Defra/Environment Agency Flood and Coastal Defence R&D Programme

Afflux at bridges and culverts

Review of current knowledge and practice

Annex 6: Bridge Afflux Experiments in Compound Channels

R&D Project Record W5A-061/PR6

Defra/Environment Agency Flood and Coastal Defence R&D Programme

AFFLUX AT BRIDGES AND CULVERTS

Review of current knowledge and practice

Annex 6: Bridge Afflux Experiments in Compound Channels

R&D Project Record W5A-061/PR6

Serter Atabay and Donald W Knight, School of Civil Engineering, The University of Birmingham

Research Contractor: JBA Consulting – Engineers & Scientists

Publishing Organisation

Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD.

Tel: 01454 624400 Fax: 01454 624409 Website: www.environment-agency.gov.uk

© Environment Agency 2004

June 2004

ISBN 1 8443 2291 2

The Environment Agency will waive its normal copyright restrictions, and allow this document (or other item), excluding the logo to be reproduced free of licence or royalty charges in any form, provided that it is reproduced unaltered in its entirety and its source acknowledged as Environment Agency copyright,

This waiver is limited to this document (or other item) and is not applicable to any other Environment Agency copyright material, unless specifically stated. The Environment Agency accepts no responsibility whatever for the appropriateness of any intended usage of the document, or for any conclusions formed as a result of its amalgamation or association with any other material.

The views expressed in this document are not necessarily those of Defra or the Environment Agency. Its officers, servants or agents accept no liability whatsoever for any loss or damage arising from the interpretation or use of the information, or reliance upon views contained herein.

Dissemination Status

Internal:Released InternallyExternal:Released to Public Domain

Statement of Use

This Technical Report contains the results of the first phase of a study to improve the estimation of afflux at river structures in high flows. The information in this document will be used in developing improved software and guidance for flood defence and land drainage practitioners, and is made available for reference and use.

Keywords

Afflux, backwater, blockage, bridges, culverts, channel structures.

Research Contractor

This document was produced under R&D Project W5A-061 by Serter Atabay and Donald W Knight, School of Civil Engineering, The University of Birmingham. The research contractor was JBA Consulting – Engineers & Scientists, South Barn, Broughton Hall, Skipton, North Yorkshire, BD23 3AE.

Tel: 01756 799919 Fax: 01756 799449 Website: www.jbaconsulting.co.uk

Environment Agency's Project Manager

The Environment Agency's Project Manager for Project W5A-061 was: Andrew Pepper, External Advisor, Engineering Theme.

Further copies of this report are available from the Environment Agency's science dissemination service

CONTENTS

1	INT	RODUCTION	1
2	ТН	E EXPERIMENTAL DATA ON BRIDGE MODELS AND THE ASSOCIATED CD-ROM	3
	2.1	Bridge models	3
	2.2	Roughness	5
	2.3	Ancillary experiments	5
	2.4	Experimental cases	6
3	STA	AGE-DISCHARGE AND RESISTANCE RESULTS	9
4	BA	CKWATER EFFECTS AND AFFLUX AT BRIDGES	11
5	CO	NCLUSIONS	13
6	RE	FERENCES	15
A	PPEND	IX A	17

Page

LIST OF FIGURES

	Page
Figure 1: Organization of experimental work with different types of bridge models	1
Figure 2: The Four different types of bridge models examined in this study	4
Figure 3: Organization of experimental work for stage-discharge relationships	5
Figure 4: Name of experiments for the arch bridge models	7
Figure 5: Name of experiments for the deck bridge models	7
Figure A1: Comparison of water levels with and without bridge model	24
Figure A2: Afflux-discharge relationships for arch bridges	25
Figure A3: Afflux-discharge relationships for deck bridges	26
Figure A4: Afflux-discharge relationships for deck bridge (Case 4)	27
Figure A5: Afflux-discharge relationships for deck bridge (Case 5)	28
Figure A6: Water surface measurement positions along flume for single elliptic arch b	oridge
model (Q=18 l/s)	29

LIST OF TABLES

	Page
Table 1: Ancillary stage-discharge experiments	5
Table 2: Experimental programme	9
Table 3: Stage-overall and zonal Manning's n relationships	10
Table A1: Water surface levels with and without bridge model	19
Table A2: Arch bridge results	20
Table A3: Deck bridge results (part I)	21
Table A4: Deck bridge results (part II)	22
Table A5: Deck bridge results (part III)	23

1 INTRODUCTION

This report contains the results of some experiments on bridge afflux undertaken in 1999 at the University of Birmingham using a 22 m long research flume with a compound crosssection. The aim of the experiments was to explore the general behaviour of bridge afflux, prior to making an application to the Engineering and Physical Sciences Research Council (EPSRC) for funding to examine this phenomenon in some detail. However, an application has not yet been made since the EPSRC is likely to require significant financial support from the Environment Agency and others, as well as detailed modelling studies, to accompany any such experimental work.

This report should be read in conjunction with an accompanying CD-Rom that gives all the data and graphs in directories that correspond to the different types of bridge tested. Some ancillary experiments were performed in the channel with varying floodplain roughness, and these stage-discharge data are also included in the CD-Rom.

Experiments with the different types of bridge models have been collated in a directory called *BRIDGE*, as illustrated in Figure 1.

Figure 1: Organization of experimental work with different types of bridge models

2 THE EXPERIMENTAL DATA ON BRIDGE MODELS AND THE ASSOCIATED CD-ROM

2.1 Bridge models

Four different types of bridge models were examined in a two-stage channel with five different roughness configurations. The experimental data have been organised into five directories, representing four different types of bridge models and all the stage-discharge relationships for the different roughness cases. The naming convention is as follows:

- ArchMOSC This directory represents all the experiments with the Multiple Opening Semi Circular Arch bridge model (See Figure 2a).
- ArchSOE This directory represents all the experiments with the Single Opening Elliptic Arch bridge model (See Figure 2b).
- ArchSOSC This directory represents all the experiments with the Single Opening Semi Circular Arch bridge model (See Figure 2c).
- **Deck** This directory represents all the experiments with the Single Opening Straight **Deck** bridge model with or without piers (See **Figure 2d**).
- **HvQ** This directory represents all the experiments performed in order to obtain the uniform flow depth for a particular discharge. In this **HvQ** directory there are five different directories each representing different roughness configurations as shown in **Figure 3**.

(a) ArchMOSC-Multiple opening semi-circular arch bridge model

(b) ArchSOE-single opening elliptic arch bridge model

(c) ArchSOSC-single opening semi-circular arch bridge model

d) Deck-single opening straight deck bridge model

Figure 2: The Four different types of bridge models examined in this study

💐 Exploring - Case5	
<u>File E</u> dit <u>V</u> iew <u>T</u> ools <u>H</u> elp	
Case5	🖸 🖻 🎽 🗶 🖻 🛍 🖬
All Folders	Contents of 'Case5'
Bridge ArchMOSC ArchSOE ArchSOE ArchSOE ArchSOE ArchSOE ArchSOE ArchSOE ArchSOE Case1 Case2 Case3 Case4 Case5	Name S21.xls S24.xls S27.xls S35.xls Global5.xls Zonal5.xls
1 object(s) selected 138	KB ///

Figure 3: Organization of experimental work for stage-discharge relationships

2.2 Roughness

The roughness was varied on the floodplain by adding triangular A-frame elements, made up of open wire mesh, at different spacing intervals, λ . The various roughness cases are defined as follows:

CASE 1: Smooth main channel and smooth floodplain

CASE 2: Smooth main channel and rough floodplain (λ =0.5m)

CASE 3: Rough main channel (λ =2.0m) and rough floodplain (λ =0.5m)

CASE 4: Rough main channel (λ =3.0m) and rough floodplain (λ =0.25m)

CASE 5: Rough main channel (λ =4.0m) and rough floodplain (λ =0.125m)

2.3 Ancillary experiments

In order to obtain the stage discharge relationships, a number of ancillary experiments were performed over a range of discharges for each channel roughness, as shown in **Table 1**.

Case No	Nmber of experiments	Q (m^3/s) varied between
Case1	13	0.010 & 0.055
Case2	9	0.015 & 0.050
Case3	8	0.015 & 0.035
Case4	8	0.015 & 0.040
Case5	5	0.021 & 0.035

Table 1: Ancillary stage-discharge experiments

In the 'case' directories (Case 1 - Case 5) there are several experimental files for uniform flow depths and two results files. These result files are named as **Global.xls**, in which analysis was made using the single channel method, and **Zonal.xls**, in which analysis was

made using the divided channel method. There is a single number after these files that represents the Case number. For example as seen from **Figure 3**, for Case 5 these file are named as **Global5** and **Zonal5**. In **Figure 3** there are five experimental files, which are named as 521.xls, 524.xls, 527.xls, 530.xls and 535.xls. The first number refers to the Case No. (which is Case 5 here) and the last two numbers refer to the discharge value. For example, the experiments with the same discharge values for Case2 are named as 221.xls, 224.xls, 227.xls, 230.xls and 235.xls.

It should be noted that all these ancillary experiments were performed without any bridge model in the flume. The results were later compared with the experimental results performed with the bridge models in place, in order to find the precise backwater effect for a particular discharge value and channel roughness. In Cases 3-5, the main channel was also roughened, as well as the floodplains, in order to obtain results that were comparable with real conditions in rivers, and to get away from performing experiments only in smooth channels.

2.4 Experimental cases

As seen from **Figure 4**, ArchMOSC and ArchSOE bridge models were examined for the roughness configurations Case 1, Case 2 and Case 3, and the ArchSOSC bridge model was examined for Cases 1-4. The deck bridge model, with or without piers, was examined for Case 1, Case 3, Case 4 and Case 5. For each type of bridge model and roughness case, a total of 5 experiments were generally carried out. In all, some 145 experiments were undertaken in this study.

As seen on the right hand side of **Figure 4**, for single opening semi-circular arch bridge model (**ArchSOSC**), the experiments were named as ASOSC121-ASOSC135. The first letter, A, refers to the type of bridge, i.e. arch bridge, and SOSC refers to 'single opening semi circular'. The same procedure that was used for the experiments investigating the stage-discharge relationships (see directory HvQ) was also adopted here for the experiments with the bridge models. The first number refers to the Case No., and the last two numbers refer to the value of the discharge. For example, AMOSC230 means that an Arch bridge-multiple opening semi-circular type, with Case 2 type roughness, was examined with a discharge value of 30 l/s.

Deck bridge models were examined for different width ratios (b/B) by changing the value of b, as shown in **Figure 2d**, from 0.398m to 0.498m and 0.598m. The experiments for the Deck bridge model were therefore divided into three different directories according to the values of b (b=0.398, b=0.498 and b=0.598), as illustrated in **Figure 5**. These three directories were also divided into two further directories, Nopiers and Piers, according to the whether the bridge model was examined with or without piers.

As seen on the right hand side of **Figure 5**, the experiments were named as D598321P-D598335P. The first letter, D, refers to the Deck bridge model, the first three numbers refer to the value of b, which is 598mm in this case, and the rest refer to the case number and discharge values, as explained earlier. The last letter, P, means that the bridge model was examined with piers. If there is no letter after the discharge value, this means that the bridge model was examined without piers. For example, if the deck bridge experiment without piers was carried out for Case 3, with a discharge value of 30 l/s and b=0.398m, then the experiment was named as D398330. If piers were used then the experiment name was D398330P.

There is a results file, Afflux in each main directory, which shows the backwater effect for each type of bridge model and roughness case.

💐 Exploring - Case1					_	
<u>F</u> ile <u>E</u> dit ⊻iew <u>T</u> ools !	<u>H</u> elp					
🔄 Case1	•	£	浩	🛛 👗 🖻 🛍	N X 🕾	<u>D</u> 0-
All Folders				Contents of 'Case	e1'	
📄 🧰 Bridge				Name		
🖻 🧰 ArchMO	SC			ASOSC121.xl	ls	
Cose	=1			ASOSCI 24.xl	ls	
Case	=2			ASOSC127.xl	ls	
Case	=3			ASOSC130.xl	ls	
ArchSOE				ASOSC135.xl	s	
	2			_		
	-2					
	50 20					
	51					
Case	-2					
Case	-3					
Case	ə4					
🛛 🖂 Deck						
🕀 🧰 Case	=1					
🖻 🧰 Case	=3					
6 🗐 !	b=0.398m					
	Nopiers					
	Piers					
	b=0.498m					
	598m					
	54 55					
	50		ΨI			
1			١	•		Þ
5 object(s)	420KB (Dis	sk free	space	: 45.6MB)		

Figure 4: Name of experiments for the arch bridge models

Figure 5: Name of experiments for the deck bridge models

3 STAGE-DISCHARGE AND RESISTANCE RESULTS

In this section the results concerning the stage-discharge and resistance relationships are presented. The results relate to compound channels, comprising one rectangular main channel and two symmetrically disposed floodplains, as illustrated in Fig. 2.

One of the most important procedures before any detailed measurements were taken was to obtain uniform flow for a particular discharge. In order to achieve uniform flow, the tailgate/s was/were adjusted to give several M1 and M2 profiles. The mean water surface slopes and related depths were then plotted versus tailgate position in a computer program and the tailgate setting that gave a mean water surface slope equal to the floodplain bed slope of 2.024×10^{-3} was interpolated from the graphs. The depth related to this tailgate setting was then accepted as the normal depth. This procedure was repeated for every single experiment in order to obtain accurate stage-discharge relationships for the symmetric compound channels.

In this study, after the experiments were carried out in the smooth compound channel, the differential roughness between the main channel and floodplain was simulated using 'A-frames' of aluminium wire grids. These were placed at different longitudinal intervals, λ , along the channel, for both the floodplain and main channel, as shown in **Table 2**. The experimental programme for the overbank flow cases is also shown in **Table 2**.

	No. of	Flow	Main channel	Floodplain	Dr
	Experiments				
Case 1	13	Overbank	Smooth	Smooth	0.20~0.50
Case 2	9	Overbank	Smooth	Rough (λ =0.5m)	0.23~0.70
Case 3	8	Overbank	Rough (λ =2.0m)	Rough (λ =0.5m)	0.30~0.70
Case 4	8	Overbank	Rough (λ =3.0m)	Rough (λ =0.25m)	0.30~0.75
Case 5	5	Overbank	Rough (λ =4.0m)	Rough (λ =0.125m)	0.55~0.75

 Table 2: Experimental programme

In order to analyse the data for the smooth and roughened compound channels, two different methods were adopted, treating the channel either as a single section, or dividing the channel into a number of sub-sections or zones. The results for the single channel and divided channel methods are given in the results files, Global and Zonal, respectively.

Using the equations of best fit through the experimental data, shown graphically in the CD-Rom, the stage-discharge relationship was obtained mathematically in the form of a power function for Case 1, and in the form of a second order polynomial function for Cases 2-5, as given by Equations 1 & 2,

in which α , β and c are constants for each experimental configuration, H is the flow depth in m and Q is the discharge in m³/s.

CASE 1: Smooth main channel and floodplain

$$H=0.2708Q^{0.3615}$$
(3)

CASE 2: Smooth main channel and rough floodplain (λ =0.5m)

$$H=7.7522Q^{2}+2.4687Q+0.0253$$
(4)

CASE 3: Rough main channel (λ =2.0m) and rough floodplain (λ =0.5m)

$$H=9.7506Q^{2}+3.3628Q+0.0358$$
(5)

CASE 4: Rough main channel (λ =3.0m) and rough floodplain (λ =0.25m)

$$H=3.6087Q^{2}+4.0631Q+0.028$$
(6)

CASE 5: Rough main channel (λ =4.0m) and rough floodplain (λ =0.125m)

The correlation coefficients for Cases 1-5 are 0.9966, 0.9988, 0.9993, 0.9987 and 0.9991 respectively. All the stage-discharge relationships were used to find the precise flow depth for a given discharge when the experiments were carried out with the different bridge models.

The overall and zonal Manning's roughness coefficients, n, and friction factors, f were calculated using standard hydraulic resistance laws. Using the equations of best fit through the experimental data, again shown graphically in the CD-Rom, the stage-resistance relationships in terms of Manning's n and flow depth in m, were also obtained mathematically as shown in **Table 3**. Further details about the stage-resistance relationships for all cases are available elsewhere (Atabay, 2001).

(a) Single section method-overall Manning's n - stage relationships								
	n _{overall}							
Case 1	0.0091							
Case 2	$n=5.0633H^{3}-2.4023H^{2}+0.5599H-0.0176$							
Case 3	$n = 12.464 H^3 - 5.1099 H^2 + 0.925 H - 0.024$							
Case 4	use 4 $n = 9.8061 H^3 - 4.7253 H^2 + 0.9798 H - 0.0295$							
Case 5 $n=5.232H^3 - 4.0069*H^2 + 1.1959H - 0.0565$								
(b) Divided channel method-zonal Manning's n - stage relationships								
	n _{main channel}	n _{floodplain}						
Case 1	~0.010	~0.0090						
Case 2	$n_{\rm mc} = 0.0925 {\rm H}^{0.7591}$	$n_{\rm mc} = 0.2788 {\rm H}^{0.9382}$						
Case 3	$n_{mc} = 0.100 H^{0.5825}$ $n_{mc} = 0.22381 H^{0.7114}$							
Case 4	$n_{\rm mc} = 0.104 {\rm H}^{0.6255}$	$n_{\rm mc} = 0.3211 {\rm H}^{0.7418}$						
Case 5	$n_{\rm mc}=0.113 {\rm H}^{0.671}$	$n_{\rm mc} = 0.2440 {\rm H}^{0.5954}$						

Table 3: Stage-overall and zonal Manning's n relationships

4 BACKWATER EFFECTS AND AFFLUX AT BRIDGES

In the previous section the stage-discharge relationships for the compound channel with five different roughness configurations (Cases 1-5) were presented. Four different types of bridge model, given below, were examined in this channel with the same roughness configurations.

- Single opening semi-circular arch bridge model
- Multiple opening semi-circular arch bridge model
- Single opening elliptic arch bridge model
- Single opening straight deck bridge model with & without piers

For a given roughness condition, each bridge model were placed at a cross section 10m from the flume inlet, named X=59m along the channel, as shown in **Figure A6**. After placing each bridge model in the channel, experiments were performed over a range of discharges and measurements taken. An attempt was made to subject each bridge to the same discharge values in order to aid direct comparisons. Water surface levels were taken at 1m intervals down the entire length of the flume and at 10 cm intervals in the immediate vicinity of the bridge model, on both upstream and downstream sides (i.e. sections X=58m-60m). These measurements were later used to find the afflux and backwater effect of the various bridges over a range of flows.

The full results are on the CD-Rom, and Appendix 1 contains a small sample of selected results to illustrate the afflux relationships. It is essential to refer to the CD-Rom to see the resistance relationships, the stage-discharge relationships and the afflux results for every channel roughness and bridge type. A brief description of the 5 cases in Appendix 1 is now given, with the Table and Figure numbers referring to those in Appendix 1.

Table A1 (Appendix 1) shows one set of water levels for ASOE218, with and without the single opening elliptic arch bridge model. **Figure A1 (Appendix 1)** shows the corresponding water surface levels for this particular bridge for a discharge of 18 l/s. These water surface levels are those recorded in Columns 3 and 4 of **Table A1**. The values of these water surface levels for uniform flow were smoothed using trendline equation through these data (see Column 7 of **Table A1**). **Figure A1** thus shows a direct comparison between those water levels with the bridge in place, and those without the bridge (i.e. the corresponding uniform flow case). It should be noted that for uniform flow, the water surface levels between sections 58m-60m, at 10 cm intervals, were interpolated using the best trendline through the water surface level data at 1.0 m interval along the channel. The best trendlines through the water surface level data are given for each corresponding uniform flow data file in the HvQ directory.

In order to calculate the backwater effects (afflux) water surface levels for uniform flow (Column 7) were subtracted from those measured with the bridge model in place (Column 8) of **Table A1.** A summary of the maximum afflux for arch bridges is given in **Table A2**, and those for deck bridges in **Tables A3-A5**. The corresponding afflux-discharge relationships are shown in **Figure A2** for arch bridges and in **Figs A3-A5** for deck bridges. The best fit polynomial equations are shown in each Table and Figure for ease of reference. The CD-Rom contains further details, as well as best fit linear equations through the same data.

5 CONCLUSIONS

These preliminary experiments indicate that there is a strong relationship between afflux and discharge for the four types of bridge opening tested in this investigation. They have been obtained for bridges in a compound channel, with varying degrees of roughness, thus being typical of idealised conditions in an actual river. These data are useful in so far as the vast majority of other experimental studies have generally been undertaken in channels with a simple rectangular cross-section, which is untypical of most rivers channels. A thorough analysis of these data is required, together with simulations using commercial 1-D and 2-D software. Further experimental studies should also be undertaken, extending the range of flows to include orifice-type flow, and to cover the many issues highlighted in the related report by Knight (2002).

The simple empirical relationships between bridge afflux and discharge obtained in this study for the four model bridge types, and presented in Appendix A and in the accompanying CD-Rom, make a small contribution to the sum of knowledge concerning afflux. It appears that such knowledge is gained slowly through a combination of small-scale laboratory studies, field measurements and numerical studies.

6 REFERENCES

Atabay, S., 2001, Stage-discharge, resistance, and sediment transport relationships for flow in straight compound channels, *PhD Thesis*, The University of Birmingham, England, UK

Knight, D.W., 2001, Conveyance in 1-D river models, *Report for HR Wallingford and the Environment Agency*, March, 1-29 [part of: Scoping study on reducing uncertainty in river flood conveyance, HR Wallingford, May 2001].

Knight, D.W., 2002, A review of current knowledge on bridge afflux, *Report for JBA and the Environment Agency*, December, 1-34 [part of: Scoping study into hydraulic performance of bridges and other structures, including the effects of blockage, at high flows, JBA, December, 2001].

APPENDIX A

EXPERIMENTAL RESULTS

EXPERIME	ENT NAME	ASOE218		Q=	18.03 l/s		
EXPERIME	ENT DATE	12.03.1999		H=	72.3 mm		
			EXPERIN	MENTAL RESULTS			
		(acc	cording to me	easured WS and Bed	Slope)		
Chainage	Bed	WSE (mm)	WSE (mm)	Chainage	Bed	WSE (mm)	WSE (mm)
X (m)	Elevation (mm)	without bridge	with bridge	X (m)	Elevation (mm)	without bridge	with bridge
	(measured)	(measured)	(measured)		(smooth)	(smooth)	(smooth)
(1)	(2)	(3)	(4)	(5)	(9)	(1)	(8)
52.00	130.90	202.50	212.00	52.00	130.06	200.77	212.00
53.00	128.20	200.40	210.00	53.00	128.05	198.76	210.00
54.00	125.30	197.20	208.00	54.00	126.03	196.75	208.00
55.00	122.90	195.20	206.80	55.00	124.02	194.74	206.80
56.00	122.90	193.20	205.40	56.00	122.01	192.72	205.40
57.00	120.20	189.70	203.50	57.00	119.99	190.71	203.50
58.00	117.40	186.50	202.60	58.00	117.98	188.70	202.60
58.30	117.01	185.75	201.60	58.30	117.38	188.09	201.60
58.40	116.88	185.50	201.30	58.40	117.17	187.89	201.30
58.50	116.75	185.25	201.50	58.50	116.97	187.69	201.50
58.60	116.62	185.00	200.60	58.60	116.77	187.49	200.60
58.70	116.49	184.75	200.50	58.70	116.57	187.29	200.50
58.80	116.36	184.50	199.50	58.80	116.37	187.09	199.50
58.90	116.23	184.25	196.20	58.90	116.17	186.89	196.20
58.965	116.10	184.00	191.60	58.97	116.04	186.76	191.60
59.085	115.81	183.71	182.50	59.09	115.80	186.51	182.50
59.20	115.54	183.68	178.00	59.20	115.56	186.28	178.00
59.30	115.30	183.65	186.00	59.30	115.36	186.08	186.00
59.40	115.06	183.61	182.30	59.40	115.16	185.88	182.30
59.50	114.82	183.58	179.00	59.50	114.96	185.68	179.00
59.60	114.58	183.55	183.50	59.60	114.76	185.48	183.50
59.70	114.34	183.51	187.10	59.70	114.56	185.28	187.10
60.00	113.70	183.70	180.70	60.00	113.95	184.67	180.70
60.20	113.32	183.30	181.00	60.20	113.55	184.27	181.00
61.00	111.80	181.70	180.00	61.00	111.94	182.66	180.00
62.00	110.60	180.50	176.00	62.00	109.93	180.65	176.00
63.00	107.90	177.30	177.60	63.00	107.91	178.63	177.60
64.00	106.80	176.80	176.00	64.00	105.90	176.62	176.00
65.00	104.00	176.20	174.80	65.00	103.89	174.61	174.80
66.00	102.00	173.70	173.00	66.00	101.88	172.60	173.00
67.00	99.70	172.30	172.00	67.00	99.86	170.58	172.00
[

Max Afflux(mm)

Position of max. afflux

Type of bridge		Case	Experimental	Discharge	Flow depth	Afflux	Afflux-discharge					
	bridge		no	name	(l/s)	(mm)	(mm)	relationships				
				AMOSC121	20.97	66.97	34.82					
ulaı			1	AMOSC124	24.02	70.35	42.83					
Circ			1	AMOSC127	27.04	73.42	50.75	Afflux= $0.0257Q^2 + 1.1559Q$				
-iu				AMOSC130	29.98	76.21	57.67					
Sen		ши		AMOSC135	34.43	80.12	69.97					
ing	(AMOSC)	45n		AMOSC218	18.03	72.33	17.51					
pen		level=14	2	AMOSC221	20.99	80.53	20.06					
0				AMOSC224	24.08	89.24	21.90	$Afflux = -0.0063Q^2 + 1.0688Q$				
tiple		ΤT		AMOSC230	29.97	106.26	25.13					
J ul		ΕF		AMOSC235	34.28	119.02	29.99					
ge-N		SC		AMOSC315	14.97	88.33	6.99					
Arch Bridge-				AMOSC318	18.00	99.48	8.95					
			3	AMOSC321	20.89	110.32	12.08	Afflux= $0.0097Q^2 + 0.3347Q$				
Arc				AMOSC324	24.04	122.28	13.21					
				AMOSC327	26.82	133.01	16.02					
				ASOE121	20.97	66.97	30.92					
tic				ASOE124	24.02	70.35	38.33					
ic.	(ASOE)	el=145mm	1	ASOE127	27.04	73.42	46.05	$Afflux = 0.0251Q^2 + 0.9879Q$				
llipt				ASOE130	29.98	76.21	52.17					
E E				ASOE135	34.43	80.12	63.37					
nin				ASOE218	18.03	72.33	13.90					
Ope			2	ASOE221	20.99	80.53	16.06					
cle (evel		ASOE224	24.08	89.24	16.80	$Afflux = -0.0077Q^2 + 0.8978Q$				
Sing		ΤI		ASOE230	29.97	106.26	18.73					
e- e-		FF		ASOE235	34.28	119.02	22.49					
sh Bridg		SO		ASOE315	14.97	88.33	5.79					
				ASOE318	18.00	99.48	7.45					
Arc			3	ASOE321	20.89	110.32	9.78	$Afflux = 0.0129Q^2 + 0.1878Q$				
Arc				ASOE324	24.04	122.28	11.61					
				ASOE327	26.82	133.01	14.52					
						•						
				ASOSC121	20.97	66.97	30.52					
				ASOSC124	24.02	70.35	37.13					
			1	ASOSC127	27.04	73.42	45.25	$Afflux = 0.0201Q^2 + 1.0754Q$				
				ASOSC130	29.98	76.21	50.67					
ılar		249mm						ASOSC135	34.43	80.12	60.26	
lircu									ASOSC218	18.03	72.33	14.21
-i-C				ASOSC221	20.99	0.08	16.15					
Sen			2	ASOSC224	24.08	0.09	16.50	$Afflux = -0.0117Q^2 + 0.9897Q$				
ng	_		2	ASOSC230	29.97	0.11	18.53					
eni	ŝ	el=		ASOSC235	34.28	0.12	20.59					
Ō	SO	lev		ASOSC315	14.97	88.33	5.99					
ngle	(A	ЕIJ		ASOSC318	18.00	99.48	7.14					
-Sii		0FI	3	ASOSC321	20.88	110.26	8.38	$Afflux = 0.0032Q^2 + 0.3445Q$				
dge		S		ASOSC324	24.05	122.30	10.40					
Bri				ASOSC327	26.79	132.91	11.42					
rch				ASOSC415	15.15	90.36	4.40					
A				ASOSC421	20.92	114 58	5.30					
			4	ASOSC424	23.86	127.02	7 71	$A fflux = 0.0095 \Omega^2 + 0.0948 \Omega$				
				ASOSC424	26.81	139 51	9.37	1111111 0.0055Q (0.0540Q				
				ASOSC435	34 30	171.63	14 58					
L				110000-100	54.50	1/1.05	17.50					

Table A2: Arch bridge results

Type of		of	Case	Experimental	Discharge	Flow depth	Afflux	Afflux-discharge
ł	oridge	e	no	name	(l/s)	(mm)	(mm)	relationships
				D398121P	20.98	66.98	31.93	_
			1	D398124P	23.98	70.30	38.73	_
			b=398	D398127P	26.95	73.33	46.56	$Afflux = 0.0212Q^2 + 1.1188Q$
			with piers	D398130P	30.02	76.25	53.46	
	(Deck)			D398135P	34.29	80.00	62.47	
single Opening Strait Deck				D398321	20.88	110.26	8.88	
			3	D398324	24.05	122.30	10.40	-
			b=398mm	D398327	26.79	132.91	11.42	$Afflux = -0.0021Q^2 + 0.4792Q$
		-	no piers	D398330	29.84	144.81	12.73	
				D398335	34.32	162.69	13.84	
				D398321P	20.88	110.26	10.48	
			3	D398324P	24.05	122.30	12.39	
			b=398mm	D398327P	26.79	132.91	12.52	$Afflux = -0.0067Q^2 + 0.6576Q$
			with piers	D398330P	29.84	144.81	13.76	
		ш		D398335P	34.32	162.69	14.55	
		80m		D498321	20.88	110.26	9.08	
		1=28	3	D498324	24.05	122.30	9.00	
		leve	b=498mm	D498327	26.79	132.91	9.32	$Afflux = -0.0091Q^2 + 0.6074Q$
	0	FIT	no piers	D498330	29.84	144.81	10.43	
ge-g		OF		D498335	34.32	162.69	10.05	
Brid		S		D498321P	20.88	110.26	9.38	
ck]			3	D498324P	24.05	122.30	10.01	
De			b=498mm	D498327P	26.79	132.91	10.22	$Afflux = -0.0092Q^2 + 0.6367Q$
			with piers	D498330P	29.84	144.81	10.93	
				D498335P	34.32	162.69	11.03	
				D598321	20.88	110.26	5.58	
			3	D598324	24.05	122.30	6.21	
			b=598mm	D598327	26.79	132.91	6.62	$Afflux = -0.0059Q^2 + 0.3987Q$
			no piers	D598330	29.84	144.81	6.81	
				D598335	34.32	162.69	6.65	
				D598321P	20.88	110.26	6.78	
			3	D598324P	24.05	122.30	7.61	
			b=598mm	D598327P	26.79	132.91	7.62	$Afflux = -0.0077Q^2 + 0.4922Q$
			with piers	D598330P	29.84	144.81	7.73	
				D598335P	34.32	162.69	7.84	

 Table A3: Deck bridge results (part I)

Type of		Case	Experimental	Discharge	Flow depth	Afflux		
bridge		no	name	(l/s)	(mm)	(mm)		
				D398415	15.15	90.39	3.71	
			4	D398421	21.03	115.03	6.30	
			b=398mm	D398424	23.84	126.92	7.41	$Afflux = 0.0058Q^2 + 0.1678Q$
			no piers	D398427	26.83	139.59	8.38	
Deck Bridge-Single Opening Strait Deck				D398435	34.30	171.61	12.57	
				D398415P	15.15	90.39	5.01	
	(Deck)		4	D398421P	21.03	115.03	8.10	
			b=398mm	D398424P	23.84	126.92	8.91	$Afflux = 0.0022Q^2 + 0.3144Q$
			with piers	D398427P	26.83	139.59	9.47	
		и		D398435P	34.30	171.61	13.49	
				D498415	15.14	90.33	3.31	
			4	D498421	21.00	114.91	5.10	
		9mr	b=498mm	D498424	23.74	126.50	5.51	$Afflux = 0.0025Q^2 + 0.1815Q$
		=28(no piers	D498427	26.80	139.49	6.67	
		vel=		D498435	34.30	171.60	9.19	
		r le		D498415P	15.14	90.33	4.01	
		FI	4	D498421P	21.00	114.91	6.30	
		0F	b=498mm	D498424P	23.74	126.50	6.51	$Afflux = 0.0008Q^2 + 0.2624Q$
		Š	with piers	D498427P	26.80	139.49	7.37	
				D498435P	34.30	171.60	9.99	
				D598415	15.14	90.34	1.91	
				4	D598421	21.03	115.04	3.10
			b=598mm	D598424	23.83	126.88	3.60	Afflux=0.0032Q ² +0.0739Q
			no piers	D598427	26.81	139.51	3.88	
				D598435	34.30	171.62	6.38	
				D598415P	15.14	90.34	3.21	
			4	D598421P	21.03	115.04	3.50	
			b=598mm	D598424P	23.83	126.88	4.81	$Afflux = 0.0016Q^2 + 0.1545Q$
			with piers	D598427P	26.81	139.51	4.97	
				D598435P	34.30	171.62	7.39	

Table A4: Deck bridge results (part II)

					Flow				
Type of		Case	Experimental	Discharge	depth	Afflux			
bridge		no	name	(l/s)	(mm)	(mm)			
				D398521	21.03	118.32	4.08		
			5	D398524	23.96	137.63	3.89		
			b=398mm	D398527	26.98	156.16	4.12	$Afflux = -0.0042Q^2 + 0.2705Q$	
eck		vel=280mm	no piers	D398530	29.99	173.06	4.34		
				D398535	34.33	194.86	4.40		
				D398521P	21.03	118.32	6.78		
			5	D398524P	23.96	137.63	6.69		
			b=398mm	D398527P	26.98	156.16	6.82	Afflux= $-0.0041Q^2 + 0.3856Q$	
			with piers	D398530P	29.99	173.06	8.04		
				D398535P	34.33	194.86	8.50		
it D				D498521	21.03	118.32	3.07		
tra			5	D498524	23.96	137.63	3.29	Afflux= $-0.003Q^2 + 0.2059Q$	
S S	(Deck)		b=498mm	D498527	26.98	156.16	3.02		
nin			no piers	D498530	29.99	173.06	3.74		
le Ope				D498535	34.33	194.86	3.50		
		SOFFIT le		D498415P	15.14	90.33	4.01		
ing			5	D498421P	21.00	114.91	6.30		
S-9			b=498mm	D498424P	23.74	126.50	6.51	$Afflux = 0.0008Q^2 + 0.2624Q$	
eck Bridg			with piers	D498427P	26.80	139.49	7.37		
			-	D498435P	34.30	171.60	9.99		
				D598521	21.03	118.32	2.27		
D			5	D598524	23.96	137.63	2.59		
			b=598mm	D598527	26.98	156.16	2.12	$Afflux = -0.0019Q^2 + 0.145Q$	
			no piers	D598530	29.99	173.06	2.64		
			-	D598535	34.33	194.86	2.80		
				D598521P	21.03	118.32	3.47		
			5	D598524P	23.96	137.63	3.39		
			b=598mm	D598527P	26.98	156.16	3.22	$Afflux = -0.0018Q^2 + 0.1859Q$	
			with piers	D598530P	29.99	173.06	4.14		
			-	D598535P	34.33	194.86	4.40		

 Table A5: Deck bridge results (part III)

Figure A1: Comparison of water levels with and without bridge model

Discharge-Afflux relationships for the ARCH BRIDGE model (Multible Opening Semi Circular)

Discharge-Afflux relationships for the ARCH BRIDGE model (Single Opening Elliptic)

Discharge-Afflux relationships for the ARCH BRIDGE model (Single Opening Semi Circular)

Figure A2: Afflux-discharge relationships for arch bridges

Discharge-Afflux relationships for the DECK BRIDGE model (Single Opening Straight Deck without piers, Case 3)

Discharge (l/s)

Discharge-Afflux relationships for the DECK BRIDGE model (Single Opening Straight Deck with piers, Case 3)

Figure A3: Afflux-discharge relationships for deck bridges

Discharge (l/s)

Discharge-Afflux relationships for the DECK BRIDGE model (Single Opening Straight Deck with piers, Case 4)

Figure A4: Afflux-discharge relationships for deck bridge (Case 4)

Discharge-Afflux relationships for the DECK BRIDGE model (Single Opening Straight Deck without piers, Case 5)

Discharge-Afflux relationships for the DECK BRIDGE model (Single Opening Straight Deck with piers, Case 5)

Figure A5: Afflux-discharge relationships for deck bridge (Case 5)

c	
Ĥ	
Z	
Ξ	
Σ	
Ξ	
Ĕ.	
×	
1	
Ē	
Σ.	
3	
E	
Ξ	
×	
E	
Ξ	
Ð	
Ā	
Ē.	
Ĕ.	
5	
~	
÷	
Ξ	
1	
≥	
5	
R	
Ż	
Ξ	
5	
E	
H	
¥	
S	
Ξ	
_	

		1	
	212		52
	012		23
M			•••
REA	208		
STI ר	0:007		
UP	8 902		99
irec	505.4		- 99
× م			
♥음	203.5		- 29
	9.202		- 89
	0.102		- 0.80
	5 10C		- +'95
	5.102		- c.8c
	9.002		— 9.8¢
	5.002		- L'85
	5.661		- 8.85
	2.961		- 6.85
	9.161		996.83
			- 69
	C'791		- 02
	9/1		580.05
	081		C.05
	C.201		- +.46
	6/1		- V 05
	C.COT		- 0.45
	1.101		9 05
	1 201		2 09
	7.081		- 09
	2007		•••
			- 1.05
	181		
			— E.03
			- \$.08
	001		
	081		- 19
	921		— Z9
_			
M	0.771		- 00
Ē	5221		29
Ř			
SI	921		- 79
N			
S S	0.41		
B	8 174 8		59
-			
	871		- 99
	027		
	172		- 29

Figure A6: Water surface measurement positions along flume for single elliptic arch bridge model (Q=18 l/s)