ...,n (mm.hr−1)

Mean cell durations δci = 1/ηi for i = 1, ...,n (hr)

Proportion of each rainfall type ψi for i = 1, ...,n

Mean number of cells per storm µc = 1+β/γ

Mean duration of storm activity δs = 1/γ (hr)

The original parameters, in terms of which the equations are written, are the following functions of these
mechanistic parameters:

µx2
i

= σ
2
xi

+µ2
xi

ηi = 1/δci

β = (µc−1)/δs

γ = 1/δs

B.4.2 Continuous-time depth properties

We derive the following expressions for the mean and covariance of the continuous-time process:

E[Y (t)] = λµc

n

∑
i=1

ψiµxi

ηi
(B.32)

cY (τ) = λµc

n

∑
i=1

ψiµx2
i
e−ηiτ

ηi

+λµcβe−γτ
n

∑
i=1

n

∑
j=1

ψiψ jµxiµx j

(ηi− γ)(η j + γ)

+2λµcβγ

n

∑
j=1

ψ jµx j e
−η jτ

γ2−η2
j

n

∑
i=1

ψiµxi

ηi +η j
(B.33)

This can be re-expressed as:

cY (τ) =
n

∑
i=1

Cie−ηiτ +De−γτ (B.34)
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using the following notation:

Ci = λµc

[
ψiµx2

i

ηi
+2

βγψiµxi

γ2−η2
i

n

∑
j=1

ψiµxi

η j +ηi

]

D = λµcβ

n

∑
i=1

n

∑
j=1

ψiψ jµxiµx j

(ηi− γ)(η j + γ)

B.4.3 Discrete-time properties

First- and second-order depth moments

The following first- and second-order properties are obtained by integration:

M(h) = hλµc

n

∑
i=1

ψiµxi

ηi
(B.35)

V (h) =
n

∑
i

2Ci

η2
i

(hηi + e−ηih−1)+
2D
γ2 (γh+ e−γh−1) (B.36)

C(k,h) =
n

∑
i

Cie−ηi(k−1)h

η2
i

(1− e−ηih)2 +
De−γ(k−1)h

γ2 (1− e−γh)2 (B.37)

Wet-dry properties

The proportion of dry periods can easily be derived on the basis of the derivation of the same property
for BLRPM in Rodriguez-Iturbe et al. (1987). The two terms which depend upon the cell duration
parameter η in the exact expression of Pd(h) (see equation (B.10))are the mean duration of a storm µT
and the term G∗

P(0,0). Both these terms are functions of the probabilities pr(t) and qr(t) defined as:

pr(t) = Pr{Storm live and r cells active at time t}
qr(t) = Pr{Storm terminated and r cells active at time t}

which satisfy the following differential equations:

d pr(t)/dt = −(β+ γ+ r
n

∑
i=1

ψiηi) pr(t)+(r +1)(
n

∑
i=1

ψiηi) pr+1(t)+β pr−1(t)

dqr(t)/dt = −(r
n

∑
i=1

ψiηi)qr(t)+ γ pr(t)+(r +1)(
n

∑
i=1

ψiηi)qr+1(t)

so that, if we define η = ∑
n
i=1 ψiηi, we have the same differential system as for the RBLPM (see

Rodriguez-Iturbe et al., 1987, section 4.2).

We therefore have:

Pd(h) = exp{−λ(h+µT )+λG∗
P(0,0)(γ+βe−(β+γ)h)/(β+ γ)} (B.38)

with:

µT =
1
γ

+
γ

η2

Z 1

0
v−1 dv

Z 1

0
t

γ

η
−1
[

1− (1− vt)e−
βv(1−t)

η

]
dt

and

G∗
P(z,s) = η

−1e−
β(1−z)

η

Z 1

0
t

γ+s
η
−1 [1− (1− z)t]e

β(1−z)t
η dt

Since these expressions are not easy to compute, the following approximations can be used. They are
valid if β << η and γ << η (i.e. if there is enough cell overlap and cell durations are much smaller than
storm durations):
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µT ≈
1
γ

{
1+

γ(β+ γ/2)
η2 − γ(5γβ+β2 +2γ2)

4η3 +
γ(4β3 +31β2γ+99βγ2 +36γ3)

72η4

}
and

G∗
P(z,s)≈ 1

γ

{
1− β+ γ

η
+

3βγ+2γ2 +β2

2η2

}
as in Onof (1992).

As with previous models, we also require approximations when these conditions upon β and γ are not
fulfilled. Defining, as previously, κ = β/η and φ = γ/η, µT and G∗

P(0,0) can be approximated as in
equation (B.11).

Third-order moment

The evaluation of this moment involves very lengthy analytical developments. It will therefore not be
computed for the purpose of this project.

B.4.4 Moving-average properties

The variance function is easily obtained as:

ω(h) =
∑

n
i

2Ci
η2

i h2 (hηi + e−ηih−1)+ 2D
γ2h2 (γh+ e−γh−1)

∑
n
i Ci +D

(B.39)

The scale of fluctuation is therefore given by:

Θ = 2
∑

n
i Ci/ηi +D/γ

∑
n
i Ci +D

(B.40)

B.5 The Linear Random Parameter Model

B.5.1 Model specification

An important modification of the original BLRPM was proposed by Rodriguez-Iturbe et al. (1988). The
observation that this model does not provide a satisfactory reproduction of the proportion of dry periods
suggested introducing a greater diversity of the internal wet-dry structure of storms.

A first way in which this could be done would be to consider introducing a range of m types of storms,
such that each storm is characterised by one of ηi,βi and γi, with i = 1, ...,M, each type appearing with
probability ε1. To preserve the overall structure of storms, β1 and γi would be chosen proportional to ηi
according to:

βi = κηi

γi = φηi

so that the model parameters would be:

{λ,µx,µx2 ,η1, ...ηm,ε1, ...,εm,κ,φ}

thus yielding a 2m+4 parameter model (since one εi can be calculated from the knowledge of the
others to satisfy the condition that these parameters add up to 1).

The observation that the above approach amounts to randomising parameter η by assigning it a
discrete distribution characterised by the m probabilities εi,/, i = 1, ...,m, suggests the second
approach which is adopted here. This consists in using a continuous distribution to randomise
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parameter η. A flexible candidate is the Gamma distribution. Thus, η is now sampled for each storm
from the distribution Γ(α,ν), while β and γ are proportional according to the relations:

β = κη

γ = φη

As a consequence, we have a 7 parameter model characterised by the following set of parameters:

{λ,µx,µx2 ,α,ν,κ,φ}

The following mechanistic parameters can be used:

{λ,µx,σx,δc,σc,µc,δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Standard deviation of cell intensity σx =
√

µx2 −µ2
x (mm.hr−1)

Mean cell duration δc = ν

α−1 (hr)

Inter-Storm standard deviation of cell duration εc = ν√
(α−1)2(α−2)

(hr)

Mean no of cells/storm µc = 1+ κ

φ

Mean duration of storm activity δs = ν

(α−1)φ (hr)

The original parameters, which are used in the equations below, are expressed in terms of the
mechanistic parameters as follows:

µx2 = σ
2
x +µ2

x

α = 2+
δ2

c

ε2
c

ν = δc

(
1+

δ2
c

ε2
c

)
κ =

δc

δs
(µc−1)

φ =
δc

δs

B.5.2 Continuous-time properties

The expressions below are obtained by derivation as for the BLRPM (see Rodriguez-Iturbe et al., 1988).
Note that they can also be obtained by integrating the equivalent expressions for the BLRPM over the
parameter η.

E[Y (t)] = λµcµx
ν

α−1
(B.41)

where µc = 1+ κ

φ
is the mean number of cells per storm, and

cY (τ) =
λµcν

α−1

[{
µx2 +

κφ

φ2−1
µ2

x

}(
ν

ν+ τ

)α−1

− κµ2
x

φ2−1

(
ν

ν+φτ

)α−1
]

(B.42)

Rodriguez-Iturbe et al. (1988) note that for 1 < α < 2, the integralZ
∞

0
cY (τ)dτ

diverges, indicating asymptotic self-similarity over that range.
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B.5.3 Discrete-time depth properties

First- and second-order moments

The mean depth is (Onof, 1992):

M(h) = λhµcµx
ν

α−1
(B.43)

and the variance and co-variance are (Rodriguez-Iturbe et al., 1988):

V (h) = 2A1
{
(α−3)hν

2−α−ν
3−α +(ν+h)3−α

}
−2A2

{
φ(α−3)hν

2−α−ν
3−α +(ν+φh)3−α

}
(B.44)

and

C(k,h) = A1
{
[ν+(k +1)h]3−α−2[ν+ kh]3−α +[ν+(k−1)h]3−α

}
−A2

{
[ν+(k +1)φh]3−α−2[ν+ kφh]3−α +[ν+(k−1)φh]3−α

}
(B.45)

where:

A1 =
λµcνα

(α−1)(α−2)(α−3)

{
µx2 +

κφµ2
x

φ2−1

}
A2 =

λµcκµ2
xνα

φ2(φ2−1)(α−1)(α−2)(α−3)

Wet-dry properties

As shown by Rodriguez-Iturbe et al. (1988), the proportion dry for the Linear Randomised model is
obtained by starting with the expression for this property in the BLRPM and taking expectations over the
term which is exponentiated. This leads to the following for the proportion of dry periods (Onof, 1992):

Pd(h) = exp

−λ(h+µT )+
λνe−κ

α−1
×

φ+κ

(
ν

ν+(κ+φ)h

)α−1

φ+κ

Z 1

0
dt tφ−1(1− t)eκt

 (B.46)

If κ << 1 and φ << 1, which means that there is enough cell overlap and cell durations are much
smaller than storm durations, then the following approximation can be used Onof (1992):

Pd(h)≈

exp

{
−λh− λν

φ(α−1)

[
1+φ

(
κ+

φ

2

)
− 1

4
φ
(
5φκ+κ

2 +2φ
2)+ 1

72
φ
(
4κ

3 +31κ
2
φ+99κφ

2 +36φ
3)]

+
λν

φ(α−1)

(
1−κ−φ+

3
2

κφ+φ
2 +

1
2

κ
2
)[

φ

φ+κ
+

κ

φ+κ

(
ν

ν+(κ+φ)h

)α−1
]}

(B.47)

However, if these requirements on small values of κ and φ are not fulfilled, we can approximate the
proportion dry as follows:

Pd(h)≈ exp

−λ(h+ µ̂T M)+
λνe−κ

α−1
×

φ+κ

(
ν

ν+(κ+φ)h

)α−1

φ+κ
ÎM′

 (B.48)

where

µ̂T M =
ν

α−1

(
1+φ

M

∑
j=1

(−κ) j−1(κ− j2− j)
j( j +1)!

B( j +1,φ)+φ
−1

)

412 Appendix B. Mathematical expressions of generalised moments used in single-site rainfall models



and

ÎM′ =
M′

∑
j=0

κ j

j!
B( j +φ,2)+

δM′ (κ)
(M′+φ+1)(M′+φ+2)

with

δM′ (κ) = eκ−
M′

∑
j=0

κ j

j!

where M and M’ are to be chosen large enough for a good approximation. Upper bounds for the errors
involved and numerical investigations into their values are presented, together with the derivations for
the approximations are found in B.11.

Third-order moment

The third-order moment is best obtained by integration of the corresponding expression for the BLRPM
multiplied by the density function of the gamma distribution Γ(α,ν). The resulting expression can
however not be integrated in a closed form. As a consequence, a numerical integration is required.

A note about this numerical integration is useful. For the integral:

E
[
(Y (h)

i )
3
]

=
Z

∞

0
f (η)dη (B.49)

has the particularity that f (η) ∝
1

η4 in the neighbourhood of 0. f (η) is therefore not integrable at 0.
However, practically, values of η close to 0 are not physically representative (and their probability is very
small). This would correspond to a storm with very long cells only, which is hardly appropriate for the
representation of fine-scale rainfall. It is therefore realistic to neglect small values of η. Calculations with
a lower bound of 10−7 were found to give results in line with the simulations. The upper bound does not
have to be chosen as particularly large since the integrand f (η) decreases very quickly. Thus we can
approximate the integral as follows:

E
[
(Y (h)

i )
3
]

=
Z 100

10−7
f (η)dη (B.50)

and calculate it using Simpson’s rule.

B.5.4 Moving-average properties

The variance function is easily obtained as:

ω(h) =
2A1

{
(α−3)hν2−α−ν3−α +(ν+h)3−α

}
−2A2

{
φ(α−3)hν2−α−ν3−α +(ν+φh)3−α

}
h2(α−2)(α−3)

να−1 (A1−φ2A2)
(B.51)

The scale of fluctuation will then depend upon the value of α. If α < 2, the scale is infinite, in line with
the observation of asymptotic self-similarity. Else, if α > 2 we find:

Θ =
2ν

α−2
× A1−A2φ

A1−A2φ2 (B.52)

B.6 The Quadratic Random Parameter Model

B.6.1 Model specification

The observation that the LR model is liable to underestimate extreme rainfall depths suggests an
alteration of the mechanism by which cells are produced in a storm. Rather than have the random cell
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arrival rate β depend linearly upon the cell duration parameter η, this dependence could include a
power function. So as to facilitate the computations, let us assume a quadratic dependence. We
therefore assume that:

β = κ1η+κ2η
2 (B.53)

The model therefore has 8 parameters:

{λ,µx,µx2 ,α,ν,κ1,κ2,φ}

The following mechanistic parameters can be used:

{λ,µx,σx,δc,εc,µc,σc,δs}

defined by:

Storm arrival rate λ (hr−1)

Mean cell intensity µx (mm.hr−1)

Std. deviation of cell intensity σx =
√

µx2 −µ2
x (mm.hr−1)

Mean cell duration δc = ν

α−1 (hr)

I.S. std. deviation of cell duration εc = ν√
(α−1)2(α−2)

(hr)

Mean no of cells/storm µc = 1+ κ1
φ

+ κ2α

φν

Std. deviation of no of cells/storm σc =
√

2
φ2

[
(κ2

1 +κ1φ)+(2κ1κ2 +κ2φ)α

ν
+κ2

2
α(α+1)

ν2 ]
]

Mean duration of storm activity δs = ν

(α−1)φ (hr)

where ’I.S.’ stands for ’Inter-Storm’ and the calculation of the standard deviation of the number of cells
per storm is shown in B.12.

The equations below are given in terms of the original parameters. These can be re-expressed in terms
of the mechanistic parameters using:

µx2 = σ
2
x +µ2

x

α = 2+
δ2

c

ε2
c

ν = δc

(
1+

δ2
c

ε2
c

)
κ1 = φ

(
µc−1−

√
(1−µc)3(α+1)

α
+

σ2
cα

2

)

κ2 =
νφ

α

√
(1−µc)3(α+1)

α
+

σ2
cα

2

φ =
δc

δs

B.6.2 Continuous-time properties

The expressions below are obtained by integrating the equivalent expressions for the BLRPM over the
parameter η. The same integrals of functions of η are used which were computed for the LR model.
This yields:

E[Y (t)] = λµx

[
ν

α−1

(
1+

κ1

φ

)
+

κ2

φ

]
(B.54)
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and

cY (τ) =
λ

(
1+ κ1

φ

)
ν

α−1

[
µx2 +

κ1φµ2
x

φ2−1

](
ν

ν+ τ

)α−1

+λ


(

1+ κ1
φ

)
κ2φµ2

x

φ2−1
+

κ2

φ

(
µx2 +

κ1φµ2
x

φ2−1

)( ν

ν+ τ

)α

+
λκ2

2µ2
xα

(φ2
2−1)ν

(
ν

ν+ τ

)α+1

− λµ2
x

φ2−1

[(
1+

κ1

φ

)(
κ1ν

α−1
+κ2

)
+

κ2

φ

(
κ1 +κ2

α

ν

)]
e−γτ

(B.55)

We note that for −1 < α < 2, the integral Z
∞

0
cY (τ)dτ

diverges, indicating asymptotic self-similarity when α < 2.

B.6.3 Discrete-time properties

These properties can be obtained by using the general relations presented in equations (B.4) applied to
the equations (B.54) and (B.55). But since the integration over the values of η can be performed last,
they can also be obtained by directly integrating the properties of the BLRPM.

First- and second-order moments of depths

For these properties, the derivation proceeds by integrating the expressions in equations (B.7), (B.8)
and (B.9). This yields:

M(h) = λhµx

[
ν

α−1

(
1+

κ1

φ

)
+

κ2

φ

]
(B.56)

and

V (h) =
2λhκ2

2µ2
x

φ2 +
2λνκ2

(α−1)φ

[
hµx2 +hµ2

x

(
1+

2κ1

φ

)
+

µ2
xκ2

φ2(φ2−1)
ξ(1,φ)− κ2µ2

xφ

φ2−1
ξ(1,1)

]
+

2λν2

(α−1)(α−2)

[(
1+

κ1

φ

)
h
(

µx2 +µ2
x

κ1

φ

)
+

κ2µ2
x

φ2(φ2−1)

(
1+

2κ1

φ

)
ξ(2,φ)

−κ2ξ(2,1)
(

µx2

φ
+

µ2
xφ

φ2−1

(
1+

2κ1

φ

))]

+
2λν3

(
1+ κ1

φ

)
(α−1)(α−2)(α−3)

[
µ2

xκ1

φ2(φ2−1)
ξ(3,φ)−

(
µx2 +

µ2
xφ

φ2−1
κ1

)
ξ(3,1)

]
(B.57)

where:

ξ(k, l) = 1−
(

ν

ν+ lh

)α−k

For the covariance, let us define:

A1(x) =
ν

α−1

[(
ν

ν+ x(k−1)h

)α−1

−2
(

ν

ν+ xkh

)α−1

+
(

ν

ν+ x(k +1)h

)α−1
]

A2(x) =
ν2

(α−1)(α−2)

[(
ν

ν+ x(k−1)h

)α−2

−2
(

ν

ν+ xkh

)α−2

+
(

ν

ν+ x(k +1)h

)α−2
]

A3(x) =
ν3

(α−1)(α−2)(α−3)

[(
ν

ν+ x(k−1)h

)α−3

−2
(

ν

ν+ xkh

)α−3

+
(

ν

ν+ x(k +1)h

)α−3
]
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In terms of these expressions, the covariance is derived as:

C(k,h) = λ

(
1+

κ1

φ

)[
µx2 +

κ1φµ2
x

φ2−1

]
A3(1)

+λκ2

µx2

φ
+

φ

(
1+ 2κ1

φ

)
φ2−1

µ2
x

A2(1)+
λκ2

2µ2
x

φ2−1
A1(1)

− λµ2
x

φ2(φ2−1)

[(
1+

κ1

φ

)
κ1A3(φ)+

(
1+2

κ1

φ

)
κ2A2(φ)+

κ2
2

φ
A1(φ)

]
(B.58)

Wet-dry properties

For the proportion dry, a closed expression cannot be obtained since the following integrals need to be
evaluated:

I1(t) =
Z

∞

0

exp [−(κ1 +κ2u)(1− t)−νu]uα−2να

(κ1 +κ2u+φ)Γ(α)
du

I2(t) =
Z

∞

0

exp
[
−(κ1 +κ2u)(1− t)− (κ1u+κ2u2 +φu)h−νu

]
uα−2να

(κ1 +κ2u+φ)Γ(α)
du

I3(t) =
Z

∞

0

exp
[
−(κ1 +κ2u)(1− t)− (κ1u+κ2u2 +φu)h−νu

]
uα−1να

(κ1 +κ2u+φ)Γ(α)
du

In terms of these integrals, and with the following expression for the mean storm duration:

µT = φ

Z 1

0
du

Z 1

0
dt u−1tφ−1 ν

α−1

[
1− (1−ut)e−κ1u(1−t)

(
ν

ν+κ2u(1− t)

)α−1
]

+
φν

α−1

the proportion dry is:

Pd(h) = exp

[
−λ(h+µT )+

Z 1

0
dt tφ−1(1− t)λ(φI1(t)+κ1I2(t)+κ2I3(t))

]
(B.59)

Third-order moment of depths

For the third-order moment of the Quadratic Randomised model, a similar numerical computation is
required as in the case of the Linear Randomised model.In other words, the expression for the BLRPM
multiplied by the density function of the gamma distribution Γ(α,ν). The final expression is then
integrated numerically using Simpson’s rule. Because of the non-convergence of the integral in the
neighbourhood of 0, the domain of integration is not [0,∞), but can, in practice, for instance be taken as
[10−7,100].

B.6.4 Moving-average properties

The variance function is given by:

ω(h) =
V (h)

cY (0)h2 (B.60)

where the numerator and denominator are given in equations (B.57) and (B.55).

This leads to the following expression for the scale of fluctuation. If α < 2, it is infinite, which reflects the
asymptotic self-similarity. If α > 2 we find::

Θ = 2

λκ2
2µ2

x
φ2 + λνκ2

(α−1)φ

[
µx2 +µ2

x

(
1+ 2κ1

φ

)]
+ λν2

(α−1)(α−2)

[(
1+ κ1

φ

)(
µx2 +µ2

x
κ1
φ

)]
λµ2

x

(
1+ κ1

φ

)
κ1ν+κ2(α−1)
(α−1)(φ+1) + λκ2µ2

x
φ(φ+1)

(
κ2α

ν
+κ1

)
+λµx2

[
ν

α−1

(
1+ κ1

φ

)
+ κ2

φ

] (B.61)
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B.7 Cell intensity distributions

This appendix includes density and cumulative distribution functions for the three distributions
considered for the cell intensity. Also included are the third-order moments.

B.7.1 Exponential distribution

The exponential distribution is a one-parameter distribution. The density function is defined by:

fX (x) =
1
µx

e−x/µx for x > 0 (B.62)

and the cumulative distribution function (cdf) by:

FX (x) = 1− e−x/µx for x > 0 (B.63)

The following relations hold for the exponential distribution:

µx2 = 2µ2
x and µx3 = 3µ3

x (B.64)

B.7.2 Gamma distribution

The Gamma distribution is a two-parameter distribution denoted Γ(ψ,σ), where ψ is the shape
parameter and σ the scale parameter. The density function is given by:

fX (x) =
σψxψ−1e−σx

Γ(ψ)
for x > 0 (B.65)

and the cdf is not available in a closed form:

FX (x) =
Z x

0

σψxψ−1e−σt

Γ(ψ)
dt for x > 0 (B.66)

where:

ψ =
µ2

x

µx2 −µ2
x

and σ =
µx

µx2 −µ2
x

(B.67)

The following relation holds for the Gamma distribution:

µx3 =
(2µx2 −µ2

x)µx2

µx
(B.68)

B.7.3 General Pareto distribution

The Pareto distribution is also a two parameter distribution, denoted P(ψ,σ), where again ψ is the
shape parameter and σ the scale parameter. The density function is given by:

fX (x) =
ψσψ

xψ+1 for x > σ (B.69)

and the cdf by:

FX (x) = 1− (
σ

x
)ψ for x > σ (B.70)

where:

ψ = 1+
√

µx2

µx2 −µ2
x

and σ =
µx(ψ−1)

ψ
(B.71)

The third-order moment is given by:

µx3 =
(ψ−1)(ψ−2)

ψ(ψ−3)
µx2µx (B.72)

Note that, in the above, the moment of order p is only defined for p < α.
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B.8 3rd-order continuous-time BLRPM properties

The computation of the integrals described in the text require that the following expected values of
differential products be computed:

E [dN(x−u)dN(x+ y− v)dN(x+ z−w)] ={
(λµc)3 +λµcβ

2e−γ(M−m)

+(λµc)2
β

[
e−γ|z−w−y+v|+ e−γ|z−w+u|+ e−γ|y−v+u|

]}
dudvdw

and

E [dN(x−u)dN(x+ y− v)] = cov [dN(x−u)dN(x+ y− v)]+E [dN(x−u)] E [dN(x+ y− v)]
= λµc {δ(y− v+u)+h(y− v+u)−λµc} dudv+(λµc)2 dudv

= λµch(y− v+u)dudv

= λµc

(
λµc +βe−γ|y−v+u|

)
dudv

where: m = min(x−u,x+ y− v,x+ z−w) and M = max(x−u,x+ y− v,x+ z−w).

The computation of the integral then involves examining M−m which is:

M−m = max(y− v+u,z−w+u,z−w− y+ v,−y+ v−u,−z+w−u,−z+w+ y− v)

for the different intervals of integration.

We find the following:

v ∈ [0,y+u] and w ∈ [0,z− y+ v] ⇒M−m = z−w+u

v ∈ [0,y+u] and w ∈ [z− y+ v,z+u] ⇒M−m = y− v+u

v ∈ [0,y+u] and w ∈ [z+u,∞) ⇒M−m =−z+w+ y− v

v ∈ [y+u,∞] and w ∈ [0,z+u] ⇒M−m = z−w− y+ v

v ∈ [y+u,∞] and w ∈ [z+u,z− y+ v] ⇒M−m =−y+ v−u

v ∈ [y+u,∞] and w ∈ [z− y+ v,∞) ⇒M−m =−z+w−u

Lengthy but standard computations of integrals of exponential functions then lead to the following
expression for y≤ 0 and z≤ y :

E[Y (x)Y (x+ y)Y (x+ z)] = µx
3
λµc

(
µc

2λ2

η3 +2
e−ηze−ηyβ2γ2

4η5−5η3γ2 +ηγ4 −
e−γze−ηyβ2γ

η (η− γ)(η+ γ)(2η+ γ)

+
e−ηyβγλµc

−η4 +η2γ2 +
e−ηzeηyβγλµc

−η4 +η2γ2 +
e−ηze(η−γ)yβ2γ

−2η4 +η3γ+2η2γ2−ηγ3

− e−ηze−γyβ2γ

η (η− γ)(η+ γ)(2η+ γ)
− e−γzeγyλµc β

(−η+ γ)(η+ γ)η

+
e−γzβ (β+λµc)

η3−ηγ2 +
e−ηzβγλµc

−η4 +η2γ2 −
e−γyλµc β

(−η+ γ)(η+ γ)η

)
+µx µx2 λµc

(
−2

e−ηze−ηyβγ

η (η− γ)(η+ γ)
+

e−γze−ηyβ

(η− γ)(η+ γ)
+

e−ηyλµc

η2

+
e−ηzeηyλµc

η2 +
e−ηze(η−γ)yβ

(η− γ)(η+ γ)
+

e−ηze−γyβ

(η− γ)(η+ γ)

+
e−ηz

(
βηγ+

(
γ2−η2

)
λµc
)

−η4 +η2γ2

)
+

µx3 λµc e−ηz

η
(B.73)
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B.9 3rd-order moment of BLRPM aggregated process

This is the final expression of the third-order moment of rainfall depths at a time-scale h hours. If we
define the following:

T 1 = 12γ7µx
3β2eh(η+γ)−48µx

3e2hηη7β2 +72γ7eh(2η+γ)µx3 η2 +48γµx µx2 eh(2η+γ)βη7 +
24γhµx

3eh(2η+γ)βλη7µc−36µx µx2 γ7h2eh(2η+γ)λµc η3−24γhµx
3eh(2η+γ)η7β2 +

24µx µx2 γ4heh(η+γ)βη5 +24µx µx2 γ2eh(2η+γ)βη6−36µx µx2 γ3eh(2η+γ)βη5−6γ8hµx
3eh(2η+γ)βλµc−

30γ3hµx
3eh(2η+γ)βλη5µc−72µx µx2 γ6heh(2η+γ)βη3 +6γ5hµx

3eh(2η+γ)βλµc η3−
54µx µx2 γ5heh(2η+γ)λµc η4−84γ2µx

3eh(2η+γ)η5β2 +30γ6hµx
3eh(2η+γ)βλµc η2−

36γ5hµx
3eh(2η+γ)β2η3 +24µx µx2 γ3heh(2η+γ)λη6µc +54γ3hµx

3eh(2η+γ)η5β2 +
36µx µx2 γ7heh(2η+γ)λµc η2 +6µx µx2 γ5eh(2η+γ)βη3 +6γ7hµx

3eh(2η+γ)ηβ2−24µx µx2 γ2eh(η+γ)βη6 +
117µx µx2 γ6eh(2η+γ)βη2−18γ4µx

3eh(η+γ)β2η3−30γ6hµx
3eh(η+γ)βλµc η2 +54γ5eh(2η+γ)hµx3 η5 +

39γ5µx
3eh(2η+γ)β2η2−36γ7eh(2η+γ)hµx3 η3−24γ3eh(2η+γ)hµx3 η7−12γ9eh(2η+γ)µx3 +

6ηγ9hµx3 eh(η+γ)

T 2 =−24γ4hµx
3eh(2η+γ)βλµc η4 +6µx µx2 γ4e2hηβη4−30µx µx2 γ6heh(η+γ)βη3−

48µx µx2 γ2heh(2η+γ)βη7−48γµx µx2 e2hηβη7−24γhµx
3e2hηη7β2 +30γ3hµx

3e2hηβλη5µc +
54γ4µx

3h2eh(2η+γ)βλη5µc +6γ5µx
3e2hηβ2η2 +6µx µx2 γ8heh(η+γ)βη−36µx µx2 γ7heh(η+γ)λµc η2−

138µx µx2 γ4eh(2η+γ)βη4 +6µx µx2 γ9heh(η+γ)λµc +48µx
3eh(2η+γ)η7β2 +30γ3hµx

3e2hηη5β2 +
54µx µx2 γ5h2eh(2η+γ)λη5µc−24µx µx2 γ2e2hηβη6 +9γ5µx

3h3eh(2η+γ)λ2η5µc
2 +36µx µx2 γ3e2hηβη5 +

24µx µx2 γ3eh(η+γ)βη5 +6µx µx2 γ9h2eh(2η+γ)ληµc +24γ4hµx
3eh(η+γ)βλµc η4−

24µx µx2 γ3heh(η+γ)λη6µc−132µx µx2 γ6eh(η+γ)βη2−6µx µx2 γ5e2hηβη3−6γ5hµx
3e2hηβλµc η3 +

54µx µx2 γ5heh(η+γ)λµc η4−24γhµx
3e2hηβλη7µc +150µx µx2 γ4eh(η+γ)βη4−42γ5µx

3eh(η+γ)β2η2−
6γ7µx

3h3eh(2η+γ)λ2µc
2η3 + γ9µx

3h3eh(2η+γ)λ2µc
2η+6γ8µx

3h2eh(2η+γ)βληµc−6γ5hµx
3e2hηβ2η3 +

12µx µx2 γ8heh(2η+γ)βη−6µx µx2 γ9heh(2η+γ)λµc−6µx µx2 γ5eh(η+γ)βη3−24η5µx2 µx βγ3ehη−
12η4µx2 µx γ4βehγ−6η4µx2 µx γ4βehη +6η3γ5µx2 µx βehη−3µx2 µx γ8βehγ +24η6µx2 µx βγ2ehη +
15η2µx2 µx γ6βehγ−3γ7µx

3β2ehγ

T 3 = 18η3γ4µx
3β2ehη−12η4γ3µx

3β2ehη−6η2γ5µx
3β2ehη +3η2γ5µx

3β2ehγ−9γ7eh(2η+γ)µx
3β2 +

108η4γ5µx3 eh(η+γ) +48γ3eh(2η+γ)µx3 η6−72η2γ7µx3 eh(η+γ)−48η6µx3 γ3eh(η+γ) +
84γ2µx

3e2hηη5β2 +18γ4µx
3eh(2η+γ)β2η3 +24µx2 µx γ8βeh(η+γ) +54η5γ5hµx3 eh(η+γ)−

24η7hµx3 γ3eh(η+γ)−36η3γ7hµx3 eh(η+γ)−21γ8eh(2η+γ)µx2 µx β+6γ9eh(2η+γ)hµx3 η+
12γ3µx

3eh(η+γ)β2η4 +12γ3µx
3e2hηβ2η4−18γ4µx

3e2hηβ2η3−24γ2µx
3h2eh(2η+γ)βλη7µc−

12γ3µx
3eh(2η+γ)β2η4−108γ5eh(2η+γ)µx3 η4 +6γ8hµx

3eh(η+γ)βλµc−4γ3µx
3h3eh(2η+γ)λ2η7µc

2 +
108µx µx2 γ4heh(2η+γ)βη5 +12γ9µx3 eh(η+γ)−24µx µx2 γ3h2eh(2η+γ)λη7µc−36γ6µx

3h2eh(2η+γ)βλµc η3

and

χ = λµc e−h(2η+γ)

(η2+2γη+γ2)(γ4−2ηγ3−3η2γ2+8η3γ−4η4)γ3η4

the third order moment is:

E
[
(Y (h)

i )
3
]

= χ(T 1+T 2+T 3)
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B.10 3rd-order continuous-time DD1 properties

We define:

N1 = 1/6µλF3
η

3
(
−18η

(
eCy)2

(eηy)2
γC2

β
2eγz

+96ηC3
β

2eCzeηzeγyeCyeηy−48µ2
λ

2
η

3 (eCy)2
(eηy)2 Ceγyeγz

−12C4
β

2eCzeηzeγy +16ηC3
β

2eγyeγz

−12µ2
λ

2
η

4 (eCy)2
(eηy)2 eγyeγz−12η

4 (eCy)2

(eηy)2
β

2eγz−24µλη
4 (eCy)2

(eηy)2
βeγz−12µ2

λ
2
η

4eCzeηzeγyeγz

−5µ2
λ

2
γ

2C2eγyeγz +18η
2
γCβ

2eγyeγz +6γ
2C2

β
2eCzeηzeγy

−24µλ
(
eCy)2

(eηy)2
βC4eγz +16µ2

λ
2
η

3Ceγyeγz

−96µλη
(
eCy)2

(eηy)2
βC3eγz

−48µ2
λ

2
η

3CeCzeηzeγyeγz−12µλ
(
eCy)2

(eηy)2
βC4eγyeγz

−12µλη
4 (eCy)2

(eηy)2
βeγyeγz−3µ2

λ
2 (eCy)2

(eηy)2
γ

4eγyeγz−48µληβC3eCzeηzeγyeγz +144η
2
β

2C2eCzeηzeγyeCyeηy

+96µλη
3
βCeCzeηzeCyeηyeγz +96µληβC3eCzeηzeCyeηyeγz

−48µλη
(
eCy)2

(eηy)2
βC3eγyeγz−6µλγ

2
βC2eCzeηzeCyeηyeγz

−36µλη
2 (eCy)2

(eηy)2
γβCeγyeγz +24µλ (eγy)2

βC4eCzeηzeCyeηy

−48µλη
3
βCeCzeηzeγyeγz−12µλγC3

βeCzeηzeγyeγz

+24µλβC4eCzeηzeCyeηyeγz +96µληβC3eCzeηzeγyeCyeηy

−72µλη
2 (eCy)2

(eηy)2
βC2eγyeγz +2γ

2C2
β

2eγyeγz

−12µλη
3
γβeCzeηzeγyeγz−12µλη

3 (eCy)2
(eηy)2

γβeγyeγz

−12ηγ
2Cβ

2eCzeηzeγyeCyeηy +24µλη
4 (eγy)2

βeCzeηzeCyeηy

−12µλ
(
eCy)2

(eηy)2
γC3

βeγyeγz

+24µλη
4
βeCzeηzeCyeηyeγz

+30µ2
λ

2
ηγ

2CeCzeηzeγyeγz−6η
2
γ

2
β

2eCzeηzeγyeCyeηy

+96µλη (eγy)2
βC3eCzeηzeCyeηy−72µ2

λ
2
η

2 (eCy)2
(eηy)2 C2eγyeγz

−36µλη
2
γβCeCzeηzeγyeγz +3µλη

2
γ

2
βeCzeηzeγyeγz

+24η
4
β

2eCzeηzeγyeCyeηy +144µλη
2
βC2eCzeηzeγyeCyeηy

+144µλη
2 (eγy)2

βC2eCzeηzeCyeηy +12µληγ
2
βCeCzeηzeγy

−6µλγ
2
βC2eCzeηzeγyeCyeηy−12µληγ

2
βCeCzeηzeCyeηyeγz
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−6µληγ
2
βCeγyeγz +3µληγ

3
βeCzeηzeγyeγz +3µλγ

3
βCeCzeηzeγyeγz

+3µλη
2 (eCy)2

(eηy)2
γ

2
βeγyeγz +3µλγ

2
βC2eCzeηzeγyeγz

−12µλη (eγy)2
γ

2
βCeCzeηzeCyeηy−96µληβC3eCzeηzeγy

+6µλ
(
eCy)2

(eηy)2
γ

2
βC2eγz +36µλη

2
γβCeγyeγz

−96µλη
3 (eCy)2

(eηy)2
βCeγz−12

(
eCy)2

(eηy)2 C4
β

2eγz

−6η
3 (eCy)2

(eηy)2
γβ

2eγz +36µληγβC2eγyeγz

+15µ2
λ

2
η

2
γ

2eCzeηzeγyeγz +6µλη
2
γ

2
βeCzeηzeγy

+6µ2
λ

2
γ

4eCzeηzeγyeCyeηyeγz−6µλη
2
γ

2
βeCzeηzeγyeCyeηy

−72η
2 (eCy)2

(eηy)2
β

2C2eγz +15µ2
λ

2
γ

2C2eCzeηzeγyeγz

+16η
3Cβ

2eγyeγz−6µλη
2
γ

2
βeCzeηzeCyeηyeγz

+3µλ
(
eCy)2

(eηy)2
γ

2
βC2eγyeγz

+6µλη
(
eCy)2

(eηy)2
γ

2
βCeγyeγz

+6µληγ
2
βCeCzeηzeγyeγz +4µ2

λ
2C4eγyeγz

−6µλ (eγy)2
γ

2
βC2eCzeηzeCyeηy +30µ2

λ
2
η
(
eCy)2

(eηy)2
γ

2Ceγyeγz

−6γ
2C2

β
2eCzeηzeγyeCyeηy

+12µλη
(
eCy)2

(eηy)2
γ

2
βCeγz−12µληγ

2
βCeCzeηzeγyeCyeηy

−36µληγβC2eCzeηzeγyeγz

−48η
3 (eCy)2

(eηy)2 Cβ
2eγz +24µλβC4eCzeηzeγyeCyeηy

+24µ2
λ

2
η

4eCzeηzeγyeCyeηyeγz

+24µλη
4
βeCzeηzeγyeCyeηy +15µ2

λ
2
η

2 (eCy)2
(eηy)2

γ
2eγyeγz

−30µ2
λ

2
η

2
γ

2eCzeηzeγyeCyeηyeγz−12η
4
β

2eCzeηzeγy

−30µ2
λ

2
γ

2C2eCzeηzeγyeCyeηyeγz

−60µ2
λ

2
ηγ

2CeCzeηzeγyeCyeηyeγz

−36µλη
(
eCy)2

(eηy)2
γβC2eγyeγz

+6η
2
γ

2
β

2eCzeηzeγy +96µλη
3
βCeCzeηzeγyeCyeηy

−48ηC3
β

2eCzeηzeγy−72η
2
β

2C2eCzeηzeγy

−6µλη
2 (eγy)2

γ
2
βeCzeηzeCyeηy

+15µ2
λ

2 (eCy)2
(eηy)2

γ
2C2eγyeγz

−48µλη
3 (eCy)2

(eηy)2
βCeγyeγz−6η

3
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2eCzeηzeγy−6γC3
β

2eCzeηzeγy

+18ηγC2
β

2eγyeγz +48µληβC3eγyeγz
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−12µ2
λ
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)

which yields the first of the 14 integrals as:

I1 = N1/D1 (B.74)
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B.11 Probability dry approximation for LR model

B.11.1 Integral term

For the random-parameter Bartlett-Lewis model, the exact probability that an arbitrary interval is dry
depends on an integral of the form

I(φ,κ) =
Z 1

0
tφ−1 (1− t)eκtdt (B.75)

(see equation B.46). This cannot be evaluated analytically, although it is (almost) a ‘standard’ integral, in
the sense that it has a name, since I(φ,κ)/B(φ,2) is a confluent hypergeometric function —
M(φ,2+φ,κ) in the notation of Abramowitz and Stegun (1965, equation 13.2.1). B(a,b) here is the
beta function. There appear not to be any nice ways of evaluating I(φ,κ) or relating it to other special
functions that can be calculated easily — I’ve checked everything in Abramowitz and Stegun (1965) and
in Gradshteyn and Ryzhik (1980).

Rodriguez-Iturbe et al. (1987) approximated the integral using a third-order series expansion that is
valid when φ and κ are both small (i.e. substantially less than 1). This approach runs through all
subsequent developments of the Bartlett-Lewis model, and is still used in our fitting programs. However,
the requirement for κ and φ to be small seems to have gone largely unnoticed (or been forgotten) in our
fitting work. Now that we’re thinking about fitting models to lots of datasets, it may be worth examining.
For example, some recent problems with the SCE fitting code ‘blowing up’ for some datasets appear to
be caused solely by the failure of this approximation in a region of the parameter space that the
algorithm was exploring. Moreover, the exact magnitude of the approximation error for any given κ and
φ is not known, which makes me feel a bit uncomfortable . . .

In view of this, it may be worth exploring alternative means of evaluating the integral. A possible solution
is to use standard quadrature methods; however, since the integrand becomes infinite at t = 0 for φ < 1,
this may be delicate. Instead, consider expanding the eκt term, to get

I(φ,κ) =
Z 1

0
tφ−1 (1− t)

∞

∑
j=0

(κt) j

j!
dt =

∞

∑
j=0

κ j

j!

Z 1

0
t j+φ−1 (1− t)dt

=
∞

∑
j=0

κ j

j!
B( j +φ,2) .

This suggests truncating the infinite sum at a suitably large value, say M, and approximating the integral
by

ĨM(φ,κ) =
M

∑
j=0

κ j

j!
B( j +φ,2) . (B.76)

The point about this is that standard algorithms exist for calculating the Beta function to a high degree of
accuracy (it can be expressed in terms of gamma functions — B(a,b) = Γ(a)Γ(b)/Γ(a+b)), and these
are readily available in both R and FORTRAN (there’s a FORTRAN routine to evaluate gamma
functions in file OURPROGS/rec_math.f on argos).

The error in approximating I with ĨM is

I(φ,κ)− ĨM(φ,κ) =
Z 1

0
tφ−1 (1− t)

[
eκt −

M

∑
j=0

(κt) j

j!

]
dt =

Z 1

0
tφ−1 (1− t)

∞

∑
j=M+1

(κt) j

j!
dt . (B.77)

Each term in the infinite sum is non-negative and increasing in t. Therefore, over the range of the
integral, it takes its maximum value at t = 1. The maximum value of the sum is

δM (κ) =
∞

∑
j=M+1

κ j

j!
= eκ−

M

∑
j=0

κ j

j!
(B.78)

which is, again, easily evaluated providing M is not too large. We therefore have

0 < I(φ,κ)− ĨM(φ,κ) < δM (κ)
Z 1

0
tφ−1 (1− t)dt = δM (κ)B(φ,2) . (B.79)
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Therefore, for any value of M we can calculate an upper bound on the approximation error. This
enables us to find a value of M that will approximate the integral to any desired accuracy. A pragmatic
criterion, for example, may be to choose M such that δM (κ)B(φ,2) < 0.01× ĨM (κ,φ).

From equation (B.79), it is clear that ĨM will always underestimate I. It is natural to ask whether a
correction can be made for this, to improve the approximation. From equation (B.77) we have

I (φ,κ)− ĨM(φ,κ) =
Z 1

0

∞

∑
j=M+1

κ j

j!
t j+φ−1dt −

Z 1

0

∞

∑
j=M+1

κ j

j!
t j+φdt .

Each of the integrands here increases monotonically from 0 to δM(κ) as t ranges from 0 to 1. Moreover,
since t < 1 throughout the range of integration, the j = M +1 term is the largest in each sum. This
suggests approximating the error by taking just the M +1 term from each sum and scaling it to match
the correct value at each end of the range of integration. This yields the approximation

δM (κ)
Z 1

0

(
tM+φ− tM+φ+1)dt =

δM (κ)
(M +φ+1)(M +φ+2)

which, in turn, suggests that

ÎM (φ,κ) = ĨM (φ,κ)+
δM (κ)

(M +φ+1)(M +φ+2)
(B.80)

will be an improved estimate of I (φ,κ). Note that the improvement is obtained almost ‘free of charge’ —
it depends only on M (which is known) and upon δM (κ) (which has already been calculated to
determine the accuracy of ĨM).

Numerical investigation

To assess the adequacy of these approximations, some numerical experiments have been carried out
for several values of κ and φ. It is of particular interest to determine how large M needs to be to achieve
a specified degree of accuracy. Define M̃α and M̂α to be the values required to obtain a relative error of
less than 100α% for particular values of κ and φ, using ĨM and ÎM respectively. Table B.2 shows the
values of M̃0.01, M̂0.01, M̃10−6 and M̂10−6 for values of φ and κ between 0 and 10. In all cases, the
‘exact’ expression was calculated as Ĩ100(φ,κ). As a check on the adequacy of this (and on the overall
accuracy of the theory and programming!), the results for φ = 0.1,κ = 0.1 and for φ = 0.1,κ = 1 have
also been evaluated manually using Table 13.1 of Abramowitz and Stegun (1965).

Table B.1 shows that for the values of φ and κ likely to be encountered in rainfall modelling applications,
a small value of M yields very high accuracy. In such applications it would be unusual to find values in
excess of 1) For example, using ÎM , when φ = κ = 1 a relative error of less than 1% can be achieved
with M = 2. Indeed, M = 6 is sufficient to ensure a relative error of less than 10−6 in this case. As
expected, ÎM is more accurate than ĨM and hence is preferable (since it is no more expensive to
compute). The magnitude of this improvement can be illustrated by comparing Ĩ0(1,1) = 0.6667 and
Î0(1,1) = 0.7265 (not shown in Table B.2) with the actual value of I(1,1), which is 0.7183. In this case,
Î improves considerably over Ĩ. The magnitude of the error here suggests that taking M as small as
zero may adequate for some applications, if using Î.

B.11.2 Mean duration of a storm

Derivation of the approximation

The theoretical expression for the mean storm duration which is required for the estimation of the
proportion of dry periods µT is (Onof, 1992):

µT =
φν

α−1

Z 1

0
dv

Z 1

0
dt v−1tφ−1[1− (1− vt)e−κv(1−t)]+

φ−1ν

α−1
(B.81)
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Table B.1 Exact values of I(φ,κ), together with values of M required to achieve relative errors of
less than 10−2 and 10−6 respectively.

φ κ I(φ,κ) M̃0.01 M̂0.01 M̃10−6 M̂10−6

0.01 0 99.0099 0 0 0 0
0.10 0 9.0909 0 0 0 0

1 0 0.5000 0 0 0 0
10 0 0.0091 0 0 0 0

0.01 0.01 99.0148 0 0 1 0
0.10 0.01 9.0952 0 0 1 1

1 0.01 0.5017 0 0 2 1
10 0.01 0.0092 0 0 2 1

0.01 0.10 99.0600 0 0 2 1
0.10 0.10 9.1350 0 0 3 2

1 0.10 0.5171 1 0 3 2
10 0.10 0.0099 1 0 4 2

0.01 1 99.6013 0 0 5 4
0.10 1 9.6160 1 1 6 5

1 1 0.7183 3 2 7 6
10 1 0.0210 4 2 8 6

0.01 10 385.9201 15 13 26 23
0.10 10 288.2351 16 13 26 23

1 10 220.1547 16 13 26 23
10 10 56.3963 17 13 27 24

Since approximating this integral involves expanding the exponential term as the sum of a series, a
change of variable in the integral in t would be preferable (the new variable is 1− t). This yields:

µT =
φν

α−1

Z 1

0
dv

Z 1

0
dt v−1(1− t)φ−1[1− (1− v(1− t))e−κvt ]+

φ−1ν

α−1
(B.82)

By using the Taylor expansion of the exponential function, the double integral inside this expression can
be written as:

I =
Z 1

0
dv

Z 1

0
dt v−1(1− t)φ−1

[
−

∑
∞
j=1(−κvt) j

j!
+ v

∑
∞
j=0(−κvt) j

j!
− vt

∑
∞
j=0(−κvt) j

j!

]

=
Z 1

0
dv

Z 1

0
dt (1− t)φ−1

[
−

∑
∞
j=1(−κvt) j

v j!
+

∑
∞
j=0(−κvt) j

j!
− t

∑
∞
j=0(−κvt) j

j!

]

which is the sum of three terms:

I1 = −
∞

∑
j=1

(−κ) j

j!

Z 1

0
v j−1 dv

Z 1

0
(1− t)φ−1t j dt

I2 =
∞

∑
j=0

(−κ) j

j!

Z 1

0
v j dv

Z 1

0
(1− t)φ−1t j dt

I3 = −
∞

∑
j=0

(−κ) j

j!

Z 1

0
v j dv

Z 1

0
(1− t)φ−1t j+1 dt

Having thus separated the variables of integration, the expressions simplify in terms of beta functions:
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I1 = −
∞

∑
j=1

(−κ) j

j j!
B( j +1,φ) (B.83)

I2 =
∞

∑
j=0

(−κ) j

( j +1)!
B( j +1,φ) (B.84)

I3 = −
∞

∑
j=0

(−κ) j

( j +1)!
B( j +2,φ) (B.85)

The sum I = I1 + I2 + I3 can therefore be approximated by IM = I1M + I2M + I3M where:

I1M = −
M

∑
j=1

(−κ) j

j j!
B( j +1,φ) (B.86)

I2M =
M

∑
j=0

(−κ) j

( j +1)!
B( j +1,φ) (B.87)

I3M = −
M

∑
j=0

(−κ) j

( j +1)!
B( j +2,φ) (B.88)

Note that, with computational efficiency in mind, IM can be rewritten so as to minimise the calls a
program has to make to the Beta function. Thus:

I1M = −
M

∑
j=1

(−κ) j

j j!
B( j +1,φ)

I2M =
M

∑
j=0

(−κ) j

( j +1)!
B( j +1,φ)

I3M = −
M+1

∑
j=1

(−κ) j−1

j!
B( j +1,φ)

this suggests we take the following as approximation:

I′M = −
M

∑
j=1

(−κ) j

j j!
B( j +1,φ)+

M

∑
j=0

(−κ) j

( j +1)!
B( j +1,φ)−

M

∑
j=1

(−κ) j−1

j!
B( j +1,φ)

which yields:

I′M = B(1,φ)+
M

∑
j=1

(−κ) j−1
(

κ

j j!
− κ

( j +1)!
− 1

j!

)
B( j +1,φ)

or:

I′M =
1
φ

+
M

∑
j=1

(−κ) j−1(κ− j2− j)
j( j +1)!

B( j +1,φ) (B.89)

where I′M is related to IM by:

IM = I′M −
(−κ)M

(M +1)!
B(M +2,φ) (B.90)

Error estimation

To analyse the error on the approximation of I, let us return to the expression in terms of three integrals.
The general term of the sequence which is being summed to compute IM is:

u j =− (−κ) j

j( j +1)!
(B( j +1,φ)+ jB( j +2,φ))
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which is alternatively negative (for j even) and positive. The sequence has the property that it is strictly
decreasing in absolute value, therefore:

u2m+1 +u2m+2 > 0 ⇒
n

∑
j=2m+1

u j > 0 for any n≥ 2m+1

u2m +u2m+1 < 0 ⇒
n

∑
j=2m

u j < 0 for any n≥ 2m

and therefore, the limit of the series (taking the sum from 0) is between ∑
M
j=0 u j and ∑

M+1
j=0 u j and upper

bounds for the error made in approximating I with IM are:

|I− IM|< |uM+1|= | (−κ)M

M(M +1)!
(B(M +1,φ)+MB(M +2,φ))|< (κ)M

MM!
B(M +1,φ) (B.91)

since B(M +2,φ) < B(M +1,φ).

Consequently, the error on the computationally more efficient approximation I′M can be bounded as
follows:

|I− I′M| < |I− IM|+ |IM − I′M|

<
(κ)M

MM!
B(M +1,φ)+

(κ)M

(M +1)!
B(M +2,φ)

< 2
(κ)M

MM!
B(M +1,φ) (B.92)

from equation (B.90).

This is a coarse upper bound and in fact, more can be said about the errors involved in approximating
with IM or I′M . In particular, we have the result:

Lemma 1 I′M is a better approximation of I than IM for κ > 1.

This can easily be seen by observing that, assuming M even, we have:

I′M = IM +
κM

(M +1)!
B(M +2,φ)

thus:

I′M > IM

and

IM+1 = IM +uM = IM +
κM+1

M(M +1)!
(B(M = 1,φ)+MB(M +2,φ))

= IM +
κM

(M +1)!
κ(B(M = 1,φ)+MB(M +2,φ))

M

> IM +κ

(
1+

1
M

)
B(M +2,φ)

so that, if κ > 1,

IM+1 > I′M

Therefore, assuming κ > 1, we obtain:

I′M ∈ (IM, IM+1) for M even,

and similarly

I′M ∈ (IM+1, IM) for M odd. (B.93)

This entails that
|I′M+1− I′M|< |IM+1− IM|
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and, more generally:

|I′M+p− I′M| < |IM+p− IM| for p odd

|I′M+p− I′M| < |IM+p+1− IM| for p even

so that, taking limits as p→ ∞, we have:

∀M |I− I′M|< |I− IM| (B.94)

q.e.d.

On the contrary, for small values of κ, the series which converges fastest is In if:

κ

(
n+φ+1
(n+2)n

+1
)

< 1

which is true for n large enough (for given values of κ and φ). However, as the numerical experiments
below show, small values of κ in any case lead to fast convergence of I′n.

Numerical investigation

Using Maple which calculates sums of terms with Beta functions in terms of the Generalised
Hypergeometric Function, we can however evaluate the exact relative error ∆IM = |I− I′M|/I for a range
of values of M, for given values of parameters κ and φ.

The results are shown in table B.2 below.

Table B.2 Relative errors on the estimation of µT

φ κ I ∆IM : M = 3 M = 5 M = 7 M = 10 M = 15 M = 20 M = 30

0.01 0.01 1.98 4.210−7 1.310−12 2.510−18 2.510−27

0.10 0.01 1.00 3.810−7 1.210−12 2.110−18 2.110−27

1 0.01 0.50 1.710−7 4.010−13 5.610−19 4.210−28

10 0.01 0.09 4.610−9 1.910−15 6.310−22 7.910−32

0.01 0.1 10.63 4.510−5 1.510−8 2.710−11 2.710−17

0.10 0.1 1.78 4.010−5 1.310−8 2.310−11 2.210−17

1 0.1 0.54 1.810−5 4.310−9 5.910−13 4.510−18

10 0.1 0.09 4.810−7 2.010−10 6.610−15 8.310−23

0.01 1 79.75 1.610−1 5.710−3 1.010−4 1.110−6

0.10 1 8.05 1.410−1 4.810−3 8.710−5 8.810−7

1 1 0.86 4.710−2 1.210−3 1.710−5 1.310−7

10 1 0.10 9.310−4 4.010−5 1.310−7 1.710−12

0.01 5 217.81 1.4 1.8 0.9 0.1 9.010−4 1.210−6 7.910−13

0.10 5 20.98 1.3 1.5 0.8 0.1 7.210−4 9.610−7 6.010−14

1 5 1.66 0.6 0.5 0.2 2.110−2 1.010−4 1.010−7 4.610−15

10 5 .11 0.0 2.710−3 2.410−4 4.010−6 1.710−9 2.610−13 6.610−22

0.01 10 286.74 2.1 20.3 50.0 64.0 14.9 0.7 4.710−5

0.10 10 27.64 1.9 17.5 42.0 52.3 11.7 0.5 3.410−5

1 10 2.18 0.8 5.2 9.6 9.1 1.5 5.110−2 2.510−5

10 10 0.13 310−2 210−2 110−1 1.410−3 2.010−5 1.110−6 0.

Conclusion

In conclusion, we note that although IM (computed for instance as IM = I′M −
(−κ)M

(M+1)! B(M +2,φ)) could

be used as approximation,it is preferable to approximate I with I′M , so that µT can be approximated as:
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µT ≈
ν

α−1
(
φI′M +φ

−1) (B.95)

B.12 Std. deviation of number of cells/storm for QR
model

Conditional upon η, the mean number of cells Nc in a storm is geometrically distributed with mean
E[Nc|η] = 1+ κ1+κ2η

φ
. Let a = 1−E[Nc|η]−1. The distribution is thus given by:

Pr{Nc = n|η}= (1−a)an−1 for n > 0

The variance of Nc is:
var[Nc] = E[var[Nc|η]] (B.96)

Let us first calculate the conditional variance:

var[Nc|η] = E[N2
c |η]−E[Nc|η]2

and

E[N2
c |η] = (1−a)∑

∞
n=1 n2an−1

The following sums are useful:

∑
∞
n=1 nan−1 = ∂

∂a ∑
∞
n=0 an

= 1
(1−a)2

∑
∞
n=1 n(n−1)an−2 = ∂2

∂a2 ∑
∞
n=0 an

= 2
(1−a)3

Hence:

∑
∞
n=1 n2an−1 = a+1

(1−a)3

thus,

E[N2
c |η] = a+1

(1−a)2

and:

var[Nc|η] = 2a
(1−a)2

= 2
[( 1

1−a

)2− 1
1−a

]
Therefore:

var[Nc|η] = 2

[(
1+

κ1 +κ2η

φ

)2

−1− κ1 +κ2η

φ

]
or,

var[Nc|η] = 2

[(
κ1 +κ2η

φ

)2

+
κ1 +κ2η

φ

]
(B.97)

From equation (B.96), the unconditional variance is:

var[Nc] =
2
φ2

[
(κ2

1 +κ1φ)+(2κ1κ2 +κ2φ)E[η]+κ
2
2E[η2]

]
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Since:

E[η] = α/ν

E[η2] = (α+1)α/ν
2

we finally obtain:

var[Nc] =
2
φ2

[
(κ2

1 +κ1φ)+(2κ1κ2 +κ2φ)
α

ν
+κ

2
2

α(α+1)
ν2 ]

]
(B.98)

430 Appendix B. Mathematical expressions of generalised moments used in single-site rainfall models



Appendix C Further details of the single-site rainfall
model

This appendix provides further details of the single-site rainfall model presented within Chapter 2, along
with greater detail on simulation results.

C.1 Simulation program details

Since the distributions used in our stochastic models have no upper bound, they are liable to give rise to
extreme values of certain random variables which are not considered to be realistic. Without introducing
any significant bias into the simulation, some of the sampling procedures are set limits. This means
that, when these limits are exceeded, the variable in question must be re-sampled, and this can happen
a number of times before the program stops. The chosen limits have been selected on the basis of
previous experience and general observations about the structure of storms in observed data.

C.1.1 Duration of storm activity

An upper limit of 1600 hours has been set for the duration over which a storm can produce cells. If this
limit is exceeded, another storm is generated. This process can be repeated 5 times. If these are
unsuccessful, the simulation stops and another simulation is attempted. If this fails again, the program
stops.

C.1.2 Number of storms per year

An upper limit of 2000 storms has been set for the year. If this limit is exceeded, another year is
simulated. This process can be repeated 3 times. If all these attempts fail, the simulation terminates
and a new simulation is attempted. If this fails again, the program stops.

C.1.3 Number of cells per storm

An upper limit of 2000 has been set for the number of cells per storm. If this limit is exceeded, another
storm is generated. This process can be repeated 5 times. If all 5 attempts are unsuccessful, the
simulation terminates and another simulation is carried out. If this in turn fails, the program stops.

C.1.4 Choice of values of η for each storm

The Random Parameter Bartlett-Lewis model is characterised by the sampling of a value of η for each
storm. Should this value be too small, the parameters selected to govern the cell structure for that small
will be unrealistic. Very long cells would arrive at a very low rate over a very long period of time. To
avoid this situation, a lower threshold for η is selected by the user. It is generally recommended to
choose a value of 0.1 or 0.2.

If 40 consecutive samplings from the Gamma distribution for η yield values that lie below the threshold,
this will be deemed inappropriate and the program stops. The user then has to restart the simulation(s)
with a lower threshold for η.
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C.2 Profile objective functions

The plots in this section show profile objective functions for various models fitted to data from Heathrow,
Elmdon and Plynlimon, and supplement the text in Section 2.4.3. Table 2.6 (page 17) summarises the
models.
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Figure C.21 Profile objective functions for model 4 fitted to July data from Heathrow, using ob-
jective function 1.
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Figure C.22 Profile objective functions for model 5 fitted to July data from Heathrow, using ob-
jective function 1.
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Figure C.23 Profile objective functions for model 4 fitted to July data from Heathrow, using ob-
jective function 2.
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Figure C.24 Profile objective functions for model 5 fitted to July data from Heathrow, using ob-
jective function 2.
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Figure C.25 Profile objective functions for model 4 fitted to January data from Elmdon, using
objective function 1.
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Figure C.26 Profile objective functions for model 5 fitted to January data from Elmdon, using
objective function 1.
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Figure C.27 Profile objective functions for model 4 fitted to January data from Plynlimon, using
objective function 1.
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Figure C.28 Profile objective functions for model 5 fitted to January data from Plynlimon, using
objective function 1.

−14 −12 −10 −8 −6 −4 −2 0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(λ)

95%
99%

−6 −4 −2 0 2 4

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(µX)

95%
99%

0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(α)

95%
99%

−6 −4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(α ν)

95%
99%

−10 −5 0

0e
+

00
2e

−
04

4e
−

04
6e

−
04

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(κ)

95%
99%

−10 −5 0

0e
+

00
1e

−
04

2e
−

04
3e

−
04

4e
−

04

Parameter value

O
bj

ec
tiv

e 
fu

nc
tio

n

Profile objective function
log(φ)

95%
99%

Figure C.29 Profile objective functions for model 4 fitted to January data from 1949 to 1973 at
Heathrow, using objective function 1.
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Figure C.210 Profile objective functions for model 4 fitted to January data from 1977 to 2001 at
Heathrow, using objective function 1.
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Figure C.211 Profile objective functions for model 4 fitted to July data from 1949 to 1973 at
Heathrow, using objective function 1.
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C.3 Monthly extreme value performance plots

Figures C.313 and C.314 show the performance of, respectively, the gamma and Pareto versions of
model 5 in Table 2.6, for July hourly extremes at Elmdon.

Figures C.315 and C.316 show the performance of model 4 for January and July hourly extremes at
Plynlimon. Figure C.317 shows the performance for July daily extremes. Figures C.318 and C.319 show
the performance of model 5 (gamma version) for January and July hourly extremes. Figures C.320 and
C.321 are the corresponding plots for the Pareto version of the model.

Figures C.322 and C.323 show the hourly performance of model 4 at Heathrow in January and July.
Figures C.324 and C.325 are the corresponding plots for daily performance. Figure C.326 shows the
performance of model 5 (gamma version) for January hourly extremes.

C.4 Annual extreme value performance plots

Figure C.427 shows the annual performance of the best parameters at Plynlimon at the daily time-scale.
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Figure C.212 Profile objective functions for model 4 fitted to July data from 1977 to 2001 at
Heathrow, using objective function 1.
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Figure C.313 Model 5 (gamma version) at Elmdon — July hourly extremes (see details in Section
2.5.2).
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Figure C.314 Model 5 (Pareto version) at Elmdon — July hourly extremes (see details in Section
2.5.2).
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Figure C.315 Model 4 at Plynlimon — Jan hourly extremes (see details in Section 2.5.2)
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Figure C.316 Model 4 at Plynlimon — July hourly extremes (see details in Section 2.5.2)
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Figure C.317 Model 4 at Plynlimon — July daily extremes (see details in Section 2.5.2)
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Figure C.318 Model 5 (gamma version) at Plynlimon — January hourly extremes (see details in
Section 2.5.2).

Rainfall maxima

0

5

10

15

20

25

mm

1 2 3

Reduced variate

Figure C.319 Model 5 (gamma version) at Plynlimon — July hourly extremes (see details in Sec-
tion 2.5.2).
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Figure C.320 Model 5 (Pareto version) at Plynlimon — Jan hourly extremes (see details in Sec-
tion 2.5.2).
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Figure C.321 Model 5 (Pareto version) at Plynlimon — July hourly extremes (see details in Sec-
tion 2.5.2).
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Figure C.322 Model 4 at Heathrow — January hourly extremes (see details in Section 2.5.2).
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Figure C.323 Model 4 at Heathrow — July hourly extremes (see details in Section 2.5.2).
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Figure C.324 Model 4 at Heathrow — January daily extremes (see details in Section 2.5.2).
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Figure C.325 Model 4 at Heathrow — July daily extremes (see details in Section 2.5.2).
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Figure C.326 Model 5 (gamma version) at Heathrow — Jan hourly extremes (see details in Sec-
tion 2.5.2).
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Figure C.427 Model 4 at Plynlimon — Annual daily extremes. See Figure 2.16 (page 47) for
legend.
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Appendix D Derivation of daily evaporation model prop-
erties

In this appendix we derive expressions required for application of the evaporation model presented
within Chapter 3.

D.1 Mean and covariance of the daily evaporation
model

The two expression derived are (3.18) and (3.19) for the mean and covariance structure of the selected
model for daily PE sequences (model 3 in Table 3.4). The model can be written as

Yt = β0 +
2

∑
j=1

β
∗
j cos [2π(ω jt−φ j)]+β3Yt−1 + εt , (D.1)

where εt is distributed as N
(
0,σ2

t
)

independently (but not identically) for each t, and σt is given by
(3.17). The parameterisation in (D.1) is the same as that in (3.16).

The model is essentially a first-order autoregression, superimposed onto a deterministic seasonal cycle
and with the added complication of a deterministic cycle in the variance structure. Although the model is
nonstationary, it has some similarities to a stationary process with a mixed spectrum (Priestley, 1981,
Chapter 8). It would be surprising if the time domain properties of such a process had not been studied
previously; however, we have not found any relevant references in the modern time series literature.

To derive the properties of model (D.1) it is useful to introduce the backshift operator, B (see Priestley,
1981, p.123, for example). The effect of the operator is to shift time backwards one unit:
B(Yt) = Yt−1,B2 (Yt) = Yt−2 and so on. An appealing property is that B follows algebraic rules so that
series expansions can be carried out. In particular, it is legitimate to write (1−aB)−1 = ∑

∞
r=0 (aB)r if

|a|< 1.

In backshift notation, model (D.1) can be written as

Yt −β3Yt−1 = (1−β3B)Yt = β0 +
2

∑
j=1

β
∗
j cos [2π(ω jt−φ j)]+ εt

= β0 +ℜ

{
2

∑
j=1

β
∗
j exp [2πi(ω jt−φ j)]

}
+ εt ,

where ℜ(z) denotes the real part of a complex number z and i =
√
−1. Multiplying both sides by by

(1−β3B)−1 and applying the series expansion given above (which is legitimate since, in Table 3.4, the
estimate of β3 is less than 1 in magnitude), we obtain

Yt = (1−β3B)−1

[
β0 +ℜ

{
2

∑
j=1

β
∗
j exp [2πi(ω jt−φ j)]

}
+ εt

]

=
∞

∑
r=0

β
r
3Br

[
β0 +ℜ

{
2

∑
j=1

β
∗
j exp [2πi(ω jt−φ j)]

}
+ εt

]

= β0

∞

∑
r=0

β
r
3 +ℜ

{
2

∑
j=1

β
∗
j

∞

∑
r=0

β
r
3 exp [2πi(ω j(t− r)−φ j)]

}
+

∞

∑
r=0

β
r
3εt−r

= β0

∞

∑
r=0

β
r
3 +ℜ

{
2

∑
j=1

β
∗
j exp [2πi(ω jt−φ j)]

∞

∑
r=0

β
r
3 exp [−2πiω jr]

}
+

∞

∑
r=0

β
r
3εt−r
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The first two terms involve infinite sums of geometric series, so that the equation can be rewritten as

Yt =
β0

1−β3
+ℜ

{
2

∑
j=1

β
∗
j exp [2πi(ω jt−φ j)] (1−β3 exp [−2πiω j])

−1

}
+

∞

∑
r=0

β
r
3εt−r .

Simplifying the central expression, and taking the real part, yields

Yt =
β0

1−β3
+

2

∑
j=1

β
∗
j

{
cos [2π(ω jt−φ j)]−β3 cos [2π(ω j(t +1)−φ j)]

1−2β3 cos(2πω j)+β2
3

}
+

∞

∑
r=0

β
r
3εt−r . (D.2)

Here, Yt is represented as the sum of a deterministic function and a sequence of uncorrelated terms
(the εs). Its properties can now be derived straightforwardly. For example, taking expectations of both
sides of (D.2) yields (3.18) directly, since the εs all have zero mean.

The covariance structure of the model is slightly more complicated. Since the only random variables in
(D.2) are the εs, we have

Cov(Yt ,Yt−k) = Cov

[
∞

∑
r=0

β
r
3εt−r,

∞

∑
r=0

β
r
3εt−k−r

]
=

∞

∑
r=k

β
2r−k
3 σ

2
t−r, (D.3)

since Cov(εt ,εs) = σ2
t if t = s, and zero otherwise.

Using parameterisation (3.17) for σt , we have

σ
2
t =

(
γ0 +

2

∑
j=1

γ j cos [2π(ω jt−ψ j)]

)2

.

Expanding this, and simplifying using standard trigonometric identities, yields

σ
2
t = γ

∗
0 +

6

∑
p=1

γ
∗
p cos

[
2π
(
ω
∗
pt−ψ

∗
p
)]

,

with notation defined in (3.20). Moving back to complex numbers, and substituting into (D.3), we obtain

Cov(Yt ,Yt−k) = ℜ

{
∞

∑
r=k

β
2r−k
3

[
γ
∗
0 +

6

∑
p=1

γ
∗
p exp

[
2πi
(
ω
∗
p(t− r)−ψ

∗
p
)]]}

= γ
∗
0

∞

∑
r=k

β
2r−k
3 +ℜ

{
6

∑
p=1

γ
∗
p exp

[
2πi
(
ω
∗
pt−ψ

∗
p
)] ∞

∑
r=k

β
2r−k
3 exp

[
−2πiω∗

pr
]}

.

As before, the infinite sums here relate to geometric series; the resulting expressions can be simplified,
and the real part taken to yield the reult (3.19).

The derivation here illustrates the reason for excluding rainfall from the daily evaporation model (despite
the fact that in Section 3.4.2 it was found to be a significant predictor). Specifically, if rainfall was
included in the model then it would have to be treated as a deterministic component of (D.1); the
subsequent manipulation would then lead to an infinite sum of past rainfall values as well as past εs in
(D.2), which may lead to practical difficulties in calculation.

448 Appendix D. Derivation of daily evaporation model properties



Appendix E Review of some multifractal models for
rainfall

One of the aims of Work Package 2 (detailed within Part III) was to investigate fractal based methods as
a method of spatial-temporal generation of rainfall series. This appendix details a review of such
methods available.

E.1 Introduction

The effort to represent rainfall processes over a large range of scales motivates the development of
scaling models for precipitation. The appeal of scaling models is due to their parsimony in describing
the variability of rainfall at a large range of scales in space and time. Earlier work in this direction has
focused on simple scaling, which assumes self-similarity of the process. The main idea is that rainfall is
scale invariant, so that its statistical distribution at different levels of magnification (or scales) is the
same up to multiplicative factors that only involve the scale ratios. The form of these factors is λθ, where
λ is the scale ratio and θ is a constant scaling exponent.

Since simple scaling has not been widely successful in reproducing observed properties of precipitation
(e.g. Schertzer and Lovejoy 1987, Gupta and Waymire 1990, Kedem and Chiu 1987), more attention in
the last 15 years has focused on multi-scaling models, mainly based on multifractal theory. The basic
idea behind this direction of research is that moments of different order scale with different scaling
exponents.

Several multifractal models have been developed to represent spatial or temporal rainfall and, more
recently, spatio-temporal rainfall. Multifractal fields are mostly generated through multiplicative cascade
processes, which will be described in Section E.2.2. Based on the discrete or continuous nature of the
generating mechanism, one may identify two main groups of models. Some authors (e.g. Gupta and
Waymire) focus on discrete cascade models, which propagate an initial mass through a discrete range
of smaller and smaller scales. Others (e.g. Lovejoy and Schertzer) prefer cascades that develop over a
continuous range of scales. Sections E.3 and E.4 contain descriptions of the two approaches and
underline their advantages and disadvantages.

Not all multifractal models for rainfall are covered here. The purpose of this review is to provide some
indication of whether readily usable multifractal approaches to rainfall modelling and simulation exist. In
particular, the interest is in models that can generate continuous space-time simulations and do not
require a lot of additional effort in terms of model development and validation. Therefore, only
multifractal models for which a space-time extension already exists are considered. The reader that is
mainly interested in the conclusions, may focus on Sections E.3.4, E.4.1, E.4.2 and E.5.

Besides different drawbacks specific to each model, there is of a lack of evidence that multifractals can
reproduce various properties of observed rainfall. While the scaling properties of the simulated process
are thoroughly verified against data, very little or no attention is concentrated on other characteristics of
rainfall.

E.2 Background

Before describing specific multifractal models for rainfall, it is useful to review the general concepts of
fractal sets and multifractal measures. Section E.2.1 outlines the characteristics usually associated with
fractals and the idea of dimension of such sets, while Section E.2.2 contains an overview of multifractal
measures. The connection between fractal sets and multifractal measures, which explains the term
“multifractal”, is sketched, together with the cascade process that leads to multifractals and the
self-similarity properties that characterize these measures.
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E.2.1 Fractal Sets

Fractals are very irregular sets, with a structure that is too complicated to be explained by the rules of
classical geometry. Typical examples are snowflakes and irregular coastlines. No accepted definition of
a fractal set exists, but one can identify several properties that are usually verified for such sets
(Falconer, 1990). A property that is particularly important in the context of scaling models for rainfall is
self-similarity. The parts, at any scale, of a self-similar set have the same structure as the whole, apart
from a scale factor. That is, at any scale, the set can be decomposed into subsets that are scaled down
versions of itself. Self-similarity can also be approximate (i.e., distortion is allowed), or statistical. The
parts, at any scale, of a statistically self-similar set have the same distribution as the whole, again apart
from a scale factor.

The properties of fine structure and local irregularity are related to self-similarity, although they can exist
in a set that is not self-similar. Fractals have fine structure in the sense that increasing the level of
magnification at which the set is examined, reveals more and more detail. Also, fractals are locally, as
well as globally, irregular. That is, the irregularity of the whole set is propagated to all scales.

Another property that is commonly found in fractal sets refers to their dimension. Specifically, the
dimension of a fractal is non-integral (i.e. fractional) and larger than its classical dimension. For
example (Harte, 2001), an irregular coastline may be thought to have dimension between 1 (the
dimension of a simple line) and 2 (the dimension of an area). Originally, Mandelbrot (1975) defined
fractals by this property. However, it has been found that such definition excludes some sets that should
nonetheless be considered as fractals. It remains intuitive to think of a fractal as a very irregular set that
has a fractional dimension (Harte, 2001).

As for the concept of fractals, no generally accepted definition of fractal dimension is available. For a
strictly self-similar object, one may intuitively think of the fractal dimension as related to the number of
scaled down copies of the set that form the set itself. In particular, an object that is formed by m copies
of itself, scaled by 1/n, has similarity dimension logm/ logn. Since self-similarity need not be exact,
several more general definitions have been proposed, still based on the idea of covering the fractal set.
The shape of the covers, which could be boxes or spheres, their fixed versus variable size and their
disjoint or overlapping nature are among the elements that distinguish the various definitions. A detailed
account of the different concepts of fractal dimension is outside the scope of this review. The box
counting and Hausdorff dimensions are among the most commonly adopted definitions and the latter
will be used in the subsequent description of multifractal measures and multifractal models for rainfall.
For completeness, specific definitions are given below for these two dimension concepts only, although
the mathematical details are not crucial to the rest of the exposition.

The box counting dimension is the most intuitive and it is relatively easy to compute.

Definition 1 Let A be a non-empty and bounded subset of Rn and let Nδ(A) denote the number of
boxes of the δ-grid of Rn that intersect A. Then the box counting dimension of the set A is defined as:

dB =− lim
δ→0

logNδ(A)
logδ−1

when the limit exists.

Before giving a definition of the Hausdorff dimension, one needs to define the Hausdorff measure:

Definition 2 Let X be a metric space, A be a subset of X, and d a non negative number (not necessarily
an integer). The d-dimensional Hausdorff measure of A, Hd(A), is the infimum of positive numbers y
such that for every r > 0, A can be covered by a countable family of closed sets, each of diameter less
than r, such that the sum of the d-th powers of their diameters is less than y. (From Weisstein 1992).

Now, the Hausdorff dimension of a set can be defined as follows:

Definition 3 Let A be a subset of a metric space X. Then the Hausdorff dimension D(A) of A is the
infimum of d ≥ 0 such that the d-dimensional Hausdorff measure of A is 0. (From Weisstein 1992).
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In less rigorous terms, the Hausdorff dimension of a set A can described by letting N(ε) denote the
smallest number of balls of diameter ε > 0 required to cover A. The Hausdorff dimension, D(A) is the
constant that satisfies N(ε)≈ ε−D(A) as ε→ 0 (in the many circumstances when N(ε) follows such a
power law). The Hausdorff dimension is less computationally convenient than the box dimension and its
practical meaning is not as immediately apparent. However, it has other advantages (Harte, 2001) and
is useful in understanding the characteristics of a multifractal measure.

E.2.2 Multifractal Measures

Connections with Fractals

While fractals are sets, the term “multifractal” refers to measures. Multifractal measures, like fractal sets,
are extremely irregular. They are “singular” measures, that are not discrete but do not have a local
density. However, the fractal appearance of multifractal measures is not at the origin of their name, nor
does the term “multifractal” strictly refer to the support of the measure, which may or may not be a
fractal set. Rather, the name of these measures is due to the fact that their support may be partitioned
into multiple fractal sets, such that all points in each set exhibit the same order of singularity (i.e.
irregularity).

In general, a singularity (or singular point) is a point at which an equation, surface, etc., blows up or
becomes degenerate (Weisstein, 1992). For multifractals, the presence of singularities is better
understood when describing their generating mechanism and will be clarified in this context (see
Section E.2.2). For the moment, it suffices to recognize that the order of singularity, or irregularity, of a
measure at a point x (in 1-D, for ease of notation) may be summarized by the Hölder exponent α(x).
Letting µ be the multifractal measure, and {∆n} denote a sequence of decreasing intervals containing x,
the Hölder exponent α(x) is defined as:

α(x)≡ lim
n→∞

αn(x), (E.1)

when the limit exists and where αn(x) is given by

αn(x)≡
logµ(∆n)
log |∆n|

. (E.2)

In order to clarify the interpretation of the Hölder exponent, define M(x)≡ µ([0,x]), and take x′ = x+δ,
so that |M(x′)−M(x)|= µ(∆), with ∆≡ [x,x+δ]. For small δ, µ(∆) is approximately equal to |∆|α(x),
from (E.1) and (E.2). Then ∣∣M(x′)−M(x)

∣∣≈ ∣∣x′− x
∣∣α(x)

,

and the exponent α(x) may be interpreted as a generalization of the local degree of differentiability of
the measure at x (Riedi, 1997).

In summary, for a multifractal measure, the set of points x in its support for which α(x) takes on any
specific value α, form a fractal set. In the case of monofractal measures, all singularities are of the
same order, i.e. there is only one valid Hölder exponent α0.

Multifractals are usually constructed through multiplicative cascades, where the mass is iteratively
redistributed into smaller and smaller subintervals. The generating mechanism is described in
Section E.2.2. Here, it is useful to introduce the concept of a coarse Hölder exponent by successively
subdividing the support into bn equal intervals, and calculating αn(x) = logµ(∆n)

logb−n . In order to study the
statistical properties of the coarse Hölder exponent, Calvet et al. (1997) describe the αn(x)’s,
corresponding to the different b-adic intervals, as drawn from a random variable. When the measure µ
is deterministic, they consider the mass of a random cell ∆i

n ≡ [xi,xi +∆n]. The corresponding αn(xi),
may be viewed as a draw of the random variable αn, which represents the coarse Hölder exponent of
the random interval. Multifractal models for rainfall involve random, rather than deterministic, measures.
For the case of random measures, the intervals may be kept fixed. Since the mass on each fixed cell is
random, so is the corresponding coarse Hölder exponent. Because of the cascade construction outlined
in Section E.2.2, the mass is also identically distributed across intervals, thus the coarse Hölder
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exponents at different values of x may be viewed as draws of the same random variable αn (see Calvet
et al., 1997).

Several asymptotic results for αn are described in Calvet et al. (1997). By the strong law of large
numbers, αn

p→ α0 as n→ ∞. That is, as the support is subdivided into smaller and smaller
sub-intervals, and the mass is redistributed, almost all Hölder exponents concentrate in a small
neighborhood of α0. In other words, for large n, almost all intervals have Hölder exponent in a
neighborhood of α0. However, the mass of these intervals goes to zero as n goes to infinity, since,
typically, for multifractal measures the mass concentrates on cells with Hölder exponent bounded away
from α0. Thus, it is important to consider also the other values of the Hölder exponent. The central limit

theorem provides another asymptotic result, i.e.
√

n(αn−α0)
d→ N(0,σ2). Also, large deviation theory

provides an asymptotic result for the tail properties of the Hölder exponent (see Calvet et al., 1997).

The strengths of the singularities (i.e. the Hölder exponents) associated with a multifractal measure
constitute the support of a multifractal spectrum f (α). Several multifractal spectra have been defined,
which in turn may be derived in different ways and are subject to various interpretations. One of the
possible definitions involves a renormalized histogram of coarse Hölder exponents. The idea is to
partition the range of α’s into small intervals. At stage n in the subdivision of the mass support, let
Nn(α) denote the number of coarse Hölder exponents in the interval (α,α+∆α] and consider the

renormalized histogram given by Nn(α)
bn . Its limit, as n tends to infinity, is taken to be a multifractal

spectrum. By the central limit theorem result mentioned above, this f (α) is locally quadratic around α0.
Alternatively, the multifractal spectrum is defined as the Hausdorff dimension of the set A(α) of points
with Hölder exponent equal to α, α≥ 0. Thus N(α,∆n)≈ (∆n)− f (α), where N(α,∆n) denotes the
number of intervals [x,x+∆n] required to cover A(α). A third definition of the multifractal spectrum is
based on large deviation theory and takes f (α) to represent the limit of n−1 logb P(αn > α)+1.
Although the three definitions are not equivalent in general, they agree for many multifractals. Calvet
et al. (1997) contains a more detailed description of the three versions of the multifractal spectrum and
their properties and derivation.

In the following, f (α) will be called a spectrum of singularities or spectrum of scaling exponents, and
only one of the above versions will be considered, because of its connections to multifractal models for
rainfall. In Section E.2.2, the spectrum of singularities is defined through a Legendre transform and is
equivalent to the multifractal spectrum derived from large deviation theory. According to this definition,
the spectrum of singularities may be negative, which is not the case for the other two versions of the
multifractal spectrum. However, when it is non-negative, f (α) may be interpreted as the Hausdorff
dimension of the set of points with Hölder exponent equal to α. Since monofractal measures only have
one Hölder exponent, their spectrum of singularities is defined exclusively at a single point α0. Thus,
only one fractal dimension is associated with a monofractal, while multifractal measures are
characterized by a whole range of dimensions (an infinite hierarchy of dimensions in the Lovejoy and
Schertzer terminology).

Multiplicative Cascades

Multifractal rainfall fields are usually generated via the multiplicative random cascade theory. To
describe a multiplicative cascade, consider an iterative procedure with an infinite number of steps. A
fixed mass, initially uniformly distributed over its support, is iteratively redistributed over finer and finer
partitions of the support by multiplication with random weights. Schematically, the iterative process
consists of the following steps:

Step 0. Start with an initial mass density W0, which is uniformly distributed over its support. To simplify
notation, assume the support is the unit square and proceed with a 2-D example.

Step 1. Divide the support into b = λ2 sub-squares of side length l1 = L/λ, where L is the largest scale
of interest (L = 1 in this example) and λ is an integer. Generate b random weights
W1(1),W1(2), . . . ,W1(b) which are independent and identically distributed as some W , with
E(W ) = 1. Now redistribute the mass density on the b sub-squares by multiplying W0 by the
weights, resulting in the densities W0W1(1),W0W1(2), . . . ,W0W1(b).

...
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Iteratively repeat the procedure on each of the sub-squares
...

Step n. Divide each of the sub-squares defined by steps up to n−1 into b sub-squares of side length
ln = L/λn. The resulting number of sub-squares at step n is bn. Also, for each of the bn−1

sub-squares from steps up to n−1, generate b random weights. The bn weights generated at
step n, the Wn’s, are iid as W and are independent of the W1’s, W2’s etc. Obtain
W0W1(∆n) · · ·Wn(∆n), where Wj(∆n) ( j = 1, . . . ,n) is the weight assigned at step j to the
subsquare on the path to ∆n, and ∆n is one of the bn subsquares at step n.

...

The random variable W is called the cascade generator, and the number b is referred to as branching
number. The choice of distribution for the cascade generator is among the elements that distinguish
different multiplicative cascade models for rainfall. In all cases, the condition E(W ) = 1 ensures
conservation of the average mass density W0.

The steps outlined above give rise to a discrete cascade, in the sense that the cascade develops over a
discrete range of scales. In fact, the scale ratio for each step is the constant integer λ. The choice of
explaining the multiplicative process that leads to multifractal measures via discrete cascades is due to
the resulting intuitive description of the generating mechanism. The continuous version of multiplicative
cascades is not as illustrative. Thus, the details of the construction of a multifractal field via continuous
cascades are postponed to Section E.3, in the context of specific models for rainfall that use the
continuous version.

Multiplicative cascade processes result in multifractal fields where the mass is increasingly
concentrated on sparser and sparser fractal sets (Lovejoy and Schertzer, 1990). As the multiplicative
process continues to smaller and smaller scales, i.e. as the scale ratio between the largest and smallest
scale goes to infinity, the field at most points goes to zero, while it goes to infinity at some points. The
latter points are called singularities, the former regularities (Schertzer and Lovejoy, 1997).

Scaling Properties

The scaling properties of multifractals motivate their use in rainfall modelling. Like fractal sets,
multifractal measures exhibit some form of scale invariance. Monofractals are consistent with simple
scaling, while multifractals lead to multi-scaling models.

To illustrate the difference between simple and multi-scaling and the connection with multifractals, let ϕl
denote the random measure ϕ on a box of side length l. Simple scaling of ϕ corresponds to equality of
the joint probability distributions of ϕ at scales l and lλ, (for λ > 0) up to a multiplicative correction factor
that only depends on λ, i.e.

{ϕλl}
d= {g(λ)ϕl}, (E.3)

where g(λ) > 0. The scale function g(λ) is of the form

g(λ) = λ
θ, (E.4)

with θ denoting a constant scaling exponent. From (E.3) and (E.4), the moments of ϕ follow the scaling
relationship

E(ϕq
λl) = λ

θqE(ϕl). (E.5)

Since θ is the same for all q, the log-log linear relationship between moments of order q and scale has a
slope that is linear in q.

Simple scaling models for rainfall have not provided an adequate representation of the process (see e.g.
Gupta and Waymire 1990). The shortcomings of this approach have motivated changes in the scaling
literature in two different directions. While most authors focused on the development of multi-scaling
models, Kumar and Foufoula-Georgiou (1993) argued that rainfall fluctuations, rather than rainfall
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intensities, exhibit simple scaling behaviour. Only a brief summary of the latter approach is described
here, while the rest of the exposition concentrates on multi-scaling models. In the spatial setting, Perica
and Foufoula-Georgiou (1996), modelled standardized rainfall fluctuations as Gaussian fields that follow

simple scaling. The standardized fluctuations at pixel size l are defined as ζl,i =
R′l,i
Rl

, where Rl is the

field of average rainfall intensities at pixel size l, and R′l,i represents the corresponding fluctuations in
direction i (i = 1, . . . ,3, i.e. horizontal, vertical or diagonal direction). That is, for each pixel j, R′l,i gives
the difference between the value at the adjacent pixel in direction i and the value at j. According to the
normality assumption, ζl,i has a Gaussian distribution with mean zero and standard deviation σζl

which,
because of the simple scaling hypothesis, is related to the standard deviation at different scales by the
relationship

σζlλ

σζl

= λ
θ. (E.6)

Perica and Foufoula-Georgiou (1996) found the scaling exponent θ to depend on the convective
available potential energy (CAPE). In their model, the Haar wavelet (see e.g. Percival and Walden
2000) decomposes the average field at pixel size l into the average field at the next larger dyadic pixel
size and the three rainfall fluctuations at the same larger pixel size. This formulation can be used to
disaggregate the output of mesoscale climate models. Given an estimate of CAPE, one obtains a value
for θ and, through (E.6), the value of σζ at several scales given its value at a reference scale (which, in
Perica and Foufoula-Georgiou 1996, also depends on CAPE). Then, the standardized rainfall
fluctuations at the current pixel size may be generated from a Gaussian distribution with the appropriate
standard deviation. The inverse wavelet transform then leads from the average and three fluctuation
fields to the average field at the next smaller pixel size. The simulation and filtering procedure may be
repeated until the rainfall field at smallest scale of interest is reconstructed. The intermittency typical of
precipitation fields is preserved by thresholding the reconstructed average field.

The space-time extension of Venugopal et al. (1999) is based on dynamic scaling. Their analysis is
centered on the rate of evolution of rainfall, defined as ∆ lnRl,τ ≡ lnRl(t + τ)− lnRl(t). Here τ

represents the time lag and, as above, l is the pixel size. Dynamic scaling requires the distribution of

∆ lnR to remain the same through spatial and temporal scales, provided that τ1
τ2

=
(

l1
l2

)z
, where z is

called the dynamic scaling exponent. The downscaling procedure of Venugopal et al. (1999) first
disaggregates the large scale spatial precipitation field (e.g. the output of a regional climate model) at
one time instant. That is, one goes from spatial scale l1 to the smaller spatial scale of interest l2. Then,
the distribution of ∆ lnRl1,τ1 is evaluated from the large scale field at time points separated by lag τ1.

According to dynamic scaling, ∆ lnRl2,τ2 has the same distribution, provided that τ2 = τ1

(
l1
l2

)z
. Thus,

given the initial large scale field at time t, one can obtain the field at fine scale l2 at time points
t + τ2, t +2τ2, etc.

The literature on simple-scaling applied to rainfall fluctuations, both in its spatial and space-time
versions, is one of the few examples where precipitation data are used to validate the performance of
the scaling model with respect to a range of characteristics of rainfall, besides scaling itself. For
example, the percentage of rain-covered area, temporal and spatial correlations are reproduced
adequately, although, as the initial field is evolved, some deviations from the observed spatial structure
appear. The extreme intensities seem more problematic and are often underestimated or
overestimated. The spatial approach of Perica and Foufoula-Georgiou (1996) was tested on a single
event from the Oklahoma-Kansas Preliminary Regional Experiment, while the space-time extension
was applied to rainy season convective storms in Darwin, Australia. Extensive investigation of more
storms, under different climates, is necessary to assess the performance of the model, and may provide
further indications on some of its aspects, such as the possible dependence of the dynamic scaling
exponent z on physical quantities.

Rather than studying rainfall fluctuations, most authors, following the poor performance of simple
scaling models for rainfall intensity, turned to the development of multi-scaling models, where moments
of different order scale with different scaling exponents. The relationship between moments of order q
and scale is still log-log linear, but its slope is not linear in q. Multifractals are central to multi-scaling
approaches to rainfall modelling. In fact, multifractals are characterized by their scaling properties,
which can be expressed equivalently in terms of moments or exceedance probabilities. Consider a field
ϕ that has constant mean across scales (E(ϕλ) = constant), i.e. a conserved field. Multifractality of ϕ is
equivalent to the property
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E(ϕq
λ
)≈ λ

K(q), (E.7)

with λ > 1 and ≈ denoting equality up to proportionality constants and logarithmic corrections. The
function K(q) is the multiple-scaling exponent and in general it is not a linear function of the moment
order. The linear case reduces to the moments scaling with constant exponent, and thus to simple
scaling. The linearity (in q) of K(q) also corresponds to monofractality, as is more apparent after
describing the following characterization of multifractals – which is equivalent to (E.7) – in terms of
exceedance probabilities:

P(ϕλ ≥ λ
γ)≈ λ

−c(γ), (E.8)

for a range of values of γ, where the scaling functions K(q) and c(γ) are related to each other through
the Legendre transform, that is

K(q) = maxγ[qγ− c(γ)], c(γ) = maxq[qγ−K(q)]. (E.9)

The scaling exponent for the probability distributions, c(γ), is also related to the spectrum of
singularities mentioned in Section E.2.2. In fact, the spectrum of singularities is defined as
f (α)≡ D− c(D−α), where D is the dimension of the underlying space and α is any possible value of
the Hölder exponent. When D≥ c(D−α), i.e. when f (α) is non-negative, c(γ) can then be interpreted
as the codimension of the set with singularities of order γ. If ϕ is monofractal, there is only one Hölder
exponent α = θ, since the singularities are all of the same order. Then f (α) and c(γ) are only defined
at a point, and from the first equality in (E.9) it follows that K(q) is linear in q. On the other hand,
non-linearity of K(q) (i.e., multi-scaling) implies that c(γ) and f (α) are defined on a range of values,
which in turn is equivalent to multifractality.

The characterizations of multifractals given in this section follow Lovejoy and Schertzer (1990) and
Tessier et al. (1993). The same properties are derived by Gupta and Waymire (1993) with different
notation. The latter authors also establish the notation changes required to obtain one formulation from
the other.

E.3 Continuous Cascade Models

A lot of research in the past two decades has focused on multifractal rainfall models where multiplicative
cascades develop over a continuous range of scales (e.g. Schertzer and Lovejoy 1997, Lovejoy and
Schertzer 1990, Tessier et al. 1993 and Marsan and Schertzer 1996). Earlier work has developed
methods for spatial or temporal applications, while Marsan and Schertzer (1996) provided a space-time
extension by introducing anisotropy and causality. Sections E.3.1 and E.3.2 describe the general
framework of some continuous cascade models and the methods of estimation and simulation
applicable to spatial or temporal rainfall. Then a space-time extension is given in Section E.3.3. Finally,
some comments on this direction of research are provided in Section E.3.4.

E.3.1 Universal Multifractals

The cascade process results in a conserved field ϕ (that is, a field that has constant mean across
scales) that is characterized by the scaling properties in (E.7) and (E.8). The current knowledge of the
principles that govern precipitation does not allow for a clear identification of the physical field that
corresponds to ϕ. Tessier et al. (1993) assume the relationship

∆Rλ ≈ ϕλλ
−H , (E.10)

where ∆Rλ denotes the rain fluctuations at scale λ. Since E(ϕλ) is independent of scale, then
E(|∆Rλ|)≈ λ−H , i.e. H is the order of fractional integration that transforms the field ϕ into the rainfall
field R. In other words, H summarizes the degree of departure of the rainfall field from the conserved
field.
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Inferences on R are obtained through ϕ. Since ϕ is characterized by its scaling properties, one needs to
estimate the scaling functions K(q) and c(γ). The corresponding scaling functions for the
non-conserved field ∆Rλ are obtained by the transformations γ 7→ γ−H and K(q) 7→ K(q)−Hq. The
first mapping corresponds to the translation of the order of singularity by −H in the exponent for the
exceedance probabilities. Its motivation lies in the fact that, from (E.10), ϕλ = λγ implies ∆Rλ = λγ−H .
The mapping of the moment scaling function is also explained by the relationship in (E.10), from which it
follows that E(|∆Rλ|q) = λK(q)λ−Hq.

In general, estimation of the scaling exponents requires estimation of the entire K(q) and c(γ)
functions. However a simplification of the problem is provided in the context of universal multifractals.
Only a brief explanation of universality and how it is achieved is given here. For a full mathematical
account one can refer to Schertzer and Lovejoy (1997). The main idea is that nonlinear mixing and
scale densification in physical processes lead to universal multifractals. Nonlinear mixing refers to the
multiplication of independent and identically distributed processes over the same range of scales
Λ = L/l, where L is the largest scale and l the smallest resolved scale. Scale densification, on the
other hand, involves introducing more and more intermediate scales over a fixed range of scales Λ. In
the multiplicative cascade process that generates multifractals, before proceeding to smaller and
smaller scales (i.e. taking the limit as Λ→ ∞), one can include nonlinear mixing and/or scale
densification by multiplying the process by a larger and larger number of independent replicas and/or
introducing more and more intermediate scales. Now, both renormalized nonlinear mixing over a finite
range of scales of iid cascade processes, and scale densification over a finite range of scales of a
cascade process, converge to a multifractal that admits a Lévy generator (see Schertzer and Lovejoy
1997). For this reason, multifractals with Lévy generator are called universal. A Lévy generator W is
defined as W = e−X , where X is a Lévy-stable random variable (i.e. the renormalized sum of any n
variables that are iid as X , is still distributed as X , e.g. Feller 1996).

The concept of universality is not generally accepted. Gupta and Waymire (1993; 1997) argue that,
while Lévy distributions represent a broad class of generators, there are other admissible choices for
the distribution of W . Their criteria for selecting the distribution of the generator will be outlined in
Section E.4.

The scale functions of universal multifractals are completely described by the three parameters H, C1
and a. Using the notation of Tessier et al. (1993)

c(γ−H) =

 C1

(
γ

C1a′ +
1
a

)a′

, a 6= 1

C1 exp
(

γ

C1
−1
)

, a = 1
(E.11)

and

K(q)+qH =
{ C1

a−1 (qa−q), a 6= 1
C1q log(q), a = 1

(E.12)

for 0≤ a≤ 2, q≥ 0, and with 1
a′ +

1
a = 1. As mentioned above, H represents the degree to which the

observed field deviates from the conserved field ϕ. The sparseness of the conserved field is
represented by C1, which is the order of singularity associated with the mean of the process. The
conservation property, combined with (E.7) and (E.9), imply that
E(ϕλ)≈ λK(1) = λmaxγ[γ−c(γ)] = constant. Since the exponent must be equal to zero for the last equality
to hold, it follows that c(γ)≥ γ ∀γ and there exists a γ = C1 (the singularity associated with the mean of
the process) such that c(C1) = C1. Recalling the interpretation of c(γ) as the codimension of the set
with singularities of order γ, C1 ≤ D is required for the mean not to be so sparse that the field is equal to
zero almost everywhere. In general, features with c(γ) > D are too sparse to be observed in a single
D-dimensional picture (e.g. a satellite photograph in a 2-D context). Finally, a denotes the degree of
multifractality, which is given by the rate of change in the slope of c(γ) at C1, i.e. it represents the rate at
which the degree of sparseness of the field varies as we move away from the mean. The monofractal
case corresponds to a = 0, since the singularities are all of the same order C1. The upper bound is
a = 2, which corresponds to the maximum degree of multifractality.

The multifractality parameter a also corresponds to the Lévy index and, according to its value, the
universal multifractal belongs to one of five qualitatively different classes. The cases a = 2, 1 < a < 2
and a = 1 correspond to the lognormal, log-Lévy (with unbounded singularities) and log-Cauchy
multifractals respectively. All these are unconditionally hard multifractals (Tessier et al., 1993) in the
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sense that, for any D, there is a finite qD such that moments of order qD and higher diverge. The case
0 < a < 1 corresponds to the (log)Lévy multifractal with bounded singularities, which displays
conditionally hard behavior, i.e. for large values of D, the critical order for divergence (qD) is not finite.
The divergence of high order moments is related to the distinction between “bare” and “dressed”
cascades (Lovejoy and Schertzer, 1990; Tessier et al., 1993). The properties of multifractals described
earlier apply to the bare quantities, which result from the construction of a cascade over a finite range of
scales. In practice, bare quantities are not experimentally available, since measuring devices can only
resolve scales that are much larger than the scale at which the process becomes homogeneous.
Atmospheric process can usually be regarded as homogeneous on intervals (squares) of 1mm or less
(see e.g. Tessier et al. 1993), while, for example, rainfall radars have a resolution of the order of
kilometers. Thus, the cascade is completed, i.e. developed to its small scale limit, which is
mathematically singular (Lovejoy and Schertzer, 1990), and then integrated over a finite scale. The
resulting quantities are called dressed and their high order moments generally diverge (except for the
case when a < 1), i.e. they follow the hard behaviour mentioned above.

E.3.2 Estimation and Simulation Methods

Several techniques have been proposed for the estimation of the scaling functions c(γ) and K(q). Some
authors estimate K(q) and then obtain c(γ) via the Legendre transform (see Halsey et al., 1986).
Lovejoy and Schertzer (1990) propose a Probability Distribution/Multiple Scaling (PDMS) technique to
estimate c(γ) directly (see Lavallée et al. 1990 for another version of the PDMS method). The basic
idea is to successively degrade the resolution of the field, form probability distributions at the different
scales and determine c(γ) from (E.8). This technique is related to functional box counting (Lovejoy
et al., 1987), where the field is first transformed into exceedance sets and the resolution of the
exceedance sets (rather than the measure) is degraded. Details of these methods are not described
here, since Tessier et al. (1993) later applied the Double Trace Moment (DTM) technique (Lavallée,
1991), which determines the scaling functions by estimating the universal parameters C1, a and H
directly. This approach seems preferable to the estimation of the entire scaling functions.

To outline the DTM method, consider the two dimensional example of a satellite picture of side length
L = 1. Denote by λ′ the ratio of the picture scale to the scale of homogeneity for the conserved field ϕ

(note that, since ϕ is conserved, we assume H = 0). For ease of exposition, assume that λ′ is equal to
the resolution of the measuring device, i.e. the pixel resolution. Then cover the picture with λ2 disjoint
sub-squares ∆i

λ
, i = 1, . . . ,λ2, of resolution λ < λ′. That is, the resolution is degraded by considering

squares, B, larger than the pixels. Integration of the field ϕλ′ over each sub-square yields the dressed
fluxes Φλ′(∆i

λ
). Now, the q-th order trace moments are defined as

Tr(ϕλ′)
q ≡ E

(
∑

i

(
Φλ′(∆

i
λ
)
)q
)
≈ λ

K(q)−(q−1)D, (E.13)

where D = 2 in the present example. Note that dividing the Φ’s by (λ′/λ)2 (in general (λ′/λ)D), i.e. the
ratio of the sizes of the squares at scales λ and λ′, ensures the conservation property is respected and
leads to the (dressed) conserved field at scale λ. The q-th moments of these quantities are responsible
for the λK(q) term. Since the summation is over λ2 disjoint sub-squares, the term λ2 (in general λD)
appears. The λ−qD term is due to the fact that, having divided by (λ′/λ)qD to obtain the conserved field
at scale λ, it is also necessary to multiply by the same quantity. The approximate equality in (E.13) is
valid only for q < qD, with qD denoting the critical order of divergence. For practical applications, (E.13)
also requires q < qs, where qs is the maximum-order moment that can be estimated with a finite
sample. See Tessier et al. (1993) for formulas that express qD and qs in terms of the dimension of the
underlying space and the universal multifractal parameters C1 and a. The formula for qs involves the
sampling dimension Ds = logNs/ logλ, where Ns in this case is the number of available satellite
pictures. With Ns photographs one can explore structures for which γ < γs with c(γs) = D+Ds. Larger
numbers of photographs translate into accessibility of features with higher orders of singularity.

One may obtain K(q) through (E.13) and then, via (E.12), estimate C1 and a as the parameters of a
non-linear regression of K(q) on q. However, the high correlation between a and C1 results in an
ill-conditioned regression. To overcome this problem, the DTM technique introduces a second exponent
η by the transformation ϕλ′ 7→ ϕ

η

λ′ . Integration of ϕ
η

λ′ over the sub-squares ∆i
λ

gives the “η fluxes”
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Φ
(η)
λ′

(∆i
λ
). The double trace moment is then defined as

Tr(ϕη

λ′)
q ≡ E

(
∑

i

(
Φ

(η)
λ′ (∆i

λ
)
)q
)
≈ λ

K(q,η)−(q−1)D, (E.14)

where K(q,η) is a new exponent that obeys K(q,1) = K(q). The transformation to double trace
moments (by using ϕη rather than ϕ) induces the mappings γ 7→ γ∗, c(γ) 7→ c∗(γ∗), q 7→ q∗,
K(q) 7→ K∗(q∗) = K(q,η) (see Tessier et al. 1993 for the specific formulas). The main point of
introducing the second exponent η is the transformation obtained for C1 (Lavallée, 1991), i.e.

C1 7→C∗
1 = C1ηa. In fact, since C1 = dK

dq

∣∣∣
q=1

and C∗
1 = dK∗

dq∗

∣∣∣
q∗=1

, the following relationship holds

K(q,η) = η
aK(q). (E.15)

Thus, a can be estimated as the slope parameter in the simple linear regression of logK(q,η) on
logK(q), for fixed q. From the intercept one can obtain C1 (through (E.12) with H = 0). This formulation
only holds for max(qη,q) < min(qs,qD).

Up to this point, the DTM method allows the estimation of a and C1 for a conserved process (H = 0).
From (E.10), the non-conserved process ∆Rλ must be fractionally differentiated by order −H to obtain a
conserved quantity, i.e. its power spectrum (the Fourier transform of the autocovariance function) must
be power-law filtered by kH . However, Tessier et al. (1993) show by simulation that exact knowledge of
H is not required to estimate a and C1. It is sufficient to ensure that the spectrum of the analysed field is
less steep than the spectrum of the underlying conserved process, which in turn is of the form k−β, with
β = 1−K(2) (K(1) = 0 because of the conservation property). If this is not the case, a can still be
estimated accurately, but the estimate of C1 is further and further from the true value as the spectral
slope for the analysed field (β′) is above the conserved case analogue (β) by larger and larger values
(i.e. the simulated conserved process is fractionally integrated by progressively larger orders). In
practice, one can power law filter the spectra of the observed process until the estimates of a and
especially C1 stabilize. To avoid the use of Fourier space, Tessier et al. (1993) propose the alternative of
analysing the gradient or the Laplacian of the observed field rather than the field itself. This approach
corresponds to much larger orders of differentiation than necessary, but it gives the desired results.
Now, the estimates of a and C1 result in a value for K(2), and finally H can be obtained as

H =
β′−1+K(2)

2
=

β′−1
2

+
C1(2a−2)

2(a−1)
, (E.16)

where β′ is the spectral slope of the observed process, i.e. the slope of the log-log linear relationship
between the power spectrum S(k) and k.

The whole DTM procedure may be summarized into a few schematic steps:

• Compute the spectral slope β′ of the observed process, by fitting a line through the log-log plot
of estimated spectrum versus frequency.

• Take the modulus of the gradient (or the Laplacian) of the observed field, e.g. replace the
satellite picture by the modulus of its gradient, to obtain the conserved field ϕλ′ . Since in practice
one works with discrete pixels, the gradient is simply derived by taking differences.

• Plot logTr(ϕη

λ′)
q versus logλ for several low values of η and with q equal to an arbitrary small

value. Obtain the slope of the relationship, i.e. K(q,η).

• Plot logK(q,η) versus logη for some small value(s) of q. Estimate a as the slope and obtain C1
from the intercept.

• Combine the estimates of β′, C1 and a to compute the order of integration H required to go from
the conserved process ϕ to the non-conserved quantity ∆Rλ.

The estimated universal parameters can now be used for simulation purposes. For continuous
cascades, it is more convenient to substitute the multiplicative process described in Section E.2.2 with
the equivalent additive process for the logarithm of the field. Note that, given the form of the Lévy
generators, this approach results in sums of iid Lévy-stable random variables. In the notation of Tessier
et al. (1993), the generator is the limit of an infinite sum of iid Lévy-stable random variables and, at
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resolution λ = L/l, it is denoted by Γλ. Such a generator is related to the conserved multifractal field by
ϕλ = eΓλ . Generation of Γλ starts with a subgenerator Gλ, which is a white noise consisting of iid
random variables that have a Lévy-stable distribution with characteristic exponent a and amplitude
determined by C1. To obtain Γλ, the subgenerator must be fractionally integrated (on the range
[1/L,λ/L]) to give a spectrum S(k)≈ k−1. This guarantees multiple scaling of the moments of ϕλ and
thus its multifractality. The conserved field ϕλ then results from exponentiating Γλ. Since the goal is to
obtain a non-conserved process with spectral slope β, the final step is a fractional integration of order H
of ϕλ, which is obtained by multiplying its Fourier transform by k−H .

E.3.3 Space-Time Extension

The methods described in the previous section are valid for a generic dimension D of the underlying
space. Thus, in principle, they may be applied to space-time problems by considering time as
equivalent to an additional spatial dimension. However, this approach ignores the scaling anisotropy
between space and time and the causality that characterizes the time axis. To account for anisotropy
and causality, Marsan and Schertzer (1996) propose an extension to the continuous cascade processes
that generate universal multifractals. The starting point is the scenario of Section E.3.2, i.e. the
construction of a spatial isotropic multifractal field resulting from a continuous cascade process from
scale L down to scale l. The procedure of Section E.3.2 – where a white noise Lévy subgenerator Gλ is
fractionally integrated on the range [1/L,λ/l] to obtain the generator Γλ – may be formulated as

Γλ(x) = gλ(x)?Gλ(x), (E.17)

where ? denotes convolution and the spectrum S(k) of the scaling filter gλ(x)≈ |x|h (where h must be
equal to D/a; see Marsan and Schertzer 1996) is non-zero only for |k| ∈ [1/L,λ/l].

The first step of the extension consists in introducing anisotropy in a spatial setting by allowing the scale
changing operator to act differently in different directions. In particular, anisotropy is considered in its
simplest form, i.e. self-affinity. For a 2-D spatial example as in Marsan and Schertzer (1996), self-affinity
corresponds to statistical invariance with respect to the scale transformation given by x1 7→ x1/λ and
x2 7→ x2/λ1−Q. Equivalently, self-affinity may be expressed as statistical invariance under the action of
the scale changing operator Tλ given by

Tλ =
(

x1
x2

)
7→ λ

−G
(

x1
x2

)
, (E.18)

with

G =
(

1 0
0 1−Q

)
. (E.19)

When the anisotropy exponent Q is equal to zero, self-affinity reduces to isotropy. There is no unique
form of the scaling filter gλ that is required to generate a self-affine field. It suffices to ensure that

gλ(TΛ[x])≈ Λ
−hgλ(x). (E.20)

Consider a scale function ‖ · ‖ that satisfies

‖Tλ[x]‖= λ
−1‖x‖, (E.21)

then (E.20) holds for the scaling filter
gλ(x)≈ ‖x‖−h; (E.22)

see Marsan and Schertzer (1996) for specific scale functions that satisfy property (E.21).

When considering a space-time process, in addition to anisotropy, causality becomes important. The
idea of Marsan and Schertzer (1996) is to perform a causal filtering of the subgenerator Gλ by
implementing the convolution of (E.17) only on the part of the subgenerator that corresponds to the
past. This is equivalent to defining a “retarded” filter g→

λ
(|x|, t)

g→
λ

(|x|, t) = gλ(|x|, t)Θt , (E.23)
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where gλ(|x|, t) is an anisotropic filter and Θt is the heaviside function

Θt(t ′) =
{

1, t ′ ≤ t
0, t ′ > t

Equivalently, in Fourier space
g̃→

λ
(|k|,ω) = g̃λ(|k|,ω)? Θ̃t . (E.24)

See Marsan and Schertzer (1996) for the form of Θ̃t .

The space-time version of the anisotropic filter gλ of (E.22) is of the form

gλ(x, t)≈ ‖(x, t)‖−h (E.25)

and, in Fourier domain
g̃λ(k,ω)≈ ‖(k,ω)‖−Del+h, (E.26)

where the elliptic dimension Del = D+1−Q is the effective dimension of the space-time domain. The
arbitrariness of the scale function ‖ · ‖ may be exploited to obtain a causal filter, i.e. a retarded gλ

function. Marsan and Schertzer (1996) start the construction of the causal filter from the scale function
defined by

‖(x, t)‖=
(
|x|Del−h + |t|

Del−h
1−Q

) 1
Del−Q

, (E.27)

where x and t have been non-dimensionalized by dividing by the largest spatial and temporal scales
considered (here L = T = 1 to simplify the notation) and with the constraint Del > h. The scale function
of (E.27) satisfies the space-time equivalent of property (E.21), that is

‖Tλ[(x, t))]‖= ‖λ
−1x,λ1−Qt)‖= λ

−1‖(x, t)‖. (E.28)

The corresponding anisotropic scaling filter in the Fourier domain is given by

g̃λ(k,ω)≈ 1

|k|D+1
ν + |ω|

D+1
ν(1−Q)

, (E.29)

where a is the usual Lévy index and ν is such that 1/a+1/ν = Del/(D+1). In the isotropic case, the
effective space-time dimension is equal to D+1 and ν becomes the a′ of Section E.3.2. Finally, a
causal function g→

λ
is obtained by modifying (E.29) as

g̃→
λ

(k,ω)≈ 1

|k|D+1
ν +(iω)

D+1
ν(1−Q)

. (E.30)

In order to apply these methods to practical problems, one needs to estimate the anisotropy parameter
Q. Marsan and Schertzer (1996) propose a rough estimate of Q based on spectral slopes. The context
is a space-time example with spatial dimension D = 2. For the 2-D sections x1− t and x2− t, they
estimate the slopes of the spectra S(k) for ω = 0 and S(ω) for k = 0, and then derive Q from these.

Marsan and Schertzer (1996) describe a method for forecasting space-time rainfall by using their
anisotropic and causal extension to the generating mechanism of multifractals. The multifractal field ϕλ

is generated by applying a transformation to a subgenerator Gλ. Thus, given a field ϕλ up to time t, the
idea is to invert the transform and obtain its subgenerator Gλ, which is then used to generate future
values of ϕ. Because of the causality of the filtering described above, this approach ensures that the
predicted field results from a causal process, i.e. the past values of ϕλ are not modified by the predictor.
Marsan and Schertzer (1996) also point out the importance of respecting the limits of predictability. That
is, past the predictability time τl associated to structures at a given scale l – which they claim follows
the relation τl ≈ l1−Q – these structures are erased from the predictor.

E.3.4 Comments

There are several issues that should be addressed when modelling rainfall via continuous cascade
models. For example, continuous cascades do not produce real zeros, i.e. they do not naturally
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incorporate dry areas in rainfall fields. Whether or not this is a problem is not clear. On one hand,
appropriate thresholding may adequately deal with the presence of zeros. On the other hand, the
wet-dry properties of the generated (universal) multifractal fields have not been checked against
observed data. In general, research on the universal multifractal models of the previous sections has
focused on validating their (multi)scaling properties, which seem to reproduce fairly adequately the
scaling of observed rainfall over the considered range of scales. The performance of these models in
reproducing other properties of rainfall has not been explored.

Gupta and Waymire (1993) raise another issue, related to the unboundedness of the Lévy generators.
The problem is described in non-rigorous terms here and more appropriately in Section E.4.1, after
introducing some notation for the approach of Gupta and Waymire (1993). The main point is that the
estimation of multifractal parameters from a single realization requires convergence of the spatial
sample moments to the corresponding ensemble moments as the resolution goes to infinity. However,
since the masses of a cascade are highly correlated in space, the strong law of large numbers fails and
the convergence of the sample moments does not hold in general. Boundedness conditions, which are
not satisfied by Lévy generators, ensure that the sample moments scale with the same slope as
ensemble moments. Thus, in general the universal multifractal parameters must be estimated across
realizations, which may not be feasible due to non-stationarity problems.

Parameter uncertainty and its consequences on the properties of generated rainfall fields are issues
that also deserve further investigation. The parameters a and C1 are estimated by the DTM through a
linear regression of logK(q,η) on logη. Since a and C1 do not depend on q, the value of q for which
the regression is carried out is arbitrary. In practice, different values of q will lead to different estimates
of universal parameters. Tessier et al. (1993) suggest using several values of q to improve the statistical
accuracy of the estimates. However, both in a spatial (horizontal scaling of radar reflectivities) and a
temporal analysis of rainfall they only consider two values, q = 0.5 and q = 2. For the temporal case,
the authors report an accuracy of ±0.2 for both a and C1 (±0.1 in the spatial case). Now, considering
that 0≤ a≤ 2, and within this range there are five qualitatively different cases, an interval of width 0.4
around the estimate seems fairly large. The consequences of varying the value of a on a range of
properties of simulated rainfall have not been explored.

The choice of an estimator for the power spectrum of the non conserved process is another non trivial
problem. Although the estimation method is not explained in details in Tessier et al. (1993), the authors
seem to resort to a periodogram (see e.g. Percival and Walden 2000). As an estimator of the power
spectrum, the periodogram has an asymptotic relative bias (Hurvich and Beltrao, 1993). Therefore,
fitting a line through the log-log plot of periodogram versus frequency may give misleading information
on the spectral slope β′ of the rainfall process. Since β′ is then used to infer the amount of fractional
integration that transforms a simulated conserved process into simulated rainfall, this issue should be
considered carefully.

When choosing a method for the simulation of rainfall fields, it is also important to consider the required
computing resources. The simulation techniques described in the earlier sections involve two fractional
integrations. For the isotropic case, Tessier et al. (1993) report that 2-D simulations can be easily
obtained on a personal computer, while the 3-D case – e.g. space-time simulations – is much more
computationally intensive. In fact, the authors produced 3-D multifractal fields on a Cray 2. Although
computer technology has improved since 1993, the required time and resources for space-time
simulations are still issues that need to be investigated.

The space-time case also raises some additional modelling and estimation issues. For example, Tessier
et al. (1993) had already sketched an anisotropic extension of their model, which was then developed
by Marsan and Schertzer (1996). However, Tessier et al. envisage difficulties due to the fact that their
temporal and spatial rainfall applications correspond to estimated values of a belonging to two
qualitatively different classes. That is, the multifractal behaviour of rainfall in time and space is
qualitatively different. It is not clear whether or not the approach of Marsan and Schertzer (1996)
addresses this issue.

The space-time model of Marsan and Schertzer (1996) also requires estimation of the anisotropy
parameter Q. The data analysed in their paper leads to an estimate of Q that departs both from the
value previously obtained for raindrops by Lovejoy and Schertzer (1991), and from the turbulent value
Q = 1/3. Thus, Marsan and Schertzer advocate the need for more extensive data analysis in order to
obtain an accurate estimate of the scaling anisotropy parameter. In general, they set a complete
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analysis of rainfall data as the next step of their work. However, an account of such data analysis has
not been found in the literature.

E.4 Discrete Cascade Models

Multifractal measures may be generated through discrete cascades, as outlined in Section E.2.2. This
section describes multifractal models for rainfall that use discrete random cascades in two different
ways. The approach of Gupta and Waymire (1993) and Over and Gupta (1994) assumes that the
volume of rainfall over a subsquare results from a discrete cascade, and Over and Gupta (1996) provide
a space-time extension. Section E.4.2 outlines a different model, where the random coefficients of what
the author calls a wavelet expansion of the rainfall field are generated via a discrete cascade (Deidda,
1999, 2000).

E.4.1 Gupta, Waymire and Over’s Approach

Spatial approach

Gupta and Waymire (1993) establish an approach to spatial rainfall modelling based on discrete
cascades and describe the connections with the multifractal literature of the previous sections. With the
appropriate notation changes, the multiscaling properties that characterize multifractals are expressed
as in the continuous cascade literature, i.e. as in (E.7) and (E.8). The generating mechanism, however,
is based on a cascade that develops over a discrete range of scales. The basic construction is outlined
in Section E.2.2. Here some more notation is introduced to describe the specific approach of Gupta and
Waymire (1993).

Since Gupta and Waymire (1993) describe a spatial model, the dimension of the underlying space is
taken to be D = 2. Now, at step n of the cascade, denote the i-th subsquare by ∆i

n, i = 1, . . . ,bn, and let
µn(∆i

n) be the total mass assigned to ∆i
n. The mass µn(∆i

n) is obtained by multiplying the the initial
mass W0 by all the n weights on the path to the i-th subsquare, and normalizing by the size of the
subsquare b−n (Lb−n with the initial square of side length L=1), i.e.

µn(∆i
n) = W (i)

0 W (i)
1 · · ·W i

nb−n. (E.31)

As the resolution increases, that is, as n→ ∞, the mass distribution µn tends to a limit µ∞. Cases where
µ∞ is degenerate – i.e. µ∞ is zero on the whole support with probability 1 – are not of interest. [Note that
µ∞ and µn correspond to the dressed and bare cascade measures of Tessier et al. (1993) respectively].
Let Z∞ denote the total limit mass on the whole support (the unit square in this case), that is
Z∞ = µ∞([0,1]2). When µ∞ is non-degenerate, the mean conservation condition corresponds to
E(Z∞) = 1. The limit mass in the i-th subsquare µ∞(∆i

n) satisfies the recursive relation

µ∞(∆i
n) = µn(∆i

n)Z∞(i), i = 1,2, . . . ,bn, (E.32)

where Z∞(i) are iid as Z∞ and are independent of the µn(∆i
n). Equation (E.32) decomposes the total

limit mass on a subsquare at step n into a large scale component, represented by µn(∆i
n), and a small

scale component Z∞(i) that reflects subsquare variability.

In the context of spatial rainfall, Gupta and Waymire (1993) take µ∞(∆λ) to represent the total volume of
water that falls on a l× l square in the unit time, with λ = 1/l. The rainfall intensity

Rλ

d=
µ∞(∆λ)

λ−2 (E.33)

then directly corresponds to the conserved field resulting from the cascade process. That is, Rλ is the
equivalent of field ϕλ in Section E.3. Multiscaling properties are then obtained directly for Rλ, resulting
in equivalent formulations of (E.7) and (E.8). The moment scaling function is derived to be
K(q) = 2κ(q), with

κ(q) = logb E(W q) = χb(q)+(q−1) (E.34)
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(see Gupta and Waymire 1993 for the details of the derivation). The function
χb(q) = logb E(W q)− (q−1) is called the modified cumulant generating function, or MKP function
(from Mandelbrot, Kahane and Peyriere, who first recognized its importance for random cascade
theory), and the condition −2χ′b(1) > 0 is necessary and sufficient for non-degeneracy of µ∞. Note that
the multiscaling properties for Rλ are derived in terms of the dressed quantities µ∞. Thus, the scaling of
the moments of Rλ holds only for moment orders that are smaller than the critical order of divergence.

In order to estimate the slope of the log-log linear relationship of moments (or exceedance probabilities)
versus scale from a single spatial realization, it is necessary that the sample moments (or proportion of
pixels at scale λ that have mass at least λγ) get close in some sense to the theoretical equivalents as
the resolution increases, i.e. as n→ ∞. Define the sample moments Mn(q) for µ∞ as

Mn(q)≡
bn

∑
i=1

µq
∞(∆i

n). (E.35)

The ensemble quantities are given by

E(Mn(q)) = W q
0 (b1−qE(W q))nE(Zq

∞). (E.36)

From (E.36), the slope of the log-log linear relationship between E(Mn) and scale is obtained as 2χb(q)
(see Over and Gupta 1996). In rigorous terms one cannot speak of convergence of Mn(q) to E(Mn(q)),
since the ensemble moments diverge to infinity or go to zero with n. Instead, consider the ratio of
sample to ensemble moments, i.e. the sequence

{Yn(q)}=
{

Mn(q)
E(Mn(q))

}
, n = 1,2, . . . , (E.37)

and study the scaling of sample moments via

logb Mn(q) = logb
Mn(q)

E(Mn(q))
+ logbE(Mn(q)). (E.38)

If {Yn(q)} converges to some limit Y (q) as n→ ∞, then from (E.38) it follows that, for large n, the
sample moments scale with the same slope as the ensemble moments. That is, the slope of the log-log
linear relationship of sample moments versus scale tends to the corresponding slope for the ensemble
moments. The law of large numbers – which would imply {Yn(q)}→ 1 as n→ ∞ – is not applicable
because the masses of the cascade are highly correlated in space. However, Holley and Waymire
(1992) showed that, if the generator W is strongly bounded, {Yn(q)} converges to a random variable
Y (q) with probability one. Then

τ(q)≡ lim
λn→∞

logMn(q)
logλn

= 2χb(q). (E.39)

See Gupta and Waymire (1993) for the original boundedness conditions of Holley and Waymire (1992).
Slightly generalized sufficient conditions for the range of values of q where (E.39) holds are (Over and
Gupta, 1996)

E(W 2q)/E2(W q) < b and E(Z2q
∞ ) < ∞. (E.40)

Similar arguments hold for the exceedance probabilities. In particular, Gupta and Waymire (1993)
obtain expressions for scaling slopes of the “fractional wetted area”, i.e the proportion p(λ) of rainy
pixels in a single spatial scan, and the corresponding ensemble quantity p(λ) = P(Rλ > 0). Under the
same boundedness conditions on W mentioned above, as λ→ ∞ the scaling slope for p(λ) converges
to the scaling slope of p(λ), which is 2logb(1− r), with r = P(W = 0) > 0.

The results on the convergence of the scaling slopes affect the choice of a generator W for the random
cascade. In fact, only bounded W ’s allow estimation of the scaling slopes from single realizations.
When W is unbounded (as in the case of Lévy generators), the estimation must rely on multiple spatial
scans, which in turns requires stationarity. Gupta and Waymire (1993) argue in favour of single scan
analysis, in order to avoid assuming stationarity a priori.

In Over and Gupta (1994), the spatial analysis of single realizations from the GATE dataset over a 10
day period, relates the parameters of the generator with large scale forcing, represented by the large
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scale rain rate R. The chosen generator is composite, i.e. W = BY , where B partitions the domain into
dry and wet areas, and Y is a strictly positive generator. Specifically, B is the β-model, which is
described by

P(B = 0) = 1−b−β and P(B = bβ) = b−β. (E.41)

Y is taken to be lognormal, i.e. Y = bν+σX , where X is a standard Normal random variable. Appropriate
restrictions on the parameters ensure validity of the conditions in (E.40) – at least for q ∈ [0,1] –, and
non-degeneracy of the limit mass (see Over and Gupta 1996 for a summary). The MKP functions for
the β-model, the lognormal generator, and the composite generator are denoted by χb,B(q), χb,Y (q) and
χb,W (q) respectively. Fixing b = 4, the estimates of the MKP functions lead to estimates of β and σ (ν is
determined from σ and the condition E(Y ) = 1) for each spatial scan. The parameter β is found to vary
with R, while the values of σ do not show strong dependence on the large scale forcing.

Space-Time Extension

Over and Gupta (1996) propose a space-time extension of the discrete cascade models of
Section E.4.1. Their main goal is to obtain a model that satisfies the properties of consistency, causality
and contingency. The requirement of consistency means that the space-time cascade reduces to a
spatial cascade at any fixed time point. Contingency, instead, requires the evolution of the cascade to
respond to time-varying forcing.

The space-time model is a natural extension of the spatial version, where the cascade weights are iid as
a stochastic process {Wt} rather than a random variable W . For any fixed t, P(Wt ≥ 0) = 1, and the
mean conservation property requires E(Wt) = 1. This space-time cascade reduces to the spatial
equivalent at any fixed time point, thus satisfying the consistency property. Causality here is imposed
directly on Wt , for example by assuming Markovian dependence. Finally, contingency on time-varying
forcing can be built in the specific form of Wt .

At any fixed points in time, e.g. t1 and t2, the marginal distributions of the spatial generators Wt1 and Wt2
may be estimated via the scaling properties of the spatial moments, as in the previous section. In order
to obtain information on the joint distributions of Wt , Over and Gupta (1996) study the scaling properties
of the Lagrangian temporal cross moments and obtain analogue results with respect to the spatial case.
The sample Lagrangian temporal cross moments are given by

Mn(q; t1, t2) =
bn

∑
i=1

µq
∞(∆i

n; t1)µq
∞(∆i

n; t2). (E.42)

The same subsquare ∆i
n is considered at times t1 and t2, i.e. the subsquare is tracked while the field

advects (i.e. moves horizontally). The expected values of the sample Lagrangian moments are the
ensemble moments (see Over and Gupta 1996 for the ensemble moment formula), which scale with
slope χb(q; t1, t2) = logb E[W q

t1W q
t2 ]− (2q−1). The slope χb(q; t1, t2) is called the generalized MKP

function. Note that Wt is not a priori required to be stationary. If Wt is stationary, then the scaling slope
of the ensemble Lagrangian cross moments only depends on the lag ∆t = t2− t1.When Wt is not
stationary, the joint distribution of the generator must be investigated via single space-time realizations.
Estimation of χb(q; t1, t2) via a single realization is possible under the same conditions as in the spatial
case. Following the steps of the spatial derivation, define the sequence {Yn(q; t1, t2)} as

{Yn(q; t1, t2)}=
{

Mn(q; t1, t2)
E(Mn(q; t1, t2))

}
, n = 1,2, . . . (E.43)

Under the equivalent of (E.40), Yn(q; t1, t2) converges to the random limit Y (q; t1, t2) as n→ ∞.
Therefore, the sample temporal cross moments τ(q; t1, t2) from a single space-time realization scale
with a slope that converges to the generalized MKP function, as the spatial resolution goes to infinity.

Comments

With respect to the continuous cascades of Section E.3, discrete cascades are more intuitive generating
mechanisms and allow direct inclusion of dry areas. However, a disadvantage of the discrete version is
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the artificial rectangular structure that results from iteratively subdividing a rectangular region into
smaller and smaller rectangles.

Perhaps the main issue that arises when applying the methods of Gupta, Waymire and Over to the
analysis of rainfall, is the absence of techniques that allow for the estimation of both the branching
number b and the parameters of the distribution of W . The scaling slope for the sample moments
provides an estimate for the MKP function, from which the parameters of the distribution of the generator
are inferred, provided a value for b is given. For example, in the GATE application of Over and Gupta
(1994), the branching number is fixed at b = 4. While the idea of simulating rainfall fields conditionally
on large scale forcing may be appealing, it is important to consider the problem of whether the assumed
value for b is appropriate. When the main concern is to study the scaling properties of rainfall, a solution
consists of restricting W to belong to the class of log-infinitely divisible generators. In fact, if the
distribution of logW is infinitely divisible, the branching number and the parameters of the distribution of
W may be varied together leaving the MKP function unchanged (Over and Gupta, 1996). However, the
distribution of the limit masses µ∞ – and thus the distribution of Rλ – still depends on b. For this reason,
when scaling is not the only property of interest, the choice of b is still an issue to be taken into account.

The consequences of different choices for the value of b, in terms of the model ability to reproduce
many important properties of rainfall, have not been explored. In general, attention is focused
exclusively on investigating the scaling properties of rainfall. While Gupta and Waymire (1993) describe
cascade models as an ideal setting for the analysis of intermittency and extremes, the model
performance in terms of such properties appears not to have been assessed.

In the context of the space-time extension of discrete cascade models for rainfall, Over and Gupta
(1996) list several open problems. For example, the specific parametric form of the space-time cascade
generators is an issue that needs further investigation. In order to identify an adequate structure for the
generators, Over and Gupta suggest model validation against data with respect to different “predictions”
of the theory. In conclusion, it seems that Gupta, Waymire and Over’s approach is not readily
applicable, but rather requires considerable model development.

E.4.2 Expansions with Random Coefficients

Spatial and Space-Time Approaches

Deidda (1999) proposed a discrete cascade model that differs from the approach of Section E.4.1. In
his spatial formulation, the multifractal field ϕλ on the unit square is obtained as a wavelet expansion
with coefficients from a discrete random cascade,i.e.

ϕ(x,y) =
N

∑
j=0

2 j−1

∑
kx=0

2 j−1

∑
ky=0

a j,kx,ky ψ j,kx,ky(x,y), (E.44)

where j denotes the level in the cascade and kx and ky indicate the spatial position. The
two-dimensional wavelet ψ j,kx,ky(x,y) is obtained as a product of two one-dimensional wavelet basis
functions Ψ(z), i.e.

ψ j,kx,ky(x,y) = 22 j
Ψ(2 jx− kx)Ψ(2 jy− ky). (E.45)

A multiplicative discrete cascade generates the coefficients a in (E.44). Each a j,kx,ky is derived from
multiplying its parent at level j−1 by a random weight Wj,kx,ky . That is

a j,kx,ky = a
j−1, kx

2 ,
ky
2

Wj,kx,ky (E.46)

All the Wj,kx,ky ’s are iid from a generator W . Specifically, Deidda (1999) chose a log-Poisson distribution

for the generator, i.e. W = eξβY , where ξ and β are parameters and Y is a Poisson distributed random
variable with parameter ϑ. The moment scaling function of the resulting multifractal field ϕ is given by
(Deidda, 1999)

K(q) = log2 EW q−q(2+ log2 EW ) =−2q−ϑ
q(β−1)− (βq−1)

ln2
. (E.47)

The function K(q) depends only on the parameters β and ϑ, which may then be estimated by using
sample moment scaling slopes.

E.4. Discrete Cascade Models 465



The space-time extension of Deidda (2000) rescales the time dimension by a velocity V , and then
describes space-time rainfall intensity as a 3-D process, where two coordinates correspond to space
and the third to rescaled time (Vt). In most of the data analysis, V is kept constant with scale, although
the case V ≈ λ−Q is also considered (recall that λ = 1/l, where l is the side length of the subsquares
at the considered spatial resolution). In the expansion of (E.44), ψ is now a three-dimensional function
defined by the product of three one-dimensional functions. Also, a fourth index kt is introduced to
denote the time position. As in Deidda (1999), the generator is taken to be log-Poisson and the moment
scaling function is given by

K(q) = log2 EW q−q(3+ log2 EW ) =−3q−ϑ
q(β−1)− (βq−1)

ln2
. (E.48)

Denoting the sample moment scaling slopes by τ(q), the parameters ϑ and β are derived from the

minimization of ∑q

[
τ(q)−K(q)

q−1

]2
.

The spatial and space-time models of Deidda (1999; 2000) are used to downscale the large-scale
rainfall intensity, which enters in the first term a0 of the cascade, to the rainfall intensities at the desired
scale in space and time.

Comments

There are several issues with Deidda’s formulations. In Section E.4.2, the term “wavelet” was used
inappropriately, following Deidda (1999; 2000), to describe the expansion in (E.44). In fact, the basis
function Ψ(z) adopted by Deidda is a Gaussian density with mean 1/2 and standard deviation 0.15,
truncated to the interval [0,1]. Thus Ψ(z) does not integrate to zero (in fact, it integrates to almost one)
and consequently it is not a wavelet in the usual sense (see e.g. Chui 1992 or Percival and Walden
2000). Although the expansion provided by the author may be a valid approach, neither the spatial nor
space-time formulation is a wavelet-based model. Also, there are additional cases of misuse of
statistical terminology.

Some mathematical details of the approach need to be checked further, for example the formula for the
initial coefficient a0 at the top of the cascade in terms of the integral of the process ϕ over the spatial or
space-time support. In general, the imprecisions in the description of basic concepts, although they may
be due simply to careless exposition, cast some doubt on the validity of the whole procedure.

Another issue is the estimation of ξ in the log-Poisson distribution. It is not clear from Deidda’s
exposition whether or how ξ is estimated. When downscaling the large scale rainfall intensity, in order to
create the coefficients of the expansion, random weights are generated from a log-Poisson with
parameters ξ, β and ϑ. Thus, a value for ξ is needed.

Despite these problems, it is interesting that Deidda verifies the performance of his model in terms of
several properties in addition to scaling. The results of the data analysis in Deidda (1999) are not
representative, since the data are selected by requiring a very strong log-log linear relationship between
moments and scale; that is, by requiring that scaling holds. However, the data selection criteria of
Deidda (2000) are different and more objective. The ability of the model to reproduce several observed
properties of rainfall is investigated by simulation. The coefficients of variation, skewness and kurtosis
seem to be reproduced adequately for a range of values of the large scale field. Cumulative distribution
functions of rainfall rates are also shown, with 90% confidence intervals constructed by simulation.
Although these results seem fairly adequate, it is difficult to judge the performance at small values of the
rainfall rate on the log-scale plots.

Further study would be required in order to use the model of Deidda (2000) for long (e.g. several
decades) continuous simulations of rainfall. In fact, either one assumes that time scaling continues to
hold for extended time periods (with respect to the 16 hours of Deidda’s case study), or the simulations
are done in shorter time chunks that need to be linked into a coherent rainfall sequence. It also seems
that implementing the methods described above, especially when generating long space-time rainfall
simulations, would require substantial computing resources.
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E.5 Discussion

Multifractal models for rainfall are in general mathematically complex. While the basic idea of
(multi)scaling may be intuitive, the same cannot be said of the concept of multifractal measures. The
end methods applied to observed data usually involve simple estimations of slopes of log-log linear
relationships. However, the derivations involve complex measure theoretical arguments that are bound
to resurface whenever the models need to be modified for specific applications. An example that arises
from the previous sections is the choice of a cascade generator. In fact, the distribution of the generator
has important consequences on properties of the cascade and viable estimation methods, e.g. the
non-degeneracy of the limit masses and the feasibility of single scan analysis. This is an important
issue, especially when the goal is to provide a space-time model that may then be used for national
application.

If multifractal models are considered as an alternative to existing point process approaches to
space-time rainfall modelling, it should also be clear from the literature that multifractals lead to an
improved ability to reproduce a range of observed properties of rainfall. However, with very few
exceptions, only scaling properties of rainfall have been investigated in the context of multifractal
models. For example, it has been argued that cascade theory accommodates the behaviour of
extremes, but the claim has not been verified against data. The performance of multifractal models with
respect to this and other properties of rainfall still remains to be assessed and compared with the
performance of point processes.

Unpublished work by Mouhous (2003) identified difficulties and shortcomings of the random cascade
approach to rainfall modelling. First, the use of the structure function to estimate the cascade
parameters is limited by the bias of the estimator. Corrections to this bias only lead to an increase in the
estimator variance. Second, the inability to reproduce dry period statistics that is inherent to the model
structure has not been addressed by researchers in this field. Third, Mouhous argues that simulations
with random cascades overestimate rainfall extremes, basing her conclusion on a comparison of
Gumbel fits to simulated and observed data. The results obtained by Mouhous however rely heavily
upon the claim that the log-Poisson cascade is more appropriate. Schertzer (2003) argues that the
choice of the type of cascade has to be guided by more than the examination of statistics such as the
structure function, but also by physical considerations. Additionally, the Gumbel assumption made in the
extreme value validation is not germane to a multifractal framework (Chaouche, 2001) and not clearly
grounded statistically. Mouhous’ results are however interesting in that they have brought to light
problematic issues that need to be addressed by multifractal modellers and will thus (hopefully) provide
an impetus for a real debate between them and the hydrological community.

Specific issues that arise in the context of different multifractal models for rainfall have been described
in previous sections and are briefly summarized here. The continuous cascades of Schertzer, Lovejoy,
Tessier and Marsan are the least intuitive version of multifractal models and their generating mechanism
seems fairly computationally intensive. The appeal of this class of models is the parsimony that derives
from universality. In fact, only three parameters entirely characterize the scaling functions for the
moments and exceedance probabilities. Despite this advantage, some estimation and uncertainty
assessment issues are still open. In the space-time context the problem is exacerbated by the fact that
the multifractal behaviour of rainfall in space and time may be qualitatively different, hence more
difficulties in estimating the Lévy index a arise. Finally, appropriate thresholding is required to
incorporate dry areas in the context of continuous cascades. Details of a thresholding method and its
consequences on the wet-dry properties of simulated rainfall have not been described.

The discrete cascade approach of Gupta, Waymire and Over allows direct inclusion of non-rainy areas.
However, simulations from this type of models have an artificial rectangular structure that derives from
the construction of the cascade. Also, the choice of a branching number b is still an open problem. In
fact, b cannot be estimated together with the parameters of the distribution of the generator, but needs
to be fixed at an arbitrary value. Since the distribution of the limit masses of the cascade depends on b,
this may have practical consequences on the properties of simulated rainfall fields. Although a
space-time extension of this approach has been outlined, several aspects of the space-time model,
including the parametric form of the generator, need further development.

Finally, Deidda’s approach is based on an expansion with random coefficients from a discrete cascade.
Besides investigating the scaling properties of precipitation fields, Deidda’s research does also focus on
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evaluating the model performance in terms of several other observed properties of rainfall. The
relevance of the results of the spatial model is limited by the data selection criteria. That is, the data
were chosen so that the model would fit well. When validating the space-time model, different more
appropriate criteria were used to select parts of the GATE dataset. Simulations from the space-time
model seem to reproduce several observed properties of rainfall fairly adequately. However the
log-scale in the plots of the cumulative distribution function tends to obscure the behaviour at small (or
zero) precipitation values. More extensive validation is still needed, as well as further checking of some
mathematical details.

In conclusion, a readily applicable multifractal approach to space-time rainfall modelling and simulation
is not available. Further model development, and especially extensive validation against data in terms of
several properties, are required for all the multifractal approaches described in the previous sections.
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Appendix F Radar data issues

Work Package 2 (detailed within Part III) involved modelling of spatial-temporal rainfall data, with radar
rainfall fields used as input to these models. There were several issues encountered in the case studies
relating to the data used - this appendix details those issues.

F.1 Introduction

Earlier work, under FD0426, made use of a very limited set of data from the Wardon Hill radar. For the
current project, a much more extensive set of data from the Chenies radar, north west of London, has
been available. This appendix describes these radar data, identifies some problems that have arisen
with their use, and discusses ways in which these have been resolved. The Chenies data set comprises
radar data from 1990 to 2002. Images at a 5×5km2 pixel resolution are available at 15-minute intervals
within a disc of 210km radius from the radar, while images at a higher, 2×2km2, resolution are
available at 5-minute intervals up to a radius of 76km. It takes one minute for the radar beam to make a
complete revolution and thus to produce a single image, which will be treated as representing an
instantaneous snapshot of the spatial rainfall field. The left hand panel of Figure 3.1 shows the radar
location, as well as the extent of the 2km and 5km data. There are frequent missing data in the Chenies
record: breaks in the record may have durations ranging from a single image to several days. The
recorded intensities are discretised so that the smallest non-zero value is 0.03mm/hr.

Radar data need to be calibrated against rain gauge measurements if they are to represent ‘ground
truth’. There are a number of reasons for this. First, in radar measurement, empirical relationships are
used to transform the reflected energy within the radar beam to a rainfall intensity (see Collier (2000)),
and these may introduce inaccuracies. Also, the radar beam measures reflected energy at a height in
the atmosphere that increases with distance from the radar and may pass over the precipitation
occurring at ground level. Obstacles may intercept the radar beam causing systematic anomalies, while
background noise can cause ‘clutter’ in radar images. Further, the radar images represent spatial
averages whereas the gauges are point values; Austin (2001) gives more detail on such issues. An
example of a radar image at the 2×2km2 resolution is shown in the right hand panel of Figure 3.1).
This image has not been calibrated, and illustrates spurious radial features caused by systematic
anomalies and, at the north western edge, a failure to detect rainfall because the radar beam is above
the cloud level.

The first step in calibrating the Chenies radar data is to remove systematic anomalies. These can be
identified by averaging all of the radar images over a long time period (e.g. a year) and examining the
resulting spatial image, which should be fairly smooth. Any pixels with anomalous behaviour are
marked and are treated as missing data. Clutter is removed from each radar image by setting to zero
any isolated pixels that appear to be ‘wet’. The images are then calibrated against 15-minute data from
a network of 122 tipping bucket rain gauges (with a resolution of 0.2mm/hr), with the aim of producing
radar images that are in reasonable agreement with the gauge data. In the UK, the standard procedure
is that described by Moore et al. (1994). Section F.2 discusses issues that became evident in our
calibration of the Chenies data and ways in which these were addressed. For purposes of flood risk
assessment, it is important to reproduce correctly the distributions of rainfall intensity at various spatial
and temporal scales, particularly in the upper tails. In general, we have found that uncalibrated radar
data overestimate the larger hourly rainfalls, and that the calibration corrects this. There is a tendency
for calibrated radar to underestimate annual totals, but the relative differences are generally small (a few
percent) and acceptable for our purposes.

Once the radar data have been suitably calibrated, they can be used to fit the models described in
Chapter 9. In Section F.4, we discuss how to select those events in the data set that are suitable for
fitting the model for event interiors, and consider possible biases that may have been introduced in the
events selected by changes in radar recording practice.
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F.2 Calibration of Chenies Data: Problems and
Changes

F.2.1 Method Overview

As noted above, in the UK, the standard procedure for radar calibration is that described by Moore et al.
(1994). This Section summarizes the problems encountered during the practical application of the
calibration procedure to the Chenies radar, and the modifications to the procedures that were adopted
to address them. We consider only the calibration of the 2km resolution data, that cover a circular area
of about 76 km radius around Chenies and are needed for fitting the stochastic spatial-temporal model.

We start with a brief summary of the calibration method. After removing anomalies and decluttering the
image as described in Section F.1, the first step is to compute calibration factors at the gauge locations.
The calibration factor corresponding to the j-th gauge, at any specific time point, is

z j =
R j

g + εg

Ri
r + εr

, (F.1)

where R j
g denotes the hourly intensity recorded at gauge j, i.e. the 15 minute total multiplied by 4, and

Ri
r is the average of the 3 hourly intensities recorded by the radar at the pixel i = i( j) that contains

gauge j, during the 15 minute interval ending at the time of the gauge record.

A calibration surface is then computed as

s = Ga+a0, (F.2)

where s is the vector of scaling factors to be applied to the radar data. The elements of the matrix G
represent the Euclidean distance between the M pixel centers and the N gauges:

Gi j = di j, i = 1, . . . ,M, j = 1, . . . ,N. (F.3)

Setting si = z j whenever gauge j is located at the exact centre of pixel i, gives

a = G∗−1(z−a0), (F.4)

where G∗ is the N×N matrix of inter-gauge distances. Rather than force the calibration surface to
reproduce exactly the calibration factors at the N gauges, the method adopted by Moore et al. (1994) is
to modify the matrix G∗ in (F.4) by replacing the zeros along its diagonal by a parameter K. That is, G∗ is
defined by

G∗
i j =

{
di j i 6= j, i, j = 1, . . . ,N
K ≤ 0 i = j (F.5)

while G remains as in (F.3). Effectively, a non-zero value for K implies that the correlation between the
calibration factors at pairs of gauges does not tend to 1 as the distance goes to zero.

The form of a0 is determined by the requirement that the surface is flat at large distances from the
raingauges. The corresponding constraint is

aT 1 = 0, (F.6)

which results in the following expression for a0:

a0 = a01 =
1T G∗−1z
1T G∗−11

1. (F.7)

The constraint in (F.6) does not always achieve its goal of avoiding problematic values of the calibration
surface. The reasons are detailed in Section F.2.2. Briefly, equation (F.6) only guarantees that the slope
of the surface tends to zero as the distance from the gauges goes to infinity. It does not impose any
restrictions on the slope or value of the surface immediately outside the area spanned by the gauges.

The recommended values (Moore et al., 1994) for K, εg and εr, are based on the examination of a few
events rather than the entire sequence, and vary in time as follows:

470 Appendix F. Radar data issues



• Before 1990 – K =−15, εg = 3, εr = 5.

• Between 1990 and August 1994 – K =−30, εg = 2, εr = 6.

• After August 1994 – K =−55, εg = 1, εr = 1.

The first set of values was obtained for an area of 60 km × 60 km, using 30 gauges, while the other two
were computed for the whole Thames basin, with 98 supporting gauges. We will refer to these values
as the MMJB recommended values. However, in our experience, the calibration results obtained are
very sensitive to the values chosen for K, εg and εr, and in the light of problems to be summarized in
the next sections some of these values have been changed. It has not been within the scope of this
project to explore extensively the calibration issue. Our aim has rather been to find a fairly simple rule
that gives realistic rainfall images. Thus, our choice of parameter values is not optimal in any formal way
and there is still room for further improvement in terms of the final gauge-radar comparison.
Nevertheless, the procedure suggested here produces reasonably good agreement between the
distributions of calibrated radar and gauge rainfall. In this comparison, particular attention has been
paid to the extreme values, as they are central to this project. Thus Section F.2.2 describes a
preliminary change to the calibration procedure, while the later sections deal with the choice of values
for the three parameters and their effect on the radar-pixel comparison for Chenies radar data.

F.2.2 Calibration of regions Outside the Raingauge Range

To avoid problematic (e.g. negative) values, the calibration surface should be flat away from the area
spanned by the raingauges. That is, the surface should have slope equal to 0 outside the range of the
gauge network. Equation (F.6) was introduced by Bob Moore to ensure flatness at large distances from
the raingauges.

In order to describe the effect of constraint (F.6) on the calibration surface, consider first a
one-dimensional case. The value of the surface at an arbitrary point located at position x on the line is

s = ∑
j
|x−u j|a j +a0

= ∑
j:u j<x

(x−u j)a j +a0 + ∑
j:u j≥x

(u j− x)a j +a0,

where u j is the position of raingauge j. Taking the derivative with respect to the position x at which the
calibration surface is to be evaluated, we obtain

∂s
∂x

= ∑
j:u j<x

a j− ∑
j:u j≥x

a j. (F.8)

Outside the interval spanned by the raingauges, either x < u j ∀ j, or x > u j ∀ j. Therefore, the derivative
in (F.8) is equal to −∑

N
j=1 a j (to the left of the gauges) or ∑

N
j=1 a j (to the right of the gauges). The

constraint in (F.6) then ensures that the calibration curve is flat everywhere outside the range of the
gauges. Furthermore, the curve flattens out exactly at the left- and right-most gauge positions.

A synthetic example is shown in Figure F.21. To obtain the calibration curve (the line in Figure F.21), ten
gauge and radar values were randomly generated and truncated at the respective cutoffs to produce
zeros. These values result in ten calibration factors (the circles in Figure F.21), with εg = εr = 0.1.
Setting K =−55 and following the procedure of Section F.2.1 we obtain the calibration curve of
Figure F.21. The curve is flat outside the interval that defines the gauge positions, and its value at
locations to the left (right) of the gauges is equal to its value at the left-most (right-most) raingauge.

For radar calibration, the two-dimensional case is of interest. The value of the calibration surface at an
arbitrary pixel located at (x,y) is

s = ∑
j

[
(x−u j)2 +(y− v j)2]1/2

a j +a0, (F.9)

where (u j,v j) denotes the position of raingauge j. The derivative with respect to the easting of the pixel
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Figure F.21 Synthetic example of one-dimensional calibration curve

is

∂s
∂x

=
N

∑
j=1

x−u j

[(x−u j)2 +(y− v j)2]1/2 a j

=
N

∑
j=1

sgn(x−u j)
[

1+
(y− v j)2

(x−u j)2

]1/2

a j, provided (x−u j) 6= 0, ∀ j. (F.10)

Similarly, the derivative with respect to the northing of the pixel is

∂s
∂y

=
N

∑
j=1

sgn(y− v j)
[
(x−u j)2

(y− v j)2 +1
]1/2

a j, provided (y− v j) 6= 0, ∀ j. (F.11)

Constraint (F.6), i.e. ∑
N
j=1 a j = 0, does not guarantee that either derivative is equal to zero outside the

region spanned by the gauges. However, as the distance of the pixel to the gauges goes to infinity, in
both the easting and northing components, the surface becomes flat. In fact, as both x and y go to
infinity along a straight line, the pixel they define will eventually be in the region where its eastings and
northings are outside the range defined by the raingauges. That is, sgn(x−u j) is the same for all j’s,
and similarly for sgn(y− v j). These terms can then be taken out of the sums in (F.10) and (F.11). Also,
the ratio (y− v j)2/(x−u j)2 (and equivalently (x−u j)2/(y− v j)2) will tend to the same value for all j.
These arguments result in

∂s
∂x
→ c1

N

∑
j=1

a j,
∂s
∂y
→ c2

N

∑
j=1

a j, (F.12)
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where c1 (c2) includes the sign of the difference in easting (northing) between the pixel and all gauges,
and the common limiting value of the ratio of square difference in northing (easting) to square difference
in easting (northing). Constraint (F.6) ensures that both limits in (F.12) are equal to zero.

Note, however, that if x goes to infinity while y is kept fixed in the range of the gauge northings, the
partial derivative with respect to x tends to zero, but the partial derivative with respect to y does not. As
x→ ∞ (or x→−∞), the sign of (x−u j) will be the same for all j’s, and it can be taken outside the
summation in (F.10). Also, since y is kept fixed, the ratio of the square difference in northings to the
square difference in eastings will tend to zero for all gauges. Therefore ∂s/∂x→ sgn(x−u1)∑

N
j=1 a j,

and constraint (F.6) ensures that this limit is equal to zero. On the other hand, since y is in the range of
the gauge northings, sgn(y− v j) is not the same for all j’s and cannot be taken out of the summation in
(F.11), and the ratio (x−u j)2/(y− v j)2 will tend to infinity for all gauges. Then, constraint (F.6) does not
ensure that ∂s/∂y→ 0 as x→±∞. Similarly, if y tends to infinity while x is kept fixed in the range of the
gauge eastings, only the partial derivative with respect to y tends to zero. In summary, at large
distances from the gauges, the surface becomes flat in the region where both eastings and northings
are outside the range of the gauge eastings and northings. In the region where either the eastings or
northings are in the range defined by the gauges, even at large distances, the calibration surface
becomes flat only in one direction.

Since the requirement in (F.6) does not impose any restriction on the value at which the calibration
surface flattens, it is possible that the surface becomes negative before it levels off. Figure F.22 shows
an example calibration surface for Chenies data where the North-West corner, drawn in white for ease
of visualization, is negative. The crosses mark the positions of the gauges, none of which is located
inside the problematic area.

Negative values of the surface are not acceptable, since they would produce negative calibrated rainfall
intensities. The easiest way (and that adopted here) to fix this is to set any values of the calibration
surface that fall outside the interval [minz,maxz] either to the minimum or to the maximum calibration
factor, depending on which side they fall.

F.2.3 Calibration Results with MMJB Parameter Values

The calibration method described in Section F.2.1, with the change of Section F.2.2, was applied to the
Chenies radar data, for the period following 1990, and excluding 1992 (data from the years preceding
1990, and one month in 1992, had been crudely calibrated at site by the Met Office; these data cannot
be properly calibrated using the current method until the effects of this precalibration have been
removed). Initially, the values of K, εg and εr were taken to be the MMJB recommended values given in
Section F.2.1.

If the calibration procedure is successful, the calibrated radar values at pixels that contain gauges
should be fairly close to the raingauge data themselves. Three gauges – at close, mid- and large
distances from the radar centre – were selected to verify the adequacy of the calibration method.
Figures F.23, F.24, and F.25 show the cumulative sums of monthly rainfall from the three selected
gauges and radar pixels for a selection of years. The bold dashed lines represent the gauge values, the
solid lines correspond to the uncalibrated radar data, and the third line type denotes the calibrated radar
data, obtained with the MMJB recommended parameter values. Figure F.23 is typical of the period
between 1990 and 1994. While the uncalibrated radar data can be more or less close in either direction
to the gauge values throughout the period, the common feature is that calibration always considerably
lowers the radar rainfall and makes the radar versus gauge comparison even worse with respect to the
original data. This is due to the chosen values of the increments εg and εr (both their size and ratio are
important). Since the increments are quite large with respect to most of the recorded rainfall values, the
corresponding calibration factors are often very close to 1/3 (See Section F.2.4 for further discussion of
this issue). After 1994, when the increment values are both set to 1, calibration improves the radar
versus gauge comparison, although not drastically. Figure F.24 is an example of a situation where the
uncalibrated radar data is quite far from the gauge equivalents. Calibration reduces the gap between
radar and gauge, but leaves a considerable difference in annual totals. Figure F.25 shows a year when
the gauge versus uncalibrated radar comparison is relatively good, and calibration using the MMJB
recommended parameter values improves it further, at least for some gauges. However, the correction
is not substantial, the solid and lighter dashed curves being fairly close to each other.
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Figure F.22 Example of calibration surface (crosses show gauge positions)
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Figure F.23 1993: cumulative sums of gauge and radar monthly rainfall

In order to gain some insight on the calibration results for the whole network, it is also useful to compare
the spatial mean of the gauges to the mean of the corresponding pixels, as in Figure F.26. The bold
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Figure F.24 1996: cumulative sums of gauge and radar monthly rainfall
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Figure F.25 1998: cumulative sums of gauge and radar monthly rainfall

dashed line is obtained by averaging all available gauge values at each time point and then computing
the monthly totals for this network mean. The remaining lines are the analogous quantities from the
uncalibrated and calibrated radar data, respectively. In Figure F.26, the comparison of spatial averages
is shown for the same years as in Figures F.23, F.24, and F.25. The calibration results are similar to the
individual gauge versus pixel comparisons above. Since radar values equal to zero are not changed in
the calibration procedure, it is necessary to check whether the differences between calibrated radar
data and gauge rainfall are mainly due to those values. Plots (not shown here) similar to Figure F.26,
but where the spatial average was calculated excluding all pixels (and corresponding gauges) with a 0
radar value, show that this is not case. In fact, the calibrated radar data are even further away from the
gauge equivalent when the zero radar values (and corresponding gauge values) are excluded from the
average.

F.2.4 The Effect of the increments εg and εr

The increments applied to the radar and gauge data in (F.1) ensure that the calibration factors are
defined also when the radar values are equal to zero. The effect of the increments on the calibration
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Figure F.26 Cumulative sums of gauge and radar spatially averaged rainfall

surface is important, since different sets of values for εg and εr result in very different calibrated images.
In general, the values of these increments affect the calibration factors, while K determines how steeply
the calibration surface departs from them (see next sections for details on the effect of K).

Figure F.27 gives a one-dimensional synthetic example of the change in the calibration curve due to
varying the increment values. The circles show the calibration factors for each gauge with εg = εr = 0.1;
the solid curve is the resulting ‘surface’. In contrast, when εg = εr = 1, the individual calibration factors
are shown as triangles, and the resulting surface as a dashed line. Since the value of K is set to -55 in
both cases, the change is due to the difference in calibration factors. The dashed curve is much flatter
than the solid one, since the individual triangular calibration factors are much less variable. Setting the
increments to 0.001 or 0.0001, on the other hand, results in much larger peaks. Although in theory one
would like the increments to be very small, to compare the gauge and radar data alone, in practice the
presence of zeros complicates the issue. For example, if the radar value is zero but the gauge records
positive rainfall, even its smallest possible value of 0.8 mm/hr, the corresponding calibration factor can
be made arbitrarily large by choosing the order of magnitude of the increments. When εg = εr = 0.1 the
calibration factor will be equal to 8, while when both increments are 0.0001 its value is 8000. If the
gauges were located exactly at the pixel centres, the smaller the increment, the closer would the
calibrated radar value be to the rainfall recorded by the corresponding gauge. However, when the
gauges are away from pixel centres, the calibrated value of the pixel that contains gauge j will be
affected not only by the corresponding calibration factor z j, but also by the arbitrarily large z’s close by.

Another issue, which arises from the calibration results of the previous section, is the effect of having
εg = εr or εg 6= εr. Assume for now that the gauges are located at pixel centres and the calibration
surface goes through the calibration factors. Then the calibrated radar value R∗i

r at pixel i, which
contains gauge j, is R∗i

r = Ri
r× z j. Therefore, if the increments in (F.1) are equal, R∗i

r < R j
g only if

Ri
r < R j

g. In other words, the calibrated radar values can be closer to the corresponding gauge values
than the uncalibrated equivalents, but there is no overcompensation. If the radar values are thought to
be generally larger than the gauge values, calibration will not eliminate this feature but only diminish its
extent. On the other hand, having εr = 2 and εg = 6 as recommended by Moore et al. (1994) (or in
general εg/εr = 1/3), would result in R∗i

r < Rg
j whenever Ri

r < 3R j
g. Since the gauges are not located

exactly at pixel centres in the Chenies case, and the calibration surface is not forced through the z’s, the
above reasoning does not hold exactly. However, in the case of the 1990–1994 Chenies data, most of
the calibration factors will be close to 1/3, and therefore also the smooth surface will be close to this
value.

One would like the calibrated values R∗r to be close to the corresponding gauge values. For R∗r = Rg to
hold, we must have

Rg = R∗r = Rr
Rg + εg

Rr + εr
⇒

εg

εr
=

Rg

Rr
. (F.13)
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Figure F.27 Example calibration curves with different increment values

Therefore, it may be useful to define the ratio of the increments so that (F.13) is satisfied (approximately)
on the average. One needs to specify in what sense the average is to be intended (e.g. in space, time
or both, and whether we take the ratio of the averages rather or the average of the ratios – in the latter
case there are again problems with the radar values equal to 0). In this report, it is taken to be a ratio of
yearly space-time averages. This is to allow for some year to year variability, while still limiting the
number of different values of εg and εr.

F.3 The Effect of K

As mentioned in the previous section, the parameter K determines how close the surface gets to the
calibration factors. The simulated one-dimensional example of Figure F.38 helps to visualize the effect
of K. The solid curve is the same as in Figure F.27 and is obtained using K =−55. The remaining two
curves, obtained using K =−15 and K = 0 respectively, show that as K approaches 0, the resulting
surface matches the individual calibration factors more closely. However, any calibration factor has an
effect on a larger area (in space) when K is large (in absolute value). Overall, the effect of a large (in
absolute value) K is a smoother surface. Note that the calibration factors, marked by circles, are the
same in the 3 cases, since the values of εg and εr were kept fixed at 0.1.
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Figure F.38 Example calibration curves with different values of K

F.3.1 Recommended changes to the Parameter Values

The results of Section F.2.3 suggest that for application purposes the calibration performance needs to
be improved, at least for the earlier part of the Chenies record. The values of εg, εr and K can be
adjusted for this purpose, keeping in mind the effect of the different parameters on the calibration
surface (Sections F.2.4 and F.3). Since the worst radar versus gauge comparisons were obtained in the
period before 1994, the first modification of the procedure consisted in setting the corresponding
increments to the same values as in the following years, i.e. both εg and εr were set to 1, giving
significantly improved calibration results, as shown in Figures F.39 and F.310. However, the difference
between the uncalibrated and calibrated radar data is not very large, at least for some of the gauges
and for the spatial average.

The calibration results for several other sets of values for εg, εr and K were also investigated. The
values of K considered for calibration were 0, −30 (the MMJB values for the period 1990-1994), and
−55 (the MMJB value for the period following August 1994). Since K is substituted in G∗ for the
distance between a site and itself, K = 0 is a natural candidate. As mentioned in Section F.2.1, a
non-zero value for K corresponds to a case when the correlation between the calibration factors does
not tend to one as the distance goes to zero. It may be informative to fit a parametric curve to the
correlation between calibration factors as a function of distance and extrapolate the value of K at which
the correlation is equal to 1. Repeating this procedure for several time points may give some insight into
the range of values for K to be considered in the calibration assessment. However, for the purpose of
this exercise it is sufficient to focus on the three values mentioned above.

As for the increments, they have to be large enough not to result in very large values of the calibration
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Figure F.39 1993: cumulative sums of gauge and radar monthly rainfall
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Figure F.310 Cumulative sum of gauge and radar spatially averaged rainfall
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factors corresponding to zero or very small radar data. Also, the increments have to be small enough
not to dominate most of the data, in which case the calibration factors would just be equal to the ratio of
the increments. Several magnitudes of the increments were considered, from 0.0001 to 1. Also, two
settings for the ratio εg/εr were considered: 1, and Rg/Rr. Here Rg is taken to represent the average,
over the whole network in space and over each year in time, of gauge rainfall. Similarly, Rr is the
average of radar rainfall over all pixels that contain gauges and over each year.

Besides changing the values of K, εg and εr, another modification of the original procedure was
investigated. Since histograms of the calibration factors at several time points showed a considerable
skewness, it seemed reasonable to check whether the calibration results might be improved by
smoothing the logarithm of the calibration factors, rather than the calibration factors themselves. This
possibility was not exhaustively explored, in combination with different values of the calibration
parameters, since the results were not very promising.

Not all the sets of values considered for K, εg and εr give reasonable results. For example, increments
smaller than about 0.1 produce very poor agreement between calibrated radar and gauges due to
extremely large calibration factors corresponding to zero radar values (see Section F.2.4). Also, the
effect of increment size depends on the choice of K. Increments of the order of 0.1 result in poor
performance when K is set to −30 or −55, while with K = 0 inadequate calibrated values result from
increments around 1. Some calibration results from the better performing sets of values are included in
Figure F.311. The plots show cumulative monthly totals of gauge and radar spatially averaged rainfall for
the same years discussed in Section F.2.3.

1993

2 4 6 8 10 12

10
0

20
0

30
0

40
0

50
0

60
0

70
0

month

cu
m

ul
at

iv
e 

ra
in

 (
m

m
)

gauge
uncalibrated
K=0, e_g=0.1, e_r=0.1
K=0, e_g=0.12, e_r=0.1
K=30, e_g=1, e_r=1
K=30, e_g=1.2, e_r=1
K=0, e_g=0.1, e_r=0.1, log

1996

2 4 6 8 10 12

10
0

20
0

30
0

40
0

50
0

60
0

month

cu
m

ul
at

iv
e 

ra
in

 (
m

m
)

gauge
uncalibrated
K=0, e_g=0.1, e_r=0.1
K=0, e_g=0.07, e_r=0.1
K=55, e_g=1, e_r=1
K=55, e_g=0.7, e_r=1
K=30, e_g=0.7, e_r=1
K=0, e_g=0.1, e_r=0.1, log

1998

2 4 6 8 10 12

10
0

20
0

30
0

40
0

50
0

60
0

70
0

month

cu
m

ul
at

iv
e 

ra
in

 (
m

m
)

gauge
uncalibrated
K=0, e_g=0.1, e_r=0.1
K=0, e_g=0.09, e_r=0.1
K=55, e_g=1, e_r=1
K=55, e_g=0.9, e_r=1
K=30, e_g=0.9, e_r=1
K=0, e_g=0.1, e_r=0.1, log

Figure F.311 Cumulative monthly rainfall for several sets of parameter values

The parameter set that provides the best calibration results, in terms of annual totals, varies with the
years. For example, Figure F.311 suggests that in 1996 the radar records considerably more rainfall
than the gauges, and the values {K = 0,εg = εr = 0.1} provide better results than the original MMJB
values. In 1998, when the uncalibrated radar data are relatively close to the gauge values, the original
parameter set results in better agreement of annual totals between calibrated radar and gauges. A

modified version of the MMJB values, with εg
εr

= Rg
Rr

, produces a very good agreement of annual totals in
1993 and 1996. In general, modifying the ratio of the increments to be equal to the ratio of average
gauge to average radar, has a sizeable effect only when their order of magnitude is around 1 (and K is
large in absolute value). When the order of magnitude of the increments is 0.1 (and K = 0), modifying
the ratio does not change the curve of cumulative monthly totals by a noticeable amount. As for the
effect of smoothing the logarithm of the calibration factors, the results vary depending on the year, but
they seem to be reasonable in terms of yearly cumulative amounts. In summary, none of the parameter
sets seems to be uniformly best over the whole period, but most produce at least acceptable annual
totals.

While one would like the calibrated radar rainfall to be close to the gauge records in terms of monthly
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and annual totals, it is even more important, for the purpose of this project, to ensure that the larger
rainfall values are reproduced accurately. Quantile-quantile plots of hourly spatially averaged gauge
amounts versus hourly spatially averaged radar amounts help to assess the agreement between the
whole distributions of (spatially averaged) gauge and radar rainfall, including the extremes. The values
of the calibration parameters used to obtain the Q-Q plots are the same as those of Figure F.311. The
uncalibrated radar data always overestimate the larger hourly values, while the reproduction of the rest
of the hourly rainfall distribution depends on the year. Although the performance of different sets of
values for K, εr and εg also varies from year to year, setting K to zero and the increments to 0.1 seems
consistently to provide the best agreement with the gauges. This is true also for years when other sets
of parameter values result in closer annual totals with respect to the gauge average. In 1993, the

modified version of the MMJB values (with εg
εr

= Rg
Rr

) provides a slightly better agreement with the
gauges in terms of hourly maximum, but not in terms of the rest of the distribution. As for the ratio of the
increments, the Q-Q plots corresponding to K = 0 and εr = 0.1, with either εg/εr = 1 or εg/εr = Rg/Rr,
are practically indistinguishable. Another common feature is the poor performance of the calibration
method that smoothes the logarithm of the z’s, rather than the z’s themselves. While this procedure
gave reasonable results in terms of annual totals, the distribution of hourly calibrated radar values
departs considerably from the gauge equivalent. Therefore, this option was not explored any further.

The results for 1993, 1996, and 1998, suggest that one may choose the set {K = 0,εg = 0.1,εr = 0.1}
and obtain a good agreement between the gauge and radar distributions of hourly values (averaged in
space), while still maintaining a reasonable performance in terms of annual totals. Before adopting this
as a general rule, it was necessary to check all available years using two sets of calibration values, i.e.
{K = 0,εg = 0.1,εr = 0.1} and {K = 0,εg = 0.1Rg/Rr,εr = 0.1}. The latter case was included in
order to check whether, for years when the radar and gauge totals are substantially different, it would
improve calibration results. In fact, this was not the case for any of the years considered. In general, the
set {K = 0,εg = 0.1,εr = 0.1} is reasonably good at reproducing the distribution of hourly totals
observed at the gauges, with some variation in performance from year to year. For almost all years, the
Q-Q plots involving calibrated values represent a substantial improvement over the uncalibrated case.
Only in 1993 does the calibration result in a higher maximum hourly total with respect to both the
gauges and the uncalibrated case. Even in this case, however, the comparison with the gauges in terms
of the rest of the distribution improves with calibration. Figure F.312 shows two example plots,
corresponding to 1991 and 1993. Both figures are obtained using radar data calibrated with the values
{K = 0,εg = 0.1,εr = 0.1} and show extreme examples of the calibration performance. In 1991 the
uncalibrated radar data considerably overestimate the hourly totals observed at the gauges
(corresponding Q-Q plot not shown here), while the agreement between the whole distributions of
gauge and radar hourly totals is extremely good in the calibrated case. The 1993 plot represents the
worst case of disagreement between calibrated radar and gauge distributions, at least in terms of the
hourly maximum. The Q-Q plot obtained from uncalibrated radar data for the same year (not shown
here), displays better agreement in terms of range, but not in terms of the shape of the distribution.

The performance of the chosen calibration procedure in terms of annual totals is shown for every year in
Figure F.313, in order to check that the departure of the calibrated radar from the gauges remains within
acceptable boundaries. Again, the effect of setting εg/εr = Rg/Rr is very small. These findings,
combined with the Q-Q plots, suggest that the further complication of updating the increment ratio every
year is not worthwhile, and both εg and εr may be set to 0.1. Figure F.313 also shows that the calibrated
radar always underestimates the gauge totals and, for some years, the uncalibrated totals are closer to
the total gauge rainfall than the calibrated quantities. However, the relative difference in annual totals
between calibrated radar and gauges, ranging from -2% (1996) to -12% (1991), seems acceptable for
the purposes of this project.

F.3.2 The Effect of Calibration on Fitting Properties

The stochastic models for spatial-temporal rainfall are fitted to summary statistics calculated from the
calibrated data from the Chenies radar. Simulated realisations from these models will then provide the
artificial rainfall used as an input to the hydrological rainfall-runoff models. These properties of these
simulations will reflect the characteristics of the data used for model fitting, and it is therefore important
to check on the effects of the calibration procedures on the spatial and temporal properties of the radar
data.
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Figure F.312 Example Q-Q plots of gauge versus radar rainfall (spatially averaged hourly totals)

Visual inspection of sequences of calibrated radar images suggest the presence of temporal
discontinuities that are not noticeable in the uncalibrated record. Comparison of figures F.314 and F.315
provides an example of this behaviour. Figure F.314 shows the uncalibrated radar sequence recorded
between 15:15 and 15:40 on 26th February 1996, while Figure F.315 is the calibrated version at the
same times. The images from 15:15 to 15:25 and from 15:30 to 15:40 are calibrated using the gauge
values at two different time points (15:30 and 15:45 respectively). Correspondingly, the calibrated
sequence shows the abrupt appearance of an area of increased intensity at 15:30, while the
uncalibrated images change smoothly in time.

To address this issue, a modified calibration procedure was investigated, where R j
g in (F.1) is the

weighted average of the gauge j values at two time points (the 15-minute records immediately
preceding and immediately following the time of the radar image). The results are not promising and are
not reported here.

While investigating this problem, it became clear that calibration changes the temporal autocorrelation
of the radar sequence, as well as other properties that are used for model fitting. As an example,
Figures F.316 and F.317 show the temporal autocorrelation and two of its components for the rain
events of 1st January 1998, 03:55–05:25, and 3rd January 1998, 16:45–19:40. The gauge-based
values are represented by bold dashed lines that link the three correlations at 0, 15 and 30 minute lags.
Since the temporal resolution of the radar is finer (5 minutes), seven correlations are computed at lags
up to 30 minutes for the uncalibrated (solid lines) and calibrated (third line type) radar data. The
autocorrelations are always higher for the gauges than the radar, while the autocorrelations based on
calibrated images can be on either side of the uncalibrated equivalents, depending on the event.
Figures F.316a and F.317a illustrate the two cases. On 1st January, calibration brings the temporal
autocorrelation of the radar closer to the gauge-based quantities, while on 3rd January the opposite
happens. Figures F.316b and F.317b show plots of E(YtYt−k|Yt > 0,Yt−k > 0), for lags k of up to 30
minutes, where Yt is the gauge (bold dashed lines), uncalibrated radar (solid lines), or calibrated radar
(third line type) rainfall at time t. This component of the temporal autocorrelation behaves differently
between the two January events. On 1st January, calibration lowers the radar-based line to match fairly
closely the gauge-based one, which is much below the uncalibrated radar. On 3rd January, instead,
calibration does not affect this quantity noticeably and both lines corresponding to uncalibrated and
calibrated radar are below the gauge-based line. Another contributing factor to the temporal
autocorrelation is P(Yt > 0,Yt−k > 0) which is shown in Figures F.316c and F.317c. Since calibration
does not affect the wet-dry properties of the radar images, there is only one line for the radar. In both
January events, the radar-based line is above the corresponding gauge line. This may be due to the
different resolution of the two measurements. .
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Figure F.313 Cumulative monthly rainfall for spatially averaged gauge and radar (all years)
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Figure F.314 Uncalibrated radar sequence for 26th February 1996, 15:15–15:40
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Figure F.315 Calibrated radar sequence for 26th February 1996, 15:15–15:40

Other properties of radar rainfall change with calibration. Several spatial correlations and variances at
different levels of spatial aggregation are among the properties used to fit spatial-temporal models to
radar data. Figure F.318 gives an example of how calibration affects these quantities. There is a
considerable difference between the variance of calibrated and uncalibrated radar, at all levels of spatial
aggregation. As for the spatial autocorrelation, the shape of the contours in Figure F.318b changes with
calibration. However, plots of the spatial autocorrelation as a function of distance (not shown here) show
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Figure F.316 Temporal properties for the event of 1st January 1998, 16:45–19:40
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Figure F.317 Temporal properties for the event of 3rd January 1998, 03:55–05:25

close similarity in the behaviour of calibrated and uncalibrated data, while the gauge-based correlations
are quite different from both the radar-based ones (note that for the gauge network the correlations are
based on a very small number of data points).

It is not clear whether calibration should aim at reproducing all the characteristics of rainfall at the gauge
network, since each gauge measures precipitation at a point, while a pixel in the radar image represents
the average rainfall over an area of 4km2. But it is important to notice that calibration affects several of
the data properties that are used for model fitting, and that properties of the uncalibrated radar may be a
closer match to their gauge equivalents. Changes in these properties will be reflected in the simulations
from the fitted spatial-temporal models. The results of the previous sections suggest that the
simulations will provide adequate monthly and yearly totals, as well as a satisfactory upper tail
behaviour, and thus the current calibration scheme should be adequate for the purposes of this project.
However, in the future it would be interesting to study the effects of calibration more extensively and
possibly to implement different methods.
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Figure F.318 Variances and spatial autocorrelations for the event of 1st January 1998, 16:45–
19:40

F.3.3 Conclusions on calibration

The calibration technique recommended by Moore et al. (1994) was applied to the Chenies radar data.
The results presented in the previous sections suggest that the original parameter values should be
changed to obtain better agreement between the calibrated radar and the supporting gauge network.
The best parameter set, among those considered in this note, is {K = 0,εg = 0.1,εr = 0.1}. In
particular, over all available years, this parameter set best reproduces the larger hourly rainfall values
(and the whole shape of the distribution) observed at the gauges. Since the larger rainfall amounts are
particularly important for the purposes of this project, the same parameter set will be applied to all
years, although for some periods, other values of the calibration parameters provide better agreement in
annual totals with respect to the gauges.

It has not been within the scope of this project to develop the best possible calibration method for radar
data. Rather, the goal has been to find a simple rule that can be readily applied to any radar image in
the Chenies archive, and still provides good agreement between radar and gauges, especially in terms
of the upper tail of the amount distribution. The overall procedure recommended in Moore et al. (1994),
with the parameter values modified as suggested above, satisfies these requirements and has therefore
been adopted as the current calibration rule for the Chenies radar. However, it is important to stress that
calibration affects several of the properties used to fit spatial-temporal models to radar data, and
Section F.3.2 includes a first illustration of this issue. The current calibration method appears suitable for
the purposes of this project but further study is needed of the effects of the calibration of the radar data
on the rainfall simulated from the stochastic model before a definitive conclusion on an optimum
calibration scheme can be reached.

F.4 Fitting events in the Chenies radar data

F.4.1 Introduction

In this appendix, we have discussed the calibration of the Chenies radar data, so that the calibrated
data are now available for model fitting. The next step is to select suitable sections of the radar record to
which the stochastic model for event interiors can be fitted. The ‘event’ is the largest structure in the
Poisson cluster spatial-temporal model for rainfall, and its arrival and departure from the fitting window
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are marked by the upcrossing and downcrossing of a prespecified coverage threshold. This definition
identifies a certain number of events in the records from the Chenies radar for the period 1990-2002.
The number of such events by year is characterized by some unexpected features that may be ‘real’ or
artefacts due to changes in the radar recording procedures. In particular, there appears to be a jump in
the mid-nineties, as well as an overall increasing trend, in the number of events occurring. Section F.4.2
describes this behaviour in more detail.

A list of known changes in radar recording practices is reported in Section F.4.3. The characteristics of
radar data that are affected by these changes are analysed to determine whether they explain all or part
of the observed patterns in the number of events. The ability to detect light rain and the level of radar
clutter present in the images are among the main factors that changed in the course of the 1990s. The
declining number of missing images is another important improvement that at least partly accounts for
the increase in the number of events.

Whether or not the trends in the observed radar data are genuine, it is relevant also to examine the
records also in terms of event durations. The issue is to determine whether the radar identifies a small
number of longer events at the beginning of the period, and a larger number of shorter events towards
the end.

Finally, it should be noted that the various aspects of radar data that are analysed in the following
sections are not completely unrelated to one another. Their effects on the number of events are
therefore not easily distinguishable.

F.4.2 Identification of Events in Chenies Radar Data

The method of identifying events follows that used in the Wheater et al. (2000b), where discussion of
the approach can be found. As described in Chapter 9.3, the duration of an event is defined as the time
during which the coverage, C say, of the fitting window (that is, the proportion of the fitting window that is
wet) is above a certain threshold, which we denote here by θ. The fitting window is a square region of
52×52 pixels (or 104×104 km) inside the Chenies 2km radar circle. The choice of θ is to an extent
subjective, requiring a balance between the non-detection of events if it is too high, and
mis-interpretation of radar noise as precipitation if it is too low. In addition, too low a threshold also
allows the possibility that a sequence of events following each other rapidly across the window may be
mis-identified as a single event, for which the stationarity assumption of the model for event interiors is
likely to be questionable. Thus θ needs to be:

1. Low enough for the spells with C ≤ θ to be reasonably labelled as dry.

2. High enough to separate radar clutter (i.e. background noise) from genuine rain.

3. High enough to break long events consisting of a sequence of rain “bands” into shorter ones that
have homogeneous characteristics throughout their lives.

For Chenies radar, a threshold θ = 0.15 was found a reasonable compromise with respect to these
criteria.

Figure F.419 shows the number of events by year resulting from the use of a threshold level 15%
coverage applied to the rainfall records from Chenies radar. A jump occurs around 1994 and an overall
increasing trend characterizes the study period. These features may in part be explained by the much
larger number of missing images in the earlier years (also shown in Figure F.419). In fact, in 1994 the
number of missing images jumps down by about 10,000. However, there is no downward trend in the
following years that would mirror the upward trend in the number of events. Note that the recorded
number of events is a lower bound on the actual number, given that there are breaks in the series of
radar images. In particular, if at least one of the coverages at the two ends of a series of missing
images is above the threshold θ, one event is counted. Similarly, if both coverages are below θ, no
event is counted, although it is unknown whether and how many times the threshold was crossed in the
missing period.
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Figure F.419 Annual numbers of events and percentages of missing images

F.4.3 Changes in the Chenies Radar

The improvements in radar technology that led to a decrease in the number of missing radar images
over the 1990s are not sufficient to explain all the patterns in the numbers of events noted in the
previous Section. Further investigation highlighted some changes in the radar that may help explain the
observed trends in the numbers of events in the 1990–2002 period (pers. comm. Malcolm Kitchen,
Martin Crees)

1. In the mid 1990’s the radar transmitters were modified to correct a design fault that limited the
ability of the radar to detect light rain (installation of a modified transmitter in about 1996.)

2. As a consequence of the work in 1. above, the level of residual ground clutter may also have
increased slightly.

3. In the mid to late 1990’s the effective range of the radar was increased.

4. Again in 1999 and certainly before 2000 the radar was upgraded to see significantly further and
improve quality.

5. In 2000, the signal processor at Chenies was upgraded, with associated changes in sensitivity
and ground clutter frequency.

6. In 2002, changes were made in the method of filtering ground clutter.

Several features of the radar data need to be investigated to understand whether the points above
explain the behaviour of the number of events, and whether there is a residual ‘real’ increase over the
period. Note that points 3. and 4. above should not be relevant to the results shown in Figure F.419,
since all the calculations on the number of events have been carried out on a square inscribed in the
radar circle, i.e. a region which should be inside the effective range of the radar even in the first years of
the record.
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F.4.4 Radar Clutter

Points 2, 5 and 6 in Section F.4.3 suggest that some of the increase in the number of events over the
1990–2002 period may be due to an increase in surface clutter. Some of the clutter is removed by our
practice of setting isolated wet pixels to zero. Also, the events of Figure F.419 are identified using a
coverage threshold of 15%, so that images with a very low proportion of wet pixels are considered dry.

Visual inspection of some of the events in the Chenies radar record had suggested that 15% is high
enough to avoid interpreting radar clutter as rain. However, it is worth investigating the issue further by
computing, for each year, the number of events with maximum coverage above and below several
thresholds. The event definition is kept unchanged, so that the threshold θ = 15% separates wet and
dry images, and a few values of a higher threshold θ′ are used to determine which of the wet periods
achieve a “high” coverage.

Definition An event starting at time ts and ending at time te, achieves high coverage if

maxt∈[ts,te](Ct)≥ θ
′.

Figure F.420 shows the number of high and low coverage events by year, for four values of the threshold
θ′ that discriminates between high and low coverage. The highest threshold shown is θ′ = 30%, since it
does not seem realistic that ground clutter would cause more than 30% of the pixels to appear wet.

Since the number of high coverage events shows an upward trend (right-hand plots in Figure F.420)
even with θ′ = 30%, it is unlikely that an increase in residual clutter accounts for all the increase in the
numbers of events between 1990 and 2002. However, for low thresholds like θ′ = 18%, the left hand
plots show a jump in the number of low coverage events around the mid-1990’s. This feature may
signify that an increase in clutter is partly responsible for the jump in Figure F.419.

To verify if the increase in low coverage events is due to radar clutter, it is necessary visually to inspect
radar images with a proportion of wet pixels lower than, say, 18% in the later part of the 90’s. A first
check did not suggest that such events correspond to clutter rather than rainfall, although this issue may
need further investigation. Given these preliminary results, the wet/dry threshold θ was not raised for
the later years, that is, the event definition was left unchanged for the whole study period.

F.4.5 Light Rain

Problems with the detection of light rain led to changes in the radar transmitters in the mid 1990’s. It is
then reasonable to expect that at least part of the increase in the number of events in the 1990–2002
period is due to a larger number of light rain events in the later years. Here, light rain is defined in terms
of the mean intensity of the event, although a check on the intensities at each single pixel is included
later in this section.

Definition A wet spell is a light rain event if its mean intensity is smaller than a prespecified
threshold µ, i.e.:

1
N

1
T

N

∑
i=1

T

∑
t=1

Yit < µ,

where N is the number of pixels in the radar window, T is the number of time points spanned by the
event, and Yit is the rainfall intensity at pixel i and time t.

Figure F.421 shows the number of events by year that have mean intensity below or above several
thresholds. The plots on the left confirm that a smaller number of light rain events were detected in the
earlier part of the record, with no events corresponding to a mean intensity smaller than µ = 0.2 mm/hr
up to 1994. However, the number of events with larger mean intensities is also increasing over the
period, at least for low thresholds (e.g. µ = 0.2 and µ = 0.3 mm/hr). When the threshold for the mean
intensity is set to 0.5 mm/hr, the trend in the higher intensity events is less clear, and at µ = 1 mm/hr the
trend disappears.
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Figure F.421 Annual numbers of events with mean intensity below or above several thresholds
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It should be noted that there is considerable overlap between light rain and low coverage events.
Figure F.422 shows the maximum coverage corresponding to each event in the dataset, split according
to the associated mean intensity. The lighter rain events, i.e. with mean intensity lower than 0.5 mm/hr
(right hand boxplot), achieve lower coverages, usually below 50%, with the median at about 20%.
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Figure F.422 Event coverages split by mean intensity

Further checks included setting radar pixels below several thresholds to zero before computing the
rainfall coverage and identifying events. In this case, the light rain threshold affects the single pixels
rather than the mean intensity of the event. Figure F.423 shows the number of events by year when the
wet/dry threshold for each pixel is set to 0.5 mm/hr. The plot suggests a distinction between two groups
of years. The number of events is lower before 1996 and higher since then. It is not clear, however,
whether there is a trend in the latter part of the record. In general, although the increasing behaviour is
not as marked as in Figure F.419, it is still present even after accounting for better detection of light rain.
Higher thresholds of up to 1 mm/hr were also used. The corresponding plots of number of events by
year (not shown here) are slightly different with respect to Figure F.423, as they display a fairly linear
trend without a clear distinction between two groups of years. In general, even the highest threshold of
1mm/hr does not eliminate the increasing trend completely.

F.4.6 Event Duration

Since the number of events increases over the 1990-2002 period, it is important to verify whether the
early part of the record is characterized by fewer, longer events, while the later part contains an
increasing number of shorter events. The idea is that in the later part of the 1990s, the radar may be
breaking long events into several shorter ones, rather than recording more rain.

As for the low/high coverage and light/heavy rain events, the definition of ‘short’ and ‘long’ events is
based on a prespecified threshold τ.

Definition An event is labeled as ‘short’ if D < τ, where D is the event duration, and τ is a threshold
in minutes.

Figure F.424 shows plots of the number of events below (left hand) or above (right hand) four duration
thresholds. Both types of events increase in number between 1990 and 2002, but following different
patterns. The number of short events, for low values of τ (such as 30 minutes), jumps around 1995 and
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Figure F.423 Annual numbers of events when pixels under 0.5 mm/hr are set to 0

then seems to oscillate around a fairly constant level. The number of long events, instead, shows an
upward trend, with no clear jumps.

The similarity between Figures F.420 and F.424 is due to the considerable overlap between short events
and low coverage events. The boxplots in Figure F.425 show the coverages of all events in the Chenies
radar dataset, split according to whether or not their duration is longer than an hour. The short events
achieve fairly low coverages (mostly below 20%) while the longer events correspond to maximum
coverages that span the whole (0.15, 1) interval.

F.4.7 Comparison of radar and rain gauge events

If the increases in the numbers of rain events recorded at the Chenies radar station are a ‘real’
phenomenon rather than an an artefact of changing recording practices, there should be a similar
pattern in the rainfall measured by gauges in the same area. The comparison is not straightforward,
however, since gauges measure rainfall at a point location rather than an areal average, and an
accumulation over a period rather than an instantaneous intensity.

Data from a network of about 120 gauges, at a temporal resolution of 15 minutes, are available for the
region covered by Chenies radar. Given the differences between the two types of measurements, the
concept of ‘event’ needs to be redefined in the context of the gauge network. In principle, it is possible
to standardise the two types of records by changing the event definition that has been used for the
radar. For example, one may aggregate the images to the temporal scale of the gauges, say, change
the spatial resolution to larger pixels that contain several gauges, and average the gauge data within
each larger pixel. For the purposes of this study, however, a simpler approach was followed, whereby
the definition of radar events is unchanged, and the definition of an event at the gauge network is
similarly based on a coverage threshold.

Definition A rain event arrives and leaves a gauge network when the rainfall coverage Cg (the
proportion of gauges with positive rainfall) rises above and falls below a fixed threshold θg.
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Figure F.424 Annual numbers of events with duration below or above several thresholds
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Figure F.425 Coverage split according to duration

In order to mirror the radar event definition as closely as possible, the threshold was set at
θg = θ = 0.15.

Figure F.426 shows the corresponding number of events recorded by the gauges for each year between
1990 and 2002. An upward trend is apparent, although there is no indication of a jump after the first few
years. The presence of a trend in the gauge data confirms that at least part of the increase in the
number of events is genuine.

F.4.8 Conclusions on the number of fitting events

The rainfall data from Chenies radar station for the period 1990–2002 suggest a jump upwards in the
number of wet events around 1994, and an increasing trend afterwards. Several changes in the radar
recording practice have been found to account only partially for the patterns in the number of events.

The improvements in radar technology and consequent reduction in number of missing images, are
responsible for some of the observed increase in the number of events. The improved detection of light
rain following changes recording practice in the mid-90’s accounts for some of the remainder, especially
the difference between the first and second half of the decade. This consideration raised the issue of
whether a threshold on the mean intensity should be imposed in the definition of an event, thereby
excluding the light rain events that are recorded only in the later period. While a sufficiently high
threshold would help homogenize the two parts of the record, for the purposes of this project light rain is
also important. Therefore, the event definition was left unchanged.

A related problem is the possible increase in background noise in the second half of the 1990s. A
symptom of this is that the number of events with low coverage (say smaller than 18%) increases
sharply around 1995. However, a first visual inspection of the radar records does not suggest an
increase in clutter, at least after applying the original 15% coverage threshold. Therefore, it does not
seem necessary to raise the threshold in the later part of the record to exclude low coverage events that
may correspond to clutter. However, this issue may need to be revisited after a more careful study of the
low coverage events in the late 1990’s.

The comparison with rainfall recorded at the gauges suggests that at least part of the increasing trend
in number of wet events throughout the 1990s is genuine. This observation, and the fact that the
changes in radar technology resulted in improvements in rainfall measurements that should be retained
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Figure F.426 Number of events at the gauge network

in the records used for modelling, led to the decision not to alter the adopted event definition.

When analysing the continuous simulations from the spatial-temporal model, it is important to take into
account the findings about the trend in event numbers and the changing characteristics of the wet spells,
such as coverage and mean intensity. The simulations should reproduce the overall characteristics of
the radar data over the 12 years of records, exhibiting, for example, the correct proportion of short and
long events, but trends will not be present in the simulated images. Keeping the threshold θ unchanged
over the study period and simulating from the resulting Weibull parameters and Poisson model
parameter library, has different implications in terms of event numbers and event type mix:

• If part of the trend were due to an increase in ground clutter, too many events would be
simulated, with too high a proportion of low coverage and possibly low intensity events.

• If part of the increase in event numbers is due to better detection of light rain, the simulations
from the 12 year parameter library would not include enough events, especially not enough low
intensity ones.

• If there is a genuine trend, the effect on the simulations depends on its long term characteristics,
which cannot be determined with only 12 years of data.

All these issues should be revisited in the future, especially once more data become available, when the
possibility of discarding the part of the record that corresponds to worse recording practices could be
considered. However, it is likely that the radar technology will keep changing, making even the latter
part of the record ‘suboptimal’. Several more years of radar data will also be helpful in establishing the
characteristics of the genuine trend in event numbers.

F.5 Conclusions on data issues

In this appendix, we have discussed two important issues concerning the data from the Chenies radar:
the calibration of the data to reflect ground truth, and the selection of events to which the stochastic
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spatial-temporal model for the event interiors can be fitted.

With regard to calibration, we have explored the application of the UK standard procedure (Moore et al.,
1994) and found that, for the Chenies data, it is possible to improve the agreement between the
calibrated radar values and data from rain gauges under the radar region. As well as improving the
agreement between the distributions as a whole, emphasis has been put on reproducing the larger
hourly values which are particularly important for rainfall-runoff applications.

An important by-product of the calibration study was the discovery that different calibration schemes,
and the use of different parameter sets within a particular method, can have a significant effect on the
properties of the calibrated data. Since summary statistics from the calibrated radar data are used to fit
the stochastic models described in Chapter 9, changes in the calibration scheme may substantially
affect the properties of data simulated from the fitted model. In particular, each image is calibrated
individually, with no temporal smoothing in the computation of the calibration factors. As a result, we
have found that calibration often reduces the temporal autocorrelation in a sequence of radar images
(temporal correlations play an important role in fitting model parameters). This sensitivity of statistical
properties to the calibration procedure is a source of some concern and, at present, is a real impediment
to the use of models based on radar data in flood risk assessment. A substantial further study is needed
to gain a thorough understanding of the issues involved. Nonetheless, the scheme used in this paper is
based on existing best practice in the UK, with some relatively minor modifications for our purposes.

A threshold rule has been applied to the calibrated Chenies radar series for the period 1990–2002 in
order to select rainfall events to which the event interiors model can be fitted. This thresholding has
resulted in the rather surprising fact that there appear to be an increasing number of rain events over
the period; more specifically, there is a jump upwards in the number of wet events around 1994, and an
increasing trend afterwards. In part, these observations can be explained by changes in radar recording
practice: improved technology results in fewer missing images and better detection of light rain.
However, inspection of rain gauge data suggests that at least part of the increasing trend in the number
of wet events throughout the 1990s is genuine.

There are various implications for the continuous simulation of rainfall. The increased number of events
fitted to the later part of the record as compared with the early part means that the parameter sets in the
library of event parameters used for the continuous simulation will be weighted towards events in this
period, reflecting any changing characteristics of the wet spells as regards coverage and mean intensity.
The simulated realisations should reproduce the overall characteristics of the radar data over the whole
period of the record, although of course the random sampling of parameter sets means that trends will
not be present in the simulated images. If there are genuine changes in the numbers of events and their
characteristics (and to determine long-term patterns far more than 12 years’ data are needed), the need
for nonstationary continuous simulation, as discussed in Section 9.5, becomes apparent.
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