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Abstract

We propose a methodology for defining urban markets based on builtup landcover classified

from daytime satellite imagery. Compared to markets defined using minimum thresholds for

nighttime light intensity, daytime imagery identify an order of magnitude more markets, cap-

ture more of India’s urban population, are more realistically jagged in shape, and reveal more

variation in the spatial distribution of economic activity. We conclude that daytime satellite

data are a promising source for the study of urban forms.
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1 Introduction

Core to the study of economic geography is explaining why cities exist and how their dimensions are

determined. It is standard to attribute the existence of cities to the benefits of agglomeration—be

they urbanization economies (e.g., Henderson 1974), Marshallian externalities (e.g., Duranton and

Puga 2001), or home-market effects (e.g., Fujita et al. 2001). Where cities locate, in turn, is influ-

enced by the availability of key resources, access to transportation routes, and historical accident

(e.g., Bleakley and Lin 2012; Henderson et al. 2018). Within cities, the clustering of activity creates

gradients in land prices and presents workers with a tradeoff between housing costs and commute

times (Duranton and Puga 2015). A rich and vibrant literature studies how the concentrating

forces of agglomeration and the dispersing forces of congestion combine to create urban systems

(see, e.g., Duranton and Puga 2004; Desmet and Henderson 2015).

Empirical work on economic geography requires measuring the location and scale of urban

activity. A common approach to measurement is to use officially designated administrative units.

These may be as large as a metropolitan area (e.g., Duranton and Turner 2012), as small as a town

or village (e.g., Eeckhout 2004a), or an intermediately sized unit such as a county or a district

(e.g., Hanson 2005; Ghani et al. 2014; Donaldson and Hornbeck 2016). Because administrative

boundaries are defined according to pre-existing legal jurisdictions, they may be noisy indicators

of how cities are actually organized. In influential work, Rozenfeld et al. (2011) construct cities by

clustering officially designated towns and villages into larger units based on geographic proximity.

This approach only works, however, if official sources measure activity for fine administrative units

on a frequent basis. In many countries, such data are available only decadally, if at all.

In this paper, we use remotely sensed data to detect urban markets in India for 2013. A market

is a set of contiguous, or near contiguous, pixels that contain economic activity according to daytime

or nighttime satellite imagery. Our practical approach approximates the conceptual definition of

a market in economic geography models: a set of locations that are highly integrated relative to

outside locations because of low internal trade costs (e.g., Redding 2016) and (or) low commuting

costs (e.g., Duranton 2015). We categorize a pixel as having economic activity if its nighttime

light intensity exceeds a given threshold or its spectral properties indicate built-up landcover. Our

maintained assumption is that clusters of proximate pixels are integrated through internal trade

and commuting links, which we attempt to validate in external data.

Our first source of imagery is nighttime lights from the Defense Meteorological Satellite Program

Operational Linescan System, which indicates the presence of economically active agents (Hender-

son et al. 2012). Following Rozenfeld et al. (2011), we explore buffers that combine contiguous sets

of pixels if they lie within a radius of 1km, 2km, 4km or 8km. Defining urban land using nightlights

requires choosing a minimum threshold of light intensity for contiguous pixels. Harari (2017), for

instance, in her analysis of urban sprawl in large Indian cities chooses a digital number (DN) of

35 (on a scale of 0 to 63) to designate urban areas. Our analysis reveals a tradeoff in choosing

the minimum light threshold for a market: while a strict threshold only captures major urban ag-
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glomerations, lowering the threshold to include smaller cities explodes the size of larger cities with

proximate satellites. This tradeoff is a consequence of the blooming effect of light (e.g., Donaldson

and Storeygard, 2016), which tends to produce cities whose boundaries are too expansive and too

smooth relative to the haphazard and amoeba-like shape of actual cities.

We contrast the spatial extent of nightlight-based markets with those formed from high-resolution

daytime satellite imagery. These data are available at finer resolutions than nighttime lights data

but require further image classification to detect urban land. We explore data on builtup landcover

from the MODIS layer constructed by Channan et al. (2014). We also examine two additional

daytime imagery layers: the Global Human Settlements Layer (Pesaresi et al. 2015) and a recent

layer produced by Goldblatt et al. (2018). We define landcover-based markets using an analogous

algorithm that clusters contiguous or near contiguous pixels of builtup landcover.

Our approach has three advantages over conventional methods to measure urban areas using

administrative data. First, it is scalable. Because our method is algorithmic and uses publicly

available imagery, it scales to detect markets globally and, in principle, over time. It also circum-

vents the need to reconcile differences across countries and time in how administrative units are

defined. Second, and relatedly, our data do not stop at national borders. Markets that straddle

national boundaries and follow transportation routes can be tracked. Third, the spatial resolution

is adjustable. By altering the buffer used to aggregate proximate pixels, we can narrow the focus

to the rough equivalent of a town center or widen the focus to a metropolitan area. This versatility

is helpful for detecting within-metro area heterogeneity, a feature we explore.

To preview our results, the patterns of landcover-based markets are starkly different from those

of nightlight-based markets. Using the definition of a market that buffers clusters of contiguous

pixels at 1km, we detect 1,669 and 469 markets using a nightlight threshold of DN33 and DN60,

respectively. The DN60 markets accurately capture India’s largest 470 cities according to official

Census data, which suggests that nightlight-based markets are reliable for tracking activity across

India’s major urban areas. In contrast, we detect an order of magnitude more markets using MODIS

data: 13,401 in total. These markets are smaller, less compact, more closely fit a power law in area

size, and capture activity ranging from distinct areas within large metropolises to small towns that

are distant from India’s cities. For example, within Delhi’s official administrative boundary, we

detect 602 distinct 1km MODIS markets. More-remote, landcover-based markets have an average

DN nightlight intensity of just 5, suggesting that we are able to capture many parts of India that

lack reliable access to electricity. While we could detect these markets with nightlight data by

lowering the light-intensity threshold, this would come at the cost of vastly increasing the area of

above-threshold contiguous pixels around India’s large cities, which is evident from visual inspection

and from statistics on the maximum size of markets at different thresholds. Our results suggest

that landcover-based markets are able to capture small cities and towns in India while preserving

the spatial distribution of activity of the largest cities.

We perform several validation checks to demonstrate that our markets capture real economic

activity. Using shape files for the 2011 India Census, we allocate population across our market
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boundaries. Collectively, the DN33 and DN60 1km markets contain 23.4% and 14.8% of India’s

total population and 75.3% and 47.6% of India’s urban population, respectively. The MODIS 1km

markets capture 29.0% and 93.0% of India’s total and urban populations, respectively. Market

size correlates strongly with population, and the variance in population for smaller sized landcover

markets reflects the fact that these markets include both dense areas within major metro areas and

less populated peripheral towns. We detect strong correlations between market size and proximity

to public infrastructure such as roads, railway stations and mobile phone towers. Additionally, we

find that larger landcover-based markets have higher nighttime light intensity. These correlations

are important for addressing a limitation of daytime satellite data. While these data are suitable

for measuring the spatial extent of markets, they may not reveal the intensity of economic activity.

However, the positive correlations reveal that the extensive margin—which is measured accurately

through daytime imagery—correlates well with proxies for the intensive margin. For example, a

MODIS market at the 10th percentile of the land-area distribution has a nightlight DN of 11.1

compared to 26.7 for a market at the 90th percentile of land area.1 Combining daytime imagery to

measure the boundary of markets with nighttime data to measure the intensity of market activity

is a promising approach, which leverages two remotely sensed datasets that are publicly available,

have a long time span, and have global coverage.

Finally, we consider the potential to use landcover-based markets to study polycentric cities

(Duranton and Puga 2015). The literature has long recognized that cities do not expand smoothly

along their margins but through the construction of outlying communities in the form of suburbs,

edge cities, or commercial hubs (Henderson and Mitra, 1996; Anas et al., 1998). For example, the

Hyderabad metro area, which spans 650km2 and contains 6.8 million people, contains Hyderabad

and Secunderabad as major poles and substantial satellites in Ghatkesar and Kukatpally. As one

zooms in further, many more satellites appear and Hyderabad’s full polycentricity is revealed. We

examine polycentricity using the larger buffered markets, which we term “super-markets”. The

average MODIS 8km market spans an area of 48 km2, but physical structures cover only 24% of

this area. On average, these super-markets contain 3.8 distinct 1km markets; the elasticity of

the number of 1km buffered markets with respect to super-market area size is 0.36. This within-

market variation may be sufficient in order to study, for instance, how transportation investments,

such as ring roads or metro rail, impact the distribution of economic activity within large cities.

To demonstrate this possibility, we construct measures of market access based on Donaldson and

Hornbeck (2016) and find that a non-trivial portion of a market’s market access is determined by

other close-by markets that are within the same larger buffered super-market.

The availability of satellite imagery and machine-learning techniques for image classification

have led to rapid advances in detecting land use in the remote sensing literature. In efforts to

construct urban layers for the world as a whole, Pesaresi et al. (2015) use Landsat imagery to

detect urban land for grid cells at a 38m resolution, Channan et al. (2014) use MODIS imagery

1Using the nightlight-GDP elasticity of 0.3 from Henderson et al. (2012), the larger area would have a 42.0%
higher GDP.
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to detect multiple types of land use for grid cells at a 500m resolution, and Zhou et al. (2015) use

nightlight intensity to detect urban land at a 1km resolution.2 This work typically classifies land

use at the pixel level, where the dimensions of the pixels vary according to the source of the satellite

imagery. Pixel-level classifications, while important building blocks in urban analysis, are not in

and of themselves informative for the study of economic geography. Without aggregating pixels to

form larger markets, one cannot test theories of the size distribution of cities, evaluate the impacts

of expanding national transportation grids, or identify the consequences of severe weather events,

plant closures, or other localized economic shocks.

Our results contribute most directly to the literature on methods to delineate urban areas

that do not rely on administrative boundaries. In addition to Rozenfeld et al. (2011), our paper

has antecedents in Eeckhout (2004b), who uses U.S. Census Designated Places instead of (much

larger) Metropolitan Statistical Areas to re-examine Zipf’s law and Gibrat’s law; Burchfield et al.

(2006), who use contiguous pixels to measure sprawl in the U.S. based on Landsat satellite imagery

from 1976-1992; and Harari (2017), who uses nightlights to track urban sprawl in large Indian

metropolitan areas. Davis et al. (2018) also use clusters of pixels above nightlight thresholds to

construct metro areas in Brazil, China, and India. Recent work by Duranton (2015) proposes an

alternative algorithm to construct markets based on commuting patterns for Colombia. de Bellefon

et al. (2018) develop a statistical approach to detect urban areas using precise locational data

covering 34 million buildings in France. Our contribution to this literature is to develop and

compare methods to detect markets solely from remotely sensed data.

More broadly, our paper builds on the increasing use of remotely sensed data in economic anal-

ysis (Donaldson and Storeygard 2016). Economists have used satellite data on the intensity of light

emitted at night to study national and regional economic growth (Henderson et al. 2012; Gennaioli

et al. 2013; Pinkovskiy and Sala-i Martin 2016), the political economy of regional development

(Gennaioli et al. 2013; Michalopoulos and Papaioannou 2013b,a; Hodler and Raschky 2014; Alesina

et al. 2016), spatial linkages between cities (Storeygard, 2016), and the the global distribution of

economic activity (Henderson et al. 2018), among a rapidly growing set of topics. Daytime satellite

imagery, whose use in economics was pioneered by Burchfield et al. (2006), is available at even

higher spatial resolutions, down to 30m for data going back to the late 1990s and down to less

than 1m for imagery from recently launched proprietary satellites. Michaels et al. (2017) use an

ensemble of remotely sensed imagery to measure urbanization in Tanzania.

Section 2 presents the method to detect markets from nightlight and daytime satellite imagery.

Section 3 compares nightlight-based markets and landcover-based markets and provides validation

checks. Section 4 uses landcover-based markets to evaluate market access. Section 5 concludes.

2Alqurashi and Kumar (2013) discuss earlier work in remote sensing to detect land use. Recent papers that detect
urban land for individual countries include Pandey et al. (2013) on India; Bagan and Yamagata (2015) on Japan; and
Zhou et al. (2014), Huang et al. (2015), and Fu et al. (2017) on China. For literature that detects urban land using
daytime satellite imagery, see Trianni et al. (2015), Goldblatt et al. (2016), and Goldblatt et al. (2018) on India.
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2 Algorithmic Approach to Detect Markets

We define markets using two sources of remotely-sensed data: (1) the intensity of light emitted

at night as captured by nighttime lights data, and (2) classifications for builtup landcover based

on daytime satellite imagery. In this section, we describe the data sources and algorithms used to

detect the spatial extent of a market for each data source.

2.1 Detecting Markets from Nightlight Imagery

The US Air Force Defense Meteorological Satellite Program (DMSP) operates satellites that

carry light sensors known as the Operational Linescan System (OLS). Originally used to detect

the global distribution of clouds and cloud-top temperatures, OLS sensors also detect visible and

near-infrared emissions at night from different sources on Earth, such as city lights, auroras, gas

flares, and fires. Pixels have a resolution of 30 arc seconds, or approximately 1km × 1km. For

each pixel, the digital number of calibrated light intensity ranges from 0 to 63, which we refer to

as the nightlight value or intensity. Because persistent light emitted at night is often associated

with man-made structures, we assume that if the intensity of a pixel exceeds a given threshold, this

pixel represents a populated location.3 Processed DMSP-OLS imagery is publicly available from

1992-2014, and can be analyzed on Google Earth Engine. We process lit pixels using data for 2013.

There are well-known limitations to DMSP-OLS data (e.g., Donaldson and Storeygard 2016).

These include saturation effects, in which the amplification of light detection to capture low levels

of light leads to right censoring in detection in highly-lit areas (e.g., city centers); and blooming

effects, in which reflection causes light emitted in one pixel to be detected in nearby pixels, making

highly lit areas appear to be larger than they are. Blooming occurs due to several idiosyncratic

features of the DMSP-OLS sensor: (1) field of view variation, where the satellite’s round field of

view morphs into an elliptical and larger shape as it scans east and west of nadir; (2) geolocation

errors, whereby the satellite miscalculates a pixel’s location, so on each night not only is there a

differently sized ellipse, but its centroid is shocked in a random compass direction (Abrahams et al.

2018); and (3) on-board data management, where the 1970s technology on board the satellites

causes top-censoring of inputs.4 The highest possible DN is 63, and because of this saturation, it

is often impossible to differentiate between medium-density cities and high-density cities.5 In our

3We use the stable light band of sensor F14, which discards ephemeral events, such as fires, but remains sensitive
to persistent lighting, including from gas flares or volcanoes. Since India has no active volcanoes or gas flares on
land (Elvidge et al., 1999), it is safe to assume that highly lit pixels in India indicate builtup activity. Tuttle et al.
(2014) place portable high-pressure sodium lamps at uninhabited sites in Colorado and New Mexico to check the DN
recorded by the F16 and F18 sensors. They find that ninety-three 100-watt incandescent lamps could be detected
(DN=1) at both fine (0.6km) and coarse (2.7km) resolutions. Eight times as many bulbs would saturate (DN=63)
the sensor at the fine resolution (but not at the coarser resolution).

4Fine pixel values are summed together in consecutive 5×5 blocks to form an image of 2.8km×2.8km coarse pixels.
To further economize data management, the smallest two bits of each coarse pixel’s value are dropped, meaning that
all coarse pixel values are divided by 4, integized, and top-censored at 63, producing the 6-bit quantization familiar
to users of these data (Abrahams et al. 2018).

5The blooming effect, the saturation effect, and other sources of noise in nightlight intensity are less pronounced in
data from recently launched satellites. The Visible Infrared Imaging Radiometer Suite (VIIRS), imagery from which
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setting, saturation is not an issue because we measure the extent of markets through lower bounds

of light intensity. However, blooming is problematic, as we demonstrate below.

Nightlight-Based Markets: A nightlight-based market is a cluster of contiguous, or near

contiguous pixels, with a DN that exceeds a specified threshold.

To operationalize this definition of a market based on nightlight data, three choices are required:

(1) the minimum number of pixels that constitute a market; (2) the parameter values that govern

“near contiguity”; and (3) the minimum DN to be used. As mentioned, the DMSP-OLS sensor has

a 1km resolution. We set the minimum number of pixels to form a market at 1 pixel.6

To determine the minimum DN thresholds for our market definition, we examine the distribu-

tion of DNs across pixels in India for 2013 in Figure A1. Because light is not detected in large

expanses of the country—including bodies of water, farmland, deserts, forests, and villages with

no electricity—the DN is zero (i.e., no detectable light) for the pixel at the 50th percentile of the

distribution. The DN is moderately higher at a value of 5 at the 63rd percentile,7 and rises sharply

as one moves into the upper tail, reaching 17.4 at the 95th percentile, 49 at the 99th percentile, and

60 at the 99.5th percentile; only a tiny fraction of pixels are right censored at the maximum DN of

63. Motivated by these patterns, we set the following alternative DN thresholds for a pixel to be

highly lit: 17.4 (95th percentile), 33 (98th percentile), and 60 (99.5th percentile).

We designate as a market a cluster of contiguous highly lit pixels, which may consist of only a

single pixel. Many clusters of highly lit pixels lie in close proximity to each other, creating chains

of light islands that appear when we map our results. By the strict definition above, we would

treat each island, or polygon of pixels, as a separate market, whereas in truth clusters of proximate

polygons may share dense commercial and commuting ties (as in the case of U.S. counties that

comprise commuting zones; e.g., Tolbert and Sizer 1996). Motivated by the method in Rozenfeld

et al. (2011) for agglomerating neighboring administrative units into larger units, we combine any

pair of highly lit clusters for which the minimum distance between their boundaries is less than

1km, 2km, 4km, or 8km.8 For a given threshold, larger buffers nest smaller buffers: 1km markets

⊆ 2km markets ⊆ 4km markets ⊆ 8km markets.

is only available from 2012 forward, detects electric light at a higher spatial resolution and at lower distortion than
DMSP-OLS, imagery from which is available from 1992 to 2014. See Elvidge et al. (2017) for a discussion of VIIRS
imagery and Shi et al. (2014) for an application of these data to detecting urban areas in China. See Henderson et al.
(2018) for analysis that uses a radiance-calibrated version of the nightlight data (Elvidge et al. 1999), which alleviates
the saturation effect. These data are available for only a subset of recent years. We use DMSP-OLS imagery in order
to create methods for measuring markets that can be extended backward in time.

6The threshold pixel choice of 1 may appear to be on the low side. As a point of reference, Rozenfeld et al. (2011)
use grid cells with 200m resolution for Great Britain and FIPS units for the U.S., which range from 100m grid cells in
Manhattan to 100km grid cells in Wyoming. In recent work, de Bellefon et al. (2018) provide a statistical approach
to choose thresholds to define urban areas using detailed geocoded data on the location of buildings in France. They
find that the average size of an urban area is 8.9 km2 and are able to detect distinct urban areas as small as .04 km2.

7The bunching at 0 and 5 is an artifact of the stable light band of satellite F14, which removes noise and unstable
light removal. Cauwels et al. (2014) note that the number of pixels with DN greater than 0 and less than 5 is
extremely low; for example, the satellite registers no pixels with a DN equal to 1 in the year 2000.

8We view a 0km buffer as extreme as it does not account for commuting or trade linkages and therefore do not
consider this buffer choice for our analysis. We use the Aggregate Polygons function in ArcGis to cluster the pixels.
Online Appendix Appendix A explains the procedure to aggregate pixels to markets.
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2.2 Detecting Markets from High-Resolution Daytime Imagery

Daytime imagery offers alternative data to detect human activity from space. The major

challenge in working with daytime imagery is that one needs a classifier to convert the spectral

signature of an image into a categorization of landcover. In recent years, there has been substantial

progress in remote sensing to improve the precision of classification algorithms at scale. Use of

daytime imagery is also facilitated by cloud-based computing engines, such as Google Earth Engine,

which hosts the full library of Landsat, MODIS, Sentinel, and other satellite imagery.

We use the MODIS dataset as our benchmark source of landcover classification from daytime

imagery. MODIS uses a supervised machine learning method, which takes advantage of a global

database of training sites extracted from high-resolution imagery that contain 36 spectral bands.

We use the University of Maryland classification scheme version MCD12Q1 V006, which has a

resolution of 500m (Friedl and Sulla-Menashe 2015). We use data from 2013 and take the take

the Urban and Builtup pixels (classification 13) to indicate builtup landcover. MODIS is publicly

available on Google Earth Engine and widely used in the remote sensing literature (e.g., Huang

et al. 2016; Mertes et al. 2015; Guo et al. 2015).9

We also examine two other landcover datasets as a robustness check against MODIS. The Global

Human Settlements Layer (GHSL, Pesaresi et al. 2015) combines satellite data from Global Land

Surveys datasets (GLS1975, GLS1990, GLS2000), Landsat 8, and other sources—–including Open

Street Maps, WorldPop and MODIS—–to determine built-up pixels at a 38m spatial resolution.10

We use their “Built-Up Confidence Grid”, which aggregates built-up data in 2014 and classifies

pixels as builtup if the confidence of being builtup is greater than 50%. GHSL contains landcover

maps from an earlier period but has less temporal variation than MODIS. Although publicly avail-

able, the GHSL is difficult to access, uses data beyond raw satellite bands, and is less widely used.

The third map of builtup landcover for India in 2013 is created using the methodology in Goldblatt

et al. (2018). This layer, to which we refer as MIX, uses DMSP-OLS nightlight data as quasi-ground

truth and daytime satellite imagery as inputs to train a classifier for builtup land cover in India.

Appendix Appendix B summarizes the method for producing this layer.

Our motivation for using multiple layers of builtup landcover comes from ongoing rapid advances

in remote sensing for classifying land use from satellite imagery. As of now, the accuracy with which

existing layers detect changes in urban landcover, rather than just cross-sectional features, is not

well understood. We anticipate more advances will be made in land-use classification in the near

future, such that none of the existing layers may become the standard source for builtup landcover.

9MODIS (MCD12Q1 V006) classifies global land cover types at yearly intervals from 2001 to 2016 at a 500m
resolution. It provides classifications based on six alternative schemes: five that were included in past versions of
MODIS (IGBP, UMD, LAI, BGC, and PFT) and a new layer containing the Land Cover Classification System
(LCCS) from the Food and Agriculture Organization (Friedl and Sulla-Menashe, 2015). Collection 6 improves over
previous versions by changing the pre-processing and classifying algorithm, modifying the input features used in the
classification, using a nested set of classifications, and creating new gap-filled spectro-temporal features by applying
smoothing splines to the NBAR time series (see MCD12Q1 V006 user manual for details).

10The USGS Landsat 7 satellite, launched in 1999, contains seven spectral bands at a spatial resolution of 30m and
a temporal frequency of 16 days. Landsat 8, launched in 2013, contains nine spectral bands with a spatial resolution
of 30m at a temporal frequency of 16 days.
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In light of this uncertainty, we use three different layers, which allows us to assess the strengths and

weaknesses of alternative approaches to detecting urban activity. Our method would easily extend

to new layers of builtup landcover based on daytime satellite imagery.

Using the three layers that classify builtup landcover—MODIS, GHSL, and MIX—we adopt

the following definition for markets for daytime satellite imagery.

Landcover-Based Markets: A landcover-based market is a cluster of contiguous or near

contiguous pixels whose spectral features in daytime satellite imagery indicate that the majority of

their land area consists of builtup landcover.

For MODIS markets, we impose a minimum number of pixels for a market to be 1 (0.063km2).

For GHSL and MIX, the minimum number of pixels is set to 40 (0.058km2 and 0.036km2, re-

spectively). Choosing a minimum pixel size of 1 for GHSL and MIX would be an extreme choice

given the granularity of these data (and would be computationally cumbersome); the choice of 40

leverages the granularity of the data to detect small clusters of pixels while not creating markets

so small that they would rarely display well-defined internal trade or self-contained commuting

patterns. Clusters of builtup pixels are aggregated in a manner analogous to that described above

(e.g., if two clusters of MODIS pixels are separated by, say, 1.5km of non-builtup pixels, they would

form two distinct markets under the 1km buffer and a single market under the 2km buffer).

2.3 Visual Inspection of Market Definitions

To obtain a visual sense of the shape of urban markets identified by daytime versus nightlight

data sources under the four buffers, we plot the markets detected around three cities of different

sizes: Delhi (2011 population of 19 million), Ahmedabad (2011 population of 5.5 million), and Ajmer

(2011 population of 0.5 million) in Figures 1 to 3.11 We overlay road networks from OpenStreetMaps

in 2018 to give a sense of how transportation networks may influence the shape of markets. Panels

(a) to (d), in the first row, display results for MODIS-based markets, while panels (e) to (t), in

the second through fifth rows, display results for nightlight-based markets. We include nightlight

markets formed using a DN threshold of 10 to understand better the consequences of varying light

intensity thresholds; we do not analyze DN10 markets in subsequent sections.

Consider first nightlight-based markets. Together, we have 16 alternative nightlight-based mar-

ket definitions in panels (e) to (t) of Figures 1 to 3. The maps illustrate how changing the DN

threshold and buffer sizes affects market shape. At a DN of 10 (fifth row), Delhi is an immense blob

that swallows cities across three states in India, including Meerut (1.3 million, in Uttar Pradesh),

Rohtak (0.4 million, in Haryana) and Bhiwadi (0.1 million, in Rajasthan). The blob itself is 12,555

km2, which is close to the size of the U.S. state of Connecticut. At a higher DN of 17.4 (fourth

row), Delhi takes the shape of a more conventional urban market, but again swallows the city of

Meerut (1.3 million), which is about 2 hours to the northeast by car from central Delhi. At a DN of

60 (second row), by contrast, Meerut appears as a separate market from Delhi. But this threshold

11Population numbers are taken from the 2011 Census.

8



fails to detect the small city of Hapur (0.2 million). Moreover, the satellite cities of Gurgaon (0.9

million) and Noida (0.6 million), two vibrant areas of economic activity in Delhi, are fused together

with central Delhi to form one large market. Figure 2 for Ahmedabad shows a similar pattern: a

high threshold separates the main city from its largest satellite (Nadiad, 0.2 million), but fails to

detect many smaller cities; lowering the threshold causes the size of Ahmedabad to explode. Figure

3 shows the smaller city of Ajmer in the state of Rajasthan. The road leading out of Ajmer towards

the Northeast is part of the Golden Quadrilateral. At lower DN thresholds, activity appears to

coalesce along the artery. This is problematic as these lights are likely capturing street lights and

car lights along the road rather than stable clusters of economic activity.

To consider landcover-based markets, examine the top rows of Figures 1 to 3, which show

markets using the MODIS layer. Results for MIX and GHSL layers are similar. In stark contrast to

the nightlight-based definition in the bottom four rows, landcover-based markets are jagged in shape

and display substantial within-market variation in the density of economic activity. Also, landcover-

based markets show that within the outer envelope of the market area there are substantial numbers

of white pixel islands, indicating areas that are not builtup. Whereas the blooming effect creates

the perception that inside market boundaries all pixels contain light-emitting structures, higher-

resolution imagery indicates that cities contain many clusters of pixels that have not been urbanized.

These clusters include bodies of water, parks, and undeveloped land. For example, the Yamuna

river in Northeast Delhi is visible in the landcover-based figures but masked through the blooming

of lights in the nightlight-based markets. The presence of undeveloped pixels within cities in the top

row and absence in the lower rows (which are especially apparent in Figures 1 and 2 for the larger

cities of Delhi and Ahmedabad and would appear for the smaller city of Ajmer were we to zoom in)

indicates that nightlight-based markets tend to make urbanization inside market boundaries appear

to be overly smooth. Excessive smoothness may distort measures of the ease of distributing goods

inside markets if such measures were to be based on variation in the density of economic activity

within market boundaries. Notice also that within Delhi, we observe many distinct neighborhoods

that are fused together in nightlight-based markets. At higher distance buffers, the small distinct

markets within cities fuse together—which could have the interpretation of integrating markets

through the trading of goods and services—while remote towns remain visible.

Visual inspection illustrates the tradeoff in varying the DN threshold to detect markets using

nightlights. A strict DN threshold captures the most economically developed urban centers of

India. But this threshold misses smaller cities and towns. In attempting to capture these towns

through a lower DN threshold, the large cities mushroom in size and swallow neighboring satellite

cities. Lower thresholds also start to capture activity along roads which are likely emitted by street

lights and (or) the blooming effects from towns. Landcover-based markets detected through high-

resolution daytime imagery are not subject to this tradeoff. We observe distinct pockets of activity

within cities and detect smaller towns located at the periphery; increasing the buffer fuses together

markets within cities while preserving the shape of the smaller cities. Statistics reported in the

next section reinforce the descriptive results from this preliminary analysis.
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3 Market Characteristics and Validation

This section explores the characteristics of nightlight- and landcover-based markets based solely

on the properties of remotely sensed data. We then validate that these markets do indeed capture

economic activity, by incorporating data from the Indian Census.

3.1 Market Characteristics

We document the following market characteristics. First, while nighlight-based markets capture

the largest cities in India, daytime imagery detect an order of magnitude more markets that, on

average, are much smaller in size, are less compact, and have lower nightlight intensities. Second,

landcover-based markets capture remote pockets of economic activity, as well as sub-centers within

larger urban metropolises. Third, the distribution of landcover-based markets follow a power law

that more closely matches Zipf’s law than the distribution of nightlight-based markets.

3.1.1 Market Shape

Harari (2017) finds that the geometry of Indian cities affects economic outcomes. Her analysis

uses a novel geography-based identification strategy that predicts the compactness of cities, where

compactness is measured by how close a city’s shape resembles a perfect circle. She determines the

extent of cities using a procedure analogous to our nightlight-based markets, and finds that less

compact Indian cities have higher commuting costs and lower economic welfare for residents. As

shown above, visual inspection suggests that nightlights will produce boundaries that are overly

smooth relative to the jagged boundaries of landcover-based markets. If shape determines the

welfare of residents, as her study finds, measuring it accurately is important.

Her primary measure of urban shape is the disconnection index, which is the average distance

between all pairs of interior points within a market. In the absence of actual commuting data, the

index serves as a proxy for the average commute length within a market. Since this metric scales

with the market area, we follow her approach and normalize the disconnection index so that it is

invariant to size. For each market, we calculate the radius of a circle that has the equivalent area,

and divide the index by this radius. The normalized disconnection index ranges from 0 to 1 with

higher values associated with less compact shapes.

Figure 4 plots the density of the disconnection index for DN33, DN60 and MODIS markets, by

buffer size.12 First, we see that the average disconnection index for MODIS markets is larger than

for the two nightlight-based markets at each buffer, confirming that the shape of daytime markets

is less compact than what nighttime imagery suggest. Second, we see that the impact of buffer

sizes on shape differs between the two market types. For nightlight markets, the distribution of the

index values is stable as one moves from the 1km to the 4km buffer. That is, expanding the buffer

12The computational burden of computing the disconnection index is very high since it is an average of all bilateral
pixels within a market. We therefore only compute this index for the two nightlight-based markets and for MODIS
markets. For the same reason, we do not compute the index for 8km-buffered markets.
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size of nightlight markets does not fundamentally alter their shape. In contrast, the distribution of

4km-buffered MODIS markets is left shifted relative to the 2km buffer, which itself is left shifted

relative to the 1km buffer. This implies that larger buffers produce markets that are less compact

relative to smaller buffers. These patterns reinforce the visual perception that landcover markets

are more jagged, and therefore more disconnected, than nightlight markets.

3.1.2 Number of markets

We next explore the number of markets detected through the alternative market definitions.

For context, Table A1 reports the official number of enumerations, at various levels of aggregation,

according to the 2011 Census. The Census recognizes 6,171 “towns”, which are home to India’s 377

million urban residents (31% of India’s total population).13 Of the 6,171 towns, 468 are considered

“Class 1” cities with more than 100,000 inhabitants; these are the largest cities in India, which

collectively contain 22% of India’s population. There are 1,847 Class 1, 2 and 3 towns—localities

with at least 20,000 inhabitants—a number roughly similar to the number of DN33 markets at a

1km buffer. There are a further 1,683 towns with 10,000 to 20,000 inhabitants.

The left panel of Table 1 reports the number of markets detected through nighttime lights. By

construction, the number of markets decreases as we raise either the distance buffer for joining pixel

clusters or the DN threshold for designating highly lit pixels. At a buffer of 1km, we observe 3,275

DN 17.4 markets, 1,669 DN 33 markets, and 469 DN 60 markets. The two higher DN thresholds

exhibit little variation in the number of markets across buffers. Comparing Table 1 and Table A1,

we see that DN17.4 markets at a 1km buffer roughly match the number of officially recognized

Indian cities and towns with more than 10,000 residents. The DN60 markets accurately capture

Class 1 towns, which corroborates the finding in Harari (2017) that nighttime satellite imagery are

well-suited for tracking variation in urban form across India’s largest cities.

The right panel of Table 1 reports the number of markets detected from daytime imagery. While

the numbers vary across the three daytime satellite layers, the total number of markets detected

is substantially larger than the number of nightlight-based markets. For the MODIS layer, the

number of markets ranges from 13,401 at distance buffer of 1km to 3,495 at a distance buffer of

8km. For the GHSL layer, the number of urban markets ranges from 26,202 at distance buffer of

1km to 3,861 at a distance buffer of 8km.14 The corresponding numbers of markets for the MIX

layer are 17,304 and 3,417, respectively. At a distance buffer of 4km or less, the total numbers

of landcover-based markets are much larger than the number of towns in India with a population

of 10,000 inhabitants or greater. This discrepancy suggests that landcover-based markets capture

13These towns satisfy one of two criteria: (1) a place with a municipality, corporation, cantonment board, or
notified town area committee; or (2) a place that has a minimum of 5,000 inhabitants, at least 75 percent of the
male working population engaged in non-agricultural pursuits, and a population density of at least 400 people per
km2. This official definition therefore combines administrative boundaries with constraints regarding population size,
population density, and major type of economic activity.

14One reason why the number of GHSL markets is so high is that for a pixel to be considered built up in the GHSL
layer, it must contain a man-made structure or at least part of a man-made structure. This is a more permissive
definition than that used by the UMD MODIS classification scheme and the MIX layer.
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smaller areas that tend to lie within the boundaries of officially designated metropolitan regions.

That is, daytime imagery can detect the smaller markets that lie within “super-markets”, for both

larger and smaller urban areas. We explore this feature in more detail below.

3.1.3 Land area

Column 2 of Table 1 reports the average land area for each market definition. Consider

nightlight-based markets, first. For a DN17.4, the average size ranges from 49km2 at a 1km

buffer to 98km2 for a distance buffer of 8km. These values fall, respectively, to 37km2 and 44km2

DN60 markets. For landcover-based markets, the average market sizes are much smaller. At a 1km

buffer, MODIS markets are 3km2, while the average size of GHSL and MIX markets are 1km2 and

2km2, respectively. The smaller sizes of landcover markets are a result both of the the granularity

of the daytime imagery and the exclusion of non-builtup land area (e.g., due to blooming), which

we explore in more detail in Section 4. At a 4km buffer, the sizes of MODIS, GHSL and MIX

landcover-based markets rise to 9km2, 11km2, and 12km2.

As a further means of differentiating among market definitions, it is useful to compare maximum

market sizes. The maximum area of MODIS markets at a 1km buffer is 1,471km2. By contrast,

the maximum sizes of nightlight-based markets at a 1km buffer across the DN17.4, DN33, and

DN60 thresholds are quite large: 9,977km2, 4,681km2, and 2,223km2, respectively. For context,

the tri-state land area of metropolitan New York City, which comprises many distinct clusters of

economic activity, is 11,642km2. It would thus appear that nightlight-based markets may be too

expansive in the land area that they comprise.

These comparisons highlight the tradeoff in forming markets from nightlight data. As one lowers

the DN threshold to detect smaller markets, the area of larger markets expands dramatically in size.

This tradeoff is not present in the construction of landcover-based markets. To see this further,

consider Figures A3 and A4, which plot the distribution of market area and average nightlight

values within market boundaries, respectively. Figure A3 reveals that landcover-based markets

are able to capture the full range of market sizes.15 Figure A4 illustrates that nightlight-based

markets, by construction, are left censored at their respective DN threshold. (Note that because of

buffering these markets do capture pixels below their respective thresholds, which is most apparent

at the 8km buffer.) By contrast, at all buffers, landcover-based markets capture pixels that span

the entire range of DNs. In particular, these markets capture areas in India with average DNs well

below 10.16 Landcover-based markets, because they are not subject to a blooming effect, span a

relatively wide range of land areas and intensities of economic activity (as captured by nightlight

intensity per unit of land in these markets).

15The mode of each distribution effectively reveals the minimum number of pixels used to define a market. The
right shift of the distribution of land area for nightlight-based markets is most pronounced at a buffer of 1km,
because at this buffer only the high-resolution daytime imagery is able to isolate small urban markets. While the
right shift of market-size distributions for the lower-resolution imagery is preserved at higher distance buffers, the
relative “peakiness” of the market-size distribution for landcover-based markets diminishes at higher buffers because
smaller market areas are joined into larger pixel clusters at these buffers.

16Recall from Figure A1 that a sizable fraction of India’s pixels have DNs below 10.
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3.1.4 Power Law of Market Area

Economists have long been interested in the size distribution of cities. The standard approach

in the literature is to gather population data using census counts for cities in a particular country

and to regress the log of city population on the log city population rank. Zipf’s Law holds if the

slope of the regression is -1. Testing for Zipf’s Law requires confronting the thorny issues of which

data sources to use, how to assess the quality of these sources and the accuracy of their implied

methods for designating administrative boundaries, and whether to truncate the distribution so

as to focus on the properties of the upper tail (Gabaix and Ioannides, 2004). The motivation for

the algorithmic approach developed by Rozenfeld et al. (2011) is to construct the extent of urban

markets without having to rely on seemingly arbitrary boundaries, and then to test for the presence

of Zipf’s Law using cities whose boundaries are justified based on economic fundamentals (i.e., the

proximity of their internal clusters of activity). In that paper, they show that the distribution of

city land areas approximately obeys Zipf’s Law for the US and the UK.17

We examine the emergence of a power law in the distribution of land areas for our market

definitions. Figure 6 plots the log of market rank minus 0.5, based on land area, against the log of

land area.18 The R2 of the regressions for landcover-based markets (which range from 0.90 to 0.98)

are higher than for nightlight-based markets (which range from 0.87 to 0.91). While we do not

find evidence of Zipf’s law (the slopes, for the most part, differ from 1), landcover-based markets

more closely follow the log-linear relationship dictated by a power law. That is, for landcover

markets the entire distribution of market size appears to be Pareto, whereas for nightlight markets

the size distribution appears to be Pareto only in the upper tail. The figure also reveals that for

nightlight-based markets the shape of the area-rank plot is roughly stable across buffers. This

suggests that increasing buffers simply increases the size of markets proportionally, such that the

rank-area relationship remains constant. In sharp contrast, the linear slopes of the area-rank

plots for landcover-based markets flatten out as the buffer size increases, indicating an increase

in dispersion. Figure 6 also reveals that for nightlight-based markets, the log-linear relationship

breaks down for the largest markets. For landcover-based markets, however, the curve that fits the

upper tail markets is close to linearity (as it is in the remainder of the distribution). For the 1km

buffered markets using the MODIS data source, the slope of the line is quite close to -1.

3.2 Validation

The statistics presented above are based solely on satellite data and summarize the extensive

margins of urban activity. A limitation of satellite-inferred markets is that they convey uncertain

information on the intensive margin of economic activity. This limitation may be less of a con-

cern with nightlight-based markets, since earlier work demonstrates a strong positive relationship

17They note that Zipf’s law in area can be rationalized by a model with Cobb-Douglas preferences for goods and
housing along with a proportional random growth process.

18Gabaix and Ibragimov (2011) explain that this adjustment improves finite-sample properties when estimating
power law exponents.
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between nightlight intensity and GDP, both in levels and in changes (e.g., Henderson et al. 2012).

Daytime satellite imagery, in contrast, provide unknown information on the intensity of economic

activity within markets. This is because in the landcover layers the pixels record only whether or

not a man-made impervious structure is present. One would need additional information, such as

the density and height of structures, to improve the prediction of economic activity based on the

underlying spectral signatures of those images.19

This subsection matches external datasets to the boundaries of markets to explore correlations

between market area and different measures of economic activity. Since we are confident in measur-

ing the land area of a market, the strength of these correlations provides an indication of whether

land area is also a reasonable proxy for the intensity of economic activity of cities. We examine cor-

relations between market area, population, nightlight intensity per unit of land, and three granular

measures of infrastructure provision—–roads, railway stations, and mobile phone towers.

3.2.1 Population

Our first approach to measure economic activity within our market boundaries is to overlay the

2011 India Census to obtain population counts for each market.20 We use the 2011 Census data

disaggregated at the towns and villages level. Analogous to Davis et al. (2018), we overlay our

markets with the Census towns and villages shape files to spatially match each town to the market

it lies inside or overlaps. The population of each town is then assigned to the market it overlaps.

If a town overlaps more than one market, we divide the population of the town by the number of

markets it overlaps, and assign this value to each market it overlaps. This ensures that we are not

double counting the population of towns that overlap more than one market.

The third column of each panel in Table 1 reports the total population contained in the markets

we detect. According to our estimates, the DN60 markets, which as shown above find the Census’

Class 1 towns, collectively contain 14.8% of India’s population and 47.6% of the urban population.

This is lower than the official Class 1 total since DN60 markets identify the core urban area of

cities (the DN60 markets are smaller, on average, than the average size of Class 1 towns). The

DN33 markets contain 23.4% and 75.3% of India’s total and urban populations, respectively. The

1km MODIS markets contain 29.0% of the total population, which rises to 29.9% and 33.6% for

the 4km and 8km markets. The 1km to 4km MODIS markets capture the vast majority of India’s

urban population, as shown in Table 1. The 8km MODIS markets appear to also capture some of

India’s rural population, which primarily resides in villages.

The left axis of Figure 7 reports the correlation between population and area for each market

definition at the 1km buffer. For each market definition, there is a strong positive correlation

between the area of the market and its total population. This validates that the larger markets we

19See Jean et al. (2016) for a recent application that predicts micro-spatial poverty headcounts for five countries
in Africa using nighttime and daytime imagery and Demographic and Health Surveys.

20An early version of this paper used WorldPop, a publicly available source of gridded population data. These data
contain measurement errors but are nevertheless useful because of their global coverage. These figures are available
in earlier versions of the paper and are available upon request.
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detect are not simply capturing pixels that appear built-up but contain no population. Instead,

larger markets contain more people, as we would expect. A second message of the graph is that the

population variance across smaller landcover-based markets can be large. This again reflects the fact

that distinct landcover based-markets can be found in both remote areas and large metropolises.

This variance decreases (but the positive correlation remains) at higher buffered 4km markets, as

illustrated in Figure A5. We also examine population density, defined as population divided by

land area, as a measure of economic activity on the right axis. The figure reveals a fairly constant

density across size for each market definition. However, the figure does show higher variation in

population density for smaller landcover markets for reasons just explained.

While the built-up pixels from daytime imagery undoubtedly contain man-made structures that

do not necessarily contain human settlements (e.g., roads, freeway overpasses, dams, and power

grids), the Census data serve as an important validation that the markets we identify do indeed

contain urban populations within their boundaries.

3.2.2 Nightlight Intensity

Previous work by Henderson et al. (2012) and Henderson et al. (2018) demonstrate that night-

light intensity is a good proxy for national or regional GDP. Inspired by this work, we compare

the average DN (nightlight intensity per unit of land) across markets. While the average DN for

nightlight-based markets would be affected by blooming because of its impact on the extent of

market boundaries, blooming is less of an issue for landcover-based markets. Since landcover-based

markets can accurately delineate the boundary of markets, we simply compute the average DN

within those boundaries. Figure 8 reports the relationship between the average DN and the land

area of a market. For each of the landcover-based markets (at a 1km buffer), larger markets are

associated with higher mean DNs. The change in DNs across market size is quite sharp. For

example, a MODIS market at the 10th percentile of the area distribution has a mean nightlight

intensity of 11.1 compared to a value of 26.7 at the 90th percentile. Henderson et al. (2012) report

an elasticity of 0.3 for GDP with respect to DN, which implies that there is a GDP difference of

42.0% between markets that span the interquartile range of land area.

The figure also reveals that landcover-based markets exhibit more variance in DN intensity at

smaller market sizes. For instance, for the smallest MODIS markets, we observe the full range of

mean DNs (as seen by examining the range of points spanned along the y-axis for given points just

to the right of the origin along the x-axis). This regularity is again a result of the fact that we

detect small-in-area landcover-based markets both in remote regions of the country, where economic

intensity is low (as indicated by low DNs), and within large urban centers, where DNs are high.

This suggests that when using DN intensity as a proxy for the economic activity of landcover-based

markets, researchers may want to account for the characteristics of the surrounding markets.

The correlations in Figure 8 thus suggest that the pooling of daytime and nightlight imagery

may be a powerful means of characterizing the combined extensive and intensive margins of urban

markets. While researchers interested in the economic geography of specific cities may want to bring
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information from external datasets, these correlations are promising for researchers interested in

studying urban market activity at national or global scales.

3.2.3 Proximity to Infrastructure

A third way to examine whether our markets capture economic activity is to merge them with

data containing the locations of key infrastructure markers. We examine proximity of markets

to paved roads, railway stations, and mobile phone towers. A caveat with this exercise is that

these (open-source) infrastructure data reflect the current location of infrastructure. The road and

railway station data are from OpenStreetMaps.21 Because the road data are for a time period

roughly five years after our satellite imagery was collected, there is measurement error in matching

markets to roads. Rail stations are less susceptible to this problem since they are built at much

lower frequencies. The tower locations share the same caveat as the roads data, but have the

advantage of being compiled by a different data source (https://opencellid.org).

We construct the distance between market centroids to the nearest infrastructure type for each

market definition in Table 2. For nightlight-based 1km markets, the fraction of DN17.4, DN33

and DN60 markets that lie within two kilometers of a paved road are 96.7%, 97.0% and 97.4%,

respectively. This fact should not be surprising since these markets are relatively large.22 The

more informative statistics are the fraction of landcover-based 1km markets that lie within two

kilometers of a paved road. For MODIS market, this fraction is 87.6% (the corresponding numbers

for GHSL and MIX markets are 89.4% and 90.8%). Since we believe that most urban markets would

be connected to a road of some kind, this regularity provides validation that the daytime satellite

imagery are capturing markets that contain economic activity. The table also reports proximity

to the nearest railway station (second panel) and mobile towers (third panel). We find that 25.2%

MODIS 1km markets are within 5km of a railway station, which rises to 79.0% for markets within

25km of a rail station. Proximity to mobile phone towers is also very high across markets: 87.2%

MODIS 1km markets are within 5km of a mobile tower.

We also expect a positive relationship between market size and its proximity to paved roads

(Storeygard, 2016). The left axis of Figure 9 plots this relationship, which illustrates the potential

power of daytime imagery over nighttime imagery. Landcover-based markets exhibit a sharp nega-

tive elasticity of market area with respect to distance to the nearest road. For instance, compared

to markets that are bisected by a road, a MODIS market that is 2km away from a road is about

50% smaller in land area. Such a large difference in size is not detectable using nightlight-based

markets: for markets based on one of the three higher DN thresholds, the elasticity of size with

respect to distance to a road is an imprecisely estimated zero.

21We use the OpenStreetMaps road classifications. The major roads (511x) include motorways, freeways, and
trunk, primary, secondary and tertiary roads. We additionally include two minor road classifications: smaller local
roads (5121) and roads in residential areas (5112). For the railway stations, we include large rail stations (5601) and
smaller, local rail stations or subway stations (5602).

22One caveat is that these statistics may may not reflect economic activity, given that roads are often lined by
street lights that would be captured in the nighttime data.
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Figure 9 repeats the plots with average nightlight intensity on the second y-axis. These illus-

trate that for landcover-based markets, light intensity, which as discussed above is a proxy for the

intensity of economic activity, falls sharply with distance to a paved road. For MODIS markets,

the average light value falls from 20 to 8 when one compares a market that lies on top of a road to

a market that is 2km from a road. As with land area, a decline in light intensity is not detectable

for nightlight-based markets between 0km-2km from a road.

As noted earlier, nightlight data have a relatively coarse spatial resolution compared to day-

time images (1km vs 30m). The lights data are also subject to blooming which introduces mea-

surement error in market size. Which of these two differences—spatial resolution or exposure to

blooming—explains why the road-distance elasticities are less sharply negative for nightlight-based

markets when compared to landcover-based markets? We examine this question in the MODIS

data by changing the minimum cluster threshold from 1 pixel to 4 pixels, or roughly 1km grid

cells, in order to match the minimum market area of nightlight-based markets. We then rebuild

the landcover-based markets using a 1km buffer. The procedure creates 3161 markets (compared

to 13,401 using a minimum of one MODIS pixels at 1km buffer). We then compare the elasticity of

market area and average DN value to distance from the closest road in Appendix Figure A6. The

MODIS markets that impose a 1km minimum area still display a strong negative elasticity with

respect to road distance for both outcomes. With landcover-based markets and nightlight-based

markets now approximately equal in spatial resolution, the more negative road-distance elasticity

for the former relative to the latter would appear to be the result of blooming in nightlights and

the measurement error it introduces when trying to detect market size.

4 Markets within Super-Markets

The literature has long recognized that actual structure of cities does not easily map into

static spatial models with a featureless geography. Instead, urban sprawl occurs unevenly at city

boundaries (Duranton and Puga, 2014). As cities expand, there often remains undeveloped land

within city limits. This may be due to physical constraints imposed by geography (Harari 2017),

leapfrogging that occurs from dynamic city growth (Fujita 1982), municipalities wanting to control

how land is utilized, or, particularly relevant to India, disputes over land titles and coordination

failures across government agencies (Roy 2009). These features have led to a large literature on the

polycentric structure of cities (Duranton and Puga, 2015). We next explore this polycentricity.

4.1 Properties of Super-Markets

Our market definitions have a recursive property that nest smaller buffered markets within larger

buffered “super-markets”. This feature allows us to study the distribution of market sizes within

super-markets. Our results suggest a potential use of high-resolution daytime satellite imagery to

evaluate policies that impact the intra-regional distribution of markets within these larger urban

forms. The data’s granularity allows us to observe impacts both within markets (e.g., markets
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or neighborhoods within a larger super-market), and at high temporal frequencies (important for

policymakers loathe to wait years to evaluate the returns to public infrastructure investments).

To see that landcover-based markets have the potential to uncover local-level responses to

shocks that would otherwise appear hidden by the coarseness and granularity of nightlight-based

markets, consider Figure 10, which maps MODIS landcover-based markets at different buffers

for New Delhi. The outer ring is the official administrative boundary of New Delhi. The light

gray polygon represents the 73 8km buffered markets that lie within the administrative boundary.

These 8km super-markets further contain smaller 4km, 2km and 1km markets. Within the official

boundary, we detect 239, 477 and 602 markets buffered at 4km, 2km, and 1km.

Turning to the country as a whole, Table 3 reports the average number of i = {1, 2, 4}km
sub-markets that are contained within their larger super-market buffer j = {2, 4, 8}km for all

markets in India. While the megacity of New Delhi unsurprisingly stands out for its large number

of sub-markets, the presence of these markets is a general phenomenon detectable via landcover-

based market definitions. For example, an average of 1.8 1km buffered MODIS markets lie within

super-markets defined at a 4km buffer, and an average of 3.8 1km buffered markets lie within

8km super-markets. The second column within each panel of Table 3 reports the elasticity of the

number of markets to the size of the super-market. The elasticity of the number of 1km MODIS

markets with respect to the size of 2km markets is 0.16and increases to 0.30and 0.36for 4km and

8km super-markets, respectively. These patterns suggests that there is substantial scope for using

landcover-based markets to evaluate theories of how polycentric cities form and grow. Markets

defined according to administrative boundaries would likely be poorly suited for this purpose as

official boundary definitions may substantially lag urban structure. In rapidly urbanizing emerging

economies, these lags would complicate mapping the evolution of urban form. With landcover-based

markets, such maps could be easily constructed at an annual frequency.

The size of markets within super-markets is highly unequal. Table 4 reports the distribution

of 1km market size shares within the super-markets for MODIS. For each 1 km market, we rank

them within their respective super-market and compute their share of built-up area. The top panel

reports the distribution of shares within 2km super-markets; the middle and bottom panels reports

statistics for 4km and 8km super-markets, respectively. The table reveals that for super-markets

that contain two 1km markets, the larger market accounts for about 70% of the built-up area. For

super-markets that contain 6 or more markets, the largest market contains 51% of the built-up area

of 2km super-markets, and 44% and 36% of the built-up area within 4km and 8km markets. The

second largest market accounts for 11% of the total built-up area.

While super-markets contain many distinct markets, they also contain vast tracts of unbuilt

land. To demonstrate this regularity in nightlight-based and MODIS-based markets, we compute

the fraction of “not built up” pixels that lie within the boundary based on the underlying MODIS

pixel-level data. For MIX and GHSL markets, we use their respective pixel-level data to compute

this fraction. Figure 5 plots the undeveloped land fraction against the size of markets, for each

threshold and buffer. For DN17.4 and DN33 markets, the fraction of undeveloped land is high.
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The fraction is much lower for DN60 markets, which is intuitive since these markets capture the

urban core of India’s largest cities. Additionally, we do not observe variation in undeveloped land

across buffer sizes for nightlight-based markets. The bottom row describes undeveloped land in

landcover-based markets. The fraction of undeveloped land expands rapidly with the area of 8km

markets: for the largest markets, nearly 90% of the area contains pixels that are not built up.

As the area of 4km markets increases, the fraction levels off around 50%. In contrast, as the size

of 1km and 2km markets increases, the fraction of undeveloped land falls. This is intuitive; the

procedure described in Appendix A builds small bridges for these markets. For large markets, these

land bridges (which are undeveloped tracts of land) reflect a smaller share of area. On average,

the fraction of undeveloped land in the MODIS markets buffered at 1km, 2km, 4km and 8km is

1,994.9, 2,457.6, 3,364.6 and 4,104.1, respectively.

4.2 Application to Market Access

How might we deploy data on landcover-based markets and super-markets? One application

would be to detect the consequences of infrastructure developments. Governments across the

developing world are making large-scale investments in improving internal transport connectivity,

and a growing literature studies the economic impacts of transportation (see, e.g, Redding and

Turner 2015). Ghani et al. (2014), for instance, use across-district variation in the distance to the

India’s Golden Quadrilateral highways and finds positive impacts on allocative efficiency within

Indian manufacturing. Asher and Novosad (forthcoming) study India’s $40 billion expenditures

on rural roads using a discontinuity research design, and do not find substantial effects on rural

household welfare. Both analyses draw upon administrative datasets to evaluate impacts of the

road. Satellite imagery offers the potential to complement these studies by using remotely sensed

data and by analyzing impacts on markets that lie within, for instance, larger buffered peri-urban

areas.

In the spirit of such analysis, we examine the average distances to other markets within given

super-markets, which are reported in third column of each panel in Table 3. Consider MODIS

markets. Within a 8km buffer, the average distance between 1km sub-markets is 39.0 kilometers,

indicating that the typical 8km buffered super-market is an economic region unto itself that would

utilize highways and railways in a manner that we may typically associate with inter-urban trans-

port. The average distance between 1km sub-markets within a 4km buffer is 4.9 kilometers, which

indicates that at a 4km buffer we are dealing with entities that more closely represent collections

of interconnected neighborhoods. The contrast in sub-market distances between 4km and 8km

buffered super-markets illustrates the different market concepts that these designations represent.

One might reasonably conclude that 4km buffered markets approximately constitute commuting

zones, while 8km buffered markets approximately constitute economic regions that support dense

internal trade in goods and services. Differing urban market definitions may then be useful for

evaluating the consequences of reduced travel time on different aspects of economic integration, for

goods markets at higher distance buffers and for local labor markets at lower distance buffers.
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To investigate this potential, we follow Donaldson and Hornbeck (2016) by calculating measures

of market access for the MODIS markets. For each market i, we calculate its market access as

MAi =
∑

j∈Sik,j 6=i

areaj

distanceθij
+

∑
j /∈Sik,j 6=i

areaj

distanceθij
(1)

where areaj is the land area of market j, distanceij is the great circle distance from market i to

market j, and θ is a distance elasticity that we set to 1.4 (Redding and Turner, 2015). We exclude

the own market in the summation, as Donaldson and Hornbeck (2016) do in their analysis. We are

particularly interested in the contribution to market i’s term by the j markets that lie within i’s

super-market Sik, buffered at k = {2, 4, 8}km. Figure 11 reports the contribution of the within-

super-market component, across buffers and daytime imagery sources. We also report the results

that obtain for other distance elasticities by setting θ = 1 and θ = 1.8.

In the baseline case of θ = 1.4, the results indicate that, on average, 2.4%, 6.3% and 21.2% of

a 1km MODIS market’s access comes from other markets within the same super-market buffer of

2km, 4km, and 8km, respectively. At the higher elasticity of θ = 1.8, the corresponding percentages

increase to 5.4%, 13.6% and 35.8%. Whereas previous literature largely conceives of infrastructure

development as integrating our equivalent of super-markets, examining landcover-based markets

reveals that a substantial share of a location’s market access is intra-urban in nature. With data on

combined infrastructure investments in inter-state highways, such as India’s Golden Quadrilateral,

and in intra-urban investments in access roads, road widening, and related improvements, we are

now in a position to provide a much higher resolution characterization of how reduced travel times

and trade costs shape the spatial distribution of economic activity.

5 Conclusion

Economists have been utilizing satellite imagery for over a decade. Notable applications have

elucidated the dimensions of urban sprawl and the connection between GDP growth and the in-

tensity of light emitted at night. In the last several years, the landscape, so to speak, has begun

to change rapidly. Dramatic reductions in storage costs have made vast troves of high-resolution

daytime satellite imagery widely available, while advances in machine learning are making it possi-

ble to deploy imagery to detect economic outcomes at previously unimaginable spatial resolutions.

These advances are likely to be particularly valuable for analysis in developing countries, where

geographically disaggregated administrative data are available infrequently and inconsistently.

Our results indicate the value of combining different types of satellite imagery in economic anal-

ysis. Daytime imagery is well suited for defining the spatial expanse of markets, the polycentricity

of urban areas, and the gaps in urban development that exist even within densely populated cities.

Nighttime imagery, in turn, is well suited for measuring the intensive margin of economic activity

within urban ares. The creation of new methods for integrating alternative sources of satellite

imagery is a promising avenue for research.
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We provide just one of many possible applications of high-resolution satellite imagery: to define

markets in a manner that allows economists to shrink the geographic unit of analysis for virtually

any country in the world from the rough equivalent of a U.S. metropolitan area to the rough equiv-

alent of a U.S. neighborhood. With existing analytical tools, these data will make it possible to

evaluate the potentially highly spatially heterogeneous economic impacts of investments in infras-

tructure and other policy interventions. With the continents of Asia and Africa in the midst of a

multi-trillion dollar infrastructure investments, the arrival of such capabilities is well timed.

Although satellite imagery greatly expands the supply of data amenable to economic analysis,

their interpretation is, at this stage, still constrained by the supply of conventionally measured

economic quantities, which serve as ground truth in machine learning. Demand will be particularly

high for methods to validate satellite-based measures of economic activity using additional sources of

micro data, such as geocoded mobile phone data, economic censuses, and crowdsourced information.

We view this as an important area for future work.
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Figures and Tables

Figure 1: Delhi, Alternative Market Definitions

a. MODIS (1Km) b. MODIS (2Km) c. MODIS (4Km) d. MODIS (8Km)

e. DN>60  (1Km) f. DN>60  (2Km) g. DN>60  (4Km) h. DN>60  (8Km)

i. DN>33  (1Km) j. DN>33 (2Km) k. DN>33  (4Km) l. DN>33  (8Km)

m. DN>17.4  (1Km) n. DN>17.4 (2Km) o. DN>17.4  (4Km) p. DN>17.4  (8Km)

q. DN>10  (1Km) r. DN>10 (2Km) s. DN>10  (4Km) t. DN>10  (8Km)

The figure displays markets around New Delhi for alternative distance buffers. Row 1 displays landcover-based markets using

the MODIS layer. Row 2-5 displays nightlight-based markets.



Figure 2: Ahmedabad, Alternative Market Definitions

a. MODIS (1Km) b. MODIS (2Km) c. MODIS (4Km) d. MODIS (8Km)

e. DN>60  (1Km) f. DN>60  (2Km) g. DN>60  (4Km) h. DN>60  (8Km)

i. DN>33  (1Km) j. DN>33 (2Km) k. DN>33  (4Km) l. DN>33  (8Km)

m. DN>17.4  (1Km) n. DN>17.4 (2Km) o. DN>17.4  (4Km) p. DN>17.4  (8Km)

q. DN>10  (1Km) r. DN>10 (2Km) s. DN>10  (4Km) t. DN>10  (8Km)

The figure displays markets around Ahmedabad for alternative distance buffers. Row 1 displays landcover-based markets

using the MODIS layer. Row 2-5 displays nightlight-based markets.



Figure 3: Ajmer, Alternative Market Definitions

a. MODIS (1Km) b. MODIS (2Km) c. MODIS (4Km) d. MODIS (8Km)

e. DN>60  (1Km) f. DN>60  (2Km) g. DN>60  (4Km) h. DN>60  (8Km)

i. DN>33  (1Km) j. DN>33 (2Km) k. DN>33  (4Km) l. DN>33  (8Km)

m. DN>17.4  (1Km) n. DN>17.4 (2Km) o. DN>17.4  (4Km) p. DN>17.4  (8Km)

q. DN>10  (1Km) r. DN>10 (2Km) s. DN>10  (4Km) t. DN>10  (8Km)

The figure displays markets around Ajmer for alternative distance buffers. Row 1 displays landcover-based markets using the

MODIS layer. Row 2-5 displays nightlight-based markets.



Figure 4: Normalized Disconnection Index
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Figure reports the normalized disconnection index by market definition. Bandwidth = 0.10.

Figure 5: Undeveloped Land
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Figure reports the fraction of undeveloped land by market definition.



Figure 6: Land Area-Rank Relationship
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Figure 7: Population Density versus Land Area
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Markets in this figure are buffered at 1km. Population data from 2011 Census.



Figure 8: Average DN Intensity versus Land Area
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Figure 9: Land Area, Average DN and Proximity to Roads
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Figure 10: MODIS Landcover-Based Markets within New Delhi 8km Buffer

MODIS Markets in Delhi Metropolitan Area
Administrative Boundaries from 2011 Census of India

MODIS 1km
MODIS 2km
MODIS 4km
MODIS 8km
Delhi Metro Area 

The figure displays {1, 2, 4}km markets that lie with the New Delhi 8km buffer. The grey polygon is the

8km buffer. The pink polygons are the 1km markets.



Figure 11: Share of Market Access Accounted for by Other Sub-markets within Super-Market
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Table 1: Market Statistics

Number
Avg Area 

(km2)
Population 

Share

Urban 
Population 

Share Number
Avg Area 

(km2)
Population 

Share

Urban 
Population 

Share
DN17.4 MODIS

1km 3,275 48.6 32.6% 104.6% 1km 13,401 2.8 29.0% 93.0%
2km 3,275 50.7 32.6% 104.6% 2km 11,234 3.9 29.1% 93.5%
4km 3,146 59.6 32.7% 105.0% 4km 7,562 8.8 29.9% 96.2%
8km 2,752 97.8 33.5% 107.6% 8km 3,495 48.2 33.6% 108.0%

DN33 GHSL
1km 1,669 39.0 23.4% 75.3% 1km 26,202 1.4 33.3% 106.9%
2km 1,640 39.8 23.4% 75.3% 2km 18,753 2.9 33.5% 107.6%
4km 1,544 42.9 23.5% 75.5% 4km 10,371 10.9 34.8% 111.8%
8km 1,322 55.4 23.8% 76.5% 8km 3,861 77.5 39.4% 126.5%

DN60 MIX
1km 469 37.0 14.8% 47.6% 1km 17,304 1.9 27.1% 87.1%
2km 465 37.3 14.8% 47.6% 2km 11,816 4.3 27.3% 87.7%
4km 455 38.3 14.8% 47.6% 4km 7,225 12.1 28.4% 91.1%
8km 421 43.7 14.9% 47.7% 8km 3,417 54.5 31.4% 100.7%

Notes: Table reports the number and average area (in square kilometers) of markets and share of total India 
population, by definition. Total 2011 India population is 1,210,854,977. Uurban population, as defined by Census 
"Towns", is 377,106,125.



Table 2: Market Distances to Nearest Infrastructure

Market 1km 2km 5km 10km 25km 50km
DN17.4 92% 97% 98% 99% 99% 99%
DN33 93% 97% 99% 99% 99% 99%
DN60 95% 97% 99% 99% 99% 99%
MODIS 71% 88% 97% 100% 100% 100%
GHSL 81% 89% 97% 99% 99% 99%
MIX 81% 91% 98% 99% 99% 99%

1km 2km 5km 10km 25km 50km
DN17.4 12% 29% 43% 55% 83% 97%
DN33 19% 43% 61% 70% 89% 99%
DN60 22% 53% 79% 88% 97% 99%
MODIS 4% 12% 25% 44% 79% 96%
GHSL 5% 9% 22% 45% 82% 97%
MIX 6% 11% 27% 50% 84% 97%

1km 2km 5km 10km 25km 50km
DN17.4 60% 62% 64% 68% 70% 70%
DN33 97% 98% 99% 100% 100% 100%
DN60 99% 99% 100% 100% 100% 100%
MODIS 56% 69% 87% 97% 100% 100%
GHSL 55% 68% 87% 97% 100% 100%
MIX 60% 72% 90% 98% 100% 100%

Road

Rail Station

Mobile Phone Towers

Notes: Table reports the fraction of markets in which the centroid lies within a particular 
distance of the noted infrastucture type.



Table 3: Markets within Super-Markets

Market Number Elasticity Distance Number Elasticity Distance Number Elasticity Distance
MODIS

1km 1.2 0.16% 1.8 1.8 0.30% 4.9 3.8 0.36% 39.0
2km 1.5 0.22% 3.9 3.2 0.32% 37.6
4km 2.2 0.24% 28.7

GHSL
1km 1.4 0.19% 5.1 2.5 0.28% 20.8 6.8 0.32% 75.4
2km 1.8 0.20% 13.5 4.9 0.28% 66.3
4km 2.7 0.22% 45.0

MIX
1km 1.5 0.17% 3.9 2.4 0.25% 11.1 5.1 0.30% 31.6
2km 1.6 0.17% 7.2 3.5 0.25% 27.9
4km 2.1 0.18% 20.0

2km Super-Market 4km Super-Market 8km Super-Market

Notes: Table reports statistics for the 2km, 4km and 8km super-markets. Columns 1, 4 and 7 are the average 
number of sub-markets within the super-market. Column 2, 5 and 8 is the average distance between sub-
markets. Column 3, 6 and 9 is the elasticity of the number of sub-markets to the size of the super-market (e.g., a 
one percent increase in the size of the super-market increases the number of markets by the number reported in 
the cell). Blank cells indicate that the statistic is not relevant (e.g., a blank cell for the number of 2 km markets 
within the 2 or 4 km super-market).



Table 4: Distribution of Market Size within Super-Markets

Rank 1 2 3 4 5 6+
1 100% 73% 67% 68% 63% 70%
2 27% 22% 18% 15% 9%
3 12% 9% 10% 6%
4 5% 8% 5%
5 5% 3%

6+ 7%

Rank 1 2 3 4 5 6+
1 100% 71% 62% 56% 52% 43%
2 29% 24% 21% 20% 11%
3 14% 14% 13% 7%
4 9% 9% 5%
5 6% 4%

6+ 29%

Rank 1 2 3 4 5 6+
1 100% 71% 62% 56% 52% 43%
2 29% 24% 21% 20% 11%
3 14% 14% 13% 7%
4 9% 9% 5%
5 6% 4%

6+ 29%
Notes: Table reports the distribution of area share of MODIS 1km markets within 
2km, 4km and 8km super-markets. For example, in the first panel, for 2km super-
markets that contain three MODIS 1km markets, the largest market accounts for 67% 
of the markets' area, the second largest market for 22%, and the smallest market 
accounts for 12% of area. Numbers may not sum to one because of rounding. 

Number of Markets

Number of Markets
2 km Super-Market

4km Super-Market
Number of Markets

8km Super-Market



Online Appendix Figures and Tables

Figure A1: Density of Nighttime Lights for 1km Pixels, All India
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Figure A2: Combining Polygons to Form Markets
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Figure A3: Distribution of Land Area
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Figure A4: Distribution of Minimum Nightlight DN Values
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Figure A5: Population Density versus Land Area, 4km Buffer

.01k

.1k
1k
10k
100k
1m
10m

.01k

.1k
1k
10k
100k
1m
10m

.01k
.1k
1k

10k
100k

1m
10m

.01k
.1k
1k

10k
100k

1m
10m

.1 1 10 100 1000 .1 1 10 100 1000 .1 1 10 100 1000

DN17.4 Markets DN33 Markets DN60 Markets

MODIS Markets GHSL Markets MIX Markets

Population Population Density

Po
pu

la
tio

n 
De

ns
ity

Lo
g 

Po
pu

la
tio

n

Log Area (sq km)

Markets in this figure are buffered at 4km. Population data from 2011 Census.

Figure A6: Proximity to Roads, Coarser MODIS Markets (1km minimum area)
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Table A1: Administrative Areas in India, 2011 Census

Number
Total 

Population
Population 

Share
Mean 

Population
Mean Area 

(km2)
Villages 640,932 833,748,852 68.9% 1,301 4.8
Towns 6,171 377,106,125 31.1% 61,109 16.6

Class 1 (>100k) 468 264,745,519 21.9% 565,696 97.6
Class 2 (50k-100k) 474 32,179,677 2.7% 67,890 20.4
Class 3 (20k-50k) 1,373 41,833,295 3.5% 30,469 14.4
Class 4 (10k-20k) 1,683 24,012,860 2.0% 14,268 9.3
Class 5 (5k-10k) 1,749 12,656,749 1.0% 7,237 5.5
Class 6 (<5k) 424 1,678,025 0.1% 3,958 4.1

Source: Census 2011



Figure A7: MODIS Landcover-Based Markets within Ahmedabad 8km Buffer

MODIS Markets in Ahmedabad Metropolitan Area
Administrative Boundaries from 2011 Census of India
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MODIS 8km
Ahmedabad UA

The figure displays {1, 2, 4}km markets that lie with the New Delhi 8km buffer. The grey polygon is the

8km buffer. The pink polygons are the 1km markets.



Figure A8: MODIS Landcover-Based Markets within Ajmer 8km Buffer

MODIS Markets in Ajmer Metropolitan Area
Administrative Boundaries from 2011 Census of India
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The figure displays {1, 2, 4}km markets that lie with the New Delhi 8km buffer. The grey polygon is the

8km buffer. The pink polygons are the 1km markets.



Appendix A Aggregating Pixels to Markets

To combine clusters of highly lit pixels, we use the Aggregate Polygons function in ArcGis. This

function combines polygons within a specified buffer to form larger polygons. Appendix Figure A2

illustrates the tool with lit pixels, focusing the border between Rajasthan and Harayana, two

states in India. The gray areas illustrate polygons that are contiguous sets of pixels with a DN that

exceeds 10. Notice that there are many unconnected polygons. Merging two polygons forms a larger

polygon that contains the land area of the original two polygons plus a land bridge that connects

them, whose dimension is determined by the algorithm. The larger is the distance buffer, the larger

will be the land bridges that connect polygons. Figure A2a illustrates the results of implementing

a 1km buffer; Figures A2b through A2d implement 2km, 4km, and 8km buffers, respectively. For

a sub-area within the sample geographic region, Figure A2e illustrates the resulting markets when

we impose the 8km buffer. Notice that moving from the smallest to the largest buffer collapses the

number of markets in this area from more than 20 to just 3.

Appendix B Construction of the MIX Layer

This online appendix provides an overview of the builtup classification methodology developed

by Goldblatt et al. (2018) for India, Mexico, and the U.S. The methodology uses DMSP-OLS

nightlight data as quasi-ground truth to train a classifier for builtup land cover using Landsat

8 imagery. The basic idea is that since lights indicate the presence of human activity, we can

train a classifier that uses the spectral signature of daytime images to predict the presence of

humans, as indicated by lights. The challenge of using nightlights as a source of ground truth is

the blooming of lights. Goldblatt et al. (2018) correct for this blooming as follows. Using their

approach and imagery for 2013, we calculate the per-band median values from a standard top-

of-atmosphere calibration of raw Landsat 8 scenes. These per-pixel band values are then used to

construct commonly used indices to detect vegetation (the normalized difference vegetation index,

NDVI), water (the normalized difference water index, NDWI), physical structures (the normalized

difference built index, NDBI), and other relevant features. We use these indexes to mask out pixels

that appear with high DN from the DMSP-OLS data; the assumption is that these pixels, because

they are composed mostly or entirely of water or vegetation, do not contain built up activity and

appear unlit only because of blooming. We then proceed with the classification.

The steps of the methodology are as follows:

1. Designate a pixel as builtup if its DN exceeds a threshold. This threshold is set at the 95th

percentile of pixels in the training set, which is 17.4 across all India but ranges is allowed to

vary across hex-cells (discussed below).

2. Re-classify a builtup pixel as not builtup if the Landsat index bands (NDVI, NDWI, NDBI)

indicate presence of water, dense vegetation or not built-up activity (as noted above, this

corrects for the blooming).
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3. Use supervised machine learning to train a classifier (a random forest with 20 trees) with the

adjusted builtup/not builtup binary pixels from steps 1 and 2, and the Landsat 8 median-band

values and index values as inputs.

4. Use the classifier to construct the posterior probability that a pixel is builtup, and then create

binary values of builtup/not builtup status based on this probability (discussed below).

5. Evaluate the accuracy of the classifier by comparing the predicted builtup status of a pixel to

a ground-truth dataset that has 85,000 human-labeled pixels that were classified as builtup

or not builtup.

In (3), we allow for variation in how the reflectance of India’s heterogeneous land cover is associated

with urbanization by partitioning the country into an equal-area hexagonal grid with hex-cells that

have center-to-center distances of 1-decimal degree, and then treat each hex-cell as an independent

unit of analysis. (We also train classifiers for hex-cells that have distances of 4- or 8-decimal

degrees, but find that the 1-decimal degree hex-cell is most accurate.) After training the classifier

separately within each hex-cell, we mosaic the resulting local classifications to map predicted builtup

land cover for the entire country. In (4), we designate a pixel as builtup if its posterior probability

exceeds a given threshold that is determined by the Otsu algorithm (Otsu, 1979), which is a

nonparametric and unsupervised method for automatic threshold selection originally developed for

picture segmentation. The method uses a discriminant criterion to identify an optimal threshold

that maximizes the between-class variance. We choose the threshold to maximize the variance

between builtup and not-builtup classes. In (5), which compares our predicted values of builtup

status with human-labeled examples, we achieve an overall accuracy rate is 84%.1 Note that this

accuracy rate exceeds the MODIS classification accuracy by 2.5% in India; see Table 6 of Goldblatt

et al. (2018).

1The accuracy rate is defined as the sum of true positives and true negatives divided by the total sample.
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