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SUMMARY  

This is the Technical Report for project FD2106 National river catchment flood 
frequency method using continuous simulation.  It also serves a reporting role to the 
Scottish Executive who funded inclusion of Scotland in the work, the Defra –
Environment Agency remit covering England and Wales.  The term ‘national’ therefore 
refers to Britain. 

The Technical Report contains the main text which describes the development of 
research approaches, analyses of results and recommendations.  The figures and tables 
of the Appendices (Project Record) comprehensively detail the results. 

The first chapter of the main text introduces the aims of the project, the potential 
advantages of a continuous simulation approach to river flood frequency quantification, 
and the specific project objectives.  These are set in the context of other recent and 
current research projects of the Flood Management R&D programme. 

Data, modelling and extrapolation issues are plainly all interlinked: for convenience 
they are handled in separate chapters of the report.  Chapter 2 covers selection of the 
data-rich catchments (119 in total) which serve as the basis for extension of the method 
to full spatial coverage across Britain.  The sources and nature of precipitation, 
evaporation and river flow data are detailed, together with the methods established for 
quality control and infilling.   Both hourly and daily data were used, in order to define 
detail but also widen availability.  Data required for the whole domain of potential 
application of the method, the more widely-available catchment properties, are also 
defined and their derivation discussed. 

Chapter 3 describes the runoff models used in representing catchment processes 
defining the translation of rainfall to continuous river discharge series.  Because of the 
need to ultimately apply these models to ungauged sites, with model parameters derived 
from catchment properties, it is currently pragmatic to use parameter-sparse runoff 
model formulations, and two such models (the ‘Probability Distributed Model’ and the 
‘Time-Area Topographic Extension’ model) with a track record of suitable performance 
are described.  Chapter 4 on runoff model calibration details an automated procedure 
developed to establish suitable parameter sets, as the large number of catchments 
involved precludes manual calibration.  Attention was paid to the performance of 
earlier-established calibrations in the light of more recent data from the winter 2000-
2001 floods.  Methods for establishing flood statistics from time series are briefly noted.  
Calibration objective functions included measures relating to frequency curves as well 
as to discharge time series. 

Spatial generalisation of the method, namely the extrapolation from calibrated 
catchments to data-poor or ungauged sites, is discussed in detail in Chapter 5.  Three 
methods, together with their variants, are developed in detail: these are, in brief, a 
univariate regression, a sequential regression and a site-similarity approach.  Tests of 
these methods were undertaken on the sample catchments, withholding observations and 
treating them as if ungauged.  Results are reported and serve as a basis for 
recommendations of the final chapter. 
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Chapter 6 develops theory and methods to derive uncertainty bands around spatially-
generalised flood frequency curves arising from runoff model parameter uncertainty.  
Results are presented for the univariate regression and site-similarity generalisation 
methods.  In Chapter 7 an overview comparison is made of issues in flood frequency 
estimation using continuous simulation and using the 1999 Flood Estimation Handbook.  
Chapter 8 indicates research directions of likely benefit to the continuous simulation 
method. 

The final chapter brings together the experience of the research and its testing to suggest 
the best recommendations at the current state of knowledge.  The procedures for gauged 
and ungauged sites are described, with the latter using site-similarity generalisation with 
the PDM and/or univariate regression with the TATE.  Use to long recurrence intervals 
is demonstrated, and inclusion of climate variability commented upon.  The chapter 
ends with a recommended dissemination strategy. 

FAST TRACK TEXT BOXES 

Blue text boxes offer an overview fast track through the main report and are to be 
found at the beginning of each chapter of the Technical Report. 
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1 AIMS AND BACKGROUND 

Nick Reynard, Ann Calver 

FAST TRACK TEXT BOX 
CHAPTER 1   AIMS AND BACKGROUND 

Project FD2106 addresses the issue of river flood frequency quantification.  It seeks 
to develop a method for assessing flood frequency at gauged and ungauged locations 
using modelling of the continuous river discharge time series.  Defra / Environment 
Agency project funding was augmented by Scottish Executive funding such that the 
work has been able to address this question across England, Wales and Scotland. 

The forerunner pilot project, FD0404, was completed in 2001 and tested aspects of 
the potential of this approach.  FD2106 was designed to substantially increase the 
sample of catchments on which the method is developed, to explore more than the 
one ‘spatial generalisation’ method (whereby the method is made available for 
ungauged site use) developed in the pilot, and to incorporate quantification of 
uncertainty arising from model parameter value choice.  FD1604 had previously 
offered some ways forward for uncertainty estimation.  In the practical application of 
the method rainfall data and/or modelling is required: project FD2105 is researching 
suitable rainfall modelling tools. 

This approach of ‘continuous simulation’ offers potential advantages to flood 
frequency quantification over flood event methods and these advantages are detailed 
in the chapter text.  The method is seen as a next-generation approach which will 
work alongside methods such as the Flood Estimation Handbook and which may, in 
time, be preferred in certain types of situations.  The research emphasis of the project 
is on innovative development and testing of approaches and methods.  Software is an 
issue for the future: this project works to ‘research level code’.   

The essence of the overall approach is to calibrate hydrological catchment runoff 
models for a representative group of sites with river flow and rainfall time series 
data.  These sites are thus characterised by sets of model parameter values and also 
by values of ‘catchment properties’ (such as physiographic, geometric and material 
property indices) which must be available across the whole domain of concern for 
which ungauged estimates are required.  For the ungauged site, therefore, the 
catchment properties are used to derive model parameter values which can then be 
used to generate flow series, and subsequent flood statistics and hydrographs, for the 
site of interest.  This is the spatial generalisation of the method.  The use of long 
rainfall time series allows temporal extension to longer than calibrated time series 
thereby encompassing larger, rarer floods.  For this type of approach it is currently 
more appropriate to use parameter-sparse runoff models than complex multi-
parameter approaches. 

FAST TRACK TEXT BOX CONTINUED ON NEXT PAGE 
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1.1 Overall project aim 

This report details the methodological developments and results from project FD2106 of 
the joint Defra / Environment Agency Flood Management R&D programme, with 
additional funding from the Scottish Executive. The project exploits advances in 
hydrological runoff modelling techniques for the advantages they offer design practice 
and planning through river flood frequency estimation. 

It delivers methods for river flood frequency estimation by ‘continuous flow 
simulation’, that is, by catchment modelling of the complete flow time series (as 
opposed to flood events alone). The methods apply to the whole of Britain, for 
ungauged as well as gauged locations, and include explicit quantification of aspects of 
uncertainty. 

1.2 Setting 

Continuous flow simulation for flood estimation capitalises on advances in hydrological 
modelling, together with computing technology and the increasing availability of good 
quality fine-time-resolution data.  It provides catchment modelling of the whole time 
series (including peaks, durations and hydrograph shapes), including effects of 
antecedent wetness conditions, river junctions and, if required, can incorporate changes 
in climate drivers.  It is free of a need to relate recurrence intervals of rainfalls to 
recurrence intervals of floods. 

Hydrological research, including the pilot project FD0404 (see below), indicates that 
hydrological models can be used, and hence flood statistics derived, where there are no 
flow data for calibration.  In effect this allows transfer of information from data-rich 
sites to data-poor sites and this is achieved via relationships of model parameters to 
more widely-available spatial data (‘catchment properties’). The forerunner pilot project 
was completed in 2001 (Calver et al. 2001).  The approach is to calibrate runoff models 
for a set of catchments for which rainfall and river flow data are available.  These sets of 
calibrated model parameters are related to properties of the river catchment which are 
widely available in the spatial sense.  For ungauged sites, catchment properties offer, 
therefore, a way of deriving runoff model parameters, using the regression relationships 
developed from the calibrated catchment set. This allowed the subsequent modelling of 
discharge time series and the calculation of flood statistics at ungauged locations. This is 

FAST TRACK TEXT BOX CONTINUED FROM PREVIOUS PAGE

The chapter text expands on this overview of the approach and how components of it 
are systematically detailed through the report.  It stresses an important contextual 
setting of the project in that, in developing new methods to time and budget, the 
exploration of variations of methodologies cannot be exhaustive: pragmatic choices 
have necessarily been made. 

NEXT FAST TRACK BOX ON PAGE 7 
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a considerable achievement and is at the forefront of hydrological modelling research.  
Another project, FD1604 (Lamb et al. 2000, Lamb and Kay 2004), was innovative in 
establishing quantitative uncertainty levels for flood frequencies at ungauged sites 
resulting from model parameter uncertainty.  

The current project is aligned with, although not dependent upon, project FD2105 
Improved methods for national spatial-temporal rainfall and evaporation modelling.  
FD2105 is designed to deliver a national procedure for both single-site and areal rainfall 
modelling at daily and sub-daily timescales. There will also be an element of joint 
testing of these procedures by integrating the rainfall models with the runoff models 
developed in this project. 

1.3 Specific project objectives 

FD2106 objectives are to:- 
• establish a substantial sample number of gauged catchments which serve as the 

basis for establishing predictive equations for ungauged sites;  
• establish predictive equations for ungauged locations capitalising on exploration 

of numerical approaches to spatial generalisation;  
• incorporate quantitative uncertainty levels resulting from model parameter 

uncertainty into frequency estimates, extending the prototype approaches of 
FD1604; 

• describe the development and results of the methods and their mode of use. 

1.4 Report structure 

This report is divided into two volumes. The Technical Report is the main report 
describing and illustrating the development of the methods. A complete set of project 
results is presented as Appendices (Project Record). This report presents the final results 
of the project; it does not present a chronological account of project activity. This may 
be obtained by reference to the full set of project milestones listed in Table 1.1. The 
project results may be accessed at three levels: there are short, “fast track” text boxes at 
the beginning of the chapters that summarise the methods and results outlined in more 
detail in each of the chapters. There are then the chapters themselves, which are 
described below. Additionally there are the milestone reports listed in Table 1.1. 

The Technical Report follows the logic of the project flow chart in Figure 1.1. There is a 
description of the background to the project and a brief history of recent research and 
methods for flood frequency estimation, particularly in the UK, in Chapter 1. Chapter 2 
then describes the development of the data archives used, including the selection of the 
study catchments, the driving climate data, the flow data used for calibration and the 
data on catchment properties. Chapter 3 describes the two runoff models used 
throughout the project, with Chapter 4 detailing the calibration methods and results for 
each of these models. The methods assessed for spatial generalisation are presented in 
Chapter 5, together with performance results. While issues of uncertainty are present in 
both Chapters 4 and 5, it is in Chapter 6 where all these are drawn together and the 
combined (calibration and generalisation) uncertainty method presented. 
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Figure 1.1 Structure of continuous simulation methodology for generalised flood 
frequency estimation 

Rainfall-runoff model 

Time series of river discharges 
Flood frequency curves

Goodness of fit 

Model parameters 

Relate catchment properties and 
model parameters  

Rainfall and 
evaporation 

data

Observed 
flow data 

Climate 
change data 
(optional) 

Long term 
rainfall data

Catchment 
property 

data

Spatially generalised flood frequency estimation 
For use at ungauged sites 

Temporally generalised flood frequency estimation 
To cover floods of high recurrence intervals 

M
O

D
E

L
 

C
A

L
IB

R
A

T
IO

N
SP

A
T

IA
L

 
G

E
N

R
E

A
L

ISA
T

IO
N

T
E

M
P

O
R

A
L

 
G

E
N

R
E

A
L

ISA
T

IO
N

Rainfall-runoff model with 
generalised parameters 



5

Table 1.1 List of milestones for project FD2106 

Milestone Title Authors Date  
 Project inception report Calver, A., Lamb, R., Kay, 

A..L., Crooks, S., Jones, 
D.A., Stewart, E.J. 

January 2002 

1 Assembly of daily data Kay, A.L., Calver, A.,  
Jones, D.A., Lamb, R.L., 
Scarrott, C.J., Stewart. E.J. 

May 2002 

2 Model testing in the light of 
extended data series 

Crooks, S.M., Kay, A.L. & 
Calver, A. 

November 2002 

3 Including the benefits of daily 
data 

Kay, A.L., Jones, D.A. & 
Calver, A. 

May 2003 

4 Performance of site-similarity 
approaches  

Kjeldsen, T.R., Kay, A.L. & 
Jones, D.A. 

August 2003 

5 Preferred spatial generalisation 
procedures 

Kay, A.L., Jones, D.A., 
Kjeldsen, T.R., Fung, C.F., 
Folwell, S., Calver, A., 
Reynard, N.S. & Crooks, 
S.M.  

July 2004 

6 Inclusion of uncertainty 
estimation methods 

Jones, D.A., Kjeldsen, T.R., 
Kay, A.L. & Calver, A. 

June 2004 

 Flood frequency quantification 
for ungauged sites using 
continuous simulation:  a UK 
approach 

Calver, A., Kay, A.L., Jones, 
D.A., Kjeldsen, T., Reynard, 
N.S. & Crooks, S. 

June 2004 
Proceedings of 
the International 
Environmental 
Modelling and 
Software Society 
Conference, 
Osnabruck. 

 Scottish catchments:  data 
assembly, processing and runoff 
model calibrations 

Crooks, S.M., Kay, A.L. & 
Calver, A. 

August 2004 

Chapter 7 describes the major issues as they effect both the continuous simulation and 
the Flood Estimation Handbook (FEH) methods for flood frequency estimation in the 
UK:  these include issues such as ease of use, catchment properties and the treatment of 
uncertainty. In Chapter 8 there is the necessary description of possible future work in 
that the production of a new method based on a developing and relatively new area of 
science will always produce possible alternatives to meet the specified project 
objectives.  

The final chapter draws the report to a conclusion. It is in Chapter 9 that the best 
approaches are recommended based on the results described in previous chapters. This 
chapter also presents an illustration of the method to long recurrence intervals and a 
worked example of the method.  
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2 DATA 

Sue Crooks, Alison Kay  

2.1 Introduction 

The majority of the hourly catchments used in this project were calibrated and tested in 
the forerunner pilot project FD0404, mostly for the period 1985 to 1995. The observed 
rainfall and runoff data collected for this period constituted a valuable data set of some 
400 station-years of continuous hourly data, infilled and quality-checked (Lamb and 
Gannon 1996). The data period was in general defined by the beginning of suitable 
recording and by the date of the data-gathering phase of the pilot project. However, the 
period was not especially rich in high magnitude flow events.  

The current project provided an opportunity to 
• update the hourly database to the end of 2001, which extends the flood range in 

many catchments,  
• considerably increase the number of catchments used in the development of the 

continuous simulation method, by including catchments with only daily data, 
and 

• increase the number of hourly catchments in Scotland. 

The extended data period for the hourly catchments included the notable flood events 
which occurred in England and Wales during the winter of 2000-01. The extended data 
series were used to test the robustness of the calibrated parameter sets from FD0404 to 

PREVIOUS FAST TRACK BOX ON PAGE 1 

CHAPTER 2   DATA 

This chapter describes the extensive data sets that have been collated for this project. 
This includes the selection of catchments for which the runoff models have been 
calibrated and the data needed for this, as well as information on the catchment 
properties used in the spatial generalisation procedures. 

A major concern when selecting catchments was the availability of good quality, 
continuous rainfall and river flow data of at least eight years duration.  This resulted 
in a set of 119 catchments, 46 of which have the required data at an hourly time-step, 
with remaining 73 having daily data.   

A total of 24 catchment properties have been used in the spatial generalisation 
procedures.  The selection was based on previous experience, the independence of 
descriptors and their ease of calculation and availability. They cover physiographic 
characteristics of the catchment and river network, and soil, land use and geological 
properties. 

NEXT FAST TRACK BOX ON PAGE 21 
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simulate flood events beyond the flow range for which they were determined, which is 
important for the credibility of the continuous simulation method for flood frequency 
estimation. Details of the data testing are given in Section 4.5. 

The inclusion of catchments with daily data was considered important as 
• Fewer sites are classed as ‘ungauged’ when daily rather than hourly flow data are 

required. 
• A larger set of gauged catchments should be more representative of the UK, with 

regard to the ranges of catchment properties. 
• Using a larger set of gauged catchments may allow the production of more 

reliable equations relating model parameters to catchment properties.    
• Daily records are generally significantly longer than hourly records, meaning that 

flood frequency curves can more readily be obtained to higher return periods. 

The original, FD0404, data set was relatively sparse in Scotland, particularly western 
Scotland. Aligned funding from the Scottish Executive allowed the addition of further 
hourly catchments in Scotland, as well as the updating of some Scottish catchments used 
in FD0404 (Crooks et al. 2004). The advantage of this extended coverage of Scottish 
catchments is not simply to improve the working of the method on ungauged 
catchments in Scotland, but the increased catchment property coverage provided by 
these catchments can potentially improve the performance of the spatial generalisation 
procedures in general. 

2.2 Catchment selection 

The main requirement for selection of a catchment was that it had good quality 
continuous flow and rainfall data for a minimum of eight to ten years. This period is 
necessary to ensure that the time series of flows provides enough flood peaks to enable 
the derivation of a flood frequency distribution up to magnitudes and return periods of 
interest.  Note that, although longer flow time series are preferred, this must be balanced 
by a consideration of the increased possibility of non-stationarity of flows, whether due 
to human impacts on the catchment, climate variability, gauging station alterations or 
any other factor.  The statistical techniques, which enable the production of flood 
frequency distributions from flow time series, make the assumption of stationarity of 
flows.  

It is also important that the calibration flow series is long enough to cover a wide range 
of catchment conditions, as some of the model parameters may only be significant in 
determining simulated flow series under certain conditions.  For instance, the 
parameters of a ‘fast flow’ routing function may only affect modelled flows during 
major flood events. 

Continuity of record is also important for the continuous simulation approach.  
Continuity of input rainfall data is vital: the models cannot be run over periods without 
corresponding rainfall data.  If it were necessary to run the model for a catchment over 
two separate time periods (for example to get a sufficient length of record), then a 
separate run-in time would have to be allowed at the beginning of each period, to allow 
the model to adjust appropriately. 
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A small number of reasonably isolated missing flow values can be tolerated, as the 
matching flows in the simulated series are simply set as missing too, before the 
observed and simulated flows are compared.  However, large numbers of missing flows 
are best avoided.  

The 39 catchments with hourly data were selected in FD0404 on data availability and 
quality. Seven of these catchments were in Scotland; a further seven were added in this 
project to improve the geographical distribution across the country. Details of the hourly 
catchments are given in Table 2.1.  

An additional factor in selection of daily catchments was catchment area, as small 
catchments have a fast response time that is not suitable to model at a daily time step. 
Soil type and hydrogeology of the catchment are also important in determining response 
times so a threshold of 50 km2 was chosen as a simple but reasonable compromise for 
selecting suitability at the daily time step. 73 catchments across Great Britain were 
selected to give a relatively even geographical distribution. Details of the daily 
catchments are given in Table 2.2 with the locations of all catchments shown in Figure 
2.1. All hourly data sets are to the end of 2001; end dates for the daily data sets are 
indicated in Table 2.2.  

2.3 Rainfall 

The National Water Archive (NWA) at CEH Wallingford holds daily rainfall data for 
around 13,000 rain gauges across the United Kingdom, obtained via the UK Met Office.  
These data have been quality checked by the Met Office and are considered to be 
reliable.  

The lumped or semi-distributed runoff models used in the project require catchment-
averaged rainfall as a forcing input.  Data from a number of individual rain gauges are 
thus combined, using the triangle method (Jones 1983), to produce the time series of 
Catchment Average Daily Rainfall (CADR) for a catchment.  All rain gauges within a 
certain area encompassing the catchment are included.  The method is designed to 
eliminate, as much as possible, the effects of an irregular density or distribution of rain 
gauges.  It also takes some account of topography, through scaling using Standard 
Average Annual Rainfall (SAAR) data. On the basis of acceptable pilot project 
performance, distinction was not explicitly made between precipitation occurring as rain 
or as snow (cf. Chapter 8 comment). 

Data from recording raingauges were obtained directly from Regional Offices of the 
Environment Agency (EA) and the Scottish Environmental Protection Agency (SEPA). 
The raw data were received in a number of formats, the most common being 15-minute, 
hourly and event. With event data, the time of every tip is recorded to the nearest 
second, where a tip is usually 0.2 mm but in some cases 0.5 mm, with no record made 
for zero rainfall. With hourly and 15-minute data, the rainfall in every time period is 
recorded, based on the number of tips, which includes many zero entries; though some 
records  only  give  the  time when the rainfall is non-zero.  The data were converted to a  
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Table 2.1 Details of the hourly catchments 

Catchment 
Number 

River Location Data start 
Catchment 
Area (km2)

SAAR61-90

(mm) 
BFI 

03003 Oykel Easter Turnaig 01-Jan-82 330.7 1895 0.23
07001 Findhorn Shenachie 01-Jan-85 415.6 1219 0.36
07004 Nairn Firhall 01-Feb-85 313.0 940 0.45
10003 Ythan Ellon 22-Feb-89 523.0 826 0.73
12007 Dee Mar Lodge 13-Oct-89 289.0 1335 0.45
21013 Gala Water Galashiels 01-Jan-86 207.0 930 0.52
21017 Ettrick Water Brockhoperig 01-Jan-86 37.5 1733 0.34
22006 Blyth Hartford Bridge 01-Jan-85 269.4 696 0.35
23011 Kielder Burn Kielder 01-Jan-85 58.8 1199 0.34
24005 Browney Burn Hall 01-Jan-82 178.5 743 0.51
25006 Greta Rutherford Bridge 01-Jan-85 86.1 1128 0.22
27051 Crimple Burn Bridge 01-Jan-85 8.1 856 0.31
28008 Dove Rocester Weir 01-Jan-85 399.0 1021 0.62
28039 Rea Calthorpe Park 01-Jan-85 74.0 781 0.47
28046 Dove Izaak Walton 01-Jan-85 83.0 1096 0.79
29001 Waithe Beck Brigsley 01-Jan-85 108.3 690 0.85
30004 Lymn Partney Mill 01-Jan-85 61.6 685 0.65
36008 Stour Westmill 01-Jan-85 224.5 589 0.43
36010 Bumpstead Brook Broad Green 01-Jan-84 28.3 589 0.23
38007 Canons Brook Elizabeth Way 01-Jan-85 21.4 601 0.41
38020 Cobbins Brook Sewardstone Road 01-Nov-87 38.4 616 0.26
39007 Blackwater Swallowfield 01-Jan-85 354.8 707 0.67
39017 Ray Grendon Underwood 01-Jan-87 18.8 622 0.17
39037 Kennet Marlborough 01-Jan-85 142.0 772 0.94
39073 Churn Cirencester 01-Feb-87 84.0 854 0.89
40005 Beult Stile Bridge 01-Jan-85 277.1 690 0.24
42008 Cheriton Stream Sewards Bridge 01-Jan-85 75.1 889 0.97
45003 Culm Wood Mill 02-Apr-85 226.1 971 0.53
54027 Frome Ebley Mill 01-Jan-85 198.0 827 0.87
54034 Dowles Brook Oak Cottage, Dowles 01-Jan-85 40.8 715 0.40
54090 Tanllwyth Tanllwyth Flume 01-Jan-74 0.9 2425 0.30
55008 Wye Cefn Brwyn 01-Jan-69 10.6 2453 0.31
55013 Arrow Titley Mill 01-Jan-85 126.4 962 0.55
57005 Taff Pontypridd 01-Jan-85 454.8 1830 0.47
57006 Rhondda Trehafod 01-Jan-85 100.5 2184 0.41
58006 Mellte Pontneddfechan 01-Jan-85 65.8 1979 0.38
60002 Cothi Felin Mynachdy 01-Jan-85 297.8 1551 0.44
60003 Taf Clog-y-Fran 29-Mar-85 217.3 1420 0.56
74001 Duddon Duddon Hall 01-Jan-85 85.7 2265 0.29
79005 Cluden Water Fiddlers Ford 01-Jan-88 238.0 1423 0.38
81006 Minnoch Water Minnoch Bridge 01-Jan-88 141.0 1993 0.28
84030 White Cart Water Overlee 01-Jan-92 111.8 1367 0.32
86001 Little Eachaig Dalinlongart 01-Jan-92 30.8 2341 0.23
90003 Nevis Claggan 01-Jan-93 76.8 2913 0.26
93001 Carron New Kelso 01-Jan-92 137.8 2615 0.26
96001 Halladale Halladale 01-Jan-85 204.6 1102 0.26
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Table 2.2 Details of the daily catchments 

Catchment 
Number 

River Location Data start  
Catchment 
Area (km2) 

SAAR61-90

(mm) 
BFI 

02001 Helmsdale Kilphedir 01-Jan-75 551.4 1117 0.48
04005 Meig Glenmeannie 01-Jan-86 120.5 2145 0.26
06008 Enrick Mill of Tore 01-Dec-792 105.9 1294 0.32
07002 Findhorn Forres 01-Jan-612 781.9 1064 0.41
08004 Avon Delnashaugh 01-Jan-611 542.8 1111 0.56
10002 Ugie Inverugie 01-Feb-71 325.0 812 0.64
13001 Bervie Inverbervie 01-Jan-792 123.0 890 0.56
13005 Lunan Water Kirkton Mill 01-Feb-81 124.0 771 0.52
14001 Eden Kemback 01-Jan-672 307.4 799 0.62
16003 Ruchill Water Cultybraggan 01-Jan-702 99.5 1889 0.30
17005 Avon Polmonthill 01-Jan-712 195.3 989 0.41
19011 North Esk Dalkeith Palace 01-Jan-632 137.0 907 0.52
20001 Tyne East Linton 01-Jan-612 307.0 713 0.52
21023 Leet Water Coldstream 01-Jan-702 113.0 671 0.35
22001 Coquet Morwick 31-Jan-632 569.8 850 0.45
27007 Ure Westwick Lock 01-Jan-612 914.6 1118 0.39
27021 Don Doncaster 01-Jan-61 1256.2 799 0.56
27043 Wharfe Addingham 01-Jan-732 427.0 1383 0.33
27049 Rye Ness 01-Jan-742 238.7 839 0.68
28015 Idle Mattersey 01-Nov-82 529.0 650 0.79
28066 Cole Coleshill 01-Jan-732 130.0 722 0.44
30017 Witham Colsterworth 01-Jan-781 51.3 642 0.50
31002 Glen Kates and King St Brs 01-Jan-613 341.9 608 0.59
32003 Harpers Brook Old Mill Bridge 01-Jan-61 74.3 623 0.49
33012 Kym Meagre Farm 01-Jan-61 137.5 585 0.26
33019 Thet Melford Bridge 01-Jan-621 316.0 620 0.78
33029 Stringside Whitebridge 22-Jul-65 98.8 629 0.85
34003 Bure Ingworth 01-Jan-61 164.7 669 0.83
34006 Waveney Needham Mill 01-Jan-632 370.0 594 0.47
36005 Brett Hadleigh 01-Oct-621 156.0 580 0.46
37001 Roding Redbridge 01-Jan-61 303.3 606 0.39
37031 Crouch Wickford 01-Jan-761 71.8 572 0.30
38003 Mimram Panshanger Park 01-Jan-61 133.9 656 0.94
39069 Mole Kinnersley Manor 01-Jan-61 142.0 795 0.39
39105 Thame Wheatley 18-May-89 533.8 644 0.63
40011 Great Stour Horton 01-Oct-64 345.0 747 0.70
43005 Avon Amesbury 01-Feb-653 323.7 745 0.91
43007 Stour Throop 01-Jan-73 1073.0 861 0.67
44002 Piddle Baggs Mill 01-Oct-63 183.1 943 0.89
45005 Otter Dotton 30-Sep-62 202.5 976 0.53
47007 Yealm Puslinch 01-Oct-63 54.9 1410 0.56
47008 Thrushel Tinhay 01-Jan-692 112.7 1143 0.39
48003 Fal Tregony 08-Jun-78 87.0 1210 0.68
50002 Torridge Torrington 28-Feb-62 663.0 1186 0.39
50006 Mole Woodleigh 11-Jan-65 327.5 1306 0.47
52010 Brue Lovington 01-Jan-642 135.2 867 0.47
53009 Wellow Brook Wellow 01-Jan-662 72.6 998 0.62
54008 Teme Tenbury 01-Jan-61 1134.4 841 0.57
54018 Rea Brook Hookagate 01-Jan-622 178.0 756 0.51
54025 Dulas Rhos-y-pentref 01-Jan-692 52.7 1269 0.37
55029 Monnow Grosmont 01-Jan-612 354.0 955 0.59
58005 Ogmore Brynmenyn 01-Jan-702 74.3 1976 0.49
61001 Western Cleddau Prendergast Mill 01-Oct-65 197.6 1275 0.65
    continued…….
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Catchment 
Number 

River Location Data start  
Catchment 
Area (km2) 

SAAR61-90

(mm) 
BFI 

64001 Dyfi Dyfi Bridge 01-Sep-75 471.3 1834 0.38
65006 Seiont Peblig Mill 01-Aug-76 74.4 2278 0.40
66011 Conwy Cwm Llanerch 01-Jan-642 344.5 2055 0.28
67009 Alyn Rhydymwyn 01-Jan-672 77.8 969 0.40
68001 Weaver Ashbrook 01-Jan-61 622.0 731 0.53
68005 Weaver Audlem 01-Jan-612 207.0 719 0.50
69040 Irwell Stubbins 30-Mar-763 105.0 ~1405 0.44
73005 Kent Sedgwick 01-Jan-682 209.0 1732 0.46
75017 Ellen Bullgill 01-Jan-763 96.0 1110 0.49
76014 Eden Kirkby Stephen 01-Jan-712 69.4 1483 0.24
78003 Annan Brydekirk 01-Jan-672 925.0 1351 0.44
79002 Nith Friars Carse 01-Jan-612 799.0 1460 0.39
79003 Nith Hall Bridge 01-Jan-612 155.0 1505 0.27
81002 Cree Newton Stewart 01-Jan-632 368.0 1760 0.27
83005 Irvine Shewalton 01-Jan-722 380.7 1228 0.26
84012 White Cart Water Hawkhead 01-Jan-612 234.9 1314 0.35
85003 Falloch Glen Falloch 01-Oct-703 80.3 2842 0.17
94001 Ewe Poolewe 01-Oct-70 441.1 2273 0.65
95001 Inver Little Assynt 01-Aug-773 137.5 2211 0.64
97002 Thurso Halkirk 01-Jan-723 412.8 1057 0.46

End date: 1 31-Dec-96, 2 31-Dec-97, 3 31-Dec-00, all others 31-Dec-01. 

standard hourly format where the rain for any given hour is that falling in the previous 
60 minutes. 

The hourly rainfall data were quality checked, as described in Lamb and Gannon (1996). 
Briefly, the data from each recording rain gauge were assessed by comparing the sum of 
the hourly values over each rain day (9am to 9am) with the total rainfall recorded on that 
day by a gauge with data in the National Water Archive (NWA). All daily gauges within 
10 km of the recording gauge are located, and for each day the nearest working daily 
gauge is used for the comparison. A quality code is then assigned to the day (the same 
code for each hour of the day) according to the percentage difference between the two 
daily totals. If the difference is less than 40% the recording raingauge data are 
considered acceptable for calculating Catchment Average Hourly Rainfall (CAHR). 

If good quality recording rain gauge data exist for a day, then this is used to distribute 
the CADR. Where data from only one recording gauge are available, this profile is used 
directly to distribute the CADR. Where data from more than one gauge are available, 
weights are allocated to each according to the triangle method, and the profile of the 
weighted sum of the hourly rain gauge data is used to distribute the CADR. For days 
where no good-quality recording rain gauge data are available, the CADR is distributed 
according to an average profile of rainfall for the catchment. The average variability 
method (Pilgrim et al. 1969) is used to define three average profiles for each catchment, 
from the good-quality recording data available for the catchment. The three profiles 
correspond to days with less than 10 mm of rain; between 10 and 20 mm of rain; and 
above 20 mm of rain. The processed data are stored on ORACLE tables, accompanied 
by quality codes. 
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Figure 2.1 Map showing catchment boundaries and outlets. Catchments with 
hourly data are indicated by red boundaries while those with daily data 
are indicated by blue boundaries. 
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2.4 Potential evaporation 

As well as rainfall data, the runoff models also require potential evapotranspiration (PE) 
data. Daily PE data are available from the UK Met Office for synoptic sites. However, 
the sparse coverage of these sites across the UK was a problem in designing a consistent 
approach to the provision of spatially averaged PE data for all the project catchments. 
Consequently, MORECS (Meteorological Office Rainfall and Evaporation Calculation 
System, Thompson et al. 1982) monthly data, which are readily available as average 
values for 190 40 km × 40 km grid squares across Great Britain, have been used for PE. 
The monthly PE data for a catchment were determined by weighting the PE data for 
each grid square by the proportion of the catchment in that square, and then summating 
over the squares. The monthly PE data were downscaled to a daily time-step by dividing 
equally over the number of days in the month; these were further downscaled to an 
hourly time-step for the hourly catchments, by dividing equally over 24 hours. 

A recent paper (Fowler 2002) looked at the effect of using different forms of PE data as 
input to a long-term soil water balance model run at a daily time-step.  It concluded that 
very little advantage was gained by using input data based on daily observations, 
compared to that based on readily available monthly observations.  Similar conclusions 
were reached by Andersson and Harding (1991).  As the effect of PE in the runoff 
models is very conservative, and is mainly used to maintain the water balance, there is 
justification for using monthly data in the runoff models.  

2.5 River flows 

There is a central archive of mean daily flow data, held in the National River Flow 
Archive (NRFA), a component part of the NWA.  The archive holds data for over 1600 
gauging stations across England, Wales, Scotland and Northern Ireland, obtained 
through a number of measuring authorities.  This reflects over 39,000 station-years of 
data, with an average record length of over 23 years.  A quality checking procedure is 
applied to these data before they are archived.  A summary of the data held for each 
gauge, along with a variety of other information, can be found in the series Hydrological 
Data UK: Hydrometric Register and Statistics, published annually by CEH Wallingford 
(formerly the Institute of Hydrology) and the British Geological Survey.  

Sub-daily flow data were obtained from Regional Offices of the EA and SEPA as 
instantaneous flow rates at 15-minute, 30-minute or hourly data intervals. The hourly 
flow can be defined as either the mean rate over the preceding hour or the instantaneous 
rate observed every hour. The latter definition was used, as this was consistent with that 
used in FD0404, and the 15-minute data only provides four sampling points from which 
to calculate the mean, which does not necessarily provide a good definition of mean 
hourly flow. Instantaneous flows for on-the-hour readings were selected to give point 
values at hourly intervals.  
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2.6 Catchment properties 

A total of 24 catchment properties, or descriptors, have been considered for use in the 
spatial generalisation procedures, covering aspects of topography, soil and geology, 
rainfall, drainage networks, lakes and reservoirs and land cover. A description of each 
catchment property is given in Table 2.3 together with the source from which they were 
obtained. These catchment properties were selected from the list of 58 properties 
compiled for FD0404, many of which were calculated specifically for that project. 
Selection was based on experiences of FD0404, independence of properties, ease of 
calculation and availability to the user, whilst providing measures of all aspects of 
catchments which might affect runoff response and generation of floods. 

2.6.1 Transformation and distribution of catchment properties 

To try to improve the potential to gain information from catchment properties, some of 
the catchment properties are transformed before use in generalisation. The 
transformations are generally chosen to make the distribution of the quantity less 
skewed, and are given in Table 2.4. Plots, in the form of histograms, showing the 
distributions of the transformed catchment properties are given in Figure 2.2, which 
distinguishes between the distributions for the hourly catchments and those for hourly 
and daily catchments combined. 

One potential benefit of including catchments with daily data was to expand the range of 
catchment properties and combinations of properties to ensure that generalisation of 
model parameters from catchment properties was not based on too small a sample. The 
histograms show an extended range for some of the properties, particularly catchment 
area, but other ranges have not significantly changed. The catchment properties which 
derive from the Flood Estimation Handbook (see Table 2.3) show similar distributions 
to those derived from FEH’s set of over 900 catchments (Institute of Hydrology 1999, 
Volume 5), suggesting that the set used should be reasonably representative of UK 
catchments as a whole, at least in terms of those properties. 

The majority of the transformed catchment properties approximate to a normal 
distribution, but some are still highly skewed, for example the distributions for FARL 
and URBEXT. Care may be needed with such distributions, where in many catchments 
the value of the transformed property is zero, to ensure that the properties are adequately 
represented in generalisation procedures. 
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Table 2.3. Definitions of catchment properties used in the spatial generalisation 
methods 

CP Name Range, units Source Notes 

AREA [0,∞] km2 FEH DTM-derived 
ALTBAR [0,∞] m FEH Mean altitude 
BFIHOST [0,1] - FEH Base flow index, calculated from weighted average of 

HOST classes over the catchment 
DPLBAR [0,∞] km FEH Mean drainage path length 
DPLCV [0,∞] - FEH CV drainage path length 
DPSBAR [0,∞] m/km FEH Mean slope of DTM drainage paths to site 
FARL [0,1] FEH Index of flood attenuation due to reservoirs and lakes 
PROPWET [0,1] -  FEH Proportion of time catchment wet (SMD<6mm) 
SAAR [0,∞] mm FEH Standard average annual rainfall, 1961-90 
SPRHOST [0,100] - FEH Standard percentage runoff derived from weighted average 

of HOST classes over catchment 
URBEXT [0,1] - FEH Extent of urban/suburban land cover 

(URBEXT=URBFRAC+0.5×SUBURBFRAC) 
HOSTGMIN [0, 100] % HOST % of catchment area covered by HOST 1-10,13,14 

(mineral soils with underlying groundwater) 
HOSTPEAT [0, 100] % HOST % of catchment area covered by HOST 11,12,15 (‘peat 

soils with groundwater’) 
HOSTNG [0, 100] % HOST % of catchment area covered by HOST classes 16-29 

(essentially ‘non-groundwater’) 
HOSTP [0,1]  HOST Index of porosity as a weighted average of values inferred 

from HOST classes. 
FIELDC [0,100] % SEISMIC/

HOST 
Volumetric soil water content at 5 kPa, as weighted 
average of values inferred from HOST classes. 

RESIDM [0,100] % SEISMIC/
HOST 

Residual soil moisture, as weighted average of values 
inferred from HOST classes. 

PORO [0,100] % SEISMIC/
HOST 

Total soil porosity, as weighted average of values inferred 
from HOST classes. 

HYDC [0,∞] cm/d SEISMIC/
HOST 

Saturated soil hydraulic conductivity, as weighted average 
of values inferred from HOST classes 

LANDA [0, 100] % ITE % of catchment area covered by grassland based on ITE 
land cover data (classes 5-8,19,23) 

LANDB [0, 100] % ITE % of catchment area covered by upland based on ITE land 
cover data (classes 9-13,17,24,25) 

LANDC [0, 100] % ITE % of catchment area covered by trees based on ITE land 
cover data (classes 14-16) 

LANDD [0, 100] % ITE % of catchment area covered by ‘arable’ based on ITE land 
cover data (class 18) 

DRAIN2 [0,∞] km/km2 DTM Drainage density (total length of river (km) divided by the 
catchment area (km2)  

Notes on sources: 
FEH Properties appearing on the FEH CD-ROM or based on FEH catchment properties 
HOST Properties derived from the HOST soil classification system (Boorman et al. 1995) 
SEISMIC/HOST Properties derived from the SEISMIC soils characteristics database for each 

HOST class 
ITE Properties derived from the ITE 1990 land cover classification (Fuller, 1993) 
DTM Properties derived from the CEH-Wallingford ‘Integrated Hydrological Digital Terrain 

Model’ (IHDTM) (Morris and Flavin, 1990) 
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Table 2.4 Transformations of the catchment properties 

Catchment property Transformation Catchment property Transformation 

AREA Sqrt(CP)  HOSTPEAT Sqrt(CP/100) 
ALTBAR Sqrt(CP)  HOSTNG - 
BFIHOST -  HOSTP Sqrt(CP) 
DPLBAR -  FIELDC - 
DPLCV -  RESIDM - 
DPSBAR Sqrt(CP)  PORO - 
FARL Sqrt(1-CP)  HYDC - 
PROPWET -  LANDA Sqrt(CP/100) 
SAAR Sqrt(CP)  LANDB Sqrt(CP/100) 
SPRHOST -  LANDC Sqrt(CP/100) 
URBEXT Sqrt(CP)  LANDD Sqrt(CP/100) 
HOSTGMIN Sqrt(CP/100)  DRAIN2 - 

Figure 2.2 Distributions of the catchment properties. Those shown in red are for 
just the hourly catchments, while those in blue include both hourly and 
daily catchments. Catchment properties prefixed by a ‘t’ are those that 
have been transformed, in the way listed in Table 2.4. 
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Figure 2.3 Coverage of the catchment property space. Red dots are for hourly 
catchments while blue dots are for daily catchments. Catchment 
properties prefixed by a ‘t’ are those that have been transformed, in the 
way listed in Table 2.4. 
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2.6.2 Correlations between catchment properties 

A number of groups of catchment properties under consideration are highly correlated, 
before and/or after the transformations given in Table 2.4 are taken into account. The 
correlated groups are as follows, where those catchment properties in brackets are 
slightly less correlated to the rest of their group than the others: 

• AREA, DPLBAR 
• BFIHOST, HOSTGMIN, SPRHOST, HOSTP 
• SAAR, DPSBAR, PROPWET, ALTBAR, LANDB, LANDD, (HOSTPEAT) 
• RESIDM, HYDC, (FIELDC) 

These correlations can be seen in Figure 2.3, which shows the coverage of the 
catchment property space in terms of hourly and daily catchments. The improvement in 
coverage of the whole property space provided by the inclusion of the daily catchments 
can also be seen in Figure 2.3. 

It is generally not desirable to have more than one catchment property from a correlated 
group in a regression equation, or used in defining the pooling group for the site-
similarity approach (see Chapter 5), for stability reasons. Therefore care must be taken 
to limit this, whilst not wishing to make an ad hoc choice between properties. 
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3 RUNOFF MODELS 

Ann Calver, Alison Kay 

3.1 Introduction 

Chapter 1 outlined the type of modelling approach to be adopted in deriving the 
continuous time series of river flows.  The requirement of the runoff modelling is the 
conversion of rainfall time series to river discharges, representing catchment 
hydrological processes and encapsulating in particular those responses which are 
important in the generation of river floods.  The model(s) should also show good 
performance across the range of catchment sizes and conditions - geological, 
physiographic, climatological and degree of anthropogenic influence - for which the 
frequency estimation method is sought, for both gauged and ungauged sites.  This 
includes surface and both shallow and deep subsurface flows.  

There is, of course, a wide variety of hydrological modelling approaches available with, 
arguably, more types of formulation than, say, for atmospheric or river hydraulic 
modelling.  Highly physically-descriptive formulations may appear to hold certain 
attractions in describing the fast-changing and varied flood response but, in the present 
context, it is an important consideration that model parameters need to be established 
for the ungauged sites, namely those with no gauged river flows and in which other data 
may be limited.  At this stage of hydrological research in the challenging and valuable 

PREVIOUS FAST TRACK BOX ON PAGE 7 

CHAPTER 3   RUNOFF MODELS 

These models convert input precipitation time series to river discharge time series, 
encapsulating numerically the processes of catchment hydrology.  The need to derive 
the parameter values for these runoff models from catchment properties for ungauged 
sites means that it is more appropriate that simpler runoff models are used, rather 
than those which, although physically or statistically more descriptive, employ more 
parameters.  The models, albeit implicitly, cover both surface and subsurface 
(throughflow and groundwater) conditions. 

Two conceptual hydrological models, both with a concession to catchment spatial 
configuration (rather than full three-dimensional description) were used.  These are 
the Probability Distributed Model (PDM) and the Time-Area Topographic Extension 
(TATE) model.  Both have evidence of suitable performance in this context: the use 
of two models is a pragmatic decision between the risk associated with use of a 
single model and the time overhead of using a range of models.  Different 
formulations of both models exist: in practice a five-parameter version of the PDM 
was used and a three-parameter version of the TATE.  The structure of both models 
and the roles their parameters serve are detailed in the chapter text.   

NEXT FAST TRACK BOX ON PAGE 25 
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area of modelling of data-sparse areas, a practical system is more likely to be attained by 
the restriction of the number of parameters which are established (at the ungauged site) 
from the widely-available catchment property data.  It is the spatial generalisation – as 
opposed to model use on specific gauged catchments – which currently indicates this 
approach.  Attention is therefore directed towards the parameter-sparse approaches 
where experience of hydrological behaviour is distilled into a low number of powerful 
parameters with relatively independent roles.  Usually this means that the spatial 
dimensions of catchments are not fully preserved, and either a lumped or semi-
distributed scheme is used.  It is also important that models used have a track record of 
suitable performance. 

Whilst one would choose to test a range of formulations, time and budget considerations 
mean one must in practice work with one or two models one judges to be suitable for 
the context.  The structures of the two models used are described below.  The way in 
which they are calibrated is detailed in chapter 4 below. 

3.2 PDM 

The PDM (Probability Distributed Model; Moore 1985, 1999) is based on conceptual 
water stores, and represents non-linearity in the transformation of rainfall to runoff by 
using a probability distribution of soil moisture storage. This determines the time-
varying proportion of the catchment which contributes to runoff, through either ‘fast’ or 
‘slow’ pathways. The form of the PDM used here (and in FD0404), with five 
parameters, is illustrated in Figure 3.1 and described briefly below. 

Figure 3.1 Structure of the 5-parameter version of the PDM runoff model. 

Rainfall inputs to the soil store are first multiplied by a rainfall correction factor fc, 
which can also, if required, compensate for loss or gain of water via lateral, sub-surface 
routes. The soil store can be depleted through evaporation, with content of the store 
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determining the proportion of the potential evaporation which actually occurs. The 
distribution of the soil moisture storage capacity with store depth is assumed to be 
uniform, and the minimum store depth is set to zero. The maximum store depth is given 
by the parameter cmax. The soil store then generates direct runoff from a varying 
proportion of the catchment area, depending on how full it is. It is assumed that a 
proportion α of the direct runoff goes to the (linear) fast flow store, whilst 1-α goes to 
the (cubic) slow flow store. The time constants of the fast and slow flow stores are k1

and kb respectively. The catchment discharge is then produced from a combination of 
fast flow (which may be conceptualised as [near-] surface runoff) and slow flow (base 
flow). 

Although the model as described here has five remaining parameters, only four of these 
require specific calibration or generalisation for a catchment. The parameter determining 
the split between the fast and slow flow stores, α, is set as SPRHOST/100, where 
SPRHOST is a readily-available catchment property (standard percentage runoff inferred 
from soil information, see section 2.6). This was deemed an appropriate simplification, 
because of the directly comparable meanings of α and SPRHOST.

3.3 TATE 

The TATE (Time Area Topographic Extension) model of Calver (1993, 1996) also 
involves conceptual stores, but routing is achieved using response functions which are 
based on the distribution of the drainage area with respect to distance from the river 
channel network. The structure of the three-parameter version of the model is illustrated 
in Figure 3.2 and described briefly below. 

Parameter reduction was effected from earlier versions of the model by reference to 
experience of pre-project performance in a flood frequency context.  Parameters to 
which results were less sensitive and those which showed a degree of correlation with 
others were reconsidered.   The three parameters of the formulation used here are, 
broadly, a water balance control, a maximum storage capacity for soil and vegetation, 
and a control on the rate of fast runoff routing.  Other aspects of the model which were 
formerly dealt with using specified parameters have been accommodated by using 
weighted mean values based on previous performance, or by a relationship to an internal 
state variable within the model.  An example of the latter is the split between ‘fast’ and 
‘slow’ runoff which was formerly a model parameter and is now a function of the (time-
dependent) storage. 

Precipitation enters the soil store, and evaporation depletes the store, the rate of 
evaporation being a function of the level of water in the soil store. The soil store has a 
maximum depth, given by the parameter csm. Overflow from the soil store, and 
downward drainage from the soil store, are functions of the content of the soil store. 
Drainage and any overflow are then combined at each time step and a proportion 1-crm
transfers to a routing mechanism with fast and slow components. The proportion crm 
does not reach the river above the gauging point, for instance because of consumptive 
use or percolation to deep groundwater. (Note that crm can be negative representing an 
overall gain of water to the catchment, for instance through lateral inflow of deep 
groundwater). Routing is via an area convolution, using the distribution of drainage area  
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Figure 3.2   Structure of the 3-parameter version of the TATE runoff model. 

with respect to time-of-travel from the river channel, with spatially-variable velocity, the 
parameter cfr defining the pattern of response of the fast flow.  A concession to 
catchment spatial configuration in the TATE routing is provided by the use of a 
catchment area-distance function, whereby the incremental addition of drainage area is 
determined with increasing distance from the channel network.  This was calculated 
from digital terrain data, as too was catchment drainage area.   



25

4 MODEL CALIBRATION 

Alison Kay, David Jones, Sue Crooks  

4.1 Introduction 

Calibration of the runoff models is an important aspect of the development and 
application of the continuous simulation approach to flood estimation, not just for site-
specific applications but in the context of spatial generalisation: the calibrated parameter 
sets provide the basis for the establishment of relationships to catchment properties. 

The calibration process aims to adjust model parameter values until a satisfactory or 
‘best’ agreement is obtained between simulated and observed flows. This is, however, 
not as straightforward a process as it may sound. There are many methods and 
techniques which could be applied, from manual to fully-automated, and countless 
measures of fit of simulated and observed flows (objective functions). Different 
objective functions emphasise different aspects of the flow hydrograph, and so result in 
different optimum parameter sets. Inevitably then, the choice of method will depend on 
the nature of the application, as will the calibrated parameter sets. Wagener et al. (2004) 
provide a discussion of various calibration techniques used for conceptual runoff models 
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CHAPTER 4   MODEL CALIBRATION 

The chapter describes the calibration of the runoff models for the 119 catchments for 
which adequate river flow data are available. The calibration is an important step, not 
only in terms of assessing runoff model performance where data are available for 
validation, but also because it provides the basic data set of calibrated model 
parameters for subsequent use in the spatial generalisation procedures. 

An automated calibration process was undertaken sequentially, taking each 
parameter in turn in a series of two passes,  allowing each parameter to have its own 
objective function, determined by hydrological judgement and plots of objective 
functions against parameter values.  The method allows more weight to be given to 
certain aspects of the flow regime, according to the parameter being calibrated. 
Lessons learned from the use of daily, as opposed to hourly data, and the 
performance of the calibrated models when compared with an extended data series, 
in this case including the flooding of autumn and winter 2000, were incorporated into 
the procedures. 

The overall performance of the calibrations shows an absolute mean error of 5% (at 
the 10 year return period) for both runoff models, with a standard deviation about 
this mean of 7% for the TATE model and 5% for the PDM.   
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as well as potential calibration problems, which include non-identifiability (where 
performance appears to be insensitive to the value of a particular parameter, at least with 
respect to a given objective function) and equifinality (where a number of parameter 
sets, sometimes widely-distributed across the parameter space, appear to perform 
equally well, at least with respect to a given objective function).  

An additional factor which could affect calibration performance is data quality, for both 
rainfall and observed flows. Chapter 2 described the quality checking procedures 
applied during the production of catchment average rainfall data, which were designed 
to limit the effect of rainfall data errors, but the potential effect of some infilling of 
rainfall data, using catchment average profiles, needs to be borne in mind. The quality of 
flow data during floods is also a potential problem, due to difficulty in gauging, and 
there is little that can be done once the data are obtained from the gauging authorities. 
As described in Chapter 2, data quantity is also important; there must be a sufficient 
length of data, covering a range of flow regimes, for calibration to be effective. 

Because of the larger number of catchments involved in this project compared to the 
pilot FD0404, it was considered infeasible to manually calibrate each catchment. 
Instead, a sequential method of automatic calibration was developed, bearing in mind 
the nature of the current application of flood frequency estimation. Although using 
automatic calibration removes some of the flexibility inherent in manual calibration, it 
also removes the subjectivity, resulting in a more consistent set of parameter sets that 
will, it is hoped, aid generalisation.  Automatic calibration is also an advantage in that it 
allows the estimation of calibration uncertainty for each catchment, which can then be 
utilised within the generalisation procedure (so that catchments with less certain 
calibrations receive less weight in the generalisation). 

The automatic calibration method decided upon in this project is described below, along 
with details of how the daily-data catchments were used alongside the hourly-data 
catchments. The testing of FD0404’s calibrated parameter sets with the extended data 
acquired for this project is also summarised. Finally, details are given of the 
performance of the new calibrations.  

4.2 Methods 

4.2.1 Automatic sequential calibration 

The parameters for both the PDM and the TATE model for each catchment have been 
estimated through an automatic calibration procedure which is an extension of that 
described by Kay et al. (2003).  The procedure involves sequential calibration of each of 
the model parameters, in two passes. The method is outlined in the flow chart in Figure 
4.1 and described below. 

For the first pass, each parameter is calibrated in turn, following Monte-Carlo sampling 
of the parameter space of the so-far uncalibrated parameters.  A different objective 
function is chosen for fitting each parameter, according to hydrological judgement and 
plots of objective functions versus parameter values. Each objective function used here 
considers the whole flow time-series, but some give more weight to certain aspects of it. 
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For example, when calibrating the parameter determining the overall water availability 
(fc for the PDM and crm for TATE) only 30-day average flows are considered, whereas 
when calibrating the parameter of the fast flow store (k1 for the PDM and cfr for TATE) 
more weight is given to the higher hourly flows. The objective functions used for each 
parameter are given in Table 4.1. 

For the second pass, each parameter is calibrated in turn following Monte-Carlo 
sampling of its own value, with the values of the other parameters held at their previous 
calibrated values. This second pass allows a re-adjustment of parameter values, once 
other values have been estimated, and uses the same objective functions as the first pass. 
Finally, it was found helpful to allow a final re-calibration of the first parameter for each 
model (fc for the PDM and crm for TATE), this time using an objective function that 
concentrates on fit of the flood frequency curve (above the 2-year return period). 

As this method is sequential, alternative ordering of parameters in the calibration is 
possible, and no testing has been done to assess the effect of this. The order used for 
each pass has been fc, kb, cmax, k1 for the PDM and crm, csm, cfr for TATE. The choice 
of order has been based on hydrological judgement and on the behaviour of the response 
surfaces in the objective function dot plots.  

4.2.2 Calibration uncertainty 

Automatic calibration allows the use of a jack-knifing procedure (Shao and Tu 1995) to 
estimate calibration uncertainty. Briefly, after each catchment is calibrated with all of its 
N years of rainfall and flow data, N re-calibrations are performed. The ith re-calibration 
is performed by treating the ith year of observed flow data as missing. (Note that all of 
the rainfall data are used each time, to maintain continuity of the simulated time-series.) 
In this way, N new sets of calibrated parameters are derived for each catchment, and the 
spread of these values gives an indication of the calibration uncertainty for each 
catchment due to the finite amount of data available for calibration. For a given 
catchment, the variance of the estimation error of the pth model parameter, σ 2(p), is 
calculated from the N values for that parameter, α (p), using the formula 

Here αi(p) is the estimate of parameter α (p) treating the ith year of flow data as missing. 
Similarly, the covariances of the errors of pairs of parameters α (p) and α (q) for a 
catchment can be calculated as 
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Figure 4.1 Outline of the automatic sequential calibration method. 

Sample model parameter space randomly 
and run the model for each sample 

For selected model parameter, identify 
(for each catchment) the value with 
‘best’ model performance  

Any parameters left 
to calibrate? Yes

First Pass: 
Re-sample remaining 
model parameter space and 
run the model for each 
sample, keeping previously 
calibrated parameter values 
fixed 

No

Has each parameter 
been done twice?No

Yes

Second Pass: 
For next parameter (in 
same order as first pass), 
re-sample parameter and 
run model for each sample, 
keeping all other 
parameters at most recent 
calibrated values 

Choose which model parameter to 
calibrate 

For first parameter calibrated, re-sample, 
re-run and re-calibrate for third time 

Calibration finished
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Table 4.1 Objective functions used for the calibration of each model parameter in 
each of the first two passes. 

PDM  TATE 
parameter objective function  parameter objective function 
fc N&S on 30-day 

mean flows 
crm N&S on 30-day 

mean flows 
cmax N&S on output 

flows 
csm Sum of the 

absolute errors in 
flows 

k1 Sum of the 
absolute errors in 
flows, weighted to 
high flows 

cfr Sum of the 
absolute errors in 
flows, weighted to 
high flows 

kb Sum of the 
absolute errors in 
flows, weighted to 
low flows 

   

NB: N&S = Nash Sutcliffe efficiency measure (Nash and Sutcliffe 1970)

The variance of the estimation error is used in Chapter 5 in an uncertainty weighting 
scheme in which calibrated parameters for different catchments are combined with 
higher or lower weight being given to catchments with lower or higher calibration 
uncertainty. The covariances will be used in Chapter 6 for the development of a scheme 
for providing uncertainty bounds on generalised flood frequency curves for ungauged 
catchments. 

4.3 Use of catchments with daily rainfall and flow data 

A key consideration was how to merge information from catchments with data (both 
rainfall and flow data) at different time steps. The hourly time step was originally 
chosen as a compromise between the desirability but practical difficulties of, say, 15-
minute data, and the wider availability but possible loss of information, particularly 
about peak flows, from daily data. Although only larger catchments have been chosen 
for use with daily data (a lower limit for catchment area of 50 km2 was chosen), there 
will still be some loss of information, and this must be borne in mind. Note that the 
daily flow data is a daily mean flow, but the hourly flow data is instantaneous, on-the-
hour. 

The specific use of the data and the way in which the data interacts with the runoff 
models needs to be taken into account when considering how to use daily sites together 
with the original hourly sites. There are three ways in which time-step lengths affect the 
implementation of the runoff models. These relate to 

• the time-step length of the input rainfall data (input time-step); 
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• the time-step length required to match the recording interval of calibration flow 
data, or the interval at which simulated flow data are to be saved (output time-
step); 

• the time-step length at which calculations are performed within the model 
(internal time-step). 

Frequently in conceptual hydrological models all three of these time-steps will be the 
same. This was the case for the hourly sites in FD0404, and the first consideration was 
whether the daily sites could follow in the same way (with all three time-step lengths 
being 1 day).  

In theory, both of the runoff models (PDM and TATE) are structured in such a way that 
their parameters have the same intrinsic meaning (in particular, the same units) 
regardless of the length of the internal time-step. This is vital for the current application, 
where many catchments are being treated simultaneously and ungauged catchments are 
treated using information from gauged catchments. However, tests on a small number of 
the hourly catchments (Kay et al. 2003) showed that the parameters would be calibrated 
differently were they treated at a daily time-step (e.g. Figure 4.2). This is probably due 
to the fact that daily mean flow data contain less information for calibration than does 
the hourly flow data. Thus using a daily internal time-step for the daily sites was not 
appropriate for this application. 

Instead, a common internal time-step of 1 hour was adopted for all of the catchments, 
whether they have hourly or daily rainfall and flow data. However, the issue then arises 
of how to convert daily input rainfall data to an hourly time-step, as the input time-step 
cannot be longer than the internal time-step. By far the simplest option is to uniformly 
spread the daily rainfall over each of the 24 hours of the day. The use of non-uniform 
profile(s) to disaggregate daily rainfall would have required a number of arbitrary 
choices (for instance, whether the profile varied by location, rainfall amount, season 
etc.) which would be difficult to justify. 

It is also necessary to convert simulated flows from the internal time-step to the output 
time-step, to enable a comparison with calibration flow data. This is simple for the case 
of an hourly internal time-step with daily mean calibration data, as the 24 simulated 
hourly values for a day are simply averaged to produce a simulated daily mean flow. 
Tests showed that calibrations using this simple, uniform disaggregation and 
comparison, method led to values matching those using full hourly data sufficiently 
closely (e.g. Figure 4.2). 

4.4 Deriving flood frequency curves 

To gain the most information from the available hourly data records, the partial duration 
series or peaks-over-threshold (POT) method was used to fit flood frequency 
distributions to the observed and simulated flow data.  Single-site POT analyses have 
been investigated theoretically by a number of authors (Davison, 1984; Davison and 
Smith, 1990; Smith, 1984; Wang, 1991).  The methods for POT analysis reported by 
Naden (1992) were adopted.   
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Figure 4.2 Dot plots of objective functions for the three parameters of the TATE 
model, comparing calibration performance for two catchments (39073 
and 55013) using observed hourly data (top), daily data (middle), and 
hourly data uniformly disaggregated from daily data (bottom). 
Optimum values for the parameters are indicated by the vertical 
dashed lines, and show that calibration using daily data gives very 
different calibrated values to that using observed hourly data, but that 
uniform hourly data is much closer. (O1=Nash Sutcliffe on 30-day 
mean flows [maximised], O2=Nash Sutcliffe on daily mean flows 
[maximised] and O3=weighted sum of absolute errors [minimised]). 
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For both simulated and observed flow series, the magnitudes of the POT data were fitted 
using the generalised Pareto distribution (GPD), with the peak arrival times assumed to 
correspond to a Poisson distribution.  The combination of these two assumptions is 
equivalent to the use of the Generalised Extreme Value distribution for annual maxima.  
Fitting was carried out using the method of probability weighted moments (Hosking and 
Wallis, 1987). Rather than specifying an arbitrary flow threshold for the extraction of 
peaks for each catchment, peaks were instead extracted at an average rate of three per 
year (i.e. 30 peaks would be extracted from a period of 10 years, but not necessarily 
three peaks from every calendar year). To ensure that the extracted peaks represent 
independent events, a minimum separation period and a flow criterion are imposed, as 
defined in the Flood Studies Report (FSR) and the Flood Estimation Handbook (FEH).  
The flow criterion specifies that the flow between two peaks must drop to at least two 
thirds of the first peak. The minimum separation period is specified as three times a 
typical event time-to-rise for a catchment. However, calculation of time-to-rise requires 
gauged data for the catchment. As a method is required for ungauged catchments, time-
to-peak will be used instead of time-to-rise as there is an existing method of estimating 
time-to-peak from catchment properties (Institute of Hydrology 1999, Volume 4). 
Figure 4.3 compares the two values for a set of about 40 catchments. The FSR 
conditions are in fact set somewhat arbitrarily, and it is not believed that the use of time-
to-peak rather than time-to-rise will introduce any particular bias; the most important 
thing is consistency, and since a method for ungauged catchments is required then the 
use of time-to-peak is considered a sensible and straightforward choice. 

It is perhaps worth emphasising that the POT analysis is used here as a convenient 
method for presenting flood peak data, rather than specifying statistical models per se
for the flood data.  The fitted GPD distributions are not necessarily intended to be 
applied for extrapolation or as ‘true’ underlying flood peak distributions, but serve 
rather to interpolate between modelled peaks.  For this reason, no detailed analysis is 
presented to assess the suitability of the distributions fitted to the POT data, nor the 
implicit flow thresholds resulting from the average extraction rate of 3 peaks per year.  
However, the GPD is a flexible distribution capable of fitting data that lie in the form of 
Extreme Value distribution Types I, II and III (i.e. flood frequency curves that plot as a 
straight line, curve upwards or tend to ‘flatten out’ on Gumbel paper). Also, Naden 
(1992, 1993) has presented evidence, based on the analysis of POT data from 826 
stations, that these techniques are likely to be reasonable for the purposes of this part of 
the method, i.e. single-site analyses in the UK for relatively short return periods. 

4.5 Testing FD0404 calibrations on extended data period 

An early task (Crooks et al. 2002) was to test the earlier (FD0404) runoff model 
calibrations for the hourly catchments on the extended data period available to this 
project; generally 1985-2001 as against the previous end date of around 1995, in 
particular considering the impact on the fit of the flood frequency curve, and whether 
the floods of Autumn 2000 were well simulated.  

For the FD0404 catchments manually calibrated parameter sets were available for the 
TATE model, whereas for the PDM the parameter set used for testing was actually a 
combination of generalised and calibrated values, arising from the sequential regression  
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Figure 4.3 Time-to-peak (calculated from catchment properties) versus time-to-
rise (calculated from data). 

technique. Although the latter set may not provide the best fit that can be achieved with 
the model, it nevertheless provided a way of assessing the effect of using a parameter set 
derived for a given data period on an extended data period. 

For the analysis, the set of catchments was divided into two groups; one where the 
extension of the data period increased the range of the high flow values over that in the 
original data period (group A), and one where there was no such increase, i.e. where the 
highest flow value still occurred in the original period (group B). 

4.5.1 Impact on fit of flood frequency curve 

A qualitative assessment was made of the fit of the flood frequency curve for the 
extended data period, using the parameter sets derived for the original data period. For 
each catchment the performance was categorised as one of over-estimated, reasonable or 
under-estimated. The performance for the original data period was categorised in the 
same way, to assess whether catchments had moved between categories. The results are 
summarised by group in Table 4.2. An example of simulated flood frequency curves 
compared against observed for each data period is given in Figure 4.4.  

The results show that, whether or not the flow range was increased by the extended data 
period, the transposed parameter sets provide a good fit of flood frequency curves for 
around 50% of catchments. However, under-estimation is more likely in the group 
where the flow range has been increased. Catchments most likely to need re-calibration 
with extended flow range were those with  a  fast response time.  Manual calibration  of  
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Table 4.2 Catchment analysis of flood frequency curve fit, indicating the number 
of catchments falling within each performance category for the 
extended data period, as well as the performance of these catchments 
for the original data period (Over-estimated, Reasonable, Under-
estimated). The latter are colour-coded according to whether the impact 
of the extended data period has been good (blue), bad (red) or neither 
(green). 

TATE  PDM Group 
(number of 
catchments) 

Over- 
estimated Reasonable

Under- 
estimated 

 Over- 
estimated Reasonable 

Under- 
estimated 

1 10 9  3 9 7 A: Range 
increased 
(20) 

1 O 2 O 
7 R 
1 U

7 R 
2 U 

  
3 R 

3 O 
5 R 
1 U

1 O 
6 R

4 8 3  5 8 2 B: Range 
not 
increased 
(15) 

3 O 
1 R 7 R 

1 U 3 U 

1 O 
4 R 8 R 1 R 

1 U 
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Figure 4.4 Observed (black, filled circles and solid line) and simulated flood 
frequency curves for catchment 27051 for the PDM (blue, open 
triangles and dashed line) and TATE (red, open squares and dotted 
line). The graph on the left shows the results for the original data 
period and that on the right shows the results for the extended data 
period.  

TATE may have provided more temporally consistent parameter sets but these sets were 
more likely to underestimate peak flows than the automated sequential method used for 
the PDM. 



35

4.5.2 Performance during autumn/winter 2000 floods 

The winter of 2000-01 resulted in floods in many of the catchments, though for most it 
was the spatial extent of the flooding and duration of elevated discharges which was 
notable rather than the peak flow. The highest recorded peak occurred in only 10 of the 
37 catchments. To assess model performance during this period (October 2000 to March 
2001) the percentage difference between the maximum observed and simulated peak 
flows was determined. The results are summarised in Table 4.3, arranged both by group 
A (range increased) and group B (range not increased) as before, and arranged according 
to whether the peak occurring in the period was the highest in the whole record or not. 
(Some catchments are excluded from this summary because of missing data during the 
crucial period). 

Table 4.3 Summary of model performance in terms of percentage difference 
between modelled and observed maximum flow during October 2000 to 
March 2001. 

Percentage difference  
(modelled – observed) Model 

Group 
(number in group) Minimum Mean Maximum

TATE  

 A (19) -50.0 -15.1 15.0

 B (13) -57.8 -12.4 57.3

  
 Highest peak (10) -50.0 -12.6 15.0

 Non-highest peak (22) -57.8 -15.1 57.3

PDM  

 A (18) -39.0 -7.6 34.0

 B (13) -61.6 12.2 56.5

  
 Highest peak (9) -36.1 -5.5 34.0

 Non-highest peak (22) -61.6 3.3 56.5

The results show that model performance for the winter 2000-01 flood events was not 
affected by the extreme conditions, as the high peaks are no more likely to be under- or 
over-estimated than peaks which were more ‘middle-of-the-range’. Also, the PDM 
simulated peak flows tend to underestimate less than those from TATE, confirming the 
difference found between the two models from the flood frequency analyses. 
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4.5.3 Conclusions arising from new data periods 

Although the performance of the transposed parameter sets for the extended period was 
generally encouraging, the increased likelihood of under-estimation for catchments 
where the flow range was increased meant that re-calibration was recommended.  

The performance of TATE and PDM under transposition of original parameter sets is 
similar despite the fact that those parameter sets were derived, in FD0404, in quite 
different ways (one manual the other using a sequential regression/calibration method). 
This suggests that there is unlikely to be a disadvantage in using the sequential method, 
which can be automated, and that such a sequential method can therefore be safely used 
for re-calibrating the catchments using the longer data series. 

The automatic calibration method described earlier in this chapter was thus applied to 
all catchments (old and new, hourly and daily), as it was considered potentially 
important that calibrated parameter sets be derived in a consistent way that can also be 
used in the quantification of uncertainty.  

4.6 Performance of new calibrations 

Examples of calibrated flows and flood frequency curves are given in Figure 4.5 for five 
catchments, of differing types and locations, for each runoff model. Calibrated flows 
and flood frequency curves for all catchments and both models are given in 
Appendix A. (All appendices are in the Project Record.) 

Overall, the performance of the automatic calibration method was good. Table 4.4 
summarises the performance across sets of catchments in terms of absolute percentage 
error (simulated compared to observed flood frequency curve) at various different return 
periods. The performance for just the hourly catchments is given as well as that for all of 
the catchments, for better comparability with the performance of earlier (FD0404) 
calibrations, which are also given in the table (taken from Table 4.3 of Calver et al.
2001). However, it should be noted that these values are still not directly comparable, as 
the set of hourly catchments has increased (with the addition of further catchments in 
Scotland) and the data for the catchments used in FD0404 has been extended in time. 
Also, for the PDM the calibration performance is given for the seven-parameter version 
of the model used in FD0404 (prior to the simplification of the model), rather than the 
five-parameter version used here. No direct calibration of the five-parameter PDM was 
performed in FD0404, as it was used there only within the sequential regression method.  

Despite this, the performance of the new calibrations is similar to or better than those 
used previously:  for the TATE there is a particular improvement at higher return 
periods (5 years and above). For the PDM the improvement is less obvious, but 
performance is still good considering that one could expect a model with more 
parameters to perform better during calibration, due to the greater flexibility afforded by 
those extra parameters.  It is  to  be expected that the performance averaged over just the  
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Figure 4.5 Example calibrated flows and flood frequency curves modelled with the 
PDM (blue) and TATE (red), compared to observations (black), for five 
catchments of differing types and locations.  
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Table 4.4 Overall calibration performance, in terms of the mean and standard 
deviation (SD) of absolute percentage errors at different return periods. 
The performance of the new calibrations is averaged over all the 
catchments, and just for the catchments with hourly data, for better 
comparability with performance of earlier (FD0404) calibrations. 

Return Period (years) Mean and SD 
of absolute % errors 1.0 2.0 2.33 5.0 10.0 20.0

Mean 11 9 8 5 5 93-parameter, 
new calibration 
(all sites) 

SD 10 9 8 7 7 8

Mean 12 10 10 7 6 103-parameter, 
new calibration 
(hourly sites) 

SD 12 10 10 8 7 8

Mean 12 10 9 8 10 13

TATE 

3-parameter, 
old calibration 
(FD0404 sites) 

SD 13 13 13 12 12 14

   
Mean 9 6 6 4 5 75-parameter, 

new calibration 
(all sites) 

SD 7 5 4 4 5 7

Mean 9 7 7 5 6 95-parameter, 
new calibration 
(hourly sites) 

SD 9 6 5 5 6 8

Mean 8 6 6 5 5 7

PDM 

7-parameter, 
old calibration 
(FD0404 sites) 

SD 9 7 7 6 6 9

Figure 4.6 Calibration errors for PDM versus those for TATE, at two return 
periods (10 and 50 years). 
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Figure 4.7 PDM calibration errors (percentages) versus catchment properties. 
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Figure 4.8 TATE calibration errors (percentages) versus catchment properties. 
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Figure 4.9 Plots of catchment properties against calibrated parameters.  
Catchment properties prefixed with a ‘t’ are transformed according to 
the functions given in Table 2.4. Note that some of the parameters 
have been log-transformed (see Section 5.3). 
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hourly catchments is marginally worse than that over all the catchments, as the models 
may be harder to fit at the hourly than daily time-step. 

Figure 4.6 compares the calibration errors for the two models, at two return periods. It 
shows that there is no obvious advantage of one model over the other. In general, if one 
model has a higher error for a particular catchment then the other model has a higher 
error for that catchment too. 

Figure 4.7 and Figure 4.8 illustrate the PDM and TATE calibration errors (respectively) 
versus the 24 catchment properties (Table 2.3) as well as the Easting and Northing of 
the catchment outlet. These figures show that there is no obvious dependence of 
calibration performance on catchment properties or location. Figure 4.9 illustrates plots 
of catchment properties versus calibrated parameter values, showing possible 
relationships between the two and so demonstrating the potential of generalisation using 
catchment properties: the subject of the next chapter. 
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5 SPATIAL GENERALISATION  

Alison Kay, David Jones, Thomas Kjeldsen, Sue Crooks, Ann Calver 
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CHAPTER 5   SPATIAL GENERALISATION 

The subject of this chapter is the means by which the practitioner can derive flood 
frequency estimates for catchments which have little or no runoff data, the so-called 
ungauged sites which in fact represent much of the country.  The essence of the 
approach is the derivation of runoff model parameters from the widely-available 
catchment properties (or their transformations) described in Chapter 2.   

Whilst there are many variants of spatial generalisation approaches, decisions had to 
be made as to which would, in a time-limited project, be explored.  Attention has 
been focused on  

(i) multiple univariate regression, whereby each runoff model parameter is 
defined as a function of catchment properties 

(ii) ‘sequential’ regression whereby such predictive equations for model 
parameters are derived in a sequence, rather than independently, in order 
to try to account for the effect that already-generalised parameters have on 
the remainder of the parameter set 

(iii) ‘site-similarity’ approaches in which runoff model parameters are 
weighted means of parameter values from a suite of catchments of similar 
hydrological response, as characterised by key catchment properties. 

The chapter details the methods developed and explored, together with the test 
results from variants of the core methods.  It is on the basis of these results that 
issues such as the selection of catchment properties to include in (i) and (ii) above, 
and the number of ‘similar’ catchments to include in (iii) above, have been decided. 

The performance of the methods developed was compared by treating sites as if they 
were ungauged and comparing generalised ungauged flood frequency results with 
(withheld) observational data up to the frequencies appropriate to the observed 
record length.  The overall result from the three types method developed, used with 
the two runoff models (Chapter 3), was a general similarity in performance level. 
This may be seen as an indication of having extracted as much information from the 
data as possible in terms of transferring hydrological response prediction to data-
sparse sites: strictly, however, this comment is informed speculation rather than 
proof of that fact. 

FAST TRACK BOX CONTINUED ON NEXT PAGE 
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5.1 Introduction to generalisation 

The overall aim of this project is to provide a method for estimating parameters of 
lumped conceptual runoff models for any catchment in Great Britain to enable a flood 
frequency analysis to be carried out through continuous simulation modelling. This 
chapter provides a review of previous work related to spatial generalisation of runoff 
model parameters for lumped conceptual runoff models, followed by development and 
comprehensive comparison of three different methods.  The methods are: 

• multiple univariate regression, relating individual model parameters to selected 
catchment properties through linear statistical models,  

• sequential regression, developing predictor equations sequentially, thereby 
accounting for the effect that already generalised parameters have on the 
following parameters, and 

• a site-similarity approach, where model parameters are weighted averages of 
parameter values obtained at hydrologically similar gauged catchments. 

It should be noted that although specific approaches of regression and site-similarity 
have been highlighted, they can be considered as special cases of approaches from a 
whole spectrum of related approaches, which could include local regression or kriging 
for instance. Figure 5.1 presents the site-similarity and regression approaches in terms of 
catchment similarity and linkage functions, alongside the approaches taken in other 
work, including the Flood Estimation Handbook (FEH; Institute of Hydrology 1999). 
The forerunner project FD0404 (Calver et al. 2001) researched some regression 
approaches, which have been enhanced in FD2106, particularly in the context of 
incorporating uncertainty estimates. Site-similarity methods have been introduced in 
FD2106. 

A key point to note is that this field of research is a major hydrological modelling 
challenge and can be seen, at a pure research level, to be open-ended. In order, therefore, 
to reach closure for a practical methodology a considerable element of judgement needs 
to be brought to bear. In short, the research, given the time scale, cannot be exhaustive. 
Testing of approaches to spatial generalisation is, by the nature of the problem being 
addressed, an incomplete matter. Comparisons can, of course, be drawn with site-
specific calibrations: these are, however, constrained in the extent of their coverage by 

FAST TRACK BOX CONTINUED FROM PREVIOUS PAGE 

Inspection and analysis of the errors of different generalisation approaches have not 
permitted a comprehensive deterministic error model to be formulated for this 
extremely complex issue.  The choice of a specific preferred generalisation approach 
can only, at this stage, be endorsed at an overall level: because there is little to 
choose between a number of generalisation methods: some catchments, or types of 
catchments, may be better addressed by particular approaches other than the one 
which performs best overall on the national sample of catchments tested.  The 
recommended methods are defined in Chapter 9 after consideration (Chapter 8) of 
associated uncertainties in flood frequency. 

NEXT FAST TRACK BOX ON PAGE 77 
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the range of recurrence intervals and magnitudes of events covered in periods of records. 
The performance measure of the generalisation methods has been significantly enhanced 
by introducing a more comprehensive framework for analysis of different sources of 
uncertainty. The uncertainty framework is described in its entirety in Chapter 6, but 
implications of the work have been adopted and used for decision-making in this 
chapter. 

Figure 5.1 Schematic outline of spatial generalisation approaches for estimating 
hydrological responses at ungauged catchments, in terms of catchment 
similarity and linkage functions, indicating the ‘location’ of the site-
similarity and regression approaches of this project alongside 
approaches taken in other work 

5.2 Methods of generalisation 

5.2.1 Regression approaches 

Regression analysis has traditionally been a profitable approach when developing tools 
for estimation of model parameters at ungauged sites. Examples of the development of 
spatial generalisation of runoff model parameters through regression analysis are 
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available both in the UK (NERC 1975, Sefton and Howarth 1998, Houghton-Carr 1999) 
and elsewhere, such as Western Europe (Niggli et al. 2002), the USA (Abdulla and 
Lettenmaier 1997) and Australia (Post and Jakeman 1999). The coefficents of the 
regression model are estimated from coherent sets of calibrated runoff model parameters 
and available catchment properties, frequently through least square techniques. 

In the regression approach adopted here, each parameter of the two runoff models (PDM 
or TATE) is treated separately: α is used to denote a typical value for the parameter 
being considered, while αa is used to denote the calibrated parameter value for 
catchment a.  In the regression approach, a model parameter α is estimated using an 
equation of the form

�
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J

j
jj

R X
1

0 ββα

where 
βj  = jth regression coefficient, j= 0,…, J,
Xj  = jth catchment property,  j = 1,…, J.

In particular, the regression based estimate of α for catchment a is given by 
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where Xa,j is the value of the jth catchment property for catchment a. 

The superscript R refers to an estimate obtained using linear regression.  The choice of 
the relevant catchment properties to use in the regression equation, including any 
transformations of catchments properties, is a critical factor in the performance of the 
approach. To ensure that no useful combinations of catchment properties were excluded, 
an exhaustive search procedure was used to assess all possible combinations of up to six 
catchment properties (see Section 5.4 for more information). 

Both standard and weighted least-squares regression have been applied, treating each of 
the runoff model parameters separately. The weights in weighted regression are given by  
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where the σi,ε
2 are values describing the uncertainty (variance) in the calibrated model 

parameters for catchment i, with k a constant that can be estimated iteratively. The 
values of σi,ε

2 are estimated through jack-knifing (see Chapter 4). On convergence, 1/k
gives an estimate of the generalisation uncertainty for each parameter (ση

2). 
Alternatively, setting k=0 corresponds to unweighted regression, and performing the 
first step of the iterative procedure gives an estimate of generalisation uncertainty in this 
case: see Chapter 6 (Section 6.4.3) for further details.  
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5.2.2 Sequential regression 

The multiple univariate regression models described above do not account for the 
dependence between the individual runoff model parameters. Alternatively, multivariate 
regression could be adopted, which recognises inter-dependence between runoff model 
parameters. However, the requirements of assumptions concerning the form of the 
dependence structure make this method difficult to apply in this situation. As an 
alternative to multivariate regression, Crewett et al. (1999, 2000) and Lamb et al. 
(2000a,b) adopted a sequential regression approach, designed to account for parameter 
dependence with very few restrictions. In this approach the model parameter prediction 
equations are derived sequentially, accounting for the effect that generalisation of earlier 
parameters has on later parameters. For the sample of around 40 catchments, sequential 
regression was found to perform better than univariate regression (Calver et al. 2001). 

The exact form of sequential regression used here has been adapted from that used in 
FD0404, and is outlined in the flow chart in Figure 5.2. The new developments of the 
method reflect the alignment of the sequential regression method with the automatic 
calibration method developed during this project (see Section 4.2.1). That is, the 
sequential regression method now involves two-passes rather than one, with each 
parameter being calibrated and then generalised once in each pass. For each model, the 
ordering of the parameters in sequential regression is the same as that used for automatic 
calibration, as is the choice of objective functions on which to calibrate each parameter 
(see Table 4.1). As in automatic calibration, a final calibration and generalisation is then 
performed for the first parameter for each model (the parameter controlling water 
balance), to allow for a final adjustment of the flood frequency curve. 

Due to the intensive nature of the exhaustive search procedure used for univariate 
regression, it was considered impractical to attempt this same search procedure at each 
step of the sequential regression. Instead, the combination of catchment properties that 
is chosen for each model parameter during univariate regression is retained for 
sequential regression, but with the coefficients of those catchment properties determined 
separately, within the sequential regression procedure. Assuming that there are real 
relationships between model parameter values and catchment properties, then this 
simplification will not be too restrictive. The sequential regression method is thus not 
considered again until Section 5.6. 

5.2.3 Site-similarity 

In addition to the regression approach, the use of site-similarity approaches for spatial 
generalisation of the model parameters has been investigated. The idea behind site-
similarity has evolved from regional flood frequency analysis and was presented as the 
region-of-influence approach by Burn (1990) based on work by Acreman and Wiltshire 
(1987, 1989). Burn and Boorman (1992) tested a number of site-similarity type 
approaches for estimating model parameters in the runoff models developed in the 
Flood  Studies  Report  (FSR)  (NERC 1975) and  found  the  best  of  these  methods to  
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Figure 5.2 Outline of the expanded sequential regression method 
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outperform the linear regression approach originally suggested in FSR. The site-
similarity approach is an important part of the statistical method in the Flood Estimation 
Handbook (Robson and Reed 1999) and in Low Flows 2000 (Holmes et al. 2002). 

As for the ordinary regression approach (Section 5.2.1), each of the runoff model 
parameters are treated separately, and different choices of details within the method are 
made for each parameter. In a site-similarity approach, a given model parameter for a 
candidate site can be estimated via the following steps: 

1. Obtain the relevant catchment properties at the ungauged site under consideration.  
The definition of relevant catchment properties is a critical factor in the 
performance of this approach, just as it is for the regression approach. 

2. Identify the distance to all available gauged catchments.  The definition of 
distance is based on Euclidean distance in a given space of catchment properties 
and derived as 
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where J is the number of catchment properties, j indicates a particular one of the 
catchment properties, Xa,j is the value of that catchment property at the ath site, 
σX,j, is the standard deviation of the property across all the sites, and λj is the 
coefficient assigned to the particular catchment property.  The catchment 
properties can be transformed (for example using natural logarithms) or 
untransformed. (Note that the λj have in fact been set to 1 throughout, once a 
choice of the catchment properties to be used for the particular runoff model 
parameter has been made). 

3. The M closest neighbours (minimum distance) are selected to create a pooling 
group for the candidate site, consisting of the calibrated parameters for the 
selected catchments { }Mmm �,1; =α . It should be noted that the pooling groups 
used for a given target catchment can be different for each model parameter.

4. Having formed the pooling group, the estimate PG
aα of the model parameter at 

target a site is calculated as a weighted average of the corresponding parameters 
from the sites in the pooling group.  That is, 
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Here the superscript PG refers to an estimate obtained using a pooling group.  The 
weight hm is assigned to the mth gauged catchment in the pooling proup to reflect 
its importance.  
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Initial work on site-similarity approaches (Kjeldsen et al. 2003) applied the following 
weighting schemes in Equation (5.3):  

• Equal weights:   ,1=mh

• Linearly decreasing weights: max/1 distdisthm −= , 

• Quadratically decreasing weights: ( )2
max/1 distdisthm −= , 

where distmax is set to be 10% larger than the maximum distance of a pooling group 
member from the target site being considered.  The results suggested that the use of 
linearly decreasing weights led to a marginal improvement in performance, although this 
factor was much less important than others.  In later work (Kay et al. 2004;  Jones et al.
2004) a slightly different form of weighting was developed and applied, which is able to 
incorporate both distance-weighting and weighting derived from calibration uncertainty 
(uncertainty weighting). That is, 

2
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1

εσ m
m k

s
h
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where s can be zero (equal distance weighting), dist/distmax (linearly decreasing weights) 
or (dist/distmax)

2 (quadratically decreasing weights) as before, and where the σm,ε
2 and k

are as described for weighted regression (Section 5.2.1). As for regression, k can be 
estimated iteratively and, on convergence, 1/k gives an estimate of the generalisation 
uncertainty for each parameter. Alternatively, setting k=0 means that only distance-
weighting is used, and performing the first step of the iterative procedure gives an 
estimate of the generalisation uncertainty in this case. The full theory of this form of 
uncertainty-weighting is described in Chapter 6 (Section 6.4.3) for both the regression 
and site-similarity approaches. 

The estimated parameter for a target catchment i could be derived by either including or 
excluding the information we have from calibration for catchment i. The results from 
the regression approach would generally include the information from each catchment in 
its own estimate and, as a parallel to this, the main analyses here for the site-similarity 
approach have allowed each catchment to be included in its own pooling group. When 
individual parameters of the runoff models are being considered, the formal statistical 
measures of the performance of the generalisation approaches do take into account this 
decision in order for the measures to properly estimate the performance for catchments 
not in the calibration set. However, there is a need for some more informal assessments 
of the generalisation performance, particularly where attention switches from the model 
parameters to the flood frequency curves using the generalised parameters. In the latter 
case a more formal approach is forestalled because of the un-met need for the theoretical 
adjustments necessary to account for the inclusion or exclusion of target catchments. 
The inclusion of the target catchment within a pooling group can lead to an over-
optimistic assessment, to an extent that is much larger for the site-similarity approach 
than for regression methods. Hence some of the informal assessments of site-similarity 
have been undertaken using two versions of result sets which either include or exclude 
each target site from its pooling group.  
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5.3 Data and transformation 

To try to increase the potential to gain information about parameter values from 
catchment properties, some of the parameters and some of the catchment properties are 
transformed before use in one or more of the generalisation procedures. Calculations are 
then performed with the transformed parameters/properties. For parameters that are 
transformed the calibration uncertainty should be calculated with transformed parameter 
values, rather than untransformed values.  

The transformations are generally chosen to make the distribution of the relevant 
quantity less skewed. An additional benefit of using a logarithmic transformation on 
certain model parameter values is that it ensures no negative values can be obtained 
from the regression generalisation equations. The transformations used in this report for 
the model parameters are given in Table 5.1 and those for the catchment properties were 
given in Chapter 2, Table 2.4. The effect of the catchment property transformations 
needs to be borne in mind when considering the descriptive ability of the catchment 
properties in predictive equations. When using transformations in conjunction with 
regression approaches it is important to check that relationships between transformed 
variables are approximately linear: graphical checks have been made for this project. 

Table 5.1 Transformations of the model parameters 

PDM 
parameter 

Transformation 
 TATE 

parameter 
Transformation 

fc -  crm - 
cmax -  csm Log 
k1 Log  cfr Log 
kb Log    

Note that certain catchments are excluded from the generalisation (at least initially, see 
later), either for all parameters of a model or just for certain parameters: A small number 
of catchments are excluded from the generalisation for all parameters of a model, 
because the model does not calibrate satisfactorily for the catchment, so the calibrated 
parameter values are unlikely to contain any information useful for generalisation. For 
other catchments, the overall performance of calibration is good but one or more 
parameters calibrates right at the edge of its allowed range. This would not, in itself, 
necessarily be a problem. However, if all the jack-knife parameter values also calibrate 
on the edge of the allowed range then the calibration uncertainty for that parameter for 
that catchment could be unrealistically low, leading to a high weight in the 
generalisation. This could skew results towards those edges, and so catchments with this 
problem for a parameter were (initially) left out of the generalisation process for that 
parameter, for all generalisation methods. 

5.4 Performance criteria 

The choice of catchment properties on which to base either approach is difficult.  The 
desired output in each case, for each parameter, is a limited number of catchment 
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properties which provide a good estimate of the model parameters and which give a 
hydrologically sound model.  The final choice of catchment properties, together with 
other aspects of the method, emerges from an exploratory statistical process 
underpinned by hydrological judgement.  At each stage, exhaustive search techniques 
are used to ensure that no useful model is omitted from the analysis.  To assess the 
performance of the approaches, three different criteria have been used at different stages 
of the work.  

The initial study of site-similarity approaches to generalisation (Kjeldsen et al. 2003) 
used the performance indicator S0, which was the (unweighted) leave-one-out cross 
validation measure defined by 

where 

The second criterion, ση
2, derives from the weighted sum of squared residuals 
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estimate may depend on the uncertainty-weighting constant, k. The value of S2 is used to 
construct an estimate of the variance of the generalisation error 
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Here *n  is a theoretically-derived quantity, related to how the generalised estimate is 
constructed, which adjusts the number of catchments n for the number of internal 
parameters contained within the generalisation procedure: see Chapter 6 (Section 6.3.3, 
Equation (6.4.3.10)) for details. When the full iterative procedure with uncertainty-
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k=1/ση
2. In this case the value of ση

2 at convergence is reported. If uncertainty 
weighting is not used, ση

2 is calculated for k=0, corresponding to an unweighted 
estimation and an estimated variance derived from an unweighted sum of squared 
residuals. 

A previous report (Kay et al. 2004) concentrated on comparisons using ση
2. This is a 

measure which reflects the underlying potential of a given generalisation procedure. 
Specifically, it measures how well the procedure is likely to do if problems arising from 
data deficiencies can be eliminated in future. In the case of regression methods, ση

2 is a 
measure of the remaining error given that the regression coefficients become effectively 
‘perfectly’ known as the number of catchments increases. For site-similarity, ση

2 is a 
measure of the remaining error given that the pooling group method is applied in such a 
way that the number of catchments in a pooling group increases as the overall number of 
catchments increases, but also so that the size of the region covered by the group (in 
catchment property space) decreases as further catchments are added. Where uncertainty 
weighting is not used in constructing the criterion, ση

2 includes a contribution from the 
calibration uncertainty since this cannot then be treated separately. In this case ση

2

cannot allow for improvements in future data-sets arising from longer data-records and 
better defined parameters estimates from the calibration procedures. 

The third performance criterion is closely related to ση
2 and aims to encapsulate all the 

uncertainty in the estimated value produced by the generalisation procedure: the 
generalisation variance is only part of this. In the case of regression estimates, ση

2

relates to the error about an unknown regression line and the overall procedure needs to 
account for the uncertainty in estimating the position of that line. When site-similarity 
estimates are used, ση

2 relates to variations about an unknown local mean value for the 
pooling-group and the procedure needs to account for errors in estimating that local 
mean. For any given target catchment for which no calibrated estimates of the model 
parameters are available, a generalised estimate Tŷ  can be found for each model 
parameter. The theory for the particular type of estimate then provides an expression for 
the overall uncertainty of the estimate: 

{ }TT fy += 1)ˆvar( 2
ησ .

Here fT is a term for which theoretical expression are available: see Chapter 6 (Section 
6.4.4; Equation (6.4.4.4)) for further details. The variance derived in this way 
corresponds to the amount of uncertainty that needs to be added to the generalised 
estimate when used in a continuous simulation procedure. In the present context, the 
presence of the factor fT is inconvenient since the value varies with the particular target 
catchment chosen. When regression estimates are used, the value is larger or smaller 
depending on whether the target catchment is further from or closer to the centre of the 
catchments used for fitting the regression (when judged according to the catchment 
properties used). For site-similarity, fT depends on the number of catchments in the 
pooling group and, when a distance-based pooling is used, on the closeness of the 
catchments in the pooling group. 

It is possible to convert the estimation variance into a useful performance measure by 
treating each of the catchments used for establishing the generalisation procedure as if it 
did not have data for calibration, and then averaging across these catchments: 
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Note that lower values of S0
2, ση

2 and σTA
2 indicate better performance, but that these 

values are parameter-specific in that their magnitudes are related to those of the model 
parameters. This means that they cannot be used to compare performance across 
different model parameters, just for the same model parameter across different 
generalisation approaches. While a convenient scaling is to divide each of these 
measures by the sample variance across catchments of the calibrated parameter values, 
there are weighted and unweighted versions of this sample variance to consider and a 
different choice might naturally be made according to whether or not the generalisation 
procedure used a weighting scheme. Employing different scalings would not allow a 
good comparison to be made of the different generalisation approaches for the same 
model parameter.  

Once the more specific choices within generalisation methods have been made 
according to the above performance criteria, the final comparison of the performance 
between different methods also takes into account the fit of generalised flood frequency 
curves. Whilst plainly the level of performance of the approaches is a major factor in 
reaching a preferred option, it is also instructive to consider the advantages and 
disadvantages of the methods themselves from the point of view of the user. These are 
summarised in Table 5.2. 

5.5 Decisions within generalisation procedures 

The investigation into the preferred method for spatial generalisation of the runoff 
model parameters is divided into three main parts. Parts one and two are concerned with 
the univariate regression and site-similarity methods respectively, and examine the 
optimal structure of each method (weightings etc.). Part three looks at the choice of 
catchment properties used for the generalisation of each parameter within each method.  

To choose the best versions of the univariate regression and site-similarity 
generalisation methods, a comprehensive search through many possible combinations of 
catchment properties was conducted at each step in the investigation. The search routine 
provides a list of combinations of catchment properties ranked according to the chosen 
performance measure (Section 5.4). Although a total of 24 catchment properties was 
available (Section 2.6), for practical reasons the maximum number of catchment 
properties allowed in any one combination was set to six. 

This section compares the performance using different choices within the univariate 
regression and site-similarity methods, mainly in terms of plots of performance 
measures against number of catchment properties, for the best three combinations of one 
to six catchment properties. Also included is the performance using no catchment 
properties, that is, where the parameter value for a target catchment is estimated using a 
simple (weighted or un-weighted) average of the calibrated parameter values of each of 
the other catchments. 
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Table 5.2 Advantages and disadvantages of the regression and site-similarity 
approaches to spatial generalisation. 

Spatial generalisation 
method 

Advantages Disadvantages 

Univariate regression • Ease of use (simple 
application of equation) 

• Possible use of predictive 
equation to extrapolate 
(with care) beyond the 
range of properties in the 
calibration set.  

• Theory for inclusion of 
uncertainty has been 
developed in this project 

• Often pragmatic, rather 
than explanatory, choice 
of catchment properties in 
predictive equations 

• Updating with new data, 
when new catchments are 
calibrated, requires re-
establishment of 
predictive equations (and 
testing) 

Sequential regression As first two points for 
univariate regression, plus: 

• Sequential process allows 
for inter-relationship of 
parameters 

As for univariate regression, 
plus: 

• More complex, time-
consuming procedure, if 
updating is required  

• Non-standard theory for 
inclusion of uncertainty 

Site-similarity • Flexibility of structure, in 
that an explicit relation 
of parameters to 
catchment properties is 
not required 

• Flexibility at application 
stage (sites can be left 
out of pooling group if 
not considered reliable) 

• Easy to include new data, 
when new catchments 
are calibrated 

• Theory for inclusion of 
uncertainty has been 
developed in this project 

• Large number of possible 
choices in method 

• Explanation is implicit 
only 

• Application requires access 
to parameter sets and 
catchment properties for 
calibrated catchments 

• Application should be 
restricted to catchments 
not too different from 
those in the set used for 
generalisation 

• Pooling groups may be 
difficult to establish for 
‘unusual’ situations. 
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The section also contains an initial comparison between the ‘optimal’ regression and 
site-similarity methods (Section 5.5.3), again based on plots of performance against 
number of catchment properties, for the best three combinations of one to six catchment 
properties. However, this simple, parameter-by-parameter comparison proves 
insufficient to identify the best overall method of generalisation, and so further 
comparisons based on generalised flood frequency curves are required (Section 5.6). 
This is undertaken following the choice of catchment properties for use in each 
generalisation method for each parameter (Section 5.5.4). 

5.5.1 Univariate regression 

Multiple univariate linear regression, as described in Section 5.1.1, involves fewer 
subjective choices than the site-similarity approach. The two main decisions to be made 
are which combination of catchment properties to use and how to weight each 
individual catchment in the weighted least-squares parameter estimation.  

Figure 5.3 and Figure 5.4 show, for the PDM and TATE models respectively, that use of 
weighted regression (using weights estimated iteratively, as described in Section 5.1.1 
and Chapter 6) is an improvement over un-weighted regression. 

5.5.2 Site-similarity 

A number of factors can influence the site-similarity approach, but the main ones are 
• which catchment properties to use, 
• the number of catchments in the pooling group, and 
• the weights used for deriving average model parameters. 

Initial work developing the site-similarity generalisation technique (Kjeldsen et al. 
2003) suggested that, although the size of the pooling group was not as important as 
other factors, the use of a pooling group with around 10 members was preferable to 
either a much larger or smaller pooling group (Table 5.3). Therefore a size of 10 was 
selected and used in subsequent development of the technique. 

As for the regression approach, investigations (Kay et al. 2004) showed that the use of 
uncertainty weighting within the site-similarity approach gave an improvement over the 
original weights based only on distance as used in Kjeldsen et al. (2003) (e.g. Figure 5.5 
for the PDM and Figure 5.6 for TATE). This work also supported a previous conclusion 
that the effect of using different distance weightings (equal, linear or quadratic) was 
relatively minor in comparison. This conclusion is confirmed here, using an alternative 
performance measure to that used previously (Figure 5.7 for the PDM and Figure 5.8 for 
TATE). It was decided to use linear distance weighting, as the use of weights which 
decrease according to distance from the target site was considered appropriate, and 
linear distance weighting generally performs very similarly to, or better than, quadratic 
distance weighting. 
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Figure 5.3 Comparison of weighted regression (blue crosses) with un-weighted 
regression (red crosses) for the four PDM parameters (fc, cmax, k1 and
kb). The performance measure σσσσTA is plotted against the number of 
catchment properties used in the regression equation, for the top three 
combinations of catchment properties (CPs) in each case. 

5.5.3 Initial comparison of regression and site-similarity performance 

Figure 5.9 and Figure 5.10 compare the performance of site-similarity and univariate 
regression, for the PDM and TATE parameters respectively, in terms of the performance 
measure σTA. They illustrate that there is no single preferred method, with one method 
being better for some parameters and the other method being better for some other 
parameters. It is necessary, therefore, to carry each method forward to a choice of 
catchment properties for the generalisation of each parameter, in order to compare 
performance in terms of generalised flood frequency curves. 
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Figure 5.4 As Figure 5.3, but for the three TATE parameters (crm, csm and cfr). 

5.5.4 Choice of catchment properties for each parameter 

As stated in Section 5.5.1, a comprehensive search routine was used to provide lists of 
combinations of catchment properties ranked according to chosen performance 
measures. The combinations of catchment properties were either those used in 
univariate regression equations or those used to define the pooling group in the site-
similarity method. Lists were produced for the best 10 combinations for each parameter 
within each model for three to six catchment properties (Appendix B.1).  A decision 
was then required as to which combination, and number, of properties to select as 
performance criteria were not the sole factors determining the final choice. Other main 
considerations were the hydrological relevance of the catchment property to the function 
of the parameter in the runoff model and, if possible, choice of a combination of 
properties that constituted a cohesive group avoiding correlated parameters (Section 
2.6.2). An additional consideration for regression methods was that the direction of 
change of a catchment property on a parameter was as expected hydrologically. These 
directions of change are also given in the lists in Appendix B.1. 
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Table 5.3 Performance measure S0 as a function of the number of gauged 
catchments in a pooling group (based in this case on BFIHOST and 
PROPWET).  The numbers in blue indicate the best performance 
(lowest value of S0) for each model parameter, and those in red indicate 
a performance more than 5% greater (worse) than the best one. 

PDM TATE Number of 
catchments fc cmax k1 kb  crm csm cfr 

All 0.2427 87.5 16.35 132.31 0.2769 0.0693 0.2327

50 0.2160 78.7 13.61 113.29 0.1925 0.0612 0.2289

25 0.1902 76.9 12.82 108.43 0.1856 0.0557 0.2268

15 0.1806 77.2 12.46 108.78 0.1826 0.0542 0.2358

12 0.1775 75.3 12.53 111.14 0.1857 0.0540 0.2376

10 0.1775 74.2 12.58 111.49 0.1858 0.0542 0.2404

8 0.1799 74.0 12.52 110.06 0.1859 0.0533 0.2467

5 0.1918 76.6 12.95 113.15 0.1960 0.0537 0.2553

3 0.2048 80.2 14.48 119.68 0.2124 0.0605 0.2643

2 0.2108 82.0 15.14 125.75 0.2315 0.0605 0.2788

1 0.2481 105.6 16.73 151.33 0.2651 0.0603 0.3297

A guide to determining the number of catchment properties was provided by the plots of 
number of properties against performance (Figures 5.3 to 5.8). For most parameters 
there was a marked improvement in performance for both regression and site-similarity 
methods using between one and three properties, with a smaller, or negligible, 
improvement as the number increased from three to six. A minimum of four properties 
was used as an initial guideline, with patterns of dominant properties and stable 
groupings identified for further guidance. The former are those which appear in almost 
all equations or site-similarity groups while the latter are combinations of properties 
which pass on through the lists for each number of properties but with an additional 
property as the number is increased.  The inclusion of a comprehensive band of 
catchment properties within the groups for each parameter for each model was also 
considered desirable, with the inclusion of the catchment properties URBEXT and 
FARL highly desirable because of their particular impact on flood peaks, URBEXT with 
the potential to increase peaks and FARL to decrease peaks due to the attenuating effect 
of storage from reservoirs and lakes. However, because they are not present in many 
catchments a particular requirement was made to include these properties for relevant 
parameters. Suitable groupings were in all cases found from within the top 10 
combinations defined by performance (Appendix B.1).
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Figure 5.5 Comparison of site-similarity generalisation with and without 
uncertainty weighting (with equal distance weighting) for the four 
PDM parameters. 

Plots of calibrated against generalised parameter values for possible property 
combinations were inspected to identify if there were particular parameter ranges which 
were not well generalised. In general, there was little overall difference between the 
plots for different combinations. However, the plots did inform consideration of the 
generation of parameter values for those catchments where the calibrated values were 
close to the edge of the theoretical, or allowable, domain. Initially, these catchments, as 
well as those with poor calibrations, were excluded from the analyses for both the 
univariate regression equations and site-similarity groups to ensure that such 
calibrations did not impact on the final equations or property groups. This is a 
reasonable  restriction  in the determination of regression equations, as parameter values  
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Figure 5.6 Comparison of site-similarity generalisation with and without 
uncertainty weighting (with equal distance weighting) for the three 
TATE parameters. 

beyond the range of the sample catchments are generated by extrapolation. However, for 
site-similarity, where generated parameter values are averages, the exclusion prevents 
generation of values outside those of the sample catchments. Accordingly, a further list 
of catchment property combinations was generated for the site-similarity method 
including catchments with ‘boundary’ parameter values but still excluding those with 
poor calibrations. This resulted in improved performance for the PDM but not for the 
TATE.   

The catchment properties selected for each model parameter using the univariate 
regression and site-similarity generalisation methods are given in Table 5.4. The actual 
univariate  regression  equations  for  each  parameter  are given  in Table 5.5.  The site-  
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Figure 5.7 Comparison of site-similarity generalisation with equal, linear and 
quadratic distance weighting (with uncertainty weighting) for the 
four PDM parameters. 

similarity groups for the PDM were determined from lists for catchments including 
boundary values while those for the TATE exclude boundary values. Five catchment 
properties were chosen for most parameters, but six properties were selected where 
performance was noticeably improved or where it was felt desirable to include particular 
properties.  
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Figure 5.8 Comparison of site-similarity generalisation with equal, linear and 
quadratic distance weighting (with uncertainty weighting) for the 
three TATE parameters. 

Table 5.4 highlights catchment properties that are used within each generalisation 
method for the parameter, or those where closely correlated properties are used for each 
method, and shows a high degree of similarity in catchment properties between the 
methods. Although some of these properties were specifically chosen (that is, 
combinations including them were considered necessary for particular parameters), 
others were not, and all still had to appear in the top 10 catchment property 
combinations: none was ‘forced’ in. This similarity in catchment properties between the 
methods suggests that they are making use of real relationships between parameters and 
catchment properties. 
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Figure 5.9 Comparison of the performance of site-similarity (with linear-distance 
and uncertainty weighting) and univariate regression (with 
uncertainty weighting), for the four PDM parameters. 

Table 5.4 includes values for the R2 measure of fit of the generalised estimates to the 
calibrated parameter values. These R2 values are calculated in the basic unweighted 
form to avoid difficulties in making comparisons when the weighted form uses different 
weights. In the case of the site-similarity method, two values of R2 have been calculated:  
for the first the generalised estimate for a target catchment has been calculated including 
the target site in the pooling group while, for  the second, the  target site  is excluded.  It  
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Figure 5.10 Comparison of the performance of site-similarity (with linear-
distance and uncertainty weighting) and univariate regression (with 
uncertainty weighting), for the three TATE parameters. 

can be argued that the first type of R2 is unrepresentative of the actual performance since 
high weight is given to the target site whereas in practice, for an ungauged catchment, 
calibrated parameters for the target site are not available. Values for the second form of 
R2 for the site-similarity method are of a similar size to those obtained for the univariate 
regression method. However, the large difference between including and excluding the 
target site for site-similarity suggests that strong caution is needed when judging the 
performance of the generalisation procedure in terms of reproducing the flood frequency 
curves. 
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Table 5.4 The catchment properties used for each model parameter in each 
generalisation method (‘t’ indicates properties that are transformed 
according to Table 2.4). For each parameter, properties in red are used 
for both generalisation methods , while those in blue are ones where 
correlated properties (Section 2.6.2) are used in the other generalisation 
method. 

PDM  TATE Method 
fc cmax k1 kb  crm csm cfr 

         
tDPSBAR PROPWET tALTBAR BFIHOST tFARL BFIHOST tAREA
tHOSTGMIN SPRHOST DPLBAR DPLBAR  tSAAR tFARL tFARL 
tHOSTPEAT tURBEXT tFARL tDPSBAR  SPRHOST tSAAR PROPWET 
HOSTNG HOSTNG PROPWET tURBEXT  tLANDA tURBEXT SPRHOST 
tLANDA FIELDC SPRHOST tHOSTPEAT  tLANDB DRAIN2 tURBEXT 

Univariate 
regression 

  tURBEXT DRAIN2    PORO 
R2 0.51 0.46 0.68 0.51  0.69 0.65 0.39 
         

tAREA PROPWET BFIHOST BFIHOST  DPLCV tALTBAR DPLBAR
BFIHOST tURBEXT DPLBAR tURBEXT tFARL BFIHOST tALTBAR 
tDPSBAR HOSTNG tFARL HYDC  PROPWET tDPSBAR BFIHOST 
tSAAR tHOSTP tURBEXT tLANDC  tSAAR PORO tHOSTGMIN 
tLANDB tLANDA tLANDB DRAIN2 SPRHOST DRAIN2 tURBEXT 

Site-
similarity 

tLANDC        
R2

(inc. target)
0.78 0.70 0.82 0.74  0.74 0.76 0.35 

R2

(exc. target) 
0.55 0.41 0.66 0.50  0.64 0.63 0.21 

Table 5.5 Multiple univariate regression equations 

Model Parameter Regression equation 

fc = -0.241 +0.021� DPSBAR +0.668� (HOSTGMIN/100) 
+0.919� (HOSTPEAT/100) +0.0093 HOSTNG 
+0.217� (LANDA/100) 

cmax = -70.46 -231.1 PROPWET -2.588 SPRHOST 
-270.3� URBEXT +0.399 HOSTNG 
11.62 FIELDC 

Log(k1) = 4.270 -0.049� ALTBAR +0.023 DPLBAR 
+1.479� (1-FARL) -1.595 PROPWET 
-0.016 SPRHOST -2.423� URBEXT 

PDM 

Log(kb) = 3.237 +2.154 BFIHOST +0.015 DPLBAR 
+0.085� DPSBAR +1.852� URBEXT 
+0.986� (HOSTPEAT/100) -0.845 DRAIN2 

crm = 1.381 +0.457� (1-FARL) -0.018� SAAR 
-0.0077 SPRHOST -0.412� (LANDA/100) 
-0.331� (LANDB/100) 

Log(csm) = -2.695 +0.987 BFIHOST +0.440� (1-FARL) 
+0.023� SAAR -0.466� URBEXT 
-0.160 DRAIN2 

TATE 

Log(cfr) = 0.915 -0.042� AREA -2.009� (1-FARL) 
+2.263 PROPWET +0.031 SPRHOST 
+1.376� URBEXT -0.074 PORO 
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5.6 Results 

Having decided on the structure of the regression and site-similarity methods, and on the 
combinations of catchment properties to be used for the each parameter within each 
method, the sets of generalised parameters for each catchment can be used to simulate 
time series of river flows and thus produce generalised flood frequency curves. The 
generalised flood frequency curves are created by using the observed rainfall series for a 
given catchment to drive the runoff models with the parameters set to values from the 
generalisation procedure as if this were an ungauged catchment with properties that 
happen to coincide with one of those in the calibration set. The third generalisation 
method, sequential regression, is also included, based on the choices made for univariate 
regression (see Section 5.2.2). Figure 5.11 shows examples of generalised flood 
frequency curves for each method, for five catchments. The generalised curves for all 
catchments are given in Appendix B.2. 

5.6.1 Overall performance 

Table 5.6 summarises the performance of each generalisation method for each model, in 
terms of the mean and standard deviation of the absolute percentage error at various 
return periods (simulated compared to observed flood frequency curve). In each case, 
the best-performing generalisation gives average errors two to three times those for 
calibration. For the TATE, it is the univariate regression method which performs best 
(although only marginally better than sequential regression), with site-similarity 
performing the worst. For the PDM it is the opposite way around, with site-similarity 
best and univariate regression worst (with sequential regression marginally better than 
univariate). The earlier discussion (Section 5.2.3) suggested that the assessment of site-
similarity may be unfairly biased by the inclusion of information from the target site in 
the generalisation. Because of this, Table 5.6 includes the summary information for two 
versions of site-similarity for the PDM, one allowing the target site to be included in 
each pooling group and one excluding it. The results show that the effect of including 
the target site within the information used for the generalisation estimate is rather large: 
with the target site excluded the apparent performance of the site-similarity method for 
the PDM model is much closer to that of univariate regression, although still marginally 
better. For the TATE model, both sets of site-similarity results (including and excluding 
the target site) are shown for completeness. Again there is a large difference in apparent 
performance between the two assessments but, for this model, the generalisation of the 
flood frequency curve provided by univariate regression has closest similarity to the at-
site calibration results.  

Table 5.7 compares the best-performing generalisation for each model here with the best 
model from the pilot project, FD0404.  In order to provide results more comparable to 
the datasets used in  this  previous  project, the table presents results for  the subset of 
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Figure 5.11 Example generalised flood frequency curves from each of the 
different methods (blue – univariate regression, green – sequential 
regression, red – site-similarity), compared to using calibrated 
parameter sets (black solid lines) and flood frequency from observed 
flows (black dotted lines), for PDM and TATE, for five catchments. 
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Figure 5.11 continued  

catchments having hourly data in addition to repeating the results from Table 5.6.  
However, it should be borne in mind that the results are not directly comparable due to 
the use here of additional catchments and an extended data period. As the extended data 
period includes higher flood peaks for a number of catchments, it could be expected that 
the generalisation based on the extended data period would work better for flood peaks 
than if the old generalisation (based on the original data period) were used for the whole 
data period. Evidence for this was given in Tables 4.3 and 4.4 of Kay et al. 2003. For 
the PDM the new, site-similarity, generalisation shows roughly the same performance as 
the previous best-performing generalisation (sequential regression) if the “target-
excluded” results are considered. For TATE there is very little difference in 
performance. 

PDM TATE

1 10 100

recurrence interval [years]

200

300

400

500

600
p
e
a
k
 f
lo

w
 [
m

3
s

−
1
]

57005

1 10 100

recurrence interval [years]

200

300

400

500

600

700

800

p
e
a
k
 f
lo

w
 [
m

3
s

−
1
]

57005

1 10 100

recurrence interval [years]

50

100

150

200

250

p
e
a
k
 f
lo

w
 [
m

3
s

−
1
]

90003

1 10 100

recurrence interval [years]

50

100

150

200

250

p
e
a
k
 f
lo

w
 [
m

3
s

−
1
]

90003



70

Table 5.6 Overall performance of each generalisation method for each model. 
Values are the mean and standard deviation (SD) across catchments of 
the absolute percentage errors in the estimated flood at a given return 
period. The performance using directly calibrated parameters is also 
given, for comparison. 

Return Period (years) Mean and SD of 
absolute % errors 1.0 2.0 2.33 5.0 10.0 20.0

Mean 11 9 8 5 5 9Calibration 
SD 10 9 8 7 7 8

Mean 21 21 21 22 24 27Univariate  
regression SD 19 22 22 27 32 37

Mean 22 21 21 22 24 27Sequential  
regression SD 20 23 24 28 33 38

Mean 26 28 28 30 32 36Site-similarity: 
target included 
(excluding boundary 
points) 

SD 38 45 46 50 53 56

Mean 32 33 34 35 37 41

TATE 

Site-similarity: 
target excluded 
(excluding boundary 
points) 

SD 50 55 56 59 61 62

Mean 9 6 6 4 5 7Calibration 
SD 7 5 4 4 5 7

Mean 25 25 25 25 26 27Univariate  
regression SD 42 41 40 39 37 36

Mean 23 23 23 24 25 26Sequential  
regression SD 42 41 41 39 38 36

Mean 17 16 16 16 17 18Site-similarity: 
target included 
(including boundary 
points) 

SD 22 21 21 20 20 19

Mean 23 23 23 23 23 24

PDM 

Site-similarity: 
target excluded 
(including boundary 
points) 

SD 36 36 35 34 34 33
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Table 5.7 Comparison of overall performance of the ‘best’ generalisation 
methods for each model in this project and in the pilot FD0404. 

Return Period (years) Mean and SD of 
absolute % errors 1.0 2.0 2.33 5.0 10.0 20.0

Mean 21 21 21 22 24 27Univariate regression 
(all sites) SD 19 22 22 27 32 37

Mean 22 23 23 24 25 28Univariate regression 
(hourly sites) SD 15 16 16 17 18 19

Mean 20 21 21 23 24 28

TATE

FD0404 sequential  
regression 
(FD0404 sites) 

SD 20 20 20 22 26 35

Mean 17 16 16 16 17 18Site-similarity: 
target included 
(all sites) 

SD 22 21 21 20 20 19

Mean 23 23 23 23 23 24Site-similarity: 
target excluded 
(all sites) 

SD 36 36 35 34 34 33

Mean 19 18 18 18 18 19Site-similarity: 
target included 
(hourly sites) 

SD 17 17 17 16 15 15

Mean 24 24 24 24 24 26Site-similarity: 
target excluded 
(hourly sites) 

SD 25 23 23 21 20 19

Mean 22 23 24 24 26 27

PDM 

FD0404 sequential  
regression  
(FD0404 sites) 

SD 18 18 19 20 21 23

Table 5.8 presents the performance of different generalisation methods compared to 
calibration in terms of the percentage of catchments with absolute errors (at return 
periods of between 2 and 50 years) classified in different groupings: A; all errors less 
than 15%, C; one or more errors greater than 30%, or B otherwise. This confirms the 
general conclusions drawn from Table 5.6. Specifically, site-similarity can be judged to 
perform best for the PDM since, even if the target site is excluded from the pooling 
group, it has the highest percentage in group A and the lowest in group C. However, for 
the TATE, univariate and sequential regression cannot be separated on the criteria in 
Table 5.8, while the results suggest that these are to be preferred over site-similarity 
because of the poorer performance of this when the target sites are excluded from the 
pooling group. 
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Table 5.8 Percentage of catchments with absolute errors in various classes, for 
each generalisation method, compared to calibration. Classes 
summarise errors at return periods of between 2 and 50 years as 
follows: 
 A : all less than 15%

  B : all less than 30%, but one or more greater than 15%
  C : one or more greater than 30%

Generalisation 
Site-similarity Class Calibration Univariate  

regression 
Sequential 
regression Including 

Target 
Excluding 

Target 
PDM A 

B 
C 

80 
18 
2 

25 
37 
38 

32 
29 
39 

45 
32 
23 

33 
37 
30 

TATE A 
B 
C 

69 
22 
9 

30 
31 
39 

27 
41 
32 

30 
31 
39 

22 
32 
46 

Figure 5.12 illustrates the distributions of errors for the different generalisation methods. 
This again confirms that site-similarity performs best for the PDM - with a distinct peak 
to the distribution close to zero. However, the ‘best’ method for TATE is rather less 
clear, both for a given return period and across different return periods. Figure 5.12 also 
suggests a tendency towards slight underestimation at higher return periods, particularly 
for the PDM (both for calibration and generalisation).  

5.6.2 Analysis of performance 

Figure 5.13 and Figure 5.14 compare the performance of the TATE and PDM models at 
two different return periods (10 and 50 years respectively), by plotting the calibration 
and generalisation errors for one model against the other. These figures show that there 
is a degree of consistency of performance under generalisation, in that for a given 
catchment the direction of the error (positive or negative) is generally the same for each 
model. For univariate regression these errors are also similar in size (that is, the points 
are arranged close to the 1:1 line), but for site-similarity it is clear that TATE performs 
less well than the PDM. It is also interesting that, although the calibration errors clearly 
expand at the higher return period, the generalisation errors are not affected to the same 
extent. Note that the errors plotted here are logarithmic errors in the estimated flood at 
the given return period, rather than the percentage errors referred to previously: a 
logarithmic error of +1 means that the estimated peak flow at that return period is 2.7 
times the observed peak flow, while -1 means that the peak flow is underestimated by a 
factor of 2.7. 
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Figure 5.12 Distributions of the flood frequency curve errors at return periods of 
2, 10 and 50 years, using calibrated parameters (black) and 
parameters generalised using univariate regression (blue), sequential 
regression (green) and site-similarity (red).  
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Figure 5.13 Comparison of calibration and generalisation errors for TATE and 
PDM, at the 10 year return period. Top graph; calibration errors -
black plus signs. Bottom graph; univariate regression - blue plus 
signs, site-similarity - red crosses, joined for each catchment by a 
black dashed line.  
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Figure 5.14  As Figure 5.13, but at the 50 year return period. 
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Appendix B.3 presents plots of univariate regression and site-similarity generalisation 
errors (at return periods of 10 and 50 years) versus catchment properties:  these show no 
clear relationships. The only potential dependence appears to be between HOSTBFI and 
errors using TATE site-similarity. 

The overall results of this chapter plainly pave the way for the recommendations of the 
final chapter of this report.  It is, however, necessary to also consider associated 
uncertainty issues: these are the subject of the next chapter. 
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6 TREATMENT OF UNCERTAINTY  

David Jones, Alison Kay  

6.1 Introduction 

This chapter outlines how uncertainty has been treated within the present project. 
Several different aspects of the project are affected by considerations of uncertainty and 
it is convenient to discuss these in a unified context, rather than piecemeal throughout 
the report. Chapter 5 has described the methods used for undertaking the spatial 
generalisation of the parameters of runoff models. The variants of these methods that 

PREVIOUS FAST TRACK BOX ON PAGE 43 

CHAPTER 6   TREATMENT OF UNCERTAINTY 

Chapter 5 presented the methods used for calculating estimates of the flood 
frequency curves for ungauged catchments. This chapter is concerned with the likely 
errors in such estimates resulting from model parameter uncertainty.  It does not 
cover data and model structure uncertainty. The final results of Chapter 6 are 
uncertainty bands for the estimated flood frequency curves: example results are 
contained in this chapter with a more extensive collection being presented in 
Appendix D. 

This chapter describes the methods used for calculating the uncertainty bands for the 
estimated flood frequency curves. The initial sections discuss the various sources of 
uncertainty associated with the generalisation procedures and outline statistical 
models for representing these sources. Once such models are framed, it is possible to 
develop improved versions of the generalisation procedures, allowing higher weights 
to be attributed to the calibration results where the calibration uncertainty is low. 
These improved procedures (uncertainty-weighted estimates) have been implemented 
in earlier chapters but are derived from the models described here. This chapter 
outlines how the statistical models for uncertainty are fitted to the calibration results 
for each catchment. These methods lead to a model that describes how well the 
parameters of the runoff model for an ungauged catchment are determined from the 
catchment properties using the generalisation procedure. 

The practical implementation of procedures for dealing with the parameter 
uncertainty uses an approach based on creating a collection of randomly-selected sets 
of model parameters which together have a variation equivalent to the uncertainty in 
the set of generalised estimates. Each of the random sets of parameters is used to 
derive an estimated flood frequency curve based on the result of driving the runoff 
model with a sequence of rainfalls. The variation among this collection of flood-
frequency curves represents the uncertainty in the result of applying the 
generalisation procedure to an ungauged catchment. 

NEXT FAST TRACK BOX ON PAGE 109 
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have been recommended in the final chapter derive from the uncertainty considerations 
discussed in this chapter.  The aspects of uncertainty considered are those resulting from 
model parameter identification in both calibration and generalisation.  This project does 
not cover data and model structure uncertainty. Results for the uncertainty associated 
with estimates of flood frequency curves derived from generalised runoff models are 
presented Section 6.6.  

As discussed earlier, the main target for the present project is to provide a methodology 
for estimating the flood frequency curve at sites for which there is not sufficient 
information to allow the direct calibration of a runoff model relevant for that site. In 
order to apply the continuous simulation principle, estimates for the parameters of the 
catchment model have to be derived from the parameter values calibrated for other 
catchments, relating these parameters to catchment properties.  

As indicated in Figure 6.1, the estimate for a flood frequency curve will be subject to 
uncertainties inherent in the generalisation step. An important aim of the project is to 
provide a means of assessing these uncertainties. This analysis of uncertainty has two 
major benefits: 
(i) it allows the development of generalisation procedures that take account of the 

different sources of uncertainty and which, at a theoretical level, are better than 
procedures which do not; 

(ii) it allows the amount of uncertainty attributed to the final generalisation results to 
be compared to an empirical approach not based on an analysis of uncertainty. 

Figure 6.1  Uncertainty of the target results 

To clarify this last point, while there are some minor reductions in uncertainty arising 
from point (i) above, effectively all of the reduction in the width of an uncertainty band 

River 
Flow 

Return Period 

Generalisation for a specific
ungauged catchment 

Uncertainty of flow at 
a given return period
for the ungauged
catchment
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placed about the flood frequency curve arises because the analysis of uncertainty is able 
to omit an unnecessary part of the uncertainty that would otherwise be included in a 
more empirical approach.

The approach based on the analysis of uncertainty distinguishes between the notional 
true value for a catchment, and the value that would be obtained for the same catchment 
based on a model calibrated using a limited length of data record. The difference 
between the two is one source of uncertainty. Use of the more complete analysis of 
uncertainty allows an assessment to be made of the likely error of the generalisation 
procedure in estimating the true catchment value, rather than in estimating a value that 
would notionally be obtained from an analysis of limited data for that catchment, if such 
data were available. More direct empirical approaches are essentially directed at errors 
in estimating the latter type of quantity.  

In a practical context, the main benefit of using generalisation procedures based on an 
analysis of uncertainty is not that estimation errors are reduced compared to simpler 
procedures, although there may be a small improvement. However, the attribution of 
error sources inherent in the analysis of uncertainty does lead to narrower uncertainty 
bounds for estimates from the generalisation procedure. 

Section 6.2 outlines the sources of error or uncertainty associated with generalisation 
procedures for continuous simulation, while Section 6.3 sets out a formal statistical 
model for how these sources of error combine within the present types of generalisation 
procedures. Details are provided in Section 6.4 of how the sizes of the uncertainties 
have been estimated. Section 6.5 outlines how these estimates for the sizes of the 
uncertainty components are used to generate randomised sets of runoff model 
parameters for an ungauged catchment that reflect the information obtainable via the 
generalisation model: these sets are centred on the straightforward generalised estimates 
and the variation within each set reflects the error likely to exist in the generalised 
estimate for an ungauged catchment. Section 6.5 also provides results comparing the 
sizes and hence relative importance of the different components of uncertainty.  Finally, 
Section 6.6 outlines results for the uncertainty of the flood frequency curves for 
ungauged catchments estimated using the continuous simulation based on generalised 
estimates of the parameters of a runoff model. 

6.2 Sources of uncertainty 

Two of the sources of uncertainty that arise in generalisation are illustrated in 
Figure 6.2. 

The first of these sources might be called "generalisation uncertainty". If one thinks of 
having several catchments all with identical catchment properties (as far as can be 
measured), the generalisation procedure would inevitably produce the same "best 
estimates" for the catchment model parameters, yet the catchments would not really 
have the same responses and hence the model parameters really should be different. The 
variation between the model parameters for catchments having the same properties is 
the “generalisation uncertainty”. 
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Figure 6.2 Sources of uncertainty in the relationship of a catchment model 
parameter to catchment properties 

The second source of variation relates to the calibration of the catchment models for 
catchments where data are available: this procedure produces estimates of model 
parameters that would change if a longer data record for calibration were supplied. A 
pragmatic approach to the specification of the "true" model-parameters for a catchment 
model which is known to be only an approximation, at best, is to define them to be the 
values to which the parameter estimates would converge if the calibration procedure 
were applied to the given catchment and if an increasing length of data record were 
supplied. The difference between the estimates obtained from the existing data set and 
these "true" values will be called the "calibration error". It should be noted the "true" 
values defined here would change if a different model calibration procedure were 
applied: for example, one based on different selections for the objective functions used 
in the calibration. 

The above discussion has not fully defined the "generalisation" rule relating model 
parameters and catchment properties that appears in Figure 6.2. In fact two versions of 
this curve are required. Again, a "true" generalisation curve can be defined as the rule 
that would be derived given an arbitrarily large collection of representative catchments 
to which the rule is fitted. Secondly, there is the "sample" generalisation curve that is 
derived from the collection of catchments actually available for catchment-wise model 
calibration. The "true" generalisation curve is defined without any specific 
parameterisation: notionally it is what the result would be from fitting generalisation 
rules whose flexibility (in catchment property space) increases as the number of 
catchments increases. In contrast, the "sample" generalisation curve may be derived by 
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assuming a particular parametric form for the generalisation rule being fitted. Figure 6.3 
is a revised version of Figure 6.2 that illustrates how the various error components 
inherent in the generalisation procedure relate to each other. Compared with Figure 6.2, 
Figure 6.3 is more closely related to the actual implementation of the generalisation 
procedure, since it depicts only one instance of a catchment with any given set of values 
for the catchment properties. 

Figure 6.3  Relationship of errors in the generalisation procedure 
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6.3 Modelling of uncertainty 

6.3.1 Treating model parameters separately 

For simplicity, the discussion here treats a single model parameter of the catchment 
model at a time. For applications within this project, this forms the main basis of the 
methodology for handling uncertainty. While the uncertainties of all the model 
parameters are, in fact, considered jointly (a multivariate analysis), the main types of 
generalisation methods considered are constructed by dealing with each parameter 
separately (i.e. using univariate techniques). Section 6.3.3 outlines how the univariate 
models extend to the multivariate case for the simple generalisation methods. The 
treatment of uncertainty in the special case of the sequential regression method of 
generalisation (outlined in Section 5.1.2) is considered in Section 6.3.4, while Section 
6.3.5 describes some possibilities for more fully-multivariate methods of parameter 
generalisation. 

Consider a fixed set of values for catchment properties and consider a number of "very 
similar" catchments having these catchment properties (that is, they would be 
indistinguishable according to hydrological catchment descriptors). If the catchment 
model were calibrated separately to these catchments, the mean value of the selected 
parameters across all of these "very similar" catchments is defined as the "true" 
generalisation parameter value µ . The "true" parameter value for a given catchment is  

ηµ +=T ,               (6.3.1.1) 

where T  represents the model parameters that would be calibrated for a given site if 
there were an infinitely long data series available. The random error term η  differs 
between instances of catchments having the same properties and represents variations in 
the "true" model parameters for catchments that would be judged to be very similar. The 
random error term η  is assumed to have a mean of zero, given that µ  represents the 
mean value across all similar catchments.  

The parameter value obtained by calibrating the catchment model for a single catchment 
is denoted by Y , where  

εηµε ++=+= TY .             (6.3.1.2) 

Here ε  represents the calibration error for the catchment. This random variable is 
assumed to have a zero mean, but its distribution will typically have a spread related to 
the length of record available for calibration and other catchment-specific factors. 

In the following, it is assumed that a number n  of catchments are available for which 
the catchment model has been calibrated by a well-defined approach, and for which sets 
of catchment properties are available. Thus the data to be used for generalisation consist 
of the calibrated parameter values for sites ni ,...,1=  which can be put into a similar 
representation to Equation (6.3.1.2) 

iiiiii TY εηµε ++=+= ,             (6.3.1.3) 
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where the following notation is used: 
iµ  mean value of the parameter across catchments "very similar" to  

catchment i ; 
iη  the generalisation error for catchment i ; 
iT  (= ii ηµ + ) the parameter value that would be calibrated at 

catchment i , given an infinitely long calibration data set; 
iε  calibration error at catchment i  due to having a limited data set for 

calibration. 

The problem of generalisation typically involves a catchment for which no calibration 
data are available: values for such a catchment will be indicated with a subscript *. For 
the present discussion it is convenient to assume that a generalisation procedure exists 
and that a generalised estimate for the model parameter can be constructed: it is also 
assumed that there are sufficiently many calibration catchments with sufficiently 
extensive datasets for the generalised value, *µ , to be determined essentially without 
error. The task of the generalisation procedure is to calculate an estimate for *T , where 

*** ηµ +=T .              (6.3.1.4) 

Here *η  is the unknown generalisation error for the target catchment: given the 
assumption that the catchments used for calibrating the generalisation model are 
representative of all target catchments to which the calibration model might be applied, 

*η  is assumed to have the same statistical characteristics as the iη  for the calibration 
catchments. The size of the generalisation error is therefore characterised by the 
variance of *η . The analysis of uncertainty to be undertaken allows this variance to be 
estimated. 

In contrast, a direct empirical treatment of uncertainty can be viewed as involving the 
quantity 

****** εηµε ++=+= TY ,             (6.3.1.5) 

instead of *T  as the target quantity. Here *ε  represents a notional calibration error for 
the target catchment. The direct approach provides an estimate for the variance of 
( ** εη + ), which is not what is wanted. Specifically, under the above assumptions, the 
direct approach would base its assessment of uncertainty on 
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212 ˆ εηµµ .          (6.3.1.6) 

This provides an estimate of the variance of ( ** εη + ) in cases where the extent of the 
availability of calibration data can be treated as randomly determined in a statistically 
equivalent way for different catchments, and where this includes data that is notionally 
available for the target catchment (but is not) in order to provide the notional value of *Y
that the generalisation estimate is to be judged against. Note that this particular 
assumption is not made for the more complete analysis of uncertainty used in this 
project. For this analysis, the quantities *Y  and *ε  are not involved at all. 
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The above discussion has assumed that the generalised value, *µ , can be estimated 
without error, which is clearly not the case. The uncertainty associated with this 
generalisation error can readily be taken into account in the analyses of uncertainty: this 
is outlined later. 

It should be noted that, in earlier sections, the notation used has employed the Greek 
letters �,, βα etc. for the calibrated parameters of the runoff models. In that context, 
these quantities control the behaviour of the (runoff) model. In the present context, the 
calibrated parameter-values are treated differently, and there are other quantities which 
control the behaviour of the model. Here the model relates the calibrated values to 
catchment properties using another set of parameters, and the calibrated values take on 
the role of “observed” values. The models being used for this generalisation step are 
essentially the same as regression models taken from statistical theory, where there is a 
common notation of using y or Y for observed values of the quantities being modelled. 

6.3.2 Some assumptions in the uncertainty model 

The model structure outlined in Equation (6.3.1.3) needs to be extended by making 
some assumptions about the statistical properties of the sets of error components { }iε , 
{ }iη  and *η . Given the way these error components have been defined, the assumption 
follows that they all have a mean value of zero. A major assumption is that the typical 
sizes of the generalisation errors { }iη , as measured by the variance, do not vary in any 
predictable way in terms of any set of known catchment properties: the assumption is 
that the variance of the generalisation error is constant. In practice the generalisation 
procedures are applied to transformed versions of the parameters of runoff models (for 
example, by constructing a generalisation rule for the logarithm of a parameter and then 
transforming back with the exponential function to derive the final generalised value). 
Such transformations are chosen as a matter of judgement on the combination of several 
criteria. For the present study, the assumption of constant variance has been checked for 
the transformed parameters on the basis of scatter plots involving the calibrated values, 
the generalised values once derived, and the individual catchment properties.  

Another set of assumptions made is that the error components are uncorrelated between 
the different types of component and are uncorrelated for errors of the same type at 
different catchments. These are partly justified by the conceptual basis of the error 
components in the above model. It can be further argued that, if there were any 
correlation in the generalisation errors with a given set of catchment properties as the 
basis of the generalisation, it could be used to create an improved generalisation rule 
either using the same set or an extended set of catchment properties. Thus the usual 
checks on the behaviour of generalisation rules, which involve checking that there is no 
benefit from obvious modification to the rule, serve to check on this assumption. The 
assumption of no-correlation for the calibration errors { }iε  is more problematic. It can 
be argued that neighbouring catchments will be affected by the same weather events 
within their calibration periods, and thus the calibration errors might be expected to be 
correlated on this basis. The likely extent of this correlation is unknown: adjacent 
catchments might be sufficiently different for them to be sensitive to different aspects of 
rainfall patterns and thus the calibration errors might be quite unrelated. For the present 
study, the catchments being considered are widely dispersed geographically, although 
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there are some pairs of catchments that are rather close together. Results from the 
present study (Section 6.5.2) suggest that the calibration errors make only a small 
contribution to the uncertainty with which the generalised values predict model 
parameters for ungauged catchments. Thus the assumption of uncorrelated calibration 
errors may be relatively unimportant. 

6.3.3 Treating model parameters jointly 

When all the parameters of a runoff model are considered together, the same uncertainty 
structure as used in Section 6.3.1 can be used except that now all the quantities involved 
are vector-quantities. Thus, if a catchment model has P  parameters, then the quantity 
Y  in the earlier section is a (column) vector with elements { }PppY ,,1),( �= , where 

)( pY  is the calibrated value of the pth parameter. Similarly µ  is the vector of “true” 
generalised values for catchments similar to a given catchment. Thus µ  is now the 
(column) vector with elements { }Ppp ,,1),( �=µ , where )( pµ  is the “true” 
generalised value for the pth parameter. 

The error-components η  and ε  identified in Section 6.3.1 also become vectors. Section 
6.3.2 described the assumptions about the statistical properties of these components that 
are required for the analysis of uncertainty in the case of univariate modelling. These 
assumptions remain essentially unchanged for the multivariate case. In particular, errors 
of the same type and for the same catchment but for different model parameters are 
allowed to be cross-correlated. All other cross-correlations are assumed to be zero. It is 
clearly important to include the possible cross-correlation of the generalisation errors for 
different parameters within any assessment of the uncertainty of quantities derived from 
runoff models using generalised parameters.  

Two of the methods of model parameter generalisation that are considered in this 
project are such that the generalised values for a given parameter are derived using only 
the calibrated values for the same model parameter. Specifically, the regression and site-
similarity approaches to generalisation treat each model parameter separately and, in 
fact, allow different choices for the structure of the generalisation rule to be made for 
each parameter. In the case of the regression method, the generalisation rule can be 
taken to be equivalent to the regression parameters relating the calibrated values of the 
particular model-parameter to catchment properties: these regression parameters do not 
make used of the calibrated values for the other model parameters. In such cases the 
generalisation rules are effectively univariate, but it is still possible to undertake a 
multivariate analysis of the generalisation uncertainty, as outlined in Section 6.4.5. 

The third method of generalisation, sequential regression, does not lie neatly within 
either a multiple univariate or multivariate modelling context, and it is necessary to 
extend the multivariate model to consider additional quantities. This is described later in 
Section 6.5.3 since it is helpful to have seen the uses made of the uncertainty model in 
the simpler cases. Section 6.5.4 outlines how the multivariate model for uncertainty 
might be used to construct more fully-multivariate generalisation rules, and says why 
this approach has not been undertaken in this project.  
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6.4 Estimation of uncertainty components 

6.4.1 Analysis of uncertainty 

The analysis of uncertainty involves the variances of the two different types of errors: 
the generalisation error η  and the calibration error ε . Because the extent of calibration 
error will vary between catchments, partly due to differences in record lengths, the 
variances of the calibration error will change from catchment to catchment. The 
quantities involved in the analysis of uncertainty are therefore: 

2
ησ , the variance of the generalisation error, and 
2
,εσ i , the variance of the calibration error for catchment i . 

The analysis proceeds in three stages which are outlined in the following sections. First, 
the variances 2

,εσ i  are estimated separately for each catchment (Section 6.4.2) and these 
values are then treated as fixed. Secondly, the generalisation variance, 2

ησ , is estimated 
by an iterative procedure (Section 6.4.3) which involves constructing generalisation 
estimates on the basis of assuming that the variance components are all known and then 
deriving a new estimate of 2

ησ  from a comparison of these with the calibrated values of 
the parameters. Finally, the uncertainty of the generalised values for a given target 
catchment can be evaluated (Section 6.4.4): this involves augmenting the basic 
generalisation uncertainty, represented by 2

ησ , with a contribution from the uncertainty 
arising in using the “sample” generalisation rule instead of the unknown “true” 
generalisation rule. This calculation is summarised in Table 6.1. 

Table 6.1 Summary of the calculation of the overall estimation variance for 
generalisation models. 

Quantity Interpretation 

*** ηµ +=T The “true” parameter value is the value from the “true” generalisation 
curve (Figure 6.3) for the target catchment, plus the generalisation 
error 

** ˆˆ µ=T The estimated parameter value for the target catchment is the value 
from the “sample” generalisation curve. 

( )***

**

ˆ

ˆ

µµη −+=
− TT The estimation error is the sum of the generalisation error, *η  , and 

the error in the sample generalisation curve, ( )** µ̂µ − . 

( )
( )*

2

**

ˆvar

ˆvar

µση +=
− TT The variance of the overall estimation error is the sum of the 

generalisation variance and the variance of the sample generalisation 
estimate. 

The theory outlined in Sections 6.4.3 and 6.4.4 treats each individual parameter of a 
runoff model separately. In contrast, the assessment of the uncertainty of the flood-
frequency curve derived from spatial generalisation requires that the uncertainty of the 
complete set of parameters should be assessed jointly. In the present context this is 
undertaken by estimating the covariance of the estimation errors for pairs of parameters: 
this is outlined in Section 6.4.5. 
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The estimation of uncertainty components is based on the usual types of assumptions 
about the error components: the generalisation errors iη  and calibration errors jε are 
assumed to be uncorrelated between the two types of errors and across all catchments. 
While it is possible to extend the methodology to include cases where the target 
catchment for the generalisation step is one of the catchments used as the basis of the 
generalisation, this is not dealt with here as it is not one of the major concerns of the 
project: discussion of this case is provided by Jones et al. (2004). It can, however, be 
noted that this extended methodology offers the potential for improving single-
catchment calibrations of runoff models by transferring information via a generalisation 
rule. Any improvement from this type of approach is likely to be small unless the record 
length available for single-catchment calibration is currently rather short. 

6.4.2 Estimation of the calibration variances 

For the present project, the variances of the calibration errors, { }2
,εσ i , have been 

estimated as an extension of the procedure for calibrating the runoff models, by applying 
a jackknifing methodology. This is an established statistical procedure that provides a 
way of correcting the bias of an estimate of a quantity that is of direct interest, and for 
estimating the sampling variance of the estimate. The jackknife methodology can be 
traced back to initial ideas for bias correction by Quenouille (1949, 1956) and, for 
variance estimation, by Tukey (1958). By the late 1970s jackknifing had been given a 
firm theoretical justification and practical experience with the methodology was 
beginning to build up, as exemplified by the papers by Miller (1964, 1974), Bissell and 
Ferguson (1975).  More recent discussions of the methodology include the paper by 
Peddada (1993). In current text-books, jackknifing is often discussed in association with 
another related technique called “bootstrapping”: see, for example, the books by Efron 
and Tibshirani (1993), Shao and Tu (1995) and Davison and Hinkley (1997). 

In the usual statistical theory, the jackknife estimate of the sampling variance of an 
estimate can be formulated as follows. It is assumed that the basic estimate is a function 
of N  items, denoted by { }NXX ,,1 �  and it is assumed that the N  items are statistically 
independent. The basic estimate is assumed to be defined in a consistent way as the 
number of items available changes. Let the basic estimate obtained from the N  items be 
denoted by NZ , and define the estimate that would be produced from the ( )1−N  items, 
when item i  is omitted from the full list of items, to be iNZ ,1− . There are N  such 
estimates with one item deleted: the sample mean of these is defined to be 

�
=

−
−=

N

i
iNN ZNZ

1
,1

1 .              (6.4.2.1) 

Then the jackknife variance estimate, defined so as to estimate ( )NZvar , is  

( )�
=

− −−=
N

i
NiN ZZ

N

N
v

1

2

,1

1
.             (6.4.2.2) 

This estimate is based on the variation between the leave-one-out estimates { }iNZ ,1−  but 
it contains an adjustment factor that accounts for the non-independence of these 
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estimates. In cases where several quantities are being estimated simultaneously, as for 
the parameters of the runoff models, the jackknife variance estimation procedure 
provides an estimate of the covariance matrix of the set of estimated values as 

( )( )T

,1
1

,1

1
NiN

N

i
NiN ZZZZ

N

N
V −−−= −

=
−� ,            (6.4.2.3) 

where the basic estimate NZ  and the leave-one-out estimates { }iNZ ,1−  are now vector-
valued. 

For the present project, the jackknife variance estimation procedure has been applied in 
the way described below, which includes a procedural element intended to overcome 
problems associated with serial dependence in the time-series being used for the 
calibration of runoff models.  This element is related to the idea of Moran (1975), in 
which serial correlation is overcome in the estimation of the sampling variance of a 
mean value by first forming mean values for non-overlapping sub-intervals which are 
each long enough for these sub-interval means to be effectively uncorrelated. In the 
present context the “ N  items” on which the jackknife procedure is based are identified 
with the modelling error information contained within each of N  calendar years. At the 
leave-one-out stage, the standard runoff-model calibration procedure is applied by 
treating as missing all of the error contributions to objective functions that arise from a 
given calendar year. Thus it is assumed that the overall effect on the calibration 
procedure of the whole set of modelling errors in separate years will be effectively 
independent across the years. Notionally the assumption of independence being made 
relates to the errors in modelling flow values, not to the flow values themselves. The 
jackknife variance estimation procedure for estimating the uncertainty of the calibrated 
values of the parameters of the runoff model is as follows: 
(i) Apply the calibration procedure to the full data set to create the vector of values of 

fitted model parameters that are carried over into the generalisation procedure: this 
vector is effectively the basic estimate NZ  above. 

(ii) For each of N  calendar years covering the data period for which flow information 
is available, apply the calibration procedure to the data set ignoring contributions 
to the objective functions used for calibration that arise from a given calendar 
year. Each such leave-one-year-out calibration creates a vector of parameter values 
corresponding to iNZ ,1−  above. 

(iii) Use the above formula to calculate the estimate V  for the covariance matrix of the 
calibration errors for a vector of runoff model parameters. 

In practice it may be most convenient to implement the leave-one-year-out calibration 
step by setting to “missing” all of the values of observed flows for a given calendar year. 
Calibration procedures for runoff models are typically constructed to cope with periods 
of missing data in observed flow records. Note that the leave-one-year-out procedure 
involves ignoring the observed flow values within a given year, but the observed rainfall 
and evaporation data for that year would continue to be used to create the full set of 
modelled flow values, and their effect would be carried over into subsequent years. 

Use of jackknife procedures to assess the uncertainty of the calibrated estimates of 
runoff model parameters appears not to have been tried before. Other approaches to 
assessing calibration uncertainty are available, but some are not suited to the calibration 
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scheme adopted for the present project, where the scheme involves using different 
objective functions for determining each model parameter. In the present context, 
jackknifing was chosen because it requires less extensive computational resources than 
the alternative approach of bootstrapping (see references noted at the beginning of this 
section) and is less complex to implement in conjunction with the calibration 
procedures. However, the present research indicates that the jackknife estimates of 
variance may be overly sensitive for use in the context of calibrating runoff models: this 
sensitivity arises from the highly non-linear effects of the model parameters on the 
model outputs.  

6.4.3 Estimation of the generalisation variance 

Chapter 5 considered two major types of spatial generalisation procedure: regression 
and site-similarity. Although these are distinct procedures, with different conceptual 
bases, they are sufficiently similar that the same approach to the estimation of the 
generalisation variance can be adopted. In particular, the two generalisation procedures 
have the common structural feature that the basic form for the estimated value at a given 
target site can be represented as a linear combination of the parameter values obtained 
for the calibration catchments: 

�
=

=
n

j
jjYw

1
**µ̂ . 

For site-similarity, the weights jw*  are determined by the rule for defining neighbours to 
the target site and by the weighting within these neighbours: many of these weights will 
be zero. For regression, the weights are derived from the estimates of the regression 
coefficients (which are themselves linear combinations of the calibrated values jY ) and 
from the catchment descriptors for the target catchment. In the case of generalisation 
procedures that take account of the uncertainty model, the “best” weights would also 
depend upon variance components 2

ησ  and { }2
,εσ i : in fact the weights only depend on 

the ratios, iK , where 

2

2
,1
η

ε

σ
σ i

iK += .              (6.4.3.1) 

Section 6.4.2 has outlined a method for estimating { }2
,εσ i , and these estimates are now 

treated as fixed, leaving the problem of estimating 2
ησ . This problem is solved by the 

approach of using iteratively re-weighted estimates. In the approach an initial guess, 
)0(k , for the value of 

2

1

ησ
=k ,               (6.4.3.2) 

is supplied: the value 0)0( =k  is commonly taken for convenience. This allows an initial 
set of values of { }iK  to be constructed, and hence corresponding values for { }ijw  can be 
found. Here ijw  is the weight used on the value for catchment j when constructing the 
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generalised value for a catchment having the same catchment properties as catchment i.
To align with the usual theory adopted in the case of regression, the approach used here 
allows the calibrated value for catchment i to be used as part of the set of data used to 
construct the generalised value that would be calculated for a catchment having the 
same properties as catchment i. Either directly, or subsequently to calculating the 
weights { }ijw , the set of generalised values iŶ  can be calculated. This set of generalised 
values, across the calibration catchments, is then used to construct an estimate of 2

ησ  on 
the following indirect basis. The approach here is based on calculating the weighted sum 
of squares of residuals 

{ }2

1

12
îi

n

i
i YYKS −=�

=

− .             (6.4.3.3) 

The expected value of 2S  is related to 2
ησ  in a slightly complicated way. First, note that  

iiiiiiY ωµεηµ +=++= ,             (6.4.3.4) 

where iω  is a random variable with variance 
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The last step here holds exactly in the case of regression-based generalisation 
procedures, according to the theory for that case, and it follows in other cases in an 
approximate sense from the assumption that the generalisation procedure is sufficiently 
flexible to accommodate all the smooth variation of the “true” model parameters in 
relation to the catchment properties. Hence 
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where { }iju  is another set of weights. Then 
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It then follows that the quantity 2s , defined by 
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proves an unbiased estimate for 2
ησ , at least according to assumption that the values 

{ }iK  being used are correct. The value for 2s  is accepted as an improved estimate of 
2

ησ , and hence a new value for k  is calculated as 

2
)1( 1

s
k = .               (6.4.3.9) 

This then allows new sets of values of { }iK  and { }ijw  to be found and new “re-
weighted” generalisation estimates iŶ  are calculated. Eventually a new estimate 2s  for 

2
ησ  is obtained. This procedure is repeated iteratively until convergence, when the final 

value for 2s  is used to provide the estimate for 2
ησ  that is carried forward into other 

calculations. 

It may be noted that the expression  
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can be simplified in some cases. For example, if the generalisation procedure is based 
on weighted least-squares regression, this quantity can be shown to be equal to 
( )1−− pn , where p  is the number of catchment properties used in the regression 
relation (not counting the constant term in this set).  

6.4.4 Estimation of the variance of errors in generalised parameter values 

As outlined in Section 6.3, the relevant uncertainty associated with the generalised 
estimate of a parameter of the runoff model is that which treats the quantity being 
estimated as the true parameter value for the target catchment. Specifically, this is 
defined to be the value that would be obtained by a standard calibration procedure if 
there were an arbitrarily large amount of data available for direct calibration of the 
runoff model 

For a target catchment, denoted by the subscript *, the generalised estimate is 
constructed as  
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j
jjYw

1
**µ̂ ,              (6.4.4.1) 

where the weights { }jw*  are determined by the type of generalisation procedure being 
applied. These weights are constructed according to the same rules as used in Section 
6.4.3 except there is now no “iterative” element to the procedure: the weights are 
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calculated using the final value of 2
ησ  from the iterative procedure. The weights also 

depend on the calibration uncertainties { }2
,εσ i , but these are only required for the 

catchments used in constructing the generalised estimate, not for the target catchment. 
At this stage, the weights are treated as fixed. 

The quantity being estimated is *T , where 

*** ηµ +=T .              (6.4.4.2) 

Thus the error in the estimate is 
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As in Section 6.4.3, this last step holds exactly in the case of regression-based 
generalisation procedures, according to the theory for that case, and it holds for site-
similarity procedures if they are sufficiently flexible to accommodate all the smooth 
variation of the “true” model parameters in relation to the catchment properties.  

In the case of most interest to this project, the target catchment is not any of those used 
to provide information for the generalisation procedure. This means that *η  is 
uncorrelated with all of the combined errors in the set { }jω , which are themselves 
uncorrelated within the set.  Therefore the variance of the estimation error is 
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6.4.5 Estimation of the covariances of errors in generalised parameter values 

Sections 6.4.3 and 6.4.4 have outlined how the uncertainty of generalised parameter 
values has been treated in this project, dealing with each parameter of the runoff model 
individually. No equivalent for the iterative procedures used for estimating the 
generalisation uncertainty has been found that works on a fully multivariate basis across 
several model parameters simultaneously. One difficulty here arises from the 
requirement to be able to use different sets of catchment properties in determining the 
generalisation procedure for each model parameter. The simplest example arises in the 
use of regression-based generalisation, where it is natural to try to choose which 
properties “should” appear in the regression for each parameter. There are conceptual 
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difficulties to developing a unified theory which arise from the imposition within the 
model of the constraints of “knowing” that certain regression parameters are zero, in the 
case of regression models, and from whatever the equivalent of this is in the case of site-
similarity / pooling-group methodologies. 

Instead, a pragmatic approach has been taken to estimating the covariance matrix of the 
overall generalisation errors for the runoff model parameters. The outcome of this 
approach is such that variances estimated for individual model parameters are 
unchanged from those obtained by the methods outlined in Sections 6.4.3 and 6.4.4: the 
covariances are treated in a manner chosen primarily on the basis of guaranteeing that 
the estimates of the covariance matrices being generated are feasible covariance 
matrices, so that the step of generating randomised sets of model parameters can 
proceed. 

The method for estimating the covariance matrix ηΣ  of the generalisation errors in the 
model parameters for the same catchment is as follows. First the iterative re-weighting 
procedure is implemented for each parameter separately, yielding a set of values 
{ }Ppp ,,1);(2

�=ησ  for the P  parameters. The set of weighting values for each 
parameter is then available, given by 
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where )(2
, pi εσ  is the estimated calibration variance for catchment i and parameter p . 

The weighted sum-of-squared-residuals that is used in the iterative procedure is replaced 
by a weight sum of cross-products of residuals defined to be 
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where )(ˆ),( pYpY ii  are the calibrated and generalised values of the pth parameter. Note 
that, when qp = , this expression is identical to the weighted sum-of-squared-residuals 
used in Section 6.4.3. Finally, the estimate for the covariance matrix ηΣ  is defined to 
have elements given by 
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where )(* pn  is the “unbiasing factor” for the pth parameter as used in Section 6.4.3 and 
defined in Equation (6.4.3.10). 

The covariances of the overall generalisation error can then be computed as follows. 
From Equation (6.4.4.3) the generalisation errors of the pth and qth parameters for the 
same catchment are 
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and 
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Here { })(* pw j  and { })(* qw j  are the different sets of weights applied to the calibrated 
values of the pth and qth parameter of the runoff model. It then follows that 
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where ),(, qpj εΣ  is the covariance of the calibration error for parameters p and q and 
catchment j.

If it becomes necessary to calculate the covariances between generalised parameters for 
different catchments, these can be found by the same type of approach. Thus, if 
subscripts * and # denote different catchments, neither of which are in the set of 
catchments on which the generalisation is based, 
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6.5 Uncertainty of estimated parameters of runoff models 

6.5.1 Representation of uncertainty where generalised estimates are used

As discussed earlier (Section 6.1), generalised estimates of model parameters would 
typically be used to supply information to a subsequent procedure which estimates the 
flow-frequency relationship for an ungauged catchment. Sophisticated analyses may 
involve the use of runoff models for several catchments. The most straightforward way 
of assessing the uncertainty in the final results from such analyses is to complement the 
results obtained for the “best estimates” of the model parameters with equivalent results 
obtained for sets of models parameters close to the best estimates but within a range 
determined by the uncertainty associated with the generalised estimates. If randomised 
sets of model parameters are generated to have the covariance structure indicated by the 
analyses of uncertainty outlined in Section 6.4, then the corresponding sets of flow-
frequency curves will directly represent the uncertainty arising from generalisation of 
the model parameters. 
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In the present context, the use of multivariate normal distributions to represent 
uncertainty is most convenient. A detailed analysis of distributions representing 
uncertainty should logically follow an intensive study of the calibration results for 
individual catchments, comparing these with the generalised values of model parameters 
and seeking explanations for any large discrepancies, with the possibility of 
recalibration using amended procedures. There have not been resources for this within 
the present project. The use of multivariate normal distributions should be adequate 
because the main requirement is for a simple indication of the extent of uncertainty and 
no great reliance is placed on the shape of the corresponding distributions. However, 
several of the parameters of the runoff models being used are subject to natural or 
imposed constraints: for example, certain model parameters cannot be negative. These 
cases can reasonably be treated by truncating any parameter values that are generated 
from the multivariate normal distribution so as to lie within the required range.  

The generation of multivariate normal random variates is a well-understood topic, so 
that no details of this are given here. For the present application, two candidate 
approaches for actual implementation arise. In the first of these, the set of parameters 
required across a number of catchments is determined, the covariance matrix of the 
overall generalisation errors is determined by expressions such as those in Section 6.4.5 
and random values are generated corresponding to this covariance matrix. This approach 
seems be best suited to cases where only a few catchments are involved as target 
catchments. An alternative approach may be more suited to cases where many target 
catchments have to be treated simultaneously, since it avoids dealing with a covariance 
matrix with large dimensions. This alternative involves the representation of the overall 
generalisation errors in terms of their basic components. For example, based on 
Equation (6.4.5.4): 

),()()()(ˆ)(
1

**** ppwpppT
n

j
jj�

=

−=− ωηµ             (6.5.1.1) 

it is possible to obtain the required randomised versions of overall generalisation error, 
simultaneously for all parameters and catchments, by generating random versions for the 
component errors { })(* pη  and { })( pjω  and then combining them using Equation 
(6.5.1.1). This may be relatively simple, given the assumptions that these components 
are uncorrelated between catchments and between the different types of error 
component. 

6.5.2 Comparisons of sizes of uncertainty  

Section 6.4.1 has outlined the model of uncertainty in terms of two sources of 
uncertainty, while Section 6.4.5 has shown how these can be combined together to 
determine the accuracy of the generalised estimates of parameters of the runoff models. 
The relative importance of the various contributions only becomes clear after the 
implementation of a generalisation procedure that takes account of the uncertainty 
model. This section presents some results that illustrate this relative importance. 

Section 5.1 has outlined generalisation procedures based on site-similarity and 
regression approaches and Section 5.4 has described how a final choice of structure has 
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been made for these two approaches. For the purposes of comparing the uncertainty 
components associated with the two types of generalisation procedures, the analysis 
described here has been undertaken using model structures selected so that the same 
modelling steps have been included in both cases so as to ease the comparison.  Figure 
6.4 shows results for these chosen model structures in the case of one model parameter 
for one of the two runoff models. This case has been chosen arbitrarily as an example 
and the plots are shown in reduced form here: a set of figures for the complete collection 
of model parameters for both models is provided in Appendix C. Each figure in the 
appendix relates to a specific parameter of one of the models, with results from the site-
similarity and regression approaches appearing on opposite pages for comparison: in 
Figure 6.4, the results for site-similarity and regression appear on the upper and lower 
portions of the page. Within each figure, a scatter plot of the calibrated model 
parameters against the generalised values is shown twice: the two scatterplots are shown 
with two different sets of error-bounds associated with: (i) the sizes of the basic error 
components; and, (ii) the sizes of the overall generalisation uncertainty. These error 
bounds are shown in the form of 2±  standard deviation limits about the generalised 
values. Table 6.2 indicates how the various sets of bounds are determined: the “standard 
deviation” used for each set of error bounds corresponds to an estimated variance 
representing the effects of different combinations of errors. For convenience the bounds 
are drawn centred on the generalised values which here take the role of “estimates from 
the model”. 

Figure 6.4 and those in the appendix have been constructed so that the same scales are 
used for plots relating to the same parameter. In cases where the error-bounds are wide, 
the lower-limits of the bounds have sometimes been omitted in order to improve the 
appearance of the plots without loss of information. The following conclusions can be 
drawn from these plots. 
(a) The sizes of the variances of the calibration-error, 2

,εσ i , vary considerably from 
catchment to catchment, and can be comparable to or greater than the variance of 
the generalisation error in some cases. However, for a reasonable number of 
catchments the variances of the calibration error is comparatively small. 

(b) The scatter of the points in the plots relating calibrated to generalised values is 
typically smaller for the site-similarity approach than for the regression approach. 
However, the sizes estimated for the variances of the generalisation errors are 
more similar for the two approaches. These estimated variances are derived from 
the squared-errors using factors which are different and which are determined by 
the details of the generalisation procedures. Typically, the calibrated and 
generalised values for the site-similarity procedure are closer because the 
generalised value estimated for a given catchment gives relatively large weight to 
the calibrated value for that catchment: the factors used to convert the squared-
errors to estimates of variance adjust for this preferential weighting. 

(c) The component in the total generalisation error related to errors transferred from 
other catchments is fairly modest, but is larger for the site-similarity approach than 
for the regression approach. This arises because the generalised values in the site-
similarity approach are effectively averages over a smaller number of catchments. 
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(b) 

Figure 6.4 Calibrated and generalised parameter values, with uncertainty 
bounds: Parameter “k1” of the PDM model. See text and Table 6.2 for 
a description. (a) generalisation by site-similarity; (b) generalisation 
by regression. 
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Table 6.2 Composition of the error bounds shown in Figure 6.4 and in Figures 
C.1 to C.14 of Appendix C 

Colour Position Description Formula 

Left-hand scatter plots: 

Red Inner-most Basic generalisation error 2
ησ

Green Outer-most Generalisation variance plus the 
calibration error variance 

2
,

2
εη σσ i+

    

Right-hand scatter plots: 

Red Inner-most Basic generalisation error 2
ησ

Pale blue* Next Generalisation error variance plus the 
transferred effect of the generalisation 
error for sites used in the 
generalisation procedure 

2

1

2
*

2
ηη σσ �

=

+
n

j
jw

Purple Outer-most Total error – generalisation error 
variance plus the transferred effects of 
generalisation error and calibration 
errors for sites used in the 
generalisation procedure  

( )2
,

2

1

2
*

2

εη

η

σσ

σ

j

n

j
jw +

+

�
=

* Note that this bound is often obscured in the figures by the outer-most bound 

(d) The variance component relating to transferred calibration errors is typically small 
(the pale blue and purple marks are very close). This suggests that it may be 
reasonable to adopt an approximation for the variance of the overall generalisation 
error in which this term is averaged. The potential advantage of such a scheme is 
only apparent when all the parameters of a model are considered jointly: the full 
scheme would require keeping track of the covariance matrices of the calibration 
errors for all the calibration catchments, while a reduced scheme would require 
only the variances. Such approximations for the overall generalisation variances 
have not been considered at this stage. 

(e) The jackknife procedure for estimating the variances of the calibration error can 
sometimes produce unrealistically large variances: this is particularly apparent in 
cases where the calibration scheme includes placing restriction on the range of 
values for particular model parameters. One reason for this effect is the scaling-up 
that occurs, in the jackknife procedure, from the variation between the leave-one-
out estimates to the implied sampling variation of the calibration estimates. As 
discussed in Section 6.4.2, bootstrap procedures provide a possible alternative way 
of estimating calibration variances. 
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6.5.3 Uncertainty modelling for the sequential regression approach 

The structure for a suitable model for uncertainty for use with the sequential regression 
method needs to be extended beyond that set-out in Section 6.3.1. Because, overall, the 
sequential regression method has not been found to perform as well as the other 
generalisation methods, such an extended framework has not yet been fully formulated.  
No results for the uncertainty associated with the sequential regression approach are 
presented in this report. 

In order to frame a model for uncertainty, it is necessary to have a clear specification for 
the results of the sequential regression methodology, treated as a stand-alone procedure. 
In a formal sense the “result” is a set of regression coefficients, { }Pppseq ,,1),(ˆ

�=β , by 
which the parameters of the runoff model are estimated for an ungauged catchment: 

T
pseqseq xp ,*,,* )(ˆ =µ )(ˆ pseqβ . 

Here ,*, pseqx  denotes the set of explanatory variables (catchment properties) chosen for 
parameter p, evaluated for target catchment *. However, these regression coefficients do 
not provide enough information for an uncertainty model. Instead it is necessary to 
consider the set of calibrated values, { }iseqY , , produced by the sequential regression 
approach. It is important to take on board the fact that the nature of this set of calibration 
results is rather different from that of the set of values { }iY  that arise from the ordinary 
calibration procedure. In particular, the meanings of these two sets may be described as 
follows. Let { })(),...,1( Pαα  be a generic set of parameters of the runoff models for the 
particular catchment for which i is the label. Then: 
(i) taken together { })()(),...,1()1( PYPY ii == αα  is an optimal set of parameter values 

for catchment i; 
(ii) for any given parameter labelled p, )()( , pYp iseq=α  is an optimal value of the 

parameter p when the other parameters are set to their generalised values 
).(ˆ)(,),1(ˆ)1(),1(ˆ)1(),...,1(ˆ)1( ,,,, PPpppp iseqiseqiseqiseq µαµαµαµα =+=+−=−= �

There is nothing in the sequential calibration procedure that can ensure that the set of 
values { })()(),...,1()1( ,, PYPY iseqiseq == αα  provides a good set of parameters for 
catchment i: this combination of parameter values is not even tried specifically within 
the overall sequential regression calibration procedure. 

The discussion on Section 6.3.1 introduced the idea of “true” values for various 
quantities. In the case of the generalised values, the role played by iµ  in the earlier 
section is now taken by the vector iseq ,µ , consisting of elements { })(, piseqµ  which are 
defined as the limiting values of { })(ˆ , piseqµ  as the number of catchments available for 
fitting the generalisation rule increases, along with the lengths of records for each of 
these. However, the definition of a “true” set of parameter values for a given catchment 
is more problematic. In the present context this “true” set of values needs to represent 
the aspiration that the generalisation rule estimates a single set of parameter values 
which would give good performance of the runoff model if flow data were available for 
the ungauged site. Thus the “true” values for a given catchment cannot be defined in 
terms of the limiting behaviour of iseqY ,  as the amount of data for the catchment 
increases. Depending on the approach taken, this leads to one of the following: 
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(i) a single vector defined as the convergence point of a set of vectors iseqY , , none of 
which has any claim to provide good performance for the given catchment and 
thus the convergence point cannot be considered “good”; 

(ii) a set of P vectors, each of which consists of the limit obtained by setting all but 
one parameter to the elements of iseq ,µ and optimising the other using an increasing 
amount of data. 

Thus neither approach leads to a definition of a “true” value which notionally gives 
best-possible performance for the target catchment. It therefore seems that the “true” 
catchment value needs to be defined in terms of the limiting values of the separate-
catchment calibration results { }iY , and this leads on to trying to define a viable 
uncertainty analysis based on simultaneous consideration of both sets of results { }iseqY ,

and { }iY .  

Figure 6.5 shows a schematic of the basic quantities that would be involved in an 
uncertainty model for dealing with generalisation by sequential regression for a model 
with two parameters. Here it is assumed that such a methodology would need to 
consider both sequential regression and ordinary generalisation results. In addition to 
these basic quantities it would be necessary to include a set of error components inter-
connecting the basic quantities. It is clear that this set would need to be extended beyond 
that used for analysing the simpler generalisation methods. The specification of the 
uncertainty model would need to consider the correlation between the different sets of 
error components: it is certainly not clear that the assumption of no-correlation can be 
justified for all pairs of components. One place where particular conceptual difficulty 
arises is the relationship between the two different versions of “true” generalisation 
values iµ and iseq ,µ . It does not immediately seem possible to argue that these quantities 
are identical and, if they are not, then some representation of the difference is needed: it 
may be necessary to allow for some type of bias, possibly depending on catchment 
properties, as well as a possible random component in the difference. If two separate 
vector quantities are needed, the relationships of the true catchment values, jT , to the 
two true generalisation values inevitably leads to dependence in the corresponding two 
generalisation errors. 

If a well-formulated model for the uncertainty associated with the sequential regression 
method of generalisation is to be constructed, it seems necessary to gain considerable 
experience with the empirical results of this approach, jointly with those the ordinary 
regression approach, so as to help decide on a suitable overall structure for the model.  

6.5.4 Fully-multivariate generalisation approaches 

As remarked in Section 6.3.3, the site-similarity and regression generalisation methods 
are implemented by performing separate generalisation analyses for each parameter, and 
these methods can therefore be considered as multiple-univariate in nature. An 
important feature of these methods is that separate choices are made for each parameter 
of the catchment properties that are used within the procedure. 
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Figure 6.5 Schematic of quantities involved in an uncertainty model for 
generalisation using sequential regression 

Parameter 2 

Parameter 1

( ))2(ˆ),1(ˆ ,, jseqjseq µµ
 sample sequential regression
 generalisation estimate 

( ))2(),1(ˆ ,, jseqjseq Yµ
sample sequential regression
estimate for parameter 2 

( ))2(ˆ),1( ,, jseqjseqY µ
sample sequential regression
estimate for parameter 1 

( ))2(),1( jj YY

 ordinary calibration
 estimate 

( ))2(),1( ,, jseqjseq µµ
true generalisation values for 
sequential regression calibration

( ))2(),1( jj µµ
true generalisation values for
regression calibration 

( ))2(ˆ),1(ˆ jj µµ
 sample regression 
 generalisation estimate

Notional contour of objective function
assuming the same criterion is used 
for both parameters 

( ))2(),1( jj TT

true values for catchment

( ))2(),1( ,, jseqjseq Tµ
parameter-wise true generalisation
value for catchment 

( ))2(),1( ,, jseqjseqT µ
parameter-wise true generalisation
value for catchment 
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In principle, improved modelling procedures are available if fully-multivariate statistical 
modelling methodologies are applied. However, any such improvement is largely 
illusory since reliance would need to be placed on assumptions which cannot be 
justified.  

The main candidate for potential improvement is the use of multivariate rather than 
univariate regression. The basic structure for this model is 

ε+= XBY ,              (6.5.4.1) 

where Y  is now a matrix of calibrated parameter values consisting of n rows, 
corresponding to the n catchments used for fitting the generalisation, and P columns, 
corresponding to the P parameters of the runoff model. As usual, X is a matrix of values 
of the catchment properties used for the generalisation, having one row for each 
catchment. The matrix B  is a matrix of regression coefficients having P columns: each 
column corresponds to the usual vector of regression coefficients in the corresponding 
univariate model. The error term ε  is an Pn ×  matrix of random variables which, in 
the cases discussed here, are assumed to be uncorrelated between different rows: 
correlation within the same row is allowed. 

In the case that the univariate regressions for all parameters of the runoff model all 
estimate regression-parameters for exactly the same set of catchment properties, the 
estimates obtained from separate univariate regression and multivariate regression are 
identical, given that the cross-parameter covariances of the multivariate parameters are 
assumed unknown. This result of identical results extends to the results of estimating the 
covariance matrix of the regression errors from either the multiple-univariate approach 
or the multivariate approach. Given that the covariance matrix of the errors will always 
be treated as fully-unknown and to be estimated, the main situation in which the 
multivariate regression approach can provide improved model performance is when the 
separate univariate regression models do not all contain exactly the same set of 
catchment properties.  This is readily achieved with separate regressions and, in the case 
of multivariate regression, is included within the general form of model in Equation 
(6.5.4.1) by imposing constraints on the elements of the regression-coefficient matrix 
B , that certain elements are known to be zero. In this situation estimates for the non-
zero elements of the matrix B  can be obtained from the multivariate model which have 
improved performance compared to the separate-regression results, in terms of both the 
estimation variance for the regression coefficients themselves and the predictive 
performance of the fitted regression estimator for a new catchment. Imposing zero-
coefficients in the regression estimates allows certain information to be transferred 
between the regressions for the individual parameters, which allows improved estimates 
to be constructed. 

Besides the complexity of implementing the methodology, the main reason for not using 
multivariate regression within the present project is that improvement supposedly 
gained over applying multiple-univariate regression arises by relying on certain 
assumptions which can not be justified: the importance of the exact truth of these 
assumptions within the methodology is unknown. The assumption is that it is known 
that particular (“true”/population) regression coefficients are zero. Of course this seems 
to be exactly the same assumption being made when a choice of regression-variables is 
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being made in univariate regression and certain variables omitted. However, there is a 
radically different stature being given to the assumption. In univariate regression, 
model-assessment procedures effectively allow the conclusion that not much is lost if 
certain coefficients are set to zero, given considerations about the extra estimation errors 
introduced by including unnecessary variables. In multivariate regression, the 
assumption that a regression coefficient is zero is used in a complicated way to change 
the estimates of all the other regression coefficients, extending to all the dependent 
variables. The resulting improved estimates depend strongly on the assumption that 
certain regression coefficients are zero. 

The way in which improved estimates are obtained in multivariate regression may be 
illustrated as follows. Suppose that a single sample of variables ( )VU ,  is obtained, and 
that the population mean value of U  has a known value Uµ . Then the raw estimate of 
V for the mean value of the population mean value of the Vs can be improved by 
considering 

 )()(ˆ UV UbVb µµ −−= .             (6.5.4.2) 

This is clearly unbiased for all values of b , and the variance is minimised by setting 

UU

UVb
σ
σ

=

and the estimation variance obtained for this value is 

{ } ( )21)(ˆvar UVVVV b ρσµ −=  , where 
VVUU

UV
UV σσ

σρ = .          (6.5.4.3) 

Here VVUVUU σσσ ,, are the variances and covariances of ( )VU , . The relevance of this to 
imposing zero-constraints in the multivariate regression model can be seen by noting 
that the raw estimate of the regression coefficient matrix, B̂ , given by 

( ) YXXXB T1Tˆ −= ,              (6.5.4.4) 

can be arranged into a set of components (Us) whose true mean values are assumed to 
be zero, and another set (Vs) whose mean values are to be estimated. The actual 
estimation method is more complicated than this argument indicates because of the need 
to estimate the values on which the adjustment depends. Some computational methods 
for fitting multivariate models in which regression coefficients are forced to be zero 
proceed by reformulating the model in Equation (6.5.4.1) in a vector form, which then 
involves working with a structured covariance matrix for new vector of model errors. 
Pollock (1979, Chapter 13) provides some details of this. Zellner (1971, Chapter 8) 
discusses multivariate regression models mainly in a Bayesian context, although 
formula for point estimates are also given. The work by both these authors originated in 
an econometric context, where the terminology “seemingly unrelated regressions” is 
used, emphasising that there need be no common explanatory variables across the 
regression models used for the different quantities being treated. 
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While it may be possible to argue on physical grounds that certain parameters of runoff 
models should be more highly related to certain geographically derived variables, or that 
the relationships with particular variables are likely to be positively or negatively 
dependent, the assumption of zero-regression coefficients is more problematic. Strictly, 
the consideration needs to take account of the other catchment properties that are to be 
included in the multivariate model. It seems unwise to base an estimation procedure on 
such an uncertain assumption. 

6.6 Uncertainty of estimated flood frequency curves 

6.6.1 Derivation of uncertainty bounds 

Uncertainty bounds were produced around each of the (univariate regression and site-
similarity) generalised flood frequency curves for each catchment, by using the methods 
described above to generate a large number of ‘generalised parameter sets with 
uncertainty’. The runoff model is then run with each of these parameter sets to produce 
time series of flows, flood frequency curves are derived from each flow series, and the 
set of flood frequency curves produced is used to estimate bounds. As in Chapter 5, the 
flood frequency curves here are calculated using the observed record of catchment 
rainfall for each catchment. 

A collection of 1000 parameter sets were used. The uncertainty bounds were estimated 
at each plotted return period by ranking the 1000 estimated peak flows at the given 
return period (lowest to highest) and selecting ranked points appropriate to the bounds 
required. That is, for central Z% uncertainty bounds (where (100-Z)/2% fall above the 
upper bound and (100-Z)/2% below the lower bound), the 1000*((100-Z)/2)/100th and 
1000-1000*((100-Z)/2)/100th points were selected, for the lower and upper bounds 
respectively. The corresponding points at each return period are joined up, to produce 
continuous bounds on the flood frequency curve. The 90, 95 and 99% bounds were 
calculated, to better illustrate the spread and asymmetry of the bounds. 

Figure 6.6 shows examples of uncertainty bounds on the generalised flood frequency 
curves, for two catchments. The bounds for all of the catchments, using each of the two 
generalisation methods and both of the two runoff models, are given in Appendix D.  

6.6.2 Analysis of uncertainty bounds 

As for the generalised flood frequency curves themselves, the uncertainty bounds vary 
by catchment, generalisation method and runoff model. Table 6.3 summarises the 
performance of the bounds according to whether the flood frequency curve from 
observed flows lies completely within each of the bounds (‘within’), lies outside an 
outer (99%) bound somewhere (‘outside’), or otherwise (that is, lies outside a 90 or 95% 
bound somewhere, but not outside either 99% bound). This again suggests that PDM 
site-similarity performs best overall, with the highest number of catchments classified as 
‘within’ and the lowest number classified as ‘outside’.  However, a closer look at the 
bounds  suggests that  those  from  PDM site-similarity  are also  the widest  for  a  large  
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Figure 6.6 Example of uncertainty bounds (blue; 50% - dot/dash, 90% - long 
dashed, 95% - short dashed, 99% - dotted) on generalised flood 
frequency curves (black solid), for two catchments. 
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Table 6.3 Summary of performance of uncertainty bounds, by the number of 
catchments for which the observed flood frequency lies a) totally within 
the uncertainty bounds, b) outside an outer bound somewhere or c) 
otherwise. 

PDM  TATE 
Classification univariate 

regression 
site- 
similarity 

 univariate 
regression 

site- 
similarity 

Within all bounds 
(90, 95 and 99%) 

86 103 77 80

Outside an outer (99%) 
bound somewhere 

9 3 17 17

Otherwise 24 13 25 22

number of catchments (about 60%), so it is not surprising that the observed flood 
frequency curve is more likely to lie completely within the bounds. These impressions 
are studied in more detail in the analysis that follows. 

Table 6.4 shows some results based on the widths of the uncertainty bounds, and these 
can also be used to summarise the more general properties of the statistical distributions 
reflecting the uncertainty of the generalised estimates of the flood frequency curves. For 
a given percentage level, say 95%, and a given return period, say 10 years, a relative 
width for the upper bound is defined as the ratio of the flood value at the upper 95% 
bound to the flood value at the 50% point for the same return period. This value is 
calculated for each catchment and averaged across catchments. Similarly, a relative 
width for the lower bound is defined as the ratio of the flood value at the 50% point to 
the flood value at the lower 95% bound for the same return period. Again these values 
are calculated for each catchment, and averaged. When defined in this way the relative 
widths have values greater than one and can be interpreted as factors to multiply and 
divide by to create upper and lower bounds about a central estimate. These are summary 
measures only and, for actual applications, it will be better to use the catchment-specific 
bounds derived separately for each target catchment. 

The results in Table 6.4 show that the upper uncertainty bounds derived for the PDM 
model are generally wider, in a relative sense, than those for the TATE, while the 
opposite is true for the lower uncertainty bounds. For the PDM, the uncertainty bounds 
associated with site-similarity generalisation are slightly wider than those for 
generalisation by regression, while the opposite is true for the TATE. 

A comparison between the relative widths of the upper and lower uncertainty bounds 
indicates rather different behaviour for the distributions describing the uncertainty for 
the PDM and TATE models. The plots in Figure 6.6 and in Appendix D show that these 
distributions are skewed towards the right when considered straightforwardly in terms of 
flow. Table 6.4 shows that, for the PDM model, the distributions are close to 
symmetrical when judged in a logarithmic sense (the relative widths for the upper and 
lower bounds are reasonably similar), while those for the TATE model are skewed to 
the left.  
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Table 6.4 Mean relative widths of uncertainty bounds. 

PDM TATE 
Return 
period 

Bounds univariate 
regression 

site-
similarity 

univariate 
regression 

site-
similarity 

10-years       
 99% upper 2.05 2.12  1.80 1.77 
 99% lower 2.22 2.23  3.12 2.41 

 95% upper 1.71 1.75  1.58 1.57 
 95% lower 1.74 1.80  1.95 1.85 

 90% upper 1.56 1.60  1.49 1.47 
 90% lower 1.58 1.62  1.68 1.64 
       
50-years       
 99% upper 2.17 2.23  1.81 1.75 
 99% lower 2.26 2.28  3.27 2.52 

 95% upper 1.79 1.83  1.61 1.55 
 95% lower 1.78 1.83  2.01 1.93 

 90% upper 1.62 1.66  1.50 1.46 
 90% lower 1.61 1.65  1.73 1.69 

The difference between the models  here may well be related to the different role played 
by the parameters for the two models: in particular the PDM model has the parameter fc

which acts multiplicatively on the rainfall before other modelling-elements apply, 
whereas the closest corresponding parameter with TATE acts once rainfall has been 
divided into different types of runoff. A general summary of the uncertainty bounds for 
the two models is that the upper uncertainty bounds are wider for the PDM than for the 
TATE, but the lower uncertainty bounds are wider for the TATE than the PDM. 
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7 COMPARISON WITH FLOOD ESTIMATION HANDBOOK 
METHODS 

Sue Crooks 

7.1 Introduction 

The continuous simulation method of flood frequency estimation has been developed as 
a possible next-generation approach following the Flood Studies Report (FSR), (NERC, 
1975 and Supplementary Reports) and its successor, the Flood Estimation Handbook 
(FEH), (Institute of Hydrology, 1999). The purpose of this chapter is to look at the 
concepts contained within the FEH and continuous simulation (CS) methods which are 
relevant to their application and usage and which are discussed through a number of key 
points. No quantitative testing has been undertaken. A brief summary is given first of 
the FEH methods of flood frequency estimation to facilitate comparisons between the 
two approaches. Definitions of catchment properties used in the text (e.g. AREA) are 
given in Table 2.3. 

7.2 FEH methods 

FEH comprises two main routes for estimating flood frequency, applicable to gauged 
and ungauged catchments, with choices for determining a particular route based on: 

• purpose of flood frequency estimation; 
• availability of observed data; 

PREVIOUS FAST TRACK BOX ON PAGE 77 

CHAPTER 7 COMPARISON WITH FLOOD ESTIMATION HANDBOOK 
METHODS  

It is appropriate to offer a comparison of approaches of the new continuous 
simulation methods with the current event-based recommended practice of the 1999 
Flood Estimation Handbook (FEH), which provided a new statistical flood peak 
approach, and the 2005 updates to the 1975 Flood Studies Report unit hydrograph, or 
runoff, approach to frequency estimation.   

This chapter therefore compares the two approaches with respect to principles, data 
requirements, handling of particular hydrological issues and what is known about 
general error levels.  It is recommended that a full numerical comparison is 
undertaken in the future with the aim of producing guidance as to under what 
circumstances advantages may accrue from the use of each approach.  Currently, 
more is plainly known about practical use of the FEH but more work has been 
undertaken on the quantification of errors and uncertainties of the continuous 
simulation approach as detailed in this report. 

NEXT FAST TRACK BOX ON PAGE 119 
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• catchment properties, notably area, permeability, urban extent and catchment 
storage (reservoirs and lakes). 

The two routes are a runoff method originally developed as part of the FSR and 
statistical analysis of observed peak flows. In all situations the use of observed data 
within application of FEH methods is emphasised, whether for the target catchment or 
for donor or analogue catchments. The importance of hydrological judgement is also a 
factor in use of the FEH. The main features of each method are summarised below. 

7.2.1 Runoff 

The FSR runoff method convolves a derived unit hydrograph with design storm rainfall 
with the addition of baseflow to calculate a flood hydrograph of related return period. 
The method is, thus, event based and produces design flood hydrographs for specified 
return periods. The method has recently been revitalised (Kjeldsen et al., 2005) partly to 
take advantage of extended datasets containing larger flood events and partly to improve 
the representation of hydrological concepts through updated analytical techniques. The 
revitalisation work has involved the development of the Revitalised Flood Hydrograph 
(ReFH) model with three new formulations for the loss, routing and baseflow 
components. The loss model is based on the PDM (Probability Distributed Model; see 
Chapter 3) assuming a uniform distribution of soil moisture capacity; the routing model 
retains the concept of a standard instantaneous unit hydrograph scaled to individual 
catchments but allows a more flexible shape; and the baseflow model allows for change 
during the flood event. 

The ReFH model has four parameters, one for the losses model, one for the routing 
model and two for the baseflow model, and two boundary conditions, the initial soil 
moisture and baseflow conditions. The values for the parameters and boundary 
conditions are estimated from observed event data for a gauged catchment or catchment 
properties for an ungauged catchment. Nine of the eleven FEH catchment properties 
listed in Table 2.3 (not ALTBAR and DPLCV) have been used to derive multiple linear 
regression equations for the parameters and boundary conditions. 

The design storm rainfall is calculated from a depth-duration-frequency (DDF) model, 
based on annual maximum rainfall data, which has six parameters which have been 
determined for all points on a 1 km grid across the UK (Institute of Hydrology 1999, 
vol.2). Catchment average sets of parameters are derived as the weighted average of 
point values which are then adjusted by multiplying by an areal reduction factor, 
incorporating two further parameters, both functions of catchment area. The design 
storm rainfall is distributed over a design storm profile which is symmetrical, single 
peaked and invariant with duration and location. A distinction in profile is made 
between rural and urban catchments (0.125 � URBEXT � 0.5) which use winter and 
summer profiles, respectively. 

Additional features of the revitalised runoff method are the application of a seasonal 
correction factor (summer/winter) to the design rainfall and the assumption that the T-
year flood is generated by the T-year rainfall. 
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7.2.2 Statistical 

The statistical method estimates a flood peak of a specified return period, T, as the 
product of an index flood, QMED, the median annual maximum flood, and a growth 
factor, where the latter is the ratio between the T-year flood peak and QMED. A growth 
curve relates growth factors to return period for a range of return periods. QMED and 
statistical parameters describing the growth curve are either determined from observed 
data or estimated from a multiple regression equation using six catchment properties for 
QMED and the use of a pooling group for the growth curve. The pooling group is 
assembled using observed data from hydrologically similar catchments determined by 
distance, in terms of AREA, SAAR and BFIHOST, from the subject catchment to give a 
combined record length of at least 5T years, where T is the target return period. 
Hydrological judgement is required to review, and possibly revise, the catchments 
contributing to the pooling group. The component procedures have been automated 
(Morris, 2003) to enable estimates of flood peaks to be determined for almost any site 
on the UK river network for return periods between 2 and 200 years. 

7.3 Comparison issues 

7.3.1 Ease of use 

FEH.  The FSR/FEH approach to flood frequency has been widely used by practitioners 
over the last 30 years and has become the standard method within the water industry. It 
comprises a suite of well defined and tested methods for estimating flood frequency for 
almost any site on a UK river, whether gauged or ungauged. In response to widespread 
feedback there are now many choices to make, depending on the purpose of the flood 
estimates, the availability of observed data and the type of catchment. The FEH 
approach, although more comprehensive, has become more complex to use than the 
FSR method, requiring a certain level of hydrological expertise/judgement in its 
implementation. There is scope for generating different flood frequency estimates 
depending on the user. 

CS.  The aim in developing the method has been to provide one overall inclusive 
method, probably requiring less hydrological knowledge from the user. For this to be a 
reality it requires all necessary software to be available to a user – for input climatic data 
(rainfall and PE at appropriate spatial and temporal timescales), runoff model, 
generation of model parameters, flood peak/event extraction and statistical analysis, 
uncertainty calculation and presentation of results.  

7.3.2 Hydrological representation 

CS and the FEH runoff method both use simplified mathematical representations of 
hydrological processes controlling the relationship between rainfall and runoff to 
generate flood frequency estimates. One of the main aims of such modelling is to 
achieve a balance between the level of simplification, availability of input data, 
observed or generalised, and the accuracy of the modelled flows. Theoretically, the more 
processes represented and linked to a catchment through calibrated model parameters, 
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the greater the model accuracy. However, in reality, increase in model complexity does 
not necessarily increase the level of model performance, indeed the opposite may be the 
case, particularly when the parameters are estimated through generalisation procedures. 

FEH.  The revitalisation of the FEH runoff method, through the development of the 
ReFH model, was instigated partly to provide a more physically based procedure for 
flood modelling. The loss model incorporated within ReFH is based on that of the PDM 
and the baseflow model now includes a linear reservoir store so, in concept and model 
parameters, the FEH runoff method has moved towards a continuous simulation 
approach. Surface runoff and baseflow are modelled separately which requires estimates 
of initial boundary conditions for soil moisture and baseflow. The revitalisation has 
increased the number of parameters to be estimated from three in the original runoff 
method to four in ReFH, plus the two initial boundary conditions. Design rainfall is 
estimated through a parameterised depth-duration-frequency model. 

CS.  Use of continuous simulation for flood frequency combines input of rainfall and 
representation of relevant hydrological processes in an overall model. Continuous 
accounting of water movement removes the need for separation of surface runoff and 
baseflow, and joint probability problems between rainfall events and antecedent soil 
moisture are automatically handled in the simulation. A deliberate policy of the 
continuous simulation approach to flood frequency has been to use parameter-sparse 
versions of the PDM and TATE models which are likely to result in more effective 
spatial generalisation. 

7.3.3 Catchment properties 

Many catchment properties (see Section 2.6) contribute to the relationship between 
rainfall and runoff which varies both spatially and temporally. Four of these, which have 
a particular impact on flood response, are discussed below. Measures of catchment 
properties are used to represent or determine similarity of catchments within 
generalisation procedures. However, it should be noted that similar values may not 
result in similar response characteristics due to differences in spatial distribution and 
other factors. The properties URBEXT and FARL are of particular note in this context. 

• Area 
FEH.  The minimum area using either method is 0.5 km2 and applicable to smaller 
catchments only where sufficient gauged data are available. A maximum of 500 km2

to 1000 km2 is recommended using the runoff method, depending on the 
applicability of a catchment wide design storm. Flood frequency estimates for larger 
catchments should use the statistical method. 

CS.  Catchment areas used in development of the method range from 0.9 km2 to 
1256 km2 (see Figure 2.2). Calibration and generalisation performance were shown 
to be not affected by catchment area (Figures 4.7, 4.8 and Appendix B). A lumped 
runoff model is not recommended for very large catchments (> 1500 km2) due to the 
lack of allowance for spatial variability of rainfall and catchment properties. 
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• Permeability 
Highly permeable catchments present particular problems for many simple 
modelling systems, including the determination of contributing groundwater 
catchment boundaries from digital terrain models. 

FEH.  A special permeable-catchment variation of the statistical method is 
recommended when the value of SPRHOST is less than 20%, to allow for the 
possibility of no flood peaks in dry years. This variation is not currently included in 
the automated version. 

CS.  Modelling of groundwater/baseflow is automatically included within the 
continuous simulation method. Calibration and generalisation performance across 
the range of catchment values of BFIHOST and SPRHOST are shown in 
Figures 4.7, 4.8 and Appendix B. The TATE model performs less well for the site-
similarity generalisation method with high values of BFIHOST (low values of 
SPRHOST), representative of permeable catchments. 

• Urban
FEH.  In the statistical method a flood frequency estimate is determined as for a 
rural catchment and then an urban adjustment factor, related to the value of 
URBEXT, is applied both to QMED (the median discharge) and the growth curve 
(applied when URBEXT > 0.025). In the runoff method allowances for urbanisation 
are incorporated in the procedures. Neither method is recommended when URBEXT 
exceeds 0.5 (tURBEXT > 0.707). Care is required when using urban catchments as 
donor or analogue sites and such catchments should not be used in pooling groups. 

CS.  Allowance for urbanisation has been made by ensuring that URBEXT was 
included in relevant regression equations or site-similarity groups. However, only 
six catchments have a value of URBEXT greater than 0.1, two greater than 0.3 and 
none greater than 0.5, which is too small a sample to fully assess the reliability of 
flood frequency estimates for medium to heavily urbanised catchments. 

• Reservoirs and lakes 
FEH.  The runoff method is recommended for reservoir flood estimation and for 
taking account of the attenuating effect of reservoir or lake storage for ungauged 
sites (FARL < 0.9). For gauged sites with FARL less than 0.9 (tFARL > 0.32) the 
statistical method can be used provided the impact of storage has been the same 
throughout the period of record. Care is required when using reservoired catchments 
as donor or analogue sites or when used in pooling groups to ensure that similar 
values of FARL apply. 

CS.  Allowance for reservoir/lake storage has been made by ensuring that FARL was 
included in relevant regression equations or site-similarity groups. However, only 
eight catchments have a value of FARL less than 0.9, with three less than 0.85 
which is too small a sample to fully assess the reliability of flood frequency 
estimates for reservoired catchments or those with considerable natural storage of 
surface water.  
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7.3.4 Output 

FEH.  Output from the runoff method is an event hydrograph of stated return period 
determined by the convolution of a design storm rainfall with a unit hydrograph. The 
generation of design hydrographs is required for particular problems such as reservoir 
flood estimation and storage routing. Output from the statistical method is normally a 
flood frequency curve for peak flow to cover a range of return periods. Both methods 
are limited to providing information for catchments treated individually. 

CS.  The method produces a complete time series of simulated flows from which, for 
flood frequency estimation, the highest peaks are extracted for statistical analysis. 
Potentially, the simulated flows can also be used for analysis of hydrograph shape and 
durations of flows provided the model calibration is applicable to the complete flow 
range.  In addition, if simultaneous rainfall can be simulated realistically for several 
catchments within a drainage network, flows can be simulated for these catchments and 
analysed jointly. 

7.3.5 Uncertainty 

All methods for flood frequency estimation incur a certain amount of uncertainty, 
whether in the use of observed data or from modelling and generalisation procedures. 
Lack of estimates of uncertainty does not imply accuracy of method. 

FEH.  The FEH suggests that a gauged record twice as long as the target return period is 
required to be confident that a statistical analysis of flood peaks provides a good 
estimate of the true flood frequency. Single site gauged records are generally not long 
enough to provide estimates for likely target return periods, hence the use of pooling-
groups, but donor or analogue catchments are never exact replicas. Long data records 
are also likely to be affected by changes within the catchment so that the record is not 
stationary. Formal estimates of uncertainty for FEH statistical estimates are still under 
development but users can explore measures of uncertainty through resampling and 
other techniques.  

CS.  The continuous simulation method has been developed with the aim of 
incorporating measures of uncertainty into the formulation of the calibration and 
generalisation methods both to enable overall uncertainty in the final flood estimates to 
be quantified but also to minimise levels of uncertainty throughout the procedure. 
Although measures of uncertainty may appear quite large, see Figure 5.6 and 
Appendix D, it is a strength of the CS method that sources of uncertainty have been 
quantified. 

7.3.6 Return period 

FEH.  The FEH states that the runoff method can be used for return periods between 2 
and 2000 years, and with caution can be extrapolated to 10000 years, with the statistical 
method appropriate for return periods between 2 and 200 years. Estimates for high 
return periods are based on extrapolation of statistical analyses of observed data – the 
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depth-duration-frequency of rainfall for the runoff method and pooled flow data for the 
statistical method. 

CS.  The CS method relies on the availability of suitable long-term rainfall and PE data 
at an appropriate timescale for the target catchment. While some long daily rainfall 
records are available, hourly continuous rainfall records are rarely longer than 20 years 
and neither provides a UK wide distribution. It is proposed that generated rainfall data 
will be used to provide long datasets (see Chapter 9) to exceed the required target return 
period, for use with continuous simulation models for flood estimation at high return 
periods. Generation of such rainfall data series introduces a further element of 
uncertainty which is propagated through the runoff model. 

7.3.7 Observed data 

FEH.  The incorporation of available observed flood data at the target site, or from 
donor or analogue catchments, at all stages of either method is emphasised to reduce 
uncertainty, particularly when estimating from catchment properties, and ensure 
relevance of flood frequency estimates to the catchment characteristics of the target site.  

CS.  The method at present does not directly incorporate use of observed data. However, 
it is possible that observed data from, for example a short record, could be used as a 
comparison with simulated flows obtained by generalisation, with adjustment of model 
parameters as necessary.  

7.3.8 Climatic variability 

Natural climatic variability over the UK tends to produce sequences of flood-rich and 
flood-poor years, and thus the period of observed record used within the development of 
flood frequency methods contributes to the overall uncertainty of the derived estimates. 
Seasonal variation is also a factor in flood frequency; for example, floods in large 
catchments occur almost exclusively in the winter from spatially extensive, long 
duration rainfall events, but in small urban catchments floods may be a particular 
problem in the summer from intense convective storms. 

FEH.  The FEH recommends a variety of ways to allow for the impact of climatic 
variability within observed records; for example all records used in pooling-groups must 
be of at least eight years and observed QMED values for records shorter than 14 years 
should be adjusted by reference to longer local records. Within the runoff model 
adjustments for seasonality have been introduced to allow for differences between 
winter (October-March) and summer (April-September) design rainfall and initial soil 
moisture. 

CS.  The main impact of climatic variability within the CS method is the flood 
characteristics of the observed data used in the model calibration. The (necessarily) 
short data record length (approximately eight years) and comparative lack of floods 
within the earlier pilot project (FD0404) were two of the reasons for updating the hourly 
database and including daily catchments with generally longer records (see Table 2.2) in 
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the current project. The impact of data period on calibration and modelling of major 
flood events was investigated as part of the model testing (see Chapter 4.6). Seasonality 
of flood events is automatically incorporated in the modelling method. 

7.3.9 Non-stationarity 

The concept of relating a return period to a flood event assumes that the conditions 
pertaining throughout the period of record have remained the same, both in terms of 
climate and catchment characteristics. Care is needed when using an observed record to 
ensure it is stationary. Generalisation procedures based on catchment properties and 
model calibration may limit their application to a particular timeframe. 

FEH.  Only stationary observed records should be used within either the runoff or 
statistical method. Statistical analyses are included in both the runoff (design storm 
rainfall) and statistical methods so neither method is suitable for including impacts of 
climate change on flood frequency. 

CS.  It has been assumed that all data records used in development of the method are 
essentially stationary. Potentially, the method can be readily used to estimate flood 
frequency with different climate scenarios, by generating alternative rainfall and PE data 
series. This assumes that model parameters, determined through calibration and 
generalisation methods relating calibrated parameters to catchment properties for a 
particular timeframe, are applicable under a changed climate.  

7.3.10 Spatial consistency 

Flood frequency estimates for locations within a river network (that is, drainage to a 
single point) should be consistent with each other. This requires that sudden increases in 
flow occur only at confluences, that flood estimates increase in a downstream direction 
and that estimates downstream of a confluence are consistent with those of the 
contributing upstream areas. 

FEH.  One of the problems with the original FSR methods was the use of regional areas 
for determining parameter values and statistical analysis at a limited number of point 
sites which led to discontinuity across area boundaries and spatial inconsistencies of 
flood estimates. Automation of the statistical method (Morris, 2003) has sought to 
eliminate, as far as possible, these problems. 

CS.  Spatial consistency depends on lack of discontinuities when generating parameters 
through generalisation methods for sub-catchments compared with the catchment as a 
whole. Chapter 8 indicates that this should be the subject of comprehensive testing. 

7.4 Concluding remarks on FEH and continuous simulation 

The ten points described above have discussed the main issues which may impact on 
choice of FEH methods or continuous simulation for determination of flood frequency 
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estimates for a catchment and uncertainties incurred with use of that method. Detailed 
quantitative comparisons between the FEH and CS approaches are required to explore 
these issues further and to enable the development of formal guidelines for 
recommended use with particular catchment types and purpose of the flood frequency 
estimates. 
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8 FUTURE DIRECTIONS 

Ann Calver 

This short chapter deals not with details of the research developed in the project but 
with the context in which the concluding chapter (Chapter 9 below) is set and should be 
read.  It has been mentioned at various junctures in this report that pragmatic decisions, 
based on hydrological judgement, have had to be taken in the course of the project (for 
time and budget reasons), such that it is recognised that by no means all possible 
alternatives have been explored.  One aspect of desirable future activity may therefore 
be to explore the implications of these choices, unless the practical decisions made 
attract a wide degree of acceptance and agreement, which may be the case.  The main, 
but not only, such issues relate to alternative choices within both the regression-type and 
similarity-type spatial generalisation and the possibility of establishing hybrid and split-
region methods.  Whilst types of errors in spatial generalisation have been quantified 
(Chapters 5 and 6), attribution to the multiplicity of their sources is not readily achieved 
but may be expected to assist tailored generalisation methods to particular types of 
situation.  Further techniques such as self-organising mapping may offer potential.  The 
explicit, rather than implicit, treatment of snowmelt, whilst maintaining a parameter-
sparse formulation, may also be considered desirable. 

There are, too, extra issues which, whilst beyond the current project remit, it would be 
additionally useful to explore. Amongst these is the testing of what is essentially a point 
frequency quantification method in the full spatial context for consistency of estimates 
(in the same way as the Flood Estimation Handbook was, after publication, tested in 
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CHAPTER 8   FUTURE DIRECTIONS 

In this fast track narrative, and to a greater extent in the text of this report, note is 
made of research issues which could potentially be explored in the context of flood 
frequency quantification through the modelling of continuous river discharge time 
series.  The key such issues are stated in the text of this chapter.  They relate to 
variations on the approaches developed here, other possible strands of the modelling 
approach to ungauged site flood frequency estimation, and the ‘next steps’ which 
need to be explored between the methods presented here and their practical use. 
These cover not only the conversion of research code to software and user guidance 
but also important issues of performance testing of a point estimation technique in a 
continuous spatial context. The project team has formulated proposals to address the 
most pressing of these issues: wider hydrological research advances of the coming 
years may be expected to offer increasing evidence in the field of transfer of 
information for prediction at data-sparse sites. 
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project FD1603).  Also important is the consideration of how specific local knowledge 
can best be incorporated into the procedures for ungauged sites.  Data and model 
structure uncertainties (in addition to the model parameter uncertainties evaluated in 
Chapter 6 above) may be considered worthy of exploration. 

A third main category of consideration for the future is the follow-on activities for 
engineering use of the conclusions of this work, modified if appropriate by the above 
activities.  These primarily cover detailed numerical comparison with the Flood 
Estimation Handbook methods and advice for preferred usage, conversion of research-
level code to software, the production of guidance documentation and incorporation of 
user feedback in testing programmes. 

In the time these developments will take, a watching brief should be kept on 
hydrological research advances to determine whether other approaches are able to offer 
enhancements – whether, for example, subsets of large detailed areal catchment models 
can produce locally-ungauged flood frequency estimates, and whether channel (as 
opposed to catchment) properties can perform in the spatial generalisation context to 
higher than current levels.  The runoff modelling research of this project needs to be 
accompanied by a sufficiently high level of performance of the long time series rainfall 
modelling which drives the temporally-extended use of the method: a pertinent issue 
here may be the merits of spatio-temporal statistical methods in relation to downscaled 
physical methods. 

The following and final chapter of this report presents the best recommendations for the 
continuous simulation method for flood frequency quantification at the current stage of 
research. 
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9 USE OF METHODS AND IMPLEMENTATION 

Ann Calver, Nick Reynard, Sue Crooks, Alison Kay, David Jones, Simon Dadson 

This final chapter brings together the research developments elaborated in earlier 
chapters to describe the way in which it is recommended that the continuous simulation 
method is currently best applied for the estimation of river flood frequencies. Plainly, 
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CHAPTER 9   USE OF METHODS AND IMPLEMENTATION 

The final chapter of the report recommends how the research findings are currently 
best used for the quantification of river flood frequencies.   

For a gauged site the calibration of the chosen runoff model, or transposition from a 
good ‘matching’ catchment, provides the parameters to generate a long series of river 
flows from which flood statistics and hydrograph characteristics are derived. For an 
ungauged site, catchment characteristics allow establishment of runoff model 
parameters to similarly generate long time series of river flows. For users preferring a 
site-similarity approach (here, with the Probability Distributed Model, showing 
overall best performance to levels of recurrence interval suited to checks by 
observations), pooling groups are established and weightings applied to their 
calibrated runoff model parameter values. For those preferring a possibly simpler 
regression approach (the Time-Area Topographic Extension model in this context, 
with a univariate approach, gave overall best performance), the established 
predictive equations are applied to derive model parameters from the catchment 
properties. It is to be noted that ‘overall’ performance across the 119 sites is not the 
same as best performance at a specific site. Local knowledge, in terms of prior 
estimates or observations of large floods, is always a useful guideline. The measures 
of uncertainty developed can be applied to final estimates in detailed or summary 
form. 

Whilst the provision of long rainfall series for driving the generation of long runoff 
series is not the remit of this project, a demonstration is provided, using a stochastic 
rainfall generator, to show how river flood frequencies are established to recurrence 
intervals greater than those appropriate to direct observation. The way in which 
continuous simulation methodology readily allows variability in climate conditions is 
also indicated. 

The report ends with recommendations for dissemination of the continuous 
simulation methodology which include scientific and practitioner meetings and 
liaison, consideration of any additional research necessary, the trialling of methods, 
and the feedback of practical experience of use, prior to later consideration of 
development of software tools. 

END OF FAST TRACK BOXES
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experience of practical use will, over time, feed into the refining of the method 
(including comparison of performance with the Flood Estimation Handbook, cf. Chapter 
7), in addition to incorporation of ongoing research advances (as for example those 
indicated in Chapter 8). 

This chapter considers first the gauged site case, then the ungauged case. As well as 
spatial extension of the method, a demonstration of temporal extension of the method to 
high recurrence intervals is included (recognising, however, that generation of rainfall 
inputs is not the remit of this project). Comment is also made on the handling of 
climatic variability. The chapter concludes with a proposed outline structure of 
dissemination following the release of this report. Overall it is considered that it has 
been timely and productive to have investigated the potential of the runoff modelling 
approach to river flood frequency, that the approach has much to offer and can best 
progress further with informed liaison between practitioners and research developers. 

9.1 Recommendations for gauged sites 

To consider a site as ‘gauged’ in this context in practice means that there are sufficient 
rainfall and river flow data of sufficiently good quality at daily, and preferably sub-daily, 
discretisation that a catchment conceptual runoff model can be calibrated with a degree 
of confidence. It is helpful if floods have occurred in the period and the catchment has 
not experienced great change with respect to dominant runoff generation mechanisms. 
Whilst this decision is a matter of hydrological judgement in the light of other factors 
such as purpose of frequency estimate and associated engineering risk, a guideline 
length of good data record would be a minimum of two years: whilst the continuity of 
discharge data is important, that of the rainfall record is even more so. For shorter 
records and those of poor quality, the site should primarily be treated as ungauged.  

The next step for a site considered as gauged is to establish the parameter values of the 
runoff model. This project provides over 100 such sets with high quality calibrations for 
the PDM and TATE models. There are, in addition, other existing calibrated parameter 
sets from modelling undertaken in a number of other contexts: these should, however, 
be checked with respect to purpose of calibration in that it is plainly important that flood 
peaks have been accorded due weight. The question of which model to use depends, 
amongst other considerations, on personal preference and experience of use.  

There will be gauged sites for which calibrated parameter sets are not available or are of 
poor or doubtful quality. One route for these catchments is to transpose runoff model 
parameters from a calibrated catchment deemed, from hydrological experience, to be 
sufficiently similar in response to the site in question. In this case, of transposing model 
parameters from a physiographically similar catchment, river flow and rainfall data are 
not strictly necessary (see also Section 9.2 below on ungauged sites): it is, however, an 
approach included here since the availability of data substantially assists in establishing 
transposition possibilities. Note that catchments do not have to be similar in terms of 
rainfall characteristics in this method: it is the response pattern to rainfall which is the 
key factor. The potential for transposition is therefore based on catchment configuration 
and  material properties, which  need not be confined to geographical proximity.  This is  
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Figure 9.1 Use of the continuous simulation method for gauged and ungauged 
sites. 

an approach requiring hydrological skill and one for which guidelines can be built up as 
experience of use develops. 

For a gauged site for which calibrated parameters are not yet established, and which are 
not suitable for or thought adequately covered by the transposition route of the above 
paragraph, the chosen runoff model can be calibrated with the rainfall data as the driving 
time series and the flow data as the target output. Experienced users may wish to carry 
out this step themselves: additionally or alternatively the successful automated 
calibration methods of Chapter 4 of this report for the PDM and TATE models offer the 
potential to be encapsulated in a user-driven system. 

These methods allow the derivation of numerical values of runoff model parameters at 
the site of interest. With the compiled / packaged code, and the long rainfall time series 
(sourced elsewhere beyond this project), they can be used to run the model and produce 
continuous flow time series, or indeed suites of these, which yield the aspects of flood 
flows of interest, including characteristics of the larger, rarer floods. To demonstrate the 
output of flood frequency curves including the more extreme floods associated with 
longer-than-commonly-observed rainfall series, a brief example is included in Section 
9.3 below, after the consideration of ungauged sites to which the temporal extension 
issue also applies. Figure 9.1 summarises these gauged site procedures: it also shows the 
ungauged procedures which are the subject of the next section. 

Transposition of model  
parameters from  
‘matched’ calibrated site

Rainfall and runoff
data availability 

Calibration of runoff model

Long rainfall time series 
[with or without climate variability]

Run runoff model over long period  
to generate long river flow time series

Choice of runoff 
model(s) 

       good:- 
‘GAUGED SITE’

          poor:- 
‘UNGAUGED SITE’

Alignment with  
‘local knowledge’

Allowance for 
uncertainty  

                      FLOOD FREQUENCY ESTIMATION 
                      TO HIGH RECURRENCE INTERVALS 
[statistics, flood peaks, hydrograph characteristics, flow durations]

Generate site  
catchment properties

Derive runoff model 
parameters 

Site-similarity: 
establish pooling  
group sites: weight
runoff model  
parameters 

Regression: 
apply regression 
equations 
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9.2 Recommendations for the ungauged site 

The ‘ungauged’ site is that with little or no rainfall and river discharge data, or with data 
which are discontinuous and/or of poor quality. In practice, the majority of sites for 
which flood frequency estimates are required are likely to fall into this category. It is a 
recognition, indeed, that data availability is in practice unlikely to be adequate (if only 
because of length of record with respect to inclusion of rare events) that has made it 
necessary to explore countrywide flood frequency methods offering estimation for the 
data-sparse areas.  

Section 9.1 above (for the gauged site) indicates that the direct transposition of runoff 
model parameter values from a sufficiently similar calibrated site is also a possibility for 
the ungauged site. In this latter case more reliance is necessarily placed on judgement of 
similarity because of the scarcity or absence of measured hydrological response. It is 
therefore to be used with extreme caution. 

The more general route for ungauged site estimation is the use of catchment properties 
to spatially-generalise the method and allow derivation of runoff model parameter 
values. The results reported from generalisation methods developed in Chapter 5, seen 
also in the light of uncertainty estimates of Chapter 6, offer a choice of ways forward for 
the ungauged site. Note, especially, that testing of alternative methods can only be done 
up to the recurrence interval lengths that observations allow: extension to rarer events 
cannot be conclusively proven to be of a particular quality. 

Overall across Britain, for the sample of catchments tested and to the recurrence 
intervals for which observations afford testing potential, the generalisation method 
which gave the best results was a site-similarity variant used with the PDM runoff 
method. This procedure could therefore be encapsulated in a pooling group search tool, 
with a variety of levels of user-interaction, to provide the runoff model parameters 
values, suitably weighted, for the target ungauged site.  

It is, however, extremely important to note that for many of the catchments used to test 
the procedures there are methods other than the one with the best overall performance 
across the country which perform better in establishing runoff model parameter values 
for the target site (still with the proviso of recurrence interval range). These involve both 
the TATE and PDM models: as well as a site-similarity route with the TATE, they 
include both univariate and sequential regression approaches with both runoff models. A 
valuable procedure to try to establish in the near future is guidance as to when to 
override the overall-best-performing method by one with evidence of a higher standard 
of performance in a particular type of ungauged site. It is perhaps unsurprising, given 
the multivariate nature of river flood generation, that it is not an immediately 
straightforward matter to characterise the pattern of contributions to generalisation 
errors, nor at this stage to be able to offer rigorous guidelines. The best current 
recommendation for departure from the averagely-best route is similarity of target 
ungauged site to a test catchment in this project which showed enhanced predictive 
performance with the alternative methods listed at the beginning of this paragraph.  
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Site-similarity Multiple univariate regression 
PDM TATE 
Site: 78005, Kinnel Water at Bridgemuir  
(229 km2) 

Site: 53009, Wellow Brook at Wellow  
(72.6 km2) 

Catchment properties: 
AREA=229.0, BFIHOST=0.434, DPLBAR=21.4, 
DPSBAR=110.7, FARL=0.997, PROPWET=0.62, 
SAAR=1397, URBEXT=0.000, HOSTNG=44.74, 
HOSTP=0.138, HYDC=159.5, LANDA=38.6, 
LANDB=29.4, LANDC=21.2, DRAIN2=1.9835 

Catchment properties: 
AREA=73.53, BFIHOST=0.643, FARL=0.987, 
PROPWET=0.37, SAAR=999, SPRHOST=27.3, 
URBEXT=0.038, PORO=50.1, LANDA=48.8, 
LANDB=2.0, DRAIN2=0.6805 

Pooling group catchments (and their weights) for 
each parameter: 
fc:  
06008 (0.067), 07004 (0.124), 13001 (0.045), 47008 
(0.075), 50006 (0.075), 54025 (0.075), 57005 (0.089), 
60002 (0.151), 60003 (0.049), 79005 (0.251). 
cmax:  
27043 (0.103), 55008 (0.102), 60002 (0.065), 64001 
(0.095), 65006 (0.025), 78003 (0.147), 79002 (0.165), 
79003 (0.068), 79005 (0.148), 81002 (0.082). 
k1:  
03003 (0.072), 50006 (0.082), 60002 (0.073), 64001 
(0.193), 79005 (0.167), 81002 (0.129), 81006 (0.038), 
93001 (0.041), 94001(0.115), 95001(0.089). 
kb: 
03003 (0.094), 06008 (0.094), 07001 (0.126), 27043 
(0.027), 47008 (0.048), 66011 (0.084), 79003 (0.119), 
79005 (0.194), 81002 (0.139), 81006 (0.076). 

Weighted PDM parameters for target site: 
fc=1.2559 
cmax=95.8854 
k1=17.2766 
kb=63.9202 

TATE parameters for target site, from 
predictive equations: 
crm=0.3171 
csm=0.2274 
cfr=0.2433 

Figure 9.2 Worked examples of ungauged site methodology; solid line – 
generalised, dotted line – observed (withheld in derivation). 
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Personal preference of methodology is also to be borne in mind. Users may perceive the 
application of a regression approach to be a more straightforward procedure than that of 
a pooling group method and one which may avoid the occasional difficulty of 
establishing such groups for atypical ungauged sites. Regression approaches generate 
runoff model parameter values directly from inserting site catchment properties into the 
predictive equations. If a regression approach is sought, the best overall performance 
(again with site-specific and recurrence interval provisos) is currently provided by 
univariate regression with the TATE model. 

Once runoff model parameters are established for the ungauged site, the model is run (as 
in the case of the gauged site above) to derive long continuous river flow time series 
from which flood statistics and hydrograph characteristics can be readily derived. 

Figure 9.2 gives worked examples of deriving flood frequency curves for ungauged sites 
for both a site-similarity method using the PDM and a univariate regression approach 
with the TATE model: details of approaches are as developed in Chapter 5 of this 
report. 

The levels of uncertainty around flood frequency curves for ungauged sites resulting 
from model parameter uncertainties provide a useful context in which flood frequency 
results are handled in practice.  At this stage of the continuous simulation procedure it is 
recommended that the overall characteristics of the results (Chapter 6 and Appendix D) 
serve as quantitative guidelines of a general nature. The procedures can, if appropriate 
as the uptake of continuous simulation evolves, be encapsulated in software tools for the 
user or in look-up tables / diagrams for representative types of situations. 

9.3 Temporal extension of the continuous simulation method  

Both gauged and ungauged site methods use long rainfall time series to drive the 
catchment runoff model (see lower part of Figure 9.1 above): the long periods increase 
the likelihood of inclusion of rarer larger floods. Some sites may have appropriate 
precipitation observations, but many will not. Defra is elsewhere sponsoring research on 
temporal-spatial rainfall (and evaporation) modelling with the aim of fulfilling this role. 
In order to demonstrate the runoff modelling procedures of this FD2106 project 
extended in time to cover higher recurrence interval floods, a simple stochastic rainfall 
generator has been used.  

Hourly rainfall data were synthesised using this generator (Goodsell and Lamb, 1999), 
where parameters describing storm duration, mean intensity and arrival time were 
derived from analysis of the observed record. The storm profile was based on a 
dimensionless average profile perturbed by an amount generated from a lognormal 
distribution and smoothed according to the first-order autocorrelation coefficient. 
Allowance for seasonality was achieved by simulation of separate series for winter 
(October to March) and summer (April to September). The model was calibrated by 
adjustment of the first-order autocorrelation coefficient for the summer to achieve a fit 
between observed and simulated peak rainfall data taken from an analysis of the whole 
series.  Frequency  analyses  were  compared  for  hourly  data  and  cumulative  12-hour  
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a) b) 

c) 

Figure 9.3 Temporal extension of the continuous simulation method for catchment 
90003: a) simulated (red circles) and observed (black squares) hourly 
rainfall frequency distribution, with lines showing fitted 3-parameter 
generalised Pareto distribution (GPD); b) as a) but 12-hourly rainfall 
frequency distribution; c) flood frequency distribution from observed 
flows (black, open circles and dotted line), simulated using observed 
rainfall (black, filled squares and dashed line) and simulated (multi-
coloured solid lines) using stochastic rainfall series. 
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rainfall, the latter ensuring realistic distribution of rainfall within the storm profile.  An 
ensemble of rainfall series was generated using different random seeds to initialise the 
model. Fifteen rainfall series, each of 400 years, were derived by interleaving six-month 
sequences of  winter and summer rainfall and these series were used to drive a calibrated 
runoff model.  The generated rainfall and the resultant river flood frequency curves to 
recurrence intervals of 200 years are shown for an example catchment in Figure 9.3.    

In using flood frequency estimation for scheme or strategic planning, the question of 
allowance for climatic variability arises.  This is not a main remit of this project: it is, 
however, useful to note that variability in climate series can very readily be incorporated 
into the continuous simulation approach to flood frequency quantification if required.  In 
brief, scenarios of change in climate variables (under chosen emission scenarios and 
derived from available atmospheric circulation models) should be appropriately scaled 
in space and time before application as driving precipitation and evaporation input series 
to the catchment runoff models.  It is to be borne in mind that uncertainties in data and 
methods are of a similar order to the magnitude of possible physical changes.  Changes 
can be applied transiently or as established new regimes, with statistical expressions of 
risk respecting the degree of non-stationarity of the situation. 

As with any countrywide generic method, a continuous simulation approach can 
profitably be enhanced by consideration of local knowledge, whether of historic flood 
records or of estimates of flood frequency by earlier or alternative methods. 

Figure 9.4  Chief next-steps in river flood frequency estimation by continuous 
simulation  

• Familiarisation with FD2106 Final Report contents 
- web postings 
- scientific meetings 
- journal publications 
- practitioner seminars 

• Consideration of the further research issues (Chapter 8) 
- client - researcher liaison 

• Trialling and feed-back of experience 
- development of opportunities for trialling 
- researcher / practitioner meetings 
- feedback into methodologies 

• Consideration of specification of tools 
- client / researcher / software-house liaison
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9.4 Outline structure of dissemination for continuous simulation

Chapters 1 to 6 of this report have detailed the research of project FD2106 on the 
continuous simulation method for river flood frequency quantification.  Comparison in 
terms of principles has been made with the Flood Estimation Handbook in Chapter 7.  
Whilst Chapter 8 gives an overview of what research issues remain of value in taking 
forward the continuous simulation approach, this final chapter has offered the best 
recommendations for use at the current state of information.  An outline plan of the best 
next-steps recommended for the dissemination and enhancement of the continuous 
simulation method is proposed in Figure 9.4. 
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