Public Health
 England

Breast screening: achieving and maintaining the 36-month round length

Appendix 1: calculating screening numbers and capacity

Using the BSS RISP/NTDD population estimates (breast screening population estimates - population count), the screening population for the programme can be determined. The BSS User Guide provides further detail on how to perform this. The population counts for 50 to 70 are required; also 47 to 49 and 71 to 73 if the service is involved in the age extension trial (AgeX). The annual counts in the estimate are cumulative. Women counted in one year are also counted in the following year unless they have moved out of the specific age range.

The population estimates look like this:

Showing 1 to 6 of 6 entries

The example shown above shows how to determine the capacity including age extension participants. If the service is not in the AgeX trial, the method is the same, but the calculations described to ascertain the additional age extension numbers are not required.

As the population of the 47 to 49 age group is approximately twice that of the 71 to 73 age group, and services do not know which age group is going to be randomised in until the appointment stage, services can use one of the following options to ensure they have the required capacity:

- add the 2 together and divide the answer by 2 to give an average over the 3 years
- use the larger cohort age group (likely to be the 47 to 49-year age range)

For example:

	Age 47 to 49	Age 50 to 70	Age 71 to 73
Year 1	4324	32456	2176
Year 2	4432	33897	2254
Year 3	4498	34824	2324
Total	13254	101177	6754

Total service population $=((13254+6754) / 2+101177) / 3=37060$
(using an average of the upper and lower age bands)
Or
Total service population $=(13254+101177) / \mathbf{3}=38143$
(using the larger 47 to 49 age group population)

Then divide the total population by 3 to give the annual screening population. You must resolve any uncertainty in the accuracy of the population counts or highlight the consequences for round length to the service commissioner.

Dividing the population to be screened evenly across the 3-year cycle demonstrates whether there is enough capacity to screen the population. Your plan may involve screening some sites early to achieve an even distribution.

You must determine the number of weeks the service will operate in a year. Most services work between 42 and 48 weeks per year (depending on service pressures), to allow for holidays and maintenance.

Divide the annual screening population by the number of weeks a service is intending to operate.

For example:
If the screening service is intending to screen for 44 weeks per year:
Total population divided by $3=$ number of people per annum (pa)
Number of people pa divided by $44=$ number of people to be invited per week $114,432 / 3=38,144$ pa
$38,144 / 44=867$ people per week

Establishing screening facilities: capacity

The next stage is to establish how many screening facilities are required. These may include static units and/or mobile screening units. Divide the number to be invited per week by the number of screening facilities available.

For example:
Using the scenario above, if the screening service has one static unit and one mobile screening unit, then 434 people need to be invited each week to attend each facility.

$$
867 \div 2=434 \text { per week }
$$

If the screening service has one static unit and 2 mobile screening units, then 289 people need to be invited each week to attend each facility.

$$
867 \div 3=289 \text { per week }
$$

The example above shows an equal distribution of people to be invited across each screening unit, however this may not be the case. It is likely there will be less capacity in the static unit due to other activities carried out such as symptomatic imaging clinics and assessment clinics.

For example:
If the static unit can only screen for half a day rather than a full day, then the calculation above for the 3-unit service (for a 5-day week) would be:

3 units $=12.5$ days screening (unit $1=5$ days, unit $2=5$ days, unit $3=2.5$ days screening)
$867 \div 12.5$ (days) $=69.4$ people to be invited per day
69.4×5 (days) $=347$ people to unit 1 and 347 people to unit 2 per week
69.4×2.5 (days) $=173$ people to unit 3 per week
Units 1, 2 and $3=347+347+173=867$ people screened per week

Finally, determine the number of people to be invited per day. At this stage, the uptake rate for the programme or the use of Smart clinics is not factored into the calculation (do this later).

