Special feature – FiT load factor analysis

Feed-in Tariff load factor analysis

Introduction

This article updates the Feed-in Tariff (FIT) load factor analysis presented in the December 2018 edition of Energy Trends¹ with data for FIT year nine (financial year 2018/19). We also present regional analysis of solar PV for the eight years that data has been published (FIT years two to nine) and wind for years five to nine. All the data in this article is also available in Excel format at the following link, including quarterly load factors for solar PV:

www.gov.uk/government/statistics/quarterly-and-annual-load-factors

Background

Load factors are a measure of the efficiency of electricity generation. A load factor is defined as the ratio of how much electricity was generated over a certain time period as a proportion of the total generating capacity.

The Feed-in Tariff scheme was launched in April 2010. It is a financial support scheme for eligible low-carbon electricity technologies, aimed at small-scale installations. The following technologies are supported:

- Solar photovoltaic (PV; Up to 5 MW capacity)
- Anaerobic digestion (AD; Up to 5 MW capacity)
- Hydro (Up to 5 MW capacity)
- Wind (Up to 5 MW capacity)
- Micro combined heat and power (MicroCHP; Up to 2 kW capacity)

Installers receive support through generation and export tariffs, paid directly from electricity suppliers. The generation tariff is based on the number of kilowatt hours (kWh) generated whereas the export tariff is based on electricity that is generated on site, not used and exported back to the grid.

Since the start of the scheme, BEIS² has provided regular updates on the number and capacity of installations installed under the scheme, currently publishing quarterly updates on deployment levels and reports on geographical distribution, amongst other outputs³. From 2013, BEIS obtained meter readings for registered installations from Energy Suppliers and used this to produce quarterly and annual load factors for FIT years two to nine (data from year one is not available as the number of installations running for the full year was very small).

The FIT scheme closed to new entrants at the end of March 2019.

Methodology

The methodology used for the load factor analysis was described in detail in an Energy Trends article from September 2014⁴. One additional quality assurance (QA) step has been added since 2015, to remove any installations from the analysis where more than one generation meter is attached. This step has only been applied to FIT year five to nine data; previously produced statistics have not been

¹ The article published in December 2018 can be found at the following link: <u>www.gov.uk/government/publications/energy-</u> <u>trends-december-2018-special-feature-articles</u>

² Department for Business, Energy & Industrial Strategy. FiTs was overseen by the Department for Energy & Climate Change (DECC) until machinery of government changes in 2016.

² See this link for the full FIT statistics collection: <u>www.gov.uk/government/collections/feed-in-tariff-statistics</u>

⁴ The article published in September 2014 can be found at the following link: <u>www.gov.uk/government/statistics/energy-</u> trends-september-2014-special-feature-article-analysis-of-feed-in-tariff-generation-data

95th

98.5

66.1

24.1

12.6

39.7

95.3

46.4

15.5

11.4

27.4

revised. Whilst all efforts have been made to quality assure the data in this publication, the results are based on a sample.

Table 1 shows how many installations were registered on the Central Feed-in Tariff Register at the start of FIT year nine and how many installations had meter readings in March 2018 and 2019. For this analysis a meter reading is required in both of these months in order to cover the whole financial year and remove seasonal effects which would otherwise bias the results. As generators can submit meter readings throughout the year, of the 829,370 schemes registered for FiTs as of 1st April 2018, 22 per cent were found to have meter readings in both March 2018 and March 2019. Extreme load factor values were further excluded (as in previous years' analysis), accounting for around 11,533 (5.9%) of installations. The column 'Valid load factor' in Table 1 indicates how many installations were included in the final analysis for each technology for the annual generation data. Micro CHP data is included in the main results, but this data must be treated with caution as the number of installations remains low.

Technology	Commissioned by 1st April 2018	Generation Data Reported [*]	Valid load factor	% remaining in analysis		
Anaerobic digestion	417	127	111	27%		
Hydro	1,153	231	204	18%		
Micro CHP	490	40	21	4%		
Photovoltaic	819,816	192,979	181,693	22%		
Wind	7,494	1,997	1,812	24%		
All Technologies	829,370	195,374	183,841	22%		

Table 1: Installations included in analysis by technology – FIT Year 9

Meter reading in March 2018 and March 2019.

Results

Photovoltaic

Wind

Table 2 gives the weighted mean and median load factors as well as associated percentiles for each technology. Chart 1 presents this data across all available years (FITs years two to nine), highlighting the large range present for Hydro compared to other technologies, whilst solar installations have the smallest range of load factors.

Percentile Weighted Technology 5th 25th 50th 75th Count Mean mean (median) 80.2 71.6 Anaerobic digestion 111 75.9 35.5 87.2 38.6 17.1 28.3 37.1 Hydro 204 36.4 Micro CHP 21 14.8 17.5 6.0 8.9 10.0

10.4

21.5

Table 2: FIT Year 9 (2018/2019) load factors by technology

181.693

1,812

The median load factor for Solar PV in 2018/19 was the highest since 2011/12 at 10.5%. This increase can be attributed to an increase in average daily sun hours from 4.1 hours to 4.9 hours⁵. Load factors were at a similar level to 2011/12 despite sun hours being up. However, there was a much smaller sample in 2011/12 so comparisons should be made with caution. It is also possible

10.5

26.0

7.5

7.7

9.4

14.2

10.5

20.4

⁵ Energy Trends section 7: weather, table 7.3: <u>www.gov.uk/government/statistics/energy-trends-section-7-weather</u>. Note that data for 2018/19 is provisional and subject to revision.

Special feature – FiT load factor analysis

that the average age of solar panels was older in 2018/19 and there is some evidence that the efficiency of solar panels degrades over time.

Year	Median load factor	Average daily sun hours		
2011/12	10.5	4.5		
2012/13	9.6	3.7		
2013/14	10.4	4.5		
2014/15	10.4	4.5		
2015/16	10.4	4.3		
2016/17	10.1	4.2		
2017/18	9.8	4.1		
2018/19	10.5	4.9		

Table 3: Solar PV load factors and average sun index

Chart 1: Load factor range by technology and year

Lines indicate range from 5th to 95th percentile. Boxes indicate range from lower to upper quartile (25th to 75th percentile) with median indicated.

Special feature – FiT load factor analysis

As in previous years, the weighted mean load factor for wind installations is higher than the mean (see Table 2), and this difference has generally increased over the time-series, possibly reflecting the increase in the number of higher performing larger wind schemes in the analysis. The relationship between average daily wind speed⁶ and load factor for wind installations is weaker than that observed between sun hours and solar load factors (see Table 4). For 2018/19 the median load factor decreased slightly to 20.4% compared to 20.5% in 2017/18. This decrease reflects the decrease in average wind speed (see Table 4). Load factors for wind vary much more than those for solar PV, Chart 1 (above) shows that there is a much wider spread between the lower and upper quartiles for wind but these ranges overlap from year to year. This may be because the wind farms that are on FITs are on average much smaller than major power producers and they may not be located in the optimum position for wind generation.

There is a relationship between wind speed and wind load factors. However, wind speeds are measured at ground level which may vary with the wind speed at the level of the wind turbine. The average wind speed quoted here is for the whole of the UK, however, wind speed varies by location.

Year	Median load factor	Average wind speed (knots)
2011/12	15.9	9.2
2012/13	16.3	8.0
2013/14	20.5	9.3
2014/15	18.1	8.6
2015/16	20.3	9.2
2016/17	17.0	8.2
2017/18	20.5	8.8
2018/19	20.4	8.4

Table 4: Wind load factors and average wind speed

Solar PV load factors

Quarterly load factors for Solar PV installations are available in the accompanying excel workbook and the last four years are presented graphically in Chart 2. These show an expected association between load factor and daily hours of sunshine, where the quarters mainly covering Autumn and Winter have the lowest load factors. This chart also highlights that the high annual load factors seen in FIT year nine (2018/19) for Solar PV are driven by high sun levels and load factors in all four quarters, most significantly in the summer quarter (Jul-Sep).

⁶ Average wind speed taken from Energy Trends section 7: weather, table 7.2 " Average wind speed and deviations from the long term mean (ET 7.2)" <u>www.gov.uk/government/statistics/energy-trends-section-7-weather</u>. Note that data for 2018/19 are provisional and subject to revision.

Regional Solar PV load factors

Solar PV Factors for each region have been published for FIT years two to eight and are updated with data from year nine in Table 5. Chart 3 highlights that the lowest load factors are seen in Scotland, while the highest are seen in the South East. For year nine (2018/19), in each region, the load factors are higher than in the preceding two years, reflecting the increase in average daily sun hours. Furthermore, the load factors are the highest since records began in FIT year two for Scotland and six of the nine English regions. London again has a lower load factor than the South East which may be due to pollution or particles settling on the panels or because panels are shaded by tall buildings nearby.

Chart 3: Regional Solar PV load factors for FITs years 2-9

Annual PV Load Factors by Region

Table 5: Regional Solar PV load factors for FITs years 4-9

Region	FIT Y (2013	ear 4 3/14)	FIT Y (2014	′ear 5 4/15)	FIT Y (201	′ear 6 5/16)	FIT Y (2016	ear 7 6/17)	FIT Ye (2017	ear 8 //18)	FIT Ye (2018	ear 9 8/19)
	Count	Median	Count	Median	Count	Median	Count	Median	Count	Median	Count	Median
North East	5,805	10.3	8,023	10.1	6,444	10.4	5,595	9.9	9,625	9.7	8,086	10.3
North West	13,024	9.8	17,360	9.5	13,689	9.7	11,546	9.5	19,736	9	21,398	9.9
Yorkshire and the Humber	11,299	10.2	18,507	9.9	15,058	10.3	12,826	9.8	19,339	9.5	15,866	10.3
East Midlands	12,936	10.6	18,735	10.3	13,489	10.5	11,548	10	19,023	9.7	16,041	10.7
West Midlands	11,118	10.2	15,312	10.2	12,013	10.2	10,219	9.8	13,946	9.5	11,843	10.3
East of England	16,306	10.9	21,247	10.8	16,917	10.6	14,308	10.5	22,240	10.2	26,783	11
London	4,117	9.7	4,996	9.8	3,813	9.6	3,240	9.4	4,852	9.2	4,027	9.9
South East	23,235	10.7	25,994	10.9	18,955	10.6	15,632	10.5	24,933	10.4	21,379	11.1
South West	31,965	11.2	36,938	11.4	29,331	11	25,715	10.6	36,357	10.6	32,044	11
England	129,805	10.6	167,112	10.4	129,709	10.5	110,629	10.2	170,137	9.9	157,467	10.5
Scotland	11,531	9.2	11,363	8.9	6,802	9.3	5,731	8.9	11,036	8.7	11,681	9.5
Wales	13,643	10.4	15,100	10.5	11,614	10.5	9,946	10.0	14,598	9.9	12,545	10.4

Regional Wind load factors

Regional load factors for Wind schemes for FIT years six to nine have also been produced; these are presented in Table 6. Data from London and the South East have been aggregated as there was a low number of installations within these regions with a valid load factor. Chart 4 summarises this data for England, Scotland and Wales, showing that the highest Wind load factors are found in Scotland.

Region	FIT Year 6 (2015/16)		FIT Year 7 (2016/17)		FIT Year 8 (2017/18)		FIT Year 9 (2018/19)	
	Count	Median	Count	Median	Count	Median	Count	Median
North East	73	17.5	67	14.2	63	18.5	60	17.8
North West	137	23.6	129	18.9	90	18.8	133	20.6
Yorkshire and the Humber	318	20.8	321	17	161	19.7	313	17.9
East Midlands	123	17.5	134	13.6	60	18.9	132	17
West Midlands	63	17.1	63	13.6	38	11.1	56	12.2
East of England	405	13	361	8.6	74	16	73	17.8
London and South East	23	12.1	18	10.2	16	8	9	14
South West	296	25.7	276	20.6	166	20.2	284	20.2
England	1,438	18.2	1,369	14.6	668	18.3	1,060	17.2
Scotland	469	25.6	436	24.0	360	23.5	546	24.4
Wales	178	24.4	192	20.4	85	20.6	206	21.6

Table 6: Regional Wind load factors for FITs years 6 to 9

Chart 4: Wind regional load factors for FITs year 9 by country

Lines indicate range from 5th to 95th percentile. Boxes indicate range from lower to upper quartile (25th to 75th percentile) with median indicated.

Annual Wind Load Factors (FIT Year 9) by Country

Chrissie Frankland and William Spry

FIT Statistics Tel: 0207 215 5125 E-mail: fitstatistics@beis.gov.uk