Environment Agency

Review of an Environmental Permit for an Installation subject to Chapter II of the Industrial Emissions Directive under the Environmental Permitting (England & Wales) Regulations 2016

Decision document recording our decision-making process following review of a permit

The Permit number is: EPR/BP3239LA The Operator is: RWE KL Limited The Installation is: King's Lynn Power Station A This Variation Notice number is: EPR/BP3239LA/V007

What this document is about

Article 21(3) of the Industrial Emissions Directive (IED) requires the Environment Agency to review conditions in permits that it has issued and to ensure that the permit delivers compliance with relevant standards, within four years of the publication of updated decisions on best available techniques (BAT) conclusions.

We have reviewed the permit for this installation against the revised BAT Conclusions for large combustion plant published on 17th August 2017. We have also carried out a name change for the site which has changed operator but under the same company number, from Centrica KL Ltd to RWE KL Ltd. This is our decision document, which explains the reasoning for the consolidated variation notice that we are issuing.

It explains how we have reviewed and considered the techniques used by the Operator in the operation and control of the plant and activities of the installation. This review has been undertaken with reference to the decision made by the European Commission establishing best available techniques (BAT) conclusions ('BAT Conclusions') for large combustion plant as detailed in document reference IEDC-7-1. It is our record of our decision-making process and shows how we have taken into account all relevant factors in reaching our position. It also provides a justification for the inclusion of any specific conditions in the permit that are in addition to those included in our generic permit template.

As well as considering the review of the operating techniques used by the Operator for the operation of the plant and activities of the installation, the consolidated variation notice takes into account and brings together in a

single document all previous variations that relate to the original permit issued. It also modernises the entire permit to reflect the conditions contained in our current generic permit template.

The introduction of new template conditions makes the Permit consistent with our current general approach and philosophy and with other permits issued to installations in this sector. Although the wording of some conditions has changed, while others have been removed because of the new regulatory approach, it does not reduce the level of environmental protection achieved by the Permit in any way. In this document we therefore address only our determination of substantive issues relating to the new BAT Conclusions.

This is our record of our decision-making process and shows how we have taken into account all relevant factors in reaching our position.

Throughout this document we will use a number of expressions. These are as referred to in the glossary and have the same meaning as described in "Schedule 6 Interpretation" of the Permit.

We try to explain our decision as accurately, comprehensively and plainly as possible. We would welcome any feedback as to how we might improve our decision documents in future. A lot of technical terms and acronyms are inevitable in a document of this nature: we provide a glossary of acronyms near the front of the document, for ease of reference.

How this document is structured

Glossary of terms

- 1 Our decision
- 2 How we reached our decision
- 2.1 Requesting information to demonstrate compliance with BAT Conclusions for Large Combustion Plant
- 2.2 Review of our own information in respect to the capability of the installation to meet revised standards included in the BAT Conclusions document
- 2.3 Summary of how we considered the responses from public consultation.
- 3 The legal framework
- 4 Key Issues
- 5 Decision checklist regarding relevant BAT Conclusions
- 6 Emissions to Water
- 7 Review and assessment of changes that are not part of the BAT conclusions derived permit review.

Glossary of acronyms used in this document

(Please note that this glossary is standard for our decision documents and therefore not all these acronyms are necessarily used in this document.)

APC	Air Pollution Control
BAT	Best Available Technique(s)
BAT-AEEL	BAT Associated Energy Efficiency Level
BAT-AEL	BAT Associated Emission Level
BATc	BAT conclusion
BREF	Best available techniques reference document
CCGT	Combined Cycle Gas Turbine
CEM	Continuous emissions monitor
CHP	Combined heat and power
CV	Calorific value
DAA	Directly associated activity – Additional activities necessary to be carried out to allow the principal activity to be carried out
DLN	Dry Low NOx burners
DLN-E	Dry Low NOx effective
EIONET	European environment information and observation network is a partnership network of the European Environment Agency
ELV	Emission limit value derived under BAT or an emission limit value set out in IED
EMS	Environmental Management System
EPR	Environmental Permitting (England and Wales) Regulations 2016 (SI 2016 No. 1154)
EWC	European waste catalogue
FSA	Food Standards Agency
IC	Improvement Condition
IED	Industrial Emissions Directive (2010/75/EU)
IPPCD	Integrated Pollution Prevention and Control Directive (2008/1/EC) – now superseded by IED
LCP	Large Combustion Plant subject to Chapter III of IED
MSUL/MSDL	Minimum start up load/minimum shut-down load
NOx	Oxides of nitrogen (NO plus NO ₂ expressed as NO ₂)
NPV	Net Present Value
PHE	Public Health England
SAC	Special Area of Conservation
SGN	Sector guidance note
TGN	Technical guidance note
TNP	Transitional National Plan
ТОС	Total Organic Carbon
WFD	Water Framework Directive (2000/60/EC)

1 Our decision

We have decided to issue the consolidated variation notice to the Operator. This will allow it to continue to operate the Installation, subject to the conditions in the consolidated variation notice.

We consider that, in reaching that decision, we have taken into account all relevant considerations and legal requirements and that the varied permit will ensure that a high level of protection is provided for the environment and human health.

The consolidated variation notice contains many conditions taken from our standard Environmental Permit template including the relevant Annexes. We developed these conditions in consultation with industry, having regard to the legal requirements of the Environmental Permitting Regulations and other relevant legislation. This document does not therefore include an explanation for these standard conditions. Where they are included in the Notice, we have considered the techniques identified by the operator for the operation of their installation, and have accepted that the details are sufficient and satisfactory to make those standard conditions appropriate. This document does, however, provide an explanation of our use of "tailor-made" or installation-specific conditions, or where our Permit template provides two or more options.

2 How we reached our decision

2.1 Requesting information to demonstrate compliance with BAT Conclusions for Large Combustion Plant

We issued a Notice under Regulation 61(1) of the Environmental Permitting (England and Wales) Regulations 2016 (a Regulation 61 Notice) on 1st May 2018 requiring the Operator to provide information to demonstrate how the operation of their installation currently meets, or will subsequently meet, the revised standards described in the large combustion plant BAT Conclusions document. The Notice also required that where the revised standards are not currently met, the operator should provide information that:

- Describes the techniques that will be implemented before 17th August 2021, which will then ensure that operations meet the revised standard, or
- Justifies why standards will not be met by 17th August 2021, and confirmation of the date when the operation of those processes will cease within the installation or an explanation of why the revised BAT standard is not applicable to those processes, or
- Justifies why an alternative technique will achieve the same level of environmental protection equivalent to the revised standard described in the BAT Conclusions.

Where the Operator proposed that they were not intending to meet a BAT standard that also included a BAT Associated Emission Level (BAT AEL) described in the BAT Conclusions Document, the Regulation 61 Notice requested that the Operator make a formal request for derogation from compliance with that AEL (as provisioned by Article 15(4) of IED). In this circumstance, the Notice identified that any such request for derogation must be supported and justified by sufficient technical and commercial information that would enable us to determine acceptability of the derogation request.

The Regulation 61 Notice response from the Operator was received on 12/11/2018.

We considered it was in the correct form and contained sufficient information for us to begin our determination of the permit review but not that it necessarily contained all the information we would need to complete that review: see below.

2.2 Review of our own information in respect to the capability of the installation to meet revised standards included in the BAT Conclusions document

Based on our records and previous regulatory activities with the facility we have no reason to consider that the operator will not be able to comply with the conditions that we include in the permit.

In relation to BAT Conclusion(s) 2,40,42 and 44 we agree with the operator in respect to their current stated capability as recorded in their Regulation 61 Notice response.

We have included improvement conditions IC11, IC12 and IC13 in the consolidated variation notice, which requires the operator to confirm the parameters linked to the upgrade on site to meet the requirements of the BAT Conclusion to be delivered by 17 August 2021. We have also included a condition for Black-start IC14. This is discussed in more detail in the key issues section and/or in the decision checklist regarding relevant BAT Conclusions.

3 The legal framework

The consolidated variation notice will be issued, under Regulation 20 of the EPR. The Environmental Permitting regime is a legal vehicle which delivers most of the relevant legal requirements for activities falling within its scope. In particular, the regulated facility is:

- an *installation* as described by the IED;
- subject to aspects of other relevant legislation which also have to be addressed.

We consider that, the consolidated variation notice will ensure that the operation of the Installation complies with all relevant legal requirements and that a high level of protection will be delivered for the environment and human health.

We explain how we have addressed specific statutory requirements more fully in the rest of this document.

4 The key issues

The key issues arising during this permit review are:

- Emissions to air and the emission limits applied to the plant.
- The energy efficiency levels associated with the Best Available Techniques (BAT-AEELs)
- Keeping IC11 and adding IC12 and IC13.
- Inclusion of black start condition and associated Improvement condition IC14

We therefore describe how we determined these issues in most detail in the relevant sections of this document.

4.1 Emissions to air and the emission limits applied to the plant

A number of general principles were applied during the permit review. These included:

- The upper value of the BAT AELs ranges specified were used unless use of the tighter limit was justified.
- The principle of no backsliding where if existing limits in the permit were already tighter than those specified in the BREF, the existing permit limits were retained.
- Where a limit was specified in both IED Annex V and the BAT Conclusions for a particular reference period, the tighter limit was applied and in the majority of cases this was from the BAT Conclusions.
- Where AELs are indicative in the BAT Conclusions, these were applied unless adequate justification was provided by the operator to demonstrate that an alternative limit was more appropriate.
- For gas turbines where the IED specified that limits applied over 70% load and the BAT Conclusions specified that AELs applied when dry low NOx is effective (DLN-E), we have used DLN-E as a default across all monitoring requirements for NOx and CO.

The LCP on site consist of LCP48, 646MWth, Combined Cycle Gas Turbine (CCGT) burning Natural gas.

The plant was put into operation before IED came into force and therefore the existing limits in the permit are from Part 1 of IED Annex V applicable to existing plant.

The ELVs and AELs are based on the following operating regime:

• Unlimited hours operation

The following tables outline the limits that have been incorporated into the permit for LCP48, where these were derived from and the reference periods at which they apply. The emission limits refer to concentrations, expressed as mass of emitted substance per volume of flue-gas under the following standard conditions: dry gas at a temperature of 273,15 K, pressure of 101,3 kPa and 15%, volume reference oxygen concentration if flue gases. The emission limits and monitoring requirements have been incorporated into Schedule 3 of the permit.

By the end of the TNP on 30 June 2020, as a minimum plant must meet the limits set out in Annex V of the Industrial Emission Directive subject to BAT assessment and the principle of no backsliding. From the implementation date of the BAT Conclusion in 2021 the relevant AELs will also apply. The tables below set out the limits that will apply from 17 August 2021.

	NOx limits (mg/Nm ³)										
Averaging	IED (Annex V Part 1) - Existing	BREF	Expected permit limits	Basis	Limits apply	Monitoring					
Annual	None	40	40	BREF	E-DLN						
Monthly	50	None	50	IED	E-DLN						
Daily	55	50	50	Existing permit	E-DLN	Continuous					
95 th %ile of hr means	100	None	100	IED	E-DLN						

	CO limits (mg/Nm ³)										
Averaging	IED (Annex V Part 1) - Existing	BREF	Expected permit limits	Basis	Limits apply	Monitoring					
Annual	None	30	30	BREF	E-DLN						
Monthly	100	None	50*	IED	E-DLN						
Daily	110	None	50*	BREF	E-DLN	Continuous					
95 th %ile of hr means	200	None	200	IED	E-DLN						

* No backsliding principle has been applied – these limits were carried over from the existing permit.

4.2 The energy efficiency levels associated with the Best Available Techniques Conclusions

An energy efficiency level associated with the best available techniques (BAT-AEEL) refers to the ratio between the combustion unit's net energy output(s) and the combustion unit's fuel/feedstock energy input at actual unit design. The net energy output(s) is determined at the combustion unit boundaries, including auxiliary systems (e.g. flue-gas treatment systems), and for the unit operated at full load.

The table below sets out the BAT-AEELs specified in the LCP BAT Conclusions for the large combustion plant on the site and the energy efficiency levels confirmed through the Regulation 61 notice response. The operator has currently been unable to provide us with evidence to demonstrate the AEELs will be met, however this should be possible on completion of IC11, IC12 and IC13. These IC's have been necessary due to the Operator not being able to provide information on the sites energy efficiency, effective-Dry Low NOx and Minimum Start Up Load/Minimum Shut Down Load.

	BAT AEELs (%)		Plant efficiency (%)			
Net electrical efficiency	Net total fuel utilisation	Net mechanical efficiency	Net electrical efficiency	Net total fuel utilisation	Net mechanical efficiency	
	LCF	48: unit descriptio	on from the AEEL to	able		
50 - 60	None	None	see IC11	NA	NA	

5 Decision checklist regarding relevant BAT Conclusions

BAT Conclusions for large combustion plant, were published by the European Commission on 17th August 2017. There are 75 BAT Conclusions. Only the BAT Conclusions relevant to the particular fuel type used on site have been replicated below.

This annex provides a record of decisions made in relation to each relevant BAT Conclusion applicable to the installation. This annex should be read in conjunction with the Consolidated Variation Notice.

The conditions in the permit through which the relevant BAT Conclusions are implemented include but are not limited to the following:

BAT Conclusion	Permit condition(s)	Permit table(s)		
requirement topic				
Environmental	1.1.1	S1.2		
Management System				
BAT AELs	3.1.1 and 3.5.1	S3.1a		
Monitoring	2.3, 3.5 and 3.6	S3.1, S31a,		
Energy efficiency	1.2 and 2.3	S3.5		
Noise	3.4 and 2.3	S1.2		
Other operating	1.2	S1.2		
techniques				

The overall status of compliance with the BAT conclusion is indicated in the table as:

- NA Not Applicable
- CC Currently Compliant
- FC Compliant in the future (within 4 years of publication of BAT conclusions)
- NC Not Compliant
- PC Partially Compliant

BAT Concn. Number	Summary of BAT Conclusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
General			
1	In order to improve the overall environmental performance, BAT is to implement and adhere to an environmental management system (EMS) that incorporates all of the following features: i. commitment of the management, including senior management; ii. definition of an environmental policy that includes the continuous improvement of the installation by the management; iii. planning and establishing the necessary procedures, objectives and targets, in conjunction with financial planning and investment; iv. implementation of procedures (a) Structure and responsibility (b) Training (c) Communication (d) Employee involvement (e) Documentation (f) Efficient process control (g) Maintenance programmes (h) Emergency preparedness and response (i) Safeguarding compliance with environmental legislation v. checking performance and taking corrective action, paying particular attention to: (a) monitoring and measurement (see also the Reference Document on the General Principles of Monitoring) (b) corrective and preventive action (c) maintenance of records (d) independent (where practicable) internal and external auditing in order to determine whether or not the EMS conforms to planned arrangements and has been properly implemented and maintained; vi. review of the EMS and its continuing suitability, adequacy and effectiveness by senior management; vii. following the development of cleaner technologies; viii. consideration for the environmental impacts from the eventual decommissioning of the installation at the stage of designing a new plant, and throughout its operating life; viii. consideration for the environmental impacts from the eventual decommissioning of the installation at the stage of designing a new plant, and throughout its operating life; viii. consideration for the environmental impacts from the eventual decommissioning of the installation at the stage of designing a new plant, and throughout its operating life; viii. consideration for the environmental impacts from the eventual decommissioning of the installation	CC	The station operates an EMS which is fully integrated and certified to ISO14001: 2015 Certificate No: 246955/2017/AE/GBR/UKAS

BAT Concn. Number	Summary of BAT Conclusion rea	Summary of BAT Conclusion requirement								
	Applicability . The scope (e.g. leve will generally be related to the natu impacts it may have.									
2	energy efficiency of the gasification load (1), according to EN standard could significantly affect the net ele mechanical energy efficiency of the	BAT is to determine the net electrical efficiency and/or the net total fuel utilisation and/or the net mechanical energy efficiency of the gasification, IGCC and/or combustion units by carrying out a performance test at full bad (1), according to EN standards, after the commissioning of the unit and after each modification that could significantly affect the net electrical efficiency and/or the net total fuel utilisation and/or the net net nechanical energy efficiency of the unit. If EN standards are not available, BAT is to use ISO, national or other international standards that ensure the provision of data of an equivalent scientific quality.								
3	BAT is to monitor key process p given below.	ir and water including those	FC	All testing equipment and personnel used will be in						
	Stream	Parameter(s)	Monitoring		accordance with MCERTs and the IED compliance protocol. Flow will be measured in					
	Flue-gas	Flow	Periodic or continuous determination							
		Oxygen content, temperature, and pressure	Periodic or continuous measurement							
		Water vapour content (3)			accordance with EN16911-1 to					
	Waste water from flue-gas treatment	Flow, pH, and temperature	Continuous measurement		validate the calculations in accordance with EN16911-2. Flow					
					will then be determined periodically. Only oxygen is required for reporting reference conditions. Oxygen is continually monitored to EN14789. Flue gas is dried before analysis, therefore monitoring of water vapour content is not required. There is no waste water from flue gas treatment. Operations are carried out in compliance with the IED Compliance Protocol (JEP13SGG14: Electricity Supply					

BAT Concn. Number	Summary of	BAT Conclusion requiremer	nt				Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
								Industry - IED Compliance Protocol for Utility Boilers and Gas Turbines (December 2015)).
4	If EN standard	itor emissions to air with at leas ds are not available, BAT is to ata of an equivalent scientific of Fuel/Process/Type of	use ISO, natio		mational standards	that ensure the Monitoring	FC	Monitoring will be carried out continuously in accordance with EN14181. The site monitors CO and NOx, as required by BAT 4
	Parameter	Parameter combustion plant plant total rated thermal input		monitoring frequency <u>(</u> ⁵)	associated with		for natural gas fired turbines. Monitoring is carried out continuously using MCERTs	
	NH ₃	 When SCR and/or SNCR is used 		Generic EN standards	Continuous <u>(⁶)(⁷)</u>	BAT 7		continuous emissions monitoring system.
	NOx	 Coal and/or lignite including waste co- incineration Solid biomass and/or peat including waste co- incineration HFO- and/or gas-oil-fired boilers and engines Gas-oil-fired gas turbines Natural-gas-fired boilers, engines, and turbines Iron and steel process gases Process fuels from the chemical industry IGCC plants 	All sizes	Generic EN standards	Continuous <u>(⁶)(⁸)</u>	BAT 20 BAT 24 BAT 28 BAT 32 BAT 37 BAT 41 BAT 42 BAT 43 BAT 43 BAT 47 BAT 48 BAT 56 BAT 64 BAT 65 BAT 73		
		Combustion plants on offshore platforms	All sizes	EN 14792	Once every year (9)	BAT 53		
	N ₂ O	 Coal and/or lignite in circulating fluidised bed boilers 	All sizes	EN 21258	Once every year <u>(</u> ¹⁰)	BAT 20 BAT 24		

BAT Concn. Number	Summary of	BAT Conclusion requireme	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement				
		 Solid biomass and/or peat in circulating fluidised bed boilers 						
	СО	 Coal and/or lignite including waste co- incineration Solid biomass and/or peat including waste co- incineration HFO- and/or gas-oil-fired boilers and engines Gas-oil-fired gas turbines Natural-gas-fired boilers, engines, and turbines Iron and steel process gases Process fuels from the chemical industry IGCC plants 	All sizes	Generic EN standards	Continuous <u>(°)(*)</u>	BAT 20 BAT 24 BAT 28 BAT 33 BAT 38 BAT 44 BAT 49 BAT 56 BAT 64 BAT 65 BAT 73		
		 Combustion plants on offshore platforms 	All sizes	EN 15058	Once every year <u>(</u> ⁹)	BAT 54		
	SO2	 Coal and/or lignite incl waste co-incineration Solid biomass and/or peat incl waste co-incineration HFO- and/or gas-oil-fired boilers HFO- and/or gas-oil-fired engines Gas-oil-fired gas turbines Iron and steel process gases Process fuels from the chemical industry in boilers 	All sizes	Generic EN standards and EN 14791	Continuous <u>(°) ('')</u> <u>(</u> '2)	BAT 21 BAT 25 BAT 29 BAT 34 BAT 39 BAT 50 BAT 57 BAT 66 BAT 67 BAT 74		

							Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
	 IGCC plants 						
SO ₃	— When SCR is used	All sizes	No EN standard available	Once every year	_		
Gaseous chlorides, expressed as HCI	 Coal and/or lignite Process fuels from the chemical industry in boilers 	All sizes	EN 1911	Once every three months_(6)_(13)_(14)	BAT 21 BAT 57		
	 Solid biomass and/or peat 	All sizes	Generic EN standards	Continuous <u>(15)(16)</u>	BAT 25		
	— Waste co-incineration	All sizes	Generic EN standards	Continuous <u>(⁶)(¹⁶)</u>	BAT 66 BAT 67		
HF	 Coal and/or lignite Process fuels from the chemical industry in boilers 	All sizes	No EN standard available	Once every three months_(6)_(13)_(14)	BAT 21 BAT 57		
	— Solid biomass and/or peat	All sizes	No EN standard available	Once every year	BAT 25		
	— Waste co-incineration	All sizes	Generic EN standards	Continuous (6) (16)	BAT 66 BAT 67		
Dust	 Coal and/or lignite Solid biomass and/or peat HFO- and/or gas-oil-fired boilers Iron and steel process gases Process fuels from the chemical industry in boilers IGCC plants HFO- and/or gas-oil-fired engines 	All sizes	Generic EN standards and EN 13284-1 and EN 13284-2	Continuous <u>(°) (</u> 17 <u>)</u>	BAT 22 BAT 26 BAT 30 BAT 35 BAT 39 BAT 51 BAT 58 BAT 75		
	SO ₃ Gaseous chlorides, expressed as HCI HF	SO3 — IGCC plants SO3 — When SCR is used Gaseous chlorides, expressed as HCl — Coal and/or lignite — Process fuels from the chemical industry in boilers — Solid biomass and/or peat — Waste co-incineration HF — Coal and/or lignite — Process fuels from the chemical industry in boilers HF — Coal and/or lignite — Process fuels from the chemical industry in boilers — Solid biomass and/or peat — Solid biomass and/or peat — Waste co-incineration Dust — Coal and/or lignite — Solid biomass and/or peat — HFO- and/or gas-oil-fired boilers — Iron and steel process gases — If CC plants — IGCC plants — IGCC plants — HFO- and/or gas-oil-fired	Image: Solution of the sector of the sect	Image: Solution of the second seco	Image: Solution of the second seco	Image: Solution of the second secon	Image: Solution of the second seco

BAT Concn. Number	Summary of I	BAT C	onclusion requiremen	nt			Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
		_	Waste co-incineration	All sizes	Generic EN standards and EN 13284-2	Continuous	BAT 68 BAT 69		
	Metals and metalloids except mercury (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, Se, TI, V,		Coal and/or lignite Solid biomass and/or peat HFO- and/or gas-oil-fired boilers and engines	All sizes	EN 14385	Once every year <u>(18)</u>	BAT 22 BAT 26 BAT 30		
	Zn)	_	Waste co-incineration	< 300 MW _{th}	EN 14385	Once every six months (13)	BAT 68 BAT 69		
				≥ 300 MW _{th}	EN 14385	Once every three months $(19) (13)$			
		_	IGCC plants	≥ 100 MW _{th}	EN 14385	Once every year <u>(18)</u>	BAT 75		
	Hg	 Coal and/or lignite including waste co- 	$< 300 \text{ MW}_{\text{th}}$	EN 13211	Once every three months $(1^3)(2^0)$	BAT 23			
			incineration	≥ 300 MW _{th}	Generic EN standards and EN 14884	Continuous <u>(16)(21)</u>			
			Solid biomass and/or peat	All sizes	EN 13211	Once every year (22)	BAT 27		
		_	Waste co-incineration with solid biomass and/or peat	All sizes	EN 13211	Once every three months (13)	BAT 70		
		_	IGCC plants	≥ 100 MW _{th}	EN 13211	Once every year (23)	BAT 75		
	TVOC	_	HFO- and/or gas-oil-fired engines	All sizes	EN 12619	Once every six months (13)	BAT 33 BAT 59		
		_	Process fuels from chemical industry in boilers						
	TVOC	-	Waste co-incineration with coal, lignite, solid biomass and/or peat	All sizes	Generic EN standards	Continuous	BAT 71		
	Formaldehyde	_	Natural-gas in spark- ignited lean-burn gas and dual fuel engines	All sizes	No EN standard available	Once every year	BAT 45		
	CH ₄	_	Natural-gas-fired engines	All sizes	EN ISO 25139	Once every year (24)	BAT 45		

BAT Concn. Number	cn.										Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
	PCDD/F	 Process fue chemical inc boilers Waste co-in 	Istry in EN 1948-2, months <u>(13) (25)</u> BAT 71 EN 1948-3								
5	accordance w international s	itor emissions to vith EN standard tandards that en e/Parameter	s. If EN sta	andards are no	ot availa	able, BAT uivalent s	is to use IS	SO, nat ity.		NA	There is no flue gas treatment at this site.
			Standard(S)			mon			ciated with		
	Total organic o	arbon (TOC) <u>(</u> 26)	EN 1484			Once every month BAT 15			5		
	Chemical oxygen demand $(COD)_{12^{26}}^{26}$		No EN stan	No EN standard available			,				
	Total suspende	ed solids (TSS)	EN 872 EN ISO 10304-1								
	Fluoride (F ⁻)										
	Sulphate (SO ₄	^{2–})	EN ISO 103	EN ISO 10304-1							
	Sulphide, easil	y released (S ²⁻)	No EN stan	dard available							
	Sulphite (SO ₃ ²	2-)	EN ISO 103	04-3							
	Metals and me	Metals and metalloids As Various EN standards available (e.g. EN ISO 11885 or EN ISO 17294-2) Cr Cu Ni Pb Zn Hg Various EN standards available									
			(e.g. EN ISO EN ISO 178	52)							
	Chloride (Cl⁻)			standards availa D 10304-1 or i82)	ible						

BAT Concn. Number	Summary of BAT Co	nclusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
	Total nitrogen	EN 12260	—		
6	air of CO and unbu combination of the te Technique		combustion plants and to reduce emissions to nised combustion and to use an appropriate Applicability Generally applicable The applicability to old combustion plants may be constrained by the need to retrofit the combustion system and/or control command system Generally applicable to new combustion plants Applicable within the constraints associated with the availability of suitable types of fuel with a better environmental profile as a whole, which may be impacted by the energy policy of the Member State, or by the integrated site's fuel balance in the case of combustion of industrial process fuels. For existing combustion plants, the type of fuel chosen may be limited by the configuration and the design of the plant	FC	 a) The blending and mixing of different qualities of the same fuel types is not appropriate for this site, as the site is supplied through the national transmission system. b) Regular planned maintenance is carried out according to manufacturer's recommendations. Periodic hot gas path inspections and minor and major maintenance outages are based on number of starts. c) The site has an advanced control and monitoring system. This automated control system optimises combustion temperature and efficiency during running. There is also a PI system for high-performance monitoring. The DCS has been upgraded in the recent replant. d) The recent replant has improved the design of the combustion chambers and has improved burner design through the addition of dry low NOx burners.
					-

BAT Concn. Number	Summary of BAT Conclusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
7	In order to reduce emissions of ammonia to air from the use of selective catalytic reduction (SCR) and/or selective non-catalytic reduction (SNCR) for the abatement of NO _X emissions, BAT is to optimise the design and/or operation of SCR and/or SNCR (e.g. optimised reagent to NO _X ratio, homogeneous reagent distribution and optimum size of the reagent drops). BAT-associated emission levels The BAT-associated emission level (BAT-AEL) for emissions of NH ₃ to air from the use of SCR and/or SNCR is < 3–10 mg/Nm ³ as a yearly average or average over the sampling period. The lower end of the range can be achieved when using SCR and the upper end of the range can be achieved when using SNCR without wet abatement techniques. In the case of plants combusting biomass and operating at variable loads as well as in the case of engines combusting HFO and/or gas oil, the higher end of the BAT-AEL range is 15 mg/Nm ³ .	NA	SCR/SNCR are not used on site
8	In order to prevent or reduce emissions to air during normal operating conditions, BAT is to ensure, by appropriate design, operation and maintenance, that the emission abatement systems are used at optimal capacity and availability.	FC	In order to reduce emissions during normal operating conditions, fuel air mixes are optimised, and maintenance programmes are carried out. The recent replant has improved the design of the combustion chambers and has improved burner design through the addition of dry low NOx burners. Regular planned maintenance is carried out according to manufacturer's recommendations. Periodic hot gas path inspections and minor and major maintenance outages are based on running hours.
9	 In order to improve the general environmental performance of combustion and/or gasification plants and to reduce emissions to air, BAT is to include the following elements in the quality assurance/quality control programmes for all the fuels used, as part of the environmental management system (see BAT 1): (i) Initial full characterisation of the fuel used including at least the parameters listed below and in accordance with EN standards. ISO, national or other international standards may be used provided they ensure the provision of data of an equivalent scientific quality; 	NA	The site uses natural gas supplied via the national Transmission System and the fuel supplied is controlled in line with national standards.

BAT Concn. Number	Summary of BAT Conclusion req	Summary of BAT Conclusion requirement					
	plant design specifications. The	y to check that it is consistent with the initial characterisation and according to the irequency of testing and the parameters chosen from the table below are based on assessment of the relevance of pollutant releases (e.g. concentration in fuel, flue-					
		plant settings as and when needed and practicable (e.g. integration of the fuel he advanced control system (see description in Section 8.1)).					
	Description Initial characterisation and regular to	nitial characterisation and regular testing of the fuel can be performed by the operator and/or the fuel supplier performed by the supplier, the full results are provided to the operator in the form of a product (fuel) supplier					
	Fuel(s)	Substances/Parameters subject to characterisation					
	Biomass/peat	— LHV					
		— moisture					
		— Ash					
		— C, Cl, F, N, S, K, Na					
		— Metals and metalloids (As, Cd, Cr, Cu, Hg, Pb, Zn)					
	Coal/lignite	— LHV					
		— Moisture					
		 Volatiles, ash, fixed carbon, C, H, N, O, S 					
		— Br, Cl, F					
		— Metals and metalloids (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn)					
	HFO	— Ash					
		— C, S, N, Ni, V					
	Gas oil	— Ash					
		— N, C, S					
	Natural gas	— LHV					
		— CH ₄ , C ₂ H ₆ , C ₃ , C ₄ +, CO ₂ , N ₂ , Wobbe index					

BAT Concn. Number	Summary of BAT Conclusion req	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement		
	Process fuels from the chemical industry \int_{1}^{27}	 Br, C, CI, F, H, N, O, S Metals and metalloids (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn) 			
	Iron and steel process gases	 LHV, CH₄ (for COG), C_XH_Y (for COG), CO₂, H₂, N₂, total sulphur, dust, Wobbe index 			
	Waste <u>(²⁸)</u>	 LHV Moisture Volatiles, ash, Br, C, Cl, F, H, N, O, S Metals and metalloids (As, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Sb, Tl, V, Zn) 			
10	 In order to reduce emissions to air and/or to water during other than normal operating conditions (OTNOC) BAT is to set up and implement a management plan as part of the environmental management system (see BAT 1), commensurate with the relevance of potential pollutant releases, that includes the following elements appropriate design of the systems considered relevant in causing OTNOC that may have an impact on emissions to air, water and/or soil (e.g. low-load design concepts for reducing the minimum start-up and shutdown loads for stable generation in gas turbines), set-up and implementation of a specific preventive maintenance plan for these relevant systems, review and recording of emissions caused by OTNOC and associated circumstances and implementation of corrective actions if necessary, periodic assessment of the overall emissions during OTNOC (e.g. frequency of events, duration, emissions quantification/estimation) and implementation of corrective actions if necessary. 		FC	This site does not have a specific OTNOC management plan, however the EMS incorporates many of the key aspects of BAT 10 & 11. The site operates a risk based review with the EMS (Aspects and impacts) which includes a review of potential impacts of OTNOC. A) Gas turbine starts are optimised based on plant condition to minimise emissions during start-up. B) All plant components are included within the site specific preventative maintenance programmes, the frequency of maintenance is dependent on operation of the site.	
11	Description The monitoring can be carried of parameters if this proves to be of e	BAT is to appropriately monitor emissions to air and/or to water during OTNOC. Description The monitoring can be carried out by direct measurement of emissions or by monitoring of surrogate parameters if this proves to be of equal or better scientific quality than the direct measurement of emissions. Emissions during start-up and shutdown (SU/SD) may be assessed based on a detailed emissior			

Page 22 of 35

BAT Concn. Number	Sun	nmary of BAT Cond	clusion requirement		Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
			ut for a typical SU/SD procedure at least once te the emissions for each and every SU/SD th			assessed as part of the annual environmental performance review carried out by sites. In the event of an accident or environmental incident, the operator would review the emissions, cause etc as part of the incident investigation process and ensure any relevant corrective and / or preventive action is implemented.
12			energy efficiency of combustion, gasification priate combination of the techniques given be	FC	a) Combustion will be optimised during the commissioning of the	
		Technique	Description	Applicability		 plant as per the Original Equipment Manufacturer's (OEM) approved procedure. The temperature and fuel/air mix will also be optimised during this commissioning stage through the DLN burners. The DLN burners mix the air and fuel before combustion to achieve optimal temperature conditions and reduce NOx emissions. b) Optimisation of the working medium conditions is achieved through operation of the gas
	a.	Combustion optimisation	See description in Section 8.2. Optimising the combustion minimises the content of unburnt substances in the flue-gases and in solid combustion residues	Generally applicable		
	b.	Optimisation of the working medium conditions	Operate at the highest possible pressure and temperature of the working medium gas or steam, within the constraints associated with, for example, the control of NO_X emissions or the characteristics of energy demanded			
	C.	Optimisation of the steam cycle	Operate with lower turbine exhaust pressure by utilisation of the lowest possible temperature of the condenser cooling water, within the design conditions			
	d.	Minimisation of energy consumption	Minimising the internal energy consumption (e.g. greater efficiency of the feed-water pump)			turbine at the highest gas pressure allowed within the OEM
	e.	Preheating of combustion air	Reuse of part of the heat recovered from the combustion flue-gas to preheat the air used in combustion	Generally applicable within the constraints related to the need to control NO_X emissions		parameters, and pre-heating of the gas before combustion. c) The plant has been modified to
	f.	Fuel preheating	Preheating of fuel using recovered heat	Generally applicable within the constraints associated with the boiler design and the need to control NO _x emissions		maximise the energy available from the steam turbine by the addition of a new superheater /

BAT Concn. Number	Sun	nmary of BAT Con	clusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
	g.	Advanced control system	See description in Section 8.2. Computerised control of the main combustion parameters enables the combustion efficiency to be improved	Generally applicable to new units. The applicability to old units may be constrained by the need to retrofit the combustion system and/or control command system		reheater module within the HRSG. The plant also optimises steam turbine efficiency through operation at lower exhaust
	pr	Feed-water preheating using recovered heat	Preheat water coming out of the steam condenser with recovered heat, before reusing it in the boiler	Only applicable to steam circuits and not to hot boilers. Applicability to existing units may be limited due to constraints associated with the plant configuration and the amount of recoverable heat		pressures by the additional street of fans on the ACC. d) Fans, pumps and motors have been overhauled to minimise losses, including the installation of variable speed drive ACC fans
	i.	Heat recovery by cogeneration (CHP)	Recovery of heat (mainly from the steam system) for producing hot water/steam to be used in industrial processes/activities or in a public network for district heating. Additional heat recovery is possible from: — flue-gas — grate cooling — circulating fluidised bed	Applicable within the constraints associated with the local heat and power demand. The applicability may be limited in the case of gas compressors with an unpredictable operational heat profile	and feed water p e) Pre-heating of accordance with description, is no feasible for a CC f) Fuel gas will b using recovered g) The site has a	 and feed water pumps. e) Pre-heating of combustion air in accordance with the BAT description, is not technically feasible for a CCGT. f) Fuel gas will be pre-heated using recovered heat. g) The site has an advanced
	j.	CHP readiness	See description in Section 8.2.	Only applicable to new units where there is a realistic potential for the future use of heat in the vicinity of the unit		control and monitoring system. This automated control system optimises combustion temperature
	k.	Flue-gas condenser	See description in Section 8.2.	Generally applicable to CHP units provided there is enough demand for low-temperature heat	performance monitoring. The	There is also a PI system for high- performance monitoring. The DCS
	I.	Heat accumulation	Heat accumulation storage in CHP mode	Only applicable to CHP plants. The applicability may be limited in the case of low heat load demand		has been upgraded in the recent replant. h) not applicable - the plant is an
	m.	Wet stack	See description in Section 8.2.	Generally applicable to new and existing units fitted with wet FGD		existing unit. i - I) not applicable (site is not CHP)
			The release of emissions to air through a cooling tower and not via a dedicated stack	Only applicable to units fitted with wet FGD where reheating of the flue-gas is necessary before release, and where the unit cooling system is a cooling tower		m,n) not applicable (site is not fitted with FGD) o,p) not applicable (site runs on natural gas)
	0.	Fuel pre-drying	The reduction of fuel moisture content before combustion to improve combustion conditions	Applicable to the combustion of biomass and/or peat within the constraints		q,s) not applicable as it is an existing plant

BAT Concn. Number	Sur	nmary of BAT Cond	clusion requirement		Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
				associated with spontaneous combustion risks (e.g. the moisture content of peat is kept above 40 % throughout the delivery chain). The retrofit of existing plants may be restricted by the extra calorific value that can be obtained from the drying operation and by the limited retrofit possibilities offered by some boiler designs or plant configurations		r) Kings Lynn operates a high, intermediate and low pressure steam turbine, and the steam turbine has been overhauled and re-sealed to minimise losses.	
	p.	Minimisation of heat losses	Minimising residual heat losses, e.g. those that occur via the slag or those that can be reduced by insulating radiating sources	Only applicable to solid-fuel-fired combustion units and to gasification/IGCC units			
	q.	Advanced materials	Use of advanced materials proven to be capable of withstanding high operating temperatures and pressures and thus to achieve increased steam/combustion process efficiencies	Only applicable to new plants			
	r.	Steam turbine upgrades	This includes techniques such as increasing the temperature and pressure of medium-pressure steam, addition of a low-pressure turbine, and modifications to the geometry of the turbine rotor blades	The applicability may be restricted by demand, steam conditions and/or limited plant lifetime			
	S.	Supercritical and ultra-supercritical steam conditions	Use of a steam circuit, including steam reheating systems, in which steam can reach pressures above 220,6 bar and temperatures above 374 °C in the case of supercritical conditions, and above 250 – 300 bar and temperatures above 580 – 600 °C in the case of ultra- supercritical conditions	Only applicable to new units of ≥ 600 MW _{th} operated > 4 000 h/yr. Not applicable when the purpose of the unit is to produce low steam temperatures and/or pressures in process industries. Not applicable to gas turbines and engines generating steam in CHP mode. For units combusting biomass, the applicability may be constrained by high- temperature corrosion in the case of certain biomasses			
13	both	n of the techniques g		-	FC	Water from the steam cycle is re- cycled within the system through	
		Technique	Description	Applicability		condensate capture. Water from the steam system, that cannot be	

Image: Section of the plant are reused for other purposes. The degree of recycling is limited by the quality requirements of the recipient water stream and the water treatment chemicals and/or high concentrations of salts from seawater are present systems when water treatment chemicals and/or high concentrations of salts from seawater are present and/or high concentrations of salts from seawater are present captured where it water treatment chemicals and/or high concentrations of salts from seawater are present and/or high concentrations of salts from seawater are present captured where it water treatment chemicals and/or high concentrations of salts from seawater are present 14 In order to prevent the contamination of uncontaminated waste water and to reduce emissions to water, BAT is to segregate waste water streams and to treat them separately, depending on the pollutant content. Description CC Process are segn 14 In order to prevent the contaminated waste water and treated include surface run-off water, cooling water, and waste water from flue-gas treatment. Applicability CC Process are segn 15 In order to reduce emissions to water from flue-gas treatment. Applicability may be restricted in the case of existing plants due to the configuration of the drainage systems. The BAT-AELs refer to direct discharges to a receiving water body at the point where the emission leaves the installation. NA There is this site. 16 In order to reduce the quantity of waste sent for disposal from the combustion and/or gasification process and abatement techniques, BAT is to organise operations so as to maximise, in order of priority and taking	BAT Concn. Number	Summary of BAT Co	onclusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
14 In order to prevent the contamination of uncontaminated waste water and to reduce emissions to water, BAT is to segregate waste water streams and to treat them separately, depending on the pollutant content. <i>Description</i> CC Process are segregate waste water streams and to treat them separately, depending on the pollutant content. <i>Description</i> CC Process are segregate waste water streams and to treat them separately, depending on the pollutant content. <i>Description</i> Waste water streams that are typically segregated and treated include surface run-off water, cooling water, and waste water from flue-gas treatment. Applicability NA There is to use an appropriate combination of the drainage systems. 15 In order to reduce emissions to water from flue-gas treatment, BAT is to use an appropriate combination of the techniques given in BAT 15, and to use secondary techniques as close as possible to the source in order to avoid dilution. NA There is this site. 16 In order to reduce the quantity of waste sent for disposal from the combustion and/or gasification process and abatement techniques, BAT is to organise operations so as to maximise, in order of priority and taking into acount life-cycle thinking: (a) waste preparation for reuse, e.g. according to the specific requested quality criteria; (b) waste preparation for reuse, e.g. according to the specific requested quality criteria; (c) waste recycling; 		frc de rei	om the plant are reused for other purposes. The egree of recycling is limited by the quality equirements of the recipient water stream and the	systems when water treatment chemicals and/or high concentrations of salts from		re-used in the steam cycle is captured in the clean drains tank, where it is re-processed in the water treatment plant, for re-use.
is to segregate waste water streams and to treat them separately, depending on the pollutant content. are segregate waste water streams that are typically segregated and treated include surface run-off water, cooling water, and waste water from flue-gas treatment. Applicability The applicability The applicability may be restricted in the case of existing plants due to the configuration of the drainage systems. NA 15 In order to reduce emissions to water from flue-gas treatment, BAT is to use an appropriate combination of the techniques given in BAT 15, and to use secondary techniques as close as possible to the source in order to avoid dilution. The BAT-AELs refer to direct discharges to a receiving water body at the point where the emission leaves the installation. NA 16 In order to reduce the quantity of waste sent for disposal from the combustion and/or gasification process and abatement techniques, BAT is to organise operations so as to maximise, in order of priority and taking into account life-cycle thinking: (a) waste prevention, e.g. maximise the proportion of residues which arise as by-products; (b) waste preparation for reuse, e.g. according to the specific requested quality criteria; (c) waste recycling; CC The waster explanation of the relevant a clean filter and the specific requested quality criteria;		handling me	echanical conveyor system and is cooled down by	fuels. There may be technical restrictions that prevent retrofitting to existing combustion		
techniques given in BAT 15, and to use secondary techniques as close as possible to the source in order to avoid dilution. The BAT-AELs refer to direct discharges to a receiving water body at the point where the emission leaves the installation.this site.16In order to reduce the quantity of waste sent for disposal from the combustion and/or gasification process and abatement techniques, BAT is to organise operations so as to maximise, in order of priority and taking into account life-cycle thinking: (a) waste prevention, e.g. maximise the proportion of residues which arise as by-products; (b) waste preparation for reuse, e.g. according to the specific requested quality criteria; (c) waste recycling;CCThe waste impleme waste re where are four tech relevant a clean f	14	is to segregate waste Description Waste water streams waste water from flue Applicability The applicability may	e water streams and to treat them separately, dep that are typically segregated and treated include e-gas treatment.	pending on the pollutant content. surface run-off water, cooling water, and	СС	Process water and surface water are segregated prior to discharge.
abatement techniques, BAT is to organise operations so as to maximise, in order of priority and taking into account life-cycle thinking: (a) waste prevention, e.g. maximise the proportion of residues which arise as by-products; (b) waste preparation for reuse, e.g. according to the specific requested quality criteria;impleme waste re waste re four tech relevant a clean f	15	techniques given in B avoid dilution. The BAT-AELs refer t	BAT 15, and to use secondary techniques as clo	ose as possible to the source in order to	NA	There is no flue gas treatment at this site.
	16	abatement techniques account life-cycle thin (a) waste preventio (b) waste preparati (c) waste recyclin (d) other waste re by implementing an a	es, BAT is to organise operations so as to maxinking: on, e.g. maximise the proportion of residues which ion for reuse, e.g. according to the specific reque- ing; recovery (e.g. energy recovery), appropriate combination of techniques such as:	СС	The waste hierarchy is implemented on site, and steps for waste reduction will be taken where applicable. None of the four techniques in the BAT are relevant to the site. The site uses a clean fuel source and no solid waste is generated from the natural gas.	

BAT Concn. Number	Su	mmary of BAT Con	clusion requirement	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement	
	a. Generation of gypsum as a by- product		Quality optimisation of the calcium-based reaction residues generated by the wet FGD so that they can be used as a substitute for mined gypsum (e.g. as raw material in the plasterboard industry). The quality of limestone used in the wet FGD influences the purity of the gypsum produced	Generally applicable within the constraints associated with the required gypsum quality, the health requirements associated to each specific use, and by the market conditions		
	b.	Recycling or recovery of residues in the construction sector	Recycling or recovery of residues (e.g. from semi- dry desulphurisation processes, fly ash, bottom ash) as a construction material (e.g. in road building, to replace sand in concrete production, or in the cement industry)	Generally applicable within the constraints associated with the required material quality (e.g. physical properties, content of harmful substances) associated to each specific use, and by the market conditions		
	C.	Energy recovery by using waste in the fuel mix	The residual energy content of carbon-rich ash and sludges generated by the combustion of coal, lignite, heavy fuel oil, peat or biomass can be recovered for example by mixing with the fuel	Generally applicable where plants can accept waste in the fuel mix and are technically able to feed the fuels into the combustion chamber		
	d.	Preparation of spent catalyst for reuse	Preparation of catalyst for reuse (e.g. up to four times for SCR catalysts) restores some or all of the original performance, extending the service life of the catalyst to several decades. Preparation of spent catalyst for reuse is integrated in a catalyst management scheme	The applicability may be limited by the mechanical condition of the catalyst and the required performance with respect to controlling NO_X and NH_3 emissions		
17	In o		emissions, BAT is to use one or a combination		СС	Noise is reduced through
	a.	Technique Operational measures	Description These include: — improved inspection and maintenance of equipment — closing of doors and windows of enclosed areas, if possible — equipment operated by experienced staff — avoidance of noisy activities at night, if possible — provisions for noise control during maintenance activities	Applicability Generally applicable		operational measures including all those detailed in a). Where possible, low-noise equipment is utilised. High-noise equipment is contained within buildings and equipment insulation is used where applicable. The GT is enclosed within a building designed for noise attenuation and is fitted with silencers in the air intake, the HRSG is enclosed within a building which minimises noise emissions and the HRSG

BAT Concn. Number	Sum	nmary of BAT Conclusion requirement				Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement		
	b.	Low-noise eq	quipment	ment This potentially includes con disks		mpressors, pumps and	nd Generally applicable when the equipment is new or replaced		exhaust stack is fitted with silencers.
	C.	Noise attenua	ation	obstacles betw	veen the emit	educed by inserting ter and the receiver. de protection walls, s	Generally applicable to new plants. In the case of existing plants, the insertion of obstacles may be restricted by lack space		
	equipment — no — ec — enc			— equip — enclosu	-reducers ment insulatio ure of noisy eo proofing of bu	quipment	The applicability may be restricted by lack of space		
	e. Appropriate location of equipment and buildings by using buildings as noise screens				een the emitte	er and the receiver and	Generally applicable to new plant		
Combusti	on of	gaseous fu	els						
40	In order to increase the energy efficiency of natural gas combustion, BAT is to use an appropriate combir of the techniques given in BAT 12 and below. Technique Description Applicability							n FC	See IC11
	a.	cycle Section 8.2 < 1 500 h/yr. Applicable to existing gas turbines and engines we associated with the steam cycle design and the second the second s					nes and engines except when operated d engines within the constraints gn and the space availability. s and engines operated < 1 500 h/yr. Is turbines operated in discontinuous nd frequent start-ups and shutdowns.		
				/ efficiency l	evels (BAT·	AEELS) for the comb BAT-AEELs (¹³⁶)	oustion of natural gas		
		Type of combustion unit			BAT-AEELs (1-40) electrical Net total fuel utilisatio ency (%) (%) (1-38) (1-39)				

BAT Concn. Number	Su	Immary of BAT (Conclusion rec	Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement				
			New unit	Existing unit		New unit	Existing unit		
	G	as engine	39,5– 44 <u>(¹⁴¹)</u>	35–44 <u>(141)</u>	56–85 <u>(¹⁴¹)</u>	No BAT-AEEL			
	G	as-fired boiler	39–42,5	38–40	78–95	No BAT-AEEL			
		pen cycle gas turbii 0 MWth	ne, ≥ 36–41,5	33–41,5	No BAT-AEEL	36,5–41	33,5–41		
			(Combined cyc	cle gas turbine (CCG	Γ)	·		
	C	CGT, 50–600 MW _{th}	53–58,5	46–54	No BAT-AEEL	No BAT-AEEL			
	C	CGT, ≥ 600 MW _{th}	57–60,5	50–60	No BAT-AEEL	No BAT-AEEL	_		
	C	HP CCGT, 50–600	MW _{th} 53–58,5	46–54	65–95	No BAT-AEEL			
	C	HP CCGT, ≥ 600 M	W _{th} 57–60,5	50–60	65–95	No BAT-AEEL	-		
41		order to prevent o e or a combinatio			r from the combustion of AT 41.	of natural gas in b	oilers, BAT is to use	NA	As this is not a boiler
42		In order to prevent or reduce NO _X emissions to air from the combustion of natural gas in gas turbines, BAT is to use one or a combination of the techniques given below.							Technique a and c to be employed on site.
		Technique		Description		Applicability			From table 24: As an existing
	a.	a. Advanced control system between system control s					strained by the need ustion system and/or		CCGT plant >600MWth and a net fuel utilisation of <75% the annual limit for NOx would be 40mg/Nm3,
	b.	Water/steam addition	See description	in Section 8.3		The applicability may be limited due to water availability			and the daily limit would be 50mg/Nm3. However footnote 8
	C.	Dry low-NO _X burners (DLN)				The applicability may be limited in the case of turbines where a retrofit package is not available or when water/steam addition systems are installed			to the table states "For plants with a net electrical efficiency (EE) greater than 55 %, a correction factor may be applied to the higher end of the BAT-AEL range,
	d.	Low-load design concept	to maintain goo	d combustion eff	ol and related equipment ficiency when the y improving the inlet				corresponding to [higher end] × EE/55, where EE is the net electrical efficiency of the plant determined at ISO baseload

BAT Concn. Number	Su	mmary of BAT (Conclusion requirement		Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
	e.	Low-NO _x burners (LNB) Selective catalytic reduction (SCR)	airflow control capability or by splitting the combustion process into decoupled combustion stages See description in Section 8.3	Generally applicable to supplementary firing for heat recovery steam generators (HRSGs) in the case of combined-cycle gas turbine (CCGT) combustion plants Not applicable in the case of combustion plants operated < 500 h/yr. Not generally applicable to existing combustion plants of < 100 MW _{th} . Retrofitting existing combustion plants may be constrained by the availability of sufficient space. There may be technical and economic restrictions for retrofitting existing combustion plants operated between 500 h/yr and 1 500 h/yr		conditions." it is expected that the net electrical efficiency will be greater than 55% as indicated in the response to BAT 2 above. Therefore the applicable BAT- AELs cannot be determined until after commissioning has been completed and the actual energy efficiency determined. it is proposed that the EA will be informed of the results of the performance test once completed. The site has undergone a replant and will be entering commissioning shortly. The daily average NOx is designed to be compliant, but no equivalent emission guarantees are available related to yearly average NOx emission concentrations and the site will acquire actual plant data once operational. The yearly average and the load point at which dry low NOx becomes effective will be determined once commissioning has been completed. It is proposed that the EA will be updated on these matters once data is available. See IC11
43			or reduce NO_X emissions to air from the combustic nation of the techniques given in BAT 43.	on of natural gas in engines, BAT is to	NA	This is not an engine
44	opt	timised combustion	or reduce CO emissions to air from the combus on and/or to use oxidation catalysts. descriptions in Section 8.3.	tion of natural gas, BAT is to ensure	FC	CO is a product of incomplete combustion. Due to the site being a CCGT, the CO levels are

BAT Concn. Number	Summary of BAT Conclusion requirements	nt			Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
	BAT-associated emission levels (BAT-AELs) for NO _X emissions to air from the combustion of natural gas in gas turbines					expected to be low and within the BAT-AEL. However the site will
	Type of combustion plant	Combustion plant total rated thermal input (MWth)	BAT-AELs (m Yearly average (144) (145)	ng/Nm ³) (¹⁴²) (¹⁴³) Daily average or average over the sampling period		acquire actual plant data after the completion of commissioning and the yearly average CO will be confirmed to the EA once the site
	Open-cycl	e gas turbines (OCGTs	<u>) (¹⁴⁶) (¹⁴⁷)</u>	· · · ·		is operational. See IC11.
	New OCGT	≥ 50	15–35	25–50		
	Existing OCGT (excluding turbines for mechanical drive applications) — All but plants operated < 500 h/yr	≥ 50	15–50	25–55 <u>(¹⁴⁸)</u>		
	Combined-c	ycle gas turbines (CCG	Ts) <u>(¹⁴⁶)(¹⁴⁹)</u>			
	New CCGT	≥ 50	10–30	15–40		
	Existing CCGT with a net total fuel utilisation of <75 %	≥ 600	10–40	18–50		
	Existing CCGT with a net total fuel utilisation of \geq 75 %	≥ 600	10–50	18–55 <u>(¹⁵⁰)</u>		
	Existing CCGT with a net total fuel utilisation of < 75 %	50–600	10–45	35–55		
	Existing CCGT with a net total fuel utilisation of \geq 75 %	50–600	25–50 <u>(¹⁵¹)</u>	35–55 <u>(¹⁵²)</u>		
	Open- and combined-cycle gas turbines					
	Gas turbine put into operation no later than 27 November 2003, or existing gas turbine for emergency use and operated < 500 h/yr	≥ 50	No BAT-AEL	60–140 <u>(153)</u> (154)		
	Existing gas turbine for mechanical drive applications — All but plants operated < 500 h/yr	≥ 50	15–50 <u>(155)</u>	25–55 <u>(¹⁵⁶)</u>		

BAT Concn. Number	Summary of BAT Concl	usion requir	ement			Status NA/ CC / FC / NC	Assessment of the installation capability and any alternative techniques proposed by the operator to demonstrate compliance with the BAT Conclusion requirement
	— New OCGT of ≥ 50 MW _{th} : < 5–40 mg/Nm ³ . For plants with a net electrical efficiency (EE) greater than 39 %, a correction factor may be applied to the higher end of this range, corresponding to [higher end] × EE/39, where EE is the net electrical energy efficiency or net mechanical energy efficiency of the plant determined at ISO baseload conditions.						
	— Existing OCGT of ≥ 50 MW _{th} (excluding turbines for mechanical drive applications): < 5–40 mg/Nm ³ . The higher end of this range will generally be 80 mg/Nm ³ in the case of existing plants that cannot be fitted with dry techniques for NO _x reduction, or 50 mg/Nm ³ for plants that operate at low load.						
	— New CCGT of ≥ 50 MW _{th} : < 5–30 mg/Nm ³ . For plants with a net electrical efficiency (EE) greater than 55 %, a correction factor may be applied to the higher end of the range, corresponding to [higher end] × EE/55, where EE is the net electrical energy efficiency of the plant determined at ISO baseload conditions.						
	 Existing CCGT of ≥ 50 MW_{th}: < 5–30 mg/Nm³. The higher end of this range will generally be 50 mg/Nm³ for plants that operate at low load. 						
	 Existing gas turbines of ≥ 50 MW_{th} for mechanical drive applications: < 5–40 mg/Nm³. The higher end of the range will generally be 50 mg/Nm³ when plants operate at low load. 						
	In the case of a gas turbi operation is effective. BAT-associated emissi						
	Type of combustion			BAT-AELs (mg/Nm ³)			
	plant	Yearly average (157)		Daily average or average over the sampling period			
		New plant	Existing plant <u>(¹⁵⁸)</u>	New plant	Existing plant <u>(¹⁵⁹)</u>		
	Boiler	10–60	50–100	30–85	85–110		
	Engine (160)	20–75	20–100	55–85	55–110 <u>(¹⁶¹)</u>		
	As an indication, the yearly average CO emission levels will generally be: — < 5–40 mg/Nm ³ for existing boilers operated ≥ 1 500 h/yr, — < 5–15 mg/Nm ³ for new boilers,						
	— $30-100 \text{ mg/Nm}^3$ for existing engines operated ≥ 1 500 h/yr and for new engines.						

6. Emissions to Water

The consolidated permit incorporates one ten current discharges to controlled waters identified as W1.

There are no BAT AELs specified in the BAT Conclusions for this type of plant. There are also no additional treatment options identified as BAT for the installation. We have therefore not carried out any additional assessment of the emissions to water as part of this review.

7 Review and assessment of changes that are not part of the BAT Conclusions derived permit review.

Aspect considered	Decision			
Receipt of application				
Confidential information	A claim for commercial or industrial confidentiality has not been made.			
Identifying confidential information	We have not identified information provided as part of the application that we consider to be confidential. The decision was taken in accordance with our guidance on confidentiality.			
The site				
Biodiversity, heritage, landscape and nature conservation	The application is within the relevant distance criteria of a site of heritage, landscape or nature conservation, and/or protected species or habitat.			
	A full assessment of the application and its potential to affect the site(s)/species/habitat has not been carried out as part of the permit review process. We consider that the review will not affect the features of the site(s)/species/habitat as the conditions will provide at least the same level of protection as those in the previous permit and in some cases will provide a higher level of protection to those in the previous permit.			
	We have not consulted Natural England on the application. The decision was taken in accordance with our guidance.			

This document should be read in conjunction with the application, supporting

Aspect considered	Decision
General operating techniques	We have reviewed the techniques used by the operator where they are relevant to the BAT Conclusions and compared these with the relevant guidance notes.
	The permit conditions ensure compliance with the relevant BREF, BAT Conclusions. The ELVs deliver compliance with the BAT-AELs.
Permit conditions	
Updating permit conditions during consolidation	We have updated permit conditions to those in the current generic permit template as part of permit consolidation. The conditions will provide at least the same level of protection as those in the previous permit and in some cases will provide a higher level of protection to those in the previous permit.
Changes to the permit conditions due to an Environment Agency initiated variation	We have varied the permit as stated in the variation notice.
Improvement programme	Based on the information on the application, we consider that we need to impose an improvement programme.
	We have imposed an improvement programme to ensure that:
	BAT conclusions 2,40,42 and 44 are met. See Key issues.
	We have also marked all completed improvement conditions as complete in the permit. IC11 is ongoing and 12,13 and 14 have been added for BAT conclusion compliance.
Emission limits	We have decided that emission limits should be set for the parameters listed in the permit.
	These are described in the relevant BAT Conclusions in Section 5 of this document.
	It is considered that the ELVs/equivalent parameters or technical measures described above will ensure that significant pollution of the environment is prevented and a high level of protection for the environment is secured.
Monitoring	We have decided that monitoring should be carried out for the parameters listed in the permit, using the methods detailed and to the frequencies specified.
	These are described in the relevant BAT Conclusions in Section 5 of this document.
	Table S3.5 Process monitoring requirements was amended to include the requirement to monitor energy efficiency after overhauls on site in line with BAT2.

Aspect considered	Decision	
	Based on the information in the application we are [not fully] satisfied that the operator's techniques, personnel and equipment have either MCERTS certification or MCERTS accreditation as appropriate.	
Reporting	 We have specified reporting in the permit for the following parameters: Nitrogen dioxide Carbon monoxide Sulphur dioxide Dust These are described in the relevant BAT Conclusions in Section 5 of this document. 	
Operator competence		
Management system	There is no known reason to consider that the operator will not have the management system to enable it to comply with the permit conditions.	
Growth Duty		
Section 108 Deregulation Act 2015 – Growth duty	We have considered our duty to have regard to the desirability of promoting economic growth set out in section 108(1) of the Deregulation Act 2015 and the guidance issued under section 110 of that Act in deciding whether to grant this permit.	
	Paragraph 1.3 of the guidance says: "The primary role of regulators, in delivering regulation, is to achieve the regulatory outcomes for which they are responsible. For a number of regulators, these regulatory outcomes include an explicit reference to development or growth. The growth duty establishes economic growth as a factor that all specified regulators should have regard to, alongside the delivery of the protections set out in the relevant legislation."	
	We have addressed the legislative requirements and environmental standards to be set for this operation in the body of the decision document above. The guidance is clear at paragraph 1.5 that the growth duty does not legitimise non- compliance and its purpose is not to achieve or pursue economic growth at the expense of necessary protections.	
	We consider the requirements and standards we have set in this permit are reasonable and necessary to avoid a risk of an unacceptable level of pollution. This also promotes growth amongst legitimate operators because the standards applied to the operator are consistent across businesses in this sector and have been set to achieve the required legislative standards.	