Food integrity scientific opinions

James.Donarski@Fera.co.uk

€12M (€9M EC contribution) FP7 project with 60 partners

University College Dublin

Iniversity

National University of Ireland, Dublin

POLITECHNIKA GDAŃSKA

azti)

SME

Public Body

UNIVERSITÀ DEGLI STUDI DI PARMA

Research Organisation

JRC

To provide Europe with a state of the art and *integrated* capability for detecting fraud and *assuring* the integrity of the food chain

To provide a *sustainable* body of expertise that can inform high level stakeholder platforms on food fraud / authenticity issues and priorities

To *bridge* previous research activities, assess capability gaps, commission research and inform EU future research needs

ADDING VALUE TO THE EUROPEAN AGRI-FOOD ECONOMY BY PROVIDING FOOD SAFETY, AUTHENTICITY AND QUALITY ASSURANCE

WP1 The FoodIntegrity Network – Opinions

http://www.foodintegrity.eu

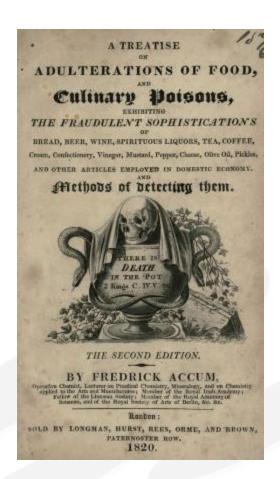
https://doi.org/10.1016/j.foodcont.2019.05.021

https://doi.org/10.1016/j.tifs.2019.02.019

https://doi.org/10.1016/j.tifs.2019.07.035

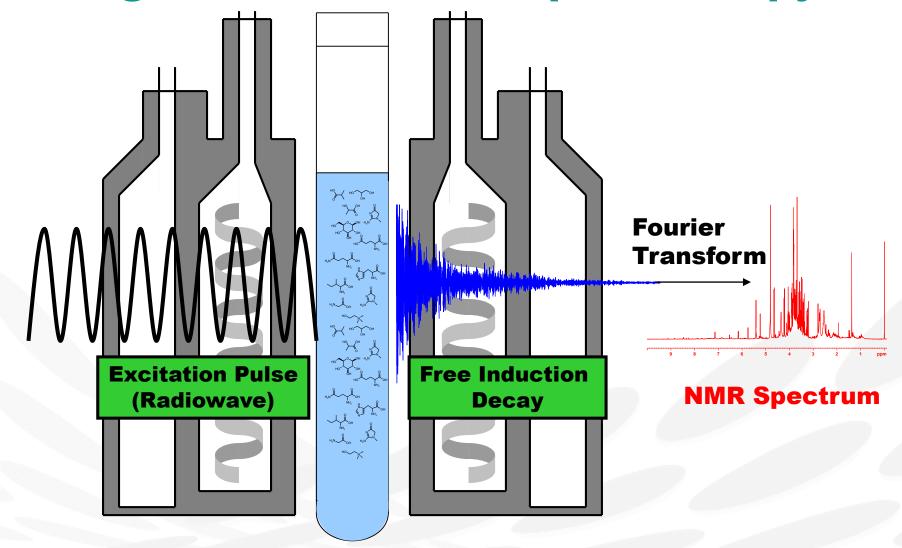
Topic No:	Topic Title:
1	Application of SIMRS for determining geographical origin in legal cases.
2	Role of analytical testing for food fraud risk mitigation – how much is enough?
3	What are the scientific challenges in moving from targeted to non-targeted methods for food fraud testing and how can they be addressed?
4	Multivariate Statistics: considerations and confidences in food authenticity.
5	Database development, use and curation.
б	Use of NMR applications to tackle future food fraud issues.

Definition

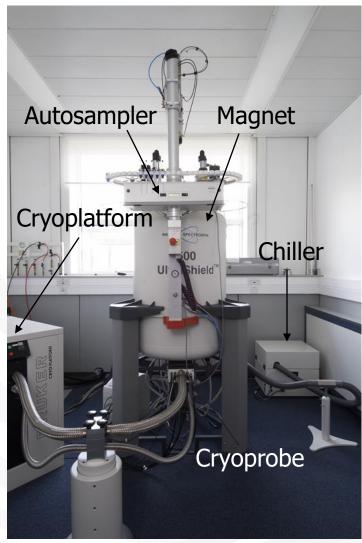

FOOD AUTHENTICITY

"FOOD AUTHENTICITY IS ABOUT ENSURING THAT FOOD OFFERED FOR SALE OR SOLD IS OF THE **NATURE**, **SUBSTANCE** AND **QUALITY** EXPECTED BY THE PURCHASER (SECTION 14 FOOD SAFETY ACT 1990)." *

FOOD FRAUD


"DISHONEST ACT OR OMISSION, RELATING TO THE PRODUCTION OR SUPPLY OF FOOD, WHICH IS INTENDED FOR PERSONAL GAIN OR TO CAUSE LOSS TO ANOTHER PARTY" **

*Elliott Review into the Integrity and Assurance of Food Supply Networks – Final Report **PAS 96:2017 Guide to protecting and defending food and drink from deliberate attack



Nuclear Magnetic Resonance spectroscopy

Nuclear Magnetic Resonance spectroscopy

- High throughput
- Unbiased
- Unique "virtual" separation
- Repeatable & Reproducible
- Identification of unknowns
 - Multinuclear chemical shifts
 - J-couplings
 - Peak intensities
 - NOE
 - Diffusion rate

Definition – Food Authenticity Database

"ORGANISED COLLECTION OF DATA, ANALYSED WITH ESTABLISHED PROTOCOLS ACQUIRED FROM A REPRESENTATIVE NUMBER OF AUTHENTIC SAMPLES, WITH THE PURPOSE OF DEFINING THE NATURAL VARIABILITY OF SOME PARTICULAR, DEFINED, PROPERTIES OF A FOODSTUFF"

- Primary purpose.
- In / Out of scope.

Method choice.

Test analytical assumptions.

- Sample authenticity.
- Representativeness of samples.

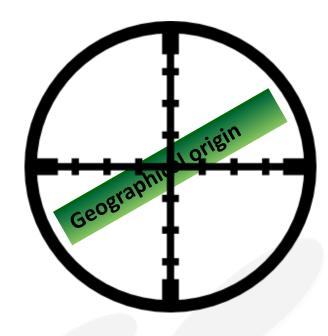
Collection of Analytical

- Data quality checks.
- Minimum Information for analytical method reproducibility.

Build Database • Database hierarchy.

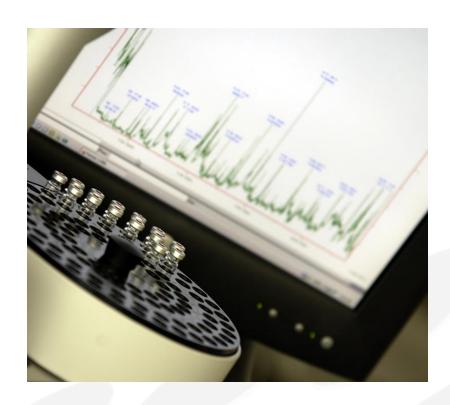
Validate and use of database

- External test samples.
- Statistical analysis.
- Classification results.


Database Curation and availability

- Continuing to confirm database validity.
- Access rights.

Scope of food authenticity database


- Purpose.
- Confirmation / forensic assessment.
- Scope defines sampling.
- Broad can lead to excessive sampling requirements.
- Sample metadata.

Method of Analysis

- Appropriate for scope.
- Targeted methods:
 - Accredited.
 - Proficiency testing.
 - Robust.
- Non-targeted methods:
 - Long term stability.
 - Transferability.
- Trial study.

Authentic Reference Material

- Authentic.
- "Authentically not authentic".
- Representative.
- Metadata, collect and record what is appropriate.

Data Acquisition

- Minimum reporting information.
- Machine / method Repeatability.
- Randomly ordered analysis.
- Reference material.
- Time dependencies / sample storage.
- · Precision.

Database Building

- Online / offline.
- Storage medium for underlying database.
- Volume of data.
- Archiving.
- Speed of entry and retrieval.
- Statistical analysis within database or external.

Validation and Application

- Univariate / multivariate.
- Multi / single class modelling.
- Externally blinded validation.
- 'Outliers' rationalise or reduce scope.
- Reported classification rates.

Maintenance / Curation

- Librarian.
- Ensure validity over time.
- Protocols for usage and expansion of scope.
- Access rights to the data.

Conclusions

- NMR spectroscopy is a ideal tool for creating food authenticity databases
- Defined critical steps, starting with scope.
- Rationalised method of analysis.
- Relevant, authentic samples.
- Appropriate storage of data.
- Validation of the ability of the database to protect against food fraud.
- Once created, the database should be curated to ensure it remains valid.

Acknowledgements

CONICET

ab agri

Thermo Fisher SCIENTIFIC

> University of Salford

This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no 613688