

environmental values 2018

public environmental report

Chevron North Sea Limited

contents

introduction	3
about chevron	4
chevron 2018 activities – U.K.	5
operational excellence	7
OE policy - Corporate Major Accident Prevention Policy (CMAPP)	9
environmental stewardship	10
2018 environmental performance summary	11
performance metrics	11
environmental stewardship improvement program	12
emissions	13
energy efficiency	15
oil in produced water	16
chemicals	18
oil and chemical releases/spills to sea	21
oil spill response arrangements	22
waste	23
glossary	25

introduction

Pursuant to OSPAR Recommendations 2003/5, operators on the U.K. Continental Shelf (UKCS) should produce an annual environmental statement and make it available to the public and the Offshore Petroleum Regulator for Environment and Decommissioning (OPRED). This environmental report is intended to fulfil this requirement. This document covers Chevron North Sea Limited's (CNSL) operations and activities in the United Kingdom (U.K.), shares our offshore environmental performance data for 2018, highlights how we demonstrate our values and reinforces our mission to continually improve our performance and reduce any potential impacts from our operations.

Ingrained in <u>The Chevron Way</u> is our commitment to protecting people and the environment, which includes developing energy safely, reliably and responsibly. We place the highest priority on the health and safety of our workforce and protection of our assets, communities and the environment. We deliver world-class performance with a focus on preventing high-consequence incidents.

We have four environmental values that define our commitment to operating in an environmentally responsible manner: these are 1) to include environmental considerations in decision making, 2) to minimise our environmental footprint, 3) to operate responsibly and 4) to steward our sites. We incorporate these values into our business through our Operational Excellence Management System (OEMS). This process includes provision to identify and manage potentially significant environmental impacts and assess our activities, with the aim of improving performance.

Operational Excellence (OE) is integral to how we run our business to achieve our vision of success.

At Chevron, we are committed to achieving our goal of zero incidents and will continue to focus on achieving world-class performance in all measures of safety and environmental stewardship. We hope you find the information in this report to be informative and useful.

Further information on CNSL can be found at: https://unitedkingdom.chevron.com/

about chevron

Chevron is one of the world's leading integrated energy companies. Through its subsidiaries that conduct business worldwide, the company is involved in virtually every facet of the energy industry. Chevron explores for, produces and transports crude oil and natural gas; refines, markets and distributes transportation fuels and lubricants; manufactures and sells petrochemicals and additives; generates power; and develops and deploys technologies that enhance business value in every aspect of the company's operations.

At Chevron, we conduct our business in a socially responsible and ethical manner. We respect the law, support universal human rights, protect the environment and benefit the communities in which we work. Our <u>Corporate Responsibility Report Highlights</u> summarises some of these focus areas, which include environmental management, climate change and energy efficiency.

Our managing climate change risks: a perspective for investors, addresses the topic of climate change risk by providing the Company's views on long-term fundamentals of the energy industry, the processes by which we manage risks and the significant steps we have taken to manage greenhouse gases (GHGs). The <u>Update to Climate Change Resilience – A Framework for Decision Making</u> report, published in February 2019, further details the company's approach to managing climate change risks.

chevron 2018 activities - U.K.

existing assets

CNSL has working interests in 11 offshore producing fields, comprising four operated fields (Alba, 23.4 percent; Captain, 85 percent; Erskine, 50 percent; and Alder, 73.7 percent) and seven non-operated fields (Britannia, 32.4 percent; Brodgar, 6.25 percent; Callanish, 16.5 percent; Clair, 19.4 percent; Elgin/Franklin, 3.9 percent; Enochdhu, 50 percent; and Jade, 19.9 percent).

The scope of this environmental report will cover CNSL operated assets only.

ongoing / future projects

CNSL continues to evaluate projects designed to sustain production and maximise the recovery from the United Kingdom Continental Shelf. Key projects include:

Captain Enhanced Oil Recovery (EOR)

The Captain EOR Project is designed to increase field recovery by injecting a polymer/water mixture into the Captain reservoir. The EOR Stage 1 Project was sanctioned at the end of 2017. The project consists of an expansion of the existing polymer injection system on the Wellhead Protector Platform (WPPA). The scope includes polymer injection into five wells and modifications to platform facilities. Produced water is re-injected on the Captain field, with no routine discharge of produced water. Therefore, no polymer is discharged to sea.

Rosebank

The Rosebank field is 80 miles (130.5 km) northwest of the Shetland Islands in 3,700 feet (1,100 m) of water. CNSL sold its 40 percent interest in the project in January 2019.

operational excellence

Our <u>Operational Excellence Management System</u> (OEMS) actions our Chevron Way values of protecting people and the environment and helps us achieve Chevron's vision to be the global energy company most admired for its people, partnerships and performance.

The OEMS systematically manages workforce safety and health, process safety, reliability and integrity, environment, efficiency, security, and stakeholders in order to meet our OE objectives.

The Chevron OE objectives set the priorities:

- Eliminate fatalities, serious injuries and illnesses
- Eliminate high-consequence process safety incidents and operate with industry-leading reliability
- Assess and manage significant environmental risks
- Use energy and resources efficiently
- Prevent high-consequence security and cybersecurity incidents
- Address OE business risks through stakeholder engagement and issues management

leadership and OE culture

Under OEMS ensures that our leaders engage employees and contractors to build and sustain our OE culture and deliver OE performance.

focus areas and OE expectations

Focus areas align with critical OE risks and include:

- · Workforce safety and health
- Process safety, reliability and integrity
- Environment
- Efficiency
- Security
- Stakeholders

The OE expectations guide us to design, manage and assure the presence and effectiveness of safeguards.

management system cycle

Through application of the management system cycle, our leaders make risk-based and data-driven decisions, prioritise activities, and direct improvements.

risk management

OEMS is a risk-based and systematic approach to identify, assess, prioritise and manage OE risks.

safeguards

We establish and sustain safeguards and assure they are in place and functioning in accordance with legal and OE requirements. Safeguards are the hardware and human actions designed to directly prevent or mitigate an incident or impact. Typical safeguards include facility designs, mechanical devices, engineered systems, protective equipment and execution of procedures.

assurance

Through the execution of assurance programs, we have confidence the safeguards are in place and functioning.

The **OE Vision** is to be recognised and admired by industry and the communities in which we operate as world class in process safety, personal safety and health, environment, reliability and efficiency delivering incident free operations. The CNSL vision is reflected in the following OE Policy which meets the requirements of The Corporate Major Accident Prevention Policy (CMAPP) required by The

Offshore Installations (Offshore Safety Directive) (Safety Case etc) Regulations 2015; The Safety Policy required by the Health & safety at Work etc. Act 1974; and The Environmental Policy required by ISO 14001 environmental management standard.

The **OE Policy** is endorsed by the President and Managing Director. The **OE Policy** is a commitment to assess and manage the risks and impacts associated with our operations; and a commitment to comply with legislative requirements and corporate policies.

OE policy - Corporate Major Accident Prevention Policy (CMAPP)

chevron upstream europe operational excellence policy

Chevron Upstream Europe's (CUE) operational excellence (OE) vision is to be recognised and admired by the industry and the communities in which we operate as world-class performers in process safety, personal safety and health, environment, reliability and efficiency. CUE recognises the need to operate in a safe and responsible manner.

We will systematically manage OE with the aim of:

- Identifying and reducing the risk of major accident hazards including environmental and process safety risks.
 - Achieving an incident and injury free workplace.
 - · Promoting a healthy workplace and mitigating significant health risks.
 - Operating incident free with industry leading asset integrity and reliability.

 - Efficiently using natural resources and assets.
 Ensuring continual improvement in all aspects of our business.

Through consistent application of OE, this policy and our Safety And Environmental Management System (SEMS), we aim to address the following:

Our leaders are accountable for:

- · Providing clear and consistent leadership in accordance with this policy and our tenets of operation.
- · Ensuring clear roles, responsibilities and communications.
- Trusting and empowering their teams to apply a risk based approach to decision making in accordance with this policy.
- · Creating a culture that is built on our values and behaviours, enabling safe, reliable and secure operations and environmental protection.
- · Engaging with the community and other stakeholders.
- . Ensuring that we comply with all applicable policies, codes and regulations and that we constructively engage in consultation with regard to proposed legislation.

Organisation

Our organisation is fit-for-purpose and is designed to:

- · Achieve results in accordance with the Chevron Way.
- . Ensure suitable and sufficient control of Major Accident Hazards.
- . Ensure that staff and contractors are competent or their roles through the application of the CUE Competence Assurance Process.
- · Encourage structured and timely decision making.
- . Ensure the management of safe work.

A Strong Safety Culture

- The Chevron Way and our tenets of operation.
- · Compliance with the provisions of our safety cases and this policy.
- The identification and management of Major Accident Hazards.
- The involvement of and consultation with our staff and contractors.
- . The reporting and investigation of incidents and near misses.
- · The use of stop work authority.
- . The recognition and reward of desired behaviours through the use of stop work authority, Performance Management Process (PMP) and our recognition and award process.
- · The implementation of corporate safety initiatives.

Our people, at all levels of the organisation will:

- . Systematically assess, prioritise and manage risk in accordance with the Chevron Way.
- · Regularly review and re-evaluate risks.
- · Maintain the integrity of dedicated systems through fit-for-purpose design and operating practices.
- . Ensure that there are multiple, independent barriers in place to prevent Major Accident Hazards including, but not limited to, unplanned releases of hydrocarbons.

Asset Integrity Management

Our facilities, reservoirs and wells are designed and maintained to be fit-for-purpose throughout their lifecycles. This includes:

 Designing, constructing, modifying, operating and maintaining our facilities and wells to recognised safety and environmental

protection standards, to avoid unplanned releases of hazardous substances and to prevent injury to people or harm to the environment.

- · Minimising the potential for human error through the design and operation of our facilities.
- · Maintaining the integrity of safety and environmental critical elements.
- · Managing risks on a whole of life-cycle basis.
- · Managing change in accordance with our management of change
- · Compliance with all applicable codes, regulations and Chevron

Monitoring and Audit

Through a process of corporate audit and workplace monitoring and audit, we will examine our processes and operations to confire

- · That we review and revaluate our goals and our organisational
- · That our plans and processes are being correctly implemented.
- · That we continually improve the effectiveness of our management system including our verification and well examination schemes.
- · The suitability and effective implementation of this policy

Emergency Manager

While prevention is the first priority, we are prepared for a ncy and have the tools to mitigate any incident quickly and effectively:

- on defined scenarios and meeting all UK legal requirements.
- · We regularly test the effectiveness of the system through audits and
- · We aim to prevent future incidents by identifying and eliminating their root causes.

This policy applies to all offices and facilities operated by Chevron North Sea Limited, Chevron Denmark Inc and Chevron Norge AS.

The Managing Director's Leadership Team shall champion the implementation of this policy across CUE and lead the monitoring and auditing of its ongoing effectiveness.

Every individual has a duty to ensure that they always comply with, and hold others accountable for compliance with this policy, and prevent harm to themselves and others, and to the environment. This policy is applicable without distinction between Chevron employees and contractors working for Chevron.

This policy meets the requirements of the corporate major accident prevention policy pursuant to Regulation 7 of the Offshore Installations (Offshore Safety Directive) (Safety Case etc)

Quita Jydakes

Greta Lydecker, President and Managing Director Chevron Upstream Europe.

Results

Fit-for-Purpose

Trust & Empower

environmental stewardship

The expectation of Chevron's Environmental Stewardship (ES) process is to strive to continually improve environmental performance and reduce impacts from our operations. It is applied across the life cycle of an asset and is used to identify, assess and manage potential environmental impacts and benefits. To achieve this, Chevron has implemented a step-wise process to be followed on an annual basis. First, an inventory of all emissions, releases, wastes and potentially impacted natural resources is prepared. This is followed by a procedure to identify, assess, mitigate and manage any significant risks and impacts to the environment associated with operations, emissions, releases and wastes. The outcome is an annually updated ES plan. CNSL have been preparing plans using the ES process since 2010. The management system is independently certified to the international standard (ISO) 14001 and requires CNSL to engage independent auditors who verify that our onshore and offshore operations meet requirements. During 2018 CNSL were successfully re-certified to the reviewed and updated (ISO) 14001:2015 standard.

The ES plan includes objectives and targets for environmental performance, details of improvement implementation programmes and the process for tracking progress in meeting environmental objectives. The ES plan is approved by senior management and is aligned with other business and OE plans.

All CNSL operations and projects have the potential to impact on the environment and they are all subject to strict environmental regulatory controls which require CNSL to prepare and submit regulatory applications to gain approval before activities begin and during the ongoing operational activities. We monitor and report our ongoing emissions, discharges and waste streams to ensure we meet regulatory requirements and do not cause significant impact on the environment. In the event of an unplanned release/spill to sea, or a non-compliance with regulatory requirements, notification would be made to the appropriate regulatory authorities and action taken to respond to any threat of or actual pollution. Investigations of incidents are conducted to gain any learnings or actions to prevent recurrence.

The ES process is used to help provide assurance that we are protecting the environment and meeting our internal and regulatory requirements and obligations.

2018 environmental performance summary

performance metrics

CNSL is committed to continually improving environmental performance. This is achieved by integrating environmental objectives and targets into the environmental stewardship plan and regularly evaluating progress to adjust if required. CNSL sets performance targets annually for key environmental aspects (produced water, oil releases/spills, waste and air emissions) to achieve our OE objectives.

CNSL's performance against targets for key 2018 environmental focus areas is summarised in the table below:

Table 1 - CNSL 2018 Performance Metrics¹

			CNSL
	Units	Result	Target
oil spill volume rate	bbls/MMbbls produced	0	0.5
energy efficiency ²	MBTU/MBOE	332	325
greenhouse gas emission rate ²	tCO ₂ e/MBOE	25.5	29
CO ₂ emissions ³	tonnes	444,449	N/A
oil-in-produced water mass	tonnes	115.09	160.39 ⁴
ISO 14001 re-certification	yes/no	Yes	Certification to the new ISO standard
environmental audits completed	percent	100 ⁵	100
production operations waste recycling/reuse	percent	77.35 ⁶	70

¹ Unless otherwise stated figures shown are for CNSL operated assets, excluding Alder field. The Alder field environmental emissions are reported through the Conoco Phillips operated Britannia platform.

² The Chevron Energy Intensity metric is the ratio of current energy use (MMBTU/D) per unit of production (MBOE/D). The greenhouse gas emission rate is a ratio of CO2e emissions (tonnes) per unit of production (MBOE/D). These figures include the equity share of non-operated assets. For both metrics, a lower figure relates to better performance.

³ For the 2018 period, CNSL surrendered a total of 362677 tonnes of CO₂ in allowances and credits under the European Union (EU) Emission Trading System (ETS). The total represented here includes some emissions which are outside the scope of EU ETS, such as the relatively small combustion emissions from Alder and Erskine and the fugitive, oil loading and venting emissions from Alba and Captain.

⁴ Target figure shown is the combined Alba FSU and ANP Oil Discharge permit figures for 2018.

⁵ Offshore environmental audits of Erskine, Captain WPP/BLP, FPSO, Alba Northern Platform, FSU, and Ocean Guardian MODU completed. Also, Radiation Audit and EU ETS interim review audits undertaken.

⁶ This metric relates to the proportion of waste from U.K. production operations for which waste recycling is possible. The figure excludes drilling-related wastes and waste generated from occasional operations for which there is no current alternative but disposal in accordance with applicable law. Such disposed waste streams are tracked and reported. The metric is set this way to allow meaningful comparison of year on year performance in managing our routine waste streams.

environmental stewardship improvement program

As part of the preparation of the annual ES plan, improvement opportunities were identified by CNSL. These actions were grouped into improvement plans for CNSL's U.K. producing assets (Alba, Captain, Erskine and Alder) and for activities associated with drilling, including the use of mobile offshore drilling unit (MODU).

The improvement opportunities centred around strengthening arrangements associated with prevention of, and response to, incidents and releases; produced water management; reduction of air emissions and management of waste. Progress in completing these actions was tracked throughout the year and was used as a leading measure of continual environmental performance improvement. By the end of 2018, CNSL achieved 87 percent completion of its environmental stewardship high priority opportunities, with the remaining 13 percent in progress and carried forward to 2019.

In addition to improvement opportunities raised directly via the ES process there are also arrangements in place to drive continual improvement in response to compliance audits; regulatory inspections/changes; and/or ongoing OE and asset work scopes.

emissions

The potential environmental impacts of atmospheric emissions from oil and gas exploration and production operations include acid rain formation from oxides of nitrogen and sulphur, photochemical smog from the reaction of sunlight with nitrogen oxides and volatile organic compounds (VOCs), and the climate change associated with the production of greenhouse gases (GHG), mostly from the combustion of fossil fuels.

In the U.K., CNSL monitor and measure the atmospheric emissions arising from all our major sources and report these annually as part of our engagement in the European Union (EU) Emissions Trading System (ETS), in our detailed annual atmospheric reports submitted to the regulator and to our head office as part of our global Chevron corporate reporting requirements.

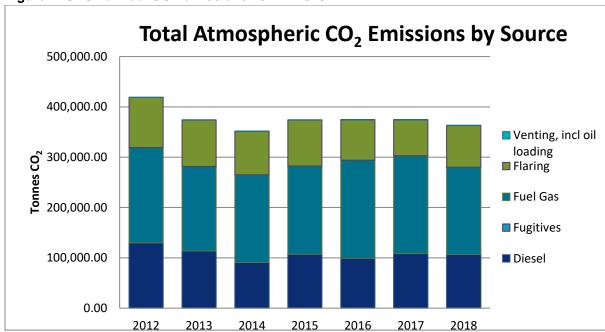


Figure 1: CNSL annual CO2 emissions 2012 - 2018

Emissions of carbon dioxide (CO₂) from CNSL activities are mainly as a result of hydrocarbon combustion in power generation and some gas flaring from our Captain and Alba installations⁷.

Emissions reported as tonnes CO_2 are shown in **figure 1**. In 2018, CNSL continued to strive to reduce emissions arising from our operations. **Figure 2** shows that the flare gas and diesel use has reduced since 2012, which has been achieved through plant improvements and focusing on efficiency. There was an increase in flaring from 2017 to 2018 due to compressor outages on Alba and Captain, see **figure 2**.

 $^{^{7}}$ Alder is a subsea tie back to Britannia platform. Therefore, emissions from Alder Field are reported through the ConocoPhillips operated Britannia platform.

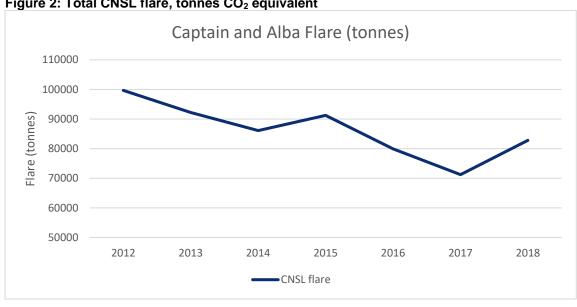


Figure 2: Total CNSL flare, tonnes CO₂ equivalent

Other gaseous emissions, such as Methane (CH₄), Nitrogen Oxide (N₂O), Nitrous Oxide (NOx), Sulphur Dioxide (SO₂), Carbon Monoxide (CO) and Volatile Organic Compounds (VOC), are also monitored and managed by CNSL. These are shown in figure 3, and include emissions reported under The Offshore Combustion Installations (Pollution Prevention and Control) Regulations 2013 (PPC) regulations. The PPC regulations are applicable to oil and gas facilities with a combined thermal capacity of 50 Mega Watts (MW) or higher. PPC permits are held for the Alba Northern Platform (ANP), Captain Wellhead Protector Platform (WPP) and Bridge Linked Platform (BLP) and Captain Floating, Production, Storage and Offloading (FPSO) vessel.

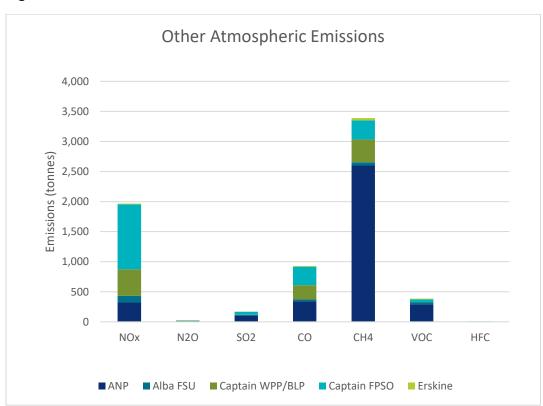


Figure 3: CNSL Other Gaseous Emissions

Chevron calculates greenhouse gas (GHG) emissions in tonnes of CO_2 equivalent (tCO_2e); these numbers include gaseous emissions of Carbon Dioxide (CO_2), Nitrous Oxide (N_2O) and Methane (CH_4). As production increased between 2015 and 2018, emissions also increased. However, the GHG rate, which is a measure of tonnes CO_2 equivalent per thousand barrels of oil equivalent (tonnes CO_2e / MBOE) in **figure 4**, shows that the mass of emissions released to atmosphere per thousand barrels decreased between 2014 and 2017. However, there was an increase in CO_2e emissions in 2018 due to compressor outages on Alba, which significantly increased the t CO_2e per MBOE overall for the field which effected overall performance despite the performance of Captain and Erskine staying broadly static.

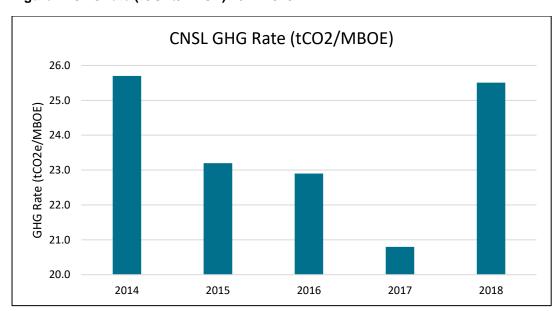
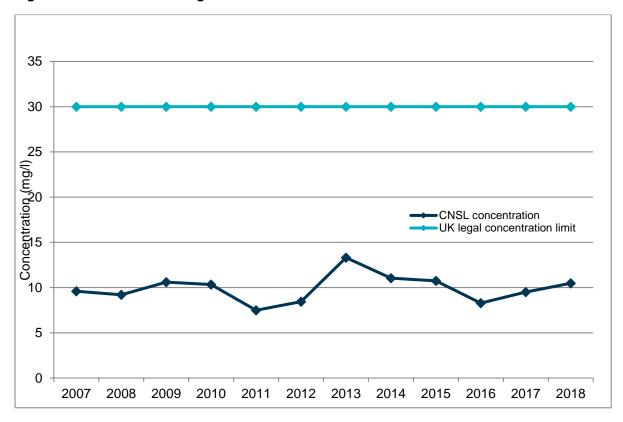


Figure 4: GHG rate (tCO2e/MBOE) 2014-2018

energy efficiency

As a significant amount of energy is required to power installations which results in various atmospheric emissions, improving energy efficiency is good environmental and business practice. The Chevron Upstream Energy Intensity (UEI) metric is a measure of total actual energy used (MMBTU/D) divided by actual gross operated production (MBOE/D).


Continuous improvement requires constant focus on energy efficiency opportunities, such as designing energy efficiency into capital projects, keeping existing equipment efficient through proper maintenance and upgrading and auditing and benchmarking progress. Energy efficiency and conservation are the most immediate and cost-effective sources of 'new' GHG-free energy.

Chevron undertakes a variety of actions to reduce emissions and improve the energy efficiency of its operations. As in previous years, during 2018, CNSL's improvement projects continued to focus on maximising facility uptime, increasing compressor reliability and maximising use of gas turbines for power generation, thus reducing diesel consumption. The focus areas continue to be those installations regulated under the EU ETS.

In 2018, the CNSL UEI was 332 against a target value of 325. This was due to increased flaring as a result of gas compressor outages on both Captain and Alba.

oil in produced water

Figure 5: CNSL annual average oil-in-water concentration 2007 - 2018

Oil extraction results in the co-production of produced water containing hydrocarbons, some naturallyoccurring materials and other substances and residues of the chemicals used in the offshore production process.

In the Captain field, all produced water is re-injected back into the reservoir with none being discharged to sea. At Alba, produced water is treated to reduce the concentration of residual oil before being discharged to sea. Both these activities are regulated under the provisions of a permit issued by the environmental regulator OPRED. Erskine produced fluids are exported and processed on the Lomond installation (operated by Chrysaor) and produced water is discharged and reported from this location under the provisions of a discharge permit issued to Chrysaor. The Alder field is tied back to the Britannia Platform operated by ConocoPhillips, with any water produced from it is discharged in accordance with the Britannia regulatory discharge permit.

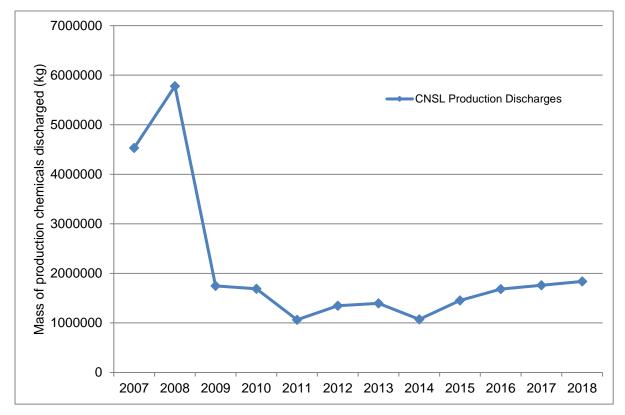
Figure 5 provides details of the CNSL average oil in water concentration and includes discharges from the ANP and FSU installations.

In 2018, CNSL re-injected more than 50 percent (16.5 million tonnes) of total produced water. A total of 115.09 tonnes of oil in produced water was discharged into the sea at an average oil-in-water concentration of 10.47 mg/l from the Alba field. See **table 2** below for more information.

Produced water handling remains a key challenge at Alba because the volume of water co-produced with the oil is rising as the field matures. During 2018, several engineering projects were identified and progressed to help maintain and improve oil-in-produced water management and treatment.

Further initiatives and projects are being pursued through the 2019 ES plan.

In addition to managing oil-in-water concentrations and discharge, quantities of sand are also produced with the water at Alba. Sand management is required to maintain optimal oil-in-produced water operations. In 2018, 35.3 tonnes of sand was removed by online washing activities.


Table 2 - CNSL 2018 oil-in-produced water data

facility	oil-in produced water discharge concentration (mg/l)	oil discharged (tonnes)	water discharged (tonnes)	water injected (tonnes)
Captain Wellhead Protector Platform (WPP)	N/A	N/A	N/A	16,466,307
Alba Floating Storage Unit (FSU)	7.11	0.19	10,271.5	N/A
Alba Northern Platform (ANP)	10.49	114.9	11,243,494.6	N/A
total	10.47 ⁸	115.09	11,253,766.1	16,466,307.4

⁸ This figure is not the direct average of the FSU and ANP discharge concentrations, but is weighted to capture the fact that there is relatively much more produced water discharge on ANP than on the FSU. Hence, the overall figure closely matches that of the ANP individually.

chemicals

Chemicals are an essential requirement in drilling and production operations with many different types being used – primarily to control corrosion, inhibit bacterial growth, assist with the production process, and assist with the drilling process. Due to the nature of these processes some discharge of chemicals to the sea will occur. Chemical use and discharge is strictly regulated and a permit is required before any use or discharge to sea of a production or drilling chemical can take place.

In 2018, approximately 13 percent of the production chemicals used were discharged to sea, most of which were low hazard - that is chemicals classed E or banded Gold under the regulated Offshore Chemical Notification Scheme. A breakdown of CNSL chemical use by operation is provided in **table 4** below, with a breakdown of discharge by chemical type provided in **table 5** below.

CNSL continues to focus on replacement of higher hazard chemicals with less hazardous substitutes where this is technically feasible. Discharge of chemicals is affected significantly by increased water production at CNSL's Alba field as it matures. Since 1998, all water produced from CNSL's Captain field reservoir has been used either as reinjection water for reservoir pressure maintenance or as power water for downhole hydraulic pumps; chemical discharges at this field are therefore already minimal.

CNSL discharged 1,434.44 tonnes of chemicals from our drilling operations during 2018, approximately 19 percent of the total chemicals used in these activities. Most of these chemicals were low hazard chemicals.

⁹ Graph shows production chemicals discharged only. Drilling activity varies considerably from year to year so inclusion of this data does not allow meaningful comparison of data.

CNSL discharged 14.77 tonnes of chemicals as a result of well workover operations during 2018, approximately 96 percent of the total chemicals used in these activities, most of which were low hazard.

All chemical use and discharge are subject to strict regulatory controls and are managed in accordance with internal procedures and processes.

Table 3 - CNSL 2018 chemical use and discharge

facility/operation	mass used (kg)	mass discharged (kg)
Alba Floating Storage Unit production operations ¹⁰	432	53,119
Alba Northern Platform (ANP) production operations	1,743,272	1,648,097
ANP platform drilling operations	5,806,099	-
ANP workover operations	14,765	14,765
Captain Wellhead Protection Platform (WPP) platform drilling operations	251,084	238,454
Captain WPP workover operations ¹¹	41	-
Captain FPSO production operations	12,711,917	136,485
Erskine production operations ¹²	77,503	168
Erskine workover operations	545	-
Ocean Guardian Drilling Operations	1,661,893	1,195,990
total	22,267,551	3,287,079

¹⁰ No processing occurs at the FSU; therefore, little chemical is used there. The apparent discrepancy in FSU chemical use and discharge figures is as a result of the FSU receiving processed crude from ANP, from which water which requires discharging settles out, meaning some chemicals applied at the ANP get discharged at the FSU.

¹¹ There is no produced water discharge at Captain, chemicals were either re-injected into the reservoir along with the produced water or remained downhole.

¹² Erskine production fluids are processed at Lomond (operated by Chrysaor), therefore discharge of chemicals used at Erskine occurs there. These chemical discharges are covered on, and reported against, Chrysaor's chemical permit for Lomond.

Table 4 - 2018 chemical use and discharge (detailed) 13

facility/operation	kg	Α	В	С	D	Е	orange	blue	white	silver	gold	total
Alba Floating Storage Unit (FSU)	used	0	0	0	0	0	0	0	0	208	224	432
production operations	discharged	0	0	0	0	0	0	23117	0	208	29,794	53,119
Alba Northern Platform (ANP) production	used	0	0	0	0	239,558	0	95,788	0	149,913	1,258,013	1,743,272
operations	discharged	0	0	0	0	239,558	0	613	0	149,913	1,258,013	1,648,097
AND drilling a grantiana	used	0	24,891	1,714,885	237,973	3,718,926	0	0	0	0	109,424	5,806,099
ANP drilling operations	discharged	0	0	0	0	0	0	0	0	0	0	0
AND weather an exercise a	used	0	0	0	0	13,552	0	0	0	1,213	0	14,765
ANP workover operations	discharged	0	0	0	0	13,552	0	0	0	1,213	0	14,765
Captain Wellhead Protection Platform	used	0	0	0	0	208,005	0	0	0	0	43,079	251,084
(WPP) drilling operations	discharged	0	0	0	0	197,585	0	0	0	0	40,869	238,454
Cantain M/DD washawar ananatiana	used	0	0	0	0	0	0	0	0	0	41	41
Captain WPP workover operations	discharged	0	0	0	0	0	0	0	0	0	0	0
Contain EDCO munduration are matical	used	0	0	0	756.75	133,058	37,652	0	10,258,805	79,070	2,202,576	12,711,917
Captain FPSO production operations	discharged	0	0	0	544.75	123,282	0	0	0	0	12,658	136,485
Explains production approximate	used	0	0	0	0	13,854.705	0	0	0	0	63,648	77,503
Erskine production operations	discharged	0	0	0	0	0	0	0	-	0	168	168
Expline workeyer enerations	used	0	0	0	0	545	0	0	0	0	0	545
Erskine workover operations	discharged	0	0	0	0	0	0	0	0	0	0	0
Occan Cuardian drilling Operations	used	0	0	0	8,568	1,568,950	0	0	0	0	84,375	1,661,893
Ocean Guardian drilling Operations discharged	discharged	0	0	0	8,568	1,114,030	0	0	0	0	73,392	1,195,990
total	used	0	24891	1714885	247,298	5,896,449	37,652	95,788	10,258,805	230,404	3,761,379	22,267,551
total	discharged	0	0	0	9,113	1,688,008	0	23,730	0	151,334	1,414,894	3,287,079

¹³ The Offshore Chemical Notification Scheme (U.K.) (OCNS) conducts Chemical Hazard and Risk Management (CHARM) assessments on chemical products that are used offshore. They use colour banding to risk rank each product, with Gold products posing the lowest potential hazard and, on the table above, Orange being the highest risk. Products not applicable to the CHARM model (i.e. inorganic substances, hydraulic fluids or chemicals used only in pipelines) are assigned an OCNS grouping, A - E. Group A includes products considered to have the greatest potential environmental hazard and Group E the least.

oil and chemical releases/spills to sea

Table 5 - CNSL 2018 oil and chemical releases to sea14

facility	number of PON1s	oil released (tonnes)	chemicals released (kg)
Alba Northern Platform	1	0	21
Alba FSU	1	0.000058	0
Captain WPP/BLP	4	0.01398861	0
Captain FPSO	2	0.00501	0
Erskine	1	0	1
Ocean Guardian MODU	2	0	34,263.50
Third Party	0	0	0
total	11	0.01900441	34,285.50

In accordance with regulatory requirements all unplanned accidental releases of oil or chemicals to sea, regardless of quantity, must be reported on a Petroleum Operations Notice No.1 (PON1). A summary of the CNSL PON1 notifications for 2018 is provided in **table 5**. **Figure 7** shows CNSL annual quantity of oil released to sea 2007 – 2018.

During 2018 CNSL reported 6 oil release events to sea. The maximum oil release reported was 0.01266 tonnes. 5 chemical release events were reported with the maximum reported release being 34,132 kgs. All incidents were reported and investigations conducted. There was one incident where greater than 2 tonnes/2000kgs was released which is summarised as follows:

34,132 kgs of water-based completion brine was released to sea when a pit dump valve was not properly sealed on board the Diamond Offshore Drilling, Inc owned Ocean Guardian mobile offshore drilling unit (MODU). The MODU was on hire to Chevron to drill the B34 well located in the Captain field. 99.8% of this brine comprised products which are classed as Pose Little or No Risk to Environment (PLONOR). The remaining 0.02% of the mix comprised one Gold and one E rated product. The full mix was permitted for discharge to sea under normal operations. No significant impact on the environment was likely. The incident was fully investigated and findings presented to OPRED on the actions taken to prevent recurrence. Following regulatory investigation, the incident was closed out with no further action taken.

¹⁴ CNSL data only includes accidental releases of oil and chemicals to sea.

oil spill response arrangements

CNSL has regulatory approved Oil Pollution Emergency Plans in place for each fixed asset and robust procedures in place for responding to any incidents which may occur. Personnel are trained and regular exercises take place to ensure effective response. On the 13 May 2015 and 17 May 2018, exercises were conducted and passed by OPRED which confirmed that CNSL could implement their response arrangements in a manner that demonstrated compliance with the requirements of the Secretary of States Representative (SOSREP) and oil spill response regulations.

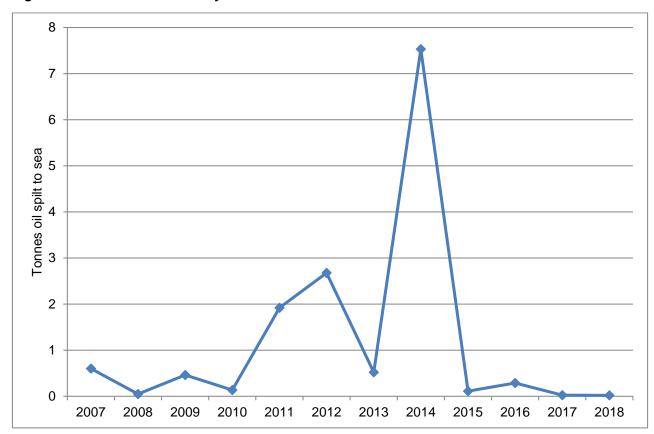


Figure 7 - CNSL Annual Quantity of Oil Released to Sea 2007 - 2018¹⁵

¹⁵ 2007 – 2018 CNSL data includes the maximum reported quantity released, i.e. a worst-case scenario. Since 2007, PON1 reports have required a maximum and minimum release quantity to be reported.

waste

CNSL's offshore operations produce a variety of waste streams which include packaging, scrap metal and redundant chemicals. CNSL works actively to reduce the amount of waste that it produces and to reuse or recycle what remains. Improvements in the proportion of recycled or reused waste have been identified – for example, wooden storage pallets are used for chipboard and plastic drums are shredded for recycling and reuse. Waste which isn't reused, recycled or sent for energy production is mainly sent to landfill with small amounts being incinerated. **Figure 8** provides details of the annual mass of waste produced together with disposal routes.

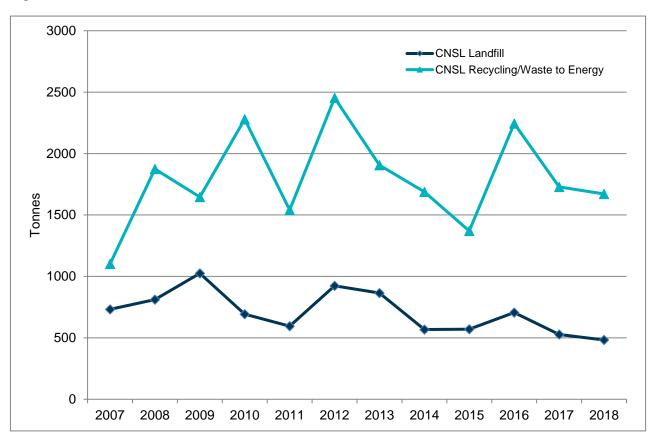


Figure 8 - annual mass of waste 2007 - 2018¹⁶

CNSL works with our waste management contractor to continuously improve waste management and minimise landfill volumes. CNSL's 2018 waste production is shown in **table 6**.

In 2018, CNSL exceeded its target of recycling 70 percent of the recyclable waste in its production and office operations (see in **table 1:**2018 Performance Metrics, page 11 of this report). This target was achieved through initiatives implemented at each of our installations and by the individual efforts of members of the offshore workforce, in particular those involved in the installation of Green Teams¹⁷.

¹⁶ Excludes drilling related waste and tank washings which distort data from a relative performance assessment perspective.

¹⁷ The Green Teams are a voluntary group of Chevron North Sea Limited employees covering all facilities, promoting environmental awareness and improvement.

Table 6 - 2018 reported total waste data

category	recycle/waste to energy (tonnes)	landfill/incinerate (tonnes)	total (tonnes)
special/hazardous waste	507.7	29.3	537
non-hazardous Waste	1,163.6	453.3	1,616.8
total	1,671.3	482.5	2,153.8

For the purpose of relative annual performance tracking, we do not include the drilling-related and tank washings waste streams in our target as they are extremely variable and operationally dependent, and their inclusion therefore would not allow for long-term performance tracking. These are often the largest CNSL contributor to landfill volumes and consequently we are working to reduce the quantities and potential hazards of these wastes too. The use of non-aqueous (oily) drilling fluids can be necessary when drilling in certain reservoirs or long horizontal wells.

glossary

ANP Alba Northern Platform

bbl barrel

BOE barrels of oil equivalent BTU British Thermal Units

CH₄ Methane

CMAPP Corporate Major Accident Prevention Policy

CNSL Chevron North Sea Limited

CO Carbon monoxide CO₂ Carbon dioxide

CO₂e Carbon dioxide equivalent ES Environmental Stewardship ETS Emissions Trading System

EU European Union

FPSO Floating, Production, Storage and Offloading

FSU Floating Storage Unit GHG Greenhouse Gas HFC Hydrofluorocarbon

MBOE thousands of barrels of oil equivalent

MODU Mobile Offshore Drilling Unit

 $\begin{tabular}{lll} NaCl & Sodium Chloride \\ N_2O & Nitrous oxide \\ NO_x & Oxides of nitrogen \\ OE & Operational Excellence \\ \end{tabular}$

OEMS Operational Excellence Management System

OPEP Oil Pollution and Emergency Plans

OPRED Offshore Petroleum Regulator for Environment & Decommissioning

OSPRAG Oil Spill Prevention and Response Advisory Group

SO₂ Sulphur dioxide

SOSREP Secretary of States Representative for Maritime Salvage and Intervention

t tonnes

UEI Upstream Energy Intensity

U.K. United Kingdom

VOCs Volatile Organic Compounds WPP Wellhead Protector Platform