

Preliminary detailed assessment of sampling and monitoring for General Nuclear System Limited's UK HPR1000 design - AR06

Version 1, 11 January 2021

We are the Environment Agency. We protect and improve the environment.

We help people and wildlife adapt to climate change and reduce its impacts, including flooding, drought, sea level rise and coastal erosion.

We improve the quality of our water, land and air by tackling pollution. We work with businesses to help them comply with environmental regulations. A healthy and diverse environment enhances people's lives and contributes to economic growth.

We can't do this alone. We work as part of the Defra group (Department for Environment, Food & Rural Affairs), with the rest of government, local councils, businesses, civil society groups and local communities to create a better place for people and wildlife.

Published by:

Environment Agency Horizon House, Deanery Road, Bristol BS1 5AH

www.gov.uk/environment-agency

© Environment Agency 2021

All rights reserved. This document may be reproduced with prior permission of the Environment Agency.

Further copies of this report are available from our publications catalogue: <u>http://www.gov.uk/government/publications</u> or our National Customer Contact Centre: 03708 506 506

Email: <u>nuclear@environment-</u> agency.gov.uk

Executive summary

This report covers our Generic Design Assessment of General Nuclear System Limited's (GNSL's) submission on sampling and monitoring for the United Kingdom Hualong Pressurised Water Reactor design (UK HPR1000) as required in Table 1, Item 6 of our Process and Information document (P&ID) (Environment Agency, 2016). This assessment covers both sampling and monitoring of gaseous and liquid effluents, and solid and non-aqueous liquid radioactive wastes.

Our assessment has considered GNSL's submission in relation to relevant UK policy, legislation and guidance, including the Environment Agency's Radioactive Substances Regulation (RSR) Environmental Principles (REPs) (Environment Agency, 2010), the main ones being Radioactive Substance Management Developed Principle 13 (RSMDP13) - Monitoring and Assessment and Engineering Developed Principle 10 (ENDP10) - Quantification of Discharges. Both principles require best available techniques (BAT) to be used for the activities being carried out.

The information that GNSL has provided for gaseous (main stack on the fuel building) and liquid effluents, focusing on techniques, covers all the required areas associated with the requirements of generic design assessment (GDA). There is also a demonstrated understanding of the issues, and commitments to fulfilling the requirements, that can only be addressed in later phases of the new build process.

The information GNSL provided on sampling of solid and non-aqueous liquid radioactive wastes is only an overview, since the monitoring systems for the waste generation, treatment and conditioning, and storage facilities have only been developed to concept level during GDA and so will need to be assessed at a later stage. During permitting more information will be required from a future operator on the specific sampling and monitoring equipment and sampling of solid and non-aqueous liquid radioactive wastes.

An environmental monitoring programme is not included within the scope of GDA due to the site-specific nature of such monitoring. This will need to be assessed at a later stage.

Our preliminary conclusions are that GNSL has demonstrated in principle the use of BAT for GNSL's UK HPR1000 for both the gaseous and liquid effluent monitoring systems. For the monitoring of solid and non-aqueous liquid radioactive wastes, our preliminary conclusion is that the practices being developed appear appropriate for the monitoring of final disposal of these wastes, but a full assessment needs to be carried out when more information has been provided by a future operator.

We have identified a number of Assessment Findings (AFs) that we will expect a future operator to address. These are:

Assessment Finding 28: A future operator shall address the post-GDA forward action plans identified in the 'Approach to Sampling & Monitoring' submission - HPR/GDA/PCER/0005, Revision 001-1, October 2020.

Assessment Finding 29: A future operator shall demonstrate, before the reactor is commissioned, that the final configuration of the sampling lines and the layout and positioning of the monitoring room are optimised to comply with ISO2889 and the use of best available techniques.

Assessment Finding 30: A future operator shall demonstrate that, before signing of the relevant procurement contracts, the selected sampling and monitoring equipment for determining the discharges are best available techniques and enables the EU recommended levels of detection to be met.

Assessment Finding 31: A future operator shall demonstrate that the systems and equipment used for monitoring and sentencing solid and non-aqueous liquid waste are best available techniques.

Contents

1. Introduction	6
2. Assessment	7
2.1. Assessment method	7
2.2. Assessment objectives	7
2.3. GNSL documentation	8
2.4. Monitoring gaseous effluents	8
2.5. Monitoring liquid disposals	11
2.6. Monitoring solid and non-aqueous liquid waste disposals	13
2.7. Monitoring matters for future operator	13
3. Compliance with Environment Agency requirements	14
4. Public comments	15
5. Conclusion	15
References	17
Abbreviations	19
Appendix: Summary of Regulatory Queries relating to monitoring	21

1. Introduction

This report provides our detailed assessment of GNSL's submission in relation to sampling and monitoring in the UK HPR1000 design for GDA purposes.

This report is based on information received at the time of writing in October 2020. Any subsequent or updated information will be assessed alongside the responses to our consultation. Our final assessment results will be published in our Decision Document at the end of GDA. We are targeting completing GDA in early 2022.

We require the design to use BAT for measuring discharges to enable any operational UK HPR1000 to:

- confirm that actual discharges are as predicted
- demonstrate that operation is in accordance with the optimised parameters (BAT envelope)
- assess compliance with permitted limits
- provide good quality data for retrospective dose assessments
- · characterise solid waste to enable its disposal by optimal routes
- inform a future operators actions and decisions

We set out in our P&ID (Environment Agency, 2016) the requirements for a Requesting Party (RP) to provide information. Item 6 of the P&ID requires a description of the sampling arrangements, techniques and systems proposed for measuring and assessing discharges and disposals of radioactive waste. This includes details of the in-process monitoring arrangements, as well as those for final discharges of gaseous and liquid wastes, and the disposals of non-aqueous liquid and solid wastes. A demonstration that the proposals represent BAT for monitoring, and confirmation that the sensitivity is sufficient to demonstrate compliance with the proposed limits and meet the levels of detection specified in EU Commission recommendation 2004/2/Euratom (EU, 2004) are also required.

We set up an agreement with GNSL to carry out GDA of the UK HPR1000 design, which came into effect in January 2017. Revision 000-1 of the 'Pre-Construction Environmental Report (PCER) Chapter 5 - Approach to Sampling & Monitoring' submission was submitted in November 2018 (GNSL, 2018a). We use a 2-stage process to carry out generic design assessment: initial assessment, followed by detailed assessment. The findings from our initial assessment are set out in the <u>Initial assessment</u>: Statement of <u>findings</u> published in November 2018. The items raised for further information at detailed assessment included details of in-process monitoring arrangements and arrangements for monitoring solid waste and non-aqueous waste.

This detailed assessment has built on that initial assessment and is based on additional submissions and ongoing technical engagement with GNSL (the Requesting Party (RP)). The assessment method, findings and preliminary conclusions are presented in the following sections.

Our assessment of the 'Approach to Sampling & Monitoring' submission (GNSL, 2018a) and the supporting submissions generated a number of Regulatory Queries (RQs). A table summarising these RQs and later RQs is provided in the Appendix. Subsequent responses to these RQs and discussions at meetings with the RP have been incorporated into the later revisions of the 'Approach to Sampling & Monitoring' submission (GNSL, 2020a and b) and supporting documents. It is recognised that there are still some areas that need to be decided, for example, the stack height will be decided at the site-specific stage to optimise dispersion based on site-specific parameters, and the actual monitoring equipment will only be specified when it is procured, so BAT must be demonstrated at that time.

The 'Approach to Sampling & Monitoring' submission (GNSL, 2020b) provides further information of the RP's arrangements, techniques and systems as recommended in the Environment Agency's initial assessment report (Environment Agency, 2018a). The items raised for further information at detailed assessment included details of in-process monitoring arrangements and arrangements for monitoring solid waste and non-aqueous waste.

GNSL's approach to sampling and monitoring has covered operator monitoring of gaseous and liquid effluent discharges, independent assurance of these, and in-process monitoring. The monitoring systems for the solid waste handling facilities have only been developed to concept level and so will need to be assessed at a later stage.

A demonstration of BAT has also been proposed, with the aim of minimising radiological impacts on the environment. The sampling arrangements and radiation monitoring systems are designed to achieve the following:

- verify that radioactive discharges to the environment are within permitted limits
- provide reliable data to retrospectively assess radiological impacts to the public and the environment
- minimise radioactive discharges to the environment
- enable a future operator to make informed decisions

We have assessed the supporting arguments GNSL provided in its demonstration of BAT.

2. Assessment

2.1. Assessment method

The basis of our assessment was to:

- review the appropriate sections of the PCER and its supporting submissions
- hold technical meetings with GNSL to clarify our understanding of the information presented and explain any concerns we had with that information
- raise RQs where we believed information from GNSL required clarification
- assess the techniques GNSL proposed for monitoring radioactive disposals against standards and guidance
- decide on any potential GDA Issues (GDAIs) or Assessment Findings to carry forward from GDA

2.2. Assessment objectives

The assessment considered:

- the sampling arrangements, techniques and systems proposed for measuring and assessing the discharges and disposals of radioactive waste
- the specific nuclides to be monitored and whether systems are adequate to meet the levels of detection specified in the EU Commission recommendation 2004/2/Euratom (EU, 2004)

- how monitoring proposals compared to our technical guidance notes (TGNs) M1, 245_17 and LIT 55216 (Environment Agency, 2017a, 2017b and 2020) and relevant international and national standards (for example, BSi, 2010)
- commitment given to our monitoring certification (MCERTS) scheme for current in scope standards (Environment Agency, 2014, 2018b and 2019) and flexibility to adopt future standards if nuclear facilities are bought into scope
- whether arrangements represented BAT

Radiological protection monitoring for workers was not considered as part of this assessment, as this is within the remit of the Office for Nuclear Regulation (ONR).

2.3. GNSL documentation

We referred to the following submissions to produce this report (Table 1):

Title	Document No.
Pre-Construction Environmental Report Chapter 5 Approach to Sampling & Monitoring	HPR/GDA/PCER/0005 Revision 000-1, 001 and 001-1 (GNSL, 2018a, 2020a and 2020b)
Particle Penetration Factor Report for Gaseous Effluent	GH000500001DIYK02GN (GNSL, 2018b)
The CFD Analysis Report for Representative Sampling of Gaseous Effluent	GH000500002DIYK02GN (GNSL, 2018c)
Stack Platform Design Report	GHX06700001DIYK03GN (GNSL, 2019a)

Table 1. GNSL documentation reviewed for this assessment

2.4. Monitoring gaseous effluents

Monitoring radioactive gaseous disposals is described in GNSL's 'Approach to Sampling & Monitoring' submission (GNSL, 2020b), including consideration of BAT. This includes both the approach to in-process and final discharge monitoring. For final discharge monitoring, which is the given scope of GDA, only information on monitoring the main stack of the fuel building has been provided and assessed. Monitoring of other outlets will be assessed at the site specific stage.

GNSL has properly considered our requirements that we enforce through Environmental Permitting Regulations (EPR) 2016 (GB Parliament, 2016) and the Euratom requirements (EU, 2004), both for self-monitoring and provision to allow for independent verification of the discharges.

GNSL proposes monitoring and sampling systems will be in place to enable activity concentrations to be determined for total noble gases (krypton-85 will not be measured specifically), cobalt-60, strontium-90, caesium-137 and total alpha (reported instead of individual alpha emitters) in particulate matter, iodine-131, tritium and carbon-14. With the exception of combining krypton-85 (main nuclide to represent noble gases) in a total noble gas measurement, all the main radionuclides required to fulfil EU commission recommendation 2004/2/Euratom are being monitored (EU, 2004). GNSL provided minimum values of historic data from CGN's nuclear power plants (NPPs), as the

instrument type and detection method will be determined at later stages and the detection limits will depend on a number of parameters (including flow rate and sampling period).

Final confirmation that the EU Commission detection limits will be met will be required at the site-specific stage. GNSL states that specific instrumentation is not being detailed at the GDA stage and it is appropriate for the operator to define the instrumentation during the site-specific stage. The laboratory and analytical methods will be for future operators to determine. We expect that these methods will be accredited to International Standards Organisation (ISO) 17025 (BSi, 2017) and MCERTS (Environment Agency, 2018b) where applicable. Meeting our requirements, the volumetric flow, required to determine the activity discharged, will be measured continuously using an appropriate MCERTS accredited technique. As final confirmation is required at the site-specific stage, we have raised an Assessment Finding for a future operator:

Assessment Finding 30: A future operator shall demonstrate that, before signing of the relevant procurement contracts, the selected sampling and monitoring equipment for determining the discharges are best available techniques and enables the EU recommended levels of detection to be met.

GNSL proposes that for final discharge reporting there will be 2 gaseous sampling points in the main stack, feeding duplicate sampling and monitoring systems (described below). The main stack has inputs from the heating, ventilation and air conditioning (HVAC), the gaseous waste treatment system and the condenser vacuum system via the nuclear auxiliary building ventilation system.

'The Computational Fluid Dynamics (CFD) Analysis Report for Representative Sampling of Gaseous Effluent' (GNSL, 2018c) submission provides a CFD demonstration that BAT will be adopted to obtain representative gaseous sample in UK HPR1000 design. The CFD analysis indicates that mixing tracer gas and tracer aerosol particle becomes uniform at a height of 54.75 m and recommends that the relevant experimental verification should be completed at this position. The stack height will be confirmed at the site-specific stage, including tests to demonstrate a representative sample can be obtained.

The 'Particle Penetration Factor Report for Gaseous Effluent' (GNSL, 2018b) submission describes the layout of the sampling and monitoring pipeline and system, and provides a calculated result of the penetration factor for 10 micrometres (μ m) aerodynamic diameter (AD) aerosol particles, which meets the requirements of BS ISO2889:2010 (BSi, 2010). Using 10 μ m AD particle to evaluate the penetration factor is a conservative measure as all ventilation systems discharged to the stack are filtered by high efficiency particulate air (HEPA) filters. GNSL proposes using a shrouded single nozzle sampling probe which is considered good practice for sampling and collection systems to obtain representative samples for effluent streams containing particulate matter (Environment Agency, 2017b).

The total stack volumetric discharge flow will also be measured at the sampling points within the stack. The exact configuration of the system will be determined during the commissioning phase following the appropriate ISO standards (currently: ISO 10780:1994 [ISO, 1994] and BS ISO 2889:2010 [BSi, 2010]). Additional flow measurements will be also be taken on the gaseous systems upstream of the main stack. Two calibration ports, located upstream of the flow meter, are proposed for periodic calibrations tests.

The 'Stack Platform Design Report' (GNSL, 2019a) describes a sampling platform designed to comply with M1 (Environment Agency, 2017a) and provided to allow workers safe access to inspect and maintain the sampling equipment, including the calibration ports. We issued an RQ concerning the design life of the sampling platform in the corrosive coastal atmosphere (RQ-UKHPR1000-0211), which resulted in an update to the

GNSL submission. The final design will depend on the equipment choice and be will made by a future operator.

The 2 sampling lines each feed separate sampling systems, both systems will be running at the same time, which allows for redundancy. Having duplicate sampling systems also means we or our representatives can verify them independently as one of the systems, including associated pipework valves, would be able to be protected from use with tamper evident seals while particulates, iodine, tritium and carbon-14 are independently sampled. The systems have been designed so that this will not affect the quality of the operator's own data over that period. We issued 3 RQs (RQ-UKHPR1000-0535, 0539 and 0617) concerning how the requirements for tamper-evident duplicate sampling systems for the gaseous systems are met (Environment Agency, 2017b) and back-up equipment and instrumentation provided. The responses to the RQs provided clarity that one sampling system could be used by the operator and the other for independent verification, the duplicate sampling systems provide a back-up for each other, and resulted in updates to the 'Approach to Sampling & Monitoring' submission (GNSL, 2020b).

In GNSL's design, the required nuclides are collected in a sequence that ensures the best sample, for each, is obtained. Particulates (for cobalt-60, strontium-90, caesium-137 and total alpha analysis) are collected first to minimise losses through plating out. Once particulates have been removed, the sample is passed through an appropriate iodine adsorber. Typically, these samples only contain several centimetres of charcoal, therefore, there is only a short delay before the sample is passed into the gas chamber for the analysis of noble gases. This arrangement complies with BS EN 60761-3 (BSi, 2004). Tritium and carbon-14 are collected on a different line and the sampling units are expected to be bubbler systems. The 2004/2/Euratom detection limit of Krypton-85 is not achieved and the measurement of total noble gases can be measured instead of Krypton-85. Also, as stated in 2004/2/Euratom (EU, 2004), the detection limit can normally be obtained by beta-measurement after decay of short-lived isotopes

It is best practice to return the sample downstream of the sample extraction point to prevent either double counting or dilution of the sample. However, GNSL has proposed the sample return line be upstream of the extraction point, which saves pipework and the amount of potentially contaminated material that needs to be disposed of at the end of the plant life. Given this saving and the fact that the impact of the returning gas has been shown to be negligible due to the very small sample volume being diluted by the large stack flow rate (and any double counting being conservative), we have accepted this approach as BAT for the design. As the configuration of the sampling lines and the layout and positioning of the monitoring room are not confirmed during GDA, we have raised an Assessment Finding for a future operator:

Assessment Finding 29: A future operator shall demonstrate, before the reactor is commissioned, that the final configuration of the sampling lines and the layout and positioning of the monitoring room are optimised to comply with ISO2889 and the use of best available techniques.

In-process monitoring and sampling arrangements are provided to detect deviation from the normal operation sooner than in the point of final discharge. The UK HPR1000 design has 3 types of in-process sampling and monitoring corresponding to the 3 gaseous effluent streams as mentioned previously:

 HVAC: Monitoring of the gaseous effluents in the ventilation air discharged from buildings which may contain radioactive material. If the gaseous activity concentration reaches an alarm threshold the system line is switched to the iodine filtration train, a light-sound alarm is triggered locally and an alarm is displayed in the main control room.

- Gaseous waste treatment system: Monitoring the operation of carbon delay beds by
 upstream and downstream detectors. If the gaseous activity concentration reaches an
 alarm threshold a light-sound alarm is triggered locally, an alarm is displayed in the
 main control room, and the event is investigated by the plant operators. They then take
 appropriate action, including bypassing the first delay bed without impacting the ability
 of the system to ensure the expected delay time in all circumstances.
- Condenser vacuum system: Monitoring the steam generator tube integrity to detect any leakage of activity into the secondary circuit. If the gaseous activity concentration reaches an alarm threshold a light-sound alarm is triggered locally, an alarm is displayed in the main control room, and the event is investigated by the plant operators who take appropriate action. In the case of steam generator tube rupture conditions, the main steam system shall isolate the affected steam generator to confine the contaminated fluid.

In each of the 3 gaseous effluent streams, if the gaseous activity concentration reaches an alarm threshold a local sound-light alarm is triggered accompanied by an alarm displayed in the main control room.

We issued 3 RQs concerning the in-process monitoring and associated systems. The RQs concerned the management of the carbon delays beds (RQ-UKHPR1000-0429), confirmation of where the monitor alarms provide alarms (RQ-UKHPR1000-0432) and clarification on the selection of the type or in-process monitor (RQ-UKHPR1000-0433). The responses to the RQs improved the demonstration of BAT by providing additional information for how the in-process monitoring prompts a response to protect the environment, including bypassing the first delay bed without impacting the ability of the system to ensure the expected delay time in all circumstances. The RQ responses resulted in updates to the 'Approach to Sampling & Monitoring' submission (GNSL, 2020b) and some associated supporting submissions.

2.5. Monitoring liquid disposals

Monitoring radioactive liquid disposals is described in GNSL's 'Approach to Sampling & Monitoring' submission (GNSL, 2020b), including considering BAT. This includes both the approach to in-process and final discharge monitoring.

GNSL has properly considered our requirements that we enforce through EPR 2016 (GB Parliament, 2016) and the Euratom requirements (EU, 2004), both for self-monitoring of levels of radioactivity and provision to allow for independent verification of the discharges.

GNSL proposes that monitoring and sampling systems will be in place to enable activity concentrations to be determined for tritium, carbon-14, cobalt-60, strontium-90, caesium-137 and total alpha (reported instead of individual alpha emitters). All the main radionuclides required to meet EU Commission recommendation 2004/2/Euratom will be monitored (EU, 2004). While it is recognised that the detection limits achievable will depend on a number of parameters (including sample volume, measurement instrument and count time) that will only be finalised at later stages, GNSL has provided reference values indicating Euratom detection limits can be met using currently available systems.

Final confirmation that the EU Commission detection limits will be met will be required at the site-specific stage. GNSL states that specific instrumentation is not detailed at the GDA stage and it is appropriate for the operator to define the instrumentation during the site-specific stage. The laboratory and analytical methods chosen will be for future operators, and we expect that these will be accredited to ISO 17025 (BSi, 2017) and MCERTS (Environment Agency, 2018b) where applicable. Meeting our requirements, the volumetric flow, required to determine the activity discharged, will be measured

continuously using an appropriate MCERTS accredited technique. As final confirmation is required at the site-specific stage, we have raised an Assessment Finding for a future operator:

Assessment Finding 30: A future operator shall demonstrate that, before signing of the relevant procurement contracts, the selected sampling and monitoring equipment for determining the discharges are best available techniques and enables the EU recommended levels of detection to be met.

The final discharge line receives liquid disposals from 2 sampling locations downstream of the liquid waste treatment sub-systems. The 2 sampling locations are located in the nuclear island liquid waste discharge system and conventional island liquid waste discharge system and each of these systems contains 3 storage tanks. The nuclear island liquid waste discharge system mainly receives liquid waste from the liquid waste treatment system, which contains tanks for process, chemical, floor and laundry drains, and treatment systems, including demineralisers, evaporators and filters. The conventional island liquid waste discharge system receives liquid waste from the steam generator blowdown system and the waste fluid collection system for the conventional island.

When a storage tank is full it is manually isolated and locked to prevent additional input. We issued an RQ concerning the controls and interlocks on storage tanks (RQ-UKHPR1000-0633). The RQ response provide clarity on the environmental protection function that the controls and interlocks provided and resulted in an update to the 'Approach to Sampling & Monitoring' submission (GNSL, 2020b). It detailed that a sample is collected once the storage tank is mixed and the sample is analysed before being discharged to confirm the activity is less than the permitted activity. The discharge valve is interlocked with the inlet isolation valves of the tank to prevent liquid waste being discharged to prevent uncharacterised liquid waste being discharged into the environment.

As we require, GNSL has committed to the final accountancy samples being taken via flow proportional sampling systems on the final discharge line. This gives an accurate record of what is actually discharged. GNSL is committed to using MCERTS accredited systems where available. At present pressurised systems are not covered, but are likely to be brought into scope in future. The samples will then be analysed by an accredited laboratory. The discharge flow is also measured at this point using an appropriate MCERTS accredited technique.

We issued 3 RQs (RQ-UKHPR1000-0535, 0539 and 0617) concerning the provision of independent sampling facilities (Environment Agency, 2020) and back-up provision for equipment and instrumentation. The responses to the RQs detailed how the flow proportional samplers and flow measurement apparatus will be provided for both the nuclear island liquid waste discharge system and conventional island liquid waste discharge system systems. These will allow us or our representatives to independently verify them, as we require. Each discharge system will have a single sampler and flow measurement apparatus with sufficient capacity for both the operator's sample and the independent sample. Providing duplicates will technically difficult to incorporate into the design, add an additional maintenance and testing burden to the operator. The 3 storage systems will have the necessary storage capacity if the sampler and flow measurement are unavailable.

In addition to sample collection, a continuous radiation monitor is provided in the liquid discharge line. If the system detects an elevated radiation level, it activates an alarm and closes an isolation valve to stop discharge to the environment.

2.6. Monitoring solid and non-aqueous liquid waste disposals

Monitoring radioactive solid and non-aqueous liquid waste disposals is described in GNSL's 'Approach to Sampling & Monitoring' submission (GNSL, 2020b), including considering BAT. This includes a description of the sampling and monitoring arrangements for solid and non-aqueous liquid waste carried out at different stages in the complete waste cycle for the UK HPR10000 design, including proposed techniques. The stages include at or close to the point of production, before processing, after processing (before and during storage), and before transfer to retrieval/repackaging or disposal or off-site treatment facilities.

The arrangements for monitoring solid and non-aqueous liquid waste have only been developed to a concept level during GDA as the design scope of solid and non-aqueous waste storage facilities is limited to concept design for GDA (GNSL, 2019b). Information on the solid and non-aqueous sampling and monitoring processes has taken account of relevant guidance, including guidance from the International Atomic Energy Agency (IAEA) (IAEA 2009a and 2009b). This gives reassurance that the practices being developed should be appropriate. As the arrangements for monitoring solid and non-aqueous liquid waste have only been developed at a concept level during GDA, we have raised an Assessment Finding for a future operator:

Assessment Finding 31: A future operator shall demonstrate that the systems and equipment used for monitoring and sentencing solid and non-aqueous liquid waste are best available techniques.

We issued an RQ (RQ-UKHPR1000-0633) concerning the sampling and monitoring of waste packages to demonstrate decay and whether the waste packages meet the requirements for disposal. The response to the RQ described the process to determine the waste characteristics and confirm the waste category, calculate the expected decay time, apply appropriate conditioning and packaging, storage in the relevant area, monitoring and inspection, recording of information and retrieval for disposal or further storage once the package has decayed to a lower category. The response to the RQ also resulted in an update to the 'Approach to Sampling & Monitoring' submission (GNSL, 2020b).

As the monitoring systems for the waste handling facilities have only been developed to concept level, these will need to be assessed at a later stage.

2.7. Monitoring matters for future operator

Table 2 adapted from the 'Approach to Sampling and Monitoring' (GNSL, 2020b) submission shows the areas that a future operator will need to address at the site-specific stage.

Table 2. Forward actions identified by GNSL (GNSL, 2020b)

Forward actions identified by GNSL

The representative sampling of gaseous effluent will be reviewed according to the specific height of stack at the site-specific stage.

Calculation of the total transmission efficiency of the sampling lines for UK HPR1000 will be performed at site-specific stage when detailed design information will be available.

Commitment of use MCERTs accredited flow proportional sampler for pressurised system if such equipment is available.

Use of appropriate measurement equipment and measurement method to meet the requirement of detection limits in 2004/2/Euratom.

The forward actions identified by GNSL in Table 2 cannot be completed during GDA as they are related to activities carried out during the site-specific stage. For example, the stack height will be decided at the site-specific stage to optimise dispersion based on site specific parameters, and the actual monitoring equipment will only be specified when it is procured so BAT must be applied then. We have raised an Assessment Finding to capture these forward action plans for a future operator:

Assessment Finding 28: A future operator shall address the post-GDA forward action plans identified in the 'Approach to Sampling & Monitoring' submission - HPR/GDA/PCER/0005, Revision 001-1, October 2020.

3. Compliance with Environment Agency requirements

The requirements set out in our P&ID and REPs (Environment Agency, 2016a and 2010) are shown in Table 3.

Requirement from P&ID and REPs	Comments
P&ID Item 6 (Sampling arrangements and	Details of gaseous and liquid in-process and discharge monitoring have been provided.
techniques for assessment of discharges and disposal of solid waste)	An overview of proposed solid waste and non-aqueous liquid monitoring has been provided.
	A demonstration of BAT has been provided.
	GNSL has provided reference values indicating Euratom (EU, 2004) detection limits can be met using currently available systems. Final confirmation that the Euratom (EU, 2004) detection limits will be met will be required at the site-specific stage.
	In meeting EU, 2004 requirements the RP has indicated that compliance with the proposed limits is achievable.
RSMDP9 – Characterisation	The characterisation of waste is discussed at a high level in the GNSL documentation and will need to be developed by a future operator and demonstrated to be BAT.
RSMDP13 – Monitoring and assessment	Relevant standards and guidance have been considered.
	Provision has been made to allow for independent regulatory check monitoring of discharges.
	An environmental monitoring programme is, inherently, site-specific and is not included in the scope of GDA.

Table 3. Compliance with Environment Agency requirements for GDA

Requirement from P&ID and REPs	Comments	
ENDP4 – Environmental protection function and measures	Details of the monitoring systems designed to detect radiation levels during normal and fault conditions are provided. Interlocks are in place to protect the environment.	
ENDP10 – Quantification of discharges	The main gaseous discharge route and only liquid discharge route have been designed to allow for BAT for quantifying discharges. A future operator will need to specify the exact monitoring equipment (to take account of technological advances between GDA and construction).	
	Identifying any other gaseous discharge routes requiring monitoring has also been left to a future operator.	
	Early warning systems are in place for abnormal radiation levels.	
ENDP14 – Control and instrumentation – environmental protection systems	There is in-process monitoring that allows for an understanding of the state of the facility and enables decision making. The provision of an environmental monitoring programme is not a requirement of GDA.	

4. Public comments

GNSL received no public comments up to 30 June 2020 concerned directly with monitoring.

5. Conclusion

For the UK HPR1000 gaseous effluent monitoring system we have preliminary concluded that:

- BAT has been demonstrated in principle for monitoring systems
- appropriate consideration has been given to the sampling line to ensure requirements for sampling can be met (through modelling penetration factors). Final confirmation of the acceptability of the sampling line will be needed once the position of the monitoring room has been finalised
- representative samples will be taken
- appropriate measurement and analysis will be carried out
- having the return of the sample to the discharge stack upstream of the sample extraction point will have a negligible effect on the discharge monitoring and is acceptable given the saving in pipework

• appropriate provision will be made to allow for independent regulatory verification of the gaseous monitoring and discharge reporting

For the UK HPR1000 liquid effluent monitoring system, we have preliminary concluded that:

- BAT has been demonstrated in principle for the monitoring systems
- representative samples will be taken of the final discharge
- appropriate flow measurement will be carried out
- appropriate analysis will be carried out
- appropriate provision will be made to allow for independent regulatory verification of the liquid monitoring and discharge reporting

For the UK HPR1000 monitoring of solid and non-aqueous liquid waste, our preliminary conclusion is that the practices being developed appear appropriate for monitoring final disposal of wastes, but a full assessment needs to be carried out when more information has been provided. More information will be required on the specific sampling and monitoring equipment and sampling of solid and non-aqueous liquid waste, as the detailed design progresses.

We have identified 4 Assessment Findings:

Assessment Finding 28: A future operator shall address the post-GDA forward action plans identified in the 'Approach to Sampling & Monitoring' submission - HPR/GDA/PCER/0005, Revision 001-1, October 2020.

Assessment Finding 29: A future operator shall demonstrate, before the reactor is commissioned, that the final configuration of the sampling lines and the layout and positioning of the monitoring room are optimised to comply with ISO2889 and the use of best available techniques.

Assessment Finding 30: A future operator shall demonstrate that, before signing of the relevant procurement contracts, the selected sampling and monitoring equipment for determining the discharges are best available techniques and enables the EU recommended levels of detection to be met.

Assessment Finding 31: A future operator shall demonstrate that the systems and equipment used for monitoring and sentencing solid and non-aqueous liquid waste are best available techniques.

References

Author	Reference	
BSi. 2004	'BS EN 60761-3:2004: Equipment for continuous monitoring of radioactivity in gaseous effluents – Part 3: Specific requirements for radioactive noble gas monitors'	
BSi. 2010	'BS ISO 2889:2010: Sampling airborne radioactive materials from the stacks and ducts of nuclear facilities'	
BSi. 2017	'General requirements for the competence of testing and calibration laboratories' (ISO/IEC 17025:2017)	
Environment Agency. 2010	'Radioactive Substances Regulation – Environmental Principles' Version 2, 2010	
Environment Agency. 2014	'MCERTS: Minimum requirements for the self-monitoring of effluent flow' Environment Agency 2014	
Environment Agency. 2016	Process and Information Document for Generic Assessment of Candidate Nuclear Power Plant Designs' Version 2, Environment Agency, 2016	
Environment Agency. 2017a	'Technical Guidance Note M1: Sampling requirements for stack emission monitoring' Version 8, 2017	
Environment Agency. 2017b	'Monitoring of radioactive discharges to atmosphere from nuclear facilities' Technical guidance 245_17, 2017	
Environment Agency. 2018a	Initial assessment of General Nuclear System Limited's UK HPR1000 design: Statement of findings' Version 1, 2018	
Environment Agency. 2018b	'Performance Standard for Organisations Undertaking Radioanalytical Testing of Environmental and Waste Waters' Version 3, 2018	
Environment Agency. 2019	'Performance standard for organisations carrying out manual stack emission monitoring' Version 8, 2019	
Environment Agency. 2020	'Monitoring of radioactive discharges to water from nuclear facilities' Guidance LIT 55216, 2020	
EU. 2004	Commission of the European Communities, 2004. 'Commission Recommendation on standardised information on radioactive airborne and liquid discharges into the environment from nuclear	

Author	Reference		
	power reactors and reprocessing plants in normal operation' (2004/2/Euratom). Official Journal of the European Union, L 2, 36- 46		
GB Parliament. 2016	'The Environmental Permitting (England and Wales) Regulations 2016' as amended May 2018		
GNSL. 2018a	'Pre-Construction Environmental Report Chapter 5 Approach to Sampling & Monitoring' HPR/GDA/PCER/0005, Revision 000-1, November 2018		
GNSL. 2018b	'Particle Penetration Factor Report for Gaseous Effluent' GH000500001DIYK02GN, Revision B, November 2018		
GNSL. 2018c	'The CFD Analysis Report for Representative Sampling of Gaseous Effluent' GH000500002DIYK02GN, Revision B, November 2018		
GNSL. 2019a	'Stack Platform Design Report' GHX06700001DIYK03GN, Revision C, July 2019		
GNSL. 2019b	'Scope for UK HPR1000 GDA Project' HPR-GDA-REPO-0007, Revision 001, July 2019		
GNSL. 2020a	'Pre-Construction Environmental Report Chapter 5 Approach to Sampling & Monitoring' HPR/GDA/PCER/0005, Revision 001, January 2020		
GNSL. 2020b	'Pre-Construction Environmental Report Chapter 5 Approach to Sampling & Monitoring' HPR/GDA/PCER/0005, Revision 001-1, October 2020		
IAEA. 2009a	'Predisposal Management of Radioactive Waste' No. GSR Part 5, 2009		
IAEA. 2009b	IAEA Nuclear Energy Series No.NW-T-1.18, 'Determination and Use of Scaling Factors for Waste Characterization in Nuclear Power Plants' 2009		
ISO. 1994	ISO 10780:1994 The International Organisation for Standardisation, 'Stationary source emissions – Measurement of velocity and volume flow rate of gas streams in ducts'		

Abbreviations

Acronym	Meaning		
AD	Aerodynamic diameter		
AF	Assessment Finding		
BAT	Best available techniques		
CFD	Computational fluid dynamics		
CGN	China General Nuclear Power Corporation		
ENDP	Engineering Developed Principle		
EPR	Environmental Permitting Regulations		
GDA	Generic design assessment		
GDAI	GDA Issue		
GNSL	General Nuclear System Limited		
HEPA	High efficiency particulate air		
HPR	Hua-long Pressurised Reactor		
HVAC	Heating, ventilation and air conditioning		
IAEA	International Atomic Energy Agency		
ISO	International Standards Organisation		
JPO	Joint Programme Office		
MCERTS	Monitoring certification		
NPP	Nuclear power plants		
ONR	Office for Nuclear Regulation		
P&ID	Process and Information Document		
PCER	Pre-Construction Environmental Report		

Acronym	Meaning
REP	RSR Environmental Principles
RI	Regulatory Issue
RO	Regulatory Observation
RP	Requesting Party
RQ	Regulatory Query
RSMDP	Radioactive Substance Management Developed Principle
RSR	Radioactive Substances Regulation

Appendix: Summary of Regulatory Queries relating to monitoring

The following table summarises the RQs that are most relevant to monitoring for the UK HPR1000 (There are no Regulatory Observations [ROs] or Regulatory Issues [RIs] relevant to monitoring).

Revision 1.1 of the 'Approach to Sampling & Monitoring' submission (GNSL, 2020b) and supporting submissions is intended to address the results of addressing any RQs at that time.

Note that ROs and RIs are published on the ONR website, along with resolution plans. RQ information is not routinely published, but all RQs and subsequent responses are available to the regulators through the Joint Programme Office (JPO). Progress against each has been discussed at technical level meetings with the RP.

RQ/RO/RI	Date issued	Title and summary
RQ-UKHPR1000-0211	13-Feb-2019	Lifetime of the stack platform design GNSL was requested to provide further information on:
		 the design life of the stack platform and whether the material selection has factored in the potential corrosive coastal atmosphere
RQ-UKHPR1000-0432	13-Aug-2019	Discharge monitor alarms
		GNSL was requested to provide further information on:
		 which gaseous and liquid discharge alarms are relayed to the control room and which alarm locally
		 clarification on the use of 'permitted limit' in terms of internal limit or future site permit limit
		 why some discharge valves are automatic and some are manual, and whether the environmental protection function of the valve has been considered in the valve selection process
RQ-UKHPR1000-0433	13-Aug-2019	Discharge monitor selection during design
		GNSL was requested to provide further information on:
		 substantiating the selection of the type of in- process monitor with respect to the anticipated radionuclides

Table 4. Summary of RQs relating to monitoring

RQ/RO/RI	Date issued	Title and summary
		 evidence for considering the expected non- radiological species in the system for the design life of the sampling and monitoring system
RQ-UKHPR1000-0535	13-Nov-2019	Equipment availability
		GNSL was requested to provide further information on:
		 the back-up provision for equipment and instrumentation, on the gaseous and liquid discharge routes, which provide an environmental protection function as a result of maintenance activities or from normal operations
RQ-UKHPR1000-0539	13-Nov-2019	Independent sampling
		GNSL was requested to provide further information on:
		 how the UK HPR1000 design will meet the requirements for tamper-evident duplicate sampling systems for the gaseous and liquid systems
RQ-UKHPR1000-0617	27-Jan-2020	Duplicate independent sampling
		GNSL was requested to provide further information on:
		 how the duplicate final discharge liquid samples will be collected when required for both the operator and regulator
		 confirmation that the UK HPR1000 design's sampling systems can provide sufficient gaseous and liquid samples to determine all discharges and disposals from the facility at the levels of detection specified in EU Commission Recommendation 2004/2/Euratom (EU, 2004), including when the gaseous and liquid samples are divided for the operator and regulator
RQ-UKHPR1000-0633	12-Feb-2020	Sampling and monitoring - general queries
		GNSL was requested to provide further information on:
		 the solid waste and non-aqueous liquid waste sampling and monitoring arrangements' codes and standards that the design is based on and demonstration that they apply to UK requirements

RQ/RO/RI	Date issued	Title and summary
		 how decay storage of waste will be demonstrated via sampling and monitoring of packages
		 the arrangements for monitoring and sampling before disposal and to assess whether the waste packages meet the requirements for disposal
		 progress of demonstrating representative sampling of gaseous effluent
		 the controls and interlocks in place to stop a storage tank receiving more liquid once it has reached a predetermined value and the liquid in the storage tank is recirculating before sampling and discharge
		 feasibility of long count times for discharge sample analysis
		 capture of commitments as forward actions plans

Would you like to find out more about us or your environment?

Then call us on

03708 506 506 (Monday to Friday, 8am to 6pm)

email

enquiries@environment-agency.gov.uk

or visit our website

www.gov.uk/environment-agency

incident hotline

0800 807060 (24 hours)

floodline

0345 988 1188 (24 hours)

Find out about call charges (www.gov.uk/call-charges)

Environment first:

Are you viewing this onscreen? Please consider the environment and only print if absolutely necessary. If you are reading a paper copy, please don't forget to reuse and recycle.