

Evaluation of Cost-Effectiveness and Value-for-Money of DCP-DN Pavement Design Method for Low-Volume Roads in Comparison with Conventional Designs Final Report

Authors: M I Pinard, G van Zyl and J Hongve

ReCAP Project Reference Number. RAF 2128A

Infra Africa Consultants Gaborone, Botswana

March 2019

The views in this document are those of the authors and they do not necessarily reflect the views of the Research for Community Access Partnership (ReCAP), Cardno Emerging Markets (UK) Ltd for whom the document was prepared

Cover Photo: Authors

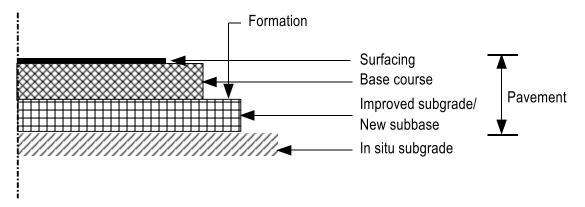
Quality assurance and review table							
Inception Report	Author(s)	Reviewer(s)	Date				
Version 1	M I Pinard and G van Zyl	N Leta	9 th January 2018				
		L Sampson	16 th January 2018				
Version 2	M I Pinard and G van Zyl		23 January 2018				
Preliminary Evaluation							
Report							
Version 1	M I Pinard, G van Zyl and J Hongve		31 st March, 2018				
		N Leta	26 April 2018				
		L Sampson	29 April 2018				
Draft Final Evaluation	M I Pinard, G van Zyl and J Hongve		17 May 2018				
Report							
Final Evaluation Report	M I Pinard, G van Zyl and J Hongve		24 July, 2018				
		N Leta	25 July, 2018				
			25 July, 2018				
Final Evaluation Report	M I Pinard, G van Zyl and J Hongve		14 December, 2018				
		N Leta	03 January, 2019				
		J Cook	03 January, 2019				
Final Evaluation Report	M I Pinard, G van Zyl and J Hongve		21 January, 2019				
Ver 4							
Final Evaluation Report	M I Pinard, G van Zyl and J Hongve		05 March, 2019				
Ver 5							
		N Leta	06 March, 2019				

ReCAP Project Management Unit Cardno Emerging Market (UK) Ltd Oxford House, Oxford Road Thame OX9 2AH United Kingdom

Key words

Low-volume roads, pavement design, Dynamic Cone Penetrometer, cost-benefit analysis, life-cycle cost.

RESEACH FOR COMMUNITY ACCESS PARTNERSHIP (ReCAP) Safe and sustainable transport for rural communities


ReCAP is a research programme, funded by UK Aid, with the aim of promoting safe and sustainable transport for rural communities in Africa and Asia. ReCAP comprises the Africa Community Access Partnership (AfCAP) and the Asia Community Access Partnership (AsCAP). These partnerships support knowledge sharing between participating countries in order to enhance the uptake of low cost, proven solutions for rural access that maximise the use of local resources. The ReCAP programme is managed by Cardno Emerging Markets (UK) Ltd.

See www.research4cap.org

Acronyms, Units and Currencies

AASHTO	American Association of State and Highway Transport Officials
AfCAP	Africa Community Access Partnership
CBA	Cost-Benefit Analysis
CBR	California Bearing Ratio
DCP	Dynamic Cone Penetrometer
DFID	Department for International Development
DN	The average penetration rate in mm/blow of the DCP in a pavement layer
EMC	Equilibrium Moisture Content
EOD	Environmentally Optimised Design
LCC	Life-cycle costs
MESA	Million Equivalent Standard Axles
OMC	Optimum Moisture Content
PMU	Project Management Unit
ReCAP	Research for Community Access Partnership
SEACAP	South East Asia Community Access Programme
TLC	Traffic Loading Class
ToR	Terms of Reference
ТРА	Transvaal Provincial Administration
TRL	Transport Research Laboratory
UK	United Kingdom (of Great Britain and Northern Ireland)
UKAid	United Kingdom Aid (Department for International Development, UK)
VFM	Value for Money

Terminology

Components of a low volume sealed road

C	onter	nts		
	Key w	ords		4
	•		nits and Currencies	5
	Termi	nology		5
E	xecutiv	e summ	nary	. 10
1		Introd	uction	. 14
	1.1	Backgr	ound	14
	1.2	Motiva	ation for Project	14
	1.3	Purpos	se and Scope	15
	1.4	Final E	valuation Report	16
2		Appro	ach and Methodology	. 17
	2.1	Genera	al	17
	2.2	Hypoth	netical Approach	17
	2.3	Selecti	on and Requirement of Design Methods	17
		2.3.1	Selection of design methods	17
		2.3.2		17
			Input requirements	18
		2.3.4	DCP-DN method	18
			DCP-CBR method	19
			TRH4 method	19
	~ .		ORN31 method	20
	2.4	-	Assumptions	20
		2.4.1	Drainage	20
		2.4.2	Maintenance and overload control	21
		2.4.3 2.4.4	Terrain Matarials compliance	21 21
		2.4.4 2.4.5	Materials compliance Representative DN Values	21 21
		2.4.5	Conversion from DN to CBR	22
		2.4.7	-	22
	2.5		visits and Data Collection	22
	2.5	2.5.1	General	22
		2.5.2	Construction costs	23
		2.5.3	Maintenance costs	24
			Performance of Trial Sections	24
3		LCC Ev	aluation Procedure	. 25
	3.1	Genera	al	25
	3.2	Compa	arative Cost Evaluation	25
		3.2.1	General approach	25
		3.2.2	Life-cycle cost components	25
		Agency	y costs	26
		Constr	uction and rehabilitation costs	26
			enance costs	26
			iser costs	26
		-	e costs	26
			Life-cycle cost analysis	26
			Hypothetical life-cycle cost evaluation	27
		3.2.5	Cost-effectiveness of design methods	27
	3.3		netical Designs	28
			General	28
			Design matrix	28
		3.3.3	Determination of typical pavement structures	29

		3.3.4	Pavement construction costs	31
		3.3.5	Determination of pavement structure costs	31
		3.3.6	Comparison of total pavement costs/km	32
		3.3.7	Comparison of total pavement cost ratios	33
		3.3.8	Comparison of total project costs/km	33
		3.3.9	Comparison of project cost ratios for low and high design traffic	34
		3.3.10	Comparison of project cost savings/km for low and high design traffic	35
		3.3.11	General comparative cost trends	36
	3.4	In-Situ	Designs	42
		3.4.1	General	42
		3.4.2	Design inputs	42
		3.4.3	DCP-DN design method	42
		3.4.4	TRH4 design method	43
		3.4.5	ORN31 design method	43
		3.4.6	DCP-CBR design method	43
		3.4.7	Determination of pavement structure	44
		3.4.8	Determination of pavement structure costs	45
		3.4.9	Pavement cost ratios	46
		3.4.10	Project costs	48
		3.4.11	Project cost ratios	48
		3.4.12	Project cost differences	49
	3.5	Hypoth	etical versus In-Situ Designs	49
		3.5.1	Hypothetical designs	49
			In-situ designs	49
			Comparison of hypothetical and in-situ situ designs	49
		3.5.4	Implications of EMC selection	50
4		Fvaluat	tion of Value for Money	51
	4.1	Genera	-	51
	4.2		vork for VFM analysis	51
	4.3		ion of VFM	52
	4.5		Cost-effectiveness	52
		4.3.2	Outcome (uptake)	53
		4.3.3	Potential impact:	54
		4.5.5	rotentur impuet.	54
5			ary of Key Findings and Conclusions	
	5.1	Key Fin		55
		5.1.1	Cost Evaluation	55
		5.1.2	Value for Money	55
	5.2	Main C	onclusions	57
	5.3	Way Fo	prward	57
6		Refere	nces	59
		IGURES		
			ure for determining cost-effectiveness of various LVR design methods	27
	-		lluation procedure	
	-		ent costs (Wet environment) – Zero versus Medium haul distance	
	-		ent costs (Mod-Dry environment) – Zero versus Medium haul distance	
	-		costs (Wet environment) – Zero versus Medium haul distance	

igure 9: Kukurantumi - Asafo pavement structures by TLCs for different design methods.	. 47
igure 10: Framework for VFM analysis (DFID, 2011)	. 51
igure 11 km cost, 0.1 MESA, Wet, Medium haul	. 80
igure 12 km cost, 0.3 MESA, Wet, Medium haul	. 80
igure 13 km cost, 1 MESA, Wet, Medium haul	. 80
igure 14 km cost, 0.1 MESA, Dry-Moderate, Medium haul	. 81
igure 15 km cost, 0.3 MESA, Dry-Moderate, Medium haul	. 81
igure 16 km cost, 1.0 MESA, Dry-Moderate, Medium haul	. 81

LIST OF TABLES

Table 1: Dependence of design subgrade values on design traffic class (DCP-CBR method).	21
Table 2: Relationship between in-situ DCP CBR and soaked CBR (Paige-Green et al, 1999)	22
Table 3: Road sections to be evaluated	23
Table 4: Material unit costs	23
Table 5: Material haulage costs	24
Table 6: Example of design and pavement structure cost matrix	29
Table 7: TRH4 Class D pavement structure for 0.3 MESA	30
Table 8: Reference cell in pavement cost structure matrix	
Table 9: Pavement layer costs (USD/m ³)	
Table 10: Pavement layer costs (USD/m ³) per layer (TRH4 method, <0.1 MESA only)	32
Table 11: Total pavement costs/km per design method per scenario (USD/km) (example)	
Table 12: Pavement cost ratios of alternative design methods (< 0.1 MESA)	33
Table 13: Total project costs/km (USD) of alternative design methods (< 0.1 MESA)	34
Table 14: Project cost ratios of alternative design methods (< 0.1 MESA)	34
Table 15: Project costs ratios of alternative design methods (0.3 – 1.0 MESA)	35
Table 16: Project cost savings/km (< 0.1 MESA)	35
Table 17: Project cost savings/km (0.3 – 1.0 MESA)	36
Table 18: Pavement structure costs based on Zambian cost data	
Table 19: In-situ pavement cost ratios	46
Table 20: In-situ pavement cost ratios for different TLCs	46
Table 21: Material haulage scenarios	
Table 22: Project costs/km (USD) for various haulage scenarios	48
Table 23: Project costs ratios for various haulage scenarios	48
Table 24: Project costs differences/km (USD) for various haulage scenarios	49
Table 25: Comparison of pavement cost ratios (Project versus Hypothetical)	50
Table 26 DCP-DN required pavement structure (DN values)	71
Table 27 DCP-DN required pavement structure (Field CBR values)	71
Table 28 Required pavement structure in terms of soaked CBR (Based on Emery)	72
Table 29 Required pavement structure in terms of soaked CBR (Based on Paige-Green)	72
Table 30 Required pavement structure if base and subbase operate at OMC	73
Table 31 Required pavement structures for a range of in-situ subgrades	73
Table 32 Material, haul and processing costs (Rand)	74
Table 33 Layer cost for a 150mm layer (soaked CBR=45)	
Table 34 Costs of different layers in the required pavement structure (DCP-DN)	74
Table 35 Required pavement structure according to TRH4 design	
Table 36 Costs of different layers in the required pavement structure (TRH4)	75
Table 37 Required pavement structure according to DCP-CBR design	76
Table 38 Costs of different layers in the required pavement structure (DCP-CBR)	76
Table 39 Required pavement structure according to ORN31 design	77
Table 40 Costs of different layers in the required pavement structure (ORN31)	77
Table 41 Summary of pavement layer cost in Rand per m ²	78
Table 42 Summary of pavement layer costs in USD per km	78

Table 43	Cost items additional to pavement layers	79
Table 44	Summary of project costs per km	79
Table 45	Project cost ratios	82
Table 46	Project cost savings per km	82

LIST OF ANNEXES

63
64
65
66
67
68
72
84
94
- - -

Executive summary

ReCAP has supported the enhancement of a method of pavement design for low volume roads (LVRs) based on the use of the Dynamic Cone Penetrometer (DCP) (AfCAP, 2013) as an alternative to the more traditional methods based on the use of the California Bearing Ratio (CBR). Despite the perceived advantages of this relatively new method of design, they are yet to be fully quantified in practice. This has prompted the letting of a project pertaining to the "Evaluation of cost-effectiveness and value-for-money of the DCP-DN pavement design method for low-volume roads in comparison with traditional designs".

The main purpose of the project is to evaluate, in terms of cost-effectiveness (upfront cost savings and life-cycle costs) and value-for-money, a number of unpaved road sections located in selected African countries that were upgraded to a paved standard using the DCP-DN method. This has entailed the collection and analysis of road cost data for these road sections in order to determine their life-cycle costs in comparison with the same section of unpaved¹ (gravel) road upgraded to a paved standard using traditional, CBR-based pavement design methods for low volume roads (TRH4, DCP-CBR and ORN31). Additional objectives are to evaluate the outcome (uptake) and potential impact of the DCP-DN method.

As part of the evaluation procedure, 36 "in-situ" designs were undertaken based on actual design information from 10 road sections located in countries in west, east and southern Africa. These in-situ designs were supplemented by a relatively large number of "hypothetical" designs, some 2304 in all, which were based on a wide range of road environmental conditions likely to be encountered in practice (3 traffic classes, 4 in-situ subgrade conditions, 2 climatic zones, 6 material types and 3 haul distances). Thus, it is practicable only to present the global cost trends for the various design methods that were evaluated in terms of the following:

- pavement cost and pavement cost ratios (DCP-DN versus other design methods).
- total project cost and project cost ratios (DCP-DN versus other design methods).
- total project cost savings/km (DCP-DN versus other design methods).

In view of the fact that the roads are all relatively new and without a performance history that would allow end of design life roughness values, and hence VOCs to be determined, as well as maintenance cost interventions and residual values, the cost comparison boiled down just to pavement construction costs.

In keeping with the above approach, the key findings of the analyses emanating from the hypothetical designs, which have been found to be reflective of the outcome of the in-situ designs, are presented in Section 3 and may be summarized as follows:

- (1) At design traffic loading up to about 0.7 MESA, and for a wide range of subgrade strengths and climatic zones, the DCP-DN design method will, in the majority of cases, provide pavement construction cost savings in the range of USD 10,000 -20,000 per km, and in many cases in excess of USD20,000/km when compared against all other methods. These costs savings are reduced by about 30 to 60% for the zero-haulage scenario.
- (2) The pavement construction cost savings offered by the DCP-DN method occur to a lesser extent in the higher Traffic Loading Classes (TLCs) (0.7 MESA and above) when, in some cases, other design methods, particularly ORN31, are more cost-effective in this higher traffic range.

¹ The terms *paved* and *unpaved* are referred to in some countries as *sealed/surfaced* and *unsealed/ unsurfaced* roads respectively. These terms mean essentially the same thing, i.e. an unpaved/ unsealed/ unsurfaced road is one without a permanent waterproof surface and may consist of locally available earth/sand or imported gravel material. In contrast, a paved/sealed/surfaced road is one in which the surface has been permanently paved/sealed/surfaced by the use of a wide range of surfacing types made from bitumen, concrete, clay bricks, etc. The terms paved and unpaved are used in this report.

In general terms, the difference in pavement construction costs per km for the various design methods, and the pavement construction cost efficiency of the DCP-DN design method, relative to the other design methods, decreases with higher quality subgrades and higher TLCs. Also, for the specific set of environmental conditions considered, there is no major difference in the trends between Wet and Dry-Moderate environments.

The conclusion to be drawn from the very wide range of design evaluations is that, in general, the DCP-DN method is the most cost-effective design option at relatively low TLCs, up to about 0.7 MESA and across all subgrade strengths. However, at TLCs above 0.7 MESA the method gradually becomes less cost effective than the other methods, particularly ORN31, which become more cost-effective in many situations.

The pavement costs derived for the hypothetical and in-situ designs mirrored each other closely, and the resulting trends for pavement construction cost as well as total project construction cost differences/km, were similar. However, it should be noted that there would be potentially larger project construction cost differences in countries with higher material costs compared to those in South Africa.

It is also interesting to note that ORN31 has been shown to be generally more cost-effective than its successor for LVR design, the DCP-CBR method, in all design environments. This may be partly explained by two reasons:

- (1) ORN31, together with the DCP-DN method, and in contrast to the DCP-CBR and TRH4 design methods, allows for the use of unsoaked subgrades which offer scope for using relatively thinner/less costly pavement structures.
- (2) The adopted soaked/unsoaked subgrade CBR ratio for the DCP-CBR method appears to be very conservative compared to that adopted in the DCP-DN and ORN31 methods. This results in the need for relatively thicker/more costly, pavement layers.

One of the major benefits of the hypothetical evaluation spreadsheets is that they can be used by practitioners to determine the likely costs of their designs in a particular set of road environment conditions, and which is the most appropriate design method to use. The spreadsheets also offer the potential for being developed as an application tool for undertaking LVR design based on a set of input parameters.

Based on a visual condition survey of four of the DCP-designed roads that have been in service from 6 - 28 years, and are located in both dry-moderate and wet climatic zones, they are all rated to be in fair-good condition. However, lack of future maintenance could jeopardise their long-term performance.

In terms of Value for Money (VFM), the DCP-DN method has been evaluated in terms of the following:

(1) **Cost-effectiveness:** The outcome of the various cost evaluations undertaken and summarised above illustrate the general cost-effectiveness of the DCP-DN method in the lower traffic ranges up to about 0.7 MESA against the other design methods.

Given that many countries in Africa have embarked on programmes for improving basic access in rural areas by upgrading gravel roads to a paved standard, typically of the order of 100 - 150 km/annum, the potential benefits of adopting the DCP-DN method over a 5-year planning horizon, could result in cost savings of the order of USD60 – 180 million, depending on the extent of the upgrading programme and the road environment conditions. When extrapolated to all 46 Sub-Saharan countries, this figure is estimated at USD 2.7 – 18 billion. Such an upgrading policy would also conserve large quantities of higher quality material for future use as the need for stronger pavements increases.

- (2) Outcome (uptake) and knowledge: This has been assessed in terms of the following:
 - a. *Sustainability*: This has been demonstrated in terms of the following typical examples:
 - i. Seminars, workshops and meetings aimed at knowledge sharing between participating ReCAP countries and their wider community of practitioners.
 - Establishment of Working Groups or Steering Committees with the objective of discussing intensively issues associated with the environmentally optimised design of LVRs.
 - iii. Construction and long-term monitoring of demonstration or trial sections designed on the basis of the DCP-DN method.
 - iv. Contributions in kind from partner Governments in terms of staff time and funding/co-funding with bi-lateral partners.
 - v. The holding of basic and advanced training courses in the DCP-DN method of design for engineers and technicians in a number of African and Asian countries that have led to the certification of four AfCAP Level 1 Trainers which qualifies them to undertake such training nationally or internationally.
 - (b) Uptake: This has been manifested as follows:
 - i. ReCAP country partner financing of the DCP-DN design method in three countries so far.
 - ii. Incorporation of the DCP-DN design method requirements in local standards and specifications in at least four countries so far, and on-going revisions in at least another five countries.
 - (c) Quality of DCP-DN research: This has been manifested as follows:
 - I. Production of at least one internationally peer-reviewed paper on the DCP-DN method of design in the research proceedings of a major civil engineering institution in the UK
 - II. Production and presentation of at least 7 papers on the DCP-DN method of design in a number of regional and international conferences.
 - (d) Knowledge of the DCP-DN method. This has been manifested as follows:
 - *i.* An increase in the knowledge base for the DCP-DN method of pavement design which is gradually increasing in terms of the following:
 - The number of certified trainers who have themselves applied the method in practice in at least three countries.
 - Incorporation in at least one international course in Rural Roads for Development held at the University of Birmingham, UK.
- (3) **Potential impact:** Although it may be too soon to start quantifying the impact of introducing the DCP-DN method of design for the more recently constructed trial sections, or of adopting any DCP-related method of design for future LVRs, such impacts are likely to be a factor within the causal package leading to:
 - a. Reduced cost/increased cost-effectiveness of LVR provision.
 - b. Optimum use of non-renewable gravel resources.
 - c. Improved transport services at cheaper costs.
 - d. Increase in agricultural production and productivity due to more reliable, allseason access to market places.

- e. Improvements in education and health due to communities being able to access such facilities in all seasons.
- f. Increased resilience to climate impacts due to more durable paved road surfaces.
- g. Ultimately, poverty reduction in the vicinity of the project due to improvements in community livelihoods.

In summary, the use of the DCP-DN method and, indeed other methods such as ORN31 when applied to relatively high design traffic loadings (>0.7 MESA) in some road environments, is expected to provide Value for Money in terms of the following:

- a. Cost-effectiveness.
- b. Outcome (uptake) and knowledge.
- c. Potential impact.

In terms of the way forward, and based on the many lessons learnt during the course of undertaking this project, the following recommendations are made:

- (1) A practitioner's workshop should be held to discuss and disseminate the findings of this report.
- (2) As part of the on-going ReCAP project on Long Term Pavement Performance (LTPP) monitoring of trial sections in a number of partner countries, measurement of in-situ moisture in the pavement layers and subgrade, and across the horizontal profile of the sections, should be given high priority in order to validate the assumptions made on this parameter in all the design methods.
- (3) In order to embed in practice the potential benefits to be derived from the use of the DCP-DN method, a generic guideline on the Design of Low Volume Roads should be produced so as to provide practitioners with another choice of design method for their consideration.
- (4) The Regional Research Centres should undertake a similar data collection exercise to the one initiated under this project, in say 5 years time, so as to consolidate on the preliminary results of the VFM exercise initiated under this project.
- (5) Consideration should be given to developing the spreadsheets prepared under this project as an application tool for undertaking LVR design based on any set of input parameters to determine what are the likely costs of their designs in a particular set of road environment conditions, and which is the most appropriate design method to use.
- (6) Consider the following topics for further research to enhance the efficacy and applicability of the DCP-DN design method
 - a. Determine the precision limits of the DCP-DN measurement as against the CBR measurement as adopted by other LVR design methods.
 - b. Compare the designs produced by the DCP-DN and other design approaches (DCP-CBR, TRH4 and ORN31) with an analytical approach.
 - c. Use suitably calibrated road investment appraisal models such as HDM-4 or the World Bank's Roads Economic Development Model (RED) to appraise robustly the LCCs of the DCP-DN and other design approaches.

1 Introduction

1.1 Background

One of the key goals of the DFID-supported Research for Community Access Partnership (ReCAP) is to promote safe and sustainable rural access in Africa and Asia through research and knowledge sharing between participating countries and the wider community. In this regard, the Programme focuses on conducting high quality, applied research that will assist Low Income Countries (LICs) to increase all-weather rural access to poor communities. It builds on the strengths of AfCAP and SEACAP in working alongside partner Governments to encourage high levels of research uptake.

The expected outcome of the Programme is "Sustained increase in the evidence base for more cost effective and reliable low volume rural road and transport services, promoted and influencing policy and practice in Africa and Asia". A key aspect of the attainment of this outcome is the cost-effective provision of low volume roads (LVRs) based on the use of appropriate pavement design methods. To this end, ReCAP has supported the enhancement of a method of pavement design based on the use of the Dynamic Cone Penetrometer (DCP) as an alternative to the more traditional California Bearing Ratio (CBR)-based design methods. Both methods are based on measurement of a proxy for the in-situ shear strength of a material. In the case of the DCP-DN method, it is the resistance to penetration of a material by a DCP cone - the DN value (mm/blow) whilst, in the case of the DCP-CBR method, it is the ratio of the force per unit area per minute required to penetrate a soil mass, to the force required for a similar penetration of a standard crushed rock material – the CBR value (%).

1.2 Motivation for Project

For a variety of perceived advantages, there is, in a number of countries in Africa and Asia, an increasing uptake of the DCP-DN method of design, as against the more traditional CBR-based approaches to the design of LVR pavements (Rolt and Pinard, 2016). The main advantages of the DCP-DN method and, indeed, all other DCP-related methods of design, are that it:

- Involves the use of relatively low cost, robust apparatus that is quick and simple to use (approx. 30 minutes per test). This allows many measurements of pavement layer thicknesses and strengths to be obtained to provide a comprehensive characterization of the in-situ road conditions. This provides a strong statistical basis for design, minimizing the risks of under- or over-design inherent in any method that does not provide sufficient information for a proper statistical analysis.
- Provides improved precision limits compared to the CBR test (Smith and Pratt, 1983). The strength (DN) values obtained in the field or the laboratory are inherently more accurate because the DCP provides a virtually continuous strength profile throughout the layer being tested (+/- 150 mm) whereas a CBR test is naturally biased towards the ends of the test mould at a penetration depth of 2.5 or 5.0 mm. Moreover, it has been shown that with reasonable care taken to control testing errors, DCP data can be treated as representative of in-situ materials characteristics (Roy, 2007).
- Involves testing actual subgrade strength using the DCP at multiple points along the road at the time of the year when subgrades are weakest as well as under multiple seasonal scenarios in contrast to CBR-testing which is relatively costly and time consuming to carry out, requiring a large amount of material for laboratory testing at relatively large spacing typically every 500 to 1000 metres. Moreover, the entire subgrade to a depth of 800 mm is assessed in-situ by the DCP in 150 mm layers, as opposed to the more traditional approach in which composite samples are typically taken from the top 300 500 mm of the subgrade for CBR testing to determine a

representative subgrade design CBR to define uniform sections. However, when the materials differ significantly in the top 500 mm (a common occurrence), the design CBR from a composite sample can be misleading.

- Provides a standalone means of improving the quality control of compacted materials from density-based methods, which tend to be slow, potentially hazardous (nuclear gauges) and of uncertain accuracy, particularly where there is a variation in site materials along any tested section (Livneh and Livneh, 2013; Hongve and Pinard, 2016) to stiffness/strength-based methods which allows direct comparison to be made between design and achieved strengths on site (Siekmeier et al, 2009).
- Offers a holistic approach to the provision of LVRs in that the DCP test can be used for field investigations, pavement design, laboratory testing and compaction quality and layer thickness control.

In the case of the DCP-DN method only:

 Avoids the need to convert the DCP-DN values to equivalent CBR values at any stage of the design process which would incur errors due to the relatively poor correlation between DCP and CBR measurements with material specific correlation coefficients ranging from 0.67 – 0.79 (Sampson and Netterberg, 1990).

The main limitations of using the DCP device, in conjunction with any DCP-related method of design, include the following (Rolt and Pinard, 2016):

- If the existing pavement contains material that is very coarse the DCP probe may 'hit' a large stone or be deflected sideways creating friction on the shaft resulting in incorrect readings. This may require some DCP tests to be abandoned or repeated.
- If the pavement contains a cemented layer the DCP may not be able to penetrate. To obtain information about the underlying structure a suitable sized hole may have to be drilled through the cemented layer without using water for lubrication. Similarly, if carried out on an existing road, the drilled hole will need to be made good in such a manner as to not affect the integrity of the road and lead to future water ingress.
- The DCP tests may be performed poorly (e.g. hammer not falling the full distance, non-vertical DCP, excessive movement of the depth measuring rod, use of a blunt cone, etc.). Any test can be poorly executed and therefore this is not a particular limitation of the DCP test. However, the DCP test is less operator susceptible than many other tests thus reducing the risk of measurement error (Livneh and Ishai, 1987).

In addition to the above, the DCO approach is empirically founded with the associated caveats of extrapolating empirical procedures to other environments.

Despite the perceived advantages of the DCP-DN method of pavement design, they are yet to be fully quantified. This has prompted the letting of a ReCAP project pertaining to the *"Evaluation of cost-effectiveness and value-for-money of DCP-DN pavement design method for low-volume roads in comparison with traditional designs"*.

1.3 Purpose and Scope

The main purpose of the project is to evaluate, in terms of cost-effectiveness and value-formoney, a number of unpaved road sections located in selected African countries that were upgraded to a paved standard using the DCP-DN method. This has entailed the collection and analysis of the construction costs of these road sections in order to determine their life-cycle costs in comparison with the same sections of roads upgraded to a paved standard using traditional, CBR-based pavement designs. In addition, the project has also evaluated the outcome (uptake) of the DCP-DN method and knowledge as well as its potential impact. As indicated in the Terms of Reference (ToR), the scope of work associated with the attainment of the above objectives was as follows:

- 1. **Stage 1:** Undertaking of a desk study of the design, construction and maintenance activities that have been carried out on each road section. This was based on design reports, completion reports (as-built information), monitoring reports, where available, as well as other sources.
- 2. **Stage 2:** Visiting some of the roads in each country to get an appreciation of their in-service performance and current condition.
- 3. **Stage 3**: Holding meetings with relevant authorities in-country to familiarise them with the objectives of the study.
- 4. **Stage 4:** Compiling information on construction costs, maintenance costs and computing life-cycle costs for each road section.
- 5. **Stage 5:** Preparing an evaluation report providing a comparison of the pavement costs, total project costs and project cost difference per km of the three typical, traditional design methods against the DCP-DN design method as well as the cost-effectiveness and value-for-money aspects of the EOD approach incorporating the DCP-DN design method.

Following completion of Stage 1 of the project – a desk study of alternative methods of pavement design for LVRs - which was reported upon in the Inception Report, the subsequent stages of the project have included the following:

- (1) Field visits and data collection in the various countries involved in the project with the objective of compiling information on construction and maintenance costs as well as undertaking a qualitative assessment of the performance of these roads
- (2) Determination of the pavement structures derived from application of four design methods (DCP-DN, DCP-CBR, ORN31 and TRH4) based on actual input data pertaining to the design traffic loading, in-situ subgrade strength and climatic environment pertaining to the ten road sections located in the various countries.
- (3) Determination of the pavement structures derived from application of the four design methods based on a "hypothetical" approach involving a relatively wide range of input factors in terms of traffic loading, in-situ subgrade strength and climatic environment.
- (4) Application of the construction cost data to the various pavement structures as a basis for determining the LCC for each design method (both in-situ and hypothetical) and, subsequently the pavement cost ratios, total project cost ratios and total project cost difference per km for the four design methods evaluated.
- (5) Preparation of an Evaluation Report including the outcome of the LCC analyses and the determination of Value-for-Money aspects of the DCP-DN design method.

1.4 Final Evaluation Report

This Final Evaluation Report is structured as follows:

An Executive Summary that summarises the main findings of the report.

Section 1 (this section): A brief introduction to the project including its purpose and scope.

Section 2: The approach and methodology for undertaking the life-cycle cost analyses.

Section 3: The LCC evaluation procedure and key outcomes.

Section 4: The evaluation of value-for-money pertaining to the use of the DCP-DN design method. **Section 5:** A summary of key findings and conclusions of the project.

2 Approach and Methodology

2.1 General

The ToR required the Consultant to focus on 10 road sections in 5 countries, namely: Malawi, Zambia, Ghana, Tanzania and Kenya. However, since the design traffic loading on these roads is all relatively low (up to 0.3 MESA), the range was extended by inclusion of two road sections from South Africa, one of which has carried an estimated 0.8 - 1.0 MESA).

Based on the above, the number of design scenarios for a particular road section is relatively limited in that it would have produced only 36 designs (4 design methods x 1 traffic class x 1 subgrade strength x 1 climatic zone x 3 material types x 3 borrow pit haulage distances) from which to draw conclusions relating to the cost-effectiveness of the DCP-DN against the other CBR-based methods. This number of "in-situ" designs was considered to be too few to draw definitive conclusions on the cost-effectiveness of the various design methods that, in practice, could be applied to a much larger number of design scenarios. As a result, a "hypothetical" approach also had to be considered as described below.

2.2 Hypothetical Approach

In view of the above, it became necessary to also include a "hypothetical" approach for evaluating the cost-effectiveness of the various design methods. This approach allows a much larger number of design scenarios to be considered in a wide range of road environments, some 2304 in all (4 design methods x 3 traffic classes x 4 subgrade strengths x 2 climatic zones x 6 material types x 4 borrow pit haulage distances²). The design matrix for the hypothetical approach is discussed further in Section 4.

2.3 Selection and Requirement of Design Methods

2.3.1 Selection of design methods

The criteria that were used to select the LVR design methods for comparison with the DCP-DN method are as follows:

- Developed specifically for LVRs
- Developed for generic rather than country-specific application
- Widely used in the African region

Based on the above criteria, the design methods that were selected for comparison with the DCP-DN method are as follows:

- ORN31
- TRH4
- DCP-CBR (TRL)

2.3.2 Applicability of DCP Methods of Design

DCP-based methods of design, such as the DCP-DN, DCP-CBR and ORN31 design methods, if appropriately applied in line with their stipulated design catalogues and procedures, can be applied to most design situations found in practice in tropical and sub-tropical regions of the world. It should be noted, however, that the DCP method cannot be used directly if the proposed road is in cut or on fill, where the final formation level of the alignment would be outside the influence zone of an existing alignment DCP survey. In such cases, the material to be used for the embankment would need to be tested to determine its properties at varying densities and moisture contents. Fills can then be

² Three haulage scenarios were originally considered in the hypothetical approach for evaluating the costeffectiveness of the various design methods – low: 1 - 10 km, medium: 10 - 30 km and high: 30 - 100 km. However, a request was made for consideration to be also given to a zero-haulage scenario. The implications of this are discussed on page 37.

designed in accordance with the relevant catalogue to ensure that all the layers comply with the specifications of the respective design method. This will allow designers to go straight to design catalogues for contractual quantities.

In areas of significant widening, the approach would be as described above, depending on whether the widening would involve a cut or fill situation.

2.3.3 Input requirements

As with all empirical methods of pavement design, the four main requirements of the design procedure are generally as follows (Rolt and Pinard, 2016):

- Assessment of subgrade strength.
- Assessment of design traffic loading.
- Selection of pavement materials.
- Determination of pavement layer requirements (thickness and/or strength).

Apart from the determination of traffic loading, which is generally quite straight forward, the other aspects of the design procedure all vary quite significantly between the methods under consideration and, as a result, must be fully understood in order to produce credible designs. For this reason, a brief description of the key features of the four design methods is provided below:

2.3.4 DCP-DN method

The DCP-DN design method is empirical in nature and the findings are currently based on measurements and observations on a range of soil types and environmental conditions prevailing in South Africa. The method is now being commonly and effectively used in a number of countries in Africa, including Malawi, Tanzania, Ghana and Kenya and could be effectively used in geotechnical environments similar to those countries. In dissimilar environments, further verification and performance monitoring may be required. Details of the development and application of this design method have been summarised in the Inception Report and are documented in other literature (e.g. Kleyn, 1984; Paige-Green and Van Zyl, 2018).

Assessment of subgrade strength: This is based on the strength (DN value) of the subgrade layer at the anticipated long-term equilibrium moisture content (EMC) of the road after it has been upgraded or rehabilitated to a paved standard. Depending on environmental conditions, the EMC in the subgrade may be expected to equilibrate above, at or below OMC when compacted to the highest practicable field density, i.e. refusal density or "compaction to refusal" which is a specific feature of the DCP-DN method.

Selection of pavement materials: This is based on the following procedure:

- (a) The evaluation of earthworks, subgrade and pavement materials on the basis of their characterisation as defined by relevant materials testing in terms of grading, plasticity, deleterious inclusions (e.g. organics) or other specific properties such as swell, erodibility or collapse potential.
- (b) The selection of materials in terms of acceptability for specific use is then based on judgment related to a combination of specified criteria allied to engineering judgment, bearing in mind the preference for local material use on LVRRs.
- (c) Once acceptability is agreed, the use of DCP-DN procedures to select and control the use of materials that have been previously defined as acceptable.

Testing to ascertain the durability properties of the material is undertaken separately from the DCP-DN test based on appropriate durability testing.

Determination of pavement layer requirements: This is specified in a single DCP-DN structural catalogue **(Annex A)** that prescribes the pavement layer thicknesses and strengths in 150 mm increments to a depth of 800 mm, i.e. the required strength profile. The layer strengths are varied in relation to traffic loading and increase (decreasing DN value) gradually in relation to an increase in design traffic loading. The design method can be adapted for any selected layer thicknesses or materials available. The catalogue is based on the DCP assessment and performance of more than a thousand road sections carried out in the 1970s (Kleyn and van Zyl, 1989) and subsequent investigations (Paige-Green, 1994).

2.3.5 DCP-CBR method

Details of the development and application of this design method have been summarised in the Inception Report and documented in other literature (e.g. Gourley and Greening, 1999).

Assessment of subgrade strength: This is based on the in-situ worst-case long term conditions similar to that obtained in the laboratory soaked CBR test. However, in a dry/moderate climate it is assumed that the subgrade CBR strength value is halved which is equivalent to a shift upwards of one subgrade class (Gourley, 2002). The DN values are converted to CBR values, based on the TRL (as distinct from the Kleyn) DCP-CBR correlation, for input into a CBR catalogue. It should be noted, however, that the ratio between soaked and unsoaked CBRs is significantly less than the research-based ratios developed by both Emery (Emery, 1985) and Paige-Green (Paige-Green et al, 1999). This is likely to lead to the use of higher quality/thicker/more costly pavement layers.

Selection of pavement materials. This is based on the laboratory soaked CBR test, regardless of climate, and at a specified density likely to be attained in the field. Requirements are placed on the allowable plasticity and grading of the material, the limits of which are related to the class of material, i.e. the higher the class, the more stringent the limits and the type of material, i.e. different for pedogenic and non-pedogenic materials.

Determination of pavement requirements (thickness and/or strength): This is based on the use of two structural design catalogues, one for dry-moderate climates (N-value > 4) and one for wet climates (N-value < 4). **(Annex B).** Pavement layer thicknesses are variable and range from 120 mm to 275 mm. For a given traffic loading, layer strengths and/or thicknesses are higher/greater in the wet zone than in the dry/moderate zone.

2.3.6 TRH4 method

Details of the development and application of this design method have been summarised in the Inception Report and documented in other literature (e.g. COLTO, 1996).

Assessment of subgrade strength: This is based on the soaked CBR value, regardless of climatic zone. A minimum CBR value of 3% at 95% Mod. AASHTO is assumed for design purposes, but lower layers in the catalogue may be omitted if the subgrade CBR strength is higher than 3% or, conversely, added if the subgrade CBR strength is lower than 3%

Selection of pavement materials. This is based on the soaked CBR value. In addition, requirements are placed on the allowable plasticity and grading of the material, the limits of which are related to the class of the material, i.e. the higher the class, the more stringent the limits as stipulated in TRH4 (CSRA, 1985).

Determination of pavement requirements (thickness and/or strength: This is based on the use of two structural design catalogues, one for dry-moderate climates (N-value > 2) and one for wet climates (N-value <2) **(Annex C).** Pavement layer thickness varies between 100 and 200 mm and layer strengths are varied in relation to the geo-climatic zones – dry/moderate (Weinert N value > 2) and wet (Weinert N value < 2). Thus, for a given traffic loading, layer strengths are higher in the wet zone than in the dry/moderate zone.

2.3.7 ORN31 method

Details of the development and application of this design method have been summarised in the Inception Report and documented in other literature (TRL, 1993).

Assessment of subgrade strength: This is based on the moisture content equal to the wettest moisture condition likely to occur in the subgrade after the road is opened to traffic, i.e. the long-term, inservice, equilibrium moisture content. Three categories of subgrade condition are assessed:

- (1) Category 1 Subgrade where the water table is sufficiently close to the ground surface to control the subgrade moisture content. In this case, the moisture content is determined from similar roads in the vicinity or from a knowledge of the relationship between suction and moisture content for the subgrade soil. In practice, this moisture content is likely to be at or above OMC.
- (2) Category 2 Subgrade with deep water tables and where rainfall is sufficient (> 250mm) to produce significant changes in moisture conditions under the road. The moisture condition for design purposes can be taken as the optimum moisture content given by the BS Standard (Light) Compaction Test (2.5 kg rammer method).
- (3) **Category 3 Subgrade** in areas with no permanent water table and where the climate is dry throughout most of the year (annual rainfall 250 mm or less). For design purposes a value of 0.80 OMC obtained in the BS Standard (light) Compaction test (2.5 kg rammer method).

Selection of pavement materials. This is based on the soaked CBR of 80% for the basecourse and 30% for the subbase, regardless of climatic zone. Requirements are placed on the allowable plasticity and grading of the pavement materials, the limits of which are related to the design traffic class and moisture regime, i.e. the higher the class and the wetter the anticipated moisture regime, the more stringent the limits.

Determination of pavement requirements (thickness and/or strength): This is based on the use of one structural design catalogue (**Annex D**). Pavement layer thickness varies between 100 and 350 mm and layer strengths are varied as discussed above. The layer strengths are varied in relation to traffic loading and increase (decreasing DN value) gradually in relation to an increase in design traffic loading.

2.4 Design Assumptions

A number of key assumptions underlie the application of all four design methods discussed above, as follows:

2.4.1 Drainage

Drainage is undoubtedly one of the most important factors that affects the long-term performance of a LVR, given adequate construction practice, maintenance attention and control of overloading. Thus, the assumed long-term equilibrium moisture content (EMC) is critical in that it affects the strength of the material in the pavement layers and the subgrade.

For purposes of the pavement design and LCC analyses, it has been assumed that, for all four design methods under consideration, **adequate drainage prevails.** In terms of currently recommended practice, this means that the level difference between the crown of the road and the invert of the drain (gradient dependent), should be about 0.75 m on relatively flat ground and slightly less on steeper ground) and, where feasible, the level distance between the original ground level and the underside of the subbase layer should be about 0.15 m. If these requirements are achieved in practice, then from research findings (Emery, 1985) it can be expected with a high degree of probability that:

- The EMC in the subgrade equilibrates below OMC in dry climates (annual rainfall < 500 mm) or at, or below, OMC in wet climates (annual rainfall > 500mm) (Annex E).
- The EMC in the pavement layers is independent of climate with the average moisture content equilibrating below OMC (0.63 OMC in the base and 0.78 in the subbase (Annex E).

For the in-situ designs, the implications of the above findings are that where adequate drainage prevails, and where the entire width of the road is sealed to the front slope of the side drain (a design requirement) then pavement layers and the subgrade are assumed to operate in an unsoaked condition, i.e. at or below OMC, irrespective of climatic zone. However, for the DCP-DN design method, it has been assumed, conservatively, that the in-situ moisture content will be equivalent to OMC.

Soaked designs for the pavement and subgrade could, of course, be warranted, due to poor drainage, high water tables, occurrence of flood plains, etc., but these scenarios would require special design considerations which, in any case, would be over-ridden by the assumptions adopted for the road designs, as indicated above, and do not feature in the pavement structures subjected to LCC analyses for the in-situ or hypothetical designs.

2.4.2 Maintenance and overload control

For purposes of the LCC analysis, it is assumed that adequate maintenance and overload control prevail and apply equally to all four design methods under consideration. As regards the former factor, the required periodic maintenance interventions and their timing are assumed to be broadly similar for a well-constructed, appropriate surfacing type placed on pavement structures of similar bearing capacity. However, as indicated in Section 3.2.3-Life Cycle cost analysis, in the absence of a performance history of the road sections, the LCC analysis has boiled down to a comparison of initial construction costs only.

2.4.3 Terrain

It is assumed that the in-situ designs for the 10 road sections apply to situations where the road is located in either flat or rolling terrain (max. gradient < 8%), and not for steep or very steep gradients where structural surfacings would be required, such as concrete slabs (reinforced/unreinforced), concrete blocks, etc. may be required. In these situations, design methods, other than those being considered in this project, would be required and are outside the scope of this project.

2.4.4 Materials compliance

Although not always necessarily the case, it is assumed for the purposes of the LCC analyses that the materials located from the borrow pits are compliant with the requirements of the particular design method. In practice, this may not be the case and the material may either be rejected or possibly mechanically modified at some additional costs to meet simultaneously the specification requirements in terms of strength (CBR), grading and plasticity.

2.4.5 Representative DN Values

In practice, many methods rely on the use of the DCP to determine uniform sections of the road under design by undertaking a CUSUM analysis of the range of values within that uniform section as follows:

- (a) **DCP-DN:** Uses the 80th, 50th or 20th percentile of the range of values depending on whether the anticipated long-term EMC in the pavement is respectively wetter than, the same or drier than at the time of the DCP survey.
- (b) **TRH4:** Uses the 90th/10th percentile of the range of CBR/DN values found along the road, as determined from a DCP survey.
- (c) **DCP-CBR:** Uses the mean, lower quartile or lower decile value of the range of CBR/DN values as in Table 1 below (Gourley and Greening, 1999):

Table 1: Dependence of design subgrade values on design traffic class (DCP-CBR method)

Design traffic class	Design CBR/DN
< 0.3 MESA	Mean CBR
0.3 – 0.5 MESA	75 th /25 th percentile
0.5 – 1.0 MESA	90 th /10 th percentile

(d) **ORN31:** Use the 90th/10th percentile of the range of CBR/DN values within a uniform section as determined from a DCP survey.

The above percentile values for the different design methods were used in the determination of the design subgrade strength in a uniform section of road for pavement design purposes.

2.4.6 Conversion from DN to CBR

The following relationships were used to convert DN values to CBR values as developed by Kleyn (Kleyn, 1984) and TRL (Samuel and Done, 2005).

- (1) Kleyn: CBR = 410 x DN^{1.27}
- (2) TRL: DN = 10^{(2.48} Log CBR)/1.057

It should be appreciated however, that the conversion from DCP-DN values to equivalent CBR values at any stage of the design process will introduce errors due to the relatively poor correlation between DCP and CBR measurements (material specific correlation coefficients range from 0.67 - 0.79; Sampson and Netterberg, 1990).

2.4.7 Conversion from in-situ DCP CBR to laboratory soaked CBR values

A key requirement for comparing the pavement structures derived from the various pavement design methods is to convert the in-situ DCP-CBR values to equivalent laboratory soaked CBR values for use in the DCP-CBR, TRH4 and ORN31 methods. This was achieved by using the relationship between soaked CBR values and field DCP-CBR values as developed by Paige-Green et al (1999) from their LVR database (see Table 2).

Relationship between DCP CBR and G class for unsealed roads								
Material	Soaked CBR		nsealed road					
classification		Subgrade We			Wearin	ring Coarse		
		Wet	Dry	Very dry	Dry	Moderate	Damp	
G4 or NG80	80	-	-	260	205	151	96	
G5 or NG45	45	-	-	188	148	109	69	
G6 or NG25	25	56	66	146	115	85	54	
G7 or G/S15	15	52	62	137	108	79	50	
G8 or G/S10	10	39	46	101	80	59	37	
G9 or G/S7	7	38	44	-	-	-	-	
G10 or G/S3	3	35	41	-	-	-	-	

Table 2: Relationship between in-situ DCP CBR and soaked CBR (Paige-Green et al, 1999)

Note: Very dry = 0.25 OMC, Dry = 0.5 OMC, Moderate = 0.75 OMC and Damp = OMC

By way of example, a wearing course material with a DCP CBR value of 54 at OMC would be equivalent to a soaked CBR value of 25.

2.5 Field Visits and Data Collection

2.5.1 General

Field visits were made to the countries listed in Table 3, except for Kenya, for the purpose of obtaining information on construction and maintenance costs as well as for undertaking a qualitative assessment of the performance of some of these roads. The cost information for Kenya was not suitable as the construction included widening of the road which could not be disaggregated from the pavement construction costs.

Country	Intry Road Name		Date of	Type of
		(km)	constr.	Surfacing
Ghana	Akyem Kukurantumi – Asafo (Eastern Region)	1	Not yet started	-
Malawi	Kasinje-Kandau (Ntcheu District)	8.5	2016	Cape Seal
	Mwanza-Kunenekude (Mwanza District)	8	2016	Cape Seal
	Parachute Batallion-Lifuwu (Salima District)	8	2016	Cape Seal
	Linthipe-TC-Lobi	5	Not yet started	-
Kenya	D379-Wamwangi-Karatu	0.45	2012	СМА
Tanzania	Lawate- Kibongote (Siha District)	14	2012	DSD
S. Africa	Danger Point road 4019 (Western Cape)	6.5	2003	SSD + SS
	Nelshoogte road (R38 – Nelshoogte Sawmill)	6.5	1991	DSD
Zambia	T2 – Waitwika – D1 (Nakonde District)	1	Not yet started	-

Table 3: Road sections to be evaluated

During the country visits meetings were held with the AfCAP national coordinator and road agency personnel in order to inform them to the objectives of the project. Visits were also made to some of the road sections in Malawi, Tanzania and South Africa where the roads had already been constructed, and discussions held with the local communities to try and obtain some idea of the impact of these paved roads on their livelihoods.

2.5.2 Construction costs

The unit construction cost information required for applying to the different pavement structures determined from both the in-situ and hypothetical designs included the following:

- Cost of material, stockpiled at borrow pits and crushers, ready for loading.
- Load plus free haul of 1km.
- Haul costs per four range distances, including a zero-haulage scenario.
- In-situ rip and recompact costs.
- Plant and labour costs to construct different layer thicknesses..

The format for collecting the cost information from the various countries is presented in Table 4 below which includes typical costs obtained from South African contractors, converted to US dollars (USD/ZAR = 12).

Layer	Material Unit Costs (USD/m ³)									
Quality	Crusher-Bin	Borrow pit –		Plant and Labour Costs by Layer Thickness						
	Commercial	Bin natural	100 mm	120 mm	125 mm	150 mm	175 mm	200 mm		
NG3		1.67	6.92	5.98	5.50	4.58	3.85	3.16		
NG7		1.67	6.92	5.98	5.50	4.58	3.85	3.16		
NG10		1.67	7.37	6.22	5.88	4.50	4.00	3.28		
NG15	12.92	1.67	8.13	6.95	6.50	5.42	4.50	3.75		
NG25	12.92	1.67	8.13	6.95	6.50	5.42	4.50	3.75		
NG30	12.92	1.67	8.13	6.95	6.50	5.42	4.50	3.75		
NG45	14.63	1.67	9.38	8.02	7.50	6.25	5.17	4.23		
NG55	16.99	1.79	9.91	8.48	7.93	6.61	5.46	4.47		
NG65	19.36	1.90	10.45	8.94	8.36	6.96	5.76	4.71		
NG80	22.92	2.08	11.25	9.63	9.00	7.50	6.20	5.08		
Crushed>100	29.58	2.08	12.50	10.70	10.00	8.33	6.89	5.64		

Table 4: Material unit costs

Note: NG3 = Natural gravel with a soaked CBR of 3.

Borrow pit haulage costs, independent of material type, were also obtained from South African contractors as presented in Table 5 below.

In situ rip & re	ecompact					
(USD/n	3.75					
Load & 1 km (USD/m³)	2.08				
Haul costs	1 - 10 km	0.42				
	10 - 30 km	0.33				
(USD/m ³ km)	(USD/m km) 30 - 100 km					

Table	5.	Material	haul	age	costs
Iavie	э.	iviateria	IIaui	age	CUSIS

In the event, the required construction cost information in the format required was available only from Zambia, Tanzania and South Africa. In Ghana, Malawi and Kenya the Bill of Quantities is priced in a manner that does not differentiate the haulage material cost by quality or by hauling distance. As a result, it became necessary to use the South African costs for input in the LCC analyses for Ghana, Malawi and Kenya. Since the South African haulage costs are competitively driven, and the type of plant and equipment used for road construction in most countries is very similar, the outcome of the cost comparison evaluations is expected to be realistic.

2.5.3 Maintenance costs

From discussions with stakeholders in Malawi, Tanzania and Kenya, it appears that no systematic maintenance has been carried out on any of the LVRs since they were constructed, in some cases (Tanzania) more than 5 years ago. However, as discussed in Section 3.2, such costs are assumed to be broadly similar.

2.5.4 Performance of Trial Sections

During the field visits, a visual condition survey was undertaken to determine the condition/ performance of those sections of DCP-DN designed roads that had been in service for at least 6 years. These included:

- (1) Kenya: D379-Wamwangi-Karatu road: Design life = 15 years; 6 years in service; no maintenance carried out since construction.
- (2) Tanzania: Lawate- Kibongote road: Design life = 15 years; 6 years in service, no maintenance carried out since construction.
- (3) South Africa: Danger Point road 4019 (Western Cape): Design life = x years; 15 years in service; intermittent routine and periodic maintenance carried out.
- (4) South Africa: Nelshoogte road (R38 Nelshoogte Sawmill): Design life = x years; 27 years in service; intermittent routine and periodic maintenance carried out.

The outline details of the above roads, and the outcome of the visual condition survey that was undertaken during the field visits are summarized **Annex F**. From the outcome of the visual assessments, it was observed that:

- (1) The four DCP-DN designed roads mentioned above have all performed satisfactorily in relation to their design parameters.
- (2) No maintenance has been carried out on any of the roads, except for the two in South Africa. Continued lack of adequate maintenance poses a potential threat to their longer-term performance.

3 LCC Evaluation Procedure

3.1 General

A fair, equitable and transparent approach to undertaking the evaluation of cost-effectiveness of the DCP-DN method of pavement design for LVRs in comparison with traditional design methods is essential, if the outputs are to be credible. To this end, this section presents the following:

- The method of life-cycle cost analysis considered appropriate for use on the project.
- The principles that will be applied for determining the cost-effectiveness of the various LVR design methods under consideration.

3.2 Comparative Cost Evaluation

3.2.1 General approach

The approach envisaged in the ToR for undertaking a comparative cost evaluation of the alternative methods of pavement design for upgrading from an unpaved (gravel) road standard to a paved standard is as follows:

- 1) Determine construction costs as well as life-cycle costs (LCC) of upgrading from an unpaved (gravel) road to a paved road based on:
 - (a) the use of the DCP-DN method, and
 - (b) the use of selected, traditional CBR-based design methods.
- 2) Compare the LCC derived from (a) and (b).

3.2.2 Life-cycle cost components

In general, a LCC analysis includes consideration of all costs anticipated over the life (or analysis period) of the road. The principal components of such an analysis typically includes the following:

- agency costs
- initial construction and rehabilitation costs
- maintenance costs over the design period
- benefits due to savings in user costs over the analysis period
- salvage costs.

In order to convert all the costs and benefits that may occur throughout the life of each road option, a discounted cash flow technique may be used to determine the Net Present Value (NPV) of each option on which basis the preferred option can be determined from the following relationship:

NPV = C + $\sum M_i (1 + r)^{-X_i} - S(1 + r)^{-Z}$

Where: NPV = present worth of costs

- C = present cost of initial construction
- M_i = cost of the ith maintenance and/or rehabilitation measure
- r = real discount rate
- X_i = number of years from the present to the ith maintenance and/or rehabilitation measure within the analysis period
- Z = analysis period
- S = salvage value of the pavement at the end of the analysis period expressed in terms of present values

Agency costs

Agency costs include those costs incurred by the agency in undertaking the planning, design and administration aspects of implementing a road project. They have been excluded from the LCC analysis as they are assumed to be broadly similar for all the design options.

Construction and rehabilitation costs

For a given road with a specific design traffic loading that is located in a particular road environment (terrain, subgrade conditions, moisture and temperature regimes, etc.), the unit cost of construction will depend primarily on the type of pavement structure required by the particular design method in terms of quality/thickness of the pavement layers. It is assumed that, over the design life of the LVRs under consideration, major rehabilitation would not be required.

Maintenance costs

The maintenance required on a LVR is a function of the rate and nature of road deterioration which will be dependent on pavement composition, traffic loading and environmental influences. An assessment needs to be made of future annual routine maintenance requirements, periodic treatments, such as reseals, and rehabilitation such as structural overlay.

Road user costs

Road user costs are those costs incurred by road users travelling on the road and are typically an aggregation of three separate components: Vehicle Operating Costs (VOC), which are influenced by the roughness of the road, Traffic Accident Costs and User Delay Costs.

Salvage costs

The salvage value of the pavement at the end of the analysis period depends on the extent to which it can be utilized in any future upgrading. For example, where the predicted condition of the pavement at the end of the analysis period is such tat the base layer could serve as the subbase layer for the subsequent project, then the salvage value would be equal to the cost in current value terms for construction in future to subbase level discounted to the evaluation year.

3.2.3 Life-cycle cost analysis

The ToR require an evaluation to be carried out of the cost-effectiveness of the DCP-DN pavement design method with a view to assess the benefits/cost savings accruing to Road Authorities, in terms of both the upfront cost savings and life-cycle costs, as a result of adopting the method in comparison with the more traditional, CBR-based design methods. Whereas the former requirement is possible due to the availability of reliable construction costs data, the latter requirement would only be possible if all the 10 roads/trial sections being evaluated were:

- founded on a similar strength subgrade
- located in the same road environment with replication of the trials in a variety of road environments.
- properly constructed and adequately maintained over their design life
- monitored at least at the end of their design life in terms of the total traffic carried since construction (in MESAs), roughness cracking, rutting, etc. so as to be able to determine relative benefits due to savings in user costs over the analysis period and their relative salvage values.

In fact, most of the road sections being evaluated are either not yet constructed or, those that have, are less than 6 years old. Thus, there is no performance history of these road sections that can be used in a typical LCC analysis as described above. As a result, the cost evaluation boils down essentially to a comparison of initial construction costs rather than overall life-cycle costs with the former being related to the type of pavement structure (layer strength/quality and thickness) dictated by the design method adopted.

3.2.4 Hypothetical life-cycle cost evaluation

Notwithstanding the above, it should be noted that the structural capacities (based on DSN_{800}) of the pavement structures produced by the four design methods are broadly similar with the structural capacity of the DCP-DN method being very similar to all of the other design catalogues up to about 0.1 MESA, after which it becomes slightly more conservative (Paige-Green and van Zyl, 2018). This being the case, it would seem not unreasonable to assume that:

- the pavement structures would be expected to deteriorate in a broadly similar manner under a given traffic loading and road environment.
- the cost of the periodic maintenance interventions for the roads/trial sections would be broadly similar and, when discounted to the base year, would be relatively small in comparison with the construction costs (the non-traffic related routine maintenance costs are assumed to be the same for all the roads/trial sections).
- the roughness generated by a relatively small number of commercial vehicles on the roads/trial sections, and hence the related VOCs, would be broadly similar and, when discounted to the base year, the difference in VOC savings would be relatively small in comparison with the construction costs. Most roughness variations on new LVRs are built-in during construction and are not traffic related.

Based on the above assumptions, the outcome of the cost comparison, based on initial construction cost, would seem likely to be reflected in the outcome of a more traditional LCC analysis based on actual performance history data, had such data been available for inclusion in the analysis.

3.2.5 Cost-effectiveness of design methods

The principle that was applied in determining the cost-effectiveness of the various LVR design methods discussed in Section 3.3 is simply to determine the construction cost per design method per design scenario and then the construction cost ratios between the DCP-DN and alternative CBR-based design methods. In this regard, in the hypothetical designs, the same unit costs of construction for the DCP-DN designed roads will be applied to the traditional design methods. This will allow the pavement and project costs for the DCP-DN method and the other design methods to be derived as illustrated in Figure 1.

In the case of the in-situ designs, country specific construction costs, where available, have been used.

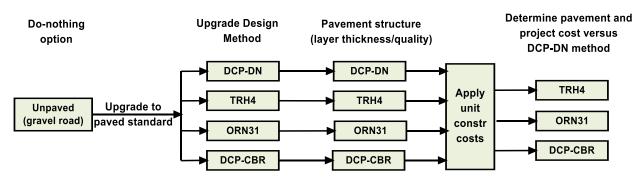
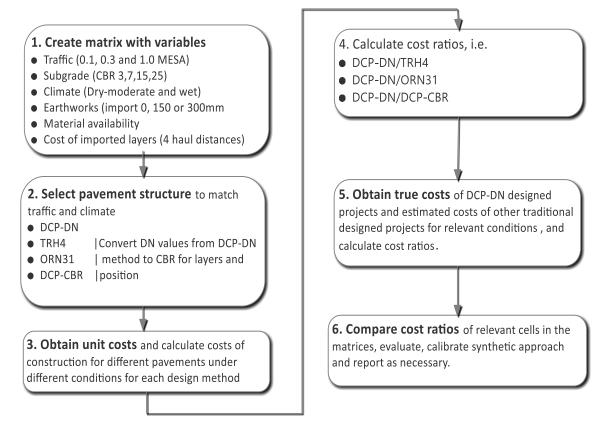



Figure 1 : Procedure for determining cost-effectiveness of various LVR design methods

3.3 Hypothetical Designs

3.3.1 General

The flow chart for undertaking the hypothetical cost evaluation of the pavement structures derived from the various design methods is illustrated in Figure 2.

3.3.2 Design matrix

The design matrix variables for the hypothetical evaluation incorporates the following variables:

- Traffic (MESA)
- Low: < 0.1
- Medium: 0.1 0.3
- High: 0.3 1.0
- **In-situ subgrade** (quality of the existing gravel road upper layers (300 mm) in three quality ranges defined as follows):
 - Very Good: CBR 25/30
 - Good: Soaked CBR = 16 24
 - Fair: Soaked CBR = 8 15
 - \circ Poor: Soaked CBR = 3 7
- Climatic zone
 - Dry moderate: TRH4: N > 2; DCP-CBR: N > 4)
 - Wet: TRH4: N < 2; DCP-CBR: N < 4
- Material Quality (as specified in the structural catalogues of the different design methods).
 - CBR 15, CBR 25, CBR 25/30, CBR 45, CBR 55, CBR 65, CBR 80.

- Borrow pit haulage
 - Zero haulage
 - \circ 1 10 km
 - 10 30 km
 - 30 100 km

Based on the above design variables, a design and pavement structure cost matrix was developed as presented schematically in Table 6. It allows for 18 possible different pavement structures for each of the 4 design methods, thereby covering most scenarios likely to be encountered in practice.

[Example	e or des	igii allu	paveine			st matri	×	
	Tra							.1 MESA)			
	Subg	rade		Very Goo	d (NG25)	Good	(NG15)		(NG7)	Poor	(NG3)
	Moist	ture regim	e/ climate	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
	NG45	Cost of	Zero Low								
	NG15	layer/s import	Medium High								
		Cost of	Zero								
	NG25/30		Medium								
e haul		Cost of	High Zero Low	-							
als/ Free	NG45	layer/s import	Medium High								
Available materials/ Free haul	NG55	Cost of 55 layer/s import	Zero Low Medium Zero								
Ava	NG65	Cost of layer/s	High Zero Low								
		import	Medium High								
	NG80	Cost of layer/s import	Zero Low Medium								
	NG80 layer/s import		Medium High								

Table 6: Example of design and pavement structure cost matrix

3.3.3 Determination of typical pavement structures

The determination of a typical pavement structure based on the various design methods may be illustrated for the TRH4 design method with the following input data:

Design details:

Design traffic loading = 0.3 MESA Existing subgrade/layer quality on which to construct (Soaked CBR=3) Wet climatic environment Available material close to site (free haul distance) = Natural Gravel (NG) with soaked CBR = 15

TRH4 Catalogue

The TRH4 catalogue for a wet environment and 0.3 MESA indicates the pavement structure as shown in Table 7. A standard convention has been adopted in the hypothetical evaluation spreadsheet for describing each pavement layer and is used for comparison purposes between the different design methods.

TRH4	(Wet)					
Road Category	MESA	Synthetic				
Noau Category	0.1 - 0.3	evaluation				
	S	S				
	100 G4	B(100-80)				
D	125 G6	SB(125-25)				
	150 G9	S(150-7)				

Table 7: TRH4 Class D pavement structure for 0.3 MESA

The convention in Table 7 is as follows: First character (B=Base, SB=Subbase, S= Selected) Following three characters after bracket define the layer thickness (100mm, 120mm, 125mm, 150mm, 175mm or 200mm) Following two characters define the required soaked CBR of the layer material

The quality of the in-situ subgrade and the distance required for import of layers are evaluated and information captured as explained below (refer to cell shaded in blue in Table 8 below).

	Base		Base	B(10	0-80)	B(10	0-80)	B(10	0-80)	B(100	-80)										
	TRH4		Subbase			SB(12	25-25)	SB(12	25-25)	SB(12	5-25)										
	11114		Selected							S(15	D-7)										
			Subgrade	NG	625	NG	515	N	G7	NG	3										
	1	Traffic			Low (< 0.1 MESA)																
_	Su	ıbgrade		Very	Good	Good	(NG15)	Fair (NG7)	Poor (NG3)											
	Moisture regime/ climate			Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet										
				B(100-80N)	B(100-80N)	B(100-80N)	B(100-80N)	B(100-80N)	B(100-80N)	B(100-80N)	B(100-80N)										
			Zero	No Import	No Import	SB(125-25N)	SB(125-25N)	SB(125-25N)	SB(125-25N)	SB(125-25N)	SB(125-25N)										
			Haulage	No Import	No Import	No Import	No Import	No Import	No Import	S(150-7N)	S(150-7N)										
			пашаде	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import										
				RR	RR	RR	RR	RR	RR	RR	RR										
-				B(100-80L)	B(100-80L)	B(100-80L)	B(100-80L)	B(100-80L)	B(100-80L)	B(100-80L)	B(100-80L)										
hau			Low	No Import	No Import	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)										
Available materials/ Free haul									-			No Import	No Import	No Import	No Import	No Import	No Import	S(150-7N)	S(150-7N)		
Ē		Cost of												No Import							
'ials	NG15	layer/s										RR	RR	RR	RR	RR	RR	RR	RR		
atei	11015	import			B(100-80M)	B(100-80M)	B(100-80M)	B(100-80M)	B(100-80M)	B(100-80M)	B(100-80M)	B(100-80M)									
Ê		mpore		No Import	No Import	SB(125-15M)	SB(125-25M)	SB(125-25M)	SB(125-25M)	SB(125-25M)	SB(125-25M)										
able			Medium	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)										
vail				No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import										
Ŕ				RR	RR	RR	RR	RR	RR	RR	RR										
				B(100-80H)	B(100-80H)	B(100-80H)	B(100-80H)	B(100-80H)	B(100-80H)	B(100-80H)	B(100-80H)										
				No Import	No Import	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)										
			High	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)										
				No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import										
				RR	RR	RR	RR	RR	RR	RR	RR										

Table 8: Reference cell in pavement cost structure matrix

Note: (1) Zero, Low, Medium and High in column 4 refer to haulage distances; (2) RR = Rip and Recompact

By way of explanation:

- (1) The base layer requires a CBR of 80. The available material (free haul) has a CBR=15. Therefore, the CBR=80 material must be imported. In this case, the haul distance is "Low" and an "L" is added after the 80
- (2) The subbase layer requires a CBR of 25. The available material (free haul) has a CBR=15. Therefore, the CBR=25 material must be imported. In this case, the haul distance is "Low" and an "L" is added after the 25

- (3) Note: It is acknowledged that the haul distances of the CBR=80 and CBR=25 material could be different. Although the spreadsheet allows the user to enter any distance notation, each variation results in doubling the number of situations for comparison
- (4) The in-situ material has a CBR = 3 and requires importation of a material for the selected layer with CBR=15. The only available material (free haul) has a CBR = 15. Therefore, the CBR=15 material must be imported, but without haulage costs. In this case, the additional haul distance is "None" and an "N" is added after the 15
- (5) No capping layer or earth works required. Therefore "No import" of an additional layer/s is required.

Pavement structures for the other design methods were also derived, based on the specific requirements of each of these methods.

3.3.4 Pavement construction costs

Utilising the unit construction costs presented in Table 4 above, the total cost of each possible pavement layer for all design methods may be calculated as illustrated in Table 9.

Exch. rate Rand -USD	12.00				Haul (n	n ³ km) per	distance ca	ntegory				
					1km free	1-10km	10-30km	30-100km				
Layer	Total cost/	Load & 1km	0	0.4167	0.3333	0.2917	Cons	truction (Pla	ınt & Laboı	ır)/m³		
	m2	(m)	per m ³	freehaul	0	5	20	65	Base	Subbase	Sel/Fill	Rip&Comp

Table 9: Pavement layer o	costs (USD/	(m ³)
---------------------------	---------	------	-------------------

Base	B(100-55H)	3.07	0.1	1.79		0.00	0.00	0.00	18.96	9.91	0.00	0.00	0.00
ä	B(100-55L)	1.59	0.1	1.79	2.08	0.00	2.08	0.00	0.00	9.91	0.00	0.00	0.00
	B(100-55M)	2.04	0.1	1.79	2.08	0.00	0.00	6.67	0.00	9.91	0.00	0.00	0.00
	B(100-55N)	1.38	0.1	1.79	2.08	0.00	0.00	0.00	0.00	9.91	0.00	0.00	0.00
	B(100-65H)	3.34	0.1	1.90	2.08	0.00	0.00	0.00	18.96	10.45	0.00	0.00	0.00
	B(100-65L)	1.65	0.1	1.90	2.08	0.00	2.08	0.00	0.00	10.45	0.00	0.00	0.00
	B(100-65M)	2.11	0.1	1.90	2.08	0.00	0.00	6.67	0.00	10.45	0.00	0.00	0.00
	B(100-65N)	1.44	0.1	1.90	2.08	0.00	0.00	0.00	0.00	10.45	0.00	0.00	0.00
	B(100-80H)	3.44	0.1	2.08	2.08	0.00	0.00	0.00	18.96	11.25	0.00	0.00	0.00
	B(100-80L)	1.75	0.1	2.08	2.08	0.00	2.08	0.00	0.00	11.25	0.00	0.00	0.00
	B(100-80M)	2.21	0.1	2.08	2.08	0.00	0.00	6.67	0.00	11.25	0.00	0.00	0.00
	B(100-80N)	1.54	0.1	2.08	2.08	0.00	0.00	0.00	0.00	11.25	0.00	0.00	0.00
	B(120-45H)	3.69	0.12	1.67	2.08	0.00	0.00	0.00	18.96	8.02	0.00	0.00	0.00
	B(120-45L)	1.66	0.12	1.67	2.08	0.00	2.08	0.00	0.00	8.02	0.00	0.00	0.00
	B(120-45M)	2.21	0.12	1.67	2.08	0.00	0.00	6.67	0.00	8.02	0.00	0.00	0.00
	B(120-45N)	1.41	0.12	1.67	2.08	0.00	0.00	0.00	0.00	8.02	0.00	0.00	0.00
	B(120-55H)	3.76	0.12	1.79	2.08	0.00	0.00	0.00	18.96	8.48	0.00	0.00	0.00
	B(120-55L)	1.73	0.12	1.79	2.08	0.00	2.08	0.00	0.00	8.48	0.00	0.00	0.00

3.3.5 Determination of pavement structure costs

Using a "Look-up" function, the cost of each layer in the pavement structure, as determined from Table 9, may be obtained and the total cost of each pavement structure, per design method, can be calculated as shown in Table 10 in terms of the total costs per layer (USD/m³) based on the material unit construction costs.

			Base	B(100-8	80)	B(100-8	80)	B(100-	-80)	B(100-	-80)					
	TRH4		Subbase			SB(125-	·25)	SB(125	5-25)	SB(125	-25)					
	11/14		Selected							S(150	⊢7)					
			Subgrade	NG2	5	NG1	5	NG	7	NG	3					
				-												
	Т	raffic					Low (< 0.1	MESA)								
	Subgrade			Very Go	bod	Good (N	G15)	Fair (N	IG7)	Poor (N	<mark>1G3)</mark>					
	Moisture r	egime/ clir	nate	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet					
				1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54					
			Zero	0.00	0.00	1.28	1.28	1.28	1.28	1.28	1.28					
			Haulage	0.00	0.00	0.00	0.00	0.00	0.00	1.38	1.38					
			Tiaulage	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
				0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38					
-			Low	Low	1.75	1.75	1.75	1.75	1.75	1.75	1.75	1.75				
hau					Low			Low	0.00	0.00	1.54	1.54	1.54	1.54	1.54	1.54
Available materials/ Free haul						0.00		0.00	0.00	0.00	0.00	1.38	1.38			
Γ.		Cost of				0.00		0.00	0.00			0.00	0.00			
rials	NG15	layer/s		0.38		0.38	0.38	0.38	0.38	0.38	0.38					
ate		import		2.21	2.21	2.21	2.21	2.21	2.21	2.21	2.21					
еШ		1		0.00		2.11	2.11	2.11	2.11	2.11	2.11					
abl			Medium	0.00		0.00				1.38						
vai				0.00		0.00	0.00			0.00						
4				0.38		0.38	0.38			0.38						
				3.44	3.44	3.44	3.44		3.44	3.44	3.44					
			112-14	0.00		3.65	3.65		3.65	3.65	3.65					
			High	High	High	0.00		0.00				1.38				
				0.00		0.00	0.00			0.00						
				0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38					

Table 10: Pavement layer costs (USD/m³) per layer (TRH4 method, <0.1 MESA only)

3.3.6 Comparison of total pavement costs/km

Table 11 shows the costs per design method per design scenario which are obtained by adding the costs of each pavement layer per design method for the selected scenarios. The cost ratios are shown in Table 12 (Note: Table 11 - Table 17 are extracts from the full hypothetical design spreadsheets presented in **Annex G**).

		Traffic						Low (< 0.1	1 MESA)					
	ORN	31 subgrad	de class		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)		
		Subgrad	e		VG (NG30)	VG (NG30)	Good	(NG15)	Fair (NG7)	Poor	(NG3)		
		Climate	2		Dry -Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet		
				DCP-DN	2,438	12,188	2,438	12,188	11,375	12,188	11,375	12,188		
			-	TRH4	12,458	12,458	20,786	20,786	20,786	20,786	29,724	29,724		
			Zero	DCP-CBR	11,620	12,188	12,188	19,967	20,535	21,000	29,183	29,183		
			Haulage	ORN31	13,813	13,813	13,813	13,813	13,813	13,813	21,531	22,141		
_				DCP-DN	2,438	14,219	2,438	14,219	11,375	14,219	11,375	14,219		
nau			Low	TRH4	13,813	13,813	23,833	23,833	23,833	23,833	32,771	32,771		
eeb				Low	Low	DCP-CBR	13,245	14,219	14,219	23,217	22,567	24,656	32,839	32,839
En /		Cost of						ORN31	15,844	15,844	15,844	15,844	15,844	15,844
ials,	NG15													
Available materials/ Free haul	NG15	layer/s		DCP-DN	2,438	18,688	2,438	18,688	11,375	18,688	11,375	18,688		
Ĕ		import		TRH4	16,792	16,792	30,536	30,536	30,536	30,536	39,474	39,474		
ble			Medium	DCP-CBR	16,820	18,688	18,688	30,367	27,035	32,700	40,883	40,883		
aila		ľ		ORN31	20,313	20,313	20,313	20,313	20,313	20,313	32,365	34,057		
Av														
				DCP-DN	2,438	30,672	2,438	30,672	11,375	30,672	11,375	30,672		
				TRH4	24,781	24,781	48,513	48,513	48,513	48,513	57,451	57,451		
			High	DCP-CBR	26,407	30,672	30,672	49,542	39,020	54,272	62,455	62,455		
				ORN31	32,297	32,297	32,297	32,297	32,297	32,297	52,339	56,029		
1														

Table 11: Total pavement costs/km per design method per scenario (USD/km) (example)

3.3.7 Comparison of total pavement cost ratios

Table 12 shows the ratio of total *pavement cost ratios* of the alternative design methods against the DCP-DN method for low design traffic (< 0.1 MESA).

	Traffic							Low (<)	0.1 MESA)								
	ORI	V31 subgra	de class		V Good (S6)	V Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S6)	Poor S5)					
		Subgrad	le		Very Good	(NG25/30)	Good (NG15)	Fair (NG7)	Poor (NG3)						
		Climate	5		Dry - Moderate Wet		Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet					
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00					
			Zero	TRH4	5.11	1.02	8.53	1.71	1.83	1.71	2.61	2.44					
			Haulage	DCP-CBR	4.77	1.00	5.00	1.64	1.81	1.72	2.57	2.39					
			Tiaulage	ORN31	5.67	1.13	5.67	1.13	1.21	1.13	1.89	1.82					
_				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00					
hau				TRH4	5.67	0.97	9.78	1.68	2.10	1.68	2.88	2.30					
Available materials/ Free haul			Low	DCP-CBR	5.43	1.00	5.83	1.63	1.98	1.73	2.89	2.31					
- Fr		Cost of		ORN31	6.50	1.11	6.50	1.11	1.39	1.11	2.19	1.82					
ials	NG15	layer/s															
atei	11015	import							DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ê		mpore											Madius	Modiure	TRH4	6.89	0.90
able			Medium	DCP-CBR	6.90	1.00	7.67	1.63	2.38	1.75	3.59	2.19					
vail							ORN31	8.33	1.09	8.33	1.09	1.79	1.09	2.85	1.82		
Ā																	
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00					
				TRH4	10.17	0.81	19.90	1.58	4.26	1.58	5.05	1.87					
			High	DCP-CBR	10.83	1.00	12.58	1.62	3.43	1.77	5.49	2.04					
				ORN31	13.25	1.05	13.25	1.05	2.84	1.05	4.60	1.83					

Table 12: Pavement cost ratios of alternative design methods (< 0.1 MESA)

From Table 12, the general, tentative findings for low design traffic loading only indicate the following:

- (1) The pavement cost ratios of the other methods versus the DCP-DN method are, in general, higher for the relatively low traffic loading, and in extreme cases, by up to factor of almost 20, depending on climate, subgrade strength and material haulage distance. Such large differences have been found in practice. See, for example, Annex 1 that pertains to the Wamwangi-Karate road in Kenya in which the DCP-DN method requires only ripping and recompacting of the existing wearing course material whereas TRH 4 requires the importation of two pavement layers.
- (2) The pavement cost ratios of the other methods vs. the DCP-DN method are generally highest in dry-moderate climates at high haluage distances (30 – 100 km) and very good/good subgrade conditions, and are generally lowest in all climates, on fair-poor subgrades and at all haulage distances.

3.3.8 Comparison of total project costs/km

Table 13 shows the total project costs/km of the alternative design methods against the DCP-DN method. These costs include those for the pavement layers (Table 11) as well as all other items that normally make up the total cost of a project (Establishment, Traffic Accommodation, Drainage and Structures, Profit, etc.).

				Low (< 0.1 MESA)																								
	Traffic						· · ·	,																				
ORN	131 subgra	de class		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)																	
	Subgrad	е		VG (NG30)	VG (NG30)	Good ((NG15)	Fair (NG7)	Poor	(NG3)																	
	Climate	2		Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet																	
			DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784																	
		_	TRH4	122,144	122,144	133,205	133,205	133,205	133,205	145,077	145,077																	
			DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358																	
		Haulage	ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004																	
			DCP-DN	108,833	124,482	108,833	124,482	120,705	124,482	120,705	124,482																	
		Low	TRH4	123,942	123,942	137,253	137,253	137,253	137,253	149,124	149,124																	
			DCP-CBR	123,188	124,482	124,482	136,434	135,570	138,345	149,214	149,214																	
	.		2011		-										-	_	_		_	_	ORN31	126,640	126,640	126,640	126,640	126,640	126,640	138,691
							,		,																			
NG15		Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	Medium	DCP-DN	108,833	130,418	108,833	130,418	120,705	130,418	120,705	130,418						
	import													Medium	Medium		TRH4	127,899	127,899	146,156	146,156	146,156	146,156	158,027	158,027			
																DCP-CBR	127,937	130,418	130,418	145,931	141,506	149,029	159,898	159,898				
			· · · · · ·		ORN31		,	,	,	,	,	,	150,832															
						- /	- /			-,	/																	
Available materials/ Free haul 51.DN			DCP-DN	108.833	146.336	108.833	146.336	120.705	146.336	120.705	146,336																	
			TRH4			170,033	170,033	170,033	170,033	,	181,905																	
		High			-	,	,	,	,		188,551																	
		High	ORN31		-	,	-		-		180,016																	
				,	,	,	,	,	,																			
	ORN NG15	ORN31 subgrad Subgrad Climate Cost of	ORN31 subgrade class Subgrade Climate Zero Haulage Low NG15 layer/s import	ORN31 subgrade class Subgrade Climate Climate Climate Climate Climate Convert Audition Cost of layer/s import Cost of layer/s Cost of Low Cost	ORN31 subgrade class Good (S6) Subgrade VG (NG30) Climate Dry - Moderate Climate DCP-DN 108,833 TRH4 122,144 DCP-CBR 121,030 ORN31 123,942 Low DCP-DN 108,833 TRH4 122,144 DCP-CBR 121,030 ORN31 123,942 Low DCP-DN 108,833 TRH4 122,942 DCP-CBR DCP-CBR 123,188 0CP-CBR Medium DCP-DN 108,833 TRH4 127,937 0RN31 ORN31 132,576 127,937 High DCP-DN 108,833 TRH4 138,512 DCP-CBR	ORN31 subgrade class Good (S6) Good (S6) Subgrade VG (NG30) VG (NG30) Climate Dry - Moderate Wet Climate DCP-DN 108,833 121,784 TRH4 122,144 122,144 122,144 DCP-CBR 121,030 121,784 Moderate DCP-CBR 123,942 123,942 Image: Cost of layer/s import DCP-DN 108,833 124,482 DCP-DN 108,833 124,482 126,640 DCP-CBR 123,942 123,942 123,942 DCP-CBR 126,640 126,640 126,640 Medium DCP-DN 108,833 130,418 ORN31 127,899 127,899 127,899 Medium DCP-CBR 127,937 130,418 ORN31 132,576 132,576 132,576 High DCP-DN 108,833 146,336 TRH4 138,512 138,512 138,512	ORN31 subgrade class Good (S6) Good (S6)	ORN31 subgrade class Good (S6) Moderate Wet Climate DCP-DN 108,833 121,784 122,144 123,942 123,942 123,942 123,942 123,942 123,942 123,942 123,942 137,253 137,253 137,253 DCP-ON 108,833 124,482	ORN31 subgrade class Good (S6) Good (S6) Good (S6) Good (S6) Good (S6) Fair (S6) Subgrade VG (NG30) VG (NG30) VG (NG30) Good (NG15) Fair (S6) Ory - Moderate Wet Dry - Moderate Dry - Moderate Dry - Moderate Wet Dry - Moderate Wet Dry - Moderate Dry - Moderate Dry - Moderate Dry - Moderate Wet Dry - Moderate Dry - Dry	ORN31 subgrade class Good (S6) Good (S6) Good (S6) Good (S6) Good (S6) Fair (S6) Fair (S6) Subgrade VG (NG30) VG (NG30) VG (NG30) Good (NG15) Fair (NG7) Ory - Moderate Dry - Moderate Wet Dry - Moderate Dry - Dry - DR Dry - Moderate Dry - Dry - DR Dry - DR - DR </td <td>ORN31 subgrade class Good (S6) Good (S6) Good (S6) Good (S6) Fair (S6) Fair (S6) Poor (S5) Subgrade VG (NG30) VG (NG30) VG (NG30) Good (S6) Fair (S6) Fair (S6) Poor (S5) Subgrade Dry - Moderate Wet Dry - Moderate Dry - Dry - Moderate Dry - Dry - Moderate Dry - Dry - Dr</td>	ORN31 subgrade class Good (S6) Good (S6) Good (S6) Good (S6) Fair (S6) Fair (S6) Poor (S5) Subgrade VG (NG30) VG (NG30) VG (NG30) Good (S6) Fair (S6) Fair (S6) Poor (S5) Subgrade Dry - Moderate Wet Dry - Moderate Dry - Dry - Moderate Dry - Dry - Moderate Dry - Dry - Dr																	

Table 13: Total project costs/km (USD) of alternative design methods (< 0.1 MESA)

The differences in total project costs/km are more easily displayed in terms of project cost ratios as presented below.

3.3.9 Comparison of project cost ratios for low and high design traffic

Table 14 and Table 15 show the project cost ratios for the low and high ends of the design traffic loading spectrum.

		Traffic			Low (< 0.1 MESA)									
	ORI	N31 subgra			Good (S6)	Good (S6)	Good (S6)	Good (S6)	1	Fair (S6)	Poor (S5)	Poor S4)		
	°					VG (NG30) Good (NG15)		•	Fair (NG7)		Poor (NG3)			
	Climate					Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet		
	DCP-DN					1.00	1.00	1.00	1.00	1.00	1.00	1.00		
			7010	TRH4	1.12	1.00	1.22	1.09	1.10	1.09	1.20	1.19		
	NG15		Zero Haulage	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19		
				ORN31	1.14	1.02	1.14	1.02	1.03	1.02	1.11	1.11		
_		Cost of layer/s import		DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Jau				TRH4	1.14	1.00	1.26	1.10	1.14	1.10	1.24	1.20		
ee			Low	DCP-CBR	1.13	1.00	1.14	1.10	1.12	1.11	1.24	1.20		
/ Fr				ORN31	1.16	1.02	1.16	1.02	1.05	1.02	1.15	1.12		
ials														
Available materials/ Free haul				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
ũ				TRH4	1.18	0.98	1.34	1.12	1.21	1.12	1.31	1.21		
able			Medium	DCP-CBR	1.18	1.00	1.20	1.12	1.17	1.14	1.32	1.23		
/aila				ORN31	1.22	1.02	1.22	1.02	1.10	1.02	1.23	1.16		
A														
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
				TRH4	1.27	0.95	1.56	1.16	1.41	1.16	1.51	1.24		
			High	DCP-CBR	1.29	1.00	1.34	1.17	1.30	1.21	1.56	1.29		
				ORN31	1.36	1.01	1.36	1.01	1.23	1.01	1.45	1.23		

Table 14: Project cost ratios of alternative design methods (< 0.1 MESA)

Traffic					High (0.3 - 1.0 MESA)									
<u> </u>	OB		ade class		Good (S6)	Good (S6)	Good (S6)		Fair (S6)	Fair (S6)	Poor (S5)	Poor S41		
<u> </u>		Subgra				VG (NG30)		(NG15)		NG7)	<u> </u>	(NG3)		
	Climate					Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet		
	DCP-DN				1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
1		Cost of layer/s import	Zero	TBH4	1.00	0.90	1.10	0.99	1.00	0.91	1.00	0.99		
]			Zero Haulage	DCP-CBR	1.00	0.90	1.09	0.99	1.00	0.92	1.04	1.02		
]				ORN31	1.01	0.91	1.01	0.91	0.92	0.84	0.92	0.92		
haul														
ř –			Low	DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Free				TBH4	1.00	0.88	1.11	0.98	1.02	0.91	1.02	0.99		
				DCP-CBR	1.00	0.90	1.11	0.99	1.02	0.93	1.06	1.03		
je j				ORN31	1.02	0.90	1.02	0.90	0.93	0.83	0.93	0.93		
materials/	NG15													
ate	Nono			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
		in port	Medium	TBH4	0.99	0.84	1.15	0.98	1.05	0.91	1.05	0.99		
Available				DCP-CBR	1.00	0.88	1.14	0.99	1.06	0.94	1.12	1.05		
in in iteration is a second se				ORN31	1.02	0.87	1.02	0.87	0.94	0.81	0.97	0.94		
N N														
4				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		
				TBH4	0.97	0.77	1.22	0.97	1.13	0.91	1.12	0.99		
			High	DCP-CBR	1.00	0.84	1.21	1.01	1.15	0.98	1.25	1.08		
				ORN31	1.04	0.82	1.04	0.82	0.96	0.77	1.05	0.98		

Table 15: Project costs ratios of alternative design methods (0.3 – 1.0 MESA)

From Table 14 and Table 15, general, tentative findings for low and high traffic loading scenarios can be drawn, as follows:

- (1) In low design traffic situations (Table 14), the project costs of the DCP-DN method are generally lower than the other methods, by 14% to 56% in dry-moderate climates at high haulage situations (30 – 100 km) and poor subgrade conditions.
- (2) In high design traffic situations (Table 15), the project costs of the DCP-DN method are generlly higher than the other design methods in wet climates across all haulage and subgrade conditions. In contrast, in dry-moderate climates and across all haulage and subgrade conditions, the other design methods generally exhibit higer project cost ratios.

3.3.10 Comparison of project cost savings/km for low and high design traffic

Table 16 and Table 17 show the project cost savings/km, which are generarly of most interest to clients, for the low and high ends of the design traffic loading spectrum.

		Traff	ic		Low (< 0.1 MESA)									
	0	RN31 subgi	rade class		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)		
	Subgrade					VG (NG30)	Good (NG15)		Fair (NG7)		Poor (NG3)			
	Climate					Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet		
	DCP-DN					0	0	0	0	0	0	0		
			Zero Haulage	TRH4	13,310	360	24,372	11,422	12,501	11,422	24,372	23,293		
	NG15	Cost of layer/s import		DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574		
				ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220		
_			/s	DCP-DN	0	0	0	0	0	0	0	0		
nar				TRH4	15,109	-540	28,419	12,771	16,548	12,771	28,419	24,642		
ee				DCP-CBR	14,355	0	15,648	11,953	14,865	13,863	28,509	24,732		
Available materials/ Free haul				ORN31	17,807	2,158	17,807	2,158	5,936	2,158	17,987	15,469		
ials														
ater				DCP-DN	0	0	0	0	0	0	0	0		
Ĕ				TRH4	19,066	-2,518	37,322	15,738	25,451	15,738	37,322	27,610		
able			Medium	DCP-CBR	19,103	0	21,584	15,514	20,801	18,612	39,194	29,481		
vails				ORN31	23,742	2,158	23,742	2,158	11,871	2,158	27,879	20,415		
Ą														
				DCP-DN	0	0	0	0	0	0	0	0		
				TRH4	29,678	-7,824	61,200	23,698	49,329	23,698	61,200	35,569		
			High	DCP-CBR	31,838	0	37,502	25,065	36,719	31,346	67,846	42,215		
				ORN31	39,661	2,158	39,661	2,158	27,789	2,158	54,410	33,680		

Table 16: Project cost savings/km (< 0.1 MESA)

Traffic					High (0.3 - 1.0 MESA)																							
							<u> </u>	í	E 1 200		D 00																	
URI						· · ·	<u> </u>				Poor S4)																	
	Subgra	ade		VG (NG30)	VG (NG30)	Good	(NG15)	Fair (NG7)	Poor (NG3)																		
Climate					Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet																	
DCP-DN					0	0	0	0	0	0	0																	
	Cost of layer/s import	Zero Haulage	TBH4	26	-13,850	11,897	-1,979	26	-13,850	26	-1,079																	
			DCP-CBR	0	-13,034	11,088	-1,946	0	-12,100	5,607	3,602																	
NG15			ORN31	1,478			-12,397	-10,393	-24,268	-12,012	-12,100																	
		Low	DCP-DN	0	0	0	0	0	0	0	0																	
			TBH4	-424	-16,997	14,145	-2,428	2,274	-14,299	2,274	-1,079																	
			DCP-CBR	0			-1,587		-11,201	9,654	4,951																	
			ORN31	1,928	-14,645	1,928	-14,645	-9,943	-26,517	-9,763	-11,201																	
			DCP-DN	0	0	0	0	0	0	0	0																	
			TBH4	-1,413	-23,922	19,092	-3,417	7,220	-15,289	7,220	-1,079																	
																			Medium	DCP-CBR	0	-18,790	17,995	-795	8,634	-9,222	18,557	7,919
			ORN31	2,917	-19,592	2,917	-19,592	-8,954	-31,463	-4,817	-9,222																	
			DCP-DN	0	0	0	0	0	0	0	0																	
			TBH4	-4,066	-42,494	32,357	-6,071	20,486	-17,942	20,486	-1,079																	
		High		0	-29,402	30,730	1,327	24,552	-3,916	42,434	15,878																	
		-	ORN31	5,570	-32,857	5,570	-32,857	-6,301	-44,728	8,448	-3,916																	
		Clima Clima Cost of NG15 layer/s	NG15 Cost of August International Internationa International International Internation	NG15 Index Cost of layer/s import Index In	Subgrade VG (NG30) Climate Dry - Moderate Climate DCP-DN 2ero Haulage TRH4 0CP-CBR 0 0RN31 1,478 0CP-CBR 0 0RN31 1,478 0CP-CBR 0 0CP-CBR 0 0CP-CBR 0 0CP-CBR 0 0RN31 1,928 0 0RN31 1,928 0 0CP-CBR 0 0RN31 1,928 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Subgrade VG (NG30) VG (NG30) Climate Dry- Moderate Vet Zero Haulage DCP-DN 0 0 Cost of layer/s import DCP-DN 0 0 0 NG15 Low DCP-DN 0 0 0 NG15 Low DCP-DN 0 0 0 NG15 Inport DCP-DN 0 0 0 NG15 DCP-SCBR 0 -13,034 -14,833 0 0 0 NG15 DCP-CBR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14,833 0	Subgrade VG (NG30) VG (NG30) Good Climate Dry- Moderate Dry- Moderate Wet Dry- Moderate Zero Haulage DCP-DN DCP-CBR 0 0 0 Cost of layer/s import DCP-DN 0 0 0 DCP-CBR 0 -13,034 11,088 ORN31 1,478 -12,397 1,478 Low DCP-CBR 0 -14,833 13,246 ORN31 1,328 -14,645 1,928 Medium DCP-CBR 0 -18,790 17,995 ORN31 2,917 -19,592 2,917 Medium DCP-CBR 0 -18,790 17,995 ORN31 2,917 -19,592 2,917 Medium DCP-CBR 0 -0 0 ORN31 2,917 -19,592 2,917 Medium DCP-CBR 0 -23,402 30,730	Subgrade VG (NG30) VG (NG30) Good (NG15) Ury - Moderate Dry - Moderate Dry - Moderate Dry - Moderate Wet Wet	Subgrade VG (NG30) VG (NG30) Good (NG15) Fair (Climate Dry- Moderate Dry-	Subgrade VG (NG30) VG (NG30) Good (NG15) Fair (NG7) Climate Dry- Moderate Wet Dry- Moderate Wet Dry- Moderate Wet Dry- Moderate Wet Dry- Moderate Wet Wet Dry- Moderate Wet Wet Dry- Moderate Dry- Moderate Dry- Moderate Dry- H4,833 H,833 H,845 H,233 H,245 H,242 H,833 H,845 H,934 H,2651 H,	Subgrade VG (NG30) VG (NG30) Good (NG15) Fair (NG7) Poor Climate Dry - Moderate Ver Dry - Moderate Dry - Moderate Dry - Moderate Dry - Moderate Dry - Higgra Dry - Higgra Higgra Higgra Higgra Higgra <td< td=""></td<>																	

Table 17: Project cost savings/km (0.3 – 1.0 MESA)

From Table 16 and Table 17, general, tentative findings for low and high traffic loading scenarios can be drawn, as follows:

- (1) In low design traffic situations, the project costs/km of the DCP-DN method are, in general, almost always lower, to varying extents, than the other design methods except in a few cases in wet climates across all haulage situations.
- (2) In high design traffic situations, the project costs/km of the DCP-DN method are generally only lower than the other methods in dry-moderate climates across all haulage and subgrade situtions.

The above examples illustrate the procedure adopted to develop the hypothetical designs and, in so doing, they allow a few snap-shot conclusions to be drawn based on a very limited number of design scenarios. For illustration purposes, a full example is provided (**Annex G**) of the process followed to determine initially the project costs per km when designed using the different methods, and then the pavement cost ratios, total project cost ratios and total project cost difference per km.

3.3.11 General comparative cost trends

The full range of some 2304 design scenarios that could be encountered in practice is presented in the spreadsheets included in **Annex G** in terms of the following:

- 1. Pavement cost
- 2. Pavement cost ratios (DCP-DN versus other design methods)
- 3. Project costs
- 4. Project cost ratios (DCP-DN versus other design methods)
- 5. Project cost savings per km (DCP-DN versus other design methods)

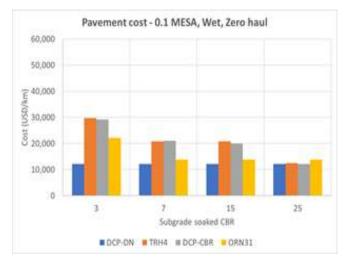
For these analyses a pavement width of 6.50 m has been used to establish trends in the data for different traffic load classes, moisture environments and subgrade classes.

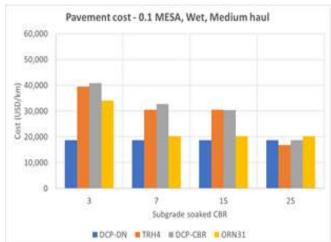
Hypothetical designs have been carried out, using four different design methods and costs calculated for three different design traffic scenarios (0.1, 0.3 and 1.0 MISA), in moderate to dry and wet environments, for four different subgrade conditions (In-situ subgrade CBRs of 3, 7, 15 and 25), for

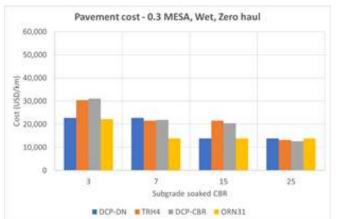
three different haul distances (low = 5km, medium = 20km and long = 65km) if only material of a specific quality is available i.e. CBR of 15, 30, 45, 55, 65 and 80. A zero haulage scenario was added for all combinations, assuming that all required materials are available within a free-haulage distance.

Graphical displays of the zero-haul distance costs (for all materials) and medium haul distance costs (assuming all materials better than CBR=15 must be imported) are provided adjacent to each other (see Figures 3 to 6) for the following situations namely:

- Pavement costs in the wet environment (Figure 3)
- Pavement costs in the moderate dry environment (Figure 4)
- Project costs in the wet environment (Figure 5)
- Project costs in the moderate dry environment (Figure 6)


Important notes on the zero-haulage scenario


As higher quality materials often have to be imported, provision was made to evaluate the cost of material haulage at three distances i.e. Low (5km), Medium (20km) and Long (65km).


The inclusion of the zero-haulage cost scenario effectively means that all materials required for any pavement structure are available within a free haulage distance (typically 1 km).

Cognizance should be taken that this scenario is considered unrealistic in most cases as suitable base quality materials e.g. CBR =80 for ORN31 and TRH4, even for very low volume roads, are normally not available close by. Moreover, for a LVR project of any significant length, say 10 km, it would be necessary to open 5 borrow pits immediately adjacent to the road at regular intervals, say at km 2, 4, 6, 8 and 10, in order not to exceed the free haul distance. This is practically unrealistic and would be environmentally unacceptable.

Furthermore, it should be noted that if provision is not made in a tender for haulage of different quality materials, the contractor will incorporate the haulage costs in the tendered unit cost. This means that the costs (Ex borrow pit or crusher) as obtained from contractors and incorporated in the hypothetical designs are actually not valid for the zero-haulage scenario.

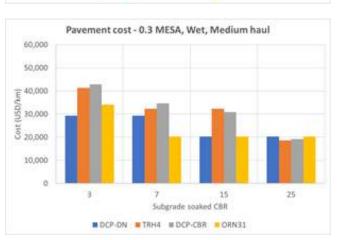
Pavement cost - 1.0 MESA, Wet, Zero haul

15

Subgrade soaked CBR

DCP-DN TRH4 DCP-CBR 08N31

60,000

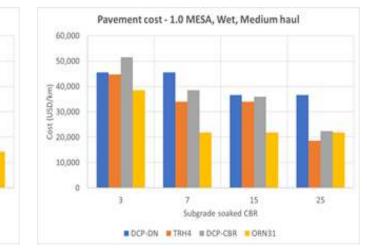

(wn/gsn)

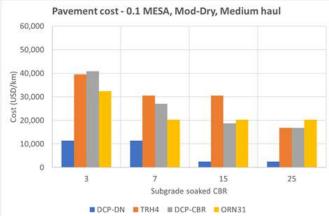
8 20,000

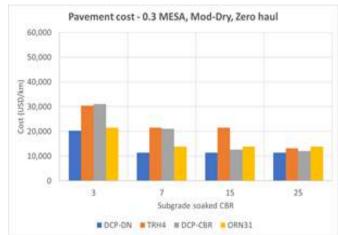
10,000

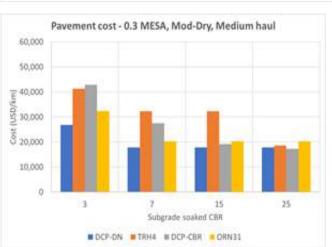
0

э

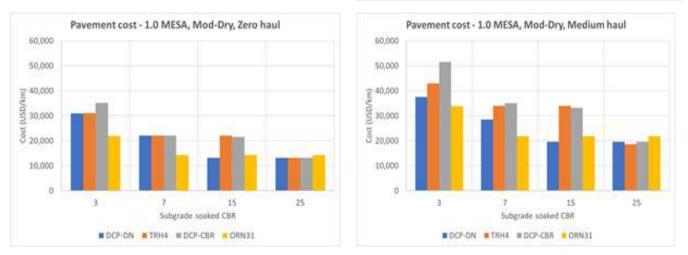
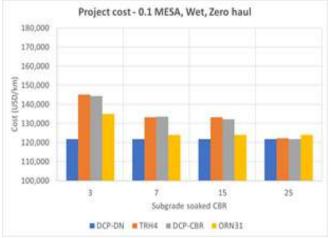
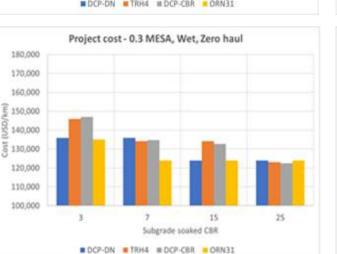
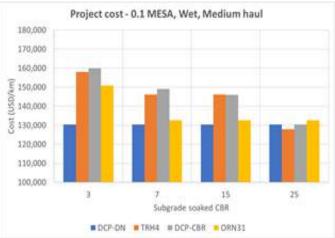


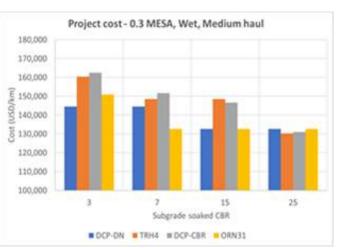



Figure 3: Pavement costs (Wet environment) – Zero versus Medium haul distance


25

In terms of pavement costs in the wet environment, DCP-DN is generally the most cost-effective for design traffic less than 1 MESA, on all but the strongest subgrades (CBR 25%), and regardless of the hauling distance. However, the relative difference in pavement costs between the DCP-DN and other design methods, is less with the zero-haulage scenario. For the 1 MESA scenario, ORN31 is generally the most cost-effective on all but the strongest (CBR 25%) subgrades for which TRH4 is the most cost-effective.


Figure 4: Pavement costs (Mod-Dry environment) – Zero versus Medium haul distance

In terms of pavement costs in the moderate to dry environment and medium haul distance, DCP-DN is generally the most cost-effective for all design traffic classes up to 1 MESA. For the zero-haul distance, DCP-DN is generally the most cost-effective for design traffic classes **less** than 1 MESA. However, the relative difference in pavement costs between the DCP-DN and other design methods, is less with the zero-haulage scenario. For the zero-haul distance and 1 MESA design traffic ORN31 is more cost-effective for fair to poor subgrades and DCP-DN more cost-effective for good quality subgrades.

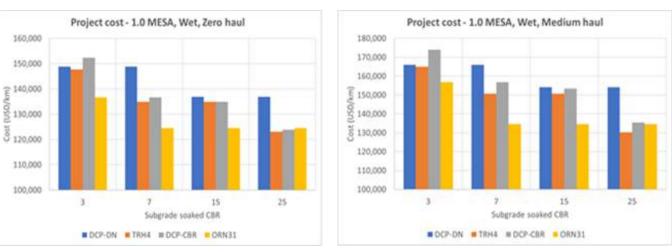
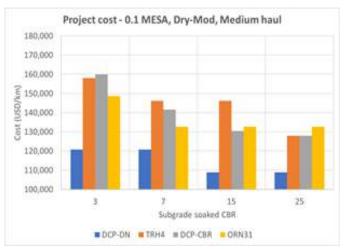


Figure 5: Project costs (Wet environment) – Zero versus Medium haul distance


In terms of project costs in the wet environment, DCP-DN is generally the most cost-effective for design traffic less than 1 MESA and on poor-fair subgrades, regardless of the hauling distance. However, the relative difference in project costs between the DCP-DN and other design methods, is less with the zero-haulage scenario. ORN31 is generally the most cost-effective for the 1 MESA scenario, except for the strong subgrades (CBR 25%).

110,000

100,000

3

15

Subgrade soaked CBR

DCP-DN STRH4 SDCP-CBR ORN31

25

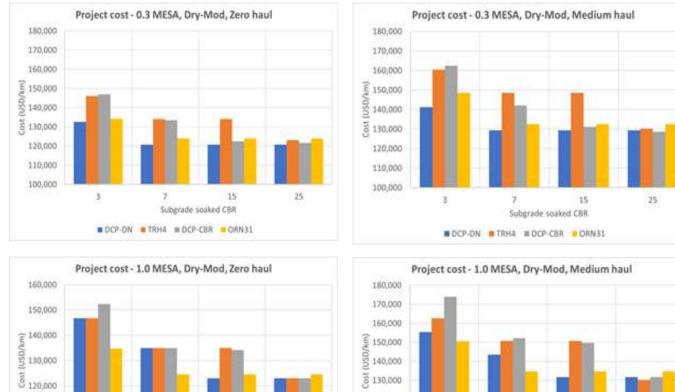


Figure 6: Project costs (Moderate-Dry environment) - Zero versus Medium haul distance

25

15

Subgrade soaked CBR

DCP-DN STRH4 BDCP-CBR CRN31

120,000

110,000

100,000

3

In terms of **project costs in the moderate to dry environment**, DCP-DN is generally the most costeffective for design traffic less than 1 MESA, regardless of the hauling distance. However, the relative difference in project costs between the DCP-DN and other design methods, is less with the zerohaulage scenario. ORN31 is generally the most cost-effective for the 1 MESA scenario.

3.4 In-Situ Designs

3.4.1 General

The approach to the design of the road sections in the various countries differs between the four methods being considered. Thus, a typical design example is presented below to illustrate how the same input design data has been applied to all four design methods.

3.4.2 Design inputs

The design details are for the Zambia Katonga-Waitwika Trial Section and are as follows:

- Traffic (MESA)
 - Low: < 0.1 (TLC0.1)
- In-situ subgrade
 - In-situ moisture at time of survey (wet season):
 - 0 150 mm = OMC
 - 150 300 mm = 1.2 OMC
 - 300 450 mm = 1.35 OMC
- Climatic zone
 - Wet (N < 2) (annual rainfall 1050 mm)

3.4.3 DCP-DN design method

Details of this design method are outlined in Section 2.3.4 above. As indicated therein, the strength of the pavement layers and subgrade are all assessed at the anticipated long-term equilibrium moisture content (EMC). The representative subgrade strength in a uniform section is based on the 80th, 50th or 20th percentile value of the range of DCP measurements along that section of the road being upgraded depending on whether the EMC is likely, respectively, to be wetter, about the same or drier than at the time of the DCP survey.

In the design example, it is assumed that after upgrading of the road, provision of adequate drainage and surfacing from shoulder breakpoint to shoulder breakpoint, the relative moisture content in the top three layers of the existing road will equilibrate at or below OMC (Ref. Section 2.4.5 based on Emery, 1985 – **Annex E**).

Design

On the basis of the above assumption, the DN values for design were adjusted as follows:

- 0-150 mm DN(50P) = 16 (moisture in layer remaining at OMC)
- 150-300 mm DN (20P) = 26 (moisture in layer decreasing)
- 300-450 mm DN (20P) = 37 (moisture in layer decreasing)

Material Quality

The material quality requirements are specified in the DCP structural design catalogue for TLC 0.1 as follows:

- Base: $DN \le 4$ at long-term EMC
- Subbase: DN ≤ 9 at long-term EMC
- Subgrade: $DN \le 19$ at long-term EMC

• Pavement structure

The pavement structure requirements for the upgraded road are presented in Figure 7.

3.4.4 TRH4 design method

Details of this design method are outlined in Section 2.3.6 above. As indicated therein, the strength of the pavement layers and subgrade materials are all assessed in their soaked condition, but the pavement structure requirements are less demanding in dry-moderate climates. The representative subgrade strength in a uniform section is based on the 90th percentile value of the range of CBR or, more likely, the 10th percentile DCP values obtained from a survey along the section of the road being upgraded.

- In-situ subgrade
 - 0-150 mm: Weighted Average DN = 16 at OMC. For input into the TRH4 design, this value must be converted to an equivalent <u>soaked</u> CBR value using the 10th percentile DN value.
- Design
 - Based on the Kleyn DCP-CBR correlation and the use of Table 2, DN = 16 at OMC converts to a soaked CBR value of < 3 (< NG3). This strength of subgrade requires the use of an overlying capping layer.

• Material Quality

The material quality requirements are specified in the TRH4 structural design catalogue for TLC 0.1 as follows:

- Base: soaked CBR \geq 80
- Subbase: soaked CBR \ge 25
- Capping layer: soaked CBR \geq 7

• Pavement structure

The pavement structure requirements for the upgraded road are presented in Figure 7

3.4.5 ORN31 design method

Details of this design method are outlined in Section 2.3.7 above. As indicated therein, the strength of the pavement layers and subgrade materials are all assessed in their soaked condition, and the pavement structure requirements are the same, regardless of climatic zone. However, the subgrade strength may be assessed in the soaked state (Category 1), at OMC (Category 2) or below OMC (Category 3), depending on the proximity of the water table to the subgrade and the annual rainfall (> 250 mm for Category 2 subgrades and < 250 mm for Category 3 subgrades). The representative subgrade strength in a uniform section is based on the 90th percentile value of the range of CBR or, more likely, DCP measurements along that section of the road being upgraded.

- In-situ subgrade
 - $\circ~$ Assumed to be Category 2, based on a low water table and annual rainfall of 1050 mm.
- Design
 - On the basis of the above assumption, the DN values for design are converted to CBR values based on the TRL correlation between DCP and CBR.
 - The DN(10P) = 20 at OMC corresponds to CBR_{OMC} = 14.
 - Subgrade Class: S4

• Material Quality

The material quality requirements are specified in the ORN31 structural design catalogue for TLC 0.1 as follows:

- Base: soaked CBR \geq 80
- Subbase: soaked CBR \ge 25

• Pavement structure

The pavement structure requirements for the upgraded road are presented in Figure 7DCP-CBR design method

Details of this design method are outlined in Section 2.3.5 above. As indicated therein, the strength of the pavement layers and subgrade materials are all assessed in their soaked condition. However, the pavement structure requirements are less demanding in dry-moderate climates. For TLC < 0.3 MESA, the representative subgrade strength in a uniform section is based on the <u>mean</u> value of the range of CBR or, more likely, DCP measurements obtained from a survey along the section of the road being upgraded.

- In-situ subgrade
 - 0-150 mm: DN = 16 at OMC. For input into the DCP-CBR design, this value must be converted to an equivalent <u>soaked</u> CBR value. Based on the TRL DCP-CBR correlation and the use of Table 2, DN = 16 at OMC converts to a soaked CBR value of < 3 (as per ORN31). This strength of subgrade requires the use of an overlying capping layer.
- Design
 - Based on the TRL DCP-CBR correlation and the use of Table 2, DN = 16 at OMC converts to a soaked CBR value of <3. This strength of subgrade requires the use of an overlying capping layer.

Material Quality

The material quality requirements are specified in the DCP-CBR structural design catalogue for TLC 0.3 MESA as follows:

- Base: soaked CBR \ge 55
- Subbase: soaked CBR ≥ 30
- Capping layer: soaked CBR \geq 15
- Pavement structure

The pavement structure requirements for the upgraded road are presented in Figure 7

3.4.6 Determination of pavement structure

The pavement structures derived from the same input data applied to the four design methods described above are presented in Figure 7. These structures are based on the use of the same design input information that, in part, has been adjusted for the subgrade strength requirements (soaked/unsoaked) and representative percentile-related strength values, as required by the various methods. Similar pavement structures and related pavement costs have been derived for all road sections and are presented in **Annex I**.

	Zambia: Kan	tongo - Waitw	vika TLC 0.1	
Site Avg. DN	DCP-DN	TRH4	ORN31	DCP-CBR
				New base
		New base		150 mm
		100 mm		
		CBR _{soaked} =80		
	New base	NG80		CBR _{soaked} =55
	150 mm	New subbase	New base	NG55
	DN≤4	125 mm	150 mm	New subbase
	CBR _{OMC} ≥70			120 mm
	CBR _{soaked} ≥45	CBR _{soaked} =25		
	NG45	NG25	CBR _{soaked} =80	CBR _{soaked} =30
	New subbase	Capping	NG80	NG30
	150 mm	150 mm	New subbase	Capping
	DN≤9		125 mm	120 mm
	CBR _{OMC} ≥25			
	CBR _{soaked} ≥3	CBR _{soaked} =7	CBR _{soaked} =30	CBR _{soaked} =15
	NG3	NG7	NG30	NG15
150 mm				
DN=16	DN<16	DN(90P)=20	DN(90P)=20	CBR _{OMC} =18
@RMC≈OMC	_	CBR _{OMC} =9	CBR _{OMC} =14	CBR _{soaked} <3
CBR _{OMC} =12		CBR _{soaked} <3		
$CBR_{soaked} < 3$				
		SG4	Subgrade S4	Subgrade S1

Figure 7: Comparison o	f pavement structures by design methods for TLC 0.1 & NG3
------------------------	---

3.4.7 Determination of pavement structure costs

For illustrative purposes, Zambian cost data was applied to the pavement structures presented in Figure 7 as shown in Table 18.

	Cost f	or 6.5 m wi	de paveme	nt incl. 100	ip, shape and recompa	ct of in situ w	earing course		
	US	D/km							
		Zero ha	aulage	32520			Zero ha	aulage	38796
DCP-DN		Base	150 mm N	G25	ORN	31	Bas	e 150 mm NO	i80
Avg. haul k	m	5	20	65	Avg. ha	ul km	5	20	65
Cubbaaa 150 mm	5	36 517	39 978	51 630	Subbase	5	42 793	46 254	57 906
Subbase 150 mm G10	20	39 978	43 440	55 091	150 mm NG30	20	46 254	49 716	61 367
610	65	51 630	55 091	66 742	150 1111 1050	65	57 906	61 367	73 018
		Zero ha	aulage	42305			Zero ha	aulage	47949
TRH4		Base	100 mm N	G80	DCP-C	BR	Base 150 mm NO		i55
Avg. haul k	m	5	20	65	Avg. ha	ul km	5	20	65
150 mm NG7 +	5	47 302	49 610	57 377	120 mm NG15 +	5	53 145	56 607	68 258
Subbase	20	53 648	55 955	63 723	Subbase	20	58 683	62 145	73 796
125 mm NG25	65	75 008	77 316	85 083	120 mm NG30	65	77 325	80 787	92 438

Table 18: Pavement structure costs based on Zambian cost data

3.4.8 Pavement cost ratios

Table 19 and Table 20 show the pavement cost ratios for the different design methods and TLCs. As mentioned above, Zambian cost data are used for the Zambia example. However, South African costs data were used for Ghana and Kenya due to the lack of disaggregated material costs for these countries.

Table 19 shows the pavement cost ratios for three actual projects designed for TLC 0.1. The large differences in the cost ratios are mainly due to the assessment of the subgrade strength as prescribed for the different design methods. Whereas TRH4 and ORN31 prescribe the use of the 90th percentile of the subgrade strength within the section, DCP-DN and DCP-CBR require the use of the mean value. ORN31 also allows the subgrade strength to be assessed at OMC which results in the ORN31 design being almost on par with the DCP-DN design.

		Cost ratios USD/km for 6.5 m wide pavement													
		TLC 0.1													
	Cli	mate	Subgrade	< N	G3	Cl	imate	Subgrade	N	G7	Cli	mate	Subgrade	NG	45
	۱ I	Vet		Zambia			Wet		Ghana		۱ ا	Net		Kenya	
Design	Av	erage	Base			A١	rerage		Base		Av	erage		Base	
method	hau	ıl (km)	5	20	65	hai	ul (km)	5	20	65	hau	ıl (km)	5	20	65
		5	1,00	1,00	1,00		5	1,00	1,00	1,00		5	1,00	1,00	1,00
DCP-DN		20	1,00	1,00	1,00		20					20			
	ayer	65	1,00	1,00	1,00	yer	65				layer	65			
	_	5	1,44	1,32	1,12	la	5	2,39	1,98	1,47	(la)	5	9,78	11,00	14,28
TRH4	ing	20	1,50	1,39	1,19	ing	20	2,97	2,42	1,73	ing	20	11,00	12,53	15,81
	Capping	65	1,60	1,51	1,33	Capping	65	4,51	3,59	2,45	Capping	65	15,40	16,63	19,90
	8 C	5	1,10	1,08	1,06	8	5	1,11	1,17	1,31	8	5	5,67	6,89	10,17
ORN31	e.	20	1,06	1,05	1,04		20				-	20			
	Subba	65	0,99	0,99	0,99	Subbase	65				Subbase	65			
	Su	5	1,47	1,39	1,28	Su	5	1,54	1,33	1,07	Su	5	1,00	1,00	1,00
DCP-CBR		20	1,49	1,42	1,31		20	1,80	1,53	1,19		20			
		65	1,52	1,47	1,37		65	2,50	2,06	1,52		65			
K	(ey:		Ratio < 1	R	atio = 1		1 < 1	Ratio ≤ 2	2 < Ra	atio≤5	5	< Rati	o ≤ 10	Ratio >	10

Table	19 :	In-situ	pavement	cost ratios
-------	-------------	---------	----------	-------------

Table 20 shows the pavement costs ratios for the Ghana project for the TLC classes in the range 0.3 to 1.0 MESA. The results corroborate the overall trends from the hypothetical analysis discussed above with the cost ratios generally decreasing for increasing TLCs.

		Cost ratios USD/km for 6.5 m wide pavement													
	TLC 0.3					TLC	0.7		TLC 1.0						
	Cli	mate	Subgrade	N	G7	Cl	imate	Subgrade	NC	37	Cli	mate	Subgrade	NG	57
	\	Vet		Ghana			Wet		Ghana		١	Net		Ghana	
Design	Av	erage		Base		A١	verage		Base		Av	erage		Base	
method	hau	ıl (km)	5	20	65	hai	ul (km)	5	20	65	hau	ıl (km)	5	20	65
		5	1,00	1,00	1,00		5	1,00	1,00	1,00		5	1,00	1,00	1,00
DCP-DN		20					20					20	1,00	1,00	1,00
	layer	65				layer	65				layer	65	1,00	1,00	1,00
	; la	5	2,46	1,91	1,26	la)	5	2,33	1,89	1,33	la)	5	1,38	1,32	1,23
TRH4	ping	20	3,04	2,31	1,47	bing	20	2,90	2,30	1,55	bing	20	1,47	1,41	1,31
	ap	65	4,58	3,39	2,04	apping	65	4,41	3,39	2,15	Capping	65	1,62	1,56	1,45
	& C	5	1,11	1,08	1,04	80	5	1,00	1,00	1,00	8	5	0,62	0,70	0,83
ORN31	e e	20				Se	20				se	20			
	Subbas	65				Subba	65				Subba	65			
	Su	5	1,82	1,53	1,17	Su	5	1,78	1,55	1,24	Su	5	1,05	1,09	1,16
DCP-CBR		20	2,07	1,71	1,26		20	2,06	1,76	1,36		20	1,04	1,08	1,14
		65	2,75	2,18	1,51		65	2,81	2,30	1,65		65	1,03	1,06	1,11
k	key:		Ratio < 1	R	atio = 1		1 < F	Ratio ≤ 2	2 < Ra	tio≤5	5	< Rati	o≤10	Ratio >	10

Table 20: In-situ pavement cost ratios for different TLCs

As shown in Figure 8: Pavement cost ratios 'R'/km per TLC and Figure 9, the pavement cost ratios vs. the DCP-DN method are highest for the lower (TLCs 0.1 - 0 0.3 MESA) and begin to gradually decrease up to about 0.7 MESA, after which other design methods, particularly ORN31, become more cost-effective.

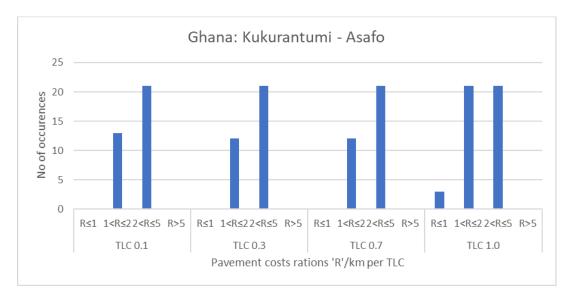


Figure 8: Pavement cost ratios 'R'/km per TLC

Gha	Ghana: Kukurantumi - Asafo TLC 0.1											
DCP-DN	TRH4	ORN31	DCP-CBR									
	New base											
	100 mm											
	CBR _{soaked} =80											
	NG80											
	New subbase											
	125 mm		New base									
			120 mm									
	CBR _{soaked} =25											
	NG25		CBR _{soaked} =55									
New base	Capping	New base	NG55									
150 mm	150 mm	150 mm	New subbase									
DN _{omc} ≤4			120 mm									
CBR _{OMC} =70												
CBR _{soaked} =45	CBR _{soaked} =7	CBR _{soaked} =80	CBR _{soaked} =30									
NG45	NG7	NG80	NG30									

Ghana: Kukurantumi - Asafo TLC 0.7

ORN31

New base

150 mm

CBR_{soaked}=80

NG80

DCP

Nev

200

CBR.

New s

CBR

150

TRH4

New base 150 mm

CBR_{soaked}=80

NG80

New subbase 150 mm

CBR_{soaked}=25

NG25

Capping

150 mm

CBR_{soaked}=7

NG7

DCP-DN

New base

150 mm

DN_{OMC}≤2.6 CBR_{OMC}=120 CBR_{soaked}=80 NG80

Gha	na: Kukurantu	mi - Asafo TL	C 0.3
DCP-DN	TRH4	ORN31	DCP-CBR
	New base		
	125 mm		
	CBR _{soaked} =80		
	NG80		New base
	New subbase		175 mm
	125 mm		
	CBR _{soaked} =25		
	NG25		CBR _{soaked} =65
New base	Capping	New base	NG65
150 mm	150 mm	150 mm	New subbase
DN _{OMC} ≤3.2			120 mm
CBR _{OMC} =70			
CBR _{soaked} =45	CBR _{soaked} =7	CBR _{soaked} =80	CBR _{soaked} =30
NG45	NG7	NG80	NG30

.7	Ghai	na: Kukurantu	mi - Asafo TL	C 1.0
DCP-CBR	DCP-DN	TRH4	ORN31	DCP-CBR
		New base		
		150 mm		
		CDD -90		Newsbase
New base		CBR _{soaked} =80		New base
200 mm		NG80		200 mm
	New base	New subbase		
	150 mm	150 mm		
	DN _{0MC} ≤2.6			
	CBR _{OMC} =120			
3R _{soaked} =80	CBR _{soaked} =80	CBR _{soaked} =25		CBR _{soaked} =80
NG80	NG80	NG25	New base	NG80
w subbase	New subbase	Capping	175 mm	New subbase
150 mm	150 mm	150 mm		150 mm
	DN _{oMC} ≤4			
3R _{soaked} =30	CBR _{soaked} =25	CBR _{soaked} =7	CBR _{soaked} =80	CBR _{soaked} =30
NG30	NG25	NG7	NG80	NG30

3.4.9 Project costs

The project costs were derived from the Zambian project by using the most likely haulage scenarios as per Table 18 (yellow cells) and as explained in Table 21, while keeping all other cost factors constant.

Haulage scenario	Explanation
Short/short	Both Capping/Subbase and Base within average haul of 5 km
Short/medium	Capping/subbase at average haul of 5 km, base at average haul of 20 km
Short/Long	Capping/subbase at average haul of 5 km, base at average haul of 65 km
Medium/medium	Both Capping/subbase and base at average haul of 20 km
Medium/long	Capping/subbase at average haul of 20 km, base at average haul of 65 km
Long/long	Both Capping/subbase and base at average haul of 65 km

Table 21: Material haulage scenarios

The resulting project costs for the various haulage scenarios are shown in Table 22.

In practice, for the long/long haul scenarios, some form of material improvement (chemical stabilisations, blending etc.), for the base only or for all pavement layers may provide more cost-effective solutions. However, this option is beyond the scope of these analyses.

Table 22: Project costs/km (USD) for various haulage scenarios

Project costs (USD) Kantogo - Waitwika, Zambia										
Haul scenarios	DCP-DN	TRH4	ORN31	DCP-CBR						
Short/short	281 087	294 296	281 087	294 296						
Short/medium	277 495	289 784	285 503	298 713						
Short/long	292 362	299 696	300 370	313 580						
Medium/medium	289 920	305 779	289 920	305 779						
Medium/long	296 778	307 793	304 787	320 646						
Long/long	319 654	344 433	319 654	344 433						

3.4.10 Project cost ratios

The resulting project cost ratios in Table 23 show that for all haulage scenarios, the DCP-DN design method comes out cheaper than TRH4 and DCP-CBR with a margin of 2-12%. The ORN31 design is just marginally more expensive for all scenarios except for the medium/medium where it is on par with DCP-DN and the long/long combination in which it is marginally cheaper (see red cell).

Project cos	st ratios Kar	ntogo – Wai	– Waitwika, Zambia				
Haul scenarios	DCP-DN	TRH4	ORN31	DCP-CBR			
Short/short	1.00	1.05	1.00	1.05			
Short/medium	1.00	1.04	1.03	1.08			
Short/long	1.00	1.03	1.03	1.07			
Medium/medium	1.00	1.05	1.00	1.05			
Medium/long	1.00	1.04	1.03	1.08			
Long/long	1.00	1.08	1.00	1.08			

Table 23: Project costs ratios for various haulage scenarios

3.4.11 Project cost differences

Table 24 shows that, based on the Zambia pavement and project costs, the DCP-DN design method offers considerable project cost savings/km in all haulage scenarios compared to TRH4 and DCP-CBR. ORN 31 is marginally more expensive in five of the haulage scenarios but offers slight project costs/km savings in the long/long haulage scenario.

Project costs dif	ferences (%) Kantogo -	Waitwika,	Zambia
Haul scenarios	DCP-DN	TRH4	ORN31	DCP-CBR
Short/short	-	13 209	-	13 209
Short/medium	-	12 290	8 008	21 218
Short/long	-	7 334	8 008	21 218
Medium/medium	-	15 859	-	15 859
Medium/long	-	11 014	8 008	23 868
Long/long	-	24 780	-	24 780

Table 24: Project costs differences/km (USD) for various haulage scenarios

3.5 Hypothetical versus In-Situ Designs

3.5.1 Hypothetical designs

The hypothetical approach offers the possibility of determining the likely pavement and project cost ratios as well as the total project cost difference/km arising from the use of the various design methods when applied in a variety of situations pertaining to a range of design traffic loadings, subgrade strengths, climatic zones material haulage distances etc. Thus, it covers virtually all possible scenarios that could be met in practice. The materials costs and materials haulage rates have been obtained from contractors operating in a competitive environment in South Africa and provide a realistic basis for determining both the pavement layer costs and the related pavement structure costs from which the total project cost per design scenario and project cost difference/km have been derived.

The pavement and project cost ratio trends, as well as the total project cost difference/km for the various design methods provide valuable information in terms of which design method is best suited for application in particular road environment situation.

3.5.2 In-situ designs

The in-situ designs are based on actual design information pertaining to the 10 road sections located in six countries in west, east and southern Africa. For cost comparison with the hypothetical designs, the same cost information has been used, i.e. as obtained from South African contractors. However, where the information was available in the required format (Zambia, Tanzania and South Africa), cost ratios using the country-specific information were also calculated. Not surprisingly, since the same costs have been applied to the different design methods, this did not change the cost-ratio trends determined from the South African costs data.

3.5.3 Comparison of hypothetical and in-situ situ designs

Comparison of the pavement structure costs and related cost ratios for the 36 in-situ designs with those derived for the same road environmental conditions in the hypothetical cost matrix are generally similar, and a perfect match in cases where the in-situ conditions of projects are exactly the same as evaluated in the hypothetical designs. Table 25 provides evidence of such a case, with cost ratios similar for different traffic design loading and haul distances.

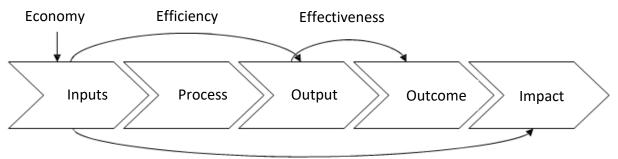
Danger Point													
TLC		0.1 M	ESA				0.3 ME	SA			1.0 N	iesa	
Climate		Modera	te/Dry				Moderate	/Dry			Modera	ate/Dry	
Subgrade	CBR _{0.750MC=110}	CBR _{soaked=40}	SG class _{S6}	SG class _{S6}	CBR _{0.750MC=}	110	CBR _{soaked=40}	SG class _{S6}	SG class _{S6}	CBR _{0.750MC=1}	CBR _{soaked=40}	SG class _{S6}	SG class _{S6}
		Short	haul				Short ha	aul			Short	haul	
	DCP-DN	TRH4	ORN31	DCP-CBR	DCP-DN		TRH4	ORN31	DCP-CBR	DCP-DN	TRH4	ORN31	DCP-CBR
Pavement cost ratio	1.00	5.67	6.50	5.43	1	.00	6.08	6.50	5.62	1.00	0.98	1.10	1.05
Synthetic ratio	1.00	5.67	6.50	5.43	1	.00	6.08	6.50	5.62	1.00	0.98	1.10	1.05
		Mediun	n haul				Medium	haul			Mediu	m haul	
	DCP-DN	TRH4	ORN31	DCP-CBR	DCP-DN		TRH4	ORN31	DCP-CBR	DCP-DN	TRH4	ORN31	DCP-CBR
Pavement cost ratio	1.00	6.89	8.33	6.90	1	.00	7.61	8.33	7.09	1.00	0.95	1.11	1.08
Synthetic ratio	1.00	6.89	8.33	6.90	1	.00	7.61	8.33	7.09	1.00	0.95	1.11	1.08
		Long	haul				Long ha	ul			Long	haul	
	DCP-DN	TRH4	ORN31	DCP-CBR	DCP-DN		TRH4	ORN31	DCP-CBR	DCP-DN	TRH4	ORN31	DCP-CBR
Pavement cost ratio	1.00	10.17	13.25	10.83	1	.00	11.71	13.25	11.02	1.00	0.90	1.13	1.11
Synthetic ratio	1.00	10.17	13.25	10.83	1	.00	11.71	13.25	11.02	1.00	0.90	1.13	1.11

Table 25: Comparison of pavement cost ratios (Project versus Hypothetical)

As discussed in Section 3.5.2 above, the cost ratio trends derived from the in-situ designs have also been corroborated by the trends derived from the hypothetical design evaluations.

3.5.4 Implications of EMC selection

The type of pavement structure resulting from the application of the DCP-DN method is highly dependent on the designer's assumptions regarding the expected equilibrium moisture content of the pavement layers and the subgrade. As indicated in the penultimate paragraph of Section 2.4.1, it has been assumed conservatively that, even though the EMC in the pavement layers and subgrade could be expected to equilibrate below OMC (Emery, 1985), for design purposes the OMC has been adopted. The implication of this assumption is that there would be a built-in factor of safety in the design to cater for less than adequate maintenance of side drains that might result in slightly increased moisture contents in the subgrade and pavement layers. Should this not be a concern, then EMC design could be adopted that would result in thinner/less costly pavements, albeit with some degree of additional risk.


4 Evaluation of Value for Money

4.1 General

The UK Department for International Development (DFID) defines Value for Money (VFM) as "maximising the impact of each pound spent to improve poor people's lives" (DFID, 2011). This echoes the UK National Audit Office's definition which defines VFM as being "the optimal use of resources to achieve intended outcomes". A key element in both definitions is to make the best use of available resources to achieve sustainable outputs and outcomes.

4.2 Framework for VFM analysis

The VFM conceptual framework is based on a logical "results chain" which explicitly sets out the results to be achieved by a given programme or project. **Error! Reference source not found.** presents the five m ain elements of this results chain and shows where the four main dimensions of VFM can be measured.

The five main elements of the VFM framework are as follows (DFID, 2011):

- 1) Inputs the resources used, in terms of finance and staff time (capital and labour).
- 2) **Process** the process by which inputs are transformed into results.
- 3) **Outputs** the direct deliverables of the project.
- 4) **Outcomes** resulting from the outputs
- 5) **Impacts** the longer-term impact of the project.

In essence, the elements represent a chain of events through time, given that these different types of results would usually, but not always, take place sequentially. The causal links between these different types of results need to be informed by evidence, however, as a sustained actual outcome or an impact in the programme area may be influenced by factors outside the programme.

The main dimensions of the VFM framework are as follows (DFID, 2011):

- (a) **Economy:** Relates to the price at which inputs are purchased. For example, are DFID's agents buying inputs (e.g. consultancy services) at the appropriate quality and the right price?
- (b) **Efficiency:** Relates to how well inputs are converted into a specific output, i.e. the results delivered by DFID's agents to an external party such as a partner country.
- (c) **Effectiveness**: Relates to how well outputs from an intervention are converted into sustained outcomes and achievement of the ultimate desired outcome on poverty reduction. Note: In contrast to outputs, the implementer does not exercise direct control over whether actual outcomes materialise and whether they can be sustained.

(d) Cost-effectiveness: Relates to the cost of achieving intended project actual outcomes. This can be used to compare the cost of alternative ways of producing the same or similar outcomes.

In practice, in order to obtain value-for-money on any project it would be necessary to maximise its effectiveness, efficiency and economy (the 3 Es) as well as the strength of the links in the results chain. The issue of equity also needs to be considered to make sure that the outcomes of the project are not only sustainable but, importantly, they are targeted at the poorest and include sufficient gender targets.

4.3 Evaluation of VFM

In accordance with the ToR, a key requirement of the project is to evaluate road sections designed using the DCP-DN method in terms of the following aspects:

- cost-effectiveness
- outcome (uptake) and knowledge
- potential impact.

The outcome of this evaluation is presented below.

4.3.1 Cost-effectiveness

The cost-effectiveness of the DCP-DN method of design, as against other typical methods of design (TRH4, DCP-CBR and ORN31) may be evaluated on the basis of the following:

- Pavement cost ratios
- Total project cost ratios
- Total project cost difference/km

The outcome of the above measures of cost-effectiveness has been presented in Section 3 for both the hypothetical and in-situ designs. In terms of project cost differences/km, which are of most interest to road agencies, and based on the wide range of design scenarios (1728) considered in the hypothetical approach, the DCP-DN design method will, in the majority of the cases, provide savings in the range of USD 10,000 -20,000 per km, and in many cases more than USD20,000/km. These savings occur to a lesser extent in the higher TLCs (0.7 - 1.0 MESA) and, in some cases of this traffic range close to 1.0 MESA, other design methods, particularly ORN31, are more cost-effective than the DCP-DN design methods.

In light of the above findings, it is noteworthy that in many African countries the continued use of gravel as a road surfacing material is unsustainable. This fact, coupled with the relatively low traffic thresholds for justifying economically the upgrading of gravel roads to a paved standard (often < 100 vpd, depending on road environment conditions (Morusuik et al, 2000)), makes such upgrading a very attractive option. Given that many countries in Africa have embarked on programmes for improving basic access in rural areas by providing paved roads, typically of the order of 100 – 150 km/annum, the benefits of adopting an appropriate pavement design method, such as the DCP-DN method, at traffic levels up to about 0.7 MESA over a 10 – 15 year design life, are substantial. For example, for the twelve African countries participating in ReCAP, over a 5-year planning horizon, and based on the extreme scenarios indicated above, the savings would be of the order of USD 60 – 180 million. When extrapolated to all 46 countries in Sub-Saharan Africa, this figure would be of the order of USD 2.7 – 18 billion depending on the extent of the upgrading programmes in these countries.

4.3.2 Outcome (uptake)

In line with one of the key aims of ReCAP, the project outcome is expected to *promote sustained increase in the evidence base for more cost effective and reliable provision of LVRs as well as to influence policy and practice in Africa and Asia.* Thus, the outcome of the project can be assessed in relation to such factors as:

(1) Sustainability

- a. There has been active and sustained engagement of ReCAP consultants with practitioners in all the AfCAP countries and some AsCAP countries with the aim of fostering a deeper understanding of what can be done to provide more cost-effective and sustainable LVRs. This has been achieved through a variety of measures including the following:
 - i. Seminars, workshops and meetings aimed at promoting safe and sustainable rural access in Africa and Asia through research and knowledge sharing between participating countries and the wider community.
 - ii. Establishment of project Working Groups or Steering Committees comprised of key practitioners involved in the design of LVRs. This has provided fora for discussing a wide range of issues associated with the environmentally optimised design of LVRs, including the use of appropriate, cost-effective design methods.
 - iii. Construction and long-term monitoring of a number of demonstration or trial sections to verify the soundness of the DCP-DN design method.
- b. There has been a strong contribution in kind from partner Governments in a number of countries (e.g. Ghana, Zambia) in terms of staff time and funding/co-funding of construction of trial sections, sometimes with other bi-lateral donors.
- c. A number of basic and advanced training courses in the DCP-DN method of design have been held for engineers and technicians in a number of both AfCAP (Kenya, Tanzania, Malawi, Ghana), and AsCAP countries (Nepal) where trainees from other countries were hosted. As a result of such training, there is now a cadre of trained and motivated practitioners, some 146 engineers and 64 technicians, many of whom will be in a position to mainstream the DCP-DN method of design in their organisations. Four such trained practitioners have been certified as AfCAP Level 1: Lead Trainers which qualifies them to undertake such training in their countries or abroad.

(2) Uptake

- a. The uptake of the DCP-DN method of design has been manifested as follows:
 - I. Partner country financing of LVRs based on the DCP-DN method in some countries including, so far, Malawi, Ghana and Zambia.
 - II. Local standards and specifications have been revised to allow the option of using the DCP-DN method in a number of countries, including Ethiopia, South Sudan, Tanzania, and Mozambique. Such revision is also on-going in a number of other countries including Malawi, Zambia, Ghana, Sierra Leone and Liberia

(3) Quality of DCP-DN research

- a. The quality of DCP-DN research has manifested itself as follows:
 - I. An internationally peer reviewed paper on the DCP-DN pavement design method has been published in the UK ICE Proceedings (Rolt and Pinard, 2016).
 - II. Numerous papers on the DCP-DN design method have been presented at a number of international and regional conferences (e.g. Klein and Savage, 1982; Kleyn and Van Heerden, 1987; Kleyn and Van Zyl, 1987; De Beer, 1991; Paige-Green, 2011; Paige-Green and Pinard, 2012; Pinard and Paige-Green, 2013; Pinard et al, 2015).

(4) Knowledge of the DCP-DN method

- a. The knowledge base for the DCP-DN method of pavement design is gradually increasing in terms of the following:
 - i. The number of certified trainers who have themselves applied the method in practice in their countries. This includes, so far, countries such as Ghana, Zambia and Malawi.
 - ii. Incorporation in curriculum of tertiary institutions including universities and technical colleges is currently under consideration by ReCAP.

4.3.3 Potential impact:

The longer-term potential impact of the sustained use of the DCP-DN method of pavement design or, indeed, any DCP-related method of design, for upgrading unpaved roads to a paved standard, would be a contributory factor in:

(1) Reduced costs/increased cost-effectiveness of LVR provision

With the increasing uptake and mainstreaming of the DCP-DN method and other DCP-related methods of pavement design, there is now significant scope for reducing costs/increasing the cost-effectiveness of LVR provision.

(2) **Optimum use of non-renewable resources**

The provision of a LVSR compared to a gravel road, will obviate the need for continual regravelling of LVRs and, in so doing, lead to optimum use non-renewable gravel resources.

(3) Improved transport services at cheaper costs

The reduction in vehicle operating costs experienced on a sealed, compared to a gravel, road, largely through the difference of roughness/riding quality of their surfaces, can be significant. For example, the roughness, in IRI terms, of a gravel road can range between 5 - 15 m/km compared to an old paved road (3 - 7 m/km) and a new paved road (2 - 3.5 m/km). Thus, as vehicle operating costs reduce, there is likely to be improved transport services at cheaper costs.

- (4) **Increase in agricultural production and productivity** due to more reliable, all-season access to market places.
- (5) **Improvements in education and health** due to communities being able to access such facilities in all seasons.
- (6) Increased resilience to climate impacts due to the provision of more durable road surfaces.
- (7) **Ultimately, poverty reduction** in the vicinity of the project area due to improvements in community livelihoods.

It must be stressed, however, that since most of the oldest DCP-DN designed sections have been in service for only about 6 years, and some of the others not even constructed, it is most unlikely that in such a relatively short time there would be any discernible, quantifiable impacts of any kind. Nonetheless, it may be possible to provide a qualitative indication of some of the potential impacts listed above from interviews with local communities.

Notwithstanding the above, the project could be the foundation upon which Regional Research Centres (RRCs) become involved in the VFM process throughout the design life (10 - 15 years) of the road sections. Thus, a similar data collection exercise, including maintenance costs, could be undertaken say after 5 years which would provide valuable information on the extent to which they provide VFM as discussed above.

5 Summary of Key Findings and Conclusions

5.1 Key Findings

5.1.1 Cost Evaluation

The key findings of the analyses emanating from the hypothetical designs, which have been found to be reflective of the outcome of the in-situ designs, are shown in Figures 3 to 6 In Section 3.3.11 from which general conclusions may be drawn:

- (1) At design traffic loading up to about 0.7 MESA, and for a wide range of subgrade strengths and climatic zones, the DCP-DN design method will, in the majority of cases, provide pavement construction cost savings in the range of USD 10,000 -20,000 per km, and in many cases in excess of USD20,000/km when compared against the selected methods. These costs savings are reduced by about 30 to 60% for the zero-haulage scenario.
- (2) The pavement construction cost savings offered by the DCP-DN method occur to a lesser extent in the higher Traffic Loading Classes (TLCs) (0.7 MESA and above) when, in some cases, other design methods, particularly ORN31, are more cost-effective in this higher traffic range.

In general terms, the difference in pavement construction costs per km for the various design methods, and the pavement construction cost efficiency of the DCP-DN design method, relative to the other design methods, decreases with higher quality subgrades and higher TLCs. Also, for the specific set of environmental conditions considered, there is no major difference in the trends between Wet and Dry-Moderate environments.

5.1.2 Value for Money

In terms of Value for Money (VFM), the DCP-DN method has been evaluated in terms of the following:

 Cost-effectiveness: The outcome of the various cost evaluations undertaken and summarised above illustrate the general cost-effectiveness of the DCP-DN method against the other design methods.

Given that many countries in Africa have embarked on programmes for improving basic access in rural areas by upgrading gravel roads to a paved standard, typically of the order of 100 - 150 km/annum, the potential benefits of adopting the DCP-DN method over a 5-year planning horizon, could result in cost savings of the order of USD60 - 180 million, depending on the extent of the upgrading programme and the road environment conditions. When extrapolated to all 46 Sub-Saharan countries, this figure is estimated at USD 2.7 - 18 billion.

- (2) *Outcome (uptake) and knowledge*: This has been assessed in terms of the following:
 - a. *Sustainability*: This has been demonstrated in terms of the following typical examples:
 - i. Seminars, workshops and meetings aimed at knowledge sharing between participating ReCAP countries and their wider community of practitioners.
 - ii. Establishment of Working Groups or Steering Committees with the objective of discussing intensively issues associated with the environmentally optimised design of LVRs.
 - iii. Construction and long-term monitoring of demonstrating or trial sections designed on the basis of the DCP-DN method.
 - iv. Contributions in kind from partner Governments in terms of staff time and funding/cofunding with bi-lateral partners
 - v. The holding of basic and advanced training courses in the DCP-DN method of design for engineers and technicians that have led to the certification of four AfCAP Level 1

Trainers which qualifies them to undertake such training nationally or internationally. Once such trainer has already been involved in an international DCP training programme.

- (b) Uptake: This has been manifested as follows:
 - i. ReCAP country partner financing of the DCP-DN design method in three countries so far.
 - ii. Inclusion of DCP-DN requirements in local standards and specifications of at least four countries so far, and on-going revisions in at least another five countries.
- (c) Quality of DCP-DN research: This has been manifested as follows:
 - I. Production of at least one internationally peer-reviewed paper on the DCP-DN method of design in the research proceedings of a major civil engineering institution I the UK
 - Production and presentation of at least 7 peer reviewed papers on the DCP-DN method of design in a number of regional and international conferences (Kleyn and Savage, 1982; Kleyn and Van Heerden, 1983; Kleyn and Van Zyl, 1987; Paige-Green, 2011; Paige-Green and Pinard, 2012; Pinard and Paige-Green, 2013; Pinard et al, 2015).
- (d) Knowledge of the DCP-DN method. This has been manifested as follows:
 - *i.* An increase in the knowledge base for the DCP-DN method of pavement design which is gradually increasing in terms of the following:
 - *a.* The number of certified trainers who have themselves applied the method in practice in at least three countries.
 - *b.* Incorporation in at least one international course in Rural Roads for Development held at the University of Birmingham, UK.
 - *c.* Involvement of university lecturers as trainee trainers in the use of the DCP-DN method for LVR pavement design.
- (3) **Potential impact:** Although it may be too soon to start quantifying the impact of introducing the DCP-DN method of design for the more recently constructed trial sections, or of adopting any DCP-related method of design for future LVRs, such impacts are likely to be a factor within the causal package leading to:
 - a. Reduced cost/increased cost-effectiveness of LVR provision.
 - b. Optimum use of non-renewable gravel resources.
 - c. Improved transport services at cheaper costs.
 - d. Increase in agricultural production and productivity due to more reliable, all-season access to market places.
 - e. Improvements in education and health due to communities being able to access such facilities in all seasons.
 - f. Increased resilience to climate impacts due to more durable paved road surfaces.
 - g. Ultimately, poverty reduction in the vicinity of the project due to improvements in community livelihoods.

In summary, the use of the DCP-DN method and, indeed other methods such as ORN31 in some road environment situations, is expected to provide Value for Money in terms of the following:

- a. Cost-effectiveness.
- b. Outcome (uptake) and knowledge.
- c. Potential impact.

5.2 Main Conclusions

The main conclusion to be drawn from the very wide range of design evaluations is that, in general, the DCP-DN method is the most cost-effective design option at relatively low TLCs, up to about 0.7 MESA and across all subgrade strengths. However, at TLCs above 0.7 MESA the method gradually becomes less cost effective than the other methods, particularly ORN31, which become more cost-effective in many situations.

It is also interesting to note that ORN31 has been shown to be generally more cost-effective than its successor for LVR design, the DCP-CBR method, in all design environments. This may be partly explained by two reasons:

- (1) ORN31, together with the DCP-DN method, and in contrast to the DCP-CBR and TRH4 design methods, allows for the use of unsoaked subgrades which offer scope for using relatively thinner/less costly pavement structures.
- (2) The adopted soaked/unsoaked subgrade CBR ratio for the DCP-CBR method appears to be very conservative compared to that adopted in the DCP-DN and ORN31 methods.

One of the major benefits of the hypothetical evaluation spreadsheets is that they can be used by practitioners to determine what are the likely costs of their designs in a particular set of road environment conditions, and which is the most appropriate design method to use. The spreadsheets also offer the potential for being developed as an application tool for undertaking LVR design based on a set of input parameters.

5.3 Way Forward

In terms of the way forward, and based on the many lessons learnt during the course of undertaking this project, the following recommendations are made:

- (1) A practitioner's workshop should be held to discuss and disseminate the findings of this report.
- (2) As part of the on-going ReCAP project on Long Term Pavement Performance (LTPP) monitoring of trial sections in a number of partner countries, measurement of in-situ moisture in the pavement layers and subgrade, and across the horizontal profile of the sections, should be given high priority in order to validate the assumptions made on this parameter in all the design methods.
- (3) In order to embed in practice the potential benefits to be derived from the use of the DCP-DN method, a generic guideline on the Design of Low Volume Roads should be produced so as to provide practitioners with another choice of design method for their consideration.
- (4) The Regional Research Centres should undertake a similar data collection exercise to the one initiated under this project, in say 5 years' time, so as to consolidate on the preliminary results of the VFM exercise initiated under this project. This should also include performance data e.g. road roughness measurements to incorporate vehicle operating costs/benefits in the LCC analysis for comparison of design method cost-effectiveness.
- (5) Consideration should be given to improving, and possible extending the spreadsheets developed under this project as an application tool for undertaking LVR design based on any set of input parameters to determine what are the likely costs of their designs in a particular set of road environment conditions, and which is the most appropriate design method to use.
- (6) Consider the following topics for further research to enhance the efficacy and applicability of the DCP-DN design method
 - a. Determine the precision limits of the DCP-DN measurement as against the CBR measurement as adopted by other LVR design methods.

- b. Compare the designs produced by the DCP-DN and other design approaches (DCP-CBR, TRH4 and ORN31) with an analytical approach.
- c. Use suitably calibrated road investment appraisal models such as HDM-4 or the World Bank's Roads Economic Development Model (RED) to appraise robustly the LCCs of the DCP-DN and other design approaches.

6 References

AfCAP (2016). Design Manual for Low Volume Sealed Roads Using the DCP Design Method. Ministry of Transport and Public Works, Malawi, Sept. 2013.

Committee of Land Transport Officials (COLTO) (1996). *Structural Design of flexible pavements for interurban and rural roads.* TRH 4, COLTO, Pretoria, South Africa.

De Beer M (1991). Use of the Dynamic Cone Penetrometer (DCP) in the design of road structures. Proc 10th Reg Conf Africa on Soil Mechanics and Foundation Engineering, Maseru, Lesotho.

Department for International Development (2011). DFID's Approach to Value-for-Money (VFM). DFID, July 2011. (*https://www.gov.uk/government/publications/dfids-approach-to-value-for-money-vfm*)

Emery S J (1985). Prediction of Moisture Content for Use in Pavement Design. PhD Thesis, University of Witwatersrand, Johannesburg, South Africa.

Gourley C S (2002). Background to the development of structural design charts for low volume sealed roads in the SADC region. TRL, Crowthorne RG45 6AU, UK.

Gourley C S and PAK Greening (1999). *Performance of low volume sealed roads: results and recommendations from studies in Southern Africa*. TRL Project Report PR/OSC/167/99. Transport Research Laboratory, Crowthorne RG45 6AU. UK.

Hongve J and M I Pinard (2016). *Guideline, for Compaction Quality Control Using the DCP.* AfCAP Project Report Ref. MAL 2007B.

Kleyn EG and P F Savage (1982). The application of the pavement DCP to determine the bearing properties and performance of road pavements. Proc Int Symp on Bearing Capacity of Roads and Airfields, Trondheim, Norway, 1982.

Kleyn EG and M J J Van Heerden (1983). Using DCP soundings to optimise pavement rehabilitation. Proc Annual Transportation Convention, Johannesburg.

Kleyn E G (1984). Aspects of pavement evaluation and design as determined with the aid of the Dynamic Cone penetrometer. (In Afrikaans), M Eng. Thesis, University of Pretoria, South Africa.

Kleyn E G and G van Zyl (1987). *Application of the Dynamic Cone Penetrometer to light pavement design.* Transvaal Provincial Administration, Pretoria, Laboratory Report L4/87.

Livneh M and I Ishai (1987). *Pavement and Material Evaluation by A Dynamic Cone Penetrometer.* Proc. 6th Int. Conf. on Structural Design of Asphalt Pavements, Univ. of Michigan, Ann Arbor, Michigan, USA, pp 665-676.

Livneh M and N Livneh (2013). *The Use of the Dynamic Cone Penetrometer for Quality Control of Compaction Operations.* International Journal of Engineering Research in Africa Vol. 10 (2013) pp 49-64

Morusuik G, Toole T, Gourley CS and JL Hine (2000). Whole life performance of low volume sealed roads in Southern Africa. TRL Annual research Review 1999, pp. 25-32.

Paige-Green, P (1994). Recommendations on the use of marginal base course materials in low volume roads in South Africa. Pretoria. Department of Transport, Research Report RR 91/201.

Paige-Green P (2011). Applying the Dynamic Cone Penetrometer (DCP) design method to low volume roads. Proc 15th Africa Regional Conference on Soil Mechanics and Geotechnical Engineering, (ARC), Maputo, 2011, pp 422-430.

Paige-Green P and M I Pinard (2012). Optimum design of sustainable sealed low volume roads using the dynamic cone penetrometer (DCP). 25th ARRB Conference, Perth, Australia. Sept 2012.

Paige-Green and van Zyl (2018). Development of the DCP-DN Design Method. ReCAP report.

Pinard M I and P Paige-Green (2013). A new approach for the optimum design of low volume sealed roads using the Dynamic Cone Penetrometer. Proc Africa T2 Conference, Gaborone, Botswana, March 2013, pp187 – 194.

Pinard M I, Paige-Green P and J Hongve (2015). *A New Approach to the Upgrading of Gravel Roads to Low Volume Sealed Roads Based on Dynamic Cone Penetrometer testing*. Transportation Research Record (J of Transportation Research Board), 2474 (2), pp 136-146.

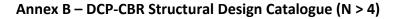
Roy B K (2007). New Look at DCP Test with a Link to the AASHTO SN Design Concept. Journal of Transportation Engineering, Vol. 133, No. 4, April 1, 2007.

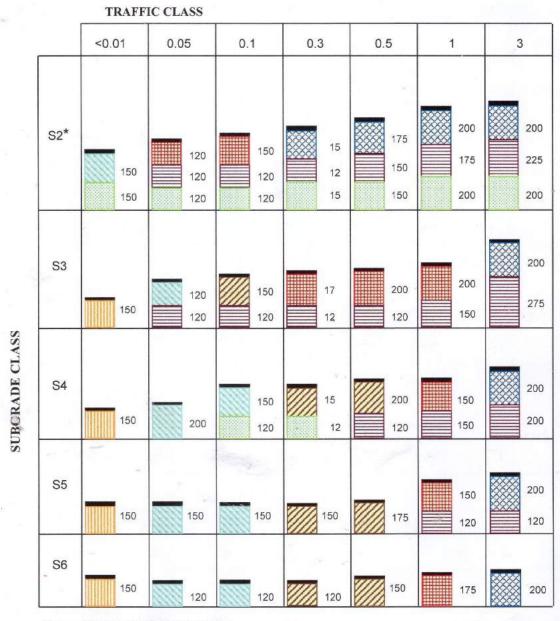
Sampson L R and F Netterberg (1990). *Effect of material quality on the relationship between DCP-DN value and CBR.* 1990 Annual Transportation Convention, Pretoria.

Siekmeier J et al, (2009). Using the Dynamic Cone Penetrometer and Light Weight Deflectometer for Construction Quality Assurance. Office of Materials and Road Research Minnesota Department of Transportation. Final report MN/RC 2009-12

Smith RB and D N Pratt (1983). A field study of in-situ California Bearing Ratio and dynamic cone penetrometer testing for road subgrade investigations. Australian Road Research, 13, No. 4, 1983, 285-94. ARRB, Australia.

Paige-Green P, Lea J and C Barnado (1999). *Relationship between in-situ DCP strength and soaked CBR.* Technical Report TR-99/003. Division of Roads and Transport Technology, CSIR, Pretoria.


Samuel P and S Done (2005). *DCP analysis and design of low volume roads by the new TRL software UK-DCP.* Sustainable Access and Local Resource Solutions. PIARC. Paris, France.


Transport Research Laboratory (TRL) (1993). A Guide to the Structural Design of Bitumen-Surfaced Roads in Tropical and Sub-Tropical Countries. TRL Crowthorne, Berkshire RG45 6AU.

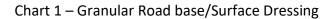
Annexes

Traffic Class	0.01	0.03	0.1	0.3	0.7	1.0
E80 x 10 ⁶	0.003 - 0.01	0.01 - 0.03	0.03 - 0.10	0.10 - 0.30	0.30 – 0.70	0.70 – 1.0
0- 150mm Base	DN ≤ 8	DN ≤ 5.9	DN ≤ 4	DN ≤ 3.2	DN ≤ 2.6	DN ≤ 2.5
≥ 98% Mod. AASHTO						
150-300 mm Subbase	DN ≤ 19	DN ≤ 14	DN ≤ 9	DN ≤ 6	DN ≤ 4.6	DN ≤ 4.0
≥ 95% Mod. AASHTO						
300-450 mm subgrade	DN ≤ 33	DN ≤ 25	DN ≤ 19	DN ≤ 12	DN ≤ 8	DN ≤ 6
≥ 95% Mod. AASHTO						
450-600 mm	DN ≤ 40	DN ≤ 33	DN ≤ 25	DN ≤ 19	DN ≤ 14	DN ≤ 13
In-situ material						
600-800 mm	DN ≤ 50	DN ≤ 40	DN ≤ 39	DN ≤ 25	DN ≤ 24	DN ≤ 23
In-situ material						
DSN 800	≥ 39	≥ 52	≥ 73	≥ 100	≥ 128	≥ 143

Annex A – DCP-DN Structural Design Catalogue

Note: * Non-expansive subgrade

Key



Annex C – TRH4 Structural Design	Catalogue (Dry-Moderate Region)
----------------------------------	--

ES0.003 < 3000	ES0.01 0,3-1,0x10 ⁴	ES0.03 1,0-3,0x10 ⁴	ES0.1 3,0-10x10 ⁴	ES0.3 0,1-0,3x10 ⁶	ES1 0,3-1,0x10 ⁶
- N					
					S 125 G4 150 C4
					S 150 G4 150 G5
			S 100 G5 125 C4	S 125 G5 125 C4	S 125 G4 125 C4
			5 125 G4 6 125 G4	5 125 G4	S 125 G4 150 G5
S1 100 G5 100 G7	51 505 505 500 500 500 500 500 500 500 5	51 52 100 G4 52 125 G7	51 100 G4 000 125 G6	5000 5000 5000 125 G4 5000 125 G6	S 125 G4 150 G6
	3		S1 100 G5 100 C4	S 100 G5 125 C4	S 125 G5 150 C4

SYMBOL	CODE	MATERIAL	ABBREVIATED SPECIFICATIONS
0 <u>,</u> 0 .0.0	G4	Crushed or natural gravel	Minimum CBR = 80 % @ 98 % Mod. AASHTO; Maximum size 37,5 mm; 98 - 100 % Mod. AASHTO; PI < 6; Maximum Swell 0,2 % @ 100 % Mod. AASHTO. For calcrete PI ≤ 8
0°0 ∘0°	G5	Natural gravel	Minimum CBR = 45 % @ 95 % Mod. AASHTO; Maximum size 63 mm or 2/3 of layer thickness; Density as per prescribed layer usage; PI < 10; Maximum swell 0,5 % @ 100 % Mod. AASHTO *
0°0 000	G6	Natural gravel	Minimum CBR = 25 % @ 95 % Mod. AASHTO; Maximum size 63 mm or 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12; Maximum swell 1,0 % @ 100 % Mod. AASHTO *
$\circ \circ $	G7	Gravel / Soil	Minimum CBR = 15 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
0°0 °0°	G8	Gravel / Soil	Minimum CBR = 10 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
0°0 °0°	G9	Gravel / Soil	Minimum CBR = 7 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
0 0 (3) 0 0	G10	Gravel / Soil	Minimum CBR = 3 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; or 90% Mod. AASHTO

Annex D – ORN31 Design catalogue

	T1	T2	ТЗ	T4	T5	Т6
S1	SD 150 175 300	SD 150 225* 300	SD 200 200 200 300	SD 200 250* 300	SD 200 300* 300	SD 225 325* 300
S2	SD	SD	SD	SD	SD	SD
	150	150	200	200	200	225
	150	200	175	225*	275*	300*
	200	200	200	200	200	200
S3	SD	SD	SD	SD	SD	SD
	150	150	200	200	200	225
	200	250	225	275*	325*	350*
S4	SD	SD	SD	SD	SD	SD
	150	150	200	200	200	225
	125	175	150	200	250	275
S5	SD	SD	SD	SD	SD	SD
	150	150	175	200	225	250
	100	100	100	125	150	175
S6	SD	SD	SD	SD	SD	SD
	150	150	175	200	225	250

Subgrade			Subbase			Base		
Mean	SD	N	Mean	SD	Ν	Mean	SD	n
Arid								
0.71	0.34	131	0.70	0.26	19	0.53	0.24	26
Cape (wir	nter rain)							
0.75	0.45	81	0.78	0.28	17	0.63	0.16	16
Cape (all	year rain)							
0.98	0.31	98	0.83	0.28	20	0.57	0.17	19
Transvaal	(Im < 0)							
0.94	0.29	894						
Transvaal	(Im > 0)							
0.96	0.29	178						
Natal (Im	> 0)							
1.05	0.34	52						
Weighted	Mean				·	·	•	
0.92			0.75			0.58		

Annex E - Equilibrium to Optimum moisture content ratios (Emery, 1985)

Annex F – Road section details and outcome of visual condition assessments D379-Wamwangi-Karatu road, Kenya:

(1) Outline details

- 1. Climate: Rainfall 1000 mm/year
- 2. Design life: 15 years
- 3. Design traffic loading class: TLC 01 (0.03 0.1 MESA)
- 4. Pavement structure
 - i. 15 mm Cold Mix Asphalt surfacing
 - ii. 150 mm base: DN value \leq 4 (equivalent CBR \geq 70 atOMC, CBR \geq 45 soaked)
 - iii. 150 mm subbase: DN value ≤ 9 (equivalent CBR ≥ 25 at OMC
 - iv. 150 mm subgrade: DN value ≤ 19 (equivalent CBR ≥ 10 at OMC

(2) Construction

- 1. Date of construction: 2012
- 2. **Construction cost:** USD154,000/km (2012) (USD 1.00 = KES 84.00)
- (3) **Maintenance:** Only roadside and drain maintenance has been carried out on the road since completion. The grass in the drains has been cut and some, but insufficient, desilting has occasionally been carried out.
- (4) Overall condition: Rated as good. Recent structural assessments indicated rutting values of < 10 mm (July 2017) and roughness values (IRI) of 3.7 m/km. In-situ moisture contents measured at the end of the 2018 rainy season indicate that the values in the OWT are all well below OMC in all the layers of the pavement.</p>
- (5) **Summary**: Despite lack of attention to maintenance, the road has performed well so far, after 6 years of a 15-year design life. However, continued lack of adequate routine maintenance is likely to jeopardise the condition/performance of the road. Moreover, periodic maintenance, in the form of a surfacing reseal, is likely to be required in the near future.

The total construction cost/km of USD 154,000 is low compared to costs for comparable projects with conventional design under Roads 2000. With economies of full scale construction of an entire road using the same design and construction method, the costs/km could be reduced.

Lawate - Kibongoto road, Tanzania

(1) Outline details

- 1. Climate: Wet Rainfall > 1000 mm/year
- 2. Design life: 15 years
- 3. Design traffic loading class: TLC 0.03 (0.01 0.03 MESA)
- 4. Pavement structure
 - i. 19/9.5 mm Double Surface Dressing
 - ii. 150 mm base: DN value \leq 5.9 (equivalent CBR \geq 25 atOMC)
 - iii. 150 mm subbase: DN value \leq 14 (equivalent CBR \geq 15 at OMC)
 - iv. 150 mm subgrade: DN value \leq 25 (equivalent CBR \geq 7 at OMC)

(2) Construction

- 1. Date of construction: September, 2012.
- Construction cost: USD 45,125/km/4m wide carriageway. Construction entailed scarification and re-compaction of the existing gravel wearing course and importation of a base layer only. The equivalent cost based on the traditional design approach stipulated in the Tanzania Pavement and Materials Design manual was USD 61,125/km/4 m wide carriageway.
- (3) **Maintenance:** Practically no maintenance has been carried out since construction of the road. This has resulted in significant vegetation growth in the drains and adjacent to the paved carriageway.
- (4) **Overall condition**: Rated good. Structural assessments of the road indicated rutting values of < 8 mm (April 2014) and roughness values (IRI) of 3.7 m/km (April, 2014.
- (5). **Summary:** Despite lack of attention to maintenance, the road has performed well so far, after almost 6 years of a 15-year design life. However, continued lack of adequate routine maintenance is likely to jeopardise the condition/performance of the road. Moreover, periodic maintenance, in the form of a surfacing reseal, is likely to be required in the near future.

The average cost saving/km based on the DCP-DN method was of the order of USD 16,000/km/ 4m wide carriageway.

Danger Point road 4019, Western Cape, South Africa

(1) Outline details

- 1. Climate: Dry-Moderate: Rainfall < 1000 mm/year
- 2. Design life: 20 years
- 3. Design traffic loading class: TLC 0.3 (0.10- 0.30 MESA)
- 4. Pavement structure
 - i. 10 mm Single Surface Dressing + Sand Seal
 - ii. 150 mm base: DN value \leq 3.2 (equivalent CBR \geq 90 at 0.75 OMC)
 - iii. 150 mm subbase: DN value \leq 6 (equivalent CBR \geq 45 at 0.75 OMC
 - iv. 150 mm subgrade: DN value ≤ 12 (equivalent CBR ≥ 12 at 0.75 OMC

(2) Construction

- 1. Date of construction: May 2003
- 2. **Construction cost**: Rand 241,530 (USD 32,250)/km/5m wide carriageway. Construction entailed scarification and re-compaction of the existing gravel wearing course (soaked CBR 45) and then sealing the surface.
- (3) **Maintenance:** Adequate routine maintenance has been carried out since construction of the road. Periodic maintenance included a 7 mm Single Surface Dressing in 2014.
- (4) **Overall condition**: fair Good based on a Visual Condition Survey carried out in 2015.
- (5). **Summary:** With adequate routine and periodic maintenance having being carried out since construction, the road has performed well after 15 years of its 20-year design life. It is expected to easily be able to carry the design traffic 0.3 MESA without any significant failures in service.

Nelshoogte (R38 to Nelshoogte Sawmill)

(1) Outline details

- 1. Climate: Wet Rainfall > 1000 mm/year
- 2. Design life: 20 years
- 3. Traffic loading class: 0.7 (0.30 0.70 MESA)
- 3. Pavement structure
 - i. 19/9.5 mm Double Surface Dressing
 - ii. 150 mm base: DN value \leq 2.6 (equivalent CBR \geq 120 atOMC)
 - iii. 150 mm subbase: DN value \leq 4.6 (equivalent CBR \geq 60 at OMC
 - iv. 150 mm subgrade: DN value ≤ 8 (equivalent CBR ≥ 20 at OMC

(2) Construction

- 1. Date of construction: 1990
- 2. Construction cost: Rand 60,000/km (USD 22,960.00). Construction entailed scarification and re-compaction of the existing gravel wearing course (soaked CBR 45) and importation of base layer as above.
- (3) **Maintenance:** Practically no maintenance has been carried out since construction of the road. This has resulted in significant vegetation growth in the drains and adjacent to the paved carriageway.
- (4) **Overall condition**: Good
- (5). **Summary**: After more than 27 years in service, the road has performed remarkably well. It has carried an estimated 0.8 1.0 MESA which is in excess of its design traffic loading of 0.7 MESA and has served well in excess of its design life of 20 years.

Annex G – Cost Comparison of LVR design methods

1. Introduction

A total of 1728 situations have been evaluated using the four different design methods and varying:

- 3 Traffic classes
- 4 In-situ subgrade conditions
- 2 climatic conditions
- 6 Material types available
- 3 haul distances

The purpose of this Appendix is to provide an example of the process followed to determine project costs per km (when designed using the different methods), cost ratios and savings when using the DCP-DN method.

2. Situation

An example is provided of cost calculations for the different design methods in the following situation:

- Wet environment
- In-situ material: CBR 3
- Traffic class: 0.3 MESA
- Haul distance: Medium (20km)
- Available material within free haul distance: CBR15

3. DCP-DN

For 0.3 MESA, the required pavement structure in terms of DN and field CBR are displayed in Table 1.

Table 26 DCP-DN required pavement structure (DN values)

Traffic Class	0.3
MESA range	0.1-0.3
0- 150mm	
Base	DN ≤ 3.2
≥ 98% Mod.	DIN = 0.2
AASHTO	
150-300 mm	
Sub-base	DN ≤ 6
≥ 95% Mod.	
AASHTO	
300-450 mm	
Subgrade	DN ≤ 12
≥ 95% Mod.	DIN = 12
AASHTO	
450-600 mm	DN ≤ 19
In situ material	
600-800 mm	DN ≤ 25
In situ material	
DSN 800	≥ 100

Table 27 DCP-DN required pavement structure (Field CBR values)

	Insitu	isitu CBR					
Traffic Class	0.1	0.3	1				
MESA range	0.03-0.10	0.1-0.3	0.7-1.0				
150 Base	70	94	128				
150 Subbase	25	42	70				
150 Selected	10	17	42				
150 In-situ	7	10	16				

For purposes of cost calculation and comparison with other design methods, the required material for each layer in terms of soaked CBR is determined after estimating the moisture content under which the layer will operate.

From Emery, 1985, the base will operate at approximately 0.63 of OMC and the subbase, with adequate drainage at close to 0.75 of OMC.

ubgrad	e		Subbase			Base		
Mean	SD	N	Mean	SD	N	Mean	SD	n
Arid		-				I		
0.71	0.34	131	0.70	0.26	19	0.53	0.24	26
Cape (w	inter rain)			1			1	
0.75	0.45	81	0.78	0.28	17	0.63	0.16	16
Cape (al	l year rain)	•		•				
0.98	0.31	98	0.83	0.28	20	0.57	0.17	19
Transva	al (Im < 0)	•		•			•	
0.94	0.29	894						
Transva	al (Im > 0)	•	•	•	•		•	
0.96	0.29	178						
Natal (Ir	n > 0)							
1.05	0.34	52						
Weighte	d Mean		•	•		•	•	
0.92			0.75			0.58		

If a slightly conservative approach is adopted, it could be assumed that both the base and subbase will operate at approximately 0.75 of OMC. The subgrade varies between 0.75 of OMC and OMC, which relates to the "Dry condition" in Emery's table.

Converting the required field CBR at 0.75 OMC to the estimated soaked CBR values, using Emery's conversion table, results in the pavement structure (soaked CBR) as shown in **Error! Reference s** ource not found.

 Table 28
 Required pavement structure in terms of soaked CBR (Based on Emery)

DCP-DN (Wet)								
Moisture	%		Required Soaked CBR					
Class	омс	Layer	0.1	0.3	1			
Moderate	0.75	150 Base	150 G13	150 G24	150 G47			
Moderate	0.75	150 Subbase		150 G5	150 G13			
Dry		150 Selected			150 G10			

Using the Paige-Green and Lea conversion table (Paige-Green et al, 1999) results in a more conservative (stronger) pavement structure, as shown in Table 29.

Table 29 Required pavement structure in terms of soaked CBR (Based on Paige-Green)

DCP-DN (Wet)								
Moisture	%		Required Soaked CBR					
Class	ОМС	Layer	0.1	0.3	1			
Moderate	0.75	150 Base	150 G15	150 G31	150 G60			
Moderate	0.75	150 Subbase		150 G5	150 G15			
Dry		150 Selected			150 G12			

Taking an even more conservative approach and assuming that both the base and subbase layers will operate at OMC results in much stronger pavement structures as shown in Table 30.

		DCP-DN	(Wet)						
Moisture	%		Required Soaked CBR						
Class	ОМС	Layer	0.1	0.3	1				
Damp	1	150 Base	150 G47	150 G76	150 G123				
Damp	1	150 Subbase	150 G5	150 G14	150 G47				
Wet		150 Selected			150 G12				

Table 30 Required pavement structure if base and subbase operate at OMC

In this particular case, for 0.3 MESA and the existing subgrade material being CBR=3, two layers must be imported namely:

- a) 150mm subbase layer of minimum CBR=14. Available within free-haul distance is a material with soaked CBR=15
- b) 150mm base layer of minimum CBR=76. Medium haul distance of material with soaked CBR of 80 selected

		Base	150 G31	150 G76	150 G31	150 G76	150 G31	150 G76	150 G31	150 G76
		Subbase	150 G5	150 G14	150 G5	150 G14	150 G5	150 G14	150 G5	150 G14
		Selected								
		Subgrade	NO	325	N	G15	N	G7	N	G3
		Traffic				Medium (0.1	- 0.3 MESA)			
		Subgrade	VG (NG30)	VG (NG30)	Good (NG15)	Good (NG15)	Fair (NG7)	Fair (NG7)	Poor (NG3)	Poor (NG3
M	loisture re	gimel climate	Dry -Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
			B(150-25L)	B(150-80L)	B(150-25L)	B(150-80L)	B(150-25L)	B(150-80L)	B(150-25L)	B(150-80L)
			No Import	No Import	No Import	No Import	No Import	SB(150-15N)	SB(150-15N)	SB(150-15N
		Low	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			RR	RR	RR	RR	RR	RR	RR	RR
			B(150-25M)	B(150-80M)	B(150-25M)	B(150-80M)	B(150-25M)	B(150-80M)	B(150-25M)	B(150-80M)
	Cost of		No Import	No Import	No Import	No Import	No Import	SB(150-15N)	SB(150-15N)	SB(150-15N
NG15	layer/s	Medium	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
	import		No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			RR	RR	RR	RR	RR	RR	RR	RR
			B(150-25H)	B(150-80H)	B(150-25H)	B(150-80H)	B(150-25H)	B(150-80H)	B(150-25H)	B(158-86H)
			No Import	No Import	No Import	No Import	No Import	SB(150-15N)	SB(150-15N)	SB(150-15N
		High	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	BB	BB	BB	BB	BB	BB	RR

Table 31 Required pavement structures for a range of in-situ subgrades

The costs per layer, incorporating material (ex borrow pit), load and 1km free haul, haul costs (20km in this case) and processing for each layer are calculated. Note: the cost values are in South African Rand and only converted to USD for final reporting.

	Crusher - Bin	Borrow pit -							
	commercial	Bin natural	E/O Seal	100 mm	120 mm	125 mm	150 mm	175 mm	200 mm
Layer	(R/m ³)								
					Plant ar	nd labour			
NG3		R 20		R 83	R 72	R 66	R 55	R 46	R 38
NG7		R 20		R 83	R 72	R 66	R 55	R 46	R 38
NG10		R 20		R 88	R 75	R 71	R 59	R 48	R 39
NG15	R 155	R 20		R 98	R 83	R 78	R 65	R 54	R 45
NG25	R 155	R 20		R 98	R 83	R 78	R 65	R 54	R 45
NG30	R 155	R 20		R 98	R 83	R 78	R 65	R 54	R 45
NG45	R 176	R 20		R 113	R 96	R 90	R 75	R 62	R 51
NG55	R 204	R 21		R 119	R 102	R 95	R 79	R 66	R 54
NG65	R 232	R 23		R 125	R 107	R 100	R 84	R 69	R 57
NG80	R 275	R 25	R 15	R 135	R 116	R 108	R 90	R 74	R 61
Crushed >100	R 355	R 25	R 15	R 150	R 128	R 120	R 100	R 83	R 68
In situ rip & reco	ompact (R/m3)	45							
Load &		25							
	1 - 10 km	5							
Haul costs	10 - 30 km	4							
(R/m3km)	30 - 100 km	3.5							

Table 32 Material, haul and processing costs (Rand)

Table 33 Layer cost for a 150mm layer (soaked CBR=45)

					Haul (m ³ km) per distance category							
					1km free	1-10km	10-30km	30-100km				
Layer	Total cost/ m2	Layer Thickness (m)	Ex BB/Crusher	Load & 1km freehaul	0	5	4	3.5	Co	nstruction (Pl	ant & Labou	r)/m³
			per m ³		0	5	20	65	Base	Subbase	Sel/Fill	Rip&Comp
B(150-80M)	R33.00	0.15	25	25			80		90			

Table 34 Costs of different layers in the required pavement structure (DCP-DN)

		Base	150 G31	150 G76	150 G31	150 G76	150 G31	150 G76	150 G31	150 G76
		Subbase	150 G5	150 G14	150 G5	150 G14	150 G5	150 G14	150 G5	150 G14
		Selected								
		Subgrade	NO	325	NO	G15	N	G7	N	3 3
		Traffic				Medium (0.1	- 0.3 MESA)			
		Subgrade	VG (NG30)	VG (NG30)	Good (NG15)	Good (NG15)	Fair (NG15)	Fair (NG7)	Poor (NG7)	Poor (NG3)
M	loisture re	gime/ climate	Dry - Moderate	Wet	Dry -Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
			20.25	24.75	20.25	24.75	20.25	24.75	20.25	24.75
			0.00	0.00	0.00	0.00	0.00	16.50	16.50	16.50
		Low	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00		0.00		0.00		0.00
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
			28.50	33.00	28.50	33.00	28.50	33.00	28.50	33.00
	Cost of		0.00	0.00	0.00	0.00	0.00	16.50	16.50	16.50
NG15	layer/s	Medium	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	import		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50
			50.63	55.13	50.63	55.13	50.63	55.13	50.63	55.13
			0.00	0.00	0.00	0.00	0.00	16.50	16.50	16.50
		High	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50

4. TRH4

The pavement structure for the given traffic class and wet environment is selected from the TRH4 catalogue as shown in Table 35.

						TF	RH4			
		Base	125	G80	125	G80	125	G80	125	G80
		Subbase			125	G25	125	G25	125	G25
		Selected							150) G7
		Subgrade	NO	G25	N	G15	NG7		N	G3
т	raffic		<u> </u>			Madium (0.1	0.2 MEGA)			
				C	· · · · ·		I-0.3 MESA) Fair (NG7)		Deer	(MCO)
Su	bgrade		very	Good	Good	(NG15)	rairi	(NG7)	Poor	(NG3)
Mo	Moisture regime/ climat		Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
			B(125-80L)	B(125-80L)	B(125-80L)	B(125-80L)	B(125-80L)	B(125-80L)	B(125-80L)	B(125-80L)
			No Import	No Import	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)	SB(125-25L)
		Low	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	RR	RR	RR	RR	RR	RR	RR
			B(125-80M)	B(125-80M)	B(125-80M)	B(125-80M)	B(125-80M)	B(125-80M)	B(125-80M)	B(125-80M)
	Cost of		No Import	No Import	SB(125-25M)	SB(125-25M)	SB(125-25M)	SB(125-25M)	SB(125-25N	SB(125-25M)
NG15	layer/s	Medium	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S[150-15N]
	import		No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	RR	RR	RR	RR	RR	RR	RR
			B(125-80H)	B(125-80H)	B(125-80H)	B(125-80H)	B(125-80H)	B(125-80H)	B(125-80H)	B(125-80H)
			No Import	No Import	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)	SB(125-25H)
		High	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	BB	BB	BB	BB	BB	BB	BB

Table 35	Required	pavement structure	e according to	TRH4 design
----------	----------	--------------------	----------------	-------------

Similar to the process described under DN-DCP, the cost for each layer is calculated.

Table 36 Costs of different layers in the required pavement structure (TRH4)

							TB	H4							
		Base	125	G80	125	G80	125	G80	125	G80					
		Subbase			125	G25	125	G25	125	G25					
		Selected							150	G7					
		Subgrade	NG	¥25	NO	G15	NG7		NO	G3					
1	Fraffic				N	Medium (0.1 - 0.3 MESA)									
Su	ıbgrade		Very (Good	Good	(NG15)	Fair (NG7)	Poor	(NG3)					
M	oisture regi	me/ climate	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet					
			22.88	22.88	22.88	22.88	22.88	22.88	22.88	22.88					
		Low	0.00	0.00	18.50	18.50	18.50	18.50	18.50	18.50					
			0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50					
									0.00	0.00	0.00	0.00	0.00	0.00	0.00
			4.50	4.50	4.50	4.50	4.50	4.50	4,50	4,50					
			29.75	29.75	29.75	29.75	29.75	29.75	29.75	29.75					
	Cost of		0.00	0.00	25.38	25.38	25.38	25.38	25.38	25.38					
NG15	layer/s	Medium	0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50					
	import	Median	readin	, readin .	, viediant .	, nealann	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			4.50	4.50	4.50	4.50	4.50	4.50	4.58	4.50					
			48.19	48.19	48.19	48.19	48,19	48.19	48.19	48.19					
			0.00	0.00	43.81	43.81	43.81	43.81	43.81	43.81					
		High	0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50					
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50					

5. DCP-CBR

The pavement structure for the given traffic class and wet environment is selected from the relevant catalogue as shown in Table 37.

						DCP	-CBR			
		Base	120 G55	150 G55	150 G55	120 G55	150 G55	175 G65	150 G80	150 G80
	-	Subbase				120 G30	120 G15	120 G30	120 G30	120 G30
CP-CB	к	Selected							150 G15	150 G15
		Subgrade	NO	<u>325</u>	N	G15	N	G7	N	G3
		Traffic				Medium (0.1	- 0.3 MESA)			
		Subgrade	Very Goo	d (NG30)	Good	(NG15)	Fair (NG7)	Poor	(NG3)
M	oisture regi	meł climate	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
			B(120-55L)	B(150-55L)	B(150-55L)	B(120-55L)	B(150-55L)	B(175-65L)	B(150-80L)	B(150-80L)
			No Import	No Import	No Import	SB(120-30L)	SB(120-15N)	SB(120-30L)	SB(120-30L)	SB(120-30L)
		Low	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	RR	BB	RR	RR	RR	RR	RR
			B(120-55M)	B(150-55M)	B(150-55M)	B(120-55M)	B(150-55M)	B(175-65M)	B(150-80M)	B(150-80M)
	Cost of		No Import	No Import	No Import	SB(120-30M)	SB(120-15N)	SB(120-30M)	SB(120-30M)	SB(120-30M
NG15	layer/s	Medium	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)
	import		No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	RR	RR	BB	RR	BB	RR	RB
			B(120-55H)	B(150-55H)	B(150-55H)	B(120-55H)	B(150-55H)	B(175-65H)	B(150-80H)	B(150-80H)
			No Import	No Import	No Import	SB(120-30H)	SB(120-15N)	SB(120-30H)	SB(120-30H)	SB(120-30H
		High	No Import	No Import	No Import	No Import	No Import	No Import	S(150-15N)	S(150-15N)
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			BB	BB	BB	BB	BB	BB	BB	BB

Table 37 Required pavement structure according to DCP-CBR design

In this case, the base and subbase must be imported (medium haul distance), while the selected layer will be imported at free-haul distance.

The cost per layer (Rand per m²) is calculated as described under DCP-DN.

Table 38 Costs of different layers in the required pavement structure (DCP-CBR)

						DCP	-CBR				
		Base	120 G55	150 G55	150 G55	120 G55	150 G55	175 G65	150 G80	150 G80	
DCP-CB	2	Subbase				120 G30	120 G15	120 G30	120 G30	120 G30	
DCF-CDI		Selected							150 G15	150 G15	
		Subgrade	NG	<u>25</u>	NO	G15	N	G7	N	IG3	
		Traffic			<u> </u>	Aedium (0.1	- 0.3 MESA	<i>i</i>			
		Subgrade	Verg	Good	Good	(NG15)	Fair (NG7)	Poor	(NG3)	
м	oisture regi	meł climate	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	
			20.78	22.61	22.61	20.78	22.61	21.00	24.75	24.75	
		Low		0.00	0.00	0.00	18.41	15.41	18.41	18.41	18.41
			0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50	
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	
			27.38	30.86	30.86	27.38	30.86	21.00	33.00	33.00	
	Cost of		0.00	0.00	0.00	25.01	15.41	25.01	25.01	25.01	
NG15	layer/s	Medium	0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50	
	import		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	
			45.08	52.98	52.98	45.08	52.98	21.00	55.13	55.13	
			0.00	0.00	0.00	42.71	15.41	42.71	42.71	42.71	
		High	0.00	0.00	0.00	0.00	0.00	0.00	16.50	16.50	
			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	

6. ORN31

In the case of ORN31, the required pavement structure is dependent on the selected subgrade class.

The required pavement structures for 0.3 MESA and layer costs are shown in Table 39

						OF	RN31			
		Base	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80
ORN31		Subbase							100 G30	125 G30
Unitat		Selected								
		Subgrade	NG2	5 (S6)	NG1	5 (S6)	NG	7(S6)	NG3 (S5)	NG3(S4)
		Note:			Ci	BR at OMC for NG	63 (Wet) (SG = S4)	l, (Dry)(SG=S5), A	ll rest S6	
		Traffic		_			1-0.3 MESA)			
		Subgrade	VG (NG30)	VG (NG30)	Good (NG30)	Good (NG15)	Fair (NG15)	Fair (NG7) (S6)	Poor (NG3) (S5)	Poor (NG3) (S4)
	Moisture reg	gime/ climate	Dry-Moderate	Wet	Dry-Moderate	Wet	Dry - Moderate	Wet	Dry-Moderate	Wet
			B(150-80L)	B(150-80L)	B(150-80L)	B(150-80L)	B(150-80L)	B(150-80L)	B(150-80L)	B(150-80L)
			No Import	No Import	No Import	No Import	No Import	No Import	SB(100-30L)	SB(125-30L)
		Low	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			RR	RR	RR	RR	RR	RR	RR	RR
			B(150-80M)	B(150-80M)	B(150-80M)	B(150-80M)	B(150-80M)	B(150-80M)	B(150-80M)	B(150-80M)
	Cost of		No Import	No Import	No Import	No Import	No Import	No Import	SB(100-30M)	SB(125-30M)
NG15	layerls	Medium	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
	import		No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			RR	RR	RR	RR	RR	RR	RR	RR
			B(150-80H)	B(150-80H)	B(150-80H)	B(150-80H)	B(150-80H)	B(150-80H)	B(150-80H)	B(150-80H)
			No Import	No Import	No Import	No Import	No Import	No Import	SB(100-30H)	SB(125-30H)
		High	No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			No Import	No Import	No Import	No Import	No Import	No Import	No Import	No Import
			RR	RR	RR	RR	RR	RR	RR	RR

Table 39 Required pavement structure according to ORN31 design

Table 40 Costs of different layers in the required pavement structure (ORN31)

						OR	N31				
		Base	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80	150 G80	
ORN31		Subbase							100 G30	125 G30	
URNUT		Selected									
		Subgrade	NG2	5 (S6)	NG15	5 (S6)	NG7	7 (S6)	NG3 (S5)	NG3 (S4)	
		Note:						G = S5), All rest S	6		
		Traffic					-0.3 MESA)				
		Subgrade		VG (NG30)	Good (NG30)		Fair (NG15)		Poor (NG3) (S5)		
	Moisture reg	gime/ climate	<u> </u>	Wet	Dry-Moderate	Wet	Dry-Moderate	Wet	Dry-Moderate	Wet	
			24.75								
				0.00	0.00						
		Low	0.00	0.00		0.00	0.00				
				0.00	0.00			0.00			
			4.50								
			33.00	33.00		33.00	33.00				
	Cost of		0.00								
NG15	layerls	Medium	0.00	0.00							
	import		0.00	0.00			0.00				
			4.50	4.50							
			55.13				55.13				
			0.00	0.00			0.00				
		High	0.00								
			0.00								
			4.50	4.50	4.50	4.50	4.50	4.50	4.50	4.50	

7. Cost comparison

a) Pavement layer costs

The total pavement layer costs are calculated for each design method as shown in Table 41.

9	Summary	j of pav	ement o	osts	Ran	d/m²						
		Traffi	c					Medium (0.1	- 0.3 MESA)			
	ORM	V31 subgr	ade class		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S6)	Poor S5)
		Subgra	ide		VG (NG30)	VG (NG30)	Good	(NG15)	Fair (NG7)	Poor	(NG3)
		Clima	te		Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
				DCP-DN	24.75	29.25	24.75	29.25	24.75	45.75	41.25	45.75
				TRH4	27.38	27.38	45.88	45.88	45.88	45.88	62.38	62.38
haul			Low	DCP-CBR	25.28	27.11	27.11	43.69	42.52	47.75	64.16	64.16
				ORN31	29.25	29.25	29.25	29.25	29.25	29.25	46.00	47.75
Free												
				DCP-DN	33.00	37.50	33.00	37.50	33.00	54.00	49.50	54.00
8		Cost of		TBH4	34.25	34.25	59.63	59.63	59.63	59.63	76.13	76.13
teri	NG15	layer/s	Medium	DCP-CBR	31.88	35.36	35.36	56.89	50.77	63.98	79.01	79.01
materials/		import		ORN31	37.50	37.50	37.50	37.50	37.50	37.50	59.75	62.88
Available				DCP-DN	55.13	59.63	55.13	59.63	55.13	76.13	71.63	76.13
Nai.				TRH4	52.69	52.69	96.50	96.50	96.50	96.50	113.00	113.00
<			High	DCP-CBR	49.58	57.48	57.48	92.29	72.89	107.49	118.84	118.84
				ORN31	59.63	59.63	59.63	59.63	59.63	59.63	96.63	103.44

Table 41 Summary of pavement layer cost in Rand per m²

All costs are then converted to USD as shown inTable 42.

Table 42 Summary of pavement layer costs in USD per km

	Summer;	r of pave	ement co	սեւ	USDporkm	of 6.5m uida						
		Traffic						Madium (0.1	I-0.3 MESA)			
	ORI	N31.subqra	do clarr		Good(S6)	Good(S6)	Good(S6)	Good(S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)
		Subgra	do		VG (NG30)	VG (NG30)	Good	(NG15)	Fair ((NG7)	Poor	(NG3)
		Climati	,		Dry- Madorato	Wat	Dry- Modorato	Wat	Dry- Modorato	Wat	Dry- Modorato	Wat
	1	1		DCP-DN	13,406	15,844	13,406	15,844	13,406	24,781	22,344	24,781
				TBH4	14,828	14,828	24,849	24,849	24,849	24,849	33,786	33,786
-			Lou	DCP-CBR	13,695	14,683	14,683	23,668	23,031	25,865	34,754	34,754
ne.				ORN31	15,844	15,844	15,844	15,844	15,844	15,844	24,917	25,865
2												\frown
				DCP-DN	17,875	20,313	17,875	20,313	17,875	29,250	26,813	29,250
10		Cartof		TRH4	18,552	18,552	32,297	32,297	32,297	32,297	41,234	41,234
2	NG15	layorts	Modium	DCP-CBR	17,270	19,152	19,152	30,818	27,500	34,654	42,798	42,798
materials/		import		ORN31	20,313	20,313	20,313	20,313	20,313	20,313	32,365	34,057
Available				DCP-DN	29,859	32,297	29,859	32,297	29,859	41,234	38,797	41,234
5				TRH4	28,539	28,539	52,271	52,271	52,271	52,271	61,208	61,208
*			High	DCP-CBR	26,857	31,136	31,136	49,993	39,484	58,223	64,370	64,370
				ORN31	32,297	32,297	32,297	32,297	32,297	32,297	52,339	56,029

b) Project costs

Total project costs comprise several additional items in addition to the pavement layer costs. The costs of the additional items, as estimated and shown in Table 43, are added to the pavement layer costs to obtain the total project costs as shown in Table 44.

Project co	ost calculation	n	
Establishment		8,200	
Traffic accommodation		2,000	
Clear & Grub		4,100	
Earthworks		30,000	
Drainage & structures		12,000	
Pavement layers			
Surfacing		15,000	
Ancillary works		8,200	
		79,500	
Profit add	5%	3,975	83,475
Contingencies add	10%	8,348	91,823
VAT add	15%	13,773	
Total excluded Pavement layers			105,596
Cost of pavement layers plus profit, a this total to obtain values in "Project o			ed to

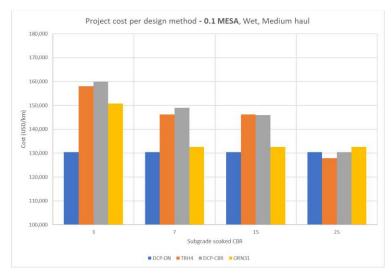
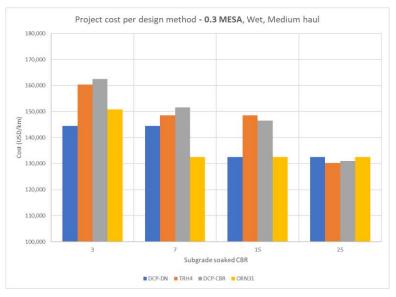

Table 43 Cost items additional to pavement layers

Table 44 Summary of project costs per km


	Summe	ry of Pr	njøct cu	rtr		USD por km al	f 6.5m uida					
		Traffi	c .					Madium (0.1	1-0.3 MESA)			
	ORI	431.subqra	de clarr		Good(S6)	Good(S6)	Good(S6)	Good(S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)
		Subgra	do		VG (NG30)	VG (NG30)	Good ((NG15)	Fair (NG7)	Poor	(NG3)
		Climat	o		Dry- Modorato	Wat	Dry- Modorato	Wat	Dry- Modorato	Wat	Dry- Modorato	Wat
	1			DCP-DN	123,403	126,640	123,403	126,640	123,403	138,512	135,274	138,512
				TRH4	125,291	125,291	138,602	138,602	138,602	138,602	150,473	150,473
-			Lou	DCP-CBR	123,786	125,099	125,099	137,033	136,187	139,951	151,758	151,758
had				ORN31	126,640	126,640	126,640	126,640	126,640	126,640	138,691	139,951
/ Free				DCP-DN	129,338	132,576	129,338	132,576	129,338	144,447	141,210	144,447
aterials/		Cartof		TRH4	130,238	130,238	148,494	148,494	148,494	148,494	160,365	160,365
8	NG15	layorts	Medium	DCP-CBR	128,535	131,034	131,034	146,529	142,122	151,624	162,442	162,442
E		import		ORN31	132,576	132,576	132,576	132,576	132,576	132,576	148,584	150,832
Available				DCP-DN	145,257	148,494	145,257	148,494	145,257	160,365	157,128	160,365
2				TRH4	143,503	143,503	175,025	175,025	175,025	175,025	186,896	186,896
4			High	DCP-CBR	141,269	146,952	146,952	171,999	158,041	182,930	191,095	191,095
				ORN31	148,494	148,494	148,494	148,494	148,494	148,494	175,115	180,016

The information for the wet environment is presented in a graphical format for different traffic classes and subgrade conditions in Figure 11, Figure 12 and Figure 13.

The information for the dry-moderate environment is presented in a graphical format for different traffic classes and subgrade conditions in Figure 14, Figure 15 and Figure 16.

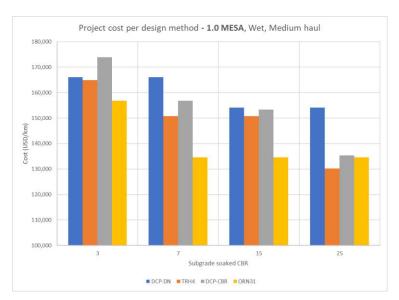
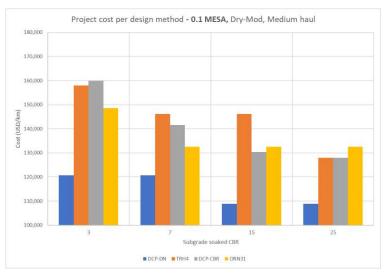



Figure 13 km cost, 1 MESA, Wet, Medium haul

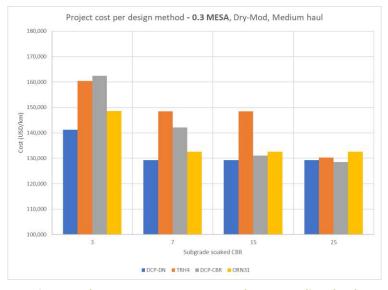


Figure 15 km cost, 0.3 MESA, Dry-Moderate, Medium haul

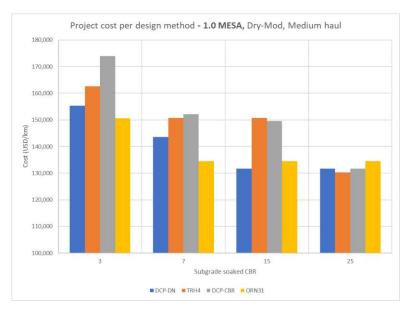


Figure 16 km cost, 1.0 MESA, Dry-Moderate, Medium haul

c) Cost ratios

The ratio, relative to the project costs (as per DCP-DN design) is calculated for each scenario as shown in Table 45.

For the particular scenario, ORN31 results in 4% additional costs whereas TRH4 and DCP-CBR result respectively in 11% and 12% additional costs

		P	njøct Cau	t Ratins	BarodonU	SD por km of	6.5m uida					
		Traf	fic					Madium (0.1	1-0.3 MESA)			
		ORN31suba	rado clars		Good(S6)	Good(S6)	Good(S6)	Good(S6)	Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)
		Suba	rado		VG (NG30)	VG (NG30)	Good	(NG15)	Fairl	(NG7)	Poor	(NG3)
		Clim	ato		Dry- Madorato	Wot	Dry- Madorato	Wat	Dry- Madorato	Wat	Dry- Madorato	Wat
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
				TRH4	1.02	0.99	1.12	1.09	1.12	1.00	1.11	1.09
			Lou	DCP-CBR	1.00	0.99	1.01	1.08	1.10	1.01	1.12	1.10
2				ORN31	1.03	1.00	1.03	1.00	1.03	0.91	1.03	1.01
Free hauf												
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
10		Carta	F	TRH4	1.01	0.98	1.15	1.12	1.15	1.03	1.14	1.11
2	NG	15 layort	r Modium	DCP-CBR	0.99	0.99	1.01	1.11	1.10	1.05	1.15	112
2		impor	٠ ا	ORN31	1.03	1.00	1.03	1.00	1.03	0.92	1.05	1.04
-												
Available materials/				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
5				TRH4	0.99	0.97	1.20	1.18	1.20	1.09	1.19	1.17
4			High	DCP-CBR	0.97	0.99	1.01	1.16	1.09	1.14	1.22	1.19
				ORN31	1.02	1.00	1.02	1.00	1.02	0.93	1.11	1.12

Table 45Project cost ratios

d) Cost savings

Project cost savings by using the DCP-DN design method have been calculated, based on the calculated pavement layer costs and estimated additional cost items as discussed under Section b). (See Table 46)

		Cart		e por km		USD por km al	6.5m uido					
		Traffi	<					Madium (0.1	I-0.3 MESA)			
	ORI	N31subqre	ado clars		Good(S6)	Good(S6)	Good(S6)	Good(S6)	Fair (S6)	Fair(S6)	Poor (S5)	Poor S4)
		Subara	do -		VG (NG30)	VG (NG30)	Good ((NG15)	Fairl	(NG7)	Poor	(NG3)
		Climat			Dry- Madorato	Wat	Dry- Madorato	Wat	Dry- Moderate	Wat	Dry- Modorato	Wat
				DCP-DN	0	0	0	0	0	0	0	0
				TBH4	1,889	-1,349	15,199	11,961	15,199	90	15,199	11,961
-			Lou	DCP-CBR	383	-1,542	1,696	10,392	12,784	1,439	16,484	13,246
Free hauf				ORN31	3,238	0	3,238	0	3,238	-11,871	3,417	1,439
8												
				DCP-DN	0	0	0	0	0	0	0	0
10		Cartof		TRH4	899	-2,338	19,156	15,918	19,156	4,047	19,156	15,918
2	NG15	layorts	Modium	DCP-CBR	-804	-1,542	1,696	13,954	12,784	7,177	21,233	17,995
Available materials/		import		0RN31	3,238	0	3,238	0	3,238	-11,871	7,375	6,385
8												
首				DCP-DN	0	0	0	0	0	0	0	0
5				TBH4	-1,754	-4,991	29,768	26,530	29,768	14,659	29,768	26,530
			High	DCP-CBR	-3,987	-1,542	1,696	23,504	12,784	22,565	33,967	30,730
				ORN31	3,238	0	3,238	0	3,238	-11,871	17,987	19,650

Table 46 Project cost savings per km

Annex H – Pavement Costs and Cost Ratios, Project Cost and Cost ratios and Project Cost Savings/km)

(1) Pavement Costs

	Summa	ary of paven	nent costs													USD per km o	of 6.5m wide											
		Traffic						Low (< 0.:									1 - 0.3 MESA)								- 1.0 MESA)			
L	ORM	N31 subgrad			Good (S6)	Good (S6)	Good (S6) Good (I	Good (S6)	Fair (S6)	Fair (S6)	Poor (S5)		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S5)		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6) Fair (Fair (S6)	Poor (S5)	Poor S4)
└──		Subgrade			10(11030)	VG (NG30)	Good (I	NG15)	Fair (NG7)	1001	NG3)	VG (NG30)	VG (NG30)	Good (NG15)	Fair (NG/)	1001	NG3)	VG (NG30)	VG (NG30)	Good	NG15)		NG/)	1001	NG3)
		Climate			Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet
		Cinnate		DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	22 750	20 313	22 750	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
			Zero	TRH4	12 458	12 458	20 786	20 786	20 786	20 786	29 724	29 724	13 135	13 135	21 464	21 464	21 464	21 464	30 401	30 401	13 135	13 135	22 073	22 073	22 073	22 073	31 010	31 688
			Haulage	DCP-CBR	11 620	12 188	12 188	19 967	20 535	21 000	29 183	29 183	12 070	12 652	12 652	20 418	21 000	21 870	31 098	31 098	13 116	13 749	21 464	22 097	22 054	23 390	35 212	35 212
			пашаде	ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
aul				DCP-DN	2 438	14 219	2 438	14 219	11 375	14 219	11 375	14 219	13 406	15 844	13 406	15 844	13 406	24 781	22 344	24 781	15 147	27 625	15 147	27 625	24 085	36 563	33 022	36 563
ц е			Low	TRH4	13 813	13 813	23 833	23 833	23 833	23 833	32 771	32 771	14 828	14 828	24 849	24 849	24 849	24 849	33 786	33 786	14 828	14 828	25 797	25 797	25 797	25 797	34 734	35 750
Ë.			LOW	DCP-CBR ORN31	13 245 15 844	14 219 15 844	14 219 15 844	23 217 15 844	22 567 15 844	24 656 15 844	32 839 24 917	32 839 25 865	13 695 15 844	14 683 15 844	14 683 15 844	23 668 15 844	23 031 15 844	25 865 15 844	34 754 24 917	34 754 25 865	15 147 16 599	16 458 16 599	25 120 16 599	26 430 16 599	26 116 16 599	28 130 16 599	40 290 25 672	40 290 28 130
ials,		Cost of		UKINSI	15 644	13 044	13 644	13 644	13 044	15 644	24 917	23 803	13 644	13 644	13 644	15 644	13 044	15 644	24 917	23 803	10 399	10 399	10 599	10 399	10 399	10 599	23 0/2	28 130
fe	NG15	layer/s		DCP-DN	2 438	18 688	2 438	18 688	11 375	18 688	11 375	18 688	17 875	20 313	17 875	20 31 3	17 875	29 250	26 813	29 250	19 616	36 563	19.616	36 563	28 554	45 500	37 491	45 500
Ĕ		import		TRH4	16 792	16 792	30 536	30 536	30 536	30 536	39 474	39 474	18 552	18 552	32 297	32 297	32 297	32 297	41 234	41 234	18 552	18 552	33 990	33 990	33 990	33 990	42 927	44 688
able			Medium	DCP-CBR	16 820	18 688	18 688	30 367	27 035	32 700	40 883	40 883	17 270	19 152	19 152	30 818	27 500	34 654	42 798	42 798	19 616	22 416	33 164	35 964	35 054	38 557	51 462	51 462
vai				ORN31	20 313	20 313	20 313	20 313	20 313	20 313	32 365	34 057	20 313	20 313	20 313	20 313	20 313	20 313	32 365	34 057	21 813	21 813	21 813	21 813	21 813	21 813	33 865	38 557
< <																												
				DCP-DN	2 438	30 672	2 438	30 672	11 375	30 672	11 375	30 672	29 859	32 297	29 859	32 297	29 859	41 234	38 797	41 234	31 600	60 531	31 600	60 531	40 538	69 469	49 475	69 469
			High	TRH4 DCP-CBR	24 781 26 407	24 781 30 672	48 513 30 672	48 513	48 513 39 020	48 513 54 272	57 451 62 455	57 451 62 455	28 539 26 857	28 539 31 136	52 271 31 136	52 271 49 993	52 271 39 484	52 271 58 223	61 208 64 370	61 208 64 370	28 539 31 600	28 539 38 395	55 961 54 736	55 961 61 530	55 961 59 022	55 961 66 520	64 898 81 423	68 656 81 423
			High	ORN31	32 297	30 672	30 672	49 542	39 020	32 297	52 339	56 029	32 297	32 297	31 136	32 297	39 484	32 297	52 339	56 029	31 600	38 395	35 794	35 794	35 794	35 794	81 423 55 836	66 520
				ONNOI	52 251	32 231	32 231	32 231	52 251	32 231	52 333	30 023	32 231	32 231	32 231	32 231	32 231	32 231	52 333	30 023	33754	33754	33754	33134	55754	33734	55 650	00 520
				DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	22 750	20 313	22 750	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
	1		Zero	TRH4	12 458	12 458	20 786	20 786	20 786	20 786	29 724	29 724	13 135	13 135	21 464	21 464	21 464	21 464	30 401	30 401	13 135	13 135	22 073	22 073	22 073	22 073	31 010	31 688
			Haulage	DCP-CBR	11 620	12 188	12 188	19 967	20 535	21 000	29 183	29 183	12 070	12 652	12 652	20 418	21 000	21 870	31 098	31 098	13 116	13 749	21 464	22 097	22 054	23 390	35 212	35 212
			nuuuge	ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
	-																											
	-			DCP-DN TRH4	2 438 13 813	14 219 13 813	2 438 22 141	14 219 22 141	11 375 22 141	14 219 22 141	11 375 31 078	14 219 31 078	11 375 14 828	15 844 14 828	11 375 23 156	15 844 23 156	11 375 23 156	24 781 23 156	20 313 32 094	24 781 32 094	15 147 14 828	27 625	15 147 23 766	27 625 23 766	24 085 23 766	36 563 23 766	33 022 32 703	36 563 33 719
	-		Low	DCP-CBR	13 245	13 813	14 219	22 141	22 141	22 141	31 078	31 0/8	14 828	14 828	14 683	23 156	23 156	23 156	32 094	32 094	14 828	14 828	23 495	23 766	23 766	23 766	32 703	33 7 19
	-		2011	ORN31	15 844	15 844	15 844	15 844	15 844	15 844	23 563	24 172	15 844	15 844	15 844	15 844	15 844	15 844	23 563	24 172	16 599	16 599	16 599	16 599	16 599	16 599	24 318	26 099
	NG25/30	Cost of layer/s																										
	NG25/50	import		DCP-DN	2 438	18 688	2 438	18 688	11 375	18 688	11 375	18 688	11 375	20 313	11 375	20 313	11 375	29 250	20 313	29 250	19 616	36 563	19 616	36 563	28 554	45 500	37 491	45 500
		import		TRH4	16 792	16 792	25 120	25 120	25 120	25 120	34 057	34 057	18 552	18 552	26 880	26 880	26 880	26 880	35 818	35 818	18 552	18 552	27 490	27 490	27 490	27 490	36 427	38 188
	-		Medium	DCP-CBR	16 820	18 688	18 688	25 167	27 035	27 500	35 683	35 683	17 270	19 152	19 152	25 618	27 500	29 454	37 598	37 598	19 616	22 416	27 964	30 764	28 554	32 057	43 879	43 879
	-			ORN31	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	21 813	21 813	21 813	21 813	21 813	21 813	29 531	32 057
	-			DCP-DN	2 438	30 672	2 438	30 672	11 375	30 672	11 375	30 672	11 375	32 297	11 375	32 297	11 375	41 234	20 313	41 234	31 600	60 531	31 600	60 531	40 538	69 469	49 475	69 469
				TRH4	24 781	24 781	33 109	33 109	33 109	33 109	42 047	42 047	28 539	28 539	36 867	36 867	36 867	36 867	45 805	45 805	28 539	28 539	36 867	36 867	36 867	36 867	45 805	49 563
	1		High	DCP-CBR	26 407	30 672	30 672	34 755	39 020	39 484	47 667	47 667	26 857	31 136	31 136	35 205	39 484	43 435	49 582	49 582	31 600	38 395	39 948	46 743	40 538	48 036	59 858	59 858
				ORN31	32 297	32 297	32 297	32 297	32 297	32 297	40 016	40 625	32 297	32 297	32 297	32 297	32 297	32 297	40 016	40 625	35 794	35 794	35 794	35 794	35 794	35 794	43 513	48 036
	4			DCP-DN TRH4	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	22 750	20 313	22 750	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
	-		Zero	DCP-CBR	12 458 11 620	12 458 12 188	20 786	20 786	20 786	20 786	29 724 29 183	29 724	13 135 12 070	13 135	21 464	21 464	21 464	21 464	30 401 31 098	30 401 31 098	13 135 13 116	13 135 13 749	22 073	22 073 22 097	22 073	22 073	31 010 35 212	31 688 35 212
	1		Haulage	ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	29 185	13 813	13 813	12 852	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
				DCP-DN	2 438	14 219	2 438	14 219	11 375	14 219	11 375	14 219	11 375	15 844	11 375	15 844	11 375	24 781	20 313	24 781	15 147	27 625	15 147	27 625	24 085	36 563	33 022	36 563
	1			TRH4	13 813	13 813	22 141	22 141	22 141	22 141	31 078	31 078	14 828	14 828	23 156	23 156	23 156	23 156	32 094	32 094	14 828	14 828	23 766	23 766	23 766	23 766	32 703	33 719
	-		Low	DCP-CBR	11 620	12 188	12 188	19 967	20 535	23 031	31 214	31 214	13 695	14 683	14 683	22 043	23 031	24 240	33 129	33 129	15 147	16 458	23 495	24 805	24 085	26 099	37 920	37 920
		Cost of		ORN31	15 844	15 844	15 844	15 844	15 844	15 844	23 563	24 172	15 844	15 844	15 844	15 844	15 844	15 844	23 563	24 172	16 599	16 599	16 599	16 599	16 599	16 599	24 318	26 099
	NG45	layer/s		DCP-DN	2 438	18 688	2 438	18 688	11 375	18 688	11 375	18 688	11 375	20 313	11 375	20 313	11 375	29 250	20 313	29 250	19 616	36 563	19 616	36 563	28 554	45 500	37 491	45 500
	1	import		TRH4	16 792	16 792	25 120	25 120	25 120	25 120	34 057	34 057	18 552	18 552	26 880	26 880	26 880	26 880	35 818	35 818	18 552	18 552	27 490	27 490	27 490	27 490	36 427	38 188
	1		Medium	DCP-CBR	11 620	12 188	12 188	19 967	20 535	27 500	35 683	35 683	17 270	19 152	19 152	25 618	27 500	29 454	37 598	37 598	19 616	22 416	27 964	30 764	28 554	32 057	43 879	43 879
				ORN31	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	21 813	21 813	21 813	21 813	21 813	21 813	29 531	32 057
	4			DCP-DN	2 438	30 672	2 438	30 672	11 375	30 672	11 375	30 672	11 375	32 297	11 375	32 297	11 375	41 234	20 313	41 234	31 600	60 531	31 600	60 531	40 538	69 469	49 475	69 469
	-		Ulah	TRH4	24 781	24 781	33 109	33 109	33 109	33 109	42 047	42 047	28 539	28 539	36 867	36 867	36 867	36 867	45 805	45 805	28 539	28 539	36 867	36 867	36 867	36 867	45 805	49 563
	1		High	DCP-CBR ORN31	11 620 32 297	12 188 32 297	12 188 32 297	19 967 32 297	20 535 32 297	39 484 32 297	47 667 40 016	47 667 40 625	26 857 32 297	31 136 32 297	31 136 32 297	35 205 32 297	39 484 32 297	43 435 32 297	49 582 40 016	49 582 40 625	31 600 35 794	38 395 35 794	39 948 35 794	46 743 35 794	40 538 35 794	48 036 35 794	59 858 43 513	59 858 48 036
	1			URINSI	52 297	32 297	32 297	52 297	52 297	52 297	40.010	40 025	52 297	52 291	32 291	52 297	32 297	32 297	40.010	40 025	55794	55 / 94	55 / 94	33/94	55794	55 / 94	45 515	40 000
8																												

(2) Pavement Costs (Cont'd)

	Summar	ary of paven	nent costs													USD per km o	of 6.5m wide											
		Traffic																										
	ORN					Good (S6)							Good (S6)									Good (S6)			Fair (S6)	Fair (S6)	Poor (S5)	Poor S4)
		Subgrade			VG (NG30)	VG (NG30)	Good ((NG15)	Fair (NG7)	Poor (N	NG3)	VG (NG30)	VG (NG30)	Good (NG15)	Fair (NG7)	Poor (NG3)	VG (NG30)	VG (NG30)	Good ((NG15)	Fair (NG7)	Poor (NG3)
		Climate			Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet
		ciinate		DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	22 750	20 313	22 750	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
			_	TRH4	12 458	12 458	20 786	20 786	20 786	20 786	29 724	29 724	13 135	13 135	21 464	21 464	21 464	21 464	30 401	30 401	13 135	13 135	22 073	22 073	22 073	22 073	31 010	31 688
					22 054	23 390	35 212	35 212																				
			naulage	ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
																										34 531	33 022	34 531
			Law																							23 766	32 703 37 920	33 719
			LOW																							26 099 16 599	24 318	37 920 26 099
				OKNSI	13 044	13 644	13 044	13 644	13 044	13 644	25 505	24 172	13 044	13 644	10 044	13 644	13 044	13 044	25 505	24 172	10 599	10 233	10 599	10 299	10 399	10 399	24 510	20 099
	NG55			DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	20 313	11 375	20 313	11 375	29 250	20 313	29 250	19.616	30.063	19.616	30.063	28 554	39 000	37 491	39 000
		import						25 120																		27 490	36 427	38 188
			Medium	DCP-CBR	11 620	12 188	12 188	19 967	20 535	21 000	35 683	35 683	12 070	12 652	12 652	20 418	21 000	29 454	37 598	37 598	19 616	22 416	27 964	30 764	28 554	32 057	43 879	43 879
				ORN31	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	20 313	20 313	20 313	20 313	20 313	20 313	28 031	28 641	21 813	21 813	21 813	21 813	21 813	21 813	29 531	32 057
				-																						50 984	49 475	50 984
			High																							36 867 48 036	45 805 59 858	49 563 59 858
			nigii																							48 036	43 513	48 036
				0	52 257	52 257	52.257	52 257	52.257	52 257	10010	40 020	52 257	52 2.57	52 257	52 257	52 257	52 257	40010	40 025	55754	55754	55754	55754	55754	55754		40 000
				DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	22 750	20 313	22 750	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
			Zero																							22 073	31 010	31 688
																										23 390	35 212	35 212
				ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
				0.00 000																						34 531		
				-																						23 766	30 991 32 703	34 531 33 719
			Low																							26 099	37 920	37 920
																										16 599	24 318	26 099
	NCC																											
	NOUS																									39 000	30 991	39 000
																										27 490	36 427	38 188
			Medium																							32 057	43 879	43 879
				OKNSI	20 515	20 515	20 515	20 515	20 515	20 515	20 031	28 041	20 515	20 515	20 515	20 515	20 515	20 515	20 051	20 041	21 015	21 015	21 015	21 015	21 015	21 813	29 531	32 057
				DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	32 297	11 375	32 297	11 375	41 234	20 313	41 234	13 116	42 047	13 116	42 047	22.054	50 984	30 991	50 984
					24 781		33 109																	36 867		36 867	45 805	49 563
			High	DCP-CBR	11 620	12 188	12 188	19 967	20 535	21 000	29 183	29 183	12 070	12 652	12 652	20 418	21 000	21 870	49 582	49 582	13 116	13 749	21 464	22 097	22 054	48 036	59 858	59 858
				ORN31	32 297	32 297	32 297	32 297	32 297	32 297	40 016	40 625	32 297	32 297	32 297	32 297	32 297	32 297	40 016	40 625	35 794	35 794	35 794	35 794	35 794	35 794	43 513	48 036
				0.00 000	2.420	42.400	2.420	42.405	44.275	42.400	44.375	42.400	44.275	42.042	44.375	42.042	44.275	22.750	20.242	22.750	12.115	22.565	12.446	22.565	22.05.4	22.500	20.004	22.505
				DCP-DN TRH4	2 438	12 188 12 458	2 438	12 188 20 786	11 375 20 786	12 188 20 786	11 375 29 724	12 188 29 724	11 375 13 135	13 813 13 135	11 375 21 464	13 813 21 464	11 375 21 464	22 750	20 313 30 401	22 750 30 401	13 116 13 135	23 563 13 135	13 116 22 073	23 563 22 073	22 054 22 073	32 500 22 073	30 991 31 010	32 500 31 688
			Zero	DCP-CBR	11 620	12 456	12 188	19 967	20 535	20 788	29 183	29 183	12 070	12 652	12 652	20 418	21 464	21 404	31 098	31 098	13 135	13 135	22 073	22 0/3	22 073	22 073	35 212	35 212
			Haulage	ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
		[DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	24 781	20 313	24 781	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
				TRH4	12 458	12 458	21 599	21 599	21 599	21 599	30 5 36	30 536	13 135	13 135	22 276	22 276	22 276	22 276	31 214	31 214	13 135	13 135	22 885	22 885	22 885	22 885	31 823	32 500
			Low	DCP-CBR ORN31	11 620	12 188	12 188	19 967	20 535	21 000	29 183	29 183	12 070	12 652	12 652	20 418	21 000	21 870	31 098	31 098	13 116	13 749	21 464	22 097	22 054	23 390	35 212	35 212
		Cost of		UKN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	24 318	26 099
	NG80	layer/s		DCP-DN	2 438	12 188	2 438	12 188	11 375	12 188	11 375	12 188	11 375	13 813	11 375	13 813	11 375	29 250	20 313	29 250	13 116	23 563	13 116	23 563	22 054	32 500	30 991	32 500
		import		TRH4	12 458	12 458	21 599	21 599	21 599	21 599	30 536	30 536	13 135	13 135	22 276	22 276	22 276	22 276	31 214	31 214	13 135	13 135	22 885	22 885	22 885	22 885	31 823	32 500
			Medium	DCP-CBR	11 620	12 188	12 188	19 967	20 535	21 000	29 183	29 183	12 070	12 652	12 652	20 418	21 000	21 870	31 098	31 098	13 116	13 749	21 464	22 097	22 054	23 390	35 212	35 212
				ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	13 813	13 813	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390
				DCP-DN TRH4	2 438 12 458	12 188	2 438	12 188	11 375	12 188	11 375	12 188 30 536	11 375	13 813	11 375	13 813	11 375	41 234	20 313	41 234	13 116	23 563	13 116	23 563 22 885	22 054	32 500 22 885	30 991 31 823	32 500
			High	TRH4 DCP-CBR	12 458 11 620	12 458 12 188	21 599	21 599 19 967	21 599 20 535	21 599 21 000	30 536 29 183	30 536 29 183	22 276 12 070	22 276 12 652	22 276 12 652	22 276 20 418	22 276 21 000	22 276 21 870	31 214 31 098	31 214 31 098	13 135 13 116	13 135 13 749	22 885 21 464	22 885 22 097	22 885 22 054	22 885 23 390	31 823 35 212	32 500 35 212
				ORN31	13 813	13 813	13 813	13 813	13 813	13 813	21 531	29 185	12 0/0	12 852	13 813	13 813	13 813	13 813	21 531	22 141	14 229	14 229	14 229	14 229	14 229	14 229	21 948	23 390

(3) Pavement Cost Ratios

		Cost rati	ios												Cost-ef	fectiveness DC	P-DN versus other m	nethods										
		Traffic						Low (•	< 0.1 MESA)								.1 - 0.3 MESA)							High (0.3	- 1.0 MESA)			
	ORM	N31 subgra			V Good (S6)	V Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S6)	Poor S5)	V Good (S6)	V Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (S6)	Poor S5)	V Good (S6)	V Good (S6)	Good (S6)	Good (S6)		Fair (S6)	Poor (S6)	Poor S5)
		Subgrad	e		Very Good	(NG25/30)	Good (NG15)	Fair (1	NG7)	Poor	NG3)	Very Good	(NG25/30)	Good (NG15)	Fair (N	G7)	Poor (I	NG3)	Very Good	(NG25/30)	Good (N	G15)	Fair (I	NG7)	Poor (NG3)
		Climate	2		Dry - Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet
				DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
			Zero	TRH4	5,11	1,02	8,53	1,71	1,83	1,71	2,61	2,44	1,15	0,95	1,89	1,55	1,89	0,94	1,50	1,34	1,00	0,56	1,68	0,94	1,00	0,68	1,00	0,98
			Haulage	DCP-CBR	4,77	1,00	5,00	1,64	1,81	1,72	2,57	2,39	1,06	0,92	1,11	1,48	1,85	0,96	1,53	1,37	1,00	0,58	1,64	0,94	1,00	0,72	1,14	1,08
				ORN31	5,67	1,13	5,67	1,13	1,21	1,13	1,89	1,82	1,21	1,00	1,21	1,00	1,21	0,61	1,06	0,97	1,08	0,60	1,08	0,60	0,65	0,44	0,71	0,72
=				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1.00	1.00	1.00	1,00	1.00	1.00	1.00	1,00
hai				TRH4	5,67	0,97	9,78	1,68	2,10	1,68	2,88	2,30	1,11	0,94	1,85	1,57	1,85	1,00	1,51	1,36	0,98	0,54	1,70	0,93	1,07	0,71	1,05	0,98
Free			Low	DCP-CBR	5,43	1,00	5,83	1,63	1,98	1,73	2,89	2,31	1,02	0,93	1,10	1,49	1,72	1,04	1,56	1,40	1,00	0,60	1,66	0,96	1,08	0,77	1,22	1,10
/ste		Cost of		ORN31	6,50	1,11	6,50	1,11	1,39	1,11	2,19	1,82	1,18	1,00	1,18	1,00	1,18	0,64	1,12	1,04	1,10	0,60	1,10	0,60	0,69	0,45	0,78	0,77
teri	NG15	layer/s		DCP-DN	1,00	1,00	1,00	1,00	1.00	1,00	1,00	1,00	1,00	1,00	1.00	1.00	1,00	1,00	1.00	1,00	1,00	1,00	1,00	1.00	1,00	1.00	1,00	1,00
E .		import		TRH4	6.89	0,90	12.53	1,63	2.68	1.63	3,47	2,11	1.04	0,91	1.81	1,59	1,81	1.10	1.54	1,41	0,95	0,51	1,73	0,93	1,19	0,75	1,00	0,98
able			Medium	DCP-CBR	6,90	1,00	7,67	1,63	2,38	1,75	3,59	2,19	0,97	0,94	1,07	1,52	1,54	1,18	1,60	1,46	1,00	0,61	1,69	0,98	1,23	0,85	1,37	1,13
wait				ORN31	8,33	1,09	8,33	1,09	1,79	1,09	2,85	1,82	1,14	1,00	1,14	1,00	1,14	0,69	1,21	1,16	1,11	0,60	1,11	0,60	0,76	0,48	0,90	0,85
٩				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
				DCP-DN TRH4	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	0,47	1,00	0,92	1,00	0,81	1,00	1,00
			High	DCP-CBR	10,17	1,00	12,58	1,62	3,43	1,55	5,49	2,04	0,90	0,96	1,04	1,55	1,32	1,41	1,66	1,40	1,00	0,63	1,73	1,02	1,38	0,96	1,65	1,17
				ORN31	13,25	1,05	13,25	1,05	2,84	1,05	4,60	1,83	1,08	1,00	1,08	1,00	1,08	0,78	1,35	1,36	1,13	0,59	1,13	0,59	0,88	0,52	1,13	0,96
L				000.01	1.00	1.00	1.00	4.00	1.00	4.00	1.00	4.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	4.00	1.00	4.00	1.00	1.00	1.00	1.00	1.00	4.00
<u> </u>	-			DCP-DN TRH4	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	1		Zero	DCP-CBR	4,77	1,02	5,00	1,64	1,81	1,72	2,57	2,39	1,06	0,95	1,05	1,48	1,85	0,96	1,53	1,34	1,00	0,58	1,64	0,94	1,00	0,00	1,14	1,08
	1		Haulage	ORN31	5,67	1,13	5,67	1,13	1,21	1,13	1,89	1,82	1,21	1,00	1,21	1,00	1,21	0,61	1,06	0,97	1,08	0,60	1,08	0,60	0,65	0,44	0,71	0,72
	4			DCP-DN TRH4	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
L	-		Low	DCP-CBR	5,67	0,97	9,08 5,83	1,56	1,95	1,56	2,73	2,19 2,20	1,30	0,94	2,04	1,46	2,04	0,93	1,58	1,30	0,98	0,54	1,57	0,86	0,99 1,00	0,65	0,99	0,92
<u> </u>	1		LOW	ORN31	6,50	1,00	6,50	1,52	1,39	1,02	2,74	1,70	1,20	1,00	1,29	1,59	1,39	0,58	1,05	0,98	1,10	0,60	1,10	0,60	0,69	0,45	0,74	0,71
	NG25/30	Cost of layer/s																										
	11023/30	import		DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
<u> </u>	-		Medium	TRH4 DCP-CBR	6,89 6,90	0,90 1,00	10,31 7,67	1,34	2,21 2,38	1,34	2,99 3,14	1,82	1,63	0,91 0,94	2,36	1,32	2,36	0,92	1,76	1,22	0,95 1,00	0,51 0,61	1,40	0,75	0,96	0,60	0,97	0,84
<u> </u>	- 1		Wedlum	ORN31	8,33	1,00	8,33	1,55	1,79	1,47	2,46	1,51	1,32	1,00	1,00	1,20	1,79	0,69	1,35	0,98	1,00	0,61	1,45	0,60	0,76	0,48	0,79	0,56
	1				-,	_,	-,	_,	-,	2,00	-,	_,	-,	-,	_,	-,	-/	-,	-/	-,	-,	-,	-/	-,	-,	-,	-,	-,
]			DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
	4			TRH4	10,17	0,81	13,58	1,08	2,91	1,08	3,70	1,37	2,51	0,88	3,24	1,14	3,24	0,89	2,26	1,11	0,90	0,47	1,17	0,61	0,91	0,53	0,93	0,71
	-		High	DCP-CBR ORN31	10,83 13,25	1,00	12,58 13,25	1,13	3,43 2,84	1,29	4,19	1,55	2,36	0,96	2,74 2,84	1,09	3,47	1,05 0,78	2,44	1,20 0,99	1,00 1,13	0,63	1,26	0,77 0,59	1,00	0,69	1,21 0,88	0,86 0,69
	1			011101	10,20	2,05	10,20	2,00	2,04	2,00	5,52	2,32	2,04	1,00	2,04	2,00	2,04	0,70	1,51	0,00	1,10	0,00	1,15	0,00	0,00	0,52	0,00	0,05
				DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
L	4		Zero	TRH4	5,11	1,02	8,53	1,71	1,83	1,71	2,61	2,44	1,15	0,95	1,89	1,55	1,89	0,94	1,50	1,34	1,00	0,56	1,68	0,94	1,00	0,68	1,00	0,98
	-		Haulage	DCP-CBR ORN31	4,77 5,67	1,00	5,00	1,64	1,81	1,72	2,57	2,39	1,06	0,92	1,11 1,21	1,48	1,85	0,96	1,53	1,37 0,97	1,00	0,58	1,64	0,94 0,60	1,00	0,72	1,14 0,71	1,08
	1			URINST	5,07	1,15	5,67	1,15	1,21	1,15	1,05	1,02	1,21	1,00	1,21	1,00	1,21	0,01	1,00	0,97	1,00	0,00	1,00	0,00	0,05	0,44	0,71	0,72
]			DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
				TRH4	5,67	0,97	9,08	1,56	1,95	1,56	2,73	2,19	1,30	0,94	2,04	1,46	2,04	0,93	1,58	1,30	0,98	0,54	1,57	0,86	0,99	0,65	0,99	0,92
<u> </u>	-		Low	DCP-CBR	4,77	0,86	5,00	1,40	1,81	1,62	2,74	2,20	1,20	0,93	1,29	1,39	2,02	0,98	1,63	1,34	1,00	0,60	1,55	0,90	1,00	0,71	1,15	1,04
		Cost of		ORN31	6,50	1,11	6,50	1,11	1,39	1,11	2,07	1,70	1,39	1,00	1,39	1,00	1,39	0,64	1,16	0,98	1,10	0,60	1,10	0,60	0,69	0,45	0,74	0,71
	NG45	layer/s		DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
]	import		TRH4	6,89	0,90	10,31	1,34	2,21	1,34	2,99	1,82	1,63	0,91	2,36	1,32	2,36	0,92	1,76	1,22	0,95	0,51	1,40	0,75	0,96	0,60	0,97	0,84
	-		Medium	DCP-CBR	4,77	0,65	5,00	1,07	1,81	1,47	3,14	1,91	1,52	0,94	1,68	1,26	2,42	1,01	1,85	1,29	1,00	0,61	1,43	0,84	1,00	0,70	1,17	0,96
<u> </u>	-			ORN31	8,33	1,09	8,33	1,09	1,79	1,09	2,46	1,53	1,79	1,00	1,79	1,00	1,79	0,69	1,38	0,98	1,11	0,60	1,11	0,60	0,76	0,48	0,79	0,70
<u> </u>	1			DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
]			TRH4	10,17	0,81	13,58	1,08	2,91	1,08	3,70	1,37	2,51	0,88	3,24	1,14	3,24	0,89	2,26	1,11	0,90	0,47	1,17	0,61	0,91	0,53	0,93	0,71
			High	DCP-CBR	4,77	0,40	5,00	0,65	1,81	1,29	4,19	1,55	2,36	0,96	2,74	1,09	3,47	1,05	2,44	1,20	1,00	0,63	1,26	0,77	1,00	0,69	1,21	0,86
	-			ORN31	13,25	1,05	13,25	1,05	2,84	1,05	3,52	1,32	2,84	1,00	2,84	1,00	2,84	0,78	1,97	0,99	1,13	0,59	1,13	0,59	0,88	0,52	0,88	0,69
	<u> </u>			I				I	1 1		1		1	I	1 1						II				I		I	

(4) Pavement Cost Ratios (Cont'd)

<		(Cost rati	ios												Cost-el	ffectiveness DCF	P-DN versus other	methods										
<table-container> <</table-container>																													
		ORN				V Good (S6) Very Good	V Good (S6) (NG25/30)					Poor (S6) Poor (Poor S5) NG3)		V Good (S6) (NG25/30)						Poor S5) NG3)		V Good (S6) (NG25/30)					Poor (S6) Poor (Poor S5) NG3)
			Climate				Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet	Dry -Moderate	Wet
<	_																												1,00
<																		1	111	1			-/	1	11				1,08
				Haulage	ORN31																								0,72
					DCP-DN		1,00	1,00		1,00			1,00						1,00		1,00	1,00	1,00		1,00	1,00	1,00	1,00	1,00
				1				-,													-)	-,	-,				-,	-,	0,98
N N N N N				LOW																									1,10 0,76
No No <		G 55																											
	_																												1,00
New biase <	_			Medium															-,								-,		1,13
					ORN31	8,33	1,67	8,33	1,67	1,79	1,67	2,46	2,35	1,79	1,00	1,79	1,00	1,79	0,69	1,38	0,98	1,11	0,73	1,11	0,73	0,76	0,56	0,79	0,82
New Part Part Part Part Part Part Part Part						-)																					,		1,00
New Print New Prin New Print <				Link																									0,97
				nigii																									0,94
</td <td></td> <td></td> <td></td> <td></td> <td>DCP-DN</td> <td>1,00</td>					DCP-DN	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00	1,00
No <td></td> <td></td> <td></td> <td>Zero</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-)00</td> <td></td> <td>-/</td> <td>-,</td> <td></td> <td>0,95</td> <td>-/</td> <td></td> <td>-/00</td> <td></td> <td>-/</td> <td>-)</td> <td></td> <td>-,</td> <td>-/00</td> <td></td> <td></td> <td>0,68</td> <td></td> <td>0,98</td>				Zero						-)00		-/	-,		0,95	-/		-/00		-/	-)		-,	-/00			0,68		0,98
N V	_																												1,08
1 N					UKN31	5,67	1,13	5,67		1,21	1,13	1,89	1,82		1,00	1,21	1,00	1,21	0,61		0,97	1,08		1,08	0,60		0,44	0,71	0,72
																													1,00
Model Model <th< td=""><td></td><td></td><td></td><td>Low</td><td>11014</td><td>5,61</td><td>-)</td><td></td><td></td><td>-)</td><td></td><td></td><td>-)</td><td></td><td></td><td>2,04</td><td></td><td></td><td></td><td>1,50</td><td></td><td></td><td>-/</td><td>-/</td><td></td><td></td><td>-,</td><td></td><td>0,98</td></th<>				Low	11014	5,61	-)			-)			-)			2,04				1,50			-/	-/			-,		0,98
No. Implicit			Cost of																										0,76
Note Note Note Sector Note Sector	NG	G <mark>65</mark>			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1,00
No No<			import		TRH4	6,89	1,38	10,31	2,06	2,21	2,06	2,99	2,79	1,63	0,91	2,36	1,32	2,36	0,92	1,76	1,22	1,41	0,62	2,10	0,91	1,25	0,70	1,18	0,98
No No<				Medium																									1,13 0,82
Normation Normation <t< td=""><td></td><td></td><td></td><td></td><td>UKN31</td><td>8,33</td><td>1,67</td><td>8,33</td><td>1,67</td><td>1,79</td><td>1,67</td><td>2,40</td><td>2,35</td><td></td><td></td><td>1,79</td><td>1,00</td><td>1,79</td><td>0,69</td><td></td><td>0,98</td><td>1,00</td><td>0,73</td><td>1,66</td><td>0,73</td><td></td><td>0,56</td><td>0,95</td><td></td></t<>					UKN31	8,33	1,67	8,33	1,67	1,79	1,67	2,40	2,35			1,79	1,00	1,79	0,69		0,98	1,00	0,73	1,66	0,73		0,56	0,95	
Here Here Gr-Re 4.77 1.00 5.00 1.64 1.01 2.70 2.80 1.01 0.66 1.80 1.80 1.00 1.00 0.33 1.64 0.53 1.00 0.93 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.03 1.00 0.00 1.00 </td <td></td> <td>1,00</td>																													1,00
New Net Net Net <				High															-,					-/0-					0,97
NS0 TR4 5.11 1.02 8.53 1.71 1.83 1.71 2.61 2.44 1.15 0.95 1.89 0.94 1.50 1.34 1.00 0.56 1.68 0.94 1.00 0.66 1.68 0.94 1.00 0.56 1.68 0.94 1.00 0.56 1.68 0.94 1.00 0.66 1.16 0.94 1.00 0.56 1.68 0.94 1.00 0.66 0.77 1.00 0.56 1.68 0.94 1.00 0.66 0.77 1.00 0.56 1.68 0.94 1.00 0.67 0.77 0.60 0.77 0.77 0.77 0.77 2.68 2.51 1.15 0.55 1.68 0.94 1.00 1	\exists																												0,94
NSR 0-0-0R 14/4 0.70 5.00 1.64 1.81 1.72 2.75 2.39 1.06 0.92 1.11 1.48 1.85 0.96 1.33 1.37 1.00 0.58 1.64 0.94 1.00 0.72 1.14 0.00 1.00 1.00 1.00 1.00 1.01 1.00 1.01 1.00 1.01 1.00 <th1.00< th=""> 1.00 1.00 <</th1.00<>																													1,00
New New <td>_</td> <td></td> <td></td> <td>Zero</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-,</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>-,</td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td>0,98</td>	_			Zero						-,								1		1			-,	1		1			0,98
New New <td></td> <td>1,08</td>																													1,08
NS8 First 5.11 1.02 8.80 1.77 1.90 1.77 2.80 2.51 1.51 0.95 1.61 1.96 0.90 1.54 1.26 1.00 0.56 1.74 0.97 1.04 0.70 1.03 OC-068 4.77 1.00 5.00 1.13 1.22 2.57 2.29 1.01 0.20 1.21 0.88 1.53 1.53 0.50 1.00 0.60	\neg				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00		1.00
Image: Note of the problem o	1							1			1	/	1.1	1	1		1	1	1			1	1		1		1		1,00
NB Apprint Or-N I.O				Low	DCP-CBR	4,77	1,00	5,00	1,64	1,81	1,72	2,57	2,39	1,06	0,92	1,11	1,48	1,85	0,88	1,53	1,25	1,00	0,58	1,64	0,94	1,00	0,72	1,14	1,08
Import DrSN 1,00 1,01 1,00 1,00 1,01 1,00 1,00 1,01 1,00 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01 1,01	_				ORN31	5,67	1,13	5,67	1,13	1,21	1,13	1,89	1,82	1,21	1,00	1,21	1,00	1,21	0,56	1,06	0,89	1,08	0,60	1,08	0,60	0,65	0,44	0,78	0,80
TRH 5,11 1,02 8,86 1,77 1,90 1,77 2,68 2,51 1,15 0,95 1,66 1,67 1,00 0,56 1,74 0,97 1,00 0,70 1,00 0,70 1,74 0,70 1,00 0,70 1,74 0,70 1,03 0,70 1,00 0,70 1,74 0,70 1,00 0,70 1,10 0,70 1,74 0,70 1,00 0,70 1,01 0,70 1,00 0,71 1,00 0,71 1,00 0,71 1,00 0,71 1,00 0,71 1,00 0,71 1,00 <th1< td=""><td>NG</td><td>680</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1,00</td></th1<>	NG	680																											1,00
ORN3 5.67 1.13 5.67 1.13 1.21 1.82 1.82 1.01 1.00 1.21 0.47 0.47 0.46 0.66 0.60 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50			inport																										1,00
Image: Problement of the state of	_			Medium																									1,08 0,72
TRH 5,11 1,02 8,86 1,77 1,90 1,77 2,68 2,51 1,96 1,61 1,96 0,54 1,54 0,76 1,00 0,56 1,74 0,97 1,04 0,70 1,03 Hgh DCP-CBR 4,77 1,00 5,00 1,64 1,72 2,57 2,39 1,06 0,22 1,11 1,48 1,53 0,53 1,53 0,75 1,00 0,58 1,64 0,94 0,072 1,14	\neg				DCP-DN	1.00	1.00	1.00				1.00	1.00		1.00		1.00	1.00	1.00		1.00	1.00		1.00			1.00		1,00
Hefe DCP-GR 4,77 1.00 5,00 1.64 1.81 1.72 2,57 2,39 1.06 0.92 1.11 1.48 1.85 0.53 1.53 0.75 1.00 0.58 1.64 0.94 1.00 0.72 1.14																													1,00
ORN31 5,67 1,13 5,67 1,13 1,21 1,13 1,89 1,82 1,21 1,00 1,21 1,00 1,21 0,33 1,06 0,54 1,08 0,60 1,08 0,60 0,65 0,44 0,71				High																									1,08
					ORN31	5,67	1,13	5,67	1,13	1,21	1,13	1,89	1,82	1,21	1,00	1,21	1,00	1,21	0,33	1,06	0,54	1,08	0,60	1,08	0,60	0,65	0,44	0,71	0,72

(5) Project Costs

	Summa	ary of Proje	ct costs												L	ISD per km	of 6.5m wk	de										
		Traffic						Low (< 0	.1 ME5A)						N	/led ium (0.1	1 - 0.3 MES	A)						High (0.3 -	1.0 MESA)			
	OR N3	31 subgrade	e class		Good (56)	Good (S6)	Good (S6)	Good (56)	Fair (S6)	Fair (S6)	Poor (SS)	Poor S4)	Good (S6)	Good (S6)	Good (S6)	Good (56)	Fair (S6)	Fair (S6)	Poor (SS)	Poor S4)	Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (SS)	Poor S4)
		Subgrade			VG (NG30)	VG (NG30)	Good	(NG15)	Fair ((NG7)	Poor	(NG3)	VG (NG30)	VG (N G30)	Good(NG15)	Fair	(NG7)	Poor	(NG3)	VG (NG30)	VG (N G30)	Good	(NG15)	Fair	(NG7)	Poor	(NG3)
		Climate			Dry - Mode rate	Wet	Dry - Mode rate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Mode rate	Wet	Dry - Moderate	Wet	Dity - Mode rate	Wet	Dry - Moderate	Wet	Diy - Moderate	Wet	Diy - Moderate	Wet	Dry - Moderate	Wet	Diy - Mode rate	Wet
				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	135,814	132,576	135,814	123,017	136,893	123,017	136,893	134,889	148,754	146,760	148,754
			Zero	TR H4 DCP-CBR	122,144	122,144	133,205	133,205	133,205	133,205	145,077	145,077	123,048	123,043	134,105	134,105	134,105	134,105	145,976	145,976	123,043	123,043	134,914	134,914	134,914	134,914	146,785	147,685
			Haulage	ORN31	121,030	121,784 123,942	121,784 123,942	132,118 123,942	132,872 123,942	133,489 123,942	144,358 134,195	144,358 135,004	121,628 123,942	122,401 123,942	122,401 123,942	132,716 123,942	133,489 123,942	134,645 123,942	146,902 134,195	146,902 135,004	123,017 124,496	123,858 124,496	134,105 124,495	134,946 124,496	134,889 124,495	136,664 124,496	152,366 134,748	152,366
				DCP-DN TRH4	108,833 123,942	124,482 123,942	108,833 137,253	124,482 137,253	120,705 137,253	124,482 137,253	120,705 149,124	124,482 149,124	123,40B 125,291	126,640 125,291	123,40B 138,602	126,640 138,602	123,40B 138,602	138,512 138,602	135,274 150,473	138,512 150,473	125,715 125,291	142,289 125,291	125,715 139,861	142,289 139,861	137,587 139,861	154,160 139,861	149,458 151,732	154,160
			Low	DCP-CBR	123,188	124,482	124,482	136,434	135,570	138,345	149,214	149,214	123,786	125,099	125,099	137,083	136,187	139,951	151,758	151,758	125,715	127,456	138,962	140,702	140,285	142,959	199,111	159,11
		Cost of		ORN31	125,640	126,640	125,640	126,640	126,640	126,640	138,691	139,951	125,640	126,640	125,640	126,640	125,640	126,640	138,691	139,951	127,648	127,643	127,648	127,643	127,643	127,643	139,695	142,95
	NG15	layer/s		DCP-DN	108,833	130,418	108,833	130,418	120,705	130,418	120,705	130,418	129,338	132,576	129,338	132,576	129,338	144,447	141,210	144,447	131,651	154,160	131,651	154,160	143,522	166,081	155,398	166, CB1
		Import		TRH4	127,899	127,899	146,156	146,156	146,156	146,156	158,027	158,027	130,238	130,238	148,494	148,494	148,494	148,494	160,365	160,365	130,238	130,238	150,748	150,743	150,743	150,743	162,614	164,952
			Medium	OCP-CBR ORN31	127,937 132,576	130,418 132,576	130,418 132,576	145,981 132,576	141,506 132,576	149,029 132,576	199,898 148,584	159,898 150,832	128,535 132,576	131,084 132,576	131,034 132,576	146,529 132,576	142,122 132,576	151,624 132,576	162,442 148,584	152,442 150,832	131,651 134,568	135,370 134,568	149,646 134,568	153,365 134,568	152,156 134,568	156,809 134,568	173,950 150,577	173,950 156,809
				UNIT 1	132,370	132,3/6	132,370	152,5/6	132,378	132,3/0	140,004	190,002	132,370	102,0/0	132,378	132,3/0	132,370	132,3/6	140,004	130,002	139,305	104,305	139,305	134,305	139,300	134,305	130,377	134 805
				DCP-DN	108,833	146,336	108,833	146,336	120,705	146,336	120,705	146,336	145,257	148,494	145,257	148,494	145,257	160,365	157,128	160,365	147,500	185,997	147,500	185,997	199,440	197,858	171,312	197,858
			High	TR H4 DCP-CBR	138,512	138,512	170,033 146,336	170,0B3 171,401	170,033	170,083 177,682	181,905	181,905 188,551	143,503 141,269	143,503 146.952	175,025 146,952	175,025 171,999	175,025 158,041	175,025	185,896	186,896 191,095	148,508 147,569	143,503	179,925	179,926 187,324	179,925	179,926 193,952	191,797 213,746	196,789 213,746
				ORN31	148,494	348,494	148,494	148,494	148,494	148,494	175,115	180,016	148,494	148,494	148,494	148,494	148,494	148,484	175,115	180,016	153,140	153,140	153,140	153,140	153,140	153,140	179,760	193,952
				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	135,814	132,575	135,814	123,017	136,893	123,017	136,893	134,889	148,754	146,760	148,754
			Zero	TRH4	122,144	122,144	133,205	133,205	133,205	133,205	145,077	145,077	123,043	123,043	134,105	134,105	134,105	133,414	145,976	145,976	123,043	123,043	134,914	134,914	134,914	134,914	146,785	147,685
			Haulage	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
au l			Ŭ	ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,495	124,495	124,496	124,496	124,496	124,496	134,748	136,664
e P				DCP-DN	108,833	124,482	108,833	124,482	120,705	124,482	120,705	124,482	120,705	126,640	120,705	126,640	120,705	138,512	132,576	138,512	125,715	142,289	125,715	142, 289	137,587	154,160	149,458	154,160
Free			Low	TRH4 DCP-CBR	123,942 123,188	123,942 124,482	135,004 124,482	135,004	135,004 135,570	135,004 136,187	146,875 147,056	146,875 147,056	125,291 123,786	125,291 125,099	136,353 125,099	136,353 134,874	136,353 136,187	136,353 137,793	148,224 149,600	148,224 149,600	125,291 125,715	125,291 127,456	137,163 136,803	137, 163 138, 544	137,163 137,587	137, 163 140, 261	149,034 155,964	150,383
ls'		Cost of		ORN31	125,640	126,640	125,640	126,640	125,640	126,640	136,893	137,702	125,640	126,640	125,640	126,640	125,640	126,640	136,898	137,702	127,648	127,643	127,643	127,643	127,643	127,643	137,896	140,251
eriak/	NG25/30	layer/s		0.00.041	108.833	130.418	108.833	130,418	120.705	130,418	120.705	120 410	120.705	133.07	120.705	133.000	120.705	144,447	135.035	144.447	131.651	27.4 37.0	131.651	154.90	143.522	100.001	100.303	100.000
mat		Import		DCP-DN TRH4	127,899	130,418	138,961	130,418	138,961	130,418	120,705	130,418 150,832	130,738	132,576 130,238	141,300	132,576 141,300	141,300	141,300	132,576	144,447 153,171	130,238	154,150 130,238	142,109	154, 160 142, 109	143,522	166,081 142,109	155,393 153,980	166,081 156,318
-			Medium	DCP-CBR	127,937	130,418	130,418	139,025	141,506	142,122	152,991	152,991	128,535	131,084	131,034	139,623	142,122	144,718	155,535	155,585	131,651	135,370	142,739	146,458	143,522	148,175	163,878	163,878
Available				ORN31	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	134,568	134,568	134,568	134,568	134,568	134,568	144,821	148, 173
P a				DCP-DN	108,833	146,336	108,833	146,336	120,705	146,336	120,705	146,336	120,705	148,494	120,705	148,494	120,705	160,365	132,576	160,365	147,509	185,997	147,509	185,997	159,440	197,858	171,312	197,863
-			High	TRH4 DCP-CBR	138,512 140,671	138,512 146,336	149,573 146,336	149,573 151,759	149,573 157,424	149,573 158,041	161,445 168,910	161,445 168,910	148,508 141,269	143,503 146,952	154,565 146,952	154,565 152,357	154,565 158,041	154,565 163,289	166,436 171,453	166,436 171,453	148,508 147,569	143,503 156,594	154,565 158,657	154, 965 167, 682	154,565 159,440	154,965 169,400	166,436 185,102	171,423
			11181	ORN31	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	153,140	153,140	153,140	153,140	153,140	153,140	163,392	169,40
					100.000	-	100.000		100.007		1.00		1.00.005	111.047	100.007	111 017	1.00	-			170.015		170.015	120.000	124.007	140.00		140 -
			Zero	DCP-DN TRH4	108,833 122,144	121,784 122,144	108,833 133,205	121,784 133,205	120,705 133,205	121,784 133,205	120,705 145,077	121,784 145,077	120,705 123,043	123,942 123,043	120,705 134,105	123,942 134,105	120,705 134,105	135,814 134,105	132,576 145,976	135,814 145,976	123,017 123,043	136,893 123,043	123,017 134,914	136,893 134,914	134,889 134,914	148,754 134,914	146,760 146,785	148,754 147,683
			Haulage	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
				ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,495	124,496	124,496	124,496	124,496	134,748	136,664
				DCP-DN	108,833	124,482	108,833	124,482	120,705	124,482	120,705	124,482	120,705	126,640	120,705	126,640	120,705	138,512	132,576	138,512	125,715	142,289	125,715	142, 289	137,587	154,160	149,438	154,160
			Low	TRH4	123,942	123,942	135,004	135,004	135,004	135,004	145,875	146,875	125,291	125,291	136,353 125.099	136,353 134,874	136,353	136,353 137,793	148,224	148,224	125,291	125,291	137,163	137, 163	137,163 137,587	137, 163	149,034	150,383
		Cost of	Low	DCP-CBR ORN31	121,030 125,640	121,784 126,640	121,784 125,640	132,118 126,640	132,872 125,640	136,187 126,640	147,056 136,898	147,056 137,702	123,786 126,640	125,099 126,640	125,099 126,640	134,874 126,640	136,187 125,640	137,793	149,600 136,893	149,600 137,702	125,715 127,643	127,456 127,643	136,80B 127,643	138,544 127,643	137,587	140,261 127,643	155,964 137,896	155,964
	NG45	layer/s																										
		Import		DCP-DN TRH4	108,833 127,899	130,418 127,899	108,833 138,961	130,418 138,961	120,705 138,961	130,418 138,961	120,705 150,832	130,418 150,832	120,705	132,576 130,238	120,705 141,300	132,576 141,300	120,705 141,300	144,447 141,300	132,576	144,447 153,171	131,651 130,238	154,150 130,238	131,651 142,109	154,160 142,109	143,522 142,109	166,081 142,109	155,393 153,980	166,081 156,318
			Medium	DCP-CBR	121,030	121,784	121,784	132,118	132,872	142,122	152,991	152,991	128,535	131,084	131,034	139,623	142,122	144,718	155,535	155,535	131,651	135,370	142,739	146,458	143,522	148, 175	163,878	163,878
				ORN31	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	134,568	134,568	134,568	134,568	134,568	134,568	144,821	148, 17
			<u> </u>	DCP-DN	108,833	146,336	108,833	146,336	120,705	146,336	120,705	146,336	120,705	148,494	120,705	148,494	120,705	160,365	132,576	160,365	147,569	185,997	147,569	185,997	199,440	197,858	171,312	197,8
				TR H4	138,512	138,512	149,573	149,573	149,573	149,573	161,445	161,445	148,508	143,503	154,565	154,565	154,565	154,565	166,436	166,486	148,508	143,503	154,565	154,965	154,565	154,965	166,436	171,42
			High	DCP-CBR ORN31	121,030 148,494	121,784 148,494	121,784 148,494	132,118 148,494	132,872 148,494	158,041 148,494	168,910 158,747	168,910 159,556	141,269 148,494	146,952 148,494	145,952 148,494	152,357 148,494	158,041 148,494	163,289 148,494	171,453 158,747	171,453 159,556	147,569	156,994 153,140	158,657 153,140	167,682 153,140	159,440 153,140	169,400 153,140	185,102 163,392	185, 102
	1			UKN31	145,434	148,494	148,494	145,494	148,434	348,494	138,747	109,306	148,494	148,484	148,434	348,494	148,499	148,484	138,74/	139,396	135,140	153,140	155,140	155,140	155,140	153, 140	185,392	169,400

(6) Project Costs (Cont'd)

				DCP-DN	108.833	121.784	108.833	121.784	120.705	121.784	120.705	121.784	120.705	123.942	120.705	123.942	120.705	135.814	132.575	135.814	123.017	136,893	123.017	136,893	134,899	148,754	145.760	148,754
			-	TRH4	172.144	122,144	133,205	133,205	133,205	133.205	145.077	145,077	123,048	123.043	134,105	134,105	134,105	134,105	145.975	145,976	123,043	123.043	134,914	134,914	134,914	134,914	146,785	147,685
			Zero	DCP-CBR	121.030	121.784	121.784	132,118	132,872	133,489	144.358	144.358	121.628	122,401	122,401	132,716	133,489	134,645	146.902	146.902	123.017	123.858	134,105	134,946	134,899	136.664	152,366	152,366
			Haulage	ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,496	124,496	124,496	124,496	124,496	134,748	136,664
			-	0.000							1.00,120	200,000				20,00		20,000	100,220	200,000	100,000	24,400	100,000	100	100,000	10000	2.00,000	104004
				DCP-DN	108,833	121,784	10E,833	121,784	120,705	121,784	120,705	121,784	120,705	126,640	120,705	126,640	120,705	138,512	132,576	138,512	125,715	139,591	125,715	139, 991	137,587	151,462	149,458	151,462
				TRH4	123,942	123,942	135,004	135,004	135,004	135,004	146,875	146,875	125,291	125,291	136,353	136,353	136,353	136,353	148,224	148,224	125,291	125,291	137,168	137, 163	137,163	137, 163	149,034	150.383
			Low	DCP-CBR	121.030	121,784	121.784	132,118	132,872	133,489	147,056	147.056	121,628	122,401	122,401	132,716	133,489	137,793	149,600	149,600	125,715	127,456	136.80B	138,544	137,587	140,251	155,964	155,964
				ORN31	125,640	126,640	125,640	126,640	125,640	126,640	136,898	137,702	125,640	126,640	125,640	126,640	125,640	126,640	136,893	137,702	127,643	127,643	127,643	127,643	127,643	127,643	137,896	140,261
		Cost of																										
	NG55	layer/s	<u> </u>	DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	132,576	120,705	132,576	120,705	144,447	132,576	144,447	131,651	145,526	131,651	145,526	148,522	157,398	155,398	157,398
		Import		TR H4	127,899	127,899	138,961	138,961	138,961	138,961	150,832	150,832	130,238	130,238	141,300	141,300	141,300	141,300	153,171	153,171	130,238	130,238	142,109	142,109	142,109	142,109	153,980	156.318
		-	Medium	DCP-CBR	121.030	121,784	121,784	132,118	132,872	133,489	152,991	152,991	121,628	122,401	122,401	132,716	133,489	144,718	155,535	155,585	131.651	135,370	142,739	146.458	143.522	148,175	163,878	163,878
				ORN31	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	132,576	132,576	132,576	132,576	132,576	132,576	142,828	143,638	134,568	134,568	134,568	134,568	134,568	134,568	144,821	148,175
				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	148,494	120,705	148,494	120,705	160,365	132,576	160,365	147,569	161,445	147,569	161,445	199,440	173,316	171,312	173,316
				TRH4	138.512	138.512	149,573	149.573	149,573	149,573	161,445	161,445	148,508	143,503	154,565	154,565	154,565	154,565	166,436	166,486	148,508	143.503	154,565	154,965	154,565	154,565	166,436	171,427
			High	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	168,910	168,910	121,628	122,401	122,401	132,716	133,489	163,289	171,453	171,453	147,569	156,594	158,657	167,682	199,440	169,400	185,102	185, 102
				ORN31	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	153,140	153,140	153,140	153,140	153,140	153,140	163,392	169,400
1				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	135,814	132,576	135,814	123,017	136,893	123,017	136,893	134,889	148,754	146,760	148,754
			Zero	TRH4	122,144	122,144	133,205	133,205	133,205	133,205	145,077	145,077	123,043	123,043	134,105	134,105	134,105	134,105	145,975	145,976	123,043	123,043	134,914	134,914	134,914	134,914	146,785	147,685
				DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
-			Haulage	ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,496	124,496	124,496	124,496	124,496	134,748	136,664
Ē																												
-				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	126,640	120,705	126,640	120,705	138,512	132,576	138,512	123,017	139,591	123,017	139,591	134,889	151,462	146,760	151,462
Free				TRH4	123,942	123,942	135,004	135,004	135,004	135,004	145,875	146,875	136,353	136,353	136,353	136,353	136,353	136,353	148,224	148,224	125,291	125,291	137,168	137, 163	137,163	137, 163	149,034	150,383
			Low	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	149,600	149,600	123,017	123,858	134,105	134,946	134,889	140,261	155,964	155,964
als		Cost of		ORN31	126,640	126,640	125,640	126,640	126,640	126,640	136,898	137,702	125,640	126,640	126,640	126,640	125,640	126,640	136,898	137,702	127,643	127,643	127,648	127,643	127,643	127,643	137,896	140,261
materials/	NG65	layer/s																										
at		Import		DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	132,576	120,705	132,576	120,705	144,447	132,576	144,447	123,017	145,526	123,017	145,526	134,889	157,398	146,760	157, 398
E		mpore	Medium	TRH4	127,899	127,899	138,961 121,784	138,961	138,961	138,961	150,832	150,832	130,238	130,238	141,300	141,300 132,716	141,300	141,300	153,171	153,171	130,238	130,238 123,858	142,109	142, 109	142,109	142, 109	153,980	156,318
ple			Medium	DCP-CBR ORN31	121,030	121,784 132,576	121,784	132,118 132,576	132,872 132,576	133,489 132,576	144,358 142,828	144,358 143,638	121,628	122,401 132,576	122,401 132,576	132,716	133,489 132,576	134,645	155,535 142,828	155,585 143,688	123,017 134,568	123,858 134,568	134,105 134,568	134,946	134,889 134,568	148,175 134,568	163,878 144,821	163,878
-				UNISI	132,576	152,5/6	152,576	152,3/6	152,570	152,5/6	1-46,040	440,000	132,576	152,5/6	12,370	152,5/0	132,370	152,5/0	146,040	440,000	134,300	404,300	134,300	134,568	139,300	13% 300	144,021	148, 175
Availa				DCP-DN	108.833	121.784	108.833	121.784	120.705	121.784	120.705	121.784	120.705	148,494	120.705	148,494	120.705	160.365	132.576	160.365	123.017	161.445	123.017	161.445	134.889	173.316	146,760	173,316
<				TRH4	138,512	138,512	149,573	149,573	149,573	149,573	161,445	161,445	143,50B	143,503	154,565	154,565	154,565	154,565	166,436	166,486	148,50B	143,503	154,565	154,565	154,565	154,965	166,436	171,427
			High	DCP-CBR	121.030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	171,453	171,453	123.017	123,858	134,105	134,946	134,889	169,400	185,102	185, 102
				ORN31	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	148,494	148,494	148,494	148,494	148,494	148,494	158,747	159,556	153,140	153,140	153,140	153,140	153,140	153,140	163,392	169,400
ł				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	135,814	132,576	135,814	123,017	136,893	123,017	136,893	134,889	148,764	146,760	148,754
			Zero	TR H4	122,144	122,144	133,205	133,205	133,205	133,205	145,077	145,077	123,043	123,043	134,105	134,105	134,105	134,105	145,975	145,976	123,043	123,043	134,914	134,914	134,914	134,914	146,785	147,685
				DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
			Haulage	ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,496	124,496	124,496	124,496	124,496	134,748	136,664
				DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	138,512	132,576	138,512	123,017	136,893	123,017	136,893	134,889	148,754	145,760	148,754
				TRH4	122,144	122,144	134,285	134,285	134,285	134,285	145,155	146,156	123,048	123,043	135,184	135,184	135,184	135,184	147,055	147,055	123,043	123,043	135,993	135,993	135,998	135,993	147,865	148,754
			Low	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
		Cost of		ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,496	124,496	124,496	124,496	124,496	137,896	140,261
	NG80	layer/s	L																									
		Import		DCP-DN	108,833	121,784	108,833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	144,447	132,576	144,447	123,017	136,893	123,017	136,893	134,889	148,754	146,760	148,754
		mport		TRH4	122,144	122,144	134,285	134,285	134,285	134,285	146,156	146,156	123,048	123,043	135,184	135,184	135,184	135,184	147,055	147,055	123,043	123,043	135,998	135,993	135,998	135,993	147,865	148,754
			Medium	DCP-CBR	121,030	121,784	121,784	132,118	132,872	133,489	144,358	144,358	121,628	122,401	122,401	132,716	133,489	134,645	146,902	146,902	123,017	123,858	134,105	134,946	134,889	136,664	152,366	152,366
				ORN31	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	123,942	123,942	123,942	123,942	123,942	123,942	134,195	135,004	124,496	124,496	124,496	124,496	124,495	124,496	134,748	136,664
			<u> </u>	DCP-DN	108,833	121,784	108.833	121,784	120,705	121,784	120,705	121,784	120,705	123,942	120,705	123,942	120,705	160,365	132,576	160,365	123,017	136,893	123,017	136,893	134,889	148,754	146,760	148,754
				TRH4	108,835	121,784	134,285	121,784	134,285	134,285	146,156	121,784	135,184	123,942	135,184	123,942	135,184	135,184	147,055	147,055	123,01/	136,293	125,998	135,893	139,889	148,764	146,760	148,764
			High	DCP-CBR	122,144	122,144	134,285	134,285	139,285	134,285	146,156	144,358	135,184	122,401	135,189	135,184	133,489	135,184	147,035	146,902	123,043	123,043	135,998	133,993	135,995	135,993	147,865	148,764
			riign	ORN31	123,942	123,942	123,942	123,942	132,872	123,942	134,195	135,004	123,942	122,401	122,401	123,942	123,942	123,942	134,195	135,004	125,017	124,496	124,496	124,496	124,496	124,496	134,748	136,664
				UNIS1	140,7%	223,342	123,742	225,542	140,7%	123,342	139,125	155,004	145,742	225,342	120,7%	223,342	140,7%	123,342	139,135	155,004	124,400	1214,400	124,400	114,400	124,430	124,400	139,795	120.004
			1	1				1						1				1	1				1	1				

(7) Project Costs Ratios

	Proje	ect Cost Ra	atios											В	ased on USI) per km of	f 6.5 m wide	2										
		Traffic						Low (< 0	.1 MESA)						M	edium (0.1	- 0.3 MESA)					1	High (0.3 -	1.0 MESA	.)		
	OR N3	1 subgrade	class		Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (SS)	PoorS4)	Good (S6)	Gold (S6)	Good (S6)	Good (56)	Fair (S6)	Fair (S6)	Poor (SS)	Poor 54	Good (S6)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor(SS)	PoorS4)
		Subgrade			VG (NG30)	VG (NG30)	Good	(NG15)	Fair	(NG7)	Poor	(NG3)	VG (NG30)	VG (NG30)	Good (NG15)	Fair (I	NG7)	Po or (NG3)	VG (NG30)	VG (NG30)	Good (NG15)	Fair	(NG7)	Poor	(NG3)
		Climate			Dry - Modierate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Mode rate	Wet	Dry - Moderate	Wet	Dry · Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Diy - Moderate	Wet
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100
			Zero	TRH4 DCP-CBR	1.12	1.00	1.22	1.09	1.10	1.09	1.20	1.19	102	0.99	1.11 1.01	1.08	1.11	0.99	1.10	1.07	100	0.90	1.10	0.99	1.00	0.91	1.00	0.99 102
			Haulage	ORN31	1.14	1.02	1.14	1.02	1.03	1.02	1.11	1.11	108	1.00	1.03	1.00	1.03	0.91	1.01	0.99	1.01	0.91	1.01	0.91	0.92	0.84	0.92	0.92
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100
				TRH4	1.14	1.00	1.26	1.10	1.14	1.10	1.00	1.20	102	0.99	1.12	1.09	1.12	1.00	1.11	1.09	100	0.88	1.11	0.98	1.02	0.91	1.02	0.99
			Low	DCP-CBR	1.13	1.00	1.14	1.10	1.12	1.11	1.24	1.20	100	0.99	1.01	1.08	1.10	1.01	1.12	1.10	1.00	0.90	1.11	0.99	1.02	0.93	1.06	108
		Costof		ORN31	1.16	1.02	1.16	1.02	1.05	1.02	1.15	1.12	1.08	1.00	1.03	1.00	1.03	0.91	1.03	1.01	1.02	0.90	1.02	0.90	0.93	0.83	0.93	0.98
	NG15	layer/s		DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		import		TRH4	1.18	0.98	1.34 1.20	1.12	1.21	1.12	1.31	1.21	1.01	0.98	1.15	1.12	1.15	1.03	1.14	1.11	0.99	0.84	1.15	0.98	1.05	0.91	1.05	0.99
			Medium	DCP-CBR ORN31	1.18	1.00	1.20	1.12	1.17	1.14	1.32	1.23	108	0.99 1.00	1.01	1.11	1.10	0.92	1.15	1.12	100	0.88	1.14	0.99	0.94	0.94	0.97	105
				DCP-DN TRH4	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.77	1.00	1.00	1.00	0.91	1.00	1.00
			High	DCP-CBR	1.29	1.00	1.34	1.17	1.30	1.21	1.56	1.29	0.97	0.99	1.01	1.16	1.09	1.14	1.22	1.19	1.00	0.84	1.21	1.01	1.15	0.98	1.25	108
				ORN31	1.36	1.01	1.36	1.01	1.23	1.01	1.45	1.23	102	1.00	1.02	1.00	1.02	0.93	1.11	1.12	1.04	0.82	1.04	0.82	0.96	0.77	1.05	0.98
ŀ				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			Zero	TRH4	1.12	1.00	1.22	1.09	1.10	1.09	1.20	1.19	102	0.99	1.11	1.08	1.11	0.99	1.10	1.07	1.00	0.90	1.10	0.99	1.00	0.91	1.00	0.99
			Haulage	DCP-CBR ORN31	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	101	0.99	1.01	1.07	1.11 1.03	0.99	1.11 1.01	1.08	100	0.90	1.09	0.99	0.92	0.92	1.04	102
haul			-	URNSI	1.19	1.02	1.19	1.02	1.03	1.02	1.11	1.11	108	1.00	1.03	1.00	1.03	0.91	1.01	0.99	101	0.91	1.01	0.91	0.92	0.84	0.92	usz
ŝ				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
8			Low	TRH4 DCP-CBR	1.14	1.00	1.24	1.08	1.12	1.08	1.22	1.18	1.04	0.99	1.13	1.08	1.13	0.98	1.12	1.07	100	0.88	1.09	0.96	1.00	0.89	1.00	0.98
Available materials/		Costof		ORN31	1.16	1.02	1.16	1.02	1.05	1.02	1.13	1.11	105	1.00	1.05	1.00	1.05	0.91	1.03	0.99	1.02	0.90	1.02	0.90	0.93	0.83	0.92	0.91
<u>a</u>	NG25/30	layer/s		DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ē		import		TRH4	1.18	0.98	1.28	1.07	115	1.07	1.25	1.16	108	0.98	1.17	1.07	1.17	0.98	1.16	1.06	0.99	0.84	1.08	0.92	0.99	0.86	0.99	0.94
le			Medium	DCP-CBR	1.18 1.22	1.00	1.20	1.07	1.17 1.10	1.09	1.27	1.17	106	0.99	1.09	1.05	1.18	1.00	1.17 1.08	1.08	1.00	0.88	1.08	0.95	1.00	0.89	1.05	0.99
				ORN31	1.22	1.02	1.22	1.02	1.10	1.02	1.18	1.10	110	1.00	1.10	1.00	1.10	0.92	1.08	0.99	1.02	0.87	1.02	0.87	0.94	0.81	0.93	0.89
Ava -				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
			High	TRH4 DCP-CBR	1.27	0.95	1.37	1.02	1.24	1.02	1.34	1.10	1.19	0.97	1.28	1.04	1.28	0.96	1.26	1.04	0.97 1.00	0.77	1.05	0.83	0.97	0.78	0.97	0.87
				ORN31	1.36	1.01	1.36	1.01	123	1.01	1.32	1.09	123	1.00	1.23	1.00	1.23	0.93	1.20	0.99	104	0.82	1.04	0.82	0.96	0.77	0.95	0.86
ŀ				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100
			Zero	DCP-DN TRH4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	0.99	1.00	1.00	1.00	0.99	1.00	1.00	100	0.90	1.00	0.99	1.00	0.91	1.00	100
			Haulage	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	101	0.99	1.01	1.07	1.11	0.99	1.11	1.08	1.00	0.90	1.09	0.99	1.00	0.92	1.04	102
			i lau lage	ORN31	1.14	1.02	1.14	1.02	1.03	1.02	1.11	1.11	108	1.00	1.03	1.00	1.03	0.91	1.01	0.99	1.01	0.91	1.01	0.91	0.92	0.84	0.92	0.92
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100
				TRH4	1.14	1.00	1.24	1.08	1.12	1.08	1.22	1.18	104	0.99	1.13	1.08	1.13	0.98	1.12	1.07	1.00	0.88	1.09	0.96	1.00	0.89	1.00	0.98
		Costof	Low	DCP-CBR ORN31	1.11 1.16	0.98	1.12	1.06	1.10	1.09	1.22	1.18	108	0.99	1.04	1.07	1.13	0.99	1.13 1.03	1.08	100	0.90	1.09	0.97	0.93	0.91	1.04	101
	NG45	layer/s																										
		import		DCP-DN TRH4	1.00	0.98	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.84	1.00	0.92	0.99	0.86	0.99	1.00
			Medium	DCP-CBR	1.11	0.93	1.12	1.01	1.10	1.09	1.27	1.17	106	0.99	1.09	1.05	1.18	1.00	1.17	1.08	1.00	0.88	1.08	0.95	1.00	0.89	1.05	0.99
				ORN31	1.22	1.02	1.22	1.02	1.10	1.02	1.18	1.10	1.10	1.00	1.10	1.00	1.10	0.92	1.08	0.99	1.02	0.87	1.02	0.87	0.94	0.81	0.93	0.89
				DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00
				TRH4	1.27	0.95	1.37	1.02	1.24	1.02	1.34	1.10	1.19	0.97	1.28	1.04	1.28	0.96	1.26	1.04	0.97	0.77	1.05	0.83	0.97	0.78	0.97	0.87
			High	DCP-CBR ORN31	1.11	0.83	1.12	0.90	1 10	1.08	1.40	1.15	1.17	0.99	1.22	1.03	1.31	1.02	1.29 1.20	1.07	100	0.84	1.08	0.90	1.00	0.86	1.08	0.94
				UNISI	1.30	1.01	1.30	1.01	123	1.01	1.34	1.05	143	1.00	1.25	1.00	145	0.55	1.20	0.35	104	0.62	1.04	0.62	0.36	0.77	0.55	1.20

(8) Project Costs Ratios (Cont'd)

			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1
			TRH4	1.12	1.00	1.22	1.09	1.10	1.09	1.20	1.19	102	0.99	1.11	1.08	1.11	0.99	1.10	1.07	100	0.90	1.10	0.99	1.00	0.91	1.00	0
		Zero	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.99	1.01	1.07	1.11	0.99	1.11	1.08	1.00	0.90	1.09	0.99	1.00	0.92	1.04	1
		Haulage	ORN31	1.14	1.02	1.14	1.02	1.03	1.02	1.11	1.11	1.08	1.00	1.03	1.00	1.03	0.91	1.01	0.99	1.01	0.91	1.01	0.91	0.92	0.84	0.92	(
			DCP-DN TRH4	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
		1		1.14	1.02	1.24	1.11	1.12	1.11	1.22	1.21	1.04	0.99	1.13	1.08	1.13	0.98	1.12	1.07	1.00	0.90	1.09	0.98	1.00	0.91	1.00	(
		Low	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.22	1.21	101	0.07	1.01	1.05	1.11		1.13	1.08	100	Sec. 2	1.09		1.00		1.04	
	Costof		ORN31	1.16	1.04	1.16	1.04	105	1.04	1.13	1.13	105	1.00	1.05	1.00	1.05	0.91	1.03	0.99	1.02	0.91	1.02	0.91	0.93	0.84	0.92	
NG55	layer/s		DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	import		TRH4	1.18	1.05	1.28	1.14	1.15	1.14	1.25	1.24	1.08	0.98	1.17	1.07	1.17	0.98	1.16	1.06	0.99	0.89	1.08	0.98	0.99	0.90	0.99	
		Medium	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.27	1.26	1.01	0.92	1.01	1.00	1.11	1.00	1.17	1.08	1.00	0.93	1.08	1.01	1.00	0.94	1.05	
			ORN31	1.22	1.09	1.22	1.09	1.10	1.09	1.18	1.18	1.10	1.00	1.10	1.00	1.10	0.92	1.08	0.99	1.02	0.92	1.02	0.92	0.94	0.85	0.93	
			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	T
			TRH4	1.27	1.14	1.37	1.23	1.24	1.23	1.34	1.33	1.19	0.97	1.28	1.04	1.28	0.96	1.26	1.04	0.97	0.89	1.05	0.96	0.97	0.89	0.97	
		High	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.40	1.39	1.01	0.82	1.01	0.89	1.11	1.02	1.29	1.07	1.00	0.97	1.08	1.04	1.00	0.98	1.08	
		ĩ	ORN31	1.36	1.22	1.36	1.22	1.23	1.22	1.32	1.31	1.23	1.00	1.23	1.00	1.23	0.93	1.20	0.99	1.04	0.95	1.04	0.95	0.96	0.88	0.95	
			000 04	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	+
			DCP-DN TRH4	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	0.99	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.90	1.00	0.99	1.00	0.91	1.00	
		Zero	DCP-CBR	1.12	1.00	1.12	1.09	110	1.09	1.20	1.19	101	0.99	1.01	1.08	1.11	0.99	1.10	1.07	100	0.90	1.10	0.99	1.00	0.91	1.00	
		Haulage	ORN31	1.14	1.02	1.12	1.08	103	1.02	1.11	1.15	10	1.00	1.01	1.00	1.03	0.95	1.01	0.99	101	0.91	1.05	0.99	0.92	0.84	0.92	+
			UNNSI	1.14	1.02	1.14	1.02	103	1.02			105	1.00	1.05	1.00	1.05	0.51	1.01	0.35	101	0.51	1.01	0.31	0.32	0.04	0.52	
			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
			TRH4	1.14	1.02	1.24	1.11	1.12	1.11	1.22	1.21	1.13	1.08	1.13	1.08	1.13	0.98	1.12	1.07	1.02	0.90	1.11	0.98	1.02	0.91	1.02	
		Low	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.97	1.01	1.05	1.11	0.97	1.13	1.08	1.00	0.89	1.09	0.97	1.00	0.93	1.06	
	Costof		ORN31	1.16	1.04	1.16	1.04	1.05	1.04	1.13	1.13	1.05	1.00	1.05	1.00	1.05	0.91	1.03	0.99	1.04	0.91	1.04	0.91	0.95	0.84	0.94	
NG65	layer/s		DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
	import		TRH4	1.18	1.05	1.28	1.14	1.15	1.14	1.25	1.24	1.08	0.98	1.17	1.07	1.17	0.98	1.16	1.06	1.06	0.89	1.16	0.98	1.05	0.90	1.05	
		Medium	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.92	1.01	1.00	1.11	0.93	1.17	1.08	1.00	0.85	1.09	0.93	1.00	0.94	1.12	
			ORN31	1.22	1.09	1.22	1.09	1.10	1.09	1.18	1.18	1.10	1.00	1.10	1.00	1.10	0.92	1.08	0.99	1.09	0.92	1.09	0.92	1.00	0.85	0.99	
			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	+
			TRH4	1.27	1.14	1.37	1.23	1.24	1.23	1.34	1.33	1.19	0.97	1.28	1.04	1.28	0.96	1.26	1.04	1.17	0.89	1.26	0.96	1.15	0.89	1.13	
		High	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.82	1.01	0.89	1.11	0.84	1.29	1.07	1.00	0.77	1.09	0.84	1.00	0.98	1.26	
			ORN31	1.36	1.22	1.36	1.22	1.23	1.22	1.32	1.31	1.23	1.00	1.23	1.00	1.23	0.93	1.20	0.99	1.24	0.95	1.24	0.95	1.14	0.88	1.11	
			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	+
			TRH4	1.12	1.00	1.22	1.09	1.10	1.09	1.20	1.19	102	0.99	1.11	1.08	1.11	0.99	1.10	1.07	100	0.90	1.10	0.99	1.00	0.91	1.00	
ļ		Zero	DCP-CBR	1.12	1.00	1.12	1.09	1.10	1.09	1.20	1.19	101	0.99	1.01	1.08	1.11	0.99	1.10	1.07	100	0.90	1.09	0.99	1.00	0.91	1.00	
		Haulage	ORN31	1.14	1.02	1.14	1.02	103	1.02	1.11	1.11	108	1.00	1.03	1.00	1.03	0.91	1.01	0.99	101	0.91	1.01	0.91	0.92	0.84	0.92	
ļ																											
			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	-
ļ		1	TRH4	1.12	1.00	1.23	1.10	111	1.10	1.21	1.20	102	0.99	1.12	1.09	1.12	0.98	1.11	1.06	1.00	0.90	1.11	0.99	1.01	0.91	1.01	+
ļ		Low	DCP-CBR ORN31	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	101	0.99	1.01	1.07	1.11 1.03	0.97	1.11	1.06	1.00	0.90	1.09	0.99	0.92	0.92	1.04	+
	Costof		UNNSI	1.14	1.02	1.14	1.02	105	1.02		1.11	105	1.00	1.05	1.00	1.05	0.89	1.01	0.97	1.01	0.91	1.01	0.91	0.92	0.84	0.94	
NG80	layer/s		DCP-DN	1.00	1.00	1.00	1.00	100	1.00	1.00	1.00	100	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
ļ	import		TRH4	1.12	1.00	1.23	1.10	111	1.10	1.21	1.20	102	0.99	1.12	1.09	1.12	0.94	1.11	1.02	1.00	0.90	1.11	0.99	1.01	0.91	1.01	+
ļ		Medium	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.99	1.01	1.07	1.11	0.93	1.11	1.02	1.00	0.90	1.09	0.99	1.00	0.92	1.04	
ļ			ORN31	1.14	1.02	1.14	1.02	1.03	1.02	1.11	1.11	108	1.00	1.03	1.00	1.03	0.86	1.01	0.93	1.01	0.91	1.01	0.91	0.92	0.84	0.92	
ļ			DCP-DN	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	+
ļ			TRH4	1.12	1.00	1.23	1.10	1.11	1.10	1.21	1.20	112	1.09	1.12	1.09	1.12	0.84	1.11	0.92	100	0.90	1.11	0.99	1.01	0.91	1.01	
	1 1	High	DCP-CBR	1.11	1.00	1.12	1.08	1.10	1.10	1.20	1.19	1.01	0.99	1.01	1.07	1.11	0.84	1.11	0.92	1.00	0.90	1.09	0.99	1.00	0.92	1.04	

9. Project Cost Savings/km

	Projectio	cost savings	s per km												L	JSD per km	of 6.5m wid	de										
		Traffic						Low (< 0	.1 MESA)						N	vied ium (0.:	1 - 0.3 MES/	A)						High (0.3 -	1.0 MESA)			
	OR N3	31 subgrade	e class		Good (96)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor(S5)	Poor S4)	Good (S6)	Good (S6)	Good (S6)	Good (56)	Fair (S6)	Fair (S6)	Poor (SS)	Poor S4)	Good (96)	Good (S6)	Good (S6)	Good (S6)	Fair (S6)	Fair (S6)	Poor (SS)	Poor S4)
		Subgrade			VG (NG30)	VG (NG30)	Good	(NG15)	Fair(NG7)	Poor	(NG3)	VG (NG30)	VG (N G30)	Good	(NG15)	Fair	(NG7)	Poor	(NG3)	VG (NG30)	VG (NGBO)	Good	(NG15)	Fair	(NG7)	Poor	(NG3)
		Climate			Dry - Mode rate	Wet	Dry - Mode rate	Wet	Dry - Mode rate	Wet	Dry - Mode rate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dity - Mode rate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet	Dity - Mode rate	Wet	Dry - Moderate	Wet	Dry - Moderate	Wet
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Zero	TR H4	13,310	360	24,372	11,422	12,501	11,422	24,372	23,293	2,338	899	13,400	10,162	13,400	-1,709	13,400	10,162	26	13,850	11,897	1,979	26	-13,850	26	- 1,079
			Haulage	DCP-CBR ORN31	12,196 15,109	0	12,950 15,109	10,334	12,167 3,238	11,705 2,158	23,653 13,490	22,574 13,220	923 3,238	-1,542	1,696 3,238	8,773	12,784 3,238	1,169	14326 1.619	11,088	0	13,034	11,088 1,478	1,946	0	- 12,100	5,607	3,602
			-	Girlan.						ay and				-		-		- aaybera	4045		247.0	- and a second	4474	- management	and more		any total	
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				TRH4	15,109	-540	28,419 15,648	12,771	16,548 14,865	12,771	28419	24,642	1,889	1,349	15,199	11,961	15,199	90 1.439	15,199 16,484	11,961	-424	16,997	14,145 13,246	-2,428	2,274	-14,299	2,274	-1,079
		C	Low	DCP-CBR ORN31	14,355 17,807	0 2,158	15,648	2,158	14,865	13,863 2,158	28,509 17,987	24,732 15,469	383 3,238	-1,542	1,696 3,238	10,392	12,784 3,238	1,439	3,417	13,246 1,439	0	14,833	13,246	1,587	2,698	-11,201	9,554	4,951
		Cost of		UNIT OF T	21,001	4,4.4	21,007	4,4.41	4000	4,4.4	21,000	20,000				-		- aayora		4,71.45	4,740		4,744	- 24,040	- Andrew	- 400,000	10,100	
	NG15	layer/s		DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Import		TR H4	19,066	-2,518	37,322	15,738	25,451	15,738	37,322	27,610	899	-2,338	19,156	15,918	19,156	4,047	19,156	15,918	1,413	23,922	19,092	3,417	7,220	-15,289	7,220	-1,079
			Medium	DCP-CBR ORN31	19,103 23,742	0	21,584 23,742	2,158	20801 11871	18,612 2,158	39,194 27,879	29,481 20,415	-804 3,238	-1,542	1,696 3,238	13,954	12,784 3,238	7,177	21,233 7,375	17,995	0 2,917	-18,790	17,995 2,917	-795	8,634 8,954	-9,222	18,557 4,817	7,919
				Service		4,4.44		4,000			arguer d			~		~	-		Type Fire	Spence	4.747	ar, rak	aprar.	and the second	Sec. Sec.		- Andrew	
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			High	TR H4 DCP-CBR	29,678 31,838	-7,824	61,200 37,502	23,698	49,329 36,719	23,698 31.346	61,200 67,846	35,569	-1,754	-4,991	29,768	25,530 23.504	29,768 12,784	14,639	29,768 33,967	26,530 30,730	4,066	42,494	32,357 30,730	-6071	20,486 24,552	-17,942	20,486 42,434	-1,079
			High	ORN31	31,838	2,158	37,502	2,158	35,719	2,158	54,410	42,215	3,98/	0	3,238	23,504	3,238	-11,871	33,967	30,730	5,570	32,857	5,570	-32.857	6,301	44,728	8,448	-3,916
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Zero	TR H4 DCP-CBR	13,310 12,196	360	24,372 12,950	11,422	12,501 12,167	11,422	24,372 23,653	23,298 22,574	2,338 923	-899	13,400 1,696	10,162 8,773	13,400 12,784	1,709	13,400 14,326	10,162	26	-13,890	11,897 11,088	-1,979	26	-13,890	26	-1,079
_			Haulage	ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	11,871	14,526	809	1,478	-12,397	1,478	12,397	-10,393	-24,268	12,012	- 12,100
haul																												
-				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Free			Low	TR H4 DCP-CBR	15,109 14,355	540 0	26,171 15,648	10,522 9,794	14,299 14,865	10,522	26,171 26,351	22,398 22,574	4,587 3,081	-1,349	15,648 4394	9,713 8,234	15,648 15,482	-2,158	15,648 17,024	9,713 11,088	-424	16,997 14,833	11,447 11,088	-5,126	-424	- 16,997 - 13,899	-424 6,506	-3,777
2		Cost of		ORN31	17,807	2,158	17,807	2,158	5,936	2,158	16,188	13,220	5,936	0	5,936	0	5,936	11,871	4317	809	1,928	14,645	1,928	14,645	9,943	26,517	11,562	13,899
materiak/	NG25/30	layer/s																										
ਜ਼ਿੰ		Import		DCP-DN TRH4	0 19.066	0	0 30,128	0	0 18,257	0	0 30,128	0 20,415	0	-2.338	0 20,595	0 8,724	0 20,595	-3,148	0 20,595	0 8,724	0	-73.922	0 10,458	0	0	- 23,922	0	9,713
			Medium	DCP-CBR	19,000	0	21,584	8,607	20,801	11,705	32,287	22,574	7,830	1,542	10330	7.047	21,418	270	20,959	11,088	0	18,790	11,088	-7.702	0	17,856	8,485	-2,153
Available				ORN31	23,742	2,158	23,742	2,158	11,871	2,158	22,124	13,220	11,871	0	11,871	0	11,871	- 11,871	10,252	809	2,917	19,592	2,917	19,592	8,954	-31,468	-10,573	17,856
li					-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-		-	-	-
¥				DCP-DN TRH4	0 29,678	0	0 40,740	0 3,238	0 28,869	0 3,238	0 40,740	0	0 22,798	-4991	0 33,860	0 6,071	0 33,860	-5801	0 33,860	0 6,071	4.066	-42,494	0	0	4.876	43.308	4.875	25,440
			High	DCP-CBR	31,838	0	37,502	5,423	36,719	11,705	48,205	22,574	20,564	1,542	26248	3,863	37,336	2,923	38,878	11,088	0	29,402	11,088	18,314	0	28,468	13,791	12,766
			-	ORN31	39,661	2,158	39,661	2,158	27,789	2,158	38,042	13,220	27,789	0	27,789	0	27,789	- 11,871	26,171	809	5,570	-32,857	5,570	-32,857	6,301	-44,728	-7,920	- 28,468
	├ ──┤			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Zero	TRH4	13,310	360	24,372	11,422	12,501	11,422	24372	23,298	2,338	899	13,400	10,162	13,400	-1,709	13,400	10,162	26	- 13,890	11,897	-1,979	26	-13,850	26	-1,079
			Haulage	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	1,542	1,696	8,773	12,784	-1,169	14326	11,088	0	13,034	11,088	1,946	0	12,100	5,607	3,602
			naulage	ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	- 11,871	1,619	809	1,478	12,397	1,478	- 12,397	-10,393	-24,268	-12,012	- 12,100
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				TRH4	15,109	540	26,171	10,522	14,299	10,522	26,171	22,398	4,587	1,349	15,648	9,713	15,648	-2,158	15,648	9,713	-424	16,997	11,447	-5,126	-424	16,997	-424	3,777
			Low	DCP-CBR	12,196	-2,688	12,950	7,636	12,167	11,705	26351	22,574	3,081	1,542	4394	8,234	15,482	(719	17,024	11,088	0	14,833	11,088	-3,745	0	13,899	6,506	1,804
		Cost of		ORN31	17,807	2,158	17,807	2,158	5,936	2,158	16,188	13,220	5,936	0	5,936	0	5,936	- 11,871	4317	809	1,928	14,645	1,928	- 14,645	-9,943	26,517	-11, 562	- 13,899
	NG45	layer/s		DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Import		TR H4	19,066	-2,518	30,128	8,544	18,257	8,544	30,128	20,415	9,533	-2,338	20,595	8,724	20,595	-3,148	20,595	8,724	1,413	-23,922	10,458	12,051	-1,413	-23,922	-1,413	-9,713
			Medium	DCP-CBR	12,196	-8,634	12,950	1,700	12,167	11,705	32,287	22,574	7,830	1,542	10330	7,047	21,418	270	22,959	11,088	0	-18,790	11,088	-7,702	0	17,856	8,485	-2,153
				ORN31	23,742	2,158	23,742	2,158	11,871	2,158	22,124	13,220	11,871	0	11,871	0	11,871	- 11,871	10,252	809	2,917	- 19,592	2,917	- 19,592	8,954	-31,463	10,573	- 17,856
				DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
				TR H4	29,678	-7,824	40,740	3,238	28,869	3,238	40,740	15,109	22,798	4,991	33,860	6,071	33,860	-5,801	33,860	6,071	4,066	42,494	6,996	-31,432	4,876	48,308	4,875	- 25,440
			High	DCP-CBR	12,196	-24,552	12,950 39,661	-14,218	12,167	11,705	48,205	22,574	20,564	-1,542	26248	3,863	37,336	2,923	38,878	11,088	0	29,402	11,088	18,314	6.301	-28,468 -44,728	13,791	12,766
			1	ORN31	39,661	2,158	39,661	2,158	27,789	2,158	38,042	13,220	27,789	0	27,789	0	27,789	11,871	26,171	809	5,570	32,857	5,570	32,857	6,301	44,728	7,920	28,468

10. Project Cost Savings/km (Cont'd)

T			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TRH4	13310	360	24372	11,422	12,501	11,422	24372	23,293	2338	899	13400	10,162	13400	1709	13,400	10,162	26	-13,890	11897	1,979	26	13,850	26	-1,079
		Zero	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	1542	1696	8,773	12,784	-1169	14326	11.088	0	13.034	11.088	1946	0	12,100	5,607	3,602
		Haulage	ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	-11,871	1,619	-809	1,478	12,397	1,478	-12,397	-10,393	24,268	12,012	12,100
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TRH4	15,109	2,158	26,171	13,220	14,299	13,220	26,171	25,091	4,587	-1,349	15,648	9,713	15,648	-2,158	15,648	9,713	-424	- 14,299	11,447	2,428	-424	14,299	-424	- 1,079
		Low	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	26351	25,272	923	-4,240	1,696	6,075	12,784	-719	17,024	11,088	0	12,135	11,088	1,047	0	-11,201	6,506	4,502
	Cost of		ORN31	17,807	4,856	17,807	4,856	5,936	4,856	16,188	15,918	5,936	0	5,936	0	5,936	-11,871	4317	809	1,928	-11,947	1,928	-11,947	-9,948	-23,819	-11, 562	- 11,20
NG55	layer/s		DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Import		TR H4	19,066	6,115	30,128	17,177	18257	17,177	30,128	29,049	9,533	-2,338	20,595	8,724	20,595	-3,148	20,595	8,724	-1,413	15,289	10,458	-3,417	1,413	15,289	1,413	- 1,079
		Medium	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	32,287	31,207	923	10,175	1,696	140	12,784	270	22,959	11,088	0	10,157	11,088	932	0	9,222	8,485	6,480
			ORN31	23,742	10,792	23,742	10,792	11,871	10,792	22,124	21,854	11,871	0	11,871	0	11,871	11,871	10,252	809	2,917	10,938	2,917	10,958	8,954	22,829	40,573	-9,222
			DCP-DN		0	0		0	0	0						0	0		0								0
			TRH4	0 29,678	16,728	40,740	0 27,789	28,869	27,789	40,740	0 39,661	0 22,798	-4,991	0 33,860	0 6,071	33,860	-5801	0 33,860	6,071	4,066	0	0	-6,880	4,876	0	4,876	-188
		Hinda	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	48,205	47,125	923	26,094	1,696	-15,779	12,784	2,923	38,878	11,088		4850	11,088	6,238		3,916	13,791	11,78
		High	-		26,710	-	-				-			-						5,570		5,570		6,301	-		-391
			ORN31	39,661	25,720	39,661	26,710	27,789	26,710	38,042	37,772	27,789	0	27,789	0	27,789	-11,871	26,171	809	4370	-8305	3370	-8305	0,504	20,176	-7,920	.721
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Zero	TRH4	13310	360	24,372	11,422	12,501	11,422	24,372	23,298	2,338	-899	13,400	10,162	13,400	-1,709	13,400	10,162	26	- 13,850	11,897	-1,979	26	- 13,850	26	- 1,07
			DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	-1,542	1,696	8,773	12,784	-1,169	14,326	11,088	0	13,034	11,088	1,946	0	- 12,100	5,607	3,60
		Haulage	ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	11,871	1,619	809	1,478	12,397	1,478	12,397	40,393	-24,268	12,012	12,10
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TRH4	15,109	2,158	26,171	13.220	14299	13,220	26,171	25.091	15,648	9.713	15,648	9.713	15,648	-2.158	15,648	9,713	2,274	-14,299	14,145	-2,428	2,274	-14,299	2,274	-1.07
		Low	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23653	22,574	923	4240	1696	6.075	12,784	3.867	17.024	11.088	0	15.732	11088	4.644	0	11,201	9204	4,502
	5	LOW	ORN31	17,807	4,836	17,807	4,856	5,936	4,856	16,188	15,918	5,936	0	5,936	0	5,936	11,871	4317	809	4,626	11,947	4,626	11,947	-7,245	-23,819	8,864	-11,20
	Cost of		011122		-,	21,007		4.550	-,			4.44		-		4.7.7.0		-perar		4040	- anger th	4040	and the second sec	1,4.4		0,000	
NG65	layer/s		DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	import		TRH4	19,066	6,115	30,128	17,177	18257	17,177	30,128	29,049	9,533	-2,338	20,595	8,724	20,595	-3,148	20,595	8,724	7,220	15,289	19,092	-3,417	7,220	15,289	7,220	- 1,075
		Medium	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	- 10,175	1,696	140	12,784	-9,802	22,959	11,088	0	-21,668	11,088	- 10,580	0	-9,222	17,118	6,480
			ORN31	23,742	10,792	23,742	10,792	11,871	10,792	22,124	21,854	11,871	0	11,871	0	11,871	-11,871	10,252	809	11,551	10,958	11,551	10,958	-320	- 22,829	1,939	-9,222
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TRH4	29,678	16,728	40,740	27,789	28,869	27,789	40,740	39,661	22,798	-4.991	33,860	6,071	33,860	-5801	33,860	6,071	20,486	17,942	31,547	-6,880	19,676	18,751	19,676	-188
		High	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23653	22,574	923	25.094	1696	-15.779	12,784	25.720	38,878	11.088	0	37,586	11088	25.498	0	3916	38342	11.78
			ORN31	39,661	25,710	39,661	26,710	27,789	25,710	38,042	37,772	27,789	0	27,789	0	27,789	11,871	26,171	809	30,122	-8,305	30,122	-8305	18251	20,176	16632	-3.91
			011122					a.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				a.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		a.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,							- Haran		- 44-64-64				
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Zero	TRH4	13310	360	24,372	11,422	12,501	11,422	24,372	23,298	2,338	-899	13,400	10,162	13,400	-1,709	13,400	10,162	26	-13,850	11,897	-1,979	26	- 13,850	26	- 1,07
		Haulage	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	-1,542	1,696	8,773	12,784	-1,169	14,326	11,088	0	-13,034	11,088	1,946	0	12,100	5,607	3,60
		naciase	ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	11,871	1,619	809	1,478	-12,397	1,478	12,397	-10,393	-24,268	-12,012	- 12,1
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TR H4	13310	360	25,451	12,501	13,580	12,501	25,451	24,372	2,338	899	14,479	11,242	14,479	-3328	14,479	8,544	26	13,850	12,976	-899	1,105	12,771	1,105	0
		Low	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23653	22,574	923	-1542	1696	8,773	12,784	-3.867	14326	8,390	0	-13.034	11088	1946	0	12,100	5,607	3,60
	Cost of		ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	14,569	1,619	-3,507	1,478	12,397	1,478	12,397	-10,393	24,268	8,864	-8,50
NG80	layer/s																										
	Import		DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	anport		TRH4	13,310	360	25,451	12,501	13,580	12,501	25,451	24,372	2,338	899	14,479	11,242	14,479	-9,263	14,479	2,608	26	13,850	12,976	-899	1,105	12,771	1,105	0
		Medium	DCP CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	-1,542	1,696	8,773	12,784	9,802	14,326	2,454	0	13,034	11,088	1,946	0	- 12,100	5,607	3,60
			ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	20,505	1,619	9,443	1,478	-12,397	1,478	12,397	-10,393	-24,268	-12,012	- 12,1
			DCP-DN	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			TRH4	13310	360	25,451	12,501	13,580	12,501	25,451	24,372	14,479	11,242	14,479	11,242	14,479	25,181	14,479	13,310	26	13,850	12,976	-899	1,105	12,771	1,105	0
		High	DCP-CBR	12,196	0	12,950	10,334	12,167	11,705	23,653	22,574	923	-1,542	1,696	8,773	12,784	25,720	14,326	13,464	0	13,034	11,088	1,946	0	12,100	5,607	3,60
																									10.0 10.000	111.0011	12.100
			ORN31	15,109	2,158	15,109	2,158	3,238	2,158	13,490	13,220	3,238	0	3,238	0	3,238	36,423	1,619	25,361	1,478	12,397	1,478	12,397	-10,393	-24,268	12,012	12,10

	Kenya: Wa	mwangi - Kara	tu TLC 0.1	
Site Avg. DN	DCP-DN	TRH4	ORN31	DCP-CBR
		New base		
		100 mm		
		CBR _{soaked} =80		
		NG80	New base	
		New subbase	150 mm	
		125 mm		
		CBR _{soaked} =25	CBR _{soaked} =80	
		NG25	NG80	
150 mm	R&R	R&R	R&R	R&R
DN _{OMC} =4.1	DN=4.0	DN(90P)=5.6	DN(90P)=5.6	CBR _{omc} =70
		CBR _{OMC} =46	CBR _{omc} =50	CBR _{soaked} =45
		CBR _{soaked} =15+		
		NG15/SG1	Subgrade S6	Subgrade S5

Annex I - Pavement structures and costs by TLCs for different design methods

					USD/km				
		Zero I	naulage	2438			Zero ha	aulage	12458
DCP-D	N	Ba	se not require	ed	OR	N31	Bas	e 150 mm NG	80
Avg. hau	l km	5	20	65	Avg. h	aul km	5	20	65
Subbase not	0	2 438	2 438	2 438	Subbase not	0	13 813	16 792	24 781
	0					0			
required	0				required	0			
		Zero I	naulage	20786			Zero ha	aulage	2438
TRH4	ł	Bas	e 100 mm NG	i80	DCP	-CBR	Bas	se not require	d
Avg. hau	l km	5	20	65	Avg. h	aul km	5	20	65
	5	23 833	26 813	34 802		0	2 438	2 438	2 438
125 mm NG25 Subbase	20	26 813	30 536	38 526	Subbase not	0	-	-	-
Subbase	65	37 544	40 523	48 513	required	0	_	-	-

	Zambia: Kan	tongo - Waitw	vika TLC 0.1	
Site Avg. DN	DCP-DN	TRH4	ORN31	DCP-CBR
				New base
		New base		150 mm
		100 mm		
		CBR _{soaked} =80		
	New base	NG80		CBR _{soaked} =55
	150 mm	New subbase	New base	NG55
	DN≤4	125 mm	150 mm	New subbase
	CBR _{OMC} ≥70			120 mm
	CBR _{soaked} ≥45	CBR _{soaked} =25		
	NG45	NG25	CBR _{soaked} =80	CBR _{soaked} =30
	New subbase	Capping	NG80	NG30
	150 mm	150 mm	New subbase	Capping
	DN≤9		125 mm	120 mm
	CBR _{omc} ≥25			
	CBR _{soaked} ≥3	CBR _{soaked} =7	CBR _{soaked} =30	CBR _{soaked} =15
	NG3	NG7	NG30	NG15
150 mm				
DN=16	DN<16	DN(90P)=20	DN(90P)=20	CBR _{OMC} =18
@RMC≈OMC		CBR _{OMC} =9	CBR _{OMC} =14	CBR _{soaked} <3
CBR _{OMC} =12		CBR _{soaked} <3		
CBR _{soaked} <3				
		SG4	Subgrade S4	Subgrade S1

	с	ost for 6.5 m	wide paveme	ent incl. 100 r	ip, shape and recompact	of in situ w	earing course	e	
					USD/km				
		Zero ha	aulage	19500			Zero h	aulage	22141
DCP-DN		Bas	e 150 mm NO	625	ORN31		Bas	e 150 mm N	380
Avg. haul l	km	5	20	65	Avg. haul	km	5	20	65
Subbase	5	23 563	28 031	40 016	Subbase	5	25 865	30 333	42 318
150 mm NG3	20	28 031	32 500	44 484	125 mm NG30	20	29 589	34 057	46 042
150 mm NG3	65	40 016	44 484	56 469	125 mm NG30	65	39 576	44 044	56 029
		Zero ha	aulage	28911			Zero h	aulage	29313
TRH4		Bas	e 100 mm NG	680	DCP-CB	R	Bas	e 150 mm N	355
Avg. haul l	km	5	20	65	Avg. haul	km	5	20	65
150 mm NG7 +	5	33 990	36 969	44 958	120 mm NG15 +	5	34 594	39 063	51 047
Subbase	20	42 182	45 161	53 151	Subbase	20	41 744	46 213	58 197
125 mm NG25	65	64 154	67 133	75 122	120 mm NG30	65	60 919	65 388	77 372

	Gha	na: Kukurantu	mi - Asafo TL	C 0.3
Site Avg. DN	DCP-DN	TRH4	ORN31	DCP-CBR
		New base		
		125 mm		
		CBR _{soaked} =80		
		NG80		New base
		New subbase		175 mm
		125 mm		
		CBR _{soaked} =25		
		NG25		CBR _{soaked} =65
	New base	Capping	New base	NG65
	150 mm	150 mm	150 mm	New subbase
	DN _{OMC} ≤3.2			120 mm
	CBR _{OMC} =70			
	CBR _{soaked} =45	CBR _{soaked} =7	CBR _{soaked} =80	CBR _{soaked} =30
	NG45	NG7	NG80	NG30
150 mm	150mm	150 mm	150 mm	150 mm
DN _{0.75 OMC} =4.0	DN(80P)=4.6	DN(90P)=4.9	DN(90P)=4.9	DN(75P)=4.4
@RMC≈0.75MC		CBR _{0.750MC} =54	DN _{0.75 OMC} =4.9	DN _{0.75 OMC} =4.4
CBR _{0.75 OMC} =70		CBR _{OMC} =33	СВR _{0.75 омс} =58	CBR _{OMC} =39
CBR _{soaked} =12		CBR _{soaked} =5	CBR _{OMC} =36	CBR _{soaked} =8
		NG3/SG3	Subgrade S6	Subgrade S4

	Cost	for 6.5 m wie	de pavement	t incl. 100 mr	n rip, shape and recompa	t of in s	itu wearing co	ourse	
					USD/km				
		Zero ha	ulage	12188			Zero ha	aulage	13813
DCP-DI	N	Base	e 150 mm NG	G25	ORN31		Bas	e 150 mm NG	80
Avg. haul	km	5	20	65	Avg. haul	km	5	20	65
Subbase not	0	14 219	20 313	38 594	Subbase not	0	15 844	21 938	40 219
required	0				required	0			
required	0				required	0			
		Zero ha	nulage	29589			Zero ha	aulage	18685
TRH4		Base	e 125 mm NG	G80	DCP-CBI	र	Bas	e 175 mm NG	65
Avg. haul	km	5	20	65	Avg. haul	km	5	20	65
150 mm NG7	5	35 005	38 729	48 716	Subbase	5	25 879	31 092	45 074
+ Subbase 125	20	43 198	46 922	56 909	120 mm NG30	20	29 454	34 667	48 649
mm NG25	65	65 169	68 893	78 880	120 11111 14050	65	39 041	44 255	58 236

Site Avg. [DN	DCP-DN	TRH4	ORN31	DCP-CBR
					New base
					175 mm
			New base		
			125 mm		
			CBR _{soaked} = 80		CBR _{soaked} = 65
		New base	G4/NG80	New base	NG65
		150 mm	New subbase	150 mm	New subbase
		DN= 3.2	125 mm		120 mm
		CBR _{soaked} = 82 NG80	CBR _{soaked} = 25 NG25	CBR _{soaked} = 80 NG80	CBR _{soaked} = 30 NG30
150	mm	150 mm	150 mm	150 mm	150 mm
DN=	4.54	DN(80P)= 5.03	DN (90P)= 5.29	DN(90P)= 5.29	DN= 4.54
Moist. Ratio=	0.8	CBR _{OMC} = 53	CBR _{0.8 OMC} = 49	CBR _{0.8 OMC} = 52	CBR _{0.8 OMC} = 61
CBR _{KLEIN} =	60		CBR _{soaked} = 7	CBR _{omc} = 30	CBR _{soaked} = 11
$CBR_{Soaked} =$	11		Subgrade:S3	Subgrade: S6	Subgrade: S4
		R&R 100mm	R&R 100mm	R&R 100mm	R&R 100mm

	Cost for 6.	.5 m wi	de pavement		
USD/kr	n incl. 100mr	m rip &	recompact in s	itu layer	
			Zero ha	ulage	11 618,75
DCP-DN			1	L50 mm NG4	5
Avg. haul	km		5	20	65
			15 844	20 313	32 297
			Zero ha	ulage	21 409,38
TRH4				125mm NG8	0
Avg. haul	km		5	20	65
	,	5	24 849	28 573	38 560
125 mm NG25	2	20	28 573	32 297	42 284
	e	65	38 560	42 284	52 271
			Zero ha	ulage	11 618,75
ORN31			1	L50 mm NG8	0
Avg. haul	km		5	20	65
			15 844	20 313	32 297
			Zero ha	ulage	24 727,41
DCP-CB	2		1	L75 mm NG6	5
Avg. haul	km		5	20	65
		5	25 878	31 092	45 074
120 mm NG30	2	20	29453,45	34 667	48 649
	e	65	39040,95	44254,49	58 236

Malawi: Li	Malawi: Linthipe: Linthipe - Lobi (S126) km 0.00 to km 1.195 (TLC 0.3)									
Site Avg. I	DN	DCP-DN	TRH4	ORN31	DCP-CBR					
			New base		New base					
			125 mm		120 mm					
			CBR _{soaked} = 80		CBR _{soaked} = 55					
		New base	NG80	New base	NG55					
		150 mm	New subbase	New subbase 150 mm						
		DN= 3.2	125 mm		120 mm					
٢		CBR _{soaked} = 82	CBR _{soaked} = 25	CBR _{soaked} = 80	CBR _{soaked} = 30					
		NG80		NG80	NG30					
150	mm	150 mm	150 mm	150 mm	150 mm					
DN =	3.74	DN(80P)= 4.26	DN (90P)= 4.53							
Moist. Ratio=	0.74	CBR _{OMC=} 65	CBR _{0.74 OMC} = 60.0	CBR _{0.74 OMC} = 61.0	CBR _{0.74 OMC} = 75					
CBR _{KLEIN} =	77			CBR _{omc} = 38.0						
CBR _{Soaked} =	19		Subgrade: S4	Subgrade: S6	Subgrade: S5					
		R&R 100mm	R&R 100mm	R&R 100mm	R&R 100mm					

Cost	Cost for 6.5 m wide pavement								
USD/km incl. 100mm rip & recompact in situ layer									
		Zero h	aulage	11 618,75					
DCP-DN		1	50 mm NG8	0					
Avg. haul km		5	20	65					
		15 844	20 313	32 297					
		Zero h	aulage	19 269,79					
TRH4		1	L25 mm NG8	80					
Avg. haul km		5	20	65					
	5	43 875	51 323	71 297					
125 mm NG25	20	51 323	58 771	78 745					
	65	71 297	78 745	98 719					
		Zero h	aulage	11 618,75					
ORN31		150 mm NG80							
Avg. haul km		5	20	65					
		15 844	20 313	32 297					
		Zero h	aulage	18 196,10					
DCP-CBR	DCP-CBR			0					
Avg. haul km	Avg. haul km			65					
	5	41 592	48 742	67 917					
120 mm NG30	120 mm NG30 20			75 067					
	65	67917,20	75067,20	94 242					

Malaw	Malawi: Salima: Battalion - Lifuwu (T357) km 0.00 to km 7.00								
Site Avg. D	N	DCP-DN	TRH4	ORN31	DCP-CBR				
					New base				
					175 mm				
			New base						
			125 mm						
			CBR _{soaked} = 80		CBR _{soaked} = 65				
		New base	NG80	New base	NG65				
		150 mm	New subbase	150 mm	New subbase				
		DN= 3.2	125 mm		120 mm				
r		CBR _{soaked} = 82	CBR _{soaked} = 25	CBR _{soaked} = 80	CBR _{soaked} = 30				
		NG80	NG25	NG80	NG30				
150	mm	150 mm	150 mm	150 mm	150 mm				
DN=	4.09	DN(80P)= 4.54	DN (90P)= 4.78	DN(90P)= 4.78	DN= 4.09				
Moist. Ratio=	0.75	CBR _{OMC} = 60	CBR _{0.75 OMC} = 56	CBR _{0.75 OMC} = 58	CBR _{0.75 OMC} = 68				
CBR _{KLEIN} =	69		CBR _{soaked} = 9	CBR _{omc} = 32	CBR _{soaked} = 14				
CBR _{Soaked} =	15		Subgrade S4	Subgrade S6	Subgrade S4				
		R&R 100mm	R&R 100mm	R&R 100mm	R&R 100mm				

	Cost for 6.5 m wide pavement								
USD/km incl. 100mm rip & recompact in situ layer									
			Zero hau	ulage	11 618,75				
DCP-D	N		15	0 mm NG45					
Avg. haul	km		5	20	65				
			15 844	20 313	32 297				
			Zero hau	ulage	19 269,79				
TRH4			12	25mm NG80					
Avg. haul	km		5	20	65				
		5	24 849	28 573	38 560				
125 mm NG25		20	28 573 32 297		42 284				
		65	38 560	42 284	52 271				
			Zero hau	ulage	11 618,75				
ORN3:	1		150 mm NG80						
Avg. haul	km		5	20	65				
			15 844	20 313	32 297				
			Zero hau	ulage	19 689,91				
DCP-CB	DCP-CBR			5 mm NG65					
Avg. haul	Avg. haul km			20	65				
		5	25 878	31 092	45 074				
120 mm NG30		20	29 453	34 667	48 649				
		65	39 041	44 254	58 236				

Evaluation of Cost-Effectiveness and	Value-for-Money of DCP-DN Design Method
--------------------------------------	---

Malawi	- Nt	cheu: Kas	inje	e - Kandeu (S1	134	l) km 2.30 to k	m 3.90 (TLC 0.3	;)
Site Avg. [N	DCP-DN		TRH4		ORN31	DCP-CBR	
							New base	
				New base			150 mm	
				125 m	m			
				CBR _{soaked} = 80)		CBR _{soaked} = 80	
				NG80			NG80	
				New subbase			New subbase	
				125 m	m	New base	120 mm	
						150 mm		
				CBR _{soaked} = 25	5		CBR _{soaked} = 30	
				NG25			NG30	
		New base		New foundation		CBR _{soaked} = 80	capping layer	
		150 r	nm	150 m	m	NG80	150 mm	
		DN= 3	3.2			New subbase		
						100 mm		
,		CBR _{soaked} = 8	32	CBR _{soaked} = 7		CBR _{soaked} = 30	CBR _{soaked} = 15	
		NG80		NG3		NG30	NG15	
150	mm	150 r	nm	150 m	m	150 mm	150 mm	
DN=	5.66	DN(80P)= 6	5.65	DN (90P)= 7.1	17	DN(90P)= 7.17	DN= 5.66	
/loist. Ratio=	0.34	CBR _{OMC} =	37	CBR _{0.34 OMC} = 34	1	CBR _{0.34 OMC} = 38	CBR _{0.34 OMC} = 48	
CBR _{KLEIN} =	45			CBR _{soaked} = 1		CBR _{omc} = 20	CBR _{soaked} = 3	
oaked CBR=	3			Subgrade: S2		Subgrade: S5	Subgrade: S2	
		R&R 100mm	า	R&R 100mm		R&R 100mm	R&R 100mm	

		Cost fo	or 6.5 m wide	e pavement						
USD/km incl. 100mm rip & recompact in situ layer										
			Zero h	aulage	11 618,75					
DCP-DN			1	.50 mm NG8	0					
Avg. haul km				5	20	65				
				15 844	20 313	32 297				
				Zero h	aulage	27 394,79				
	TRH4		125mm NG80							
		Avg. ł	naul km	5	20	65				
		4.35	5	35 005	38 729	48 716				
	5	125 mm NG25	20	38 729	42 453	52 440				
		NG25	65	48 716	52 440	62 427				
			5	39 474	43 198	53 185				
150 mm NG3	20	125 mm NG25	20	43 198	46 922	56 909				
1100		11025	65	53 185	56 909	66 896				
		125	5	51 458	55 182	65 169				
	65	125 mm	20	55 182	58 906	68 893				
		NG25	65	65 169	68 893	78 880				

				Zero h	aulage	19 337,50		
ORN31				1	150 mm NG80			
	Avg. ł	naul km		5	20	65		
			5	24 917	29 385	41 370		
1	00 mm NG3	80	20	27895,83	32 365	44 349		
			65	35885,42	40354,17	52 339		
				Zero h	aulage	28 904,20		
	DC	P-CBR		150 mm NG80				
	Avg. ł	naul km		5 20 65				
		120 mm	5	38 248	42 717	54 701		
	5	NG30	20	41822,95	46 292	58 276		
		NGSU	65	51410,45	55879,20	67 864		
150 mm		120 mm	5	42 717	47 185	59 170		
150 mm NG15	20	120 mm NG30	20	46291,70	50 760	62 745		
NGIS		NGSU	65	55879,20	60347,95	72332,33		
		120 mm	5	54701,08	59169,83	71 154		
	65	120 mm NG30	20	58276,08	62744,83	74 729		
		NGSU	65	67863,58	72332,33	84316,70		

Evaluation of Cost-Effectiveness and Value-for-Money of DCP-DN Design Method

Tanzania: S	Siha:	Lawate - Kibo	ngoto km 4.34 to	km 4.54 (double	seal) (TLC 0.03)	
Site Avg. I	DN	DCP-DN	TRH4	ORN31	DCP-CBR	
			New base 100 mm			
			CBR _{soaked} = 80 NG80		New base 150 mm	
			New subbase			
			125 mm	New base 150 mm		
			CBR _{soaked} = 15 NG15		CBR _{soaked} = 55 NG55	
		New base 150 mm	New foundation 150 mm	CBR _{soaked} = 80 NG80	Capping layer 120 mm	
		DN= 5.9		New subbase		
r		CBR _{soaked} = 43	CBR _{soaked} = 7	100 mm CBR _{soaked} = 30	CBR _{soaked} = 15	
		NG30	NG7	NG30	NG15	
	mm	150 mm	150 mm	150 mm	150 mm	
DN=		DN(80P) = 9.0		DN(90P)= 10.8	DN= 6.5	
Moist. Ratio=		CBR _{OMC} = 25	CD10.750MC- 20	CBR _{0.75 OMC} = 38	CBR _{0.75 OMC} = 42	
CBR _{KLEIN} =			CBR _{soaked} = 1	CBR _{omc} = 16	CBR _{soaked} = 5	
Soaked CBR=	4	R&R 100mm	Subgrade: <s1 R&R 100mm</s1 	Subgrade: S5 R&R 100mm	Subgrade: S3 R&R 100mm	

Cost for 6.5 m wide pavement									
USD/km incl. 100mm rip & recompact in situ layer									
				Zero haulage 9 181,2					
	DCP-D	ON		150 mmNG30					
	Avg. hau	ul km	5	20	65				
				13 406	17 875	29 859			
				Zero ha	ulage	26 717,71			
		TR	H4		10mm NG80)			
		Avg. h	aul km	5	20	65			
		125 mm	5	33 990	36 969	44 958			
	5	NG15	20	37 714	40 693	48 682			
			65	47 701	50 680	58 669			
	20	125	5	38 458	41 438	49 427			
150 mm NG7		125 mm NG15	20	42 182	45 161	53 151			
			65	52 169	55 148	63 138			
	65	65 125 mm NG15	5	50 443	53 422	61 411			
			20	54 167	57 146	65 135			
		NOIS	65	64 154	67 133	75 122			
				7	1	40 227 50			
				Zero haulage 19 337,50					
	ORN:	-		150 mm NG8					
	Avg. hau	ui km	5	5 24 917	20 29 385	65 41 370			
100	mm NG30		20	27895,83	32 365	44 349			
100			65	35885,42	40354,17	52 339			
				33003,12		52 333			
				Zero ha	ulage	18 771,51			
	DCP-CBR				150 mm NG5	5			
	Avg. hau	ul km		5	20	65			
			5	24 622	29 090	41 075			
120	mm NG15	;	20	28196,51	32 665	44 650			
			65	37784,01	42252,76	54 237			

So	South Africa: Nelshoogte km 0.00 to km 6.5 (TLC 0.7)									
Site Avg. I	DN	DCP-DN		TRH4		ORN31		DCP-CBR		
								New base		
								200 mm		
								CBR _{soaked} = 65		
		New base		New base		New base		NG65		
		150 m	ım	150	mm	150	mm	New subbase		
		DN= 2.	.6					120 mm		
r		CBR _{soaked} = 14	47	CBR _{soaked} =	80	CBR _{soaked} =	80	CBR _{soaked} = 30		
		NG80		NG80		NG80		NG30		
150	mm	150 m	nm	150	mm	150	mm	150 mm		
DN =	2.3	DN(80P)= 2.	.97	DN(90P)=	3.30	DN(90P)=	3.30	DN(90P)= 3.30		
Moist. Ratio=	0.75	CBR _{OMC=} 10	03	CBR _{0.75 OMC} =	90	<mark>СВR_{0.75 ОМС}=</mark>	84.0	CBR _{0.75 OMC} = 84		
CBR _{KLEIN} =	142			CBR _{soaked} =	27.0	CBR _{omc} =	55.0	CBR _{soaked} = 24		
CBR _{Soaked} =	76			Subgrade: S5		Subgrade: Se	5	Subgrade: S5		
		R&R 100mm		R&R 100mm		R&R 100mm		R&R 100mm		

Cost for 6.5 m wide pavement									
USD/km incl. 100mm rip & recompact in situ layer									
		Zero h	aulage	11 618,75					
DCP-DN		1	.50 mm NG4	5					
Avg. haul km		5	20	65					
		15 844	20 313	32 297					
		Zero h	aulage	11 618,75					
TRH4		1	L50 mm NG8	0					
Avg. haul km		5	20	65					
		15 844	20 313	32 297					
		Zero h	aulage	11 618,75					
ORN31	1	150 mm NG80							
Avg. haul km		5	20	65					
		15 844	20 313	32 297					
		Zero h	aulage	19 919,03					
DCP-CBR		2	00 mm NG6	5					
Avg. haul km	Avg. haul km			65					
	5	26 446	32 404	48 384					
120 mm NG30	20	30 021	35 979	51 959					
	65	39 609	45 567	61 546					