
 
 
This is a paper for discussion. It does not represent the views of the Committee and must not 
be quoted, cited or reproduced. 
 

MUT/2020/16 1 

COMMITTEE ON MUTAGENICITY OF CHEMICALS IN FOOD, CONSUMER 2 
PRODUCTS AND THE ENVIRONMENT (COM) 3 

 4 
GUIDANCE ON A STRATEGY FOR GENOTOXICITY TESTING OF 5 
CHEMICALs  6 
 7 
Continued consideration and comments of the updated COM ‘Guidance 8 
document on a strategy for genotoxicity testing of chemicals’.  9 
Members are asked to complete review of this latest draft as attached and 10 
consider the following questions: 11 

1. Could members advise their opinion in answer to each of the remaining 12 
comments received from DK and GJ.  13 

2. Can this document be published as COM Guidance? 14 

 15 
Secretariat  16 
November 2020 17 
 18 
  19 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

2 

 20 
GUIDANCE ON A STRATEGY FOR GENOTOXICITY TESTING 21 
OF CHEMICALs  22 
 23 
 24 
 25 

Contents 26 

EXECUTIVE SUMMARY ......................................................................................................................... 3 27 

I. PREFACE ....................................................................................................................................... 5 28 

II. INTRODUCTION ............................................................................................................................ 7 29 

III. SIGNIFICANCE OF CHEMICAL-INDUCED MUTATION FOR HUMAN HEALTH .................................. 8 30 

IV.    GENERAL PRINCIPLES OF TESTING STRATEGY .............................................................................. 9 31 

V.     GENOTOXICITY TESTING STRATEGY ............................................................................................ 10 32 

STAGE 0: PRELIMINARY CONSIDERATIONS PRIOR TO GENOTOXICITY TESTING................................. 11 33 

STAGE 1: IN VITRO GENOTOXICITY TESTING ...................................................................................... 12 34 

DISCUSSION OF STAGE 1 TESTS- GENERAL ASPECTS .......................................................................... 15 35 

DISCUSSION OF STAGE 1 STRATEGY: SPECIFIC CORE TESTS ............................................................... 19 36 

DISCUSSION STAGE 1: NON-CORE TESTS ............................................................................................ 23 37 

SUMMARY STAGE 1 (IN VITRO GENOTOXICITY TESTING) .................................................................. 25 38 

STAGE 2: IN VIVO GENOTOXICITY TESTS ............................................................................................ 26 39 

DISCUSSION OF STAGE 2 INITIAL TESTING STRATEGY - GENERAL ASPECTS........................................ 31 40 

DISCUSSION OF STAGE 2 - RECOMMENDED IN VIVO GENOTOXICITY TESTS ...................................... 32 41 

DISCUSSION OF STAGE 2-SUPPLEMENTARY TESTS. ............................................................................ 35 42 

SUMMARY STAGE 2 (IN VIVO GENOTOXICITY TESTING) .................................................................... 38 43 

POSSIBLE FUTURE DEVELOPMENTS ................................................................................................... 39 44 

REFERENCES ....................................................................................................................................... 41 45 

GLOSSARY .......................................................................................................................................... 58 46 

ANNEX 1 ............................................................................................................................................. 67 47 

 48 
  49 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

3 

GUIDANCE ON A STRATEGY FOR GENOTOXICITY TESTING OF 50 
CHEMICALS.  51 

Executive Summary  52 

1. The Committee on Mutagenicity of Chemicals in Food, Consumer Products and 53 

the Environment (COM) has a remit to provide UK Government Departments and 54 

Agencies with advice on the most suitable approaches to testing chemical substances 55 

for genotoxicity. The COM published guidance in 1981, 1989, 2000 and again in 2011. 56 

This document incorporates some significant changes and reports the COM views 57 

regarding the most appropriate strategy for genotoxicity testing (Figure 1) reached in 58 

2020, bringing the guidance document up to date. 59 

2.  It should be noted that in this updated guidance, several key areas have been 60 

identified [RB1]as potentially requiring frequent updating, due to their fast-moving 61 

nature. To facilitate such updates, standalone documents have been prepared 62 

outlining the currently available status of the use of Quantitative Structure Activity 63 

Relationship (QSAR) modelling (30 - 31) and testing strategies for germ cell mutagens 64 

(paras 91 - 94), both of which were included in the previous version of the guidance 65 

document. In addition, standalone documents have been prepared detailing the use of 66 

3D tissue models for genotoxicity testing and test guidance strategies for manufactured 67 

nanomaterials. Both of these areas were not included in the previous version of the 68 

guidance document and are now briefly detailed in paras 28 and 37 respectively.   69 

3. The COM recommends a staged approach to testing:  70 

• Stage 0 consists of preliminary considerations which include physico-chemical 71 

properties of the test chemical substance, Structure Activity Relationships 72 

(SAR), and information from screening tests1. However, data from SAR and 73 

screening tests should not overrule test data from adequately designed and 74 

conducted genotoxicity tests. 75 

• Stage 1 consists of in vitro genotoxicity tests. The COM recommends a core-76 

test battery of the Ames test combined with the in vitro micronucleus test. This 77 

combination provides information on three types of genetic damage for which 78 

data are required (namely, gene mutation, chromosomal damage and 79 

aneuploidy) and gives appropriate sensitivity to detect chemical genotoxins. As 80 

also supported by the OECD, the COM consider that there is no need to 81 

independently replicate adequately designed and conducted core in vitro tests 82 

 
1 Note that the terms ‘test’ and ‘assay’ are used interchangeably throughout the document to 
reflect naming conventions.  
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which are either clearly negative or clearly positive. The strategy document also 83 

considers the contribution that can be made by a number of non-core in vitro 84 

tests. 85 

• Stage 2 consists of in vivo genotoxicity tests. A case-by-case strategy should 86 

be developed to answer one or more of the following specific queries; 87 

1) Investigation of genotoxic end point(s) identified in Stage 1,  88 

2) Investigation of genotoxicity in tumour target tissue(s),  89 

3) Investigation of potential for germ cell genotoxicity,  90 

4) Investigation of in vivo genotoxicity for chemicals which were negative 91 

in Stage 1 but where there is high or moderate and prolonged exposure, 92 

5) Investigation of genotoxicity in site of contact tissues.  93 

4. The core tests in Stage 2 are the rodent micronucleus/chromosome aberration 94 

assays for aneuploidy and clastogenicity, the transgenic rodent gene mutation assay 95 

and the rodent alkaline comet assay for DNA damage.  96 

5. Usually, negative results obtained in a carefully selected in vivo test (possibly 97 

studying more than one endpoint and tissue) will be sufficient to address positive 98 

results found in vitro. However, a further test(s) may be needed if some of the genotoxic 99 

effects seen in Stage 1 in vitro tests had not been adequately studied in vivo (e.g. the 100 

chemical affects multiple mutagenic end-points), or other aspects of the genotoxic 101 

potential of the chemical had not been fully resolved (e.g. a human metabolite is 102 

identified that is not formed, or only in small amounts, in rodents, or in the case where 103 

an investigation of heritable effects was required). The strategy document also 104 

considers the contribution that can be made by a number of non-core in vivo tests. In 105 

most instances information from core in vivo tests is sufficient to evaluate the in vivo 106 

genotoxicity of chemical substances. A supplementary in vivo test strategy can provide 107 

additional information on a case-by-case basis, to investigate aspects such as further 108 

characterisation of germ cell genotoxicity, and DNA adduct data which can provide 109 

information to elucidate the mode of genotoxic action of carcinogenic chemicals.  110 

 111 

112 
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I. Preface 113 

6. The COM is an independent expert advisory committee whose members are 114 

appointed by the secretary of state for health and social care and the chair of the Food 115 

Standards Agency (FSA) following an appointments exercise involving public 116 

advertisement. Members serve in their own capacity as independent experts and 117 

observe a published code of practice including principles relating to the declaration of 118 

possible conflicting interests. 119 

7. The remit of the COM is to advise any UK government departments and 120 

agencies with an interest in the safety of chemicals across various sectors on the 121 

human health aspects of the mutagenicity and genotoxicity of chemicals (these terms 122 

are defined for the purposes of this guidance document in paragraphs 9 - 10 below). 123 

The Secretariat is provided by Public Health England (PHE), who lead, and the FSA. 124 

Other government departments with an interest provide assessors to the COM; these 125 

are specifically from the Department of Health and Social Care (DHSC), the 126 

Department of Environment, Food and Rural Affairs (Defra), the Chemicals Regulation 127 

Division (CRD) of the Health and Safety Executive (HSE) (responsible for legislation 128 

regulating chemicals, pesticides, biocides and detergents), the Environment Agency 129 

(EA), the Veterinary Medicines Directorate (VMD; a Defra agency responsible for the 130 

licensing of veterinary drugs) and the Medicines and Healthcare products Regulatory 131 

Agency (MHRA; a DHSC agency responsible for the licensing of human medicines). 132 

In addition, there are assessors from the Scottish Government, the Welsh Assembly 133 

Government and the Northern Ireland Assembly. 134 

8. The role of the COM is advisory. It has no regulatory status, although its advice 135 

may be provided to a body that does have such a role (e.g. HSE CRD for occupational 136 

aspects and for pesticides etc). Its remit is to advise on the human health aspects of 137 

the genotoxicity of chemicals, and this may involve advice on a specific chemical, and 138 

also on testing strategies and research. This guidance document focuses on testing 139 

strategies for chemicals for which there are no available genotoxicity data. Separate 140 

guidance on a strategy for the genotoxicity testing and mutagenic hazard assessment 141 

of chemicals with inadequate genotoxicity data was published in 2011 142 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach143 

ment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.p144 

df). Throughout this guidance the COM has referred to the genotoxicity testing of 145 

chemical(s) which refers to a specified chemical or material, including any additive 146 

necessary to preserve its stability and any impurity deriving from the process used. 147 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315802/strategy_for_chemicals_with_inadequate_genotoxicity_data.pdf
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The COM usually provides advice on a specific chemical which can be equated to a 148 

single chemical or compound. Provision of advice on radiation aspects is not within the 149 

scope of the COM.  150 

9. The COM also has a general remit to advise on important general principles or 151 

new scientific discoveries in connection with potential mutagenic and genotoxic 152 

hazards (inherent properties of chemicals) or risk (the likelihood of mutagenic or 153 

genotoxic effects occurring after a given exposure to a chemical) and to present 154 

recommendations for genotoxicity testing. In practice the bulk of the work of the COM 155 

relates to assessing genotoxicity tests and providing advice on the genotoxic hazard 156 

of chemicals. 157 

10. In the context of testing strategies, the COM first published guidelines for the 158 

testing of chemicals for mutagenicity in 1981, and these were revised in 1989  and 159 

2000 (DOH, 2000). These provided guidance to the relevant government departments 160 

and agencies on best practice for testing at those times. The rationale developed by 161 

COM in 2000, particularly in relation to the testing of all potential mutagenic endpoints, 162 

was adopted by the International Workshops on Genotoxicity Testing (IWGT) Muller et 163 

al., 2003. The need for guidance to be periodically updated, to reflect advances in 164 

development and validation of methods, was recognised and substantially revised 165 

guidance was published in 2011 (DOH, 2011). Testing strategies, the same or similar 166 

to those outlined in the 2011 COM guidance, have been adopted by some regulatory 167 

bodies, including the European Food Safety Authority (EFSA) (EFSA, 2017) and 168 

included in the notes on Guidance from the Scientific Committee on Consumer Safety 169 

(SCCS) (SCCS, 2016) and in the Registration, Evaluation, Authorisation and 170 

Restriction of Chemicals (REACH) regulation (ECHA, 2017). 171 

11. A further revision of the guidance has been undertaken. This version (COM, 172 

2020) of the guidance outlines the strategy that COM consider to be the most 173 

scientifically appropriate given available methods, and recognises the need to avoid 174 

the use of live animals where practical and validated alternative methods are available. 175 

The COM believes that the approach outlined presents an overview of the core 176 

principles of genotoxicity testing and will remain valid for several years. It is 177 

acknowledged that existing national or international testing strategies will be at 178 

different stages of review and hence inconsistencies are expected. The COM guidance 179 

is not intended to supersede or replace existing national or international sector-specific 180 

genotoxicity testing strategies (e.g. those recommended for pharmaceuticals by the 181 

International Conference on Harmonisation of Technical Requirements for Registration 182 
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of Pharmaceuticals for Human Use (ICH) (ICH, 2011), for chemicals assessed under 183 

REACH Regulations (EC1906/2006) (ECHA, 2017), or by EFSA (EFSA, 2011). 184 

II. Introduction 185 

12. The COM last published guidance on a strategy for the testing of chemicals for 186 

mutagenic potential in 2011 (DOH,  2011). The guidance outlined in 2011 was based 187 

on the development of new approaches to identifying genotoxic hazards in vitro 188 

including new approaches to identify misleading positive results and evaluate target 189 

organ genotoxicity in vivo. There is also a need for a testing strategy which can 190 

encompass chemicals such as cosmetics where no animal tests are permitted under 191 

European Union (EU) law. It is the objective of this paper to set out a scientifically valid 192 

testing strategy comprising those methods which the COM believe to be the most 193 

informative with regards to the detection of genotoxic hazard and (when possible) are 194 

well validated. There is no discussion of methods which experience has shown to be 195 

suboptimal in determining genotoxicity. Details of methodologies are not given since 196 

they are provided in the Organisation for Economic Cooperation and Development 197 

(OECD) test guidelines, the EU Test Methods Regulation (EC 440/2008) and the IWGT 198 

guidance.  199 

13. The genome can be damaged in a variety of ways either spontaneously or from 200 

exposure to genotoxic agents. The term “mutagenic” refers to the ability of a chemical 201 

to[RB2] induce a permanent change in the amount or structure of the genetic material 202 

of an organism, which may result in an heritable change in the characteristics of the 203 

organism. Chemicals inducing mutations are referred to as mutagens (they are 204 

mutagenic). These alterations may involve individual genes, blocks of genes, or whole 205 

chromosomes. Mutations involving single genes may be a consequence of effects on 206 

single DNA bases (point mutations) or of larger changes, including deletions and 207 

rearrangements of DNA. The potential to induce mutation is measured in test systems 208 

that detect a broader range of genetic changes than simply mutation – they measure 209 

genotoxicity. Mutagenicity is accepted as a key event in carcinogenicity. Epigenetic 210 

changes, that could also be heritable, fall outside the scope of this guidance.  211 

14. Genotoxicity refers to interaction with, or damage to, DNA and/or other cellular 212 

components which regulate the fidelity of the genome. It is a broad term that, as well 213 

as mutation, includes damage to DNA such as the production of DNA adducts, by the 214 

chemical itself or its metabolites. Cells have the capacity to protect themselves from 215 

such potentially lethal or mutagenic genotoxic effects by many repair processes and 216 

therefore many genotoxic events do not become evident as mutations. However, the 217 
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capacity to damage the genome (genotoxicity) is an indicator of potential mutagenicity. 218 

Thus, some methods that measure genotoxicity do not provide direct evidence of 219 

heritable mutation.  220 

15. The objective of genotoxicity testing is to exclude or identify potential hazards 221 

to humans and, for those chemicals that are positive, to aid in the elucidation of the 222 

mode of action (MoA). This guidance therefore presents a strategy for genotoxicity 223 

testing since this term encompasses all the assays included in the strategy. 224 

Consequently, it is important to generate information on three types of genetic damage, 225 

namely gene mutation, changes to chromosome structure (i.e. clastogenicity) and 226 

number (i.e. aneuploidy), to provide comprehensive coverage of the mutagenic 227 

potential of a chemical.  228 

16. The COM reaffirms its view, published in 1989, 2000 and 2011, that there is 229 

currently no single validated assay that can provide comprehensive information on all 230 

three types of genetic damage and thus it is necessary to subject a given test chemical 231 

to several different assays. The range of assays discussed in this document include 232 

those using prokaryotes (bacteria) and mammalian cells in vitro, and whole mammals, 233 

where effects in a wide range of target organs including germ cells can be measured. 234 

Assays may be classified on the basis of genetic end-points (e.g. gene mutation, 235 

clastogenicity, aneugenicity and tests for DNA damage) or by consideration of the 236 

different phylogenetic levels (e.g. bacteria, and mammalian cells) represented and also 237 

in mammals by the tissues or target organs studied.  238 

III Significance of Chemical-Induced Mutation for Human Health 239 

17. A mutation in the germ cells of sexually-reproducing organisms may be 240 

transmitted to the offspring, whereas a mutation that occurs in somatic cells may be 241 

transferred only to descendant daughter cells. Mutagenic chemicals may present a 242 

hazard to health since exposure to a mutagen carries the risk of inducing germ-line 243 

mutations, with the possibility of inherited disorders, and the risk of somatic mutations 244 

including those leading to cancer.  245 

18. A separate statement discussing the significance of chemical-induced mutation 246 

to human health was published in 2012: 247 

(https://www.gov.uk/government/publications/the-significance-of-chemical-induced-248 

mutation-for-human-health).  249 

https://www.gov.uk/government/publications/the-significance-of-chemical-induced-mutation-for-human-health
https://www.gov.uk/government/publications/the-significance-of-chemical-induced-mutation-for-human-health
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IV. General Principles of Testing Strategy  250 

19. The COM recommends a two-stage testing strategy (Stages 1 and 2) for the 251 

detection of the genotoxic hazard of chemicals which can be supported by appropriate 252 

preliminary screening tests and/or in silico data (Stage 0).  253 

20. Initial testing for genotoxic potential in Stage 1 is based upon two core in vitro 254 

tests that are chosen to provide information on gene mutation, clastogenicity and 255 

aneuploidy, with case-by-case additional testing and investigation depending on the 256 

results of these initial genotoxicity tests. All in vitro tests should be designed to provide 257 

the best chance of detecting potential activity, with respect to (a) the exogenous 258 

metabolic activation system (S9 - see glossary); (b) the ability of the compound or its 259 

metabolite(s) to reach the target DNA and/or targets such as the cell division 260 

apparatus, and; (c) the ability of the genetic test system to detect the given type of 261 

genotoxic event. Where international guidelines are available, the assays should be 262 

carried out to conform to those internationally recognised protocols[DK3][RB4] e.g. as 263 

published by the OECD, the IWGT and in the EU test methods Regulation (EC 264 

440/2008). The same approach to testing can be used for chemicals where in vivo 265 

genotoxicity testing is not permitted (e.g. cosmetics). Investigations regarding MoA are 266 

important to derive conclusions on biological relevance of in vitro genotoxicity test 267 

results, to aid in overall risk a[RB5]ssessment, and to inform on the strategy for in vivo 268 

tests. This is of particular importance for those chemicals where no in vivo genotoxicity 269 

testing is permitted.  270 

21. For most chemicals, results from the two Stage 1 core tests should be sufficient 271 

to reach a conclusion on the presence or absence of mutagenic potential. However, in 272 

some instances, even when Stage 1 tests are negative, regulatory authorities may 273 

require consideration of the need for in vivo Stage 2 testing particularly where exposure 274 

is considered to be high, or moderate and prolonged (e.g. most human medicines), or 275 

where there is a chemical class precedent (i.e. structural relationship) of positive in 276 

vivo genotoxicity data. Guidance on the level of exposure which equates to high, 277 

moderate or prolonged is beyond the remit of the COM.  278 

22. Stage 2 consists of a number of in vivo tests designed to investigate whether 279 

in vitro genotoxic activity including specific end-points identified by in vitro tests can be 280 

expressed in the whole animal. This may also include assays for specific target organs 281 

(e.g. rodent tumours detected in carcinogenicity bioassays) or in germ cells. Few 282 

chemicals are active only in vivo and in such cases this may be due to a number of 283 

factors such as metabolic differences, the influence of gut flora, higher exposures in 284 
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vivo compared to in vitro, pharmacological (e.g. folate depletion or receptor kinase 285 

inhibition) and extreme physiological effects (Tweats et al, 2007b).  286 

23. There is currently no single in vivo test which can assay all three types of 287 

genetic damage (Thybaud et al., 2007) and thus a strategy for Stage 2 has to be 288 

designed based on the nature of genotoxic effects identified in Stage 1 and the 289 

possibility that genotoxic activity will only be expressed in vivo as discussed above. 290 

However, consideration should be given to the possibility of evaluating different 291 

genotoxicity endpoints in a single set of test animals.  292 

24. There should be a clear strategy for planning tests within each stage and for 293 

progressing from Stage 1 to Stage 2. Clear statements can be made regarding the 294 

initial in vitro tests to be used in Stage 1 as these methods have been well studied, 295 

whereas the strategy for Stage 2 is more complex and, if not a specific regulatory 296 

requirement, needs to be developed on a case-by-case basis.  297 

25. Under the strategy recommended by COM, the use of animals in genotoxicity 298 

testing is primarily required when it is necessary to investigate whether genotoxic 299 

activity detected in Stage 1 in vitro is reproduced in vivo, to study target organ 300 

genotoxicity (for example involvement of genotoxicity in rodent tumours) and to 301 

evaluate the potential for heritable mutagenic effects. Genotoxicity testing using 302 

animals, when required by guidance, should be carried out when there is no suitable 303 

alternative, and the minimum number of animals should be used, consistent with 304 

obtaining valid results. If feasible, studies can be conducted as an adjunct to single or 305 

repeat dose toxicity studies. The COM supports current and future developments to 306 

replace, refine or reduce the need for animals, consistent with the principles of the 307 

3Rs2.    308 

V Genotoxicity Testing Strategy  309 

26. The COM guidance provides a strategy for testing chemicals where no 310 

genotoxicity data are available.  Test chemicals may also contain impurities at varying 311 

levels which may exhibit genotoxic activity. Separate guidance on the genotoxicity 312 

assessment of impurities is available at 313 

https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-314 

in-chemical-substances. The assessment and control of genotoxic impurities is the 315 

subject of an ICH Guideline (M7)  316 

[DK6][RB7](http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Mul317 

 
2 https://www.nc3rs.org.uk/the-3rs 

https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-in-chemical-substances
https://www.gov.uk/government/publications/genotoxicity-assessment-of-impurities-in-chemical-substances
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_Step_4.pdf
https://www.nc3rs.org.uk/the-3rs


DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

11 

tidisciplinary/M7/M7_Step_4.pdf) and ICH M7(R1) 318 

(http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidiscipli319 

nary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf), and a Question and Answer 320 

document (https://www.ema.europa.eu/en/ich-m7-assessment-control-dna-reactive-321 

mutagenic-impurities-pharmaceuticals-limit-potential). 322 

 323 

27. The strategy recommended in the following sections is concerned with testing 324 

for genotoxic activity of chemicals and does not specifically address complex mixtures 325 

of chemicals.  326 

Stage 0: Preliminary Considerations Prior to Genotoxicity Testing 327 

28. The intrinsic chemical and toxicological properties of the test chemical must be 328 

considered before devising the genotoxicity testing programme. Manufactured 329 

nanomaterials present particular considerations with regards to genotoxicity testing 330 

and these are discussed in a separate document ‘Test Guidance Strategies for 331 

Genotoxicity Testing of Manufactured nanomaterials’ (COM, 202x). 332 

Physico-chemical and Toxicological Properties 333 

29. The physico-chemical properties of the test chemical (for example, acid 334 

dissociation constant (pKa), partition coefficient, solubility, volatility and stability in, and 335 

potential reactions with, solvents/vehicles) and its purity can affect the ease of conduct 336 

and results of in vitro tests. For example, the tolerance of cells to acidic chemicals can 337 

be enhanced by neutralisation but this may affect the inherent reactivity of chemicals 338 

with DNA (Hiramoto et al., 1997). Potential reactions of the test chemical with solvent 339 

/vehicle should also be considered (e.g. cisplatin reacts with dimethyl sulfoxide 340 

(DMSO)) (Fischer et al., 2008). Alternatively, low solubility may limit the feasibility of 341 

undertaking some or all of the in vitro mutagenicity tests recommended in this strategy. 342 

The potential for auto-oxidation of the test chemical in the culture medium can also 343 

affect the outcome of in vitro genotoxicity tests (Long et al., 2007). It is noteworthy that 344 

the toxic properties of test chemicals, such as target organ effects, or 345 

irritancy/corrosivity in contact with skin or mucous membranes and their toxicokinetics 346 

and metabolism will influence the choice of route of administration and the highest 347 

dose level achievable in Stage 2 in vivo mutagenicity tests. [RB8] 348 

Quantitative Structure Activity Relationships (QSAR) 349 

30. The expected mutagenic potential of a chemical can be assessed from its 350 

chemical structure, which may provide structural alerts for mutagenicity. The COM has 351 

previously agreed that where no genotoxicity data are available, initial assessment of 352 

http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_Step_4.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf
http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Multidisciplinary/M7/M7_R1_Addendum_Step_4_31Mar2017.pdf
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potential genotoxicity can be based on publicly available QSAR models. A range of 353 

QSARs have been developed to predict genotoxicity and COM considered updated 354 

information on these models in February 2018. The discussions formed the basis of 355 

the COM Statement ‘Use of QSAR models to predict genotoxicity” (COM, 202x).  It 356 

was concluded that whilst it remained useful to evaluate data generated from QSAR 357 

models, in particular as a negative predictor for screening purposes, no changes to the 358 

previously recommended guidance (detailed more fully within the 2011 version of the 359 

COM Guidance document; COM, 2011) were warranted.    360 

31. Overall, QSAR approaches for the prediction of genotoxic activity can be a 361 

valuable tool to aid in the high throughput screening of compounds, the provision of 362 

assessments for chemicals for which no genotoxicity test data are available and also 363 

prioritisation for genotoxicity testing. QSAR can also aid in the interpretation of genetic 364 

toxicology tests. Expert judgement is needed when reaching conclusions on mutagenic 365 

hazard on the basis of QSAR information alone, and such predictions cannot replace 366 

the need to undertake the in vitro and in vivo genotoxicity tests required to derive 367 

conclusions on mutagenic hazard[DK9][RB10]. In reaching conclusions, data from well 368 

conducted in vitro or in vivo genotoxicity tests should be attributed a much higher 369 

weight of evidence than QSAR predictions, although all information should be 370 

assessed on a case-by-case basis.  371 

Screening Tests 372 

32. With regard to this guidance, genotoxicity screening tests refers to high 373 

throughput or scaled-down tests which have been designed to be rapid, economical, 374 

reproducible, require only small amounts of test chemicals (typically below 50 mg) and 375 

have a high concordance with comparator genotoxicity end points in genotoxicity tests; 376 

these tests are also often referred to as pre-screening tests. None of the available 377 

genotoxicity screening tests have reached the stage of development where they could 378 

routinely be used to replace data generated from guideline-compliant in vitro 379 

genotoxicity testing. COM therefore does not recommend any particular test for 380 

screening purposes. 381 

33. A number of in vitro systems for use as screening tests have been proposed 382 

and are described in full in the previous version of the COM Guidance (COM, 2011).  383 

COM is currently preparing a stand-alone document detailing recent advances in 384 

screening tests that will sit alongside this Guidance Document.[RB11] 385 

Stage 1: In Vitro Genotoxicity Testing 386 

Overview of strategy  387 
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34. The COM concluded in 1989, 2000 and 2011 that it was appropriate to concentrate 388 

on a relatively small number of assays, using validated, sensitive methods 389 

particularly chosen to avoid misleading negative or positive results when 390 

compared to in vivo testing results (Kirkland et al., 2005a, 2007c; Fowler et al., 391 

2012a, b; Matthews et al., 2006; Pfuhler et al., 2011). A detailed justification of the 392 

strategy is given in the previous version of the COM Guidance (COM, 2011) and, 393 

as such, is not included here.   394 

35. Misleading positive results are considered to be caused by a number of factors, 395 

including the use of cell lines of rodent origin (e.g. V79, CHO, CHL) that partially lack 396 

normal cell cycle control,[RB12] have limited metabolic capacity (even with the addition 397 

of S9) and do not mimic site-specific metabolic capacity (Reus et al., 2013). The use 398 

of p53-competent human cells and careful control of cytotoxicity can help reduce the 399 

number of misleading positive results without compromising sensitivity (Fowler et al., 400 

2012a, b). The development of 3D tissue models is also hoped to reduce the number 401 

of misleading positive findings and improve the accuracy of predictions due to their 402 

improved metabolic capacity and proximity to in vivo gene expression and protein 403 

functions (Andres et al., 2012; Barcham et al., 2018; Pfuhler et al. 2020a, b). The 404 

current state of the science for 3D model development and validation is discussed in 405 

‘3D Tissue Models for Genotoxicity Testing’ (COM, 2020). 406 

36. As outlined above in paragraph 20 and shown in Figure 2,  Stage 1 involves 407 

tests for genotoxic activity using in vitro methods and comprises a two test core system; 408 

namely an in vitro bacterial test for gene mutation (Ames test) and an in vitro 409 

micronucleus test (MNvit), with the objective of assessing genotoxic potential by 410 

investigating three different end points (gene mutation, structural chromosomal 411 

damage and changes in chromosome number). A detailed justification of the strategy 412 

is given in the previous version of the COM Guidance (COM, 2011).  413 

37. A clear positive result in either of these two core tests is sufficient to 414 

define the chemical as an in vitro genotoxin, although further in vitro and/or in 415 

vivo testing may be undertaken to understand the relevance of the positive 416 

results. The Committee considers this strategy allows for efficient identification of all 417 

genotoxic end-points and that, by reducing the number of mammalian cell tests and 418 

following the most current version of the methodologies, the risk of misleading positive 419 

results (i.e. when compared with in vivo genotoxicity data) is decreased.  420 

38. Additional investigations of chemicals which give positive or repeated equivocal 421 

results in Stage 1 tests can include an assessment of mode(s) of in vitro genotoxic 422 
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action. There are a number of reasons (discussed in paragraphs 43-45) why positive 423 

results in in vitro genotoxicity tests might occur by mode(s) of action not relevant to 424 

human health hazard assessment. Such mode [RB13]of action (MoA) evaluation in vitro 425 

is particularly relevant for those chemicals (e.g. cosmetics) where there is a regulatory 426 

constraint which precludes the use of in vivo genotoxicity assays in the testing strategy. 427 

The COM does not recommend the use of in vitro genotoxicity assays that have not 428 

been considered in detail in this guidance or for which OECD guidelines either do not 429 

exist [DK14][RB15]or have been deleted. This includes assays for sister chromatid 430 

exchange, the in vitro Unscheduled DNA Synthesis (UDS) assay, the in vitro comet 431 

assay or tests using fungi or Drosophila, A table of genotoxic endpoints detected by 432 

each assay cited in Stage 1 of this strategy is given in Annex 1.  433 

39. For chemicals which give equivocal results or repeated small positive effects, 434 

when considering biological relevance, it is important to consider evidence of 435 

reproducibility in the same assay or in different assays detecting similar effects, and 436 

the magnitude of the induced genotoxic effect in relation to historical negative control 437 

data, and then consider whether further in vitro genotoxicity testing is needed (Hayashi 438 

et al., 2011; Kirkland et al., 2007a). Further consideration of SAR data for these 439 

chemicals may also give valuable information (Dearfield et al., 2010). 440 

40. If clear negative results are obtained in both core in vitro tests undertaken, it 441 

can generally be concluded that the chemical has no genotoxic activity. However, there 442 

are some occasions when additional in vitro and/or in vivo genotoxicity testing may be 443 

undertaken for chemicals giving a negative response in the two in vitro core 444 

genotoxicity tests. For example, in situations where tumours are found in rodents, 445 

where the in vitro metabolic activation systems are not optimal or where there are 446 

human-specific metabolites, there may be a need for further genotoxicity assessment. 447 

A further testing strategy would have to be designed on a case-by-case basis (Kirkland 448 

et al., 2007b; Muller et al., 2003). An IWGT working group has published guidance on 449 

this topic (Kasper et al., 2007). An important part of any additional in vitro strategy 450 

should be consideration of the appropriate exogenous metabolic activation system 451 

(including alternative sources of S9 or other metabolic systems including genetically 452 

engineered cell lines) (Ku et al., 2007b), or even the testing of specific, relevant 453 

metabolites. Further[RB16] information on in vivo genotoxicity testing of such test 454 

chemicals is provided in Stage 2 of this strategy. 455 

41. Information from other combinations of genotoxicity tests, which may include 456 

one or more non-core tests outlined below in paragraphs 66-71, may also give 457 

adequate data on all three end-points on a case-by-case basis. In vitro genotoxicity 458 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

15 

tests (micronucleus scoring and comet) using human reconstructed skin may provide 459 

useful information on in vitro mutagenic hazard in circumstances where in vivo testing 460 

is not permitted, or when extensive dermal exposure is anticipated (e.g. cosmetic 461 

ingredients) (Aardema et al., 2013; Chapman et al., 2014; Roy et al., 2016; Reisinger 462 

et al., 2018). 463 

42. The full Stage 1 strategy should be performed and the results of studies 464 

evaluated before a decision is made on whether to proceed to Stage 2 testing or 465 

whether a conclusion on mutagenic hazard can be derived for test chemicals where 466 

no in vivo genotoxicity testing is permitted. An outline of Stage 0 and Stage 1 (in vitro 467 

genotoxicity testing) is given in Figure 2 and a description of the assays recommended 468 

is provided in the following paragraphs.  469 

Discussion of Stage 1 Tests- General Aspects 470 

43. The conduct of genotoxicity assays has improved over time and the overall 471 

sensitivity of in vitro testing strategies regarding prediction of rodent carcinogens is 472 

very high (Kirkland et al., 2007c; Kirkland et al., 2005a). Proposals have been 473 

published for genotoxicity testing advocating a single in vitro genotoxicity test (Ku et 474 

al., 2007a) or a complex approach involving up to six in vitro genotoxicity tests 475 

(SCCNFP, 2003). The latter  approach has been critically evaluated ((Kirkland et al., 476 

2005a; Kirkland et al., 2005b; Kirkland et al., 2007c; Pfuhler et al., 2011) and although 477 

sensitivity (i.e. correct identification of rodent non-carcinogens) was high, specificity 478 

(i.e. producing negative results with non-carcinogens) was poor. [RB17]COM considers 479 

that neither approach is preferable to the proposed Stage 1 core testing. A 480 

comprehensive review of the performance of Stage 1 genotoxicity assays for prediction 481 

of rodent carcinogenicity (as assessed by the Carcinogenic Potency Database 482 

(CPDB), National Toxicology Program (NTP), and the International Agency for 483 

Research on Cancer (IARC)) reported reasonable specificity for the Ames test (74%) 484 

but poor specificity for the mammalian cell assays (below 45%) particularly when 485 

multiple assays were performed (Elespuru et al.,  2009; Kirkland et al., 2005a). Many 486 

reasons for low specificity have been proposed, particularly for mammalian cells; for 487 

example, the use of high concentrations, high cytotoxicity, prolonged exposure, 488 

overloading defence mechanisms, lack of detoxification capacity. The influence of such 489 

confounding effects leading to indirect mechanisms of genotoxicity, has been widely 490 

recognised (Kirsch-Volders, 2003; Müller, 2000; Pratt, 2003; Kirkland et al., 491 

2007a)[RB18].  492 
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44. Kirkland et al. assessed the sensitivity of a combination of the Ames test and 493 

MNvit test to detect rodent carcinogens and in vivo genotoxicants (Kirkland et al., 494 

2011). The authors stated that it is difficult to draw precise conclusions from the 495 

available sensitivity and specificity data since the databases of chemicals used vary. 496 

However, these data do show that mammalian cell genotoxicity tests can have low 497 

specificity and that combinations of in vitro genotoxicity tests result in high sensitivity 498 

for rodent carcinogens and in vivo genotoxicants. High sensitivity has always been a 499 

priority of genotoxicity testing strategies recommended by the COM (DOH, 2000, 500 

2011). COM evaluated the use of in vitro genotoxicity tests to predict rodent 501 

carcinogens and in vivo genotoxicants in June 2010 and concluded that there is no 502 

convincing evidence that any [relevant or DNA reactive] rodent carcinogen or in 503 

vivo genotoxicant would fail to be detected by using an in vitro genotoxicity test 504 

battery consisting of Ames and MNvit tests  505 

(http://webarchive.nationalarchives.gov.uk/20140506144308/http://www.iacom.org.uk506 

/meetings/index.htm). 507 

45. It is most likely that one of the few occasions where in vitro test strategies fail 508 

to detect mutagenic activity (i.e. misleading negative results) could be explained by the 509 

absence of appropriate metabolic activity in vitro (Brambilla and Martelli, 2004) or that 510 

the test chemical does not reach the cells. Approaches to resolving potential 511 

inadequacies in metabolic activation include structure based metabolism predictions, 512 

use of genetically modified target organisms (e.g. CYP2E1 in Salmonella 513 

YG7108pin3ERb5) (Emmert et al., 2006), the use of exogenous metabolic activation 514 

systems derived from human sources, or recombinant human cytochrome P450 515 

systems as an external activation system (Ku et al., 2007b). Testing of isolated or 516 

synthesised metabolites may also be considered. 517 

46. There are a number of MoAs by which a chemical may demonstrate an in vitro 518 

genotoxic effect that is either not relevant for humans (e.g. a rat specific metabolite) or 519 

has a threshold. The COM has reviewed the evidence for a number of threshold MoAs 520 

and published a general guidance statement in 2010 521 

(https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-522 

mutagens) 523 

47. Threshold MoAs can generally be attributable to non-DNA interactions or an 524 

overload of normal cellular physiology. In such cases a No Observed Effect 525 

Concentration (NOEC) can be determined and may be useful in evaluating risk. 526 

http://webarchive.nationalarchives.gov.uk/20140506144308/http:/www.iacom.org.uk/meetings/index.htm
http://webarchive.nationalarchives.gov.uk/20140506144308/http:/www.iacom.org.uk/meetings/index.htm
https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-mutagens
https://www.gov.uk/government/publications/assessment-of-thresholds-for-in-vitro-mutagens
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Investigations of a threshold-based MoA need to be designed on a case-by-case basis 527 

and can be complex to interpret (Kirkland et al., 2007a).  528 

48. There has been considerable debate regarding the highest concentration that 529 

should be used routinely in mammalian cell assays. The ICH has stated the maximum 530 

concentration tested for human pharmaceuticals should be 1 mM (or 5000 µg/mL) in 531 

mammalian cell genotoxicity assays (ICH, 2012) which would have the effect of 532 

reducing the number of misleading positive results by avoiding  the  excessive 533 

concentrations where the cellular defence mechanisms might be overwhelmed (ICH, 534 

2012). However, a reduction to 1 mM is not consistent with the OECD recommendation 535 

for a top concentration of 10 mM (or 2000 µg/mL) in mammalian cell genotoxicity 536 

assays (OECD, 2016a,c,d,e). Morita et al. (2014) showed that the reduction in the top 537 

concentration from 5000 to 2000 µg/mL for mammalian cell tests had no impact on 538 

sensitivity or specificity of in vitro chromosomal aberration tests. Another analysis of 539 

published data for the top concentration in mammalian cell genotoxicity tests identified 540 

a small number of carcinogens that (according to the publications) would not be 541 

detected in any part of a three test in vitro genotoxicity test battery (consisting of the 542 

Ames, mouse lymphoma and in vitro chromosomal aberration (CA) tests) if the testing 543 

concentration limit for mammalian cell assays were reduced from 10 mM to 1 mM 544 

(Parry et al., 2010). A further investigation of these carcinogens found that some 545 

positive results at concentrations above 1 mM were not reproducible (i.e. they were 546 

not genotoxic in mammalian cells under current OECD guideline protocols) and others 547 

were positive at concentrations below 1 mM, particularly when continuous treatments 548 

in the absence of S-9 (not included in the original publications) were conducted. A new 549 

upper limit for mammalian cells tests of 1 mM or 500 μg/ml (whichever is higher) has 550 

been proposed as sufficient to detect all genotoxic carcinogens that are negative in the 551 

Ames test (Kirkland and Fowler, 2010). Several international organisations have 552 

updated their guidance regarding upper limit selection (e.g. ICH, 2012, OECD, 2020a; 553 

Galloway et al., 2011) although currently no international consensus has been 554 

reached. Precipitation of the chemical in the medium can also be used to define a 555 

maximal concentration or upper limit for testing. On balance, COM agreed that the 556 

maximum concentrations identified in ICH S2(R1) should be adopted.[DK19][RB20] 557 

49. There has also been considerable investigation of the role of excessive 558 

cytotoxicity in mammalian cells and choice of cell type as possible causes of 559 

misleading positive results (Blakey et al., 2008; Fellows et al., 2008b; Pfuhler, 2009; 560 

Pfuhler et al., 2011). The method used to assess cytotoxicity may affect the selection 561 

of the highest concentration tested and potentially the results obtained using 562 
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mammalian cell genotoxicity assays (Fowler et al., 2012b; Kirkland et al., 2007c; 563 

Kirkland, 2012a) and recommendations have been made to use cytotoxicity measures 564 

based on cell proliferation (Galloway, 2000). However, it is important to note that 565 

although excessive cytotoxicity may lead to misleading positive results, it may also 566 

result in misleading negative results when pronounced cell cycle delay occurs. A 567 

similar conclusion was reached at an international symposium on regulatory aspects 568 

of genotoxicity testing (Blakey et al., 2008).  569 

50. Most cell lines used for genotoxicity testing lack appropriate metabolism 570 

leading to reliance on exogenous metabolic activation systems. These cell lines may 571 

often have impaired p53 function and altered DNA repair capacity (Kirkland et al., 572 

2007c). There is some evidence that human lymphocytes are less susceptible to 573 

misleading positives than the rodent cell lines currently used (e.g. Chinese Hamster 574 

Ovary (CHO), V79, Chinese hamster lung (CHL)). The use of human cell lines HepG2, 575 

TK6 and MCL5 cells and the reconstructed human skin models and HepaRG are being 576 

[DK21][RB22][RB23]evaluated (Fowler et al., 2012a; Kirkland et al., 2007c; Le Hegarat, 577 

2010). A brief summary of 3D models currently used for genotoxicity testing and those 578 

under development and/or validation has been prepared by COM (COM, 2020x).  579 

51. The COM agrees that it is not necessary to undertake independent 580 

confirmatory in vitro tests[RB24] when clear negative or positive results have been 581 

obtained provided the following criteria are satisfied:   582 

• there is no doubt as to the quality of the study design and the conduct of the 583 

test;  584 

• the spacing and range of test chemical concentrations rule out missing a 585 

positive response; and 586 

• sufficient treatment conditions and sampling times have been used. 587 

52. It is recognised that it can be difficult to provide convincing evidence for 588 

absence of genotoxic effects. The investigator should consider the power of the study 589 

design and the past performance of the test system when formulating a protocol in 590 

order to optimise the chances of obtaining an unequivocal result from a single 591 

experiment and to ensure that any potential genotoxic effect is not missed. 592 

53. There is a need to undertake further in vitro genotoxicity testing [DK25][RB26]when 593 

an equivocal result is obtained [RB27](i.e. neither clearly negative nor clearly positive by 594 

appropriate biological or statistical criteria). Such additional genotoxicity tests need to 595 

be planned on a case-by-case basis and need not necessarily be undertaken in an 596 
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identical fashion to the initial experiment(s). Indeed, it may be preferable to alter certain 597 

aspects of the study (e.g. concentration levels investigated, treatment and sampling 598 

times, concentration of metabolic activation mix) to obtain supplementary data. It may 599 

also be appropriate to use a different genotoxicity test system, e.g. a chromosomal 600 

aberration (CA) test, if there is equivocal evidence of clastogenicity from an in vitro 601 

micronucleus test, or an in vitro cell mutation assay (e.g. TK or HPRT mutation assays) 602 

if there is equivocal evidence of gene mutations from an Ames test.  603 

54. The use of historical negative control data to aid in the interpretation of 604 

genotoxicity test results has been considered particularly in relation to equivocal and 605 

small magnitude genotoxic effects (Hayashi et al., 2011). Advice has been published 606 

on approaches to collecting historical control data. Ideally data should be reported in 607 

terms of means and confidence intervals for the distribution of baseline genotoxic 608 

effects rather than observed ranges where outliers can have a disproportionate effect. 609 

The dataset should be updated regularly and should be as large as possible. In 610 

addition, it is important that negative historical control data should have been 611 

generated using a fixed testing protocol [RB28]unless it can be demonstrated that 612 

changes in protocol do not impact on the range of values reported in studies (Hayashi 613 

et al., 2011). In their most recent guidance OECD places an increased emphasis on 614 

the use of historical concurrent negative control data in the assessment of genotoxicity 615 

test results, including recommendations on how to build an historical control database 616 

(OECD, 2020a). 617 

55. If a chemical is considered on the basis of Stage 1 genotoxicity test results to 618 

have in vitro genotoxic potential but has not been tested in vivo, the COM considers it 619 

prudent to assume that the chemical may have in vivo genotoxic potential.  620 

Discussion of Stage 1 Strategy: Specific Core Tests 621 

In Vitro Bacterial Tests for Gene Mutations 622 

56. The most widely used in vitro mutagenicity test is the bacterial reverse mutation 623 

assay for gene mutations developed by Ames and his colleagues using Salmonella 624 

typhimurium (Gatehouse et al., 1994) which forms the basis of OECD TG471 (Bacterial 625 

Reverse Mutation Test). The very extensive database available for this assay justifies 626 

its inclusion in any initial genotoxicity testing for mutagenic hazard. Several strains of 627 

bacteria capable of detecting both base-pair and frame-shift mutations must be 628 

included, the validated strains being TA1535, TA1537 (or TA97 or TA97a), TA98 and 629 

TA100. [DK29][RB30]These strains detect effects at G-C-rich sites. To detect certain 630 

oxidising mutagens or hydrazines, that produce effects at A-T-rich sites, an additional 631 
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strain such as TA102 or a repair-deficient Escherichia coli strain (WP2uvrA or 632 

WP2uvrA (pKM101)) should be included. To detect cross-linking agents, it may be 633 

preferable to include TA102 or to add a repair proficient Escherichia coli strain (WP2 634 

or WP2 (pKM101)). Testing should be carried out both in the presence and absence 635 

of an appropriate exogenous metabolic activation system such as induced rat liver S-636 

9. Both plate-incorporation and pre-incubation methods are widely used, and either is 637 

acceptable in all test guidelines. The sensitivity and selectivity of the bacterial strains 638 

specified in OECD TG471 have been assessed (Williams et al., 2019) and the current 639 

criteria for a valid Ames test and interpretation of test results evaluated (Levy et al., 640 

2019). 641 

57. Developments to the Ames test have been suggested to automate and 642 

minimise the amount of test chemical required; for example the Spiral Salmonella 643 

mutagenicity assay (Claxton et al., 2001)[RB31], Ames IITM test (Fluckigetr-Isler et al., 644 

2004) and Ames MPF (Fluckigetr-Isler and Kamber, 2012; Spiliotopoulos and Koelbert, 645 

2020). The Committee considers that these methods have not currently been 646 

developed to a point where they can be routinely used for regulatory submissions. 647 
[DK32][RB33] 648 

In Vitro Mammalian Cell Micronucleus Assay (MNvit) for Clastogenicity and 649 
Aneuploidy 650 

58. The COM recommends that equivalent information on clastogenicity could be 651 

obtained from the MNvit compared with CA testing in mammalian cells (metaphase 652 

analysis) but that aneuploidy could be more easily detected by MNvit. There have been 653 

extensive and authoritative investigations of the utility of the MNvit which have 654 

concluded that the MNvit is reliable and can be used as an alternative to the in vitro 655 

CA for the assessment of clastogenicity and has the benefit of more easily detecting 656 

aneuploidy (Corvi et al., 2008). The MNvit is available as OECD TG 487 (In Vitro 657 

Mammalian Cell Micronucleus Test) (OECD, 2016a).  Although some in vitro 658 

genotoxicity testing strategies recommend that the micronucleus assay and 659 

metaphase analysis can be considered as equivalent in the detection of clastogens the 660 

COM recommends the MNvit assay as the first choice test for clastogenicity and 661 

aneuploidy detection.[DK34][RB35] 662 

59. The MNvit can be carried out in the absence or presence of cytochalasin B, 663 

which is used to block cytoplasmic division [DK36][RB37] and generate binucleate cells 664 

(cytokinesis block methodology (CBMN)). The advantage of using cytochalasin B is 665 

that it allows clear identification that treated and control cells have divided in vitro 666 

during or after treatment and provides a simple assessment of cell proliferation. 667 
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Moreover, a defined population of binucleate cells is available for scoring. In general, 668 

the use of cytochalasin B has no impact on the sensitivity of the test results (Garriott 669 

et al., 2002; Lorge et al., 2006; Oliver et al., 2006; Wakata et al., 2006), however this 670 

is not the case for nanoparticles (COM, 202x). In the absence of cytochalasin B, where 671 

all cells will be mononucleate, it is essential to have evidence that cells have divided.  672 

60. MNvit protocol development and assay performance have been previously 673 

described (COM, 2011; Fowler et al., 2012a, b). A flow cytometric approach to the 674 

micronucleus assay has also been developed (Bryce et al., 2013). MNvit assay can be 675 

performed using most mammalian cell lines used in genotoxicity testing however there 676 

is evidence that rodent cell lines with compromised p53 activity such as V79, CHO and 677 

CHL cells can give more misleading positive results than cell lines proficient for p53 678 

activity such as TK6 and human lymphocytes (Fowler et al., 2012a). Overall, the 679 

COM’s preference is for human lymphocytes which have a number of advantages over 680 

cell lines (e.g. normal diploid primary human cells with some protection against 681 

oxidative damage when whole blood cultures are used). If cell lines are used, it is 682 

important that the cells have defined provenance (Lorge et al., 2016) and that the 683 

impact of potential genetic drift of the cells cultured is understood (Kirkland et al., 684 

2007c).[DK38][RB39] One particular area of protocol development that has been under 685 

considerable investigation is the most appropriate method(s) for estimating cytotoxicity 686 

as it has been suggested that using relative cell counts (RCC) may underestimate 687 

cytotoxicity and lead to potentially misleading positive results (Fowler et al., 2012b). 688 

[DK40][RB41]In the absence of cytokinesis block, the relative increase in cell count (RICC) 689 

or relative population doubling (RPD) are comparable with replication index (RI) used 690 

with the cytokinesis block assay and are the most appropriate methods of cytotoxicity 691 

estimation. Consensus recommendations embedded in the OECD guideline 487 692 

indicate that the target range for cytotoxicity in the MNvit is 55 ± 5%.  693 

61. The MNvit assay in combination with the CB methodology and with 694 

pancentromeric or chromosome specific centromeric probes fluorescence in situ 695 

hybridisation (FISH) provides a sensitive assessment of cell proliferation and allows 696 

discrimination between chromosome breaks, chromosome loss (using pan-697 

centromeric or anti-kinetochore antibodies) and chromosome non-disjunction and 698 

polyploidy (using chromosome-specific  centromere probes) (Kirsch-Volders et al., 699 

2002). It is therefore a useful model for assessing mode of action (Parry, 2006).   700 

62. Binucleate cells obtained with the CBMN will usually be needed for 701 

determination of non-disjunction of chromosomes between daughter nuclei. Fenech 702 

has proposed that the CBMN assay can be further modified to provide comprehensive 703 
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information on nucleoplasmic bridges (NPBs). This  may provide information on 704 

chromosome rearrangements or telomere end fusions, and nuclear buds (NBUDs) 705 

which may provide information on gene amplification (Fenech, 2006, 2007). Fenech 706 

proposed that the comprehensive CBMN assay should be considered as a ‘cytome’ 707 

method for measuring chromosomal instability and altered cellular viability (Fenech, 708 

2006). The ‘cytome’ method is complex and requires large amounts of blood and 709 

considerable technical skill. It is currently not suitable for routine testing of chemicals 710 

for genotoxicity but may provide useful information on MoA.  711 

63. The flow-cytometry-based micronucleus assay (FCMMN) was developed to 712 

increase reproducibility and decrease turnaround time for the micronucleus test 713 

(Laingam et al., 2008; Avlasevich et al., 2011). However, the modified assay did not 714 

overcome the potential issue of misleading positive results. A number of approaches 715 

were undertaken to overcome this and have been previously described (COM, 2011). 716 

A separate approach to automation of the CBMN assay involves automated image 717 

analysis (Decordier et al., 2009; Avlasevich et al., 2011; Seager et al, 2014, Chapman 718 

et al, 2014, Lyulko et al 2014; Thougaard et al., 2014; Buick et al., 2020). This does 719 

provide some advantages over the FCMMN assay as the cells are not destroyed in the 720 

analysis and it can be applied to the cytokinesis blocked micronucleus assay. Thus, 721 

micronuclei can be scored in binucleated cells, cells containing multiple micronuclei 722 

can be easily identified and scored as a single event, and the image galleries and 723 

slides can be stored, allowing the experiment to be re-visited at a later date. 724 

64. An interlaboratory evaluation of the MultiFlowVR DNA Damage kit— p53, 725 

gamma H2AX, Phospho-Histone H3 and polyploidy [DK42][RB43]has been described by 726 

Bryce et al. (2017). This is a multiplexed in vitro genotoxicity assay based on flow 727 

cytometric analysis in which detergent-liberated nuclei are simultaneously stained with 728 

propidium iodide and labelled with fluorescent antibodies against p53, gH2AX, and 729 

phospho-histone H3. Polyploidy can be quantified as the proportion of 8n-positive 730 

events relative to the number of total events with 2n and greater DNA content. 731 

65. From seven laboratories assessing chemicals representing clastogens, 732 

aneugens and non-genotoxicants, with analysis based on global evaluation factors and 733 

using a multinomial logistic regression, assay sensitivity, specificity and concordance 734 

in relation to a priori MoA grouping were 92%. The authors suggest that the two distinct 735 

analysis strategies utilised can be used to rapidly and reliably predict a genotoxic MoA  736 

for new chemicals. 737 
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Discussion Stage 1: Non-Core Tests 738 

In Vitro Chromosomal Aberration Assay in Mammalian Cells (Metaphase Analysis) 739 
for Clastogenicity and Aneuploidy 740 

66.   The in vitro CA assay in mammalian cells has been widely used in genotoxicity 741 

testing for many decades and provides information on chromatid and chromosome 742 

breaks, deletions and re-arrangements that are indicative of damage associated with 743 

adverse health outcomes. Only limited information can be obtained on potential 744 

aneugenicity by recording the incidence of polyploidy and/or modification of mitotic 745 

index (Aardema et al., 1998). The COM notes that polyploidy may not be a reliable 746 

indicator for aneugenicity and may result from a number of different genetic changes 747 

(Galloway, 2000; Mitchell et al., 1995). It is possible to adapt the chromosome 748 

aberration assay to include the use of chromosome specific centromeric probes with 749 

fluorescence in situ hybridisation (FISH) to assess the potential for aneuploidy 750 

(Maierhofer et al., 2002).  An IWGT report  (Galloway , 2000) concluded that the 751 

preferred measure of cytotoxicity in the CA test should be one based on cell 752 

proliferation (e.g. relative population doubling or relative increase in cell counts) 753 

compared to negative control cultures rather than simple cell counts.  On balance it is 754 

considered preferable to use the in vitro micronucleus test for the initial assessment of 755 

clastogenic and aneugenic potential. The latest revision of the OECD test guideline 756 

(OECD, 2016c) utilises a maximum test concentration corresponding to 10 mM (or 2 757 

mg/mL) which is in-line with the revised MNvit assay (OECD, 2016a).  758 

In Vitro Mouse Lymphoma Assay for Gene Mutation and Clastogenicity  759 

67. The COM reaffirms the view stated in the 1989, 2000 and 2011 guidance, that 760 

the most appropriate in vitro mammalian cell gene mutation test is the mouse 761 

lymphoma assay. Protocol development and test data interpretation strategies were 762 

discussed previously (COM, 2011). 763 

68. A re-evaluation of published studies, many of which were undertaken by the 764 

US NTP, showed that a large number of these were uninterpretable or the outcomes 765 

equivocal (Schisler et al., 2018). This assay is now described in a separate OECD TG 766 

(Test 490: In Vitro Mammalian Cell Gene Mutation Test Using the Thymidine Kinase 767 

Gene) which was published in 2016 (OECD, 2016d). Some authors have reported that 768 

the mouse lymphoma assay can detect, in addition to gene mutations and 769 

clastogenicity, information on recombination, deletion and aneuploidy (Ogawa et al., 770 

2009; Sofuni, 1996; Wang et al., 2009). However, this has been contested from results 771 

showing that none of 7 reference aneugens were reliably detected at acceptable levels 772 

of cytotoxicity (Fellows et al., 2011b). It is possible that aneuploidy in these cells could 773 
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be a secondary effect of chromosomal rearrangement. However, the COM considers 774 

that this assay does not reliably detect aneugens.  775 

In Vitro HPRT assays for Gene Mutation  776 

69. An in vitro cell mutation assay which uses forward mutation in the hypoxanthine 777 

guanine phosphoribosyl transferase (HPRT) gene to assess mutations has been 778 

developed in several cell lines, principally CHO cells and is described in the revised 779 

OECD 476 guideline (OECD, 2016e). TG476 recommends that the minimum number 780 

of cells required for the assay should allow for at least 10 spontaneous mutants being 781 

present in all phases of the test. The COM have previously considered the power of 782 

this assay and it was concluded that 107 surviving cells are required for a valid test, 783 

[DK44][RB45](http://webarchive.nationalarchives.gov.uk/20140506144831/http://www.iac784 

om.org.uk/meetings/02.10.2003.htm), providing sufficient numbers of cells to maintain 785 

between 10 and 100 spontaneous mutations. .  786 

70. As discussed in para 43, a number of research groups have developed 787 

genotoxicity assays based on MN measurement using commercial sources of human 788 

reconstructed skin (such as Episkin® and EpiDermTM) (Chapman et al., 2014; Curren 789 

et al., 2006; Flamand et al., 2006; Hu et al., 2009; Mun et al., 2009; Roy et al., 2016; 790 

Pfuhler 2020a,b) or a co-culture technique involving reconstructed skin and mouse 791 

lymphoma L5178Y cells (Flamand et al., 2006). Measurement of DNA damage using 792 

the comet assay in reconstructed skin has also been reported  (Pfuhler et al., 2011; 793 

Reisinger et al., 2018; Pfuhler et al., 2020b) and is considered to be sufficiently 794 

validated to start the OECD Test Guideline development process (Pfuhler et al., 795 

2020b). The primary purpose in developing genotoxicity tests using reconstructed skin 796 

has been to supplement genotoxicity data-packages for cosmetic chemicals where no 797 

in vivo genotoxicity tests are permitted. 798 

 799 

In Vitro Alkaline Comet Assay for DNA Damage 800 

70.71. The in vitro alkaline comet assay for DNA damage has been proposed as an 801 

alternative to clastogenicity assessment in mammalian cells since cell proliferation is 802 

not needed, therefore any cell type can be used (Hartmann et al., 2001; Witt et al., 803 

2007). The alkaline comet assay detects a wide range of genetic damage including 804 

single and double strand breaks, repair induced breaks, alkali labile lesions and abasic 805 

sites. There is evidence that the in vitro comet assay can be modified to detect DNA 806 

cross-linking agents (Spanswick et al., 2010). The comet-FISH assay has been 807 

developed to provide information on site specific DNA strand breaks (Glei et al., 2009; 808 

Rapp et al., 2000; Santos et al., 1997). There is evidence that the in vivo comet assay 809 

http://webarchive.nationalarchives.gov.uk/20140506144831/http:/www.iacom.org.uk/meetings/02.10.2003.htm
http://webarchive.nationalarchives.gov.uk/20140506144831/http:/www.iacom.org.uk/meetings/02.10.2003.htm
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can detect chemicals that induce gene mutations in vitro  and in vivo (Dertinger et al., 810 

2010; Kirkland and Speit, 2008; Kirkland et al. 2019a, b). Extrapolation from this 811 

suggests that the in vitro comet assay can also detect chemicals that induce gene 812 

mutations and this capability has been demonstrated (Dertinger et al., 2010). However, 813 

it is not recommended as a routine replacement for gene mutation tests in vitro. Thus, 814 

the comet assay measures DNA damage irrespective of genotoxic end-point, with the 815 

exception of aneuploidy. A positive comet assay result may be due to repairable DNA 816 

damage or lesions which lead to cell death and not necessarily lead to mutations or 817 

MN. Negative results from an Ames test and MNvit would reduce the level of concern 818 

associated with positive results from an in vitro comet assay. Thus, the in vitro comet 819 

assay can serve as a useful adjunct to the recommended core-tests, especially in 820 

instances where in vivo testing is not permitted such as in cosmetics testing. Pfuhler 821 

et al. (2020b) has reviewed the status of the development of the 3D organ-based 822 

models for genotoxicity testing. The authors concluded that the 3D skin comet assay 823 

was sufficiently validated to start the process of OECD Test Guideline development.  824 
[RB46] 825 

Summary Stage 1 (In Vitro Genotoxicity Testing) 826 

71.72. The COM recommendations for Stage 1 testing remain the same as in the 2011 827 

guidelines, namely that the three key endpoints of gene mutation, clastogenicity and 828 

aneuploidy can be detected by using two core in vitro tests. Tests should be 829 

undertaken according to the best international guidance available to avoid misleading 830 

positive or negative results. Data should be interpreted using appropriate statistical 831 

analysis and use of historical negative control data.  832 

72.73. The COM confirms the need to understand MoA in order to derive conclusions 833 

regarding the biological importance of results. Data on MoA are important in elucidating 834 

whether genotoxicity tests give misleading negative or positive results, and also to aid 835 

decisions with regard to devising a strategy for Stage 2 in vivo genotoxicity testing.[RB47] 836 

There is a particular need to understand MoA for chemicals which cannot be subjected 837 

to in vivo genotoxicity tests (e.g. cosmetics). In this particular instance, some useful 838 

additional information on genotoxicity may be provided by undertaking further testing, 839 

for example using in vitro mammalian cell gene mutation assays or in vitro MN and 840 

comet tests using reconstructed human skin.  841 

73.74. The recommended two core genotoxicity tests in Stage 1 are the Ames test 842 

and MNvit. These recommended assays, when combined, provide sufficient 843 

information for the genotoxicity assessment of most chemicals and provide high 844 
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sensitivity for the identification of rodent carcinogens and in vivo genotoxicants, and 845 

reduce the risk of misleading positive results when compared with a battery containing 846 

more than one mammalian cell test.  847 

74.75. Results from non-core tests described in this document may provide useful 848 

additional information on in vitro mutagenic hazards on a case-by-case basis. In most 849 

instances misleading negative in vitro results are due to inadequate exogenous 850 

metabolic activation (Ku et al., 2007b).  851 

75.76. Some regulatory authorities may require an in vivo genotoxicity test where high, 852 

or moderate and prolonged, levels of exposure are expected (e.g. most human 853 

medicines) in order to provide additional reassurance even when Stage 1 tests have 854 

given negative results. If a chemical is considered on the basis of Stage 1 test results 855 

to have in vitro mutagenic potential but has not been tested in vivo, the COM considers 856 

it prudent to assume that the chemical may have in vivo mutagenic potential. 857 

Stage 2: In Vivo Genotoxicity Tests  858 

Overview of Strategy  859 

Stage 2 of the testing strategy involves an assessment of genotoxic activity in vivo in 860 

somatic tissues and in germ cells (when there is a need for the assessment of heritable 861 

effects and/or information on hazard classification of mutagens) (see Figure 3). The in 862 

vivo genotoxicity testing strategy has to be designed on a case-by-case basis and can 863 

be used to address aspects of in vivo mutagenicity, for example;  864 

1. Investigation of key end point(s) identified in Stage 1,  865 

2. Investigation of genotoxicity in tumour target tissue(s),  866 

3. Investigation of potential for germ cell genotoxicity,  867 

4. Investigation of in vivo genotoxic potential for chemicals which were 868 

negative in Stage 1 but where there is high or moderate and prolonged 869 

exposure.  870 

5. Investigation of genotoxicity in site of contact tissues.  871 

76.77. It is thus possible for there to be one or more separate Stage 2 strategies 872 

designed to assess the above objectives for a particular test chemical. A revised in 873 

vivo Stage 2 strategy was presented in the previous COM guidance document (COM, 874 

2011) based on the selection of tests to provide information on one or more specific 875 

aspects such as species and/or tissue genotoxicity combined with investigation of 876 

particular genotoxic end points and modes of genotoxic action. This approach does 877 
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not necessarily lead to the selection of the rodent BMMN test as the first assay. 878 

Furthermore, the rat liver UDS assay is no longer recommended as a second assay 879 

(EFSA, 2017 - discussed in para 104). A table of in vivo genotoxicity tests and end-880 

points is provided in Annex 1.  881 

77.78. Other factors that should be considered when determining an in vivo 882 

genotoxicity testing strategy include whether the testing strategy can be integrated into 883 

other regulatory toxicity tests (such as subacute or subchronic toxicity studies). 884 

Consideration needs to be given to the nature of the chemical (including physico-885 

chemical properties), the results obtained from in vitro genotoxicity tests and the 886 

available information on the toxicokinetic and metabolic profile of the chemical (for 887 

example when selecting most appropriate species, tissue and end point). The routes 888 

of exposure in animal studies should be appropriate to ensure that the chemical 889 

reaches the target tissue. Routes unlikely to give rise to significant absorption in the 890 

test animal should therefore be avoided. Unless systemic exposure can be confirmed 891 

from other toxicological studies, or evident toxicity in the target organ is seen, or the 892 

intravenous route is used, confirmatory toxicokinetic studies to measure blood or tissue 893 

exposure as appropriate should be undertaken to accompany all in vivo genotoxicity 894 

studies to assess the adequacy of any negative results obtained (Hardy et al.,  2017).  895 

78.79. The design of in vivo genotoxicity tests should incorporate appropriate 896 

approaches to reduce the number of animals used in tests, such as the integration of 897 

genotoxicity endpoints into repeat-dose studies. Options for reduction in animal usage 898 

include: 899 

• use of one sex only (if supported by metabolism data or other data indicating 900 

equivalence),  901 

• reduced numbers of sampling times for micronucleus and CA assays when 902 

repeat dosing is performed,  903 

• combining micronucleus and comet assays into a single acute test employing 904 

repeated administrations of test chemical; integration of micronucleus and 905 

comet end points into repeat-dose toxicity (including transgenic mutation) 906 

studies, although it should be noted that the comet assay is difficult to integrate 907 

without using satellite groups  (Bowen et al., 2010; Bowen and Beevers, 2011; 908 

Pfuhler et al., 2009; Vasquez, 2010). 909 

79.80. It should also be possible to omit the concurrent positive control administrations 910 

in micronucleus, CA and transgenic rodent mutation assays (but not for the comet 911 
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assay) where the test facility has appropriate historical positive control data (Pfuhler et 912 

al., 2009) as long as positive control slides or tissues from positive control treated 913 

rodents “banked” from previous treatments and coded in with the experimental 914 

samples, are included to demonstrate  technical proficiency.  915 

80.81. The toxic properties of test chemicals (such as acute toxicity, subchronic 916 

toxicity (including target organ effects), irritancy/corrosivity in contact with skin or 917 

mucous membranes), toxicokinetic and metabolism data will influence the choice of 918 

route of administration and the highest dose level achievable in in vivo mutagenicity 919 

tests. Dose selection for in vivo genotoxicity testing [DK48][RB49]requires estimation of 920 

the maximum tolerated dose, consideration of tissue-specific effects and in some 921 

instances (as discussed in paragraph 78), appropriate toxicokinetic data or toxicity data 922 

in the target tissue from other studies, to support tissue exposure to the chemicals 923 

and/or metabolites (Hardy et al., 2017).  924 

81.82. The approach outlined for Stage 2 in Figure 3 takes account of evidence to 925 

suggest that in vivo comet and rodent transgenic mutation assays have better 926 

sensitivity and specificity for the identification of rodent carcinogens compared with the 927 

rat liver UDS test, particularly for carcinogens that are negative in the in vivo 928 

micronucleus test (Kirkland and Speit, 2008). The initial in vivo genotoxicity testing 929 

strategy should therefore involve selection of one or more of the core Stage 2 tests in 930 

rodents; namely, micronucleus tests (accompanied by specific assays[DK50][RB51] for 931 

aneuploidy if necessary), the transgenic gene mutation tests, or comet DNA damage 932 

assays in rodents. It is acceptable to undertake one in vivo genotoxicity test to 933 

investigate a specific end point identified from Stage 1 in vitro genotoxicity tests. In 934 

some instances, there may be a need to investigate more than one end point before 935 

reaching a full conclusion on in vivo genotoxic potential.  936 

82.83. Stage 2 in vivo genotoxicity tests should be undertaken for test chemicals that 937 

are positive in any of the in vitro Stage 1 genotoxicity tests where there is a need to 938 

ascertain whether genotoxic activity can be expressed in vivo. There are many reasons 939 

why activity shown in vitro may not be observed in vivo (for example, lack of absorption, 940 

inability of the active metabolite to reach DNA, rapid detoxication and elimination). Data 941 

from in vivo genotoxicity tests are, therefore, essential before any definite conclusions 942 

can be drawn regarding the potential mutagenic or genotoxic hazard to humans from 943 

test chemicals which have given positive results in one or more in vitro genotoxicity 944 

tests. However, conclusions on mutagenic or genotoxic hazard and MoA may have to 945 

be derived from in vitro genotoxicity data for test chemicals when no in vivo genotoxicity 946 

testing is permitted.  947 
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83.84. In addition, an in vivo genotoxicity test may give positive results for chemicals 948 

which only act in vivo; experience though, has shown that such chemicals are rare 949 

(Tweats, 2007a, b). Such agents include some kinase inhibitors, glucocorticoid 950 

receptor antagonists (Hayes et al., 2013) and long-acting beta-2-agonists (Ponten et 951 

al., 2013). In some instances positive results might be obtained from in vitro 952 

genotoxicity tests that are adapted to evaluate specific characteristics of the test 953 

chemical; for example, by the use of modified or non-standard exogenous metabolising 954 

fractions (Muller et al., 2003).  955 

84.85. Positive results in any Stage 2 genotoxicity test should be assessed for an 956 

indication of a MoA[RB52] and for evidence which may suggest a threshold of effect or 957 

irrelevant positive responses. The COM has previously discussed the relevance of 958 

high-dose only positives and recognises that these results may be secondary to non-959 

genotoxic effects rather than being a genotoxic effect of the compound 960 

(http://webarchive.nationalarchives.gov.uk/20140506144902/http://www.iacom.org.uk961 

/statements/COM03S5.htm). 962 

85.86. Examples of  MoAs  that may lead to irrelevant positive responses in 963 

micronucleus tests, include hypothermia or hyperthermia in rodents and compound 964 

induced increases in cell division of bone marrow erythroblasts (Blakey et al., 2008; 965 

Shuey et al., 2007; Tweats et al., 2007a). If the conclusion is reached that a MoA 966 

occurs[DK53][RB54], then the chemical should be considered as an in vivo mutagen. MoA 967 

data will be important in considering whether a threshold or non-threshold approach to 968 

risk assessment can be used. The COM has published guidance on possible threshold 969 

modes of genotoxicity which can include; i) involvement of non-DNA targets, (e.g. 970 

aneugen inhibition of microtubules), ii) the contribution of protective mechanisms (e.g. 971 

repair of DNA adducts formed from many low molecular weight alkylating agents) and, 972 

iii) overload of detoxication pathways (e.g. paracetamol) 973 

(https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach974 

ment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf). 975 

86.87. Supplementary in vivo tests should be undertaken [DK55][RB56]if the results of the 976 

core in vivo genotoxicity test(s) (Figure 3) give equivocal results or if there is a need to 977 

investigate specific mutagenic endpoints, tumour target organs, or the potential for 978 

heritable effects. This may involve repeating all or aspects of the initial Stage 2 testing 979 

strategy, or performing supplementary investigations (e.g. mode of action 980 

investigations, such as DNA adducts or more specific germ cell testing) to investigate 981 

aspects of the genotoxicity of the test chemical which have not been resolved. There 982 

is a need to select the most appropriate test(s) on a case-by-case basis. All relevant 983 

http://webarchive.nationalarchives.gov.uk/20140506144902/http:/www.iacom.org.uk/statements/COM03S5.htm
http://webarchive.nationalarchives.gov.uk/20140506144902/http:/www.iacom.org.uk/statements/COM03S5.htm
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/315698/assessment_of_threshold_for_in_vivo_mutagens.pdf
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factors, such as results from previous tests, and available information on toxicokinetics, 984 

toxicological effects and metabolism of the chemical, should be considered.  985 

87.88. The development of testing strategies for germ cell mutagens is a rapidly 986 

evolving field. A summary of test methodologies that are currently under development 987 

and/or validation are outlined in the COM document ‘Test Strategies for Germ Cell 988 

Mutagens’ (COM, 202x). 989 

88.89. One aspect of the approach to testing outlined in Figure 3 is that hazard 990 

characterisation of germ cell genotoxicity can be included in the initial in vivo 991 

genotoxicity testing strategy if considered necessary. This is because there are multi 992 

tissue in vivo genotoxicity assays (e.g. transgenic rodent mutation assays and comet 993 

assay, though it should be noted that the standard comet assay has not been validated 994 

using mature sperm) which can also be used if a need to evaluate germ cell 995 

genotoxicity has been established (COM, 202x). Additionally, germ cell mutation 996 

assays might be valuable on a case-by-case basis to provide information on heritable 997 

mutagenic effects, but these would form part of a supplementary in vivo genotoxicity 998 

testing strategy, if considered appropriate.  999 

89.90. The COM reaffirms that a chemical considered a positive in vivo somatic cell 1000 

mutagen should also be considered as a possible germ cell mutagen unless data can 1001 

be provided to the contrary. The position held previously, that most if not all germ cell 1002 

mutagens are also genotoxic in somatic cells, still holds true. It has been noted that 1003 

some rare examples (e.g. sodium orthovanadate, (Attia et al., 2005) where the mouse 1004 

bone marrow micronucleus assay does not predict germ cell genotoxicity have been 1005 

reported. However, the data on such compounds are conflicting and it is not known, 1006 

for example, whether somatic mutations or DNA strand breaks would have been 1007 

identified if other test systems (e.g. transgenic assays and the comet assay) had been 1008 

used and other tissues sampled (Attia et al., 2005; Ciranni et al., 1995; Witt et al., 1009 

2003).  1010 

90.91. It is plausible that other targets during the process of meiotic cell division may 1011 

be unique to germ cells but not necessarily identical in both sexes (Pacchierotti et al., 1012 

2007). The COM evaluated advances in germ cell mutagenicity testing and some 1013 

theories and hypotheses regarding human germ cell mutagenesis.  It was concluded 1014 

that further validation work was needed before newly developed germ cell assays, 1015 

such as the sperm comet assay, could be incorporated into general genotoxicity 1016 

testing.  There are a number of methodological difficulties involved in the analysis of 1017 

germ cells compared to somatic cells (e.g. germ cell DNA extraction) and the 1018 
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importance of good study design was highlighted. The COM concluded that it is not 1019 

known whether unique germ cell mutagens exist (i.e. chemicals that are germ cell 1020 

mutagens but not somatic cell mutagens), but that this is partially because of the 1021 

underutilisation of the currently accepted tests for assessing germ cell mutagenicity 1022 

and a lack of investigations examining this.     1023 

Discussion of Stage 2 Initial Testing Strategy - General Aspects[RB57] 1024 

91.92. There are many publications debating in vivo genotoxicity testing strategies. 1025 

For example, the GUM (German speaking section of the European Environmental 1026 

Mutagen Society) recommended a single study using a combined analysis for MN and 1027 

comet induction in selected tissues (Pfuhler et al., 2007), while the World Health 1028 

Organization/International Programme on Chemical Safety (WHO/IPCS) 1029 

recommended cytogenetics (bone marrow) or gene mutation or alternative tests as 1030 

defined by genotoxic end-point, chemical class and reactivity (with consideration of 1031 

factors such as bioavailability and metabolism) (Eastmond et al., 2009). The in vivo 1032 

genotoxicity testing strategy recommended by the COM acknowledges there can be a 1033 

variety of reasons for undertaking in vivo genotoxicity tests and it is important to identify 1034 

clearly the objective of the study and the critical aspects of in vivo genotoxicity to be 1035 

addressed (as set out in the Overview of Stage 2 strategy) in order to develop a 1036 

strategy accordingly, rather than simply specify preferred first and second tests. There 1037 

are less data on the performance of in vivo genotoxicity assays for prediction of rodent 1038 

carcinogenicity compared with data on the performance of in vitro genotoxicity tests. 1039 

Transgenic rodent mutation assays and the in vivo micronucleus assay have been 1040 

shown to exhibit complementarity regarding prediction of rodent carcinogenicity, 1041 

consistent with the assessment of different mutagenic end-points by these two assays 1042 

(Morita et al., 2016).  The IWGT has reported that an evaluation of 91 chemicals 1043 

showed that TGR and in vivo comet assays have a similar ability to detect in vivo 1044 

genotoxicity when tested with bacterial mutagens and Ames-positive carcinogens 1045 

(Kirkland et al., 2019b). Thus, genotoxic end-point and MoA analysis of in vitro 1046 

mutagenic activity is of considerable importance in helping to develop an initial in vivo 1047 

genotoxicity testing strategy. The COM recommends that the initial in vivo genotoxicity 1048 

testing strategy should be based on one or more tests selected from a relatively limited 1049 

number of in vivo genotoxicity tests that have been specifically designed to provide the 1050 

optimum amount of information on in vivo mutagenic potential of the test chemical.  1051 
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Discussion of Stage 2 - Recommended In Vivo Genotoxicity Tests 1052 

92.93. Three recommended in vivo genotoxicity tests are outlined below and in Figure 1053 

2. Information from one or more of these recommended core tests should provide 1054 

sufficient in vivo genotoxicity data for most chemicals. 1055 

Rodent Bone Marrow and Peripheral Blood MN Assay for Clastogenicity and 1056 
Aneuploidy 1057 
OR Rodent Bone Marrow CA Assay for Clastogenicity 1058 

93.94. The in vivo bone marrow or blood micronucleus (MNviv) assay is still the most 1059 

widely used in vivo genotoxicity test (OECD TG 474: Mammalian Erythrocyte 1060 

Micronucleus Test) (OECD, 2014). Most of the available in vivo data on the 1061 

mutagenicity of chemicals have been obtained from studies using the MN test in bone 1062 

marrow of mice. The bone marrow is readily accessible to chemicals that are present 1063 

in the blood and a wide range of structurally diverse clastogens and aneugens has 1064 

been detected using these methods. The use of peripheral blood is an alternative 1065 

approach for both mice and rats (when the youngest fraction of reticulocytes are 1066 

sampled) which provides equivalent data to the bone marrow assay and is technically 1067 

less demanding. High throughput approaches to the peripheral blood MNviv utilising 1068 

flow cytometry have been published (De Boeck et al., 2005; Torous et al., 2000) 1069 

however these remain poorly validated[DPL58][DK59][RB60]. The MNviv assay detects 1070 

clastogenicity by measuring MN formed from acentric chromosome fragments in young 1071 

(polychromatic) erythrocytes in the bone marrow or in reticulocytes of peripheral blood. 1072 

It may also be used to identify the induction of chromosome loss. MN containing whole 1073 

chromosomes (as opposed to fragments) can be identified with molecular kinetochore 1074 

[RB61]or centromeric labelling techniques. It should be noted that only aneuploidy 1075 

produced by chromosome loss can be measured in the MNviv assay. The MNviv can 1076 

be used in the initial in vivo genotoxicity strategy for generic testing for in vivo genotoxic 1077 

potential and for assessment of clastogenicity and aneuploidy. Clastogenicity may be 1078 

measured by metaphase analysis of CA in bone marrow of rodents as an alternative 1079 

approach to the use of the micronucleus assay.  1080 

94.95. Proposals have been published to incorporate micronucleus assays into routine 1081 

rodent 28 day subacute toxicity studies following demonstration of the feasibility of 1082 

such an approach (Hamada et al., 2001; Krishna et al., 1998; Madrigal-Bujaidar et al., 1083 

2008). The evidence from one evaluation of micronucleus tests conducted on samples 1084 

from short-term, subchronic and from a few chronic studies in mice has been published 1085 

(Witt et al., 2000). In mice, MN in polychromatic erythrocytes represent DNA damage 1086 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

33 

occurring in the last 72h, whilst MN in normochromatic erythrocytes represent average 1087 

damage during the 30 day period prior to sampling (Witt et al., 2000).  1088 

95.96. The development of a simultaneous liver and peripheral blood micronucleus 1089 

assay in adult rats has also been reported (Suzuki et al., 2005). A correlation between 1090 

micronucleus induction in hepatocytes and hepatocarcinogenicity was shown and the 1091 

authors proposed that the assay could detect micronucleus-inducing chemicals that 1092 

require metabolic activation. Takasawa et al. (2007),  Suzuki et al., (2009) and Hamada 1093 

et al. (2015) have also reported developments of an in vivo liver micronucleus assay, 1094 

which has been discussed by IWGT (Uno et al., 2015b; Kirkland et al., 2019b), and it 1095 

has been recommended that an OECD guideline should be developed. 1096 

96.97. Transgenic Rodent Mutation (TGR) Assay for Gene Mutations The transgenic 1097 

rodent somatic and germ cell  gene mutation assays (OECD Test  Guideline[RB62] 488: 1098 

Transgenic Rodent Somatic and Germ Cell Gene Mutation Assays) (OECD, OECD, 1099 

2020b)[OS63]can be used to assess gene mutations in a wide range of rodent tissues 1100 

(including germ cells) using all routes of administration  and is particularly valuable 1101 

when investigating gene mutation as the genotoxic endpoint (Kirkland et al., 2019a, b). 1102 

There are sufficient data to support the use of the MutaTMmouse, BigBlue® mouse and 1103 

rat (including use of λ cII transgene), LacZ plasmid mouse, and the gpt delta mouse 1104 

[DK64][RB65]models in TG 488.   1105 

97.98. Molecular sequencing of induced mutations in transgenic targets can aid in 1106 

interpretation of study results (particularly equivocal responses) and also provide 1107 

mechanistic information. The OECD published a Detailed Review Paper (DRP) on 1108 

Transgenic Rodent Gene Mutation Assays which led to the development of an OECD 1109 

guideline that was  adopted in July 2011, with revision in 2013 (OECD, 2013 ) and in 1110 

2020 (OECD, 2020b).[DK66][RB67] The latest version focuses on updating recommended 1111 

regimes for the analysis of mutations in germ cells (discussed fully in the COM 1112 

document ‘Test Strategies for Germ Cell Mutagens’ (COM, 202x)). TG488 states that 1113 

“when both somatic and germ cells need to be collected and/or tested, based on 1114 

regulatory requirements, or toxicological information, a 28+28d regimen [i.e. 28 days 1115 

treatment with sampling 28 days following administration of the final dose] permits the 1116 

testing of mutations in somatic tissues and tubule germ cells from the same animals”.  1117 

Rodent Comet Assay for DNA Damage 1118 

98.99. The in vivo comet assay (OECD TG 489: In Vivo Mammalian Alkaline Comet 1119 

Assay) (OECD, 2016b) detects a wide spectrum of DNA damage including repairable 1120 

DNA damage. A report of an international validation of the in vivo alkaline comet assay 1121 

has been published (Uno et al., 2015a) and formed the basis for the OECD guideline. 1122 
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An overview of the types of genetic lesions detected is given above in paragraph 71. 1123 

The in vivo comet assay can detect chemicals that induce gene mutations and has 1124 

produced positive results for nearly 90% of rodent carcinogens not detected by the 1125 

rodent BMMN assay (Kirkland and Speit, 2008). It also shows high sensitivity when 1126 

compared with TGR results in liver and the GI tract, and high sensitivity at detecting 1127 

bacterial mutagens and mutagenic carcinogens (Kirkland et al., 2019a, b). 1128 

Developments regarding the conduct of the in vivo alkaline comet assay were detailed 1129 

in the previous COM guidance (COM, 2011). This assay can be used for elucidating 1130 

positive in vitro genotoxicity findings and to evaluate genotoxicity in target organs of 1131 

toxicity (Hartmann et al., 2004), however, it would not be an appropriate follow-up for 1132 

a chemical causing aneuploidy in vitro.  The comet assay can be applied to a wide 1133 

range of species and in many tissues including site-of-contact tissues. In the absence 1134 

of data indicating particular tissues of interest (e.g. toxic findings or tissue accumulation 1135 

seen in other studies), the IWGT concluded that comet analysis of the liver combined 1136 

with the bone marrow or peripheral blood micronucleus assay will be sufficient in most 1137 

cases. However, if systemic exposure is expected, or found, to be low then site-of-1138 

contact-effects in GI tract are effective (Kirkland, 2019b). Validation of a protocol for a 1139 

germ cell comet assay is ongoing (paragraph 91).  1140 

99.100. The Committee considers that the in vivo comet assay has appropriate 1141 

sensitivity to detect chemicals which induce both gene mutations and/or clastogenicity.   1142 

Thus the in vivo comet assay is recommended as a core test in the initial in vivo 1143 

genotoxicity testing strategy to assess DNA damage in multiple somatic tissues in a 1144 

single study. It is possible to include the comet assay  within other in vivo genotoxicity 1145 

tests (Vasquez, 2010) or within standard subacute or subchronic regulatory toxicity 1146 

tests (Rothfuss et al., 2010), although the logistics of achieving the correct sampling 1147 

time in relation to  the final doses  must be carefully considered (Speit et al., 2015).  1148 

Non-Core In Vivo Test: Rat Liver UDS Assay for DNA Damage 1149 

100.101. The rodent liver UDS assay is an established approach for investigating 1150 

genotoxic activity in the liver with the endpoint measured being indicative of DNA 1151 

damage and subsequent repair in liver cells. The COM consideration of this assay and 1152 

published evaluations now suggest it is less sensitive than the in vivo comet assay with 1153 

regard to identification of genotoxicity in the liver. An analysis of the prediction of rodent 1154 

carcinogens not identified by the micronucleus tests indicated that the comet assay 1155 

was considerably better than the rat liver UDS assay at identifying rodent carcinogens 1156 

(Kirkland and Speit, 2008; Speit et al., 2015). Based on these analyses, EFSA 1157 

concluded that the UDS assay was of limited usefulness in genotoxicity testing 1158 
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strategies, being only suitable for the detection of chemicals causing damage in the 1159 

liver, and with a lower predictive value than the TGR and comet assays in detecting 1160 

chemicals which cause gene mutations. For existing datasets, where the UDS assay 1161 

has been used as a follow up to positive in vitro gene mutation findings, a UDS study 1162 

is considered adequate only for positive results (Hardy et al., 2017). The COM agree 1163 

with this opinion and recommend use of the comet assay rather than rodent liver UDS 1164 

in order to assess potential for DNA damage in vivo.  1165 

101.102. Another non-core test involves the detection of gene mutations at the 1166 

endogenous phosphatidylinositol glycan complementation group A gene (Pig-A), a 1167 

reporter gene in which mutations are currently detected in peripheral red blood cells of 1168 

mammals (Bryce et al., 2008b; Dertinger et al., 2011; Miura et al., 2009). This assay 1169 

has potential advantage of integration into regulatory toxicity tests (Dertinger et al., 1170 

2010; Khanal et al., 2018) and it is noted that Pig-A mutations increase with duration 1171 

of dosing (Miura et al., 2009). The disadvantage of the assay is that, to date, only 1172 

limited types of cells (red blood cells/ reticulocytes and male rat germ cells) have been 1173 

used. It is anticipated that further developments and validation will lead to the 1174 

development of an OECD Guideline. [RB68] 1175 

Discussion of Stage 2-Supplementary Tests.  1176 

102.103. Supplementary in vivo genotoxicity tests need to be considered on a 1177 

case-by-case basis taking into account all relevant information. It is considered that for 1178 

most chemicals, supplementary in vivo genotoxicity data should be unnecessary but 1179 

on a case-by-case basis, specific aspects of MoA (e.g. nature of DNA adducts) and 1180 

further characterisation[RB69] of germ cell genotoxicity (e.g. characterisation of male 1181 

and/or female germ cell clastogenicity including use of FISH, and the evaluation of 1182 

heritable effects) may be required. DNA adduct studies can provide valuable 1183 

information on potential genotoxicity as a follow up for in vitro mutagens which have 1184 

yielded negative results in in vivo genotoxicity assays (Phillips et al., 2000). DNA 1185 

adduct data (including type of adduct, frequency, persistence, repair process) can be 1186 

used to inform on MoA and its relationship to carcinogenesis, and should be 1187 

considered in conjunction with other relevant data such as dosimetry, toxicity, 1188 

genotoxicity and tumour data (Jarabek et al., 2009).  1189 

103.104. A brief outline of these additional Stage 2 methods is given in Table 1 1190 

below. Reference is also made in Table 1 to a number of tests for heritable genotoxic 1191 

effects but it is noted that these tests, which involve the use of many animals and 1192 

demand a high level of expertise, are comparatively rarely used. The COM is aware 1193 

that there is the possibility that gender differences in germ cell mutagenesis may exist 1194 
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and this aspect may need to be considered on a case-by-case basis (Eichenlaub-Ritter 1195 

et al., 2007). The conclusions of COM’s evaluation of germ cell testing methods are 1196 

provided in a separate document (COM, 202x).  1197 

  1198 
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Table 1 Supplementary in vivo genotoxicity tests[RB70] 1199 

Assay Endpoint Guidance Main Attributes Comments 
Investigations of 
DNA Adducts 

    

32P-postlabelling DNA adducts IWGT Can be highly sensitive 
particularly with bulky 
adducts and if 
appropriate enrichment 
technique used. 

Interpretation of 
results can be 
complex. Involves 
handling high-
activity 32P. (Phillips 
et al., 2000) 

Covalent binding 
to DNA 
A variety of 
methods can be 
used such as 
those involving 
radioactive decay 
measurements 
(eg. 14C-) or 
isotope 
measurements (eg 
Accelerator Mass 
Spectrometry 
AMS) 

DNA Adducts IWGT Some methods (AMS) 
are potentially very 
sensitive and can 
provide data on DNA 
binding at levels of 
exposure similar to low 
level environmental 
exposures 

Uses radiolabelled 
compound 
[DK71][RB72](very 
small amounts (e.g. 
nanograms) in the 
case of AMS). 
Interpretation of 
results can be 
complicated (e.g. by 
non-specific 
binding). 
(Himmelstein et al., 
2009) 

Supplementary investigations of germ cell mutagenicity  
Analysis for 
clastogenicity/ 
aneuploidy 

Structural and numerical 
changes in 
spermatogonia, 
spermatocytes or oocytes  

OECD  Can provide 
information on nature 
of effects in 
spermatogonia, 
spermatocytes and/or 
oocytes of mice or rats 

Can provide useful 
information on 
MoGAMoA. (Russo, 
2000) 

Spermatid 
micronucleus 
assay 

Chromosomal aberrations 
and or lagging 
chromosomes 

None 
available 

Provides information of 
clastogenic and/or 
aneugenic effects in 
spermatocytes. 

(Allen et al., 2000) 

Dominant lethal 
assay 

Chromosomal/gene 
mutations 

OECD Provides information 
on unstable 
chromosomal changes 
in gametes that lead to 
fetal death after 
fertilization and can 
determine stage(s) of 
gametogenesis 
affected  

Little used. needs 
relatively large 
numbers of animals 
(Adler et al., 1994) 

Mouse specific 
locus test 

Gene mutations EPA Provides information 
on genetic changes 
transmitted to the first 
generation progeny as 
basis for estimation of 
induced mutation 
frequency in humans 

Very rarely used. 
Needs large 
numbers of animals 
(Adler, 2008) 

Mouse heritable 
translocation test 

Chromosomal changes EPA Provides information 
on chromosomal 
changes transmitted to 
the first generation 
progeny as basis for 
estimation of induced 
translocation frequency 
in humans 

Very rarely used. 
Needs large 
numbers of animals 
(Adler, 2008) 

Sperm Comet 
assay 

Double strand breaks 
and/or apurinic sites in 
sperm head DNA 

None 
available 

Provides information 
on genetic instability in 
sperm 

(Trivedi et al., 2010) 

Spermatid UDS 
assay 

Repair DNA synthesis in 
spermatocytes  

EPA  Provides information 
on induction of DNA 
lesions 

(Sotomajor and 
Sega, 2000) 

 1200 
  1201 
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Summary Stage 2 (In Vivo Genotoxicity Testing) 1202 

104.105. The in vivo genotoxicity testing strategy has to be designed on a case-1203 

by-case basis and can be used to address aspects of in vivo mutagenicity, for example; 1204 

• Investigation of key end point(s) identified in Stage 1,  1205 

• Investigation of genotoxicity in tumour target tissue(s),  1206 

• Investigation of potential for germ cell genotoxicity,  1207 

• Investigation of in vivo genotoxic potential for chemicals which were negative 1208 

in Stage 1 but where there is high or moderate and prolonged exposure. 1209 

• Investigation of genotoxicity in site of contact tissues.  1210 

105.106. The recommended in vivo genotoxicity test(s) include micronucleus 1211 

assay, bone marrow cytogenetics, comet assay in rodents and transgenic rodent 1212 

mutation assay. In some instances there may be a need to undertake more than one 1213 

in vivo test to perform an initial assessment of in vivo genotoxic potential (e.g. where 1214 

endpoints cannot be assessed in one study and there is a need to investigate multiple 1215 

end points before reaching conclusions on in vivo mutagenic potential). Multiple 1216 

endpoints may be combined in a single study. If positive results are obtained it is 1217 

important to consider the evidence for genotoxic mode of action and check the data 1218 

for evidence of irrelevant positive results. Usually negative results obtained in a 1219 

carefully selected in vivo test (possibly studying more than one endpoint and tissue) 1220 

will be sufficient to address positive results found in vitro, provided that target tissue 1221 

exposure is sufficient. However, a further test(s) may be needed if some of the 1222 

genotoxic effects seen in Stage 1 in vitro tests had not been adequately studied in vivo 1223 

(e.g. the chemical affects multiple mutagenic end-points), or other aspects of the 1224 

genotoxic potential of the chemical had not been fully resolved (e.g. in the case where 1225 

an investigation of heritable effects was required). If equivocal results are obtained, 1226 

then supplementary testing (including scoring of additional cells in the case of the 1227 

comet and MN assays) [DK73][RB74]may be needed. This may involve repeating some 1228 

aspects of the recommended in vitro and/or in vivo genotoxicity tests or performing 1229 

additional investigations (e.g. MoA investigations, such as DNA adducts and/or more 1230 

detailed consideration of heritable effects). The supplementary in vivo genotoxicity 1231 

testing strategy should be devised on a case-by-case basis. There is a need to select 1232 

the most appropriate assay(s) on a case-by-case basis. All relevant factors such as 1233 

results from previous tests, structural alerts and available information on toxicokinetics, 1234 

tissue toxicity and metabolism of the chemical, should be considered. In the absence 1235 
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of appropriate germ cell genotoxicity data, the COM considers it is reasonable to 1236 

assume that all somatic cell mutagens have the potential to be germ cell mutagens.  1237 

Possible Future Developments 1238 

106.107. The COM is aware that new assays and toxicogenomic approaches are 1239 

under development which might be of value within genotoxicity testing. The ToxTracker 1240 

assay uses a series of reporter cell lines expressing biomarker genes selected to 1241 

detect chemically induced DNA damage and oxidative stress [DK75][RB76](Hendriks et 1242 

al., 2012; Hendriks et al., 2011; Brandsma et al., 2020). Whilst the assay presents an 1243 

interesting approach to identifying MoA, it is not currently considered to be a reliable 1244 

genotoxicity test and is more suitable as a biomarker assay or in MoA investigations.  1245 

107.108. Other potential tests include investigation of instability in expanded 1246 

simple tandem repeats in male gametes and offspring to evaluate heritable mutations 1247 

(Singer et al., 2006). The development of new high throughput assays for the 1248 

assessment of germ line mutations and the quantification of risk from such data may 1249 

provide opportunities to protect future generations from mutated DNA sequences. 1250 

Developments within the field of toxicogenomics are also likely to provide new methods 1251 

for investigating genotoxic mechanisms and informing on MoA. The COM have 1252 

reviewed data generated in this field several times during 2008 and 2009 up to the 1253 

drafting of this guidance statement but currently conclude that the evidence does not 1254 

support the routine use of toxicogenomic approaches as an adjunct to genotoxicity 1255 

testing.  1256 

108.109. HESI-GTTC has considered ‘next generation’ testing strategies for 1257 

genotoxicity including the use of QSAR modelling, MoA assessments and their human 1258 

relevance. The concept of quantitative assessment of genotoxicity data was also 1259 

discussed (Gollapudi et al., 2013, 2014; Johnson et al., 2014; Dearfield et al., 1260 

2017)[DK77][RB78]. Quantitative approaches to the assessment of genotoxicity data was 1261 

considered by COM in 2017-2018. Their conclusions were published in a statement 1262 

(https://www.gov.uk/government/publications/quantitative-approaches-to-the-1263 

assessment-of-genotoxicity-data). IWGT have also published guidance on quantitative 1264 

approaches to genotoxicity risk assessment (MacGregor et al., 2015a, b).   1265 

https://www.gov.uk/government/publications/quantitative-approaches-to-the-assessment-of-genotoxicity-data
https://www.gov.uk/government/publications/quantitative-approaches-to-the-assessment-of-genotoxicity-data
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1266 
[DK79][RB80] 1267 
 1268 

Figure 1: Overview of Strategy for testing chemical 
substances for genotoxicity  

 
Stage 0:  
Structure Activity Relationships (SAR), screening tests and physico‐chemical 
properties (of substances and impurities) 

 
 
 

Stage 1: 
 

1. Bacterial gene mutation test (Ames test) 
2. Clastogenicity and aneugenicity (in vitro micronucleus test) 
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full assessment 

 
 
 
 

EQUIVOCAL result in any  POSITIVE result in any 
test  test 

   

 
 

Stage 2: Consider rationale for in vivo study 
selection; may include: 
‐ Mutagenic endpoints identified in Stage 1 in vitro tests  
‐ Tumour target tissues in carcinogenicity studies  
‐ Potential for germ cell genotoxicity  
‐ Negative in Stage 1 but where exposure is high, 

or moderate and prolonged  
‐ Site of contact tissues 

 
 

Undertake one or more of the following 
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2. Transgenic rodent mutation assay  
3. Comet assay 

 
 
 
 

Substance is not  Insufficient evidence to  POSITIVE: if data are 
mutagenic  assess the mutagenicity  robust consider substance 

  of the substance  to be in vivo somatic cell 
  Review available data and  mutagen and possible 
  make pragmatic  germ cell mutagen is 
  conclusions based on  considered to be 
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 1269 
 1270 

Figure 2: Screening (Stage 0) and in vitro tests (Stage 1) 1271 
 1272 
 1273 

Figure 3: In vivo tests (Stage 2)[RB81] 1274 
 1275 
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GLOSSARY 1991 

Adduct: A chemical grouping which is covalently bound to a large molecule such as 1992 

DNA or protein. 1993 

Alkylating agents: Chemicals which leave an alkyl group covalently bound to 1994 

biologically important molecules such as proteins and nucleic acids (see adduct). Many 1995 

alkylating agents are mutagenic, carcinogenic and immunosuppressive.  1996 

Ames test: In vitro assay for bacterial gene mutations using strains of Salmonella 1997 

typhimurium developed by Ames and his colleagues. 1998 

Aneugenic: Inducing aneuploidy (qv). 1999 

Aneuploidy: The circumstances in which the total number of chromosomes within a 2000 

cell is not an exact multiple of the normal haploid (see 'polyploidy') number. 2001 

Chromosomes may be lost or gained during cell division. 2002 

Apoptosis: A form of active cell death resulting in fragmentation of the cell into 2003 

membrane-bound fragments (apoptotic bodies). These are usually rapidly removed in 2004 

vivo by engulfment by phagocytic cells. Apoptosis can occur normally during 2005 

development, but is often triggered by toxic stimuli. 2006 

Cancer: Synonym for a malignant neoplasm – that is, a tumour (qv) that grows 2007 

progressively, invades local tissues and spreads to distant sites (see also tumour). 2008 

Carcinogenesis: The origin, causation and development of tumours (qv). The term 2009 

applies to benign as well as malignant neoplasms and not just to carcinomas  2010 

Carcinogenicity bioassay: Tests carried out in laboratory animals, usually rats and 2011 

mice, to determine whether a chemical is carcinogenic. The test material is given 2012 

throughout life to groups of animals at different dose levels.  2013 

Carcinogens: The causal agents which induce tumours. They include external factors 2014 

(chemicals, physical agents, viruses) and internal factors such as hormones. Chemical 2015 

carcinogens are structurally diverse and include naturally-occurring chemicals as well 2016 

as synthetic compounds. An important distinction can be drawn between genotoxic 2017 

(qv) carcinogens which have been shown to react with and mutate DNA, and non-2018 

genotoxic carcinogens which act through other mechanisms. The activity of genotoxic 2019 

carcinogens can often be predicted from their chemical structure - either of the parent 2020 

compound or of active metabolites (qv). Most chemical carcinogens exert their effects 2021 

after prolonged exposure, show a dose-response relationship and tend to act on a 2022 

limited range of susceptible target tissues. Carcinogens are sometimes species or sex-2023 
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specific and the term should be qualified by the appropriate descriptive adjectives to 2024 

aid clarity. Several different chemical and other carcinogens may interact, and 2025 

constitutional factors (genetic susceptibility, hormonal status) may also contribute, 2026 

emphasising the multifactorial nature of the carcinogenic process. 2027 

Chromosomal aberrations: Collective term of particular types of chromosome 2028 

damage induced after exposure to exogenous chemical or physical agents which 2029 

damage the DNA. (see clastogen).  2030 

Chromosome: In simple prokaryotic organisms, such as bacteria and most viruses, 2031 

the chromosome consists of a single circular molecule of DNA containing the entire 2032 

genetic material of the cell. In eukaryotic cells, the chromosomes are thread-like 2033 

structures, composed mainly of DNA and protein, which are present within the nuclei 2034 

of every cell. They occur in pairs, the numbers varying from one to more than 100 per 2035 

nucleus in different species. Normal somatic cells in humans have 23 pairs of 2036 

chromosomes, each consisting of linear sequences of DNA which are known as genes. 2037 

Clastogen: An agent that produces chromosome breaks and other structural 2038 

aberrations such as translocations. Clastogens may be viruses or physical agents as 2039 

well as chemicals. Clastogenic events play an important part in the development of 2040 

some tumours. 2041 

Cytogenetic: Concerning chromosomes, their origin, structure and function. 2042 

Cytochrome P450 (CYP): An extensive family of haem-containing proteins involved 2043 

in enzymic oxidation of a wide range of endogenous and xenobiotic (qv) chemicals and 2044 

their conversion to forms that may be more easily excreted. In some cases the 2045 

metabolites produced may be reactive and may have increased toxicity. In other cases 2046 

the chemicals may be natural precursors of hormones (e.g. steroids). 2047 

DNA Strand Breakage; A break in double-stranded DNA in which one or both of the 2048 

two strands have been cleaved; both strands have not separated from each other. 2049 

DNA Strand Break Assay (Comet assay): Alkaline treatment converts certain types 2050 

of DNA lesions into strand breaks that can be detected by the alkaline elution technique 2051 

or by measuring migration rate through a filter, or by the single gel electrophoresis or 2052 

Comet assay in which cells embedded in a thin layer of gel on a microscope slides are 2053 

subjected to electric current causing shorter pieces of DNA to migrate out of the 2054 

nucleus into a Comet tail. The extent of DNA migration is measured visually under the 2055 

microscope on stained cells.  2056 

http://www.mondofacto.com/facts/dictionary?break
http://www.mondofacto.com/facts/dictionary?double
http://www.mondofacto.com/facts/dictionary?DNA
http://www.mondofacto.com/facts/dictionary?strands
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Erythrocyte: red blood cell; corpuscle; one of the formed cells in peripheral blood. 2057 

Normally, in humans, the mature form is a non-nucleated, yellowish, biconcave disk, 2058 

containing haemoglobin and transporting oxygen. Normochromic erythrocyte; one of 2059 

normal colour with a normal concentration of haemoglobin. Polychromatic erythrocyte; 2060 

one that, on staining, shows shades of blue combined with tinges of pink indicative of 2061 

an immature erythrocyte. 2062 

Eukaryotes; A class of organisms, which in contrast to prokaryotes (e.g. bacteria), 2063 

comprise cells which have a nucleus in which DNA is organised into characteristic sets 2064 

of chromosomes. This includes all plants and fungi except the blue-green algae and 2065 

all animals.  2066 

Fluorescent in situ hybridization (FISH) A technique in which a chemically modified 2067 

DNA (or RNA) probe is hybridized with target DNA, usually present as a chromosome 2068 

preparation on a microscopic slide. The chemical modification can be visualized using 2069 

a fluorescent microscope either directly when the modification involves use of a 2070 

fluorescent dye or indirectly with the use of a fluorescently labelled affinity reagent (e.g. 2071 

antibody or avidin). Depending upon the type of probe used, this approach can be used 2072 

to precisely map genes to a specific region of a chromosome in a prepared karyotype, 2073 

enumerate chromosomes, or detect chromosomal deletions, translocations, or gene 2074 

amplifications in cancer cells. 2075 

Gametogenesis is a process by which diploid or haploid precursor cells undergo cell 2076 

division and differentiation to form mature haploid gametes. Depending on the 2077 

biological life cycle of the organism, gametogenesis occurs by meiotic division of 2078 

diploid gametocytes into various gametes or by mitotic division of haploid 2079 

gametogenous cells.  2080 

Genome: All the genetic material in the chromosomes of a particular organism; its size 2081 

is generally given as its total number of base pairs. 2082 

Genotoxic: The ability of a chemical to cause DNA damage, either directly or after 2083 

metabolic activation (see also carcinogens). 2084 

Genotype: The particular genetic pattern seen in the DNA of an individual. 'Genotype' 2085 

is usually used to refer to the particular pair of alleles that an individual possesses at 2086 

a certain location in the genome. Compare this with phenotype. 2087 

Germ cell: A biological cell that gives rise to the gametes of an organism that 2088 

reproduces sexually. The cells undergo mitotic and meiotic cell division in the gonads 2089 

followed by cellular differentiation into mature gametes, either oocytes or sperm.  2090 

http://encyclopedia.thefreedictionary.com/Gamete
http://encyclopedia.thefreedictionary.com/Biological+life+cycle
http://encyclopedia.thefreedictionary.com/Meiosis
http://encyclopedia.thefreedictionary.com/Gametocyte
http://encyclopedia.thefreedictionary.com/Mitosis


DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

61 

Heritable translocation test A test that detects heritable structural chromosome 2091 

changes (i.e. translocations) in mammalian germ cells as recovered in first-generation 2092 

progeny.  2093 

Historical negative control data: In the context of the COM guidance on genotoxicity 2094 

testing, this term refers to information on the background genotoxicity or mutagenicity 2095 

data for a particular assay from a particular laboratory. Historical control data should 2096 

be reported as the mean and confidence intervals for the genotoxicity or mutagenicity 2097 

indices investigated.  2098 

In vitro chromosomal aberration assay: An assay where cultured cell lines or human 2099 

lymphocytes are incubated with test chemical. At a predetermined time, cells are 2100 

arrested in metaphase, harvested and stained, and the metaphase spreads are then 2101 

analysed microscopically for the presence of chromosome aberrations.   2102 

Kinetochore is the protein structure which is present on chromosomes where the 2103 

spindle fibers attach during division to pull the chromosomes apart. The kinetochore 2104 

forms in eukaryotes and assembles on the centromere and links the chromosome to 2105 

microtubule polymers from the mitotic spindle during mitosis and meiosis. The 2106 

kinetochore contains two regions: an inner kinetochore, which is tightly associated with 2107 

the centromere DNA; and an outer kinetochore, which interacts with microtubules. 2108 

Kinetochore staining An immunochemical technique used to detect the presence of 2109 

centromeric kinetochore proteins in MN and to identify the origin of MN. In all but a few 2110 

cases, the presence of kinetochore in a micronucleus indicates that it was formed by 2111 

loss of an entire chromosome, whereas a micronucleus that lacks a kinetochore 2112 

originated from an acentric chromosome fragment.  2113 

Maximum Tolerated Dose; The highest dose of a chemical that can be given without 2114 

causing serious weight loss (>10%) or other signs of toxicity[DPL83]. 2115 

Metabolic activation: Metabolism of a compound leading to an increase in its activity, 2116 

whether beneficial (e.g. activation of a pro-drug) or deleterious (e.g. activation to a toxic 2117 

metabolite). 2118 

Metabolic activation system: A cell-free preparation (e.g. from the livers of rats pre-2119 

treated with an inducing agent added to in vitro tests to mimic the metabolic activation 2120 

typical of mammals. 2121 

Metabolism: Chemical modification of a compound by enzymes within the body, for 2122 

example by reactions such as hydroxylation (see cytochrome P450), epoxidation or 2123 

http://encyclopedia.thefreedictionary.com/Chromosome
http://encyclopedia.thefreedictionary.com/Spindle+apparatus
http://encyclopedia.thefreedictionary.com/Eukaryote
http://encyclopedia.thefreedictionary.com/Centromere
http://encyclopedia.thefreedictionary.com/Chromosome
http://encyclopedia.thefreedictionary.com/Spindle+apparatus
http://encyclopedia.thefreedictionary.com/Mitosis
http://encyclopedia.thefreedictionary.com/Meiosis
http://encyclopedia.thefreedictionary.com/Centromere
http://encyclopedia.thefreedictionary.com/Microtubule
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conjugation. Metabolism may result in activation, inactivation, accumulation or 2124 

excretion of the compound. 2125 

Metabolite: Product formed by metabolism of a compound. 2126 

Micronuclei: Isolated or broken chromosome fragments which are not expelled when 2127 

the nucleus is lost during cell division, but remain in the body of the cell forming MN. 2128 

Centromere positive MN contain DNA and/or protein material derived from the 2129 

centromere. The presence of centromere positive MN following exposure to chemicals 2130 

in vitro or in vivo can be used to evaluate the aneugenic (qv) potential of chemicals. 2131 

Micronucleus test: See Micronuclei. 2132 

Mitogen: A stimulus which provokes cell division in somatic cells. 2133 

Mitosis[DPL84]: The type of cell division which occurs in somatic cells when they 2134 

proliferate. Each daughter cell has the same complement of chromosomes as the 2135 

parent cell. 2136 

Mode of Genotoxic Action (MoGAMoA): The mode of action of a genotoxicant[DPL85] 2137 

refers to the underlying events involved in the process whereby the chemical induces 2138 

genotoxic effects. In order for a specific mode of action to be supported there needs to 2139 

be evidence from robust mechanistic data to establish a biologically plausible 2140 

explanation. Mode of genotoxic action should be distinguished from the term 2141 

mechanism of action. The latter relates to having sufficient understanding of the 2142 

molecular basis of the chemical genotoxicity to establish causality. Thus mechanism 2143 

of action is at the other end of a continuum from little or no evidence of mode of 2144 

genotoxic action to scientific proof of mechanism of action.  2145 

Mouse lymphoma assay: An in vitro assay for gene mutation in mammalian cells 2146 

using a mouse lymphoma cell line L5178Y, which is heterozygous for the gene (carries 2147 

only one functional gene rather than a pair) for the enzyme thymidine kinase (TK+/-). 2148 

Mutation inof that single gene is measured by resistance to toxic trifluorothymidine. 2149 

Mutant cells produce two forms of colony - large, which represent mutations within the 2150 

gene and small, which represent large genetic changes in the chromosome such as 2151 

chromosome aberrations. Thus this assay can provide additional information about the 2152 

type of mutation which has occurred if colony size is scored[DPL86][DK87]. 2153 

Mutation: A permanent change in the amount or structure of the genetic material in an 2154 

organism or cell, which may or may not can[DPL88] result in a change in phenotypic 2155 

characteristics. The alteration may involve a single gene, a block of genes, or a whole 2156 

chromosome. Mutations involving single genes may be a consequence of effects on 2157 
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single DNA bases (point mutations) or of large changes, including deletions, within the 2158 

gene. Changes involving whole chromosomes may be numerical or structural. A 2159 

mutation in the germ cells of sexually reproducing organisms may be transmitted to 2160 

the offspring, whereas a mutation that occurs in somatic cells may be transferred only 2161 

to descendent daughter cells. 2162 

Mutagenic end-points: these comprise of three levels of genetic change, namely 2163 

gene mutation, clastogenicity and aneuploidy  2164 

No observable effect concentration (NOEC): the highest administered concentration 2165 

at which no adverse effect or specific genotoxic effect is seen  2166 

Pharmacokinetics[DPL89]:  2167 

Phenotype: The observable physical, biochemical and physiological characteristics of 2168 

a cell, tissue, organ or individual, as determined by its genotype and the environment 2169 

in which it develops. 2170 

Polyploidy: Numerical deviation of the modal number of chromosomes in a cell, with 2171 

approximately whole multiples of the haploid number. Endoreduplication is a 2172 

morphological form of polypoidy in which chromosome pairs are associated at 2173 

metaphase as diplochromosomes.  2174 

32P-postlabelling: A sensitive experimental method designed to measure low levels 2175 

of DNA adducts induced by chemical treatment. 2176 

Prokaryotes: The simplest living organisms namely viruses, bacteria and some blue 2177 

green algae. The genetic material in bacteria is arranged into one chromosomal 2178 

complex consisting of a single circular molecule of DNA (or RNA in some viruses). 2179 

They lack an organised nucleus. Mitosis and meiosis do not occur, although nucleotide 2180 

polymerisation replication takes place and division and multiplication follow. 2181 

Quantitative Structure Activity Relationships (QSARs):  2182 

Recombination: Breakage of DNA structure usually during meiosis[DPL90] with 2183 

balanced or unbalanced rejoining of DNA 2184 

S9: metabolic activation system (qv) comprising of the post-mitochondrial supernatant 2185 

(S9) from the homogenised livers of rats treated with P450 dependent drug-2186 

metabolizing enzyme inducers such as Arochlor 1254 or phenobarbitone/β-2187 

naphthoflavone. S9 is combined with a mix of co-factors which optimize the activity of 2188 

the mixed function oxidases and form a NADPH generating system which has the 2189 

capacity to metabolise chemicals in vitro.  2190 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

64 

Sensitivity: In the context of the COM guidance on a strategy for genotoxicity testing, 2191 

the correct identification of known rodent carcinogens or in vivo genotoxins using 2192 

genotoxicity (mutagenicity) assays based on a defined set of carcinogenicity data (e.g. 2193 

Gold Carcinogenicity Potency database) 2194 

Screening test; High-Throughput[DPL91][DK92] procedures designed to provide rapid 2195 

information on toxicological end points for a large number of compounds 2196 

Specificity: In the context of the COM guidance on a strategy for genotoxicity testing, 2197 

the correct prediction of known non-carcinogens as assessed in rodent carcinogenicity 2198 

bioassays using genotoxicity (mutagenicity) assays based on a defined set of 2199 

carcinogenicity data (e.g. Gold Carcinogenicity Potency database).  2200 

Specific locus test: A technique used to detect recessive induced mutations in diploid 2201 

organisms; a strain that carries several known recessive mutants in a homozygous 2202 

condition is crossed with a non mutant strain that has been treated to induce mutations 2203 

in its germ cells; induced recessive mutations allelic with those of the test strain will be 2204 

expressed in the progeny. 2205 

Spindle apparatus: In cell biology, the spindle apparatus is the structure that 2206 

separates the chromosomes into the daughter cells during cell division. It is part of the 2207 

cytoskeleton in eukaryotic cells. It is also referred to as the mitotic spindle during 2208 

mitosis and the meiotic spindle during meiosis. 2209 

Structure Activity Relationships (SARs): the relationship between chemical 2210 

structure and genotoxic effect based on predictions using computerised models (also 2211 

Quantitative Structure Activity Relationships q.v.)  2212 

Test chemical:  A chemical element and its compounds in the natural state or obtained 2213 

by any manufacturing process, including any additive necessary to preserve its stability 2214 

and any impurity deriving from the process used, but excluding any solvent which may 2215 

be separated without affecting the stability of the chemical or changing its composition.  2216 

Threshold: Dose or exposure concentration below which an effect is not 2217 

expected[DPL93]. 2218 

Topoisomerases: Enzymes which catalyze and guide the unknotting[DPL94][DK95] of 2219 

DNA by creating transient breaks in the DNA using a conserved tyrosine as the 2220 

catalytic residue. In so-called circular DNA, in which double helical DNA is bent around 2221 

and joined in a circle, the two strands are topologically linked, or knotted. 2222 

Topoisomerase I solves the problem caused by tension generated by 2223 

http://encyclopedia.thefreedictionary.com/Cell+biology
http://encyclopedia.thefreedictionary.com/Chromosome
http://encyclopedia.thefreedictionary.com/Cell+division
http://encyclopedia.thefreedictionary.com/Cytoskeleton
http://encyclopedia.thefreedictionary.com/Eukaryote
http://encyclopedia.thefreedictionary.com/Mitosis
http://encyclopedia.thefreedictionary.com/Meiosis
http://encyclopedia.thefreedictionary.com/Tyrosine
http://encyclopedia.thefreedictionary.com/Circular+DNA
http://encyclopedia.thefreedictionary.com/Circle
http://encyclopedia.thefreedictionary.com/Knot+theory
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winding/unwinding of DNA. It wraps around DNA and makes a cut permitting the helix 2224 

to spin. Once DNA is relaxed, topoisomerase reconnects broken strands 2225 

Toxicogenomics: A new scientific subdiscipline that combines the emerging 2226 

technologies of genomics and bioinformatics to identify and characterise mechanisms 2227 

of action of known and suspected toxicants. Currently, the mainpremier toxicogenomic 2228 

tools are the DNA microarray and the DNA chip, which are used for the simultaneous 2229 

monitoring of expression levels of hundreds to thousands of genes. 2230 

Toxicokinetics: The description of the fate of chemicals in the body, including a 2231 

mathematical account of their absorption, distribution, metabolism and excretion. (see 2232 

pharmacokinetics) 2233 

Transgenic: Genetically modified to contain genetic material from another species 2234 

(see also genetically modified organism). 2235 

Transgenic rodent gene mutation models: Animals which have extra (exogenous) 2236 

fragments of DNA incorporated into their genomes. This includes transgenic mice 2237 

containing reporter genes[DPL96] to assess in-vivo mutagenicity in recoverable bacterial 2238 

gene (lacZ or lac I). DNA can be isolated from a wide range of tissues following 2239 

exposure to a test chemical and the genes assessed for induced mutations.  2240 

Translation: In molecular biology, the process during which the information in mRNA 2241 

molecules is used to construct proteins[DPL97]. 2242 

Tumour (Synonym - neoplasm): A mass of abnormal, disorganised cells, arising from 2243 

pre-existing tissue, which are characterised by excessive and uncoordinated 2244 

proliferation and by abnormal differentiation. Benign tumours show a close 2245 

morphological resemblance to their tissue of origin; grow in a slow expansile fashion; 2246 

and form circumscribed and (usually) encapsulated masses. They may stop growing 2247 

and they may regress. Benign tumours do not infiltrate through local tissues and they 2248 

do not metastasise. They are rarely fatal. Malignant tumours (synonym - cancer) 2249 

resemble their parent tissues less closely and are composed of increasingly abnormal 2250 

cells in terms of their form and function. Well differentiated examples still retain 2251 

recognisable features of their tissue of origin but these characteristics are 2252 

progressively lost in moderately and poorly differentiated malignancies: 2253 

undifferentiated or anaplastic tumours are composed of cells which resemble no known 2254 

normal tissue. Most malignant tumours grow rapidly, spread progressively through 2255 

adjacent tissues and metastasise to distant sites. Tumours are conventionally 2256 

classified according to the anatomical site of the primary tumour and its microscopical 2257 

appearance, rather than by cause. 2258 
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Unscheduled DNA Synthesis (UDS): DNA synthesis that occurs at some stage in the 2259 

cell cycle other than the S period (the normal or 'scheduled' DNA synthesis period), in 2260 

response to DNA damage. It is usually associated with DNA repair.  2261 

Weight of Evidence  A quantitative ranking of evidence, or the qualitative appraisal of 2262 

many different forms of evidence (e.g toxicological or genotoxicity data) to arrive at a 2263 

conclusion regarding potential hazard (such as mutagenicity). [RB98] 2264 

  2265 



DRAFT DOCUMENT FOR DISCUSSION 
 
 

 
 
 

67 

Annex 1[DPL99] 2266 

Tabulation[OS100][OS101] of Genotoxicity Tests (in Stages 1 and 2) and 2267 

Mutagenic/Genotoxicity End Points Detected. 2268 

Genotoxicity test Mutagenic/genotoxicity end 
point detected 

Comments 

In vitro assays  
Ames Gene mutation Responds to wide range of DNA 

reactive mutagens when full set of 
S. typhimurium tester strains and 
E. coli with appropriate exogenous 
metabolic activation used. 

Micronucleus test Clastogenicity, aneuploidy Centromere or kinetochore stains, 
with pancentromeric or 
chromosome specific centromeric 
probes using fluorescence in situ 
hybridisation (FISH) are required 
to distinguish between for 
aneuploidy and clastogenicity 

Chromosomal 
aberrations 

Clastogenicity, aneuploidy Indications of aneuploidy from 
induction of polyploidy or 
increased mitotic index, but the 
use of chromosome specific 
centromeric probes fluorescence 
in situ hybridisation (FISH) 
required to assess the potential for 
aneuploidy. Very similar assay 
performance compared with 
micronucleus test 

Mouse Lymphoma 
Assay 

Gene mutation, 
clastogenicity 

Distribution of large and small 
colony mutants can give 
information on induction of gene 
mutations versus clastogenicity. 
No convincing evidence that MLA 
can detect aneuploidy 
consistently.  

Comet assay DNA strand breaks and 
alkali labile sites 

Can respond to a wide range of 
gene mutagens and clastogens 
but gives no information about 
modes of mutagenic action. 

Pig-a gene 
mutation assay 

  

In vivo assays  
Rodent Bone 
Marrow/peripheral blood 
micronucleus assay 

Clastogenicity, aneuploidy A wide range of structurally 
diverse clastogens and aneugens 
have been detected. Distingishing 
between clastogenic and 
aneugenic MoAs cCan also be 
used to investigated aneuploidy by 
use of centromere or kinetochore 
probes. . 

Rodent transgenic 
mutation assay 

Gene mutations Valuable for the investigation of 
gene mutation in a wide range of 
tissues including germ cells and 
particularly to confirm gene 
mutation as a mode of action.  
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Rodent Comet assay DNA strand breaks, alkali 
labile sites 

Can respond to a wide range of 
gene mutagens and clastogens 
but gives no information about 
modes of mutagenic action. Does 
not detect aneugens. Valuable for 
detection of DNA damage in a 
wide range of tissues, but the 
standard alkaline assay not 
validated for mature sperm.  

Rodent Liver UDS Unscheduled DNA 
synthesis 

Endpoint measured is indicative of 
DNA damage and subsequent 
repair in liver cells, but now 
considered not as sensitive as 
other in vivo assays..  

Pig-a gene 
mutation assay 

Gene mutations Endpoint measured is a reporter of 
gene mutation in rodents, but 
currently only extensively 
validated in blood cells. 

 2269 
  2270 
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