Mass spectrometry - identification of protein allergen contaminants

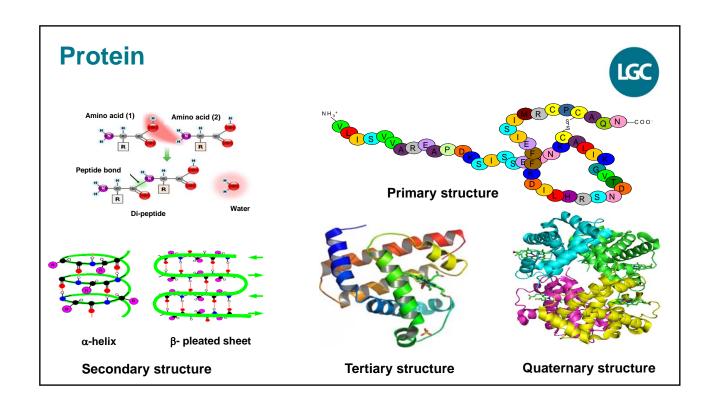
Chris Hopley (christopher.hopley@lgcgroup.com) 28 February 2018

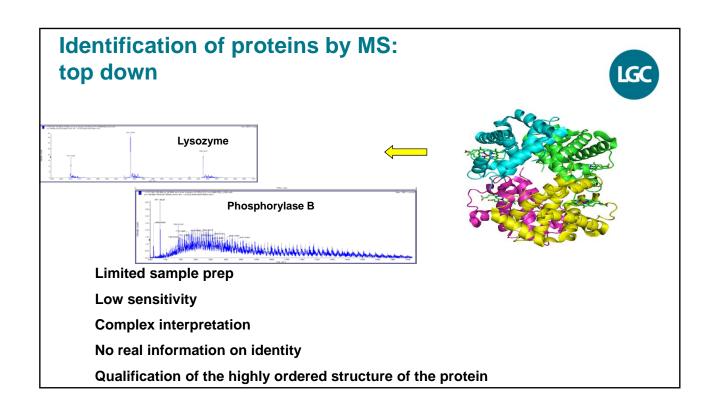
Science for a safer world

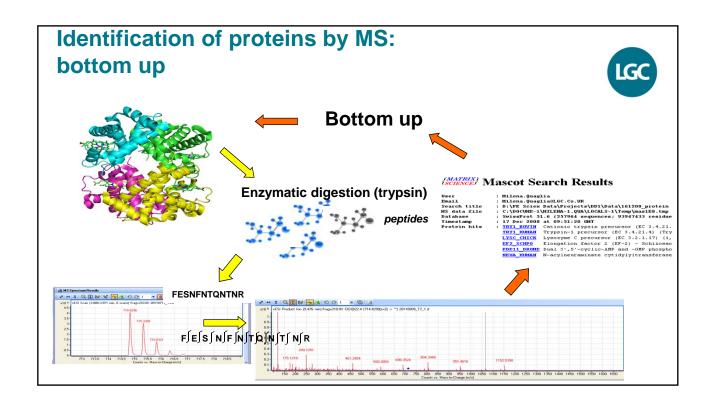
Cumin & Paprika recalls – Referee Cases

- 31 Jan '15 FSA recall cumin almond not listed on the label
- 10 Feb '15 FSA refer cumin sample to Government Chemist
- Elisa Testing
- March '15 supplier "...mahleb gives positive ELISA for almond"
- Protein by Mass Spectrometry
- 30 April '15 Canada rescinds recalls " ... mahleb false positives"
- DNA Testing
- 26 June '15 Govt Chemist confirms cumin contains mahleb
- 29 June '15 FSA rescinds cumin recalls "mahleb present; not almond"
- 13 Aug '15 FSA refer sample of paprika to Government Chemist
- 9 Nov '15 Govt Chemist confirms paprika contains almond

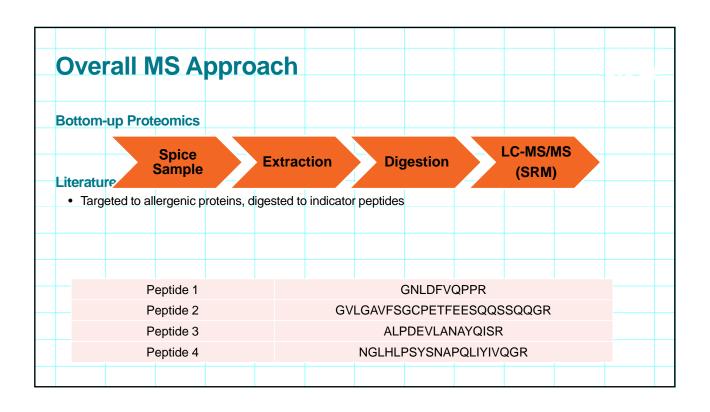
Mass Spectrometry

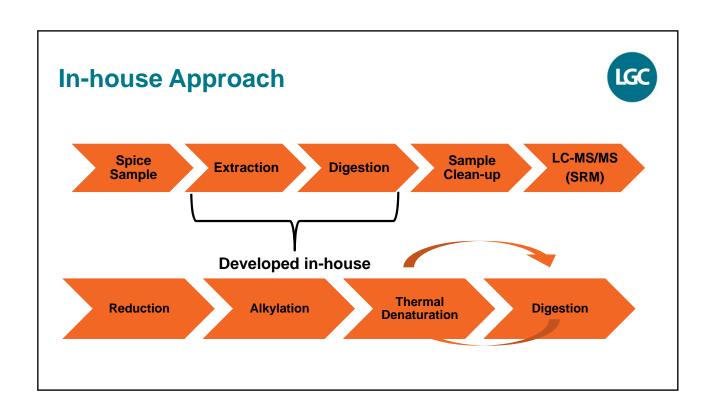

- Gold standard for (Bio)analytical chemistry
- Able to both characterise and identify contaminants in matrix, be they small or large molecule
- Particularly suited for trace level work
- Our lab has 12 Mass Spectrometers and associated separation science available
- Also, in particular relevance to protein/peptide work, has a number of databases and search programmes available




Food Allergen Identification

- Food Allergens are usually proteins
- Mass spectrometry is a highly specific and accurate platform for the identification of both known and unknown proteins
- Mass spectrometry can be used to both identify and quantify food allergens

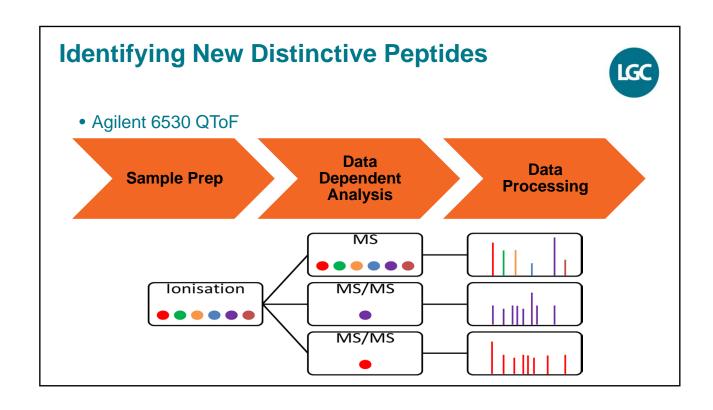



Databases and software

- Many databases are available
 - SwissProt, UniProt, NCBI
- And software packages
 - Peaks, SpectrumMill, Mascot, PLGS
- However, the majority of entries are either Human or Mammalian
- This causes issues for the detection of food allergen
 - database coverage is poor
 - sequence similarity can be quite high
 - Numerous entries are not experimentally derived, but derived from gene sequences

Literature approach

- Several peptides previously identified as indicative of presence of Almond
- Method build for the detection of peptides by targeted LC-MSMS
- Tested on other *prunus* species
- Specificity of literature peptides are called into question


Precursor ion m/z	Charge state	Retention time min	Peptide sequence (Assigned using Mascot)	Almond Kernel	Apricot Kernel	Mahleb	Peach Kernel
571.8	2+	7.7	GNLDFVQPPR		Y	Υ	Υ
876.74	3+	10.0	GVLGAVFSGCPETFEESQQSSQQGR		Y	N	Y
830.44	2+	9.9	ALPDEVLANAYQISR	Y	Y	Υ	Y
1170.63	2+	10.7	NGLHLPSYSNAPQLIYIVQGR	Y	Y	N	Y

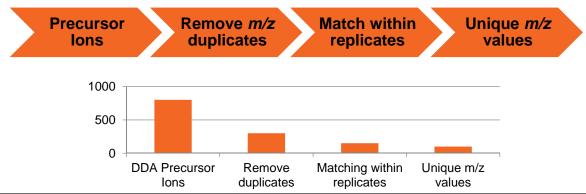
12

New peptides are required

- The Literature peptides for detection of Almond allergen were not found to be specific enough
- The databases were found to be lacking in information regarding proteins from *Prunus*
- A new approach was required
 - Authentic samples of relevant prunus species were obtained
 - Samples were ground, then extracted/digested
 - Samples analysed by LC-QTOF-MS to determine distinctive peptides

Export as mgf files

MASCOT database search


Microsoft Excel!!!

• Round all precursor ion *m/z* values to 2 decimal places

$$-\frac{0.01}{500 \, m/z} x \, 10^6 = 20 \, ppm \, error$$

• Compare lists using the "MATCH" function

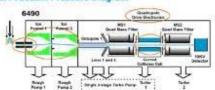
Export as mgf files

MASCOT database search

Microsoft Excel!!!

- List of 100 "unique" m/z values
 - Check m/z value identified as a peptide!
 - Check whether generated decent fragmentation data
 - Check protein I.D.
- Blast peptide sequences
 - Is it from a *Prunus* species?
 - Could it be a nut protein?
 - Could it be a contaminant?
- Extracted ion chromatograms
 - Confirm "uniqueness"
 - Presence of other charge states
 - Check abundance

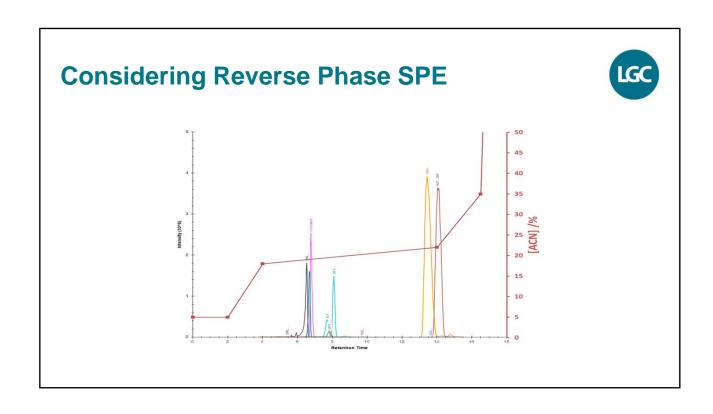
Final Peptides


Peptide	Pre	cursor Ion /m/z	Almond	Mahaleb
FVSPAYR	2+	420.2241		
SGGQILPIR	2+	470.7824		
DFVSSPFR	2+	477.7376		
VPTPVPPRVSSPR	2+	694.9041		
ALPDEVLANAYQISR	2+	830.4387		
VQGQLDFVSPFRS	2+	740.3832		
TEENAFINTLAGR	2+	718.3624		
ISTLNSHNLPILR	3+	493.2877		
GNLDFVQPPR	2+	571.8013		
GVLGAVFSG CPETFEESQQSSQQGR	3+	895.7452		

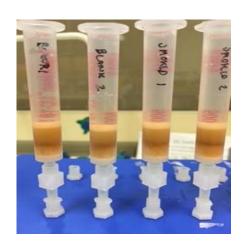
Identifying the Cumin Contamination

- Once the peptides have been identified, method moved to a LC-QQQ-MS and further refined
- Most sensitive instrument for trace analysis
- Use fixed transitions (minimum of 2) and retention time to unequivocally identify peptides
- Samples run in comparison to blanks, spikes and standards to identify the contamination
- Preliminary results suggest Cumin contamination identified to be Mahaleb

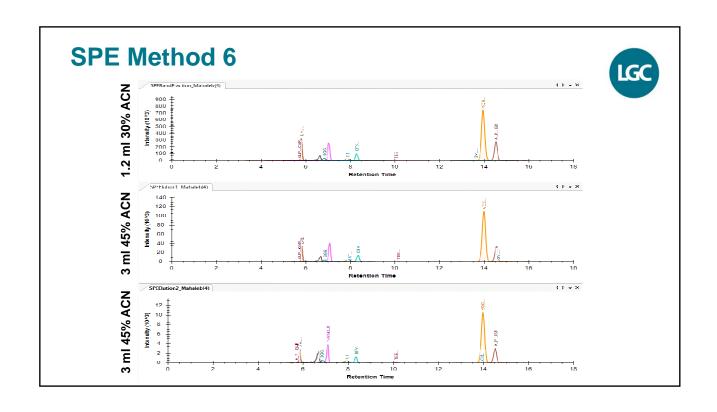
G6490A Vacuum Pressure Diagram

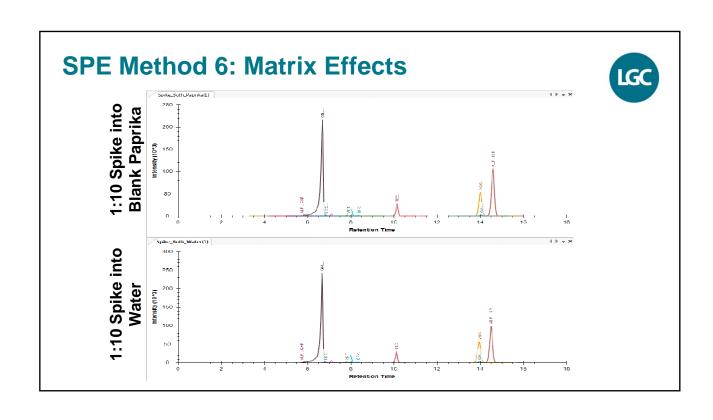


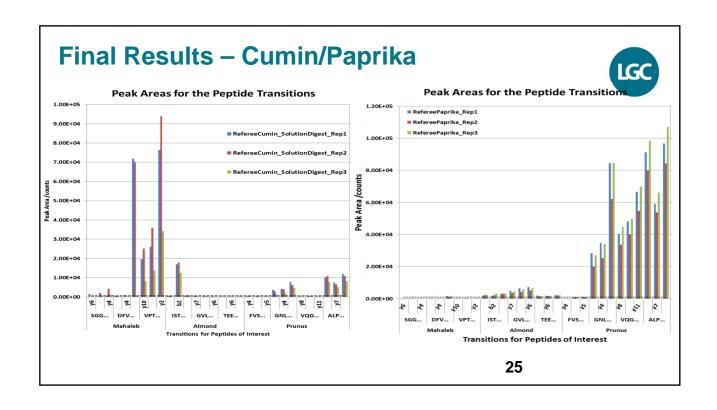
What about paprika?


- Paprika screened by ELISA found to contain almond
- Sample run using method for Cumin
 - Preliminary analysis indicates it is almond
 - 400 ppm, much higher than Cumin ~ 1ppm
- Incurred material
 - Confirm identify of the contaminant
 - Optimise the sample preparation methods

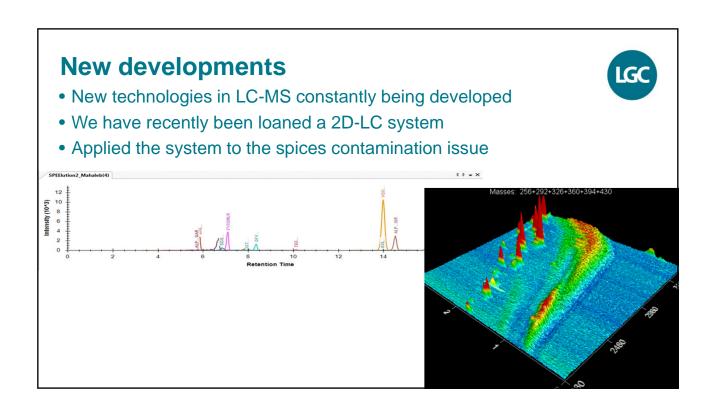
Optimising the SPE

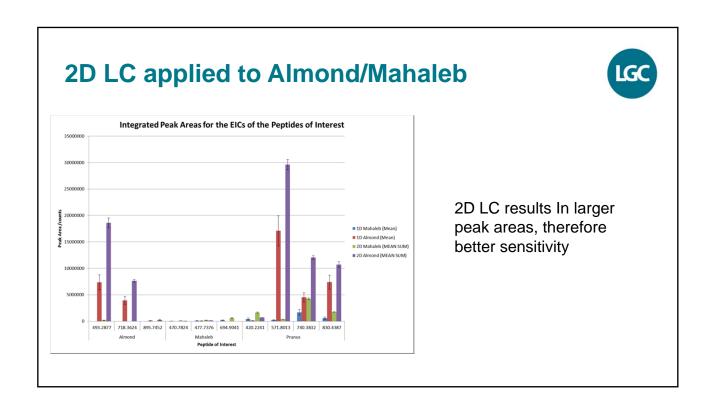

- Simple reverse phase cartridges
 - -Supelco LC-18
 - -500 mg bed
 - -3 mL cartridge
- Variables
 - -Wash buffer
 - -Elution buffer
 - -Volumes




Optimising the SPE?

SPE Method	Conditioning Buffer	Wash Buffer	Elution Buffer	Resuspension Buffer
1	0.1 % FA	5 % ACN	2x1ml 40% ACN	? CH
2	0.1 % FA	15% ACN, 0.1% FA	2x3ml 35% ACN 0.1% FA	0.1 % FA
3	0.1 % FA	15% ACN, 0.1% FA 20% ACN, 0.1% FA 30% ACN, 0.1% A	40% ACN, 0.1% FA	0.1% FA
4	100 mM Tris pH 8	15% ACN, 0.1% FA	45% ACN, 0.1% FA	0.1% FA
5	100 mM Tris pH 8	10% ACN, 0.1% FA	45% ACN, 0.1% FA	5% ACN, 0.1% FA
6	100 mM Tris pH 8	10% ACN, 0.1% FA 1.2 ml 30% ACN, 0.1% FA	45% ACN, 0.1% FA	5% ACN, 0.1% FA





Conclusions

- Analytical method to determine low level allergen contaminants in spices developed
- Method able to differentiate between different *Prunus* species
- Able to detect contaminants at low level ~ 1ppm
- High degree of confidence due to multiple peptides used to distinguish the samples

Acknowledgements

- The work described in this presentation was funded by the Department of Business, Energy & Industrial Strategy, and the Food Standards Agency
- Sophie Thurlow, Bryan McCullough, Kate Groves, Kirstin Gray, Malvinder Singh and Milena Quaglia

FUNDED BY BEIS