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A B S T R A C T
Background

The recent emergence of hypervirulent subtypes of avian influenza has underlined the
potentially devastating effects of pandemic influenza. Were such a virus to acquire the ability to
spread efficiently between humans, control would almost certainly be hampered by limited
vaccine supplies unless global spread could be substantially delayed. Moreover, the large
increases that have occurred in international air travel might be expected to lead to more rapid
global dissemination than in previous pandemics.

Methods and Findings

To evaluate the potential of local control measures and travel restrictions to impede global
dissemination, we developed stochastic models of the international spread of influenza based
on extensions of coupled epidemic transmission models. These models have been shown to be
capable of accurately forecasting local and global spread of epidemic and pandemic influenza.
We show that under most scenarios restrictions on air travel are likely to be of surprisingly little
value in delaying epidemics, unless almost all travel ceases very soon after epidemics are
detected.

Conclusions

Interventions to reduce local transmission of influenza are likely to be more effective at
reducing the rate of global spread and less vulnerable to implementation delays than air travel
restrictions. Nevertheless, under the most plausible scenarios, achievable delays are small
compared with the time needed to accumulate substantial vaccine stocks.

The Editors’ Summary of this article follows the references.
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Introduction

The scale of threat posed by hypervirulent avian influenza
subtypes [1,2], and the memory of the 20–100 million who
died in the 1918 pandemic [3,4], warrant consideration of
large-scale, concerted, and potentially highly disruptive
control measures [5]. Were such a virus to acquire the ability
to spread efficiently between humans, control would almost
certainly be hampered by limited vaccine supplies [6].
Interventions able to substantially impede global spread, by
providing time for vaccine stocks to accumulate, could have
profound public health benefits.

Border controls and World Health Organization travel
advisories formed central and sometimes controversial
components of the control efforts during the severe acute
respiratory syndrome (SARS) epidemic [7,8], and travel
restriction is thought likely to occur during an influenza
pandemic (although enforcement is currently considered by
the World Health Organization to be impractical in most
countries) [9]. In the absence of sufficient vaccine stocks,
other control measures such as the use of antiviral agents
could also be used [10,11]. Ideally, such measures would
reduce the average number of secondary cases caused by each
primary case (the effective reproduction number, Rt) to
below one, making sustained transmission impossible. This
happened during the SARS epidemic, where isolation,
quarantine, and behaviour change were able to bring about
control [12]. The much shorter serial interval for influenza
makes the chances for early epidemic termination much
lower [13]. The main value of interventions is more likely to
be in reducing the incidence and slowing the rate of spread of
the virus.

To evaluate the potential of travel restriction and local
control measures to impede global dissemination we devel-
oped a stochastic (i.e., probabilistic) model of the interna-
tional spread of influenza based on extensions of coupled
deterministic epidemic transmission models [14–19]. This
class of models has been shown to be capable of accurately
forecasting local and global spread of epidemic and pan-
demic influenza [14–19] and accounting for the global
distribution of other pathogens [20,21], but has not pre-
viously been used to assess the impact of travel restrictions or
other control options for pandemic influenza.

Methods

We used a metapopulation model that consists of a set of
coupled dynamic epidemic transmission models (Figure 1).
Each component model represents one city and tracks the
progression of individuals through four classes: susceptible to
infection (S); exposed to the virus but not yet infectious (E);
infectious (I); and recovered and no longer susceptible (R).
We assumed that infectiousness coincides with disease onset
and that infectious cases do not travel.

Previous work has used deterministic approximations to
study the evolution of this system [14–19]. With this approach
the first case in each city (except the originating city) was
assumed to occur only when the average number of
incubating cases arriving from other cities exceeded one, an
approximation that will artificially slow the rate of spread
between cities. Our stochastic model, which has a similar
underlying structure to its deterministic counterpart, avoids

this distortion and uses probabilistic transitions to capture
the inherent uncertainty in the course of the epidemic. This
is more appropriate than the deterministic approaches
previously adopted, because chance effects dominate in the
early stages of the epidemic in each city and in the seeding of
each city’s epidemic. As well as providing greater realism, this
approach allowed us to quantify the uncertainty in model
predictions due to demographic stochasticity. Thus, rather
than assuming that each city’s epidemic starts at a determined
time, we assumed that the initiation of an epidemic depends
on the timing of a sequence of chance events: a person
incubating the virus must board a plane; that person must
infect others in the destination city; some of those others
must cause further transmission, and so on. Each time the
model is run, even with identical starting conditions and
parameter values, a different answer is obtained. This
stochastic model was used to estimate key parameters using
data from the 1968–1969 (1968/9) influenza pandemic and to
evaluate the impact of interventions using contemporary
demographic and transport data. Mathematical details of the
model are provided in Protocol S1.
Coupling between cities was estimated using data from the

International Air Transport Association for 2002 that gives
the number of seats on flights between 105 cities, including
the 100 with the highest number of international scheduled
passengers and all 52 used in the 1968/9 data. City sizes were
taken from the United Nations urban agglomeration data
(available at: http://unstats.un.org/unsd/demographic/
sconcerns/densurb/urban.aspx). When fitting models to
1968/9 data, air transport data, sizes of urban agglomerations,
and influenza data were taken from a previous study [14,15].
To select from variants of the basic model, we compared

deterministic and stochastic model fits to data from the 1968/
9 pandemic by choosing parameters to minimize the sum of
squared deviations (SSQ) between times of observed and
predicted peaks (this contrasts with previous work that aimed
to forecast the pandemic, and therefore based parameter
estimates only on data from the first affected city [14]). A
major strength of our approach is that the observed time of
an epidemic peak should be unaffected even by large
between-country variation in influenza reporting rates. The
predicted epidemic peak for a given city was defined as the
day on which the highest number of infected people first
developed symptoms. When a city had more than one

Figure 1. Schematic Illustration of Model Structure

DOI: 10.1371/journal.pmed.0030212.g001
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observed peak in the 1968/9 data, only the first peak was used.
We used the statistic SSQ(m)/(n � 2m) to compare model fits
[22], where m is the number of fitted parameters (between one
and four), and n the number of fitted data points (the number
of cities with observed and predicted epidemic peak times).
This formula selects models that are parsimonious and fit the
data well. The full stochastic model was then used to estimate
parameters for the best-fitting model by choosing parameters
that minimised the mean SSQ from ten simulation runs for
each combination of parameter values.

We evaluated models with sine wave, square wave, and no
seasonal variation in transmission parameters for cities
outside the tropics. In the sine wave formulation, the peak
transmissibility occurred on the shortest day in each hemi-
sphere, while in the square wave formulation, peak trans-
missibility lasted 6 mo, also centred on the winter solstice. We
also considered model formulations where the transmission
parameter in the tropics was taken as the maximum,
minimum, and mean over 1 y of that outside the tropics.
For some parameter values, the model predicted no epidemic
peaks in some cities for which an epidemic peak was in fact
recorded. When fitting the models we penalized these regions
of parameter space by arbitrarily assigning a deviation
between model and data of 500 d.

Interventions
We used the stochastic model to consider the effects of (i)

reducing local transmission (this simulates the effects of
isolation, behaviour changes, antiviral use, or other measures
that may reduce the average number of secondary cases
produced by one primary case); and (ii) restricting travel to
and from affected cities. We assessed the ability of these
measures to delay epidemics in individual cities. We
considered only major epidemics, which we defined as those
peaking with at least one case per 10,000 people per day. We
assumed that measures were introduced only after the first
100 symptomatic cases in each city except the originating
city, for which 1,000 cases were required, although we also
evaluated the sensitivity of the results to these assumptions.

We considered a number of other scenarios to assess the
sensitivity of the results to the most important unknowns:
patterns of seasonal variation in influenza transmission;
variation in transmissibility between tropical and temperate
regions; the proportion of individuals initially susceptible to
the virus; the basic reproduction number, R0 (defined as the
mean number of secondary cases in a local and susceptible
population caused by the introduction of one primary case);
the distribution of the infectious period; the city in which the
pandemic begins; and the date on which the virus first begins
to spread.

Results

Amongst the model variants considered, the best fit to data
from the 1968/9 pandemic was achieved when transmissibility
varied sinusoidally in temperate regions and was constant
and equal to the north/south maximum in the tropics. We
used this model to estimate key parameters using 1968/9 data,
and to evaluate the impact of interventions. Models without
seasonal forcing terms gave poor fits to data and could not
account for the large differences in epidemic timing between
cities in the north and south temperate regions. Models in

which transmissibility in the tropics was set to the north/south
mean also performed surprisingly poorly, with best-fit SSQs
approximately three times greater than those obtained when
transmissibility in the tropics was set to the north/south
maximum (Figure 2A and 2B). Less surprisingly, models that
assumed all cities were equally connected by air travel (but
with the same total volume of air traffic) also performed
poorly, with best-fit SSQs about twice as large as those from
the models that used the air travel data. Previous work with
the deterministic version of the model has assumed a square
wave variation in transmissibility, assigning transmission
outside the influenza season to be one-tenth of the value
during the season [14]. We found the fit to data under this
assumption to be substantially poorer compared with models
in which maximum and minimum seasonal transmission
parameters were both estimated.
An exploration of the parameter space for the best-fit

model showed that, assuming 60% of the population to be
initially susceptible (the approximate value estimated pre-
viously [14]), maximum R0 values (R0,max) ranging from about
2.5 to 3.5 gave the best fits to data, while minimum R0 values
(R0,min) between about 0.5 and 1.5 had the most support
(Figure 2C). The maximum R0 value and the fraction initially
susceptible could not be identified simultaneously: A high
value of one implied a low value of the other (Figure 2D).
However, the initial maximum effective reproduction number,
Rmax (equal to the product of the two and giving the average
number of secondary cases produced by one primary case in
an actual population, accounting for immunity) was well
defined, with only a narrow range of values between about 1.5
and 2.2 supported by the data. This result is consistent with
other estimates from influenza pandemics [14,23]. We there-
fore took as our baseline scenario an R0,max value of 3 and an
R0,min of 1.2, assumed 60% of the population to be initially
susceptible, and used a model in which the R0 value varied
sinusoidally and peaked in midwinter, and in which the
pandemic originated in Hong Kong on 1 June.
The model showed good agreement with data from the

1968/9 pandemic, with observed epidemic peaks almost
always occurring at times when the model predicted a very
high probability of influenza activity (Figure 3). Observed and
predicted times of epidemic peaks differed, on average, by 31
d. There were, however, some anomalies: the first epidemic
peaks occurred much later than might have been expected in
London and Tokyo, and somewhat earlier than predicted in
Manila and Madras.
Despite large variation in the timing of predicted epidemic

peaks in individual cities between simulation runs, the overall
course of the pandemic was quite predictable (Figure 3A),
although there was markedly more between-run variability in
the tropics and the south than in the north. The roughly ten-
fold increase in air traffic since 1968 causes epidemics in most
cities to peak between 1 and 2 mo earlier than they would
have done in 1968 (in some southern hemisphere cities the
epidemic peaks 1 y earlier) and substantially reduces
variation between simulation runs (Figure 3B). The model
reproduced another interesting aspect of influenza epidemi-
ology: the tendency for peak periods of influenza activity in
the tropics to shift with latitude, so that in the northern
tropics they are closer to countries north of the tropics, while
the southern tropics tend to be more closely aligned with
countries south of the tropics [24]. This occurs despite the
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fact that the model has no explicit assumptions about
seasonality for cities in the tropics; the behaviour arises only
as a result of the strength of transport connections between
different regions. It is also notable that the pandemic starts
early enough to allow some probability of influenza activity in
the south during the end of the flu season in 1968. Despite
this, predicted epidemic peaks (the weeks with the greatest
number of reported cases in each location) still occur in 1969
in the south.

When we used the model to evaluate interventions using
contemporary air travel and demographic data, we found that
travel restrictions to and from affected cities would slow
epidemic spread, but unless almost all air travel from affected
cities (i.e., greater than 99%) was suspended, the potential for
delaying the pandemic was limited (Figures 4–6 and Table 1).
Even when 99.9% of air traffic was suspended, most cities had
a low probability of ultimately escaping the pandemic (Figure
4), and delays large enough to be of clinical significance (6 mo
or more) were common only if interventions were made after
the first few cases (Figure 5). Interventions that reduced
transmission could typically lead to more pronounced delays
(Figures 5 and 6 and Table 1), although only when Rt was
reduced to slightly above one were these sufficient to delay
epidemics until the next influenza season. These findings
were not highly sensitive to assumptions about initial
susceptibility and transmissibility (Table 1).

Decreasing the number initially susceptible (while holding

Rmax constant) has two opposing effects (Table 1). First,
within cities the time between seeding with influenza cases
and the epidemic peak decreases. This is because the initial
epidemic growth rate is unaffected, but each new case
represents a greater proportional reduction in the suscep-
tibles and causes a greater reduction in Rt (the epidemic
peaks when Rt ¼ 1). Conversely, between-city dynamics are
slowed because there are fewer infectious people to spread
the disease. Which effect dominates varies between cities;
those affected at the start of the pandemic tend to experience
peak activity earlier when there are fewer initial susceptibles;
for the rest it usually occurs later. Although travel restriction
always reduces the rate of spread between cities, under most
scenarios so many people become infected that even near-
total restriction has remarkably little effect. However, for a
given Rmax, the smaller the number of susceptibles the greater
the impact of this intervention. For example, when 90% of
the population are initially immune, the most extreme travel
restrictions can be quite effective in preventing international
spread. Conversely, reducing transmission has the greatest
effect on impeding international spread when (for a given
Rmax) more people are susceptible. The large delays and
reductions in the number of affected cities result from two
effects acting in the same direction: The reduced Rt slows the
epidemic within each city (delaying epidemic peaks), and the
reduced total number of cases reduces the rate of spread
between cities. Larger reductions in transmission led, in

Figure 2. Model Fitting and Comparison by Sum of Squared Deviations

(A and B) SSQ/n values for ten runs with each combination of parameter values for two models: model 1 (black), in which transmissibility in the tropics is
constant and taken as the north/south maximum; and model 2 (red), in which it is held at the north/south mean. n is the number of cities with observed
peaks. The seasonal maximum R0 (R0,max) is held constant at 3.0 in (A), and the seasonal minimum R0 (R0,min) is held constant at 1.6 (the value giving the
minimum SSQ/n for model 2) in (B). In both cases, the fraction of the population initially susceptible was fixed at 0.6.
(C and D) SSQ/n values shown are the means of ten runs of the stochastic model for each combination of parameter values. Regions of parameter space
supported by the data appear in green (darker green indicates better fit). A constant susceptible fraction of 0.6 is assumed in (C). R0,min held constant at
1.2 in (D); broken lines indicate regions of the parameter space with constant effective reproduction numbers, Rmax (where Rmax¼ R0,max3 susceptible
fraction).
DOI: 10.1371/journal.pmed.0030212.g002
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extreme cases, to smaller delays in epidemic peaks (Table 1).
This happened only when Rt was reduced to below one,
causing the epidemic decline to begin immediately; the peak
therefore occurred at the time of the intervention, earlier
than it would have done with a less effective intervention.
Under such circumstances the time of the epidemic peak is
not a good measure for fully evaluating local control
measures.

Previous influenza modelling work has used both square
and sine wave seasonal forcing terms [14,25]. We found that
the outcomes of interventions were not highly sensitive to the
precise assumptions made. The delays in the timing of
epidemic peaks depended only to a limited extent on the
city in which the pandemic started and to a somewhat greater
extent on the date of release (Table 2), with larger delays
more likely when the first cases occurred towards the end of
the influenza season in the place of origin. Results were,
however, highly sensitive to the timing of the intervention
(Figure 5). Large delays in the timing of epidemic peaks and
the prevention of epidemics in a large number of locations
could be achieved with the most extreme interventions, but
only when they were made sufficiently early. However,
making the interventions after fewer than 1,000 cases in the
place of origin had minimal additional benefit in slowing
pandemic spread. Similarly, preemptive travel restrictions

had no advantage over interventions made after one case in
affected cities (Figure 5A and 5B).
The course of infection with a future pandemic influenza

virus might differ in important ways from our baseline
assumptions, and could be quite unlike typical interpandemic
influenza. We therefore assessed the robustness of our
conclusions to the assumed latent and infectious periods.
We found that assuming a greater degree of infectiousness
early in the course of infection (reducing the serial interval
from 4.2 to 2.6 d, as suggested by recent analysis of household
influenza transmission data [11,26]) did not substantially alter
the conclusions about the value of the interventions (Figure
6A–6C) compared with the baseline scenario (Figure 5C and
5D), although if this assumption was used when fitting the
model to the 1968/9 data the estimated value of Rmax was
reduced from about 1.8 to 1.5. Conclusions were also robust
to moderate variation in the distribution of the latent period
(Figure 6D–6F). If, however, the virus behaved more like the
SARS coronavirus, with extended latent and infectious
periods (Figure 6G–6I), a greatly delayed rate of global spread
could be expected, giving more chance of delaying epidemics
until the next influenza season. In this case, smaller
reductions in travel and transmission can achieve clinically
significant delays (6 mo or more) in epidemic take-off in
many cities. Assuming reduced transmission in the tropics
(Figure 6J–6L) also led to a substantial reduction in the rate of

Figure 3. Predicted and Observed Times of Influenza Activity and Epidemic Peaks in 1968/9

(A) Predicted combined incidence using baseline model assumptions (bold lines show mean incidence).
(B) Observed and predicted times in individual cities. Peak times from individual simulation runs and mean peak times with 1968/9 data are shown as
blue and white dots, respectively. Mean peak times that would have occurred with 2002 travel patterns are shown as yellow dots. Predictions are based
on 100 simulation runs. Influenza activity was defined as at least one new symptomatic case per 100,000 people in a given week.
DOI: 10.1371/journal.pmed.0030212.g003
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global dissemination. Under this scenario much smaller
reductions in transmission would be sufficient to greatly
reduce the chance of a pandemic; this happens because the
lower transmission in the tropics (where the virus is assumed
to originate) means that a further transmission reduction of
just 21% would be sufficient to make sustained spread
impossible in this region.

Discussion

The relative ineffectiveness of travel restrictions for
controlling pandemic influenza is a consequence of the rapid
initial rate of growth of the epidemic in each city and the
large number of people infected. For example, with a serial
interval of 3 d, ignoring depletion of susceptibles, an Rt of
two would cause a 128-fold increase in new cases within 21 d

(128 ¼ 221/3). This means that if travel from the first affected
city was restricted to 1/128 of its former value on (and after)
day 1, there would be approximately the same number of
influenza cases leaving the city on day 21 þ t as there would
have been on day t had there been no intervention; even such
an extreme intervention would therefore buy only about 3
wk. The highly connected nature of the air travel network
prevents such minor delays between pairs of cities combining
into substantial delays over the whole network.
Hufnagel et al. [20] used a related model to study the global

spread of SARS. Although this model differed in important
respects from the one used here (the implicit assumptions
that air travel frequency varies with neither infection state
nor country would not be tenable in the context of pandemic
influenza), the conclusion that ‘‘remarkable success [in SARS
epidemic control] is guaranteed if the largest cities are

Figure 4. Time Course of a Pandemic with and without an Intervention to Suspend 99.9% of Air Travel from Affected Cities

Maps show the extent of epidemic spread and average impact on aviation network (taken from 100 simulation runs) 2, 5, 8, and 11 mo after the first
cases on 1 June. The intervention is made after 100 cases in each city (or 1,000 cases for Hong Kong, the city of origin). Blue lines represent flights, with
darker blues representing greater mean weekly passenger numbers (after accounting for interventions to suspend travel and averaging over all
simulation runs). Flights are not shown when travel restrictions have been imposed by the given time in more than 95% of simulation runs. Area of
circles is proportional to city population size, and shading indicates the probability of each city having experienced a major epidemic (greater than one
case per 10,000 people per day) by the given time.
DOI: 10.1371/journal.pmed.0030212.g004
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isolated in response to an outbreak’’ might, at first sight, be
thought to apply equally to influenza. In fact, pandemic
influenza is expected to have a much shorter serial interval
than SARS, and delays in international spread that could be
achieved by restricting almost all travel would be far more
modest. Even if 99.9% of all travel could be stopped,
epidemics in most cities would be delayed by no more than
4 mo. Moreover, the conclusion that a policy of isolating only
the largest cities would guarantee success implicitly assumes
that closing major airports would cause infected individuals
who would have travelled through them to abandon their
journeys rather than seek alternative routes, and that disease
spread by routes other than air travel can be ignored without
substantially altering the conclusions. This seems rather
implausible, and for these reasons we think that the
conclusions of Hufnagel and colleagues, while of undoubted
theoretical interest, would be misleading if taken too literally.

Large and important uncertainties abound in influenza

epidemiology: We do not know whether or not a significant
proportion of transmission occurs before the onset of
symptoms or whether subclinical infections are an important
source of transmission, and we know very little about the
determinants of seasonality [24,27,28]. In evaluating the
potential to delay the spread of influenza by restricting travel
and reducing transmission, we have systematically adopted
optimistic assumptions, chosen to give the interventions the
greatest chance of success. Thus we have assumed that
seasonal effects are important (delaying the rate of spread
outside the influenza season), and that asymptomatic cases do
not contribute to transmission (minimizing the numbers
capable of spreading the virus, and maximising the chance of
detecting them); we have ignored travel that is not by air and
not between major airports; and we have ignored the
possibility of transmission during flights themselves. Despite
these optimistic assumptions we found that even large and
widely enforced travel restrictions would usually delay

Figure 5. Impact of Interventions and Implementation Delays on Rate and Extent of Spread

Effect of reducing travel (A, C, E, and G) and transmission (B, D, F, and H) on the timing of major outbreaks (� 1 case per 10,000 per day) in 105 cities
using contemporary transport and demographic data and baseline parameters. Transmission reductions are imposed in each city after one case in the
given city (A and B); 100 cases (C and D); 1,000 cases (E and F); and 10,000 cases (G and H). Interventions in the originating city (Hong Kong) occur after
1,000 cases (A–F) or 10,000 cases (G and H). Lines and shaded regions show means of 100 simulation runs and 6 standard deviation, respectively. In all
cases, R0,max ¼ 3. and the proportion of the population initially susceptible is 0.6.
DOI: 10.1371/journal.pmed.0030212.g005
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epidemic peaks by only a few days; to have a major impact,
restrictions would have to be almost total and almost
instantaneous. Only if a pandemic strain were considerably
less transmissible, or had a considerably longer serial interval
than influenza strains seen in the past, or if very few people
were initially susceptible, would such measures be likely to
have an important impact on the rate of pandemic spread.
Local control measures able to reduce influenza transmission
were found to have greater potential for reducing the rate of
global spread (they could also substantially reduce the total
number of cases, although an evaluation of this benefit is
beyond the scope of this paper). Under most plausible
scenarios, however, delays would still fall far short of those
required to produce large quantities of vaccine unless they
were implemented early and able to reduce Rt to close to one.
Elsewhere it has been shown that airport entry screening
would be unlikely to detect more than 10% of passengers

latently infected with influenza when boarding [29]. The
results in this paper show that such an intervention would
have a negligible impact on the course of a pandemic once it
was underway.
The results also raise interesting questions about the

importance of seasonality in influenza transmission. The
evidence for strong seasonal effects in temperate regions
found here with 1968/9 data is supported by a recent analysis
of interpandemic influenza [30]. However, it is not clear how
important such seasonal effects have been in previous
pandemics, nor is it clear why a much better model fit should
be obtained when transmission in the tropics is assumed to be
the maximum (rather than the mean) of that in temperate
regions. Indeed, a fuller understanding of the determinants of
seasonal effects and their variation with latitude remains one
of the outstanding problems of influenza epidemiology
[24,27,28].

Figure 6. Impact of Interventions: Sensitivity to Disease Assumptions

Impact of interventions under different assumptions about how the probability of being infectious and the degree of infectiousness varies with time
since infection (A–I) and with latitude (J–L). Interventions, key, and other details are as in Figure 4, except all interventions occur after 1,000 cases in
Hong Kong, and 100 cases elsewhere.
(A–C) Variable infectiousness (baseline daily progression and recovery probabilities, but degree of infectiousness declines sharply after day 1 since
infection). Mean serial interval¼ 2.6 d; mean infectious period¼ 3.0 d; mean latent period¼ 1.9 d.
(D–F) Reduced latent period (constant infectiousness): Mean serial interval¼ 3.8 d; mean infectious period¼ 3.4 d; mean latent period¼ 1.2 d.
(G–I) Extended infectious period (constant infectiousness): Mean serial interval¼ 8.6 d; mean infectious period¼ 3.9 d; mean latent period¼ 5 d.
(J–L) Baseline parameters (constant infectiousness), but transmission in the tropics set to the mean of that in the temperate region.
(A, D, G, and J) Proportion of secondary transmission that occurs 0–20 d after infection. In all cases, no transmission occurs on day 0 and R0,max ¼ 3.
DOI: 10.1371/journal.pmed.0030212.g006
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Recent models of pandemic influenza have accounted for
household and social contact patterns [10,11]. While such
details are needed for evaluating the possibility of contain-

ment at source, they would not be expected to affect the
broad conclusions presented here. However, for a given R0,
assuming nonhomogeneous local mixing patterns would

Table 1. Median Delays in Epidemic Peak for Diverse Interventions and Percentage of Cities Experiencing Major Epidemics

Intervention Baseline

Scenarioa
Full-Susceptibility

Scenariob
Low-Susceptibility

Scenarioc
Low-Rmax

Scenariod
High-Rmax

Scenarioe
Very High

Rmax Scenariof

50% travel reduction 7 (5, 9);

100% (100, 100)g

7 (5, 10);

100% (100, 100)

6 (3, 11);

98% (97, 98)

8 (0, 41);

51% (48, 55)

5 (4, 6);

100% (100, 100)

4 (3, 5);

100% (100, 100)

90% travel reduction 24 (18, 32);

100% (100, 100)

24 (18, 31);

100% (100, 100)

27 (16, 37);

97% (64, 98)

79 (16, 211);

25% (22, 29)

16 (13, 21);

100% (100, 100)

13 (10, 16);

100% (100, 100)

99% travel reduction 51 (35, 73);

100% (99, 100)

49 (35,67);

100% (100, 100)

69 (41, 86);

85% (80, 88)

131 (47, 234);

10% (9, 11)

30 (24, 41);

100% (100, 100)

23 (19, 31);

100% (100, 100)

99.9% travel reduction 102 (61, 133);

88% (86, 90)

87 (56, 116);

97% (98, 99)

85 (80, 88);

9% (7, 20)

24 (�8, 169);

4% (2, 5)

48 (35, 65);

99% (99, 100)

35 (27, 49);

99% (99, 100)

20% transmission reduction 45 (42, 49);

100% (100, 100)

51 (48, 55);

100% (100, 100)

33 (28, 38);

96% (96, 97)

NA;

0% (0, 0)

22 (19, 23);

100% (100, 100)

14 (9, 15);

100% (100, 100)

30% transmission reduction 82 (78, 86);

100% (100, 100)

103 (97, 110);

100% (100, 100)

53 (46, 60);

87% (86, 89)

NA;

0% (0, 0)

38 (34, 39);

100% (100, 100)

24 (15, 25);

100% (100, 100)

40% transmission reduction 262 (105, 349);

30% (30, 31)

309 (190, 408);

41% (40, 43)

54 (30, 146);

10% (9, 10)

NA;

0% (0, 0)

60 (54, 62);

100% (100, 100)

36 (23, 38);

100% (100, 100)

50% transmission reduction 67 (43, 89);

2% (1, 3)

57 (28, 85);

3% (2, 4)

44 (23, 65);

1% (0, 2)

NA;

0% (0, 0)

94 (89, 97);

100% (100, 100)

53 (36, 55);

100% (100, 100)

For each model run, the delay for each city is taken as the difference in timing of the epidemic peak between the run with the intervention and the median of 100 runs without the
intervention. Values are based on 100 simulation runs for each intervention (ignoring runs where no epidemics occurred), and medians and IQR are calculated by pooling delays for each
of the 100 runs and for each of the 105 cities and reported to the nearest whole day. Negative delays occur when the maximum daily incidence occurs earlier with the intervention than it
does without it. All interventions are assumed to be made after 1,000 cases in Hong Kong (the originating city), and 100 cases in other cities.
a60% susceptible; R0,max ¼ 3; Rmax ¼ 1.8.
b100% susceptible; R0,max ¼ 1.8; Rmax ¼ 1.8.
c10% susceptible; R0,max ¼ 18; Rmax ¼ 1.8.
d40% susceptible; R0,max ¼ 3; Rmax ¼ 1.2.
e100% susceptible; R0,max ¼ 3; Rmax ¼ 3.
f100% susceptible; R0,max ¼ 5; Rmax ¼ 5.
gAll datasets are presented as: regular text, median (IQR) delays (d); italicized text, median (IQR) percentage of cities with major outbreaks.
NA, not applicable.
DOI: 10.1371/journal.pmed.0030212.t001

Table 2. Median Delays in Timing of Epidemic Peaks with Different Dates and Locations for the Start of the Pandemic

Intervention Originating City Median (IQR) Delays (d) on Date of First Cases

January 1 April 1 July 1 October 1

50% travel reduction Hong Kong 3 (�2, 8) 6 (4, 9) 7 (4, 9) 6 (3, 9)

London 3 (�3, 9) 7 (3, 14) 2 (�8, 18) 4 (0, 7)

Sydney 7 (1, 14) 6 (4, 9) 7 (4, 10) 5 (�7, 26)

90% travel reduction Hong Kong 14 (3, 21) 22 (15, 32) 23 (16, 31) 22 (14, 31)

London 14 (1, 24) 24 (16, 34) 33 (13, 54) 16 (8, 21)

Sydney 23 (13, 33) 18 (11, 27) 25 (17, 33) 53 (10, 295)

99% travel reduction Hong Kong 50 (27, 56) 58 (34, 76) 49 (33, 69) 49 (32, 69)

London 42 (17, 59) 63 (41, 80) 56 (34, 76) 33 (15, 45)

Sydney 58 (31, 77) 53 (34, 73) 55 (37, 75) 297 (65, 332)

99.9% travel reduction Hong Kong 102 (57, 131) 117 (68, 149) 94 (57, 124) 69 (42, 326)

London 78 (17, 108) 101 (73, 132) 68 (38, 98) 46 (14, 73)

Sydney 112 (64, 142) 110 (66, 141) 96 (60, 127) 321 (62, 375)

20% reduction in R Hong Kong 37 (32, 43) 45 (40, 49) 43 (40, 47) 33 (29, 38)

London 36 (29, 44) 48 (42, 65) 41 (28, 56) 31 (26, 37)

Sydney 45 (39, 51) 41 (37, 44) 45 (41, 50) 318 (53, 342)

30% reduction in R Hong Kong 65 (58, 75) 80 (74, 88) 77 (73, 82) 67 (30, 117)

London 54 (47, 69) 86 (80, 97) 67 (57, 132) 39 (31, 85)

Sydney 81 (74, 87) 82 (76, 88) 75 (70, 82) 330 (139, 340)

40% reduction in R Hong Kong 262 (55, 365) 258 (84, 371) 265 (164, 349) 285 (219 353)

London 275 (163, 326) 314 (158,406) 311 (236, 368) 271 (10, 355)

Sydney 272 (87, 370) 260 (102, 362) 298 (222, 369) 316 (277, 355)

Originating cities are chosen to represent the tropics (Hong Kong) and the north and south (London and Sydney). All other parameters are from the baseline scenario. Medians and IQR for
the delays are calculated as described in Table 1. Interventions are assumed to be made after 1,000 cases in the originating city, and 100 cases in other cities.
DOI: 10.1371/journal.pmed.0030212.t002
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result in a somewhat reduced attack rate and rate of spread
within each city, causing a slight decrease in the rate of global
spread. For this reason, estimates of Rmax based on fitting
models that assume homogeneous local mixing to pandemic
data may underestimate the true value.

A new pandemic strain might not show the same pattern of
seasonality as in 1968/9 and could potentially have greater
transmissibility than strains seen previously. Both SARS and
smallpox transmission can be greatly amplified by nosocomial
spread [31,32]; a similar amplification effect could occur with
an unusually virulent influenza virus that led to many
hospitalisations. In these more pessimistic scenarios, even
more heroic efforts would be required to have any chance of
significantly delaying the virus’s spread by restricting travel.
The results here suggest that resources might be better
directed at reducing transmission locally and at attempting to
control outbreaks during the earliest stages of sustained
human-to-human spread, when movement restrictions are
likely to be a more valuable containment measure [10,11]

Supporting Information

Protocol S1. Detailed Description of the Model

Found at DOI: 10.1371/journal.pmed.0030212.sd001 (65 KB DOC).
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Editors’ Summary

Background. Most people who get influenza (flu) recover quickly,
although it can cause serious illness and death, most often in the elderly.
Sometimes a new type of flu virus appears that is much more likely to
kill. This happened, for example, in 1918, when a worldwide flu
pandemic killed between 20 million and 100 million people. Recently,
there have been concerns about a flu virus that affects birds, and often
kills them. At present the virus does not pass easily from birds to
humans, and it does not seem to pass from one human to another.
However, the fear is that this virus might change and that human-to-
human infection could then be possible. Should all this happen, the
changed virus would be a major threat to human health. With current
technology, it would take several months to produce enough vaccine for
even a small proportion of the world’s population. By that time, it would
probably be too late; the virus would already have spread to most parts
of the world. It is therefore important for health authorities to consider
all the methods that might control the spread of the virus. With the
increase in international travel that has taken place, the virus could
spread more quickly than in previous worldwide pandemics. Restrictions
on international travel might, therefore, be considered necessary,
particularly travel by air.

Why Was This Study Done? It is important to estimate how useful
restrictions on air travel might be in controlling the spread of a flu virus.
Travel restrictions are usually unpopular and could themselves be
harmful, and, if they are not effective, resources could be wasted on
enforcing them.

What Did the Researchers Do and Find? This research involved
mathematical modelling. In other words, complex calculations were
done using information that is already available about how flu viruses
spread, particularly information recorded during a worldwide flu
outbreak in 1968–1969. Using this information, virtual experiments were
carried out by simulating worldwide outbreaks on a computer. The
researchers looked at how the virus might spread from one city to
another and how travel restrictions might reduce the rate of spread.
Their calculations allowed for such factors as the time of the year, the
number of air passengers who might travel between the cities, and the
fact that some people are more resistant to infection than others. From
the use of their mathematical model, the researchers concluded that
restrictions on air travel would achieve very little. This is probably
because, compared with some other viruses, the flu virus is transmitted
from one person to another very quickly and affects many people. Once
a major outbreak was under way, banning flights from affected cities
would be effective at significantly delaying worldwide spread only if
almost all travel between cities could be stopped almost as soon as an
outbreak was detected in each city. It would be more effective to take
other measures that would control the spread of the virus locally. These
measures could include use of vaccines and antiviral drugs if they were
available and effective against the virus.

Additional Information
Please access these Web sites via the online version of this summary at
http://dx.doi.org/10.1371/journal.pmed.0030212.
� Fact sheets are available about various aspects of flu from the Web site

of the World Health Organization, which takes a global overview of the
impact of the infection
Many health Web sites aimed at patients provide basic information
about flu.
� US National Institute of Allergy and Infectious Diseases page about flu
� National Institute of Allergy and Infectious Diseases fact sheet about

cold and flu symptoms
� US Centers for Disease Control and Prevention page about flu
� The Journal of the American Medical Association’s patient page about

influenza
� Page on flu from BBC Health
� Information about pandemic influenza from The Health Protection

Agency
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