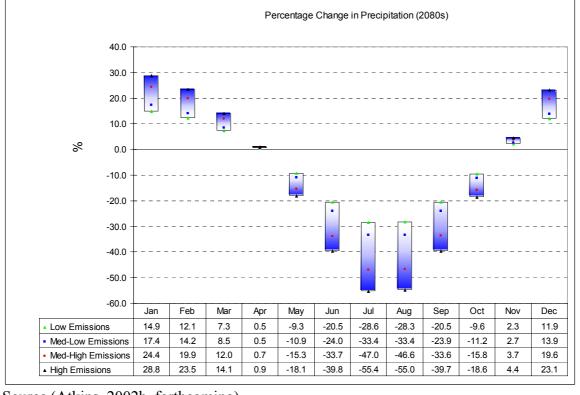
4. RIVER APPLICATIONS

Summary guidance tables

Table 4.1Rainfall


Importance of alimete	ahanga ta this task	High	
Importance of climate change to this task Input variables in UKCIP02 or this report		High Mean seasonal and extreme daily rainfall	
Relevant sections in UKCIP02 or this report		Chapters 4 and 5 of UKCIP02, particularly percentage changes in extreme daily averaged rainfall in Figure 55 (Page 59) and annually averaged rainfall in Figures 35-38 (Page 33-36)	
Confidence in climate change information		High (Increased winter rainfall depths and intensity) Medium (Decreased summer rainfall)	
Appropriate level(s) of climate change assessment	A national contingency allowance plus sensitivity testing is appropriate and consistent, but scenario testing may provide greater insight into the range of possibilities in major projects.		
National allowance plus sensitivity test	Add the established percentage increase allowance to present-day levels. At present, the 20% allowance (MAFF, 2000) for river flow is probably best applied to all rainfall durations, but refined recommendations may be developed in the near future.		
Modelling	Apply scenario modelling using information from Chapters 4 and 5 of UKCIP02 for the four different scenarios to assess the range of outcomes which may occur under future climate change. The scenarios provide information only on daily, monthly and seasonal rainfall, and for the moment, there is no additional information for other rainfall durations.		
	The typical approach to rainfall in climate impacts models involves applying monthly rainfall change factors to historic daily rainfall series. A rainfall change factor is the climate scenario rainfall depth (for a defined period) divided by the 1961-1990 rainfall depth. For any study the factors may be derived from the most appropriate UKCIP 50km ² grid square. Alternatively the climate scenario data may be interpolated but this may give a false impression of precision.		
	The simple approach of interpolating between UKCIP grid squares has some shortcomings, and in some cases it may be appropriate to use a statistical downscaling model such as the SDSM developed by Wilby <i>et al.</i> (1998, <u>http://www.sdsm.org.uk/)</u> .		

Derived loading variables	Rainfall depths
Derived structure variables	
Derived economic variables	
Investment decisions	

Demonstration calculations

The percentage change in rainfall for all four climate scenarios for the Ouse catchment is shown below.

Change in average monthly rainfall for the 2080s for the Sussex Ouse catchment

Source (Atkins, 2002b, forthcoming)

NB: Daily averaged rainfall is directly useful only for large catchments but, pending further research, the percentage changes for daily averaged rainfall probably represent best estimates for other durations as well. When planning a study, it should be remembered that there are many uncertainties about the structure and sequencing of rainfall that limit the predictability of changes in extremes, no matter how much modelling is undertaken.

Table 4.2Catchment wetness

Importance of climate change to this task Medium		Medium	
Input variables in UKC		Soil moisture	
Relevant sections in UKCIP02 or this report		Soil moisture section of Chapter 4 of UKCIP02,	
1		particularly Table 50 (Page 50)	
Confidence in climate of	change information	High (decreases in summer and autumn in the	
	C	south east)	
		Medium (increases in winter and spring in the	
		north west)	
		Low (if used for individual catchment studies)	
Appropriate level(s) of climate change assessment			
	The catchment scale or local impacts of changing soil moisture contents can only be estimated using appropriate modelling techniques. In flood defence design studies that use FSR / FEH rainfall-runoff modelling, sensitivity analysis of the impact of catchment wetness on peak flow should be completed irrespective of any climate impacts assessment.		
National allowance			
plus sensitivity test			
Modelling	Catchment soil moisture contents can be modelled using rainfall-runoff models (Table 4.5).		
Derived loading variab		Catchment wetness	
Derived structure varia			
Derived economic variables			
Investment decisions			
Demonstration calculations			

Table 4.3Urban drainage volume

Importance of climate change to this task		High	
Input variables in UKO	CIP02 or this report	Chapter 5 of UKCIP02, particularly percentage	
		changes in extreme daily averaged rainfall in	
		Figure 55 (Page 59)	
Relevant sections in U	KCIP02 or this report	Table 4.1 of this report	
Confidence in climate	change information	Medium/Low	
Appropriate level(s)	The general national	allowance for rainfall plus sensitivity testing is	
of climate change		can be done for the moment. Scenario testing may	
assessment	provide greater insight	into the range of possibilities in major projects.	
National allowance		nal precautionary allowance to present-day volumes.	
plus sensitivity test	For the moment the 2	0% allowance for river flow can be applied to all	
	rainfall durations, but	refined recommendations may be developed for the	
	much shorter duration r	relevant to urban drainage.	
Modelling	Apply scenario modelli	ing using results from Chapter 5 of UKCIP02 for the	
		s to assess the range of outcomes which may occur	
	under future climate cl	hange. The scenarios provide information only on	
	daily, monthly and se	easonal rainfall and, for the moment, there is no	
	additional information	for other rainfall durations.	
	The use of weather generators to derive sub-daily rainfall series is now		
	widespread amongst drainage engineers. Climate change cou		
		ls but further research is required in this area before	
	any definitive guidance	e can be given.	
	UK Water Industry Re	search Ltd has funded a major project into changes	
	in daily and sub-daily	rainfall intensities but this research is not in the	
	public domain.		
Derived loading variab	les	Rainfall intensity and drainage volume	
Derived structure varia	ables		
Derived economic variables			
Investment decisions			
Demonstration calculations			
	NB: Daily averaged rainfall may provide a poor representation of high intensity (short duration)		
rainfall but, pending further research, the percentage changes for daily averaged rainfall probably			

NB: Daily averaged rainfall may provide a poor representation of high intensity (short duration) rainfall but, pending further research, the percentage changes for daily averaged rainfall probably represent best estimates for other durations as well.

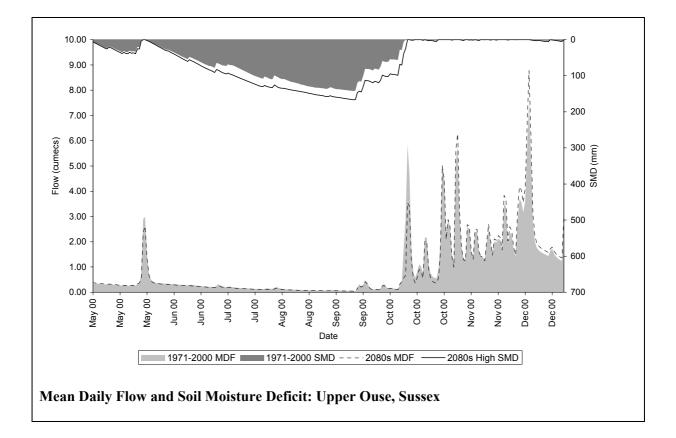
Table 4.4Pumped drainage volume

Importance of climate change to this task Hig		High
Input variables in UKCIP02 or this report		Chapter 5 of UKCIP02, particularly percentage
		changes in extreme daily averaged rainfall in
		Figure 55 (Page 59)
Relevant sections in Ul		Table 4.1 of this report
Confidence in climate	change information	High for mean sea level (Table 3.1)
		High for winter rainfall increase (Table 4.1)
		Medium for summer rainfall decrease (Table 4.1)
Appropriate level(s)		llowances for rainfall and mean sea level rise, plus
of climate change		robably the best that can be done for the moment.
assessment	0,00	provide greater insight into the range of possibilities
	in major projects.	1
National allowance		onal precautionary allowance to present-day levels.
plus sensitivity test		0% allowance for river flow can be applied to all
	-	refined recommendations may be developed for the
Madalling	shorter duration relevant to pumped drainage.	
Modelling	Apply scenario modelling using results from Chapter 5 of UKCIP02 for the four different scenarios to assess the range of outcomes which may occur	
		hange. The scenarios provide information only on
	daily and seasonal rainfall, and for the moment, there is no additional information for other rainfall durations. However, the typical slow	
	response of pump drained fenland catchments means that percentage	
		Il is probably sufficiently refined for initial analysis
	of impacts.	
	I F	
Derived loading variab	les	Rainfall volume
Derived structure varia		Pump sizing and operational cost changes over
		time
Derived economic variables		Frequency of flood damage through capacity
		exceedence
Investment decisions		Pump operational procedures, renewal and
		replacement cycles
Demonstration calculations		

Demonstration calculations

NB: Daily averaged rainfall may provide a poor representation of shorter duration rainfall but, pending further research, the percentage changes for daily averaged rainfall probably represent best estimates for other durations as well.

Table 4.5River flow


Importance of climate change to this task		Medium
•		
Input variables in UKCIP02 or this report		Rainfall intensity
Relevant sections in Ul	XCIP02 or this report	Chapters 4 and 5 of UKCIP02, particularly
	-	extreme daily rainfall in Figure 55 (Page 59)
Confidence in climate	change information	Medium
Appropriate level(s)	National contingency	allowance for possible river flow increase plus
of climate change	sensitivity testing may	be adequate, but modelling is probably justified for
assessment	assessment of new defe	
National allowance	Add established 20% allowance to present-day winter river flow rates (but	
plus sensitivity test	ongoing Defra /Agenc	y research at CEH may provide a refinement to this
	allowance).	
Modelling	Use catchment or site-specific rainfall and evapotranspiration scenarios as	
C		imulation river modelling (see detailed technical
	statement in Section 4.2	e (
Derived loading variables		River flow
Derived structure variables		
Derived economic variables		
Investment decisions		

Demonstration calculations

The Ouse at Ardingly was modelled from 1971-2000 and for the UKCIP98 2080s High climate change scenario. Rainfall and evaporation were considered in the model using the approach described in Table 4.1.

The graph below shows the Mean Daily Flow (MDF) and Soil Moisture Deficit (SMD) for the catchment between May 2000 and January 2001. This period covers the peak flows during the Autumn 2000 floods.

In this example the average increase in annual maximum of MDFs between the 2080s and the 1971-2000 period was 7% and the increase in the Autumn 2000 flow was 17%. Soil moisture deficits were larger during the summer due to increased evaporation and reduced rainfall. Peak flows in the summer months were reduced.

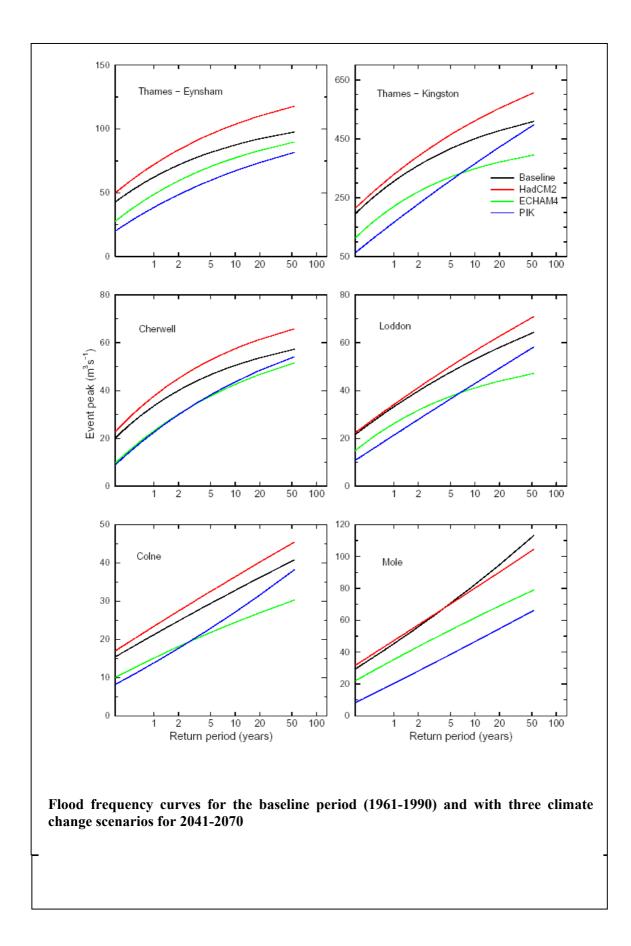
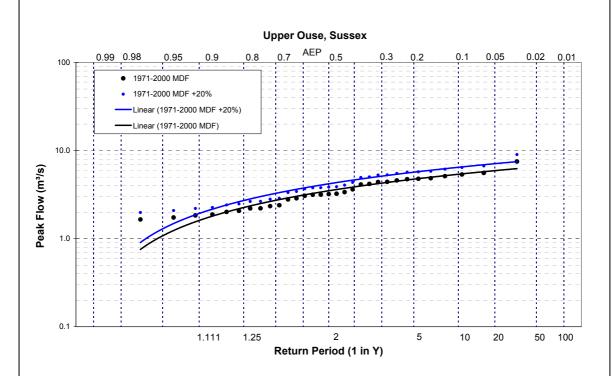


Table 4.6Extreme river flow and level

Importance of climate	change to this task	Medium/High	
Input variables in UKCIP02 or this report		Rainfall intensity and river flow	
^			
Relevant sections in UI	XCIP02 or this report	Chapters 5 of UKCIP02, particularly extreme daily	
		rainfall in Figure 55 (Page 59) and Table 4.5 of	
		this report	
Confidence in climate	change information	Medium	
Appropriate level(s)	National allowance plus sensitivity testing may be adequate, but modelling		
of climate change	and economic impact a	are probably justified for assessment of new defence	
assessment	schemes.	1 55	
National allowance	Add established 20% allowance to present-day river flow rates and		
plus sensitivity test	extremes (but ongoing Defra /Agency research may provide a refinement to		
	this allowance).		
Modelling	Use site-specific rainfall predictions as input to continuous simulation river		
C	modelling and/or FEH	analysis to predict change in river flow (see detailed	
	technical statement in S		
Derived loading variables		Extreme river flow	
Derived structure variables		Extreme river level, defence crest level	
Derived economic variables			
Investment decisions			
	Demonstration calculations		

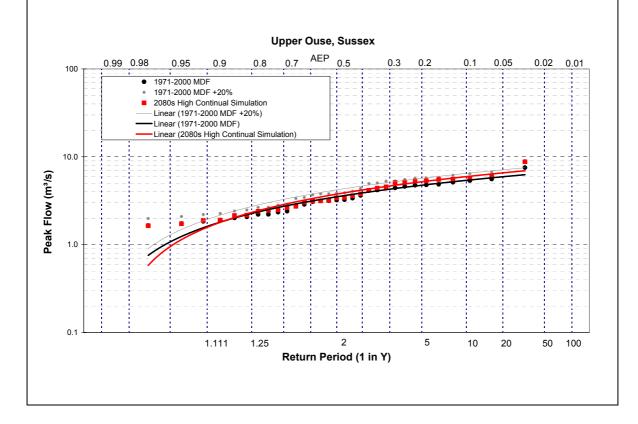
1 Thames catchment example


The following example from the EUROTAS project Task 3 on the River Thames Catchment (Samuels, 2001, <u>http://www.hrwallingford.co.uk/projects/EUROTAS</u>) shows the sensitivity of the flood frequency estimates to the climate change model (HadCM2 and ECHAM4) and the method of downscaling adopted. The PIK scenario uses expanded statistical downscaling on the ECHAM4 scenario data, which produces a change in character of the flood frequency distribution for the Thames at Kingston. All results were produced using the CLASSIC continuous simulation model by CEH Wallingford.

2 National allowance example

The statistical approach to flood estimation involves fitting curves to annual maximum flow data. The example below shows a flood frequency curve fitted to a 30-year record from Ardingly gauge in the headwaters of the Sussex Ouse.

The national allowance of 20% was added to the annual maxima data and a new curve was fitted to the adjusted data.



3 Use of the national allowance in the River Aire Section 105 Study

As part of the River Aire Section 105 Study, flows were increased by 20% at the inflows to an ISIS hydraulic model. This increase was equivalent to using a 200 year return period flood rather than a 100 year return period flood and amounted to an average increase of 0.25m in water levels after the increased flows had been run through the hydraulic model.

4 Analysis of outputs from continuous simulation

The graph below plots the annual maxima produced by continuous simulation. In this example there is no significant change in the Mean Annual Flood and there is a smaller increase in the 1 in 20 year and above flood events. In statistical terms, there is no increase in the average flood but there is an increase in the variance of the flood frequency curve.

Table 4.7Area of river flooding

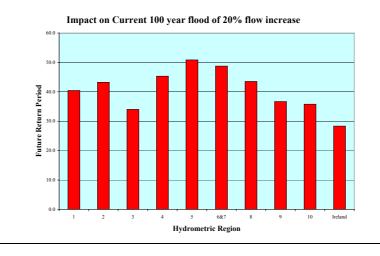

Importance of climate	change to this task	Medium	
Input variables in UKO		River flows and high water levels	
Relevant sections in UKCIP02 or this report		Tables 3.1, 3.2, 4.5 and 4.6 of this report	
Confidence in climate	change information	Medium	
Appropriate level(s) of climate change		l allowances for river flow and water level may be y testing, to determine the change in extreme river	
assessment	level, the volume of water over the banks and the consequent increase in		
		ver, full re-calculation of river level, and flood	
		ng will often be necessary, and scenario testing may	
		ding the uncertainties involved.	
National allowance		on of interest, add the established mm/year allowance	
plus sensitivity test		ter level (if in an area of tidal influence) and the	
	1 0	allowance to river flow. Due to topography, the	
	plan extent of flooding may not be significantly affected by marginal		
	changes in flow/level unless these cross thresholds of overtopping of either primary or secondary defences. A preliminary desk assessment may be		
	sufficient to demonstrate little change in flood area.		
Modelling	If the desk assessment suggests a significant change in flood area, move on		
lituting	to model several aspects of the processes involved, including sea level,		
		flood propagation, possibly for the four alternative	
		rent periods into the future (see detailed technical	
	statement in Section 4.2).		
Derived loading variab	les		
Derived structure varia		Flood area	
Derived economic variables		Value of damage due to flood	
Investment decisions			
	Demonstration calculations		

Table 4.8Probability of river flood

T (C 1 (
Importance of climate change to this task		Medium	
Input variables in UKCIP02 or this report		River flows and high water levels	
Relevant sections in Ul	KCIP02 or this report	Tables 3.1, 3.2, 4.6 and 4.7 of this report	
Confidence in climate of	change information	Medium	
Appropriate level(s)	Application of national	l allowances for river flow and water level may be	
of climate change		y testing, to determine the new probability at which	
assessment	-	ing is reached. However, full re-calculation of river	
		sary, and scenario testing may be helpful in	
	understanding the unce		
National allowance	<u> </u>	loading conditions with estimated probabilities of	
plus sensitivity test		established mm/year allowance to the present-day	
plus sensitivity test		ea of tidal influence) and the established percentage	
	allowance to river flow. Then estimate the new probabilities of occurrence		
Madalling	of the same loading conditions after climate change. Model several aspects of the processes involved, including sea level and		
Modelling			
		ossibly for the four alternative scenarios and for	
		the future, allowing for the fact that flood events	
		types following climate change. (See detailed	
	technical statement in Section 4.2).		
Derived loading variables			
Derived structure variables			
Derived economic variables		Cost of flood, flood frequency, cost of upgrading	
		to new defence crest level	
Investment decisions		Whether or not to upgrade defence level	

Demonstration calculations

A sensitivity analysis was undertaken in the second phase study of the national assets at risk of flooding and coastal erosion (Defra, 2001). The approach was based upon applying a percentage increase to the river flows at all return periods to the dimensionless regional growth curves of the FSR and interpreting the result as a change in annual frequency for the given value of peak discharge. The underlying growth curve was assumed to be unchanged (this assumption amongst others is open to question). The results given below are for the future return period of the current 100 year flood estimate of the FSR by FSR region.

1.1 Rainfall-runoff modelling techniques

1.1.1 Comments on guidance for river applications

Tables 4.1 to 4.8 outline some simple sensitivity tests and modelling approaches that can be used to estimate the possible impacts of climate change on fluvial flooding. There are two levels of assessment; firstly, the application of the national allowance of an increase of 20% on rainfall or peak river flow. In terms of the physical processes of rainfall-runoff and hydraulics, this appears to be inconsistent because any increase in rainfall will be stored within catchment vegetation and soils and attenuated in headwater floodplains. However, the application of a clear simple rule has clear advantages.

The ongoing Defra / Agency research at CEH Wallingford (Project W5B-01-050) into climate change and continuous simulation may result in a revision of the simple 20% rule.

Prior to the publication of the CEH research, some flood studies may require more detailed modelling as described in Tables 4.5 and 4.6. The section below provides some further information on standard flood studies modelling techniques and the linkages between runoff and climate variables.

1.1.2 The Flood Studies Report (FSR) and Flood Estimation Handbook (FEH)

It is widely recognised that the FSR / FEH rainfall-runoff approach requires updating as it is still based on the original FSR dataset extending only to the 1970s. The use of the statistical method (Table 4.5) and continuous simulation are also far more robust approaches for flood estimation than the FSR rainfall-runoff method. Nevertheless it is useful to understand the linkages between climate variables and predicted flood flows developed as part of the original FSR losses model.

If the FSR model is to be used for sensitivity analysis or climate impacts assessment the following are required:

- Control and scenario rainfall storm duration, depth, profiles direct from Regional Climate Model rainfall statistics. (Before RCM rainfall statistics are used they require validation against observed records for either the 1961-1990 or 2071-2100 period.)
- Control design Tp, BF and SPR for control period (1961-1990) and either scenario values/factors or *pdfs* for BF and SPR and the correlation between them.

Table 4.9 below summarises some of the key variables. The level column indicates the level of complexity in terms of testing the sensitivity of runoff to changes in climate variables.

Level	FEH	UKCIP02	Notes
	Variable	Variable	
1	SAAR	Annual average	Basic FEH parameter. Catchment SAAR could be
		rainfall	derived directly from UKCIP02 scenarios.
1	The Median Flood Flow QMED	None	Historically a 0.5 correlation between SAAR and QMED
2	Standard Percentage Runoff SPR	Historic SPR plus dynamic components derived from rainfall? RCM Runoff is not directly comparable.	Most sensitive component of FSR losses model to climate change. SPR is an event based statistic.
2	Percentage Runoff PR _{rural}	Runoff (see above)	FEH Vol.4. 2.3 See comments relating to SPR $PR_{rural} = SPR + DPR_{CWI} + DPR_{RAIN}$ $DPR_{CWI} = 0.25 (CWI - 125)$ If P <= 40 mm, $DPR_{RAIN} = 0$, Else $DPR_{RAIN} = 0.45(P-40)^{0.7}$
3	Catchment Wetness Index CWI	Derived from daily rainfall or Daily SMD	FEH CWI = 125 + API5 – SMD Note that FSR/FEH guidance of <u>design</u> CWI based on SAAR
3	Soil Moisture Deficit SMD	SMD from UKCIP02 is not directly comparable because it is based on 50km ² grid squares	The UKCIP02 RCM SMD data have not been validated against more detailed rainfall-runoff models. The probability of flooding increases when SMD is 6mm or less. It would be useful to present the RCM SMD data in the form of the number of days that the soil is "wet" i.e. the PROPWET variable. This may be a useful flood risk indicator.
3	Antecedent Precipitation Index API5	Derived from daily rainfall	$API5 = 0.5* [P_{d-1}+0.5^{2}*P_{d-2}+0.5^{3}*P_{d-3}+0.5^{4}*P_{d-3}+0.5^{5}*P_{d-5}]$
2	PROPWET	SMD	The fraction of time that the catchment is wet.
2	Тр	None	Time to peak - climate change should have no significant effects.
2	BF	None	Baseflows are relevant in permeable catchments – likely to increase on average with climate change. Can be estimated as f(CWI, SAAR and AREA) – $BF = \{33(CWI-125)+3.0.SAAR + 5.5\}10^{-5}$. AREA
By com	parison		
4	None	Continuous simulation using a rainfall-runoff model	While much of the research has used PDM a simpler model, such as a Penman model may be more appropriate. The Environment Agency, CEH and NEECA consultants between them have a good selection of models and databases of model parameters. Far too complex for general use so the models need to be run for a range of catchments and the results presented for particular types of catchment.

 Table 4.9 Key variables in rainfall-runoff modelling techniques

1.1.3 Continuous simulation modelling

A number of rainfall-runoff models that can be used to estimate the impacts of the UKCIP02 climate change scenarios on peak river flow are outlined in Table 4.10.

Model	Model Type	Description	Comments on use of continuous simulation of flood peaks
HYSIM	Conceptual (Mass balance)	Seven store conceptual model coupled to a simple hydraulic routing model.	Physically based model but with a large number of parameters. Generally used for water resources studies rather than flood studies.
CATCHMOD (TCM)	Conceptual (Mass balance)	Penman 3 parameter model, requiring division of the catchment into different response zones, representing areas with different runoff characteristics.	A simple model developed within Thames Region of the Environment Agency. It has been used for estimating the impacts of climate change on river flows in both Thames and Southern Region of the Environment Agency (e.g. Atkins, 2002b).
IHACRES	Transfer Function/UH	A systems type model based on the Unit Hydrograph. It has two modules: the first calculates effective rainfall (ER) from rainfall and temperature and the second converts ER to stream flow.	A simple model but not used widely within the Environment Agency.
Probability Distributed Model (PDM)	Conceptual	A mass balance model that uses a probability density function rather than single parameter to represent storage within a catchment.	This model is being used by CEH for evaluating the impacts of the UKCIP02 scenarios on peak flows. It is used in flow forecasting systems in England. This model is now available as part of HR Wallingford's ISIS suite of models.
NAM	Conceptual	A mass balance model based on the relationship between storage, process thresholds and flow routing through several non-linear reservoirs.	This model forms part of the Danish Hydraulic Institute's MIKE11 suite of models. It has been used for flood forecasting systems in East Anglia and Section 105 flood studies in Wales.

Table 4.10Rainfall-runoff model summary

2. DECISIONS

2.1 Summary guidance tables

Table 5.1Standard of service

Standard of service is defined as the adequacy of a defence, measured in terms of the annual probability of the event which causes a critical condition (e.g. breaching, overtopping) to be reached.

Importance of climate	change to this task	Medium	
Input variables in UKCIP02 or this report		River flows, high water levels, waves, probabilities	
	-	of damage and/or flooding	
Relevant sections in U	KCIP02 or this report	Tables 3.2, 3.4-3.8, 3.11, 4.6 and 4.8 of this report	
Confidence in climate	change information	Medium	
Appropriate level(s)	Determine the most in	mportant failure mode(s). Application of national	
of climate change	allowances for relevant	loading parameters may be sufficient for sensitivity	
assessment	testing. Full re-evaluation	tion of all loading variables and failure probabilities	
		essary, for example for cost-benefit assessment.	
	Scenario testing may be	e helpful in understanding the uncertainties involved.	
National allowance			
plus sensitivity test		te the increased probability of occurrence of loading	
		ure. The standard of service, expressed as an annual	
probability, then follow		vs from the probability of failure.	
Modelling		of the processes involved, including all loading	
		mbined probability of occurrence. Determine the	
		ure mode(s). Assessment of these rare combined assisted by long-term simulation coupled with joint	
		cenario modelling would be helpful in understanding	
· · · ·		ved. Although the absolute accuracy of the derived	
		y be low, any comparisons between present-day and	
future scenario values s			
	intuite section values s		

Derived loading variables	
Derived structure variables	
Derived economic variables	Standard of service for a defence, expressed as the annual probability of an event which it would protect against, and the way in which this is likely to change over time
Investment decisions	Whether to do nothing, repair the defence, upgrade an existing defence, or construct a new defence, and appropriate timing of investment in relation to changing risks

Demonstration calculations

1) Sea level above an estuary wall

Consider a hypothetical estuary wall on the south coast of England, assumed to have failed in its service if the sea level, unaffected by waves or flow, exceeds the wall level.

Let the present-day extreme water levels be 2.14, 2.26, 2.34, 2.42, 2.60, 2.72 and 2.90mCD for return periods of 1, 2.5, 5, 10, 25, 50 and 100 years, and the wall level be 2.90mOD. The annual probability of the event that the wall would protect against is 0.01. Increasing all sea levels by 6mm/yr to represent conditions in 25, 50 and 100 years time would increase the extreme water levels by 0.15, 0.30 and 0.60m, respectively, and hence the annual probability of failure to about 0.02, 0.04 and 0.3, respectively.

2) Overtopping of a sea wall

Consider a hypothetical sea wall on the east coast of England, assumed to have failed in its service if the overtopping rate exceeds 40 litres/metre/second.

Consider overtopping of a smooth sloped seawall, toe elevation at 0.0mOD, crest elevation at 8.0mOD. Consider wave conditions of $H_s = 4.0m$, $T_m = 8.0s$ occurring in conjunction with a sea level of 3.7mOD (1 year joint return period), 4.0mOD (10 years), 4.3mOD (100 years) and 4.6mOD (1000 years). Assuming that H_s at the toe is limited to 55% of the toe depth, the depth-limited heights for the four cases are 2.04, 2.20, 2.37 and 2.53m. The overtopping rates, calculated using the Owen formula for the four cases, are 7.5, 15, 29 and 56 l/m/s. The annual probability of the event that the wall would protect against is about 0.003.

Now add allowances for future climate change over 80 years, adding 0.4m to sea level (and therefore toe depth, with corresponding increase in depth-limited wave height), 10% to wave height and 5% to wave period. The revised overtopping rates are 26, 47, 83 and 148 l/m/s, increasing the annual probability of failure to about 0.2, ie fifty to one hundred times greater.

3) Breaching of a shingle bank See example calculations in Table 3.7.

Table 5.2Cost benefit assessment

The 'cost' is the present value of whole life costs involved in any defence options considered, including maintaining the present position, and any proposed improvements. The 'benefit' is the reduction in present value of economic losses due to flooding etc. over the whole period of the evaluation, relative to the do-nothing position, attributable to the proposed option.

Importance of climate	change to this task	Medium			
Input variables in UKC	CIP02 or this report	River flows, high water levels, waves, probabilities			
		and cost of damage and/or flooding			
Relevant sections in UP	KCIP02 or this report	Tables 3.2, 3.4-3.7, 3.10, 3.11, 4.3, 4.4, and 4.6-4.8			
		of this report			
Confidence in climate of	change information	Medium			
Appropriate level(s)		ine the most important condition(s) in which various			
of climate change	levels of flooding wou	ld occur and the economic value of the associated			
assessment	losses at the present tin	me. Apply national allowances to relevant loading			
		me steps (e.g. 10 year intervals) over the evaluation			
		Its to sum the economic value of losses using agreed			
		ermine the whole life costs of each option and use			
		/cost ratios and incremental benefits and costs for			
	each option.				
National allowance		al allowances to the variables involved, re-work the			
plus sensitivity test	of loading conditions combination of defence normal calculation me	and estimate the increased probability of occurrence causing flooding. The benefit/cost ratio for each e strategy and scenario can then be calculated using ethods. Appropriate scenario testing around the ces may be helpful in understanding the uncertainties			
Modelling	variables and their comprobabilities of the variables of the variable combination of defence normal calculation methods probabilities would be probability analysis.	assisted by long-term simulation coupled with joint Such scenario modelling would be helpful in rtainties involved for large or significant investment			

Derived loading variables	
Derived structure variables	
Derived economic variables	The changes in costs and benefits of different investment options over specified period(s) of time in the life of an existing or proposed defence
Investment decisions	Whether to do nothing, or repair / replace / construct the defence; appropriate timing of investment in relation to changing risks

Demonstration calculations

As both costs and benefits may be different under different climate scenarios, it cannot be assumed without doing full calculations that the benefit/cost ratio will necessarily increase or decrease, or that the preferred option will remain the same under climate change. The two sets of illustrative results below are based on a recent study in England, where climate change was represented by the appropriate precautionary allowance for sea levels, with the consequent increase in depth-limited wave heights.

Location 1 has a promenade and low shingle beach, protected in parts by rock armour and in parts by groynes. The potential threat is high overtopping and consequent damage to infrastructure, but the present standard of defence is 100-300 years, varying slightly through the defence length. The *do nothing* option would allow continued erosion of the shingle and a rapid increase in the frequency of overtopping. The *maintain* option assumes repair of groynes and renourishment of shingle beaches to hold their present state. The *sustain* option would involve minor additions to the maintain option to bring the entire length up to the 200 year standard of defence and sustain that position under climate change. The *improve* option would involve more significant new works to bring the standard of defence above 300 years for the whole defence length. All benefits increase slightly under climate change and *maintain* remains the preferred option.

enange wird mannant remains the preferred option.							
Option	Benefit	$(\pounds M)$	EM) Cost (£M)		B/C ratio		Comments on defences
	Now	After	Now	After	Now	After	
Do nothing					200 yea	r defence	e but potentially rapid deterioration
Maintain	10.31	10.37	2.81	2.81	3.7	3.7	Maintain 200 year standard
Sustain	10.58	11.06	3.27	3.27	3.2	3.4	Sustain 200 year standard
Improve	11.33	11.09	3.52	3.52	3.2	3.2	Improve to over 300 years

Location 2 has a coastal defence protected by a nourished shingle beach and breakwaters, apart from one small area where continued erosion between two breakwaters would begin to allow larger waves to pass. The potential threat is breaching in the lee of the erosion, but at present the whole area has a high standard of defence of over 200 years, although under the *do nothing* option this would drop rapidly in the small area affected by erosion. The cost of the maintain option increases under climate change, reducing the B/C ratio, and changing the preferred option from *maintain* (Now) to *sustain* (After).

Option	Benefit	t (£M)	Cost (£M)		B/C ratio		Comments on defences
	Now	After	Now	After	Now	After	
Do nothing	200 year defence but potentially rapid deterioration in one area						
Maintain	6.56	7.38	0.89	1.39	7.4	5.3	Maintain 200 year standard
Sustain	6.56	7.80	1.39	1.39	4.7	5.6	Sustain 200 year standard

NB: For national investment programmes an important aspect is that different projects competing for funds are appraised on a consistent basis. Therefore, whilst decisions on option choice should take full account of the potential impacts and uncertainties, it is generally preferable that the final results are reported in relation to agreed allowances that are designed to provide an appropriate precautionary response.

Table 5.3Planning assessment

Importance of climate	change to this task	Low/Medium				
Input variables in UK0	CIP02 or this report	River flows, high water levels, probability of flooding				
Relevant sections in Ul	KCIP02 or this report	Tables 3.2, 3.10, 3.11, 4.7 and 4.8 of this report				
Confidence in climate	change information	Medium				
Appropriate level(s)	Application of national	allowances for river flow and/or water level may be				
of climate change	sufficient for sensitiv	ity testing, to estimate present-day and future				
assessment	probabilities of flooding. Modelling of river / water level, and flood					
		ing will only be necessary for major developments				
		ding may affect flood propagation. As established				
		e important than precise calculation of risk, scenario				
		to be helpful (except perhaps in developing new				
	policy).					
National allowance		al allowances for river flow and/or water level to				
plus sensitivity test	· _ ·	d future probabilities of flooding.				
Modelling		ter level, and flood propagation and mapping where				
	<i>v</i> 1	is proposed and/or where new building may affect				
	flood propagation.					
Derived loading variab						
Derived structure varia	ables	Changes in probability of flooding over the life of				
		the development				
Derived economic varia	ables	Cost of flood damage or of mitigation measures				
		required and their potential impacts elsewhere				
Investment decisions		Whether or not to allow development as a				
		sustainable option				
Demonstration calculations						

2.2 National policy and national assets at risk

Guidance on development of national policy and assessment of national assets at risk in the context of climate change is not given in this report, as these tasks would not be undertaken by non-specialists. Defra and the Environment Agency have funded a number of recent studies of the national value of assets at risk from river and coastal flooding, how that risk might increase following climate change, and the investment needed to maintain the current level of risk. The most recent publication on assets at risk is Defra (2001), but National Flood Risk Assessment 2002 is due to report soon.

3. REFERENCES

Atkins (2002a). The Extreme Flood Outline Pilot Study. Report prepared for the Environment Agency and Defra. Atkins report no: 5001855/70/DG/035.

Atkins (2002b, forthcoming). Guidance on the application of the UKCIP02 climate scenarios to water resources studies. Report to the Environment Agency – Southern Region.

A H Brampton and C M Harford (1999). Wave climate change – indications from simple GCM outputs. HR Wallingford Report TR 80.

Cabinet Office – Strategy Unit (2002). Risk: improving government's capability to handle risk and uncertainty. Cabinet Office – Strategy Unit, London.

Defra (2001). National appraisal of assets at risk from flooding and coastal erosion, including an assessment of the potential impacts of climate change. Flood Management Division, Defra.

Department of the Environment, Transport and the Regions (DETR), Environment Agency and Institute for Environment and Health (2000). Guidelines for environmental risk assessment and management: revised departmental guidance. HM Stationary Office, London.

Environment Agency / Defra (2002a). Risk and Uncertainty Review. Environment Agency / Defra Technical Report FD2302/TR1 produced under project FD2302.

Environment Agency / Defra (2002b). UK Climate Impacts Programme 2002 Climate Change Scenarios: Implementation for Flood and Coastal Defence: Project Record: User needs, scenario components and recommendations. Environment Agency Report W5B-029/PR (also referenced as HR Report TR 131).

C E Jelliman, P J Hawkes and A H Brampton (1991). Wave climate change and its impact on UK coastal management. HR Wallingford Report SR 260.

MAFF (now Defra, 1999). Flood and coastal defence project appraisal guidance: Volume 3: Economic appraisal (FCDPAG3). MAFF Publication PB 4650.

MAFF (now Defra, 2000). Flood and coastal defence project appraisal guidance: Volume 4: Approaches to risk (FCDPAG4). MAFF Publication PB 4907.

MAFF (now Defra, 2001). Flood and coastal defence project appraisal guidance: Volume 1: Overview (including general guidance) (FCDPAG1). MAFF Publication PB 5518.

D Richardson (2002). Flood risk – the impact of climate change. Proceedings of ICE, Civil Engineering, Volume 150, Pages 22-24.

P G Samuels (2001). EUROTAS Integrated Final Report, HR Wallingford report to EC Research Directorate General, Contract ENV4-CT97-0535, May 2001. Report available at: <u>http://www.hrwallingford.co.uk/projects/EUROTAS</u>.

J Sutherland and J Wolf (2002). Coastal defence vulnerability 2075. HR Wallingford Report SR 590.

United Kingdom Climate Impacts Programme (2002a). Climate change scenarios for the United Kingdom: The UKCIP02 briefing report. Available from http://www.ukcip.org.uk/scenarios.

United Kingdom Climate Impacts Programme (2002b). Climate change scenarios for the United Kingdom: The UKCIP02 scientific report. Available from http://www.ukcip.org.uk/scenarios.

UKCIP / Environment Agency (2002). Guidance on handling risk and uncertainty in decision making for climate change.

Wilby, R.L., Wigley, T.M.L., Conway, D., Jones, P.D., Hewitson, B.C., Main, J. and Wilks, D.S. (1998). Statistical downscaling of General Circulation Model output: a comparison of methods. Water Resources Research, **34**, 2995–3008.