DEPARTMENT for Environment, FOOD and RURAL AFFAIRS

Research and Development

Final Project Report

(Not to be used for LINK projects)

Two hard copies of this form should be returned to: Research Policy and International Division, Final Reports Unit DEFRA, Area 301 Cromwell House, Dean Stanley Street, London, SW1P 3JH. An electronic version should be e-mailed to resreports@defra.gsi.gov.uk

oject title	Automation and appraisal of the FEH statistical procedures for flood frequency estimation				
EFRA project code	FD1603]			
ontractor organisation d location	CEH Wallingford				
tal DEFRA project costs	£ 90,000]			
oject start date	01/09/00	Project end date	23/10/03		
EFRA project code ontractor organisation d location tal DEFRA project costs oject start date	frequency estimation FD1603 CEH Wallingford £ 90,000 01/09/00]] Project end date	23/10/03		

Executive summary (maximum 2 sides A4)

This report contains a number of important findings and recommendations that will lead to improvements in the performance of the Flood Estimation Handbook (FEH) statistical method, the principal procedure for flood estimation in the UK. The report also describes how datasets of nationwide flood estimates – now being used by the Environment Agency and the insurance industry as a key input to the next generation of national flood risk maps – have been produced and how they could be further developed.

The FEH statistical method comprises a series of procedures for estimating the flood peak of a specified return period at almost any site, gauged or ungauged, on the UK river network¹. The performance of the method has been appraised by automating its component procedures and applying them for several return periods at 50 m intervals throughout a large part of the national river system. As well as providing rigorous evidence of the performance of the method, this work has provided comprehensive network-wide flood estimates for England, Wales and part of southern Scotland.

The return periods used were selected to coincide with the requirements of the Environment Agency's programme of Catchment Flood Management Plans, namely 2, 5, 10, 25, 50, 100 and 200 years; this spans the full recommended range of capability of the FEH statistical method. Subsequent applications additionally necessitated the estimation of the 250 and 1000-year floods, reference to which is included in this report.

The effect of automation was assessed at selected locations by comparing the results with those produced by experienced FEH users. The performance of the FEH method was assessed by comparing the automated results with estimates derived directly from observed floods at several hundred gauging station locations, and by checking for internal spatial inconsistencies within the network-wide FEH estimates. The project did not include any comparison with other methods of estimating floods at ungauged sites.

Numerous modifications were made to the procedures during the development of the automated method in order to avoid or reduce the spatial inconsistencies that would have been generated by adhering to FEH rules and guidance. Many of these changes are recommended for use in any future versions of the FEH. They primarily affect the selection and weighting of donor and analogue stations and the selection and weighting of pooling-group members.

¹ The method is not recommended for catchments that are smaller than 0.5 km², heavily reservoired or highly urbanised.

DEFRA

project code

Analysis of the results shows that, after the above modifications, the FEH method performs well in most places from the aspect of spatial coherence. Problems occur at a minority of confluences, usually where catchments of very different permeability converge or where there is a change in the set of donor gauges being used, and in the vicinity of gauging stations whose observed median annual flood differs greatly from that predicted by the FEH national equation. The causes of the problems have been analysed and solutions are suggested. Included in the suggestions is a new, additional, procedure for ensuring that flood estimates throughout a river system are spatially coherent.

The incidence of inconsistencies, at individual sites, between flood estimates for different return periods has been investigated and quantified. Changes to the procedures are recommended in order to remove the causes of these inconsistencies.

Pooling-group performance has been investigated in some detail. Several changes to the pooling procedure have been shown to be capable of improving the performance of the method. Some results suggest that uncertainties over the benefits of pooling-groups still exist. Recommendations for further research are made, the most important of which is for an investigation into the use of FEH rainfall growth statistics for defining pooling-groups.

Revisions to the statistics used for quantifying pooling-group heterogeneity and goodness-of-fit have been developed. These have a significant effect in many locations, which may influence the flood estimates obtained by FEH users.

The datasets of automatically produced flood estimates, created during this project, are not everywhere as reliable as the estimates for individual sites that could be made by an experienced user of the FEH, but they are still of value for a number of applications, particularly where estimates are required throughout a region. The report discusses the limitations of these datasets and suggests how they might be improved.

Whilst this report will primarily be of interest to users of the FEH, no prior knowledge of the FEH has been assumed.

DEFRA

Scientific report (maximum 20 sides A4)

An electronic copy of the full report has been supplied to Defra.

The contents list is reproduced below.

CONTENTS

1	Introduction	1
1.1	The Flood Estimation Handbook	1
1.2	The FEH statistical method of flood frequency estimation	1
1.3	The objectives of this project	2
1.4	Summary of the approach used for automation	2
1.5	Summary of the approach to assessing performance	2
1.6	Summary of this report	3
1.7	Topics not covered by this project	4
1.7	The next steps	4
2	The FEH statistical method of flood peak estimation for a specified return period	5
2.1	Overview	5
2.2	Estimation of the index flood at an ungauged site	6
2.3	Estimation of growth factors at an ungauged site	9
2.4	Special considerations for gauged sites	12
2.5	Climatic variability	13
2.6	Special considerations for subject sites that are significantly influenced by lakes or reservoirs	14
2.7	Using gauged flood peak data from sites that are significantly influenced by lakes or reservoirs	14
2.8	Using gauged flood peak data from permeable catchments	15
2.9	Using gauged flood peak data from urbanised catchments	15
3	Automating the FEH statistical method	17
3.1	Introduction	17
3.2	A systemic spatial limitation of the FEH method	17
3.3	Spatial coherence and its implications for automation	18
3.4	The computational environment	19
3.5	Calculation of QMED from catchment descriptors (QMED _{CD})	20
3.6	Donors and analogues – general	22
3.7	Registration of exact donors	22
3.8	Registration of downstream and upstream donors	23
3.9	Selection of off-line donors	26

3.10	Selection of analogues	29
3.11	Moderating the effect of donors and analogues	30
3.12	Limiting the effect of off-line donors and analogues	35
3.13	Calculation of weights for donors and analogues	35
3.14	Calculation of the QMED _{CD} adjustment factor	37
3.15	Automation of the selection of the default pooling-groups and growth factors	37
3.16	Spatial incoherence in the growth factors calculated from default FEH pooling-groups	38
3.17	Modifications to pooling-group selection and member weighting to reduce spatial incoherence in the growth factors	41
3.18	Special considerations for gauged sites in the automated method	46
3.19	Use of data from urbanised catchments	46
3.20	Use of data from catchments that are significantly affected by lakes or reservoirs	47
4	The automated versus the manual approach	49
4.1	Introduction	49
4.2	Estimation of QMED	49
4.3	Estimation of growth factors	50
4.4	Assessment of applicability	51
4.5	Conclusions	51
5	Performance at gauging station locations	53
5.1	Introduction	53
5.2	QMED estimation	53
5.3	Growth factor estimation	58
5.4	Summary	72
6	Performance over the river networks of England and Wales	73
6.1	Introduction	73
6.2	Performance at confluences	74
6.3	Performance between confluences	79
6.4	Incoherence between flood estimates for different return periods ' <i>T</i> - <i>incoherence</i> '	87
6.5	Example maps	91
6.6	Summary	108
7	Discussion of the findings to emerge from the project	109
7.1	Introduction	109
7.2	Measures for promoting spatial coherence	109
7.3	$QMED_{CD}$ inconsistencies at confluences of catchments with contrasting HOST properties	110

7.4	The effect of other catchment descriptors at confluences	116
7.5	More general confluence considerations	117
7.6	The use of analogue catchments	118
7.7	Pooling-groups	119
7.8	A network-based procedure for improving spatial coherence	136
7.9	Data quality	136
8	Guidance, suggestions and recommendations	137
8.1	Guidance for users of the FEH statistical method	137
8.2	Recommendations for further development of the FEH method	139
8.3	Using the automatically derived flood peak estimates	141
8.4	Recommendations for further development of the automated method	142
9	Summary of findings and recommendations	143
	Glossary	153
	Acknowledgements	159
	References	161
Appendix 1	Table of gauging station catchment descriptors and L-moment ratios	163
Appendix 2	Tables of gauging station QMED adjustment factors	185
Appendix 3	The proximity weighting floor for on-line donors	205

Please press enter