The Microbiology of Recreational and
 Environmental Waters

1 Introduction
The recreational and environmental use of water is increasing in terms of both the nature of the activities being undertaken, and the number of participants becoming involved. Recreational and environmental waters include marine and fresh waters, as well as bathing,
spa and leisure pool waters which are frequently indoors and which often exhibit high spa and leisure pool waters which are frequently indoors and which often exhibit high bathing densities. Whilst some activities involve little direct contact with the water, most involve some degree of immersion and possible ingestion of water.
The relationship between illness and contact with, or ingestion of, water that contains microorganisms has been investigated many times, and various guidelines involving indicato organisms and bathing densities have been reported. Although plausible associations between recreational exposure and minor diseases have been reported, it is difficult to correlate these illnesses to the microbiological quality of the water

Water, as rain, typically contains very few micro-organisms. However, it acquires a range of micro-organisms and chemicals whilst passing across, or through, terrain before eventually forming streams or lakes. Diffuse and spot (ie localised) sources of pollution are responsib for the contamination of water. Micro-organisms also gain access to water as a result of numbers of viable, pathogenic micro-organisms into the water, the possibility of illness arising as a result of recreational activity should be considered.

It has been reported ${ }^{(1)}$ that risks to public health from sea bathing are minimal, except where water is aesthetically unacceptable. The European Union (EU) Bathing Water Directive ${ }^{(2)}$ includes mandatory and guideline microbiological levels. The standards apply to waters where bathing is not prohibited and is traditionally practised by large numbers of bathers The directive is currently under review and is further discussed in section 3. Regular monitoring of recreational water is important to establish baseline data of water quality, and such monitoring should be undertaken at sites where recreational activity is regularly practised. This should enable water quality data to be collated over a period of time and permit some degree of risk assessment to be undertaken in relation to the types of activity being performed. In addition, it may (i) ine mprove water quality; (ii) quantify o demonstrate the efficacy of that action towards the improvement of the water qualin

Recent epidemiological studies ${ }^{(3)}$ relating to coastal sites in Britain have not shown(4)
Recent epidemiological studies
correlation between serious illnesses and bathing, but have suggested an asscrintion between correation between serious illnesses and bathing, but have suggested an asscrintion between between faecal indicator organisms in the water and some subsequent Iniror illnesses.
In this booklet, attention has been directed towards the quality of somming pool,
hydrotherapy pool and whirl pool waters. In addition, the methods and quality assurance described in this booklet are intended to apply to surface ant pool waters. This booket outlines the principles of microbiological examination \& f Icreational and environmental waters, and describes techniques for sampling and exam ination to ensure proficiency of laboratory practice and comparability of results.
some of the methods given in this booket are tentative and, where laboratories adopt these procedures, comparison should be made with existing methods to ensure that the recovery of specific micro-organisms is satisfactorily demonstrated. quality of inputs from many sources, including sewage effluents, birds, animals and industrial and agricultural discharges. Micro-organisms, used as indicators of faecal pollution, may riginate from sewage, animal faeces or industrial processes, and include coliform organisms, aecal coliform organisms (Escherichia coli), enterococci/faecal streptococci, sulphite-reducing clostridia and bacteriophages.

Micro-organisms in recreational and environmental waters that are potentially pathogenic to humans are, in many cases, spread by direct person-to-person transmission. These pathogens belong to many classes of micro-organisms and those most likely to be important in the United Kingdom (UK) are mentioned below. Although gastrointestinal disease is the most common disease encountered, skin, eye and neurological symptoms have also been related orecreational and environmental water contact

Bacterial pathogens causing mainly gastrointestinal disease include Shigella species, Salmonella species, Campylobacter species, and Escherichia coli (for example, Escherichia coli O157:H7). eptospira species are present in the environment and humans become infected through cuts to the skin or via mucous membranes. Protozoa that cause gastrointestinal disease include Cryptosporidium parvum and Giardia duodenalis. Other parasites include amoebae such as Acanthamoeba species, Hartmanella vermiformis and Naegleria fowleri. Gastrointestina ymptoms are also caused by small round structured viruses (SRSV), astroviruses, caliciviruses, denovirus 40/41 and rotaviruses. The SRSV appear to be the most important cause of vira gastrointestinal disease associated with recreational water contact. Of the other human enteric viruses found in surface waters used for recreation, hepatitis A causes disease of the to specific symptoms.

Properly managed and disinfected swimming pool waters, spa waters and other pool waters should not contain viable micro-organisms. However, Cryptosporidium and Giardia are of oncern since they are more resistant to disinfection than other micro-organisms referred to above. In addition, Pseudomonas aeruginosa has been associated with eye, skin and ear infections after contact with spa pool waters or "hot-tub" waters. Also, Mycobacterium marinum has been associated with skin infections and pool water contact, and adenovirus conjunctivitis has been linked with swimming pool water. The abrasive non-slip flooring that often surrounds pool waters has been associated with Trichophyton (athletes' foot) and the wart virus (verruca).

2.2 Epidemiological studie

hree reviews ${ }^{44,5,6]}$ report a range of epidemiological studies and their different approaches towards identifying and quantifying risks. After contact with poor microbiological quality marine and fresh water, it has been shown that gastrointestinal, eye and respiratory symptoms are likely to occur. The most common, significant indicator organisms detected are enterococci, although no correlation has been shown with symptoms experienced.
nvestigations associated with recreational and environmental waters have been revie:Ned where it was noted that Leptospira and the amoeba, Naegleria, had caused illnesses as a result of contact with surface water. In addition, Pseudomonas aeruginosa had caused niections as a result of contact with pool water, and Cryptosporidium parvum and Legionell a Reve caused illnesses after contact with swimming pool water. SRSV caused diarrhoee ald doomiting after ontact with river water ${ }^{(10)}$.

3 Current standards for recreational an environmental waters

Current legislation for environmental waters within the UK is derived from various EU Directives. These directives set standards for specific uses of wetg, rather than general environmental purposes, and include standards for physicari, memical and microbiological parameters.

Monitoring compliance with these directives is the responsibility of a number of regulatory authorities within the UK. The Environment Agency (EA), the Scottish Environment Protection Agency (SEPA) and the Department of the Environment (Northern Ireland) are the respective authorities within England and Wales, Scotland and Northern Ireland.

The Bathing Water Directive ${ }^{(2)}$ was enacted in England and Wales as The Bathing Waters (Classification) Regulations 1991 $1^{(11)}$. The directive includes five microbiological parameters, for which standards are prescribed. These are shown in Table 3.1. In addition, a defined bathing season is prescribed for sampling and analysis undertaken in individual countries at designated bathing sites

Parameter	Guide value	Imperative value
Total coliform organisms	$500 / 100 \mathrm{ml}$	$10000 / 100 \mathrm{ml}$
Faecal coliform organisms	$100 / 100 \mathrm{ml}$	$2000 / 100 \mathrm{ml}$
Enterococci	$100 / 100 \mathrm{ml}$	-
Salmonella	-	$0 /$ litre
Enteroviruses	-	$0 / 10$ litres

Other EU Directives that set microbiological standards for environmental waters include the Surface Water Abstraction Directive ${ }^{(12)}$ and the Shellfish Water Directive ${ }^{(13)}$.
swimming pool waters and spa pool waters, including whirlpool waters and hydrotherapy poolmaters, are not covered by the Bathing Water Directive ${ }^{(2)}$. In addition, there are no eyisarive or regulatory standards in the UK for these types of water. Guidance on these coters is given in the Pool Water Guide ${ }^{(14)}$. Table 3.2 tabulates microbiological levels which are ased on the principle that most waters of this type have been subjected to some form of reatment and disinfection. A properly maintained pool water with the correct treatment egime, pH and level of disinfectant should satisfy these microbiological levels. Further guidance on water quality and sampling is given in section 6.2.

Table 3.2 Microbiological levels for swimming pool waters and spa pool waters ${ }^{\text {110 }}$

Parameter	Recommended value*
Coliform organisms	$0 / 100 \mathrm{ml}$
Faecal coliform organisms	$0 / 100 \mathrm{ml}$
Total viable count $\left(37^{\circ} \mathrm{C}\right)^{* *}$	$0-10 \mathrm{cfuml}^{-1}$
Total viable count $\left(22^{\circ} \mathrm{C}\right)$	$0-100 \mathrm{cfuml}^{-1}$
Pseudomonas aeruginosa	$0 / 100 \mathrm{ml}$

* cfum ${ }^{1-1}=$ colony forming units per millilitre

Pool waters with a heavy bathing load may have colony counts in the range $10-100$ cfum $^{-1}$. Values above 100 cfuml $^{-1}$ would indicate that operating conditions are unsatisfactory.

4 Quality control and quality assurance

4.1 Laboratory safety

A microbiology laboratory should adopt levels of safety and quality appropriate to the analysis required. In the UK, the Health and Safety at Work etc Act (1974) and legislation under the Act, for example The Control of Substances Hazardous to Health Regulations 1999 and The Management of Health and Safety at Work Regulations 1992, place specific dutie on management with regard to safety in laboratories. A laboratory should have a policy statement on health and safety matters, and provide specific laboratory safety manuals. In addition, any specific hazards associated with equipment, or particular methods, should be highlighted and a safe system of work described.
taff should be aware of the potential hazards likely to be present in a microbiology laboratory, particularly the presence of those micro-organisms capable of causing disease Staff should also be trained in fundamental practices, such as aseptic techniques, and be informed of the consequences of employing poor practices. Periodic reviews may need to be carried out in light of new developments and techniques, and properly documented training ecords are an essential part of good laboratory practice. Access to microbiology laborato reld bel ing and disposal of ontaminated material in laboratories.

4.2 Good laboratory practice

All microbiological procedures should be subjected to the following considerations:
(i) the assessment of risks to health of staff arising from work, and the precautions that need to be taken;
(ii) the introduction of appropriate measures to prevent or control risks or perceived risks
(iii) the assurance that appropriate control measures are used and that procedures are properly observed and equipment maintained;
(iv) monitoring, where appropriate, the potential exposure of workers, and undertaking appropriate health surveillance;
(v) informing, instructing and training employees about the risks and precautions to be taken.
4.3 Quality assurance

A programme of quality assurance is considered essential for microbiological testing. This programme should cover the whole process from sample collection to the reporting of results. The laboratory should have appropriate facilities, in terms of accommodation, staff, reporting, and effective management procedures to ensure a safe and efficient laboratory. It should operate a system of internal quality control and, where necessary, take part in appropriate external quality control schemes.

4. 4 Equipment

All microbiological laboratories will require certain basic items of equipment, for example microscopes and autoclaves. Such equipment will need regular cleaning and maintenance and, where appropriate, checking for accuracy. Where appropriate, major pieces of equipment should be serviced at regular intervals and relevant documentation retained.

4.4.1 Temperatures

Temperature control is of particular importance in water microbiology. Temperature checks should be made regularly, for example at the beginning and end of each working day. Thermometers or other temperature measuring instruments should be checked regularly for accuracy. Temperatures should be capable of being recorded to tolerances of $0.5^{\circ} \mathrm{C}$ or better.

4.4.2 pH meters

The pH of media is critical, and should be tested and recorded. All pH meters should be regularly checked and standardised against appropriate buffer solutions.

4.4.3 Balances

Balances should possess sensitivities appropriate to the substance being weighed and its intended use. They should also be calibrated and serviced regularly. In addition, balances should be checked frequently against certified reference weights and details recorded. x

4.4.4 Reagents and media

See also Appendix B. Water used for the preparation of media should be of a sheabe quality. Distilled or de-ionised water has been found to be satisfactory. Reagents used in the preparation of solutions or media should be of analytical grade quality. Roalge its and media may be available commercially and should be prepared and used accorning to the manufacturer's instructions. Prepared media can be stored in tightl somled bottles and kept in the dark at room temperature. Ideally, media should be used as 500 n as possible after quality control tests have been satisfactorily demonstrated. WWGene media are used less frequently, quantities should be prepared in small volumer minimise waste. Petri dishes containing media should be stored at between $2-8^{\circ} \mathrm{C}$. Where media are stored for long periods before use, it should be validated that the storage periods do not adversely affect the performance of the media in the ability to recover target organisms, whilst at the same time retain inhibitory properties towards non-target organisms.

4.4.5 Sterilizing equipment

4.4.5.1 Autoclaves

Autoclaves are used to sterilize items of laboratory equipment, reagents, media, etc and to render infectious material safe for disposal. In order to ensure that the correct temperature is attained in all parts of the autoclave, it should be serviced and checked regularly. In addition, each operational cycle of the autoclave should have a record on which the steriization cycles identifiab for exampor with a batch number Temperature tolerances for the autoclaving cycle should be $\pm 2^{\circ} \mathrm{C}$ or better.
4.4.5.2 Hot air ovens

Hot air ovens also require regular monitoring of the time-temperature relationship for each perating cycle They should ensure an even distribution of heat to all parts of the load, and materials sterilized should be identifiable.

4.4.6 Refrigerators and cold rooms

Refrigerators should have their operating temperature checked frequently and details ecorded. They should be de-frosted at regular intervals. Cold rooms should be equipped with continuous recording devices. Materials should not be stored beyond their storage life
4.4.7 Incubators and water bath

Water baths should be appropriately filled and the level checked frequently. Water bath should be cleaned regularly. Different loading patterns of incubators may give rise to differen emperature attainment patterns in various parts of the incubator. In addition, the stacking of contrii icrs"and "overloading" with too many Petri dishes may contribute to a thermal lag. This may give rise to misleading results. Water baths and incubators should, ideally, be rrvided with continuous recording devices.

Membrane filter holders
embrane filter holders require checking for leaks at regular intervals. They should be sterilized before use and cleaned after use.

4.4.9 Microscopes

The optics and stage of microscopes should be cleaned after use, for example with lens tissue. Particular attention should be paid to oil immersion lenses, and microscopes should be covered when not in use. Microscopes should be serviced at regular intervals and details recorded. Where immuno-fluorescence microscopes are used, bulbs should be replaced a equired intervals. Where measurements are taken, the eye-piece graticule should be calibrated at regular intervals.

4.4.10 Materials

All glassware used in the preparation of media, or in the handling of samples, should be o suitable quality. It should be free of inhibitory substances and adequately cleaned after use and sterilized before use. Chemicals and other substances used in the preparation of media and reagents should be of the appropriate analytical quality

4.5 Internal quality control

To ensure that a laboratory is, and remains, capable of isolating, accurately identifying and enumerating micro-organisms in a sample, it is essential for the laboratory to operate an internal quality control system. A similar system should also operate to ensure that sample are not contaminated with extraneous micro-organisms. These systems should include the submission of sterile samples, and samples known to contain specific micro-organisms, to the solation procedure. These quality control samples should be analysed in parallel with each batch of "real" samples examined. Control organisms may be obtained from natural surface waters or, alternatively, freeze-dried reference strains may be used. Reference strains should e subcultured to prepare strains which may be freeze-dried, or frozen, and then used to prepare working suspensions.

A prepared medium should be checked for its sterility and its ability to grow the targeted organisms being isolated. If a selective medium is used, it should also be checked for its ability to inhibit the growth of unwanted or non-target organisms. A medium should be incubated under the appropriate conditions of time and temperature as described in the method and, Idall, shoud not be used untli has been show to be satisfactory. Under deal circumstances, such tests should be quantitative, and should challenge the medium with known number of it remain stable for sufficient periods of time to be of use. However, commercial suspensions of dried organisms are now becoming available. The data derived from the use of such
 establish cons of recoveries ied edia should be stored under conditions

4.6 External quality contro

Laboratories should participate in appropriate external quality control schemes. Examination of micro-organisms should be undertaken as part of routine laboratory practice. Results of the individual laboratory can then be compared with those of other participating laboratories, and also provide an independent check on the quality of the laboratory's continuing performance. In addition, such schemes may be used to provide a means of assessing newly trained staff, and where appropriate, the comparable recovery efficiency of new methods against existing methods.
5.1 Introduction
Water samples from recreational and environmental waters are examined for the enumeration, or the presence or absence, of pathogens or relevant indicator organisms. When the enumeration of organisms is undertaken, it is important to consider the reliability of the results obtained, and for this there are three factors that should be considered. Firstly, there is the representative nature of the sample being examined with respect to the bulk of the original water source sampled. The variation in the number of organisms (counts) eported for samples obtained from a single water source can be significant, especially over time as well as between sampling locations. Secondly, there is the inevitable imprecision introduced by laboratory procedures when the result is based on an aliquot, or subsample, of the original sample submitted and not on the entire sample. Similar imprecision applies when the count is estimated from a multiple tube method. A sample bottle brought to the aboratory should be thoroughly mixed before it is processed. However, the organisms may not be distributed evenly or uniformly. Under the most favourable circumstances, the organisms will be spread randomly throughout the sample of water. Hence, by chance, different aliquots, or subsamples, will contain different numbers of organisms. This random variation plays a significant part in all quantitative microbiological examinations ${ }^{(15)}$. Thirdly, there is "uncertainty of measurement" introduced by fluctuations in the performance of staff, methods, equipment and materials in the laboratory. It is likely that the variation due to the representative nature of the sample will be the more dominant ${ }^{166}$.

Statistical methods can be used to estimate some, but not all, of these sources of variation. Hence, a final result should not be qualified with a statement of confidence. This cannot be readily calculated, and would lead to some degree of confusion since it would not address â. aspects of accuracy and precision.

5.2 Variation between samples

Recreational and environmental waters will vary enormously in the numbers of eievant organisms present, and an individual water source will display large variationsper time (often related to season). In addition, there will probably be large differendes vetween locations at any one site ${ }^{(17)}$. A recent study ${ }^{(18)}$ has demonstrated that samples collected at the same time at sites only one metre apart show large variations in battecial quality. These variations are far higher than those that would occur randomly. Henoe, the amount of information, and its interpretation, from a single sample is ver nited. Multiple samples, over both time and place, are required. A situation in whima single sample gives an estimate of the whole bacterial profile occurs only when orgarisms are distributed randomly. In this case, the Poisson distribution is used. However, such ranaomness has yet to be reported for recreational or environmental waters and, indeed, would not be expected. An estimate of the kely range of counts should, therefore, be based on information from a number of samples, and the greater the natural variation in the water source, the greater the number of samples, , be appreciated by those responsible for monitoring recreational or environmental waters.

5.2.1 Monitoring trends

Recreational or environmental waters which are monitored for microbiological quality should have pre-determined sampling sites. It may be prudent to organise a pilot study to determine the most practicable and informative locations. The results for each site should be kept and examined at regular intervals, alongside resuls from adjacent sites. Changes to water qualty that are caused by the natural variation in water quality, ie "background" variations.

If changes in water quality occur then considerations may need to be directed towards the recreational activities being practised and the investigations needed to be carried out in order to determine the cause of the changes. In theory, it should be possible to construct a model, using past data, which describes systematic variation such as seasonal and tidal changes. This model may predict likely ranges of future counts. If the observed counts are reported outside these ranges more frequently than is usually expected, then changes may need to be postulated. Often the variations are so complex that a model cannot be regarded as definitive, but is merely a useful tool for screening for possible changes.

5.3 Accuracy of laboratory methods

Some laboratory procedures inevitably lead to variation in reported results even though the procedures are correctly performed. This may lead to confusion with the natural variation due to "sampling error". Hence, a result that is reported with an estimated 95% confidence interval may be misunderstood. While it may be assumed that the confidence interval applies to theorcterial density of the water source, it could refer to the confidence interval resulting from the laboratory procedures, which, as already stated in section 5.1, are generally much

sr)aller.

Errors due to faulty sampling or laboratory procedures and equipment, etc (ie uncertainty of measurement) are not fully discussed in this booklet. Errors of this sort should be detected by the use of good quality assurance programmes, including quality control checks and participation in external quality assurance schemes. See also section 4
5.3.1 Potential imprecision due to dilution of the sample Samples of contaminated water may require dilution before examination so that a reliable count can be obtained. If a multiple tube method is used, then some tubes, but not all, should show growth. If the membrane filtration method is used, the aim is to achieve a count with good "statistical information". In practice, the membrane filter should not be overcrowded since there is the potential for growth inhibition and merging of colonies, deally, there should be a reasonably high number of colonies on the membrane filter to enable a satisfactory count to be made. This is, generally, in the order of 20-80 colonies.

Depending upon the regulatory requirement, it is normal practice to report bacterial counts of indicator organisms as the number of organisms per 100 ml . With clean, undiluted samples, approximately 100 ml of the sample are examined. In the multiple tube method nvolving an 11-tube series, this will be 105 ml . If the sample needs to be diluted (prior to any additional dilution inherent in the multiple tube method) and this dilution is, say for example, 10 -fold, then only approximately 10 ml of the original sample will be examined. The count obtained is then multiplied by the appropriate dilution factor to give an estimate of the number of colonies contained in 100 ml of sample. The original sample volume (100 ml) should be thoroughly mixed to achieve a random distribution of the organisms. Therefore, the count from the diluted aliquot, or subsample, can be used to estimate the kely count in the original 100 ml and confidence intervals calculated using random distribution theory ${ }^{(19)}$. Some examples are shown in Table 5.1.

Table 5.1 Estimated count and 95% confidence intervals for the number of organisms

 in a 100 ml sample, where, after dilution, a subsample is examined| Organisms observed
 in the subsample | $\mathbf{l 0} \mathbf{1 0 - f o l d ~ d i l u t i o n ~}$ | | $\mathbf{1 0 0}$-fold dilution | |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{E C}$ | CI | $\mathbf{C l}$ | | |
| 10 | 100 | $50-180$ | 1000 | $480-1830$ |
| 50 | 500 | $380-650$ | 5000 | $3750-6640$ |
| 100 | 1000 | $820-1200$ | 10000 | $8190-12200$ |

EC = estimated count.
CI $=95 \%$ confidence interval.
The imprecision introduced by dilution is likely to be relatively small compared with the variability of bacterial density in the water source. The confidence intervals shown in Table 5.1 should not be stated when results are reported. Quoting such ranges may be misunderstood and taken to be a statement about the likely bacterial density in the water
source. The examples in Table 5.1 are meant to illustrate the additional imprecision, other than that due to water source sampling, which is introduced when aliquots, or subsamples, of the original sample submitted are examined.

5.3.2 Other imprecision of laboratory methods

5.3.2.1 Multiple tube method

In the multiple tube method, a series of subsamples is taken from the original sample, and processed to ascertain which subsamples show the presence of the organisms under investigation. A mathematical formula based on laws of probability is then used to estimate the most probable number (MPN) of organisms present, given the number of tubes in the series which show growth ${ }^{(20,21,22]}$. These various mathematical approaches have been reviewed ${ }^{233}$ and the principles involved in the estimation of bacterial densities by dilution methods described ${ }^{(22)}$. Tables have been developed ${ }^{(24,25)}$ which give a greater number of ombinations of positive and negative results, some of which in practice should only occur rery rarely $y^{22,2,27}$. A confidence interval was often published with the MPN that demonstrated he uncertainty, as estimated from multiple tubes, of the bacterial count for the sample not for the water source, although it has often been confused with the latter. For this reason, the confidence interval should not be reported.

Modern computers now enable the determination of the probability of counts associated with each dilution series to be quantified exactly ${ }^{28,299}$. While the latest calculations of the mos probable numbers show little discrepancy with previously published values, these new calculations have highlighted two issues. Firstly, the imprecision of previously published confidence intervals must be considered. Secondly, for moderate or high bacterial density, the multiple tube method does not give a clear "most probable number". There is a "most probable range" (MPR) of counts, which is almost equally likely to be as correct as the MPN. All calculations are based on the assumption that the organisms present in the water are evenly distributed, and the importance of thorough mixing of the sample cannot be over emphasised. Although the multiple tube method is very sensitive for the detection of a small number of indicator organisms, the MPN is not a precise value. Apparent differences between esults should, therefore, be interpreted with caution. It should also be appreciated that variations in bacterial numbers in the water source may be very much greater than any imprecision introduced by the multiple tube method.

Appendix A shows tables of the MPN and the appropriate MPR for a 6 -tube series ($1 \times 50 \mathrm{~m}$ $5 \times 10 \mathrm{ml}$), an 11-tube series ($1 \times 50 \mathrm{ml} ; 5 \times 10 \mathrm{ml} ; 5 \times 1 \mathrm{ml}$) and a 15 -tube series ($5 \times 10 \mathrm{ml}$. $5 \times 1 \mathrm{ml} ; 5 \times 0.1 \mathrm{ml}$. Results should be reported with care, and it may be appropriate to equote the MPR rather than the MPN in order to illustrate the imprecision of the method Epivever, thould be clearly stated that the range applies to the sample and not to the rater source. When plotting results for trends, it is often more practicable to use the MPN

5.3.2.2 Membrane filtration method

Counts on membrane filters are subject to statistical variation, and alieate tests on subsamples from the same bulk sample are unlikely to give exactly the same number of colonies. If 100 ml of sample are filtered and incubated, ano (ball every relevant colony on the membrane counted, and every colony confirmed, then he presumptive and confirmed ounts are as precise as the method allows. No statishan in precision need be considered. If the sample is diluted prior to filtration, then the count becomes an estimate of the density in the undiluted sample, as already described. Similarly, if the presumptive count of the undiluted, filtered sample is taken from a portion or segment of the membrane filter then mprecision is introduced comparable to that introduced by dilution of the sample. This sssumes that the segment of the filter chosen is typical and representative of the whole filter.

5.3.23 Confirmation

Confirmatory tests of the presumptive colonies present on a membrane filter should be carried out. When multiple colonies are present, different approaches can be adopted when consideration is given to the number of colonies that should be tested for confirmation. If the im is to estimate the count of the relevant colonies, then consideration should be given to
 for conimations ber to give sufficint leve accuacy. This may requie

If the aim is to demonstrate the presence or absence of the organism, then a different approach may be chosen, provided that there are no microbiological contra-indications. The presence of the organism is demonstrated as soon as one positive confirmation is made. A laboratory may, therefore, choose to examine fewer colonies, initially, than when the aim is to estimate the count. However, if the chosen colonies do not confirm, then the sample annot be assumed to be satisfactory, in terms of presence or absence, since other colonies not chosen for confirmation testing may, if tested, confirm the presence. Hence, the membrane filter should be stored and other colonies tested if the initial colonies selected do not confirm. This sequential testing is acceptable only when refrigerated storage of the membrane is not detrimental to the survival of the relevant organism.

If all Peyumptive colonies are tested for confirmation, then no further imprecision is
ced into the final result (other than that due to the test method) when the
sumptive count is converted into a confirmed count. If a fraction of the colonies is tested tor confirmation, then further imprecision is introduced into the estimated confirmed count. or example, if 60 colonies are counted on the filter, and 20 are selected at random for confirmatory testing, and 15 of these colonies are confirmed, then the estimated confirmed count is given by 45 , ie $15 \times 60 / 20$.
is assumed that the n colonies are selected at random, or by some other equivalen procedure which ensures that the chosen colonies represent a typical subsample of the N colonies, and that all N colonies were equally likely to arise from the relevant organism group. The conditional probabiity that y is the true count, given that x colonies have confirmed, can be calculated from the equation of possible combinations

$$
P(x / y)={ }^{y} C_{x} .{ }^{N-y} C_{n-x} /{ }^{N} C_{n}
$$

The 95% confidence interval for the confirmed count can be found by examination of the probabilities for all possible values of the true count, y , using the observed value tested, x . The confidence interval will exclude end of range (high and low) values of y, such that their cumulative conditional probabilities sum to less than, or equal to, 0.05 . This procedure ollows that described elsewhere ${ }^{(19)}$. For example, if 10 colonies are observed (ie $N=10$) and two colonies are tested (ie $\mathrm{n}=2$) then Table 5.2 shows the complete range of probabilities.

Table 5.2 Range of probability values if $\mathbf{1 0}$ colonies are counted, of which two are

tested for confirmation	Given that the true count, \mathbf{y}, is	and the number of colonies confirmed, \mathbf{x}, is $\mathbf{x}=\mathbf{0}$ then the probability $\boldsymbol{i s}$	
$\mathbf{x = \mathbf { 2 }}$			

The braces show the range of true counts, y, which should be included in the 95\% confidence interval for the true count. Note that if one of the two colonies tested is confirmed (ie $x=1$) then all the possible values of y are within the 95% confidence interva because all the probabilities exceed 0.05 . See example b in Table 5.3

In general, if only small numbers of the total colonies are tested for confirmation, then the confidence interval can be very wide. Confidence intervals also tend to be wider if a ubstantial number of colonies turn out not to confirm. Some examples are shown in Table 5.3

Table 5.3 Variation in the 95% confidence intervals with variation in the proportion of tested colonies confirming

	Colonies observed (presumptive count) ie $\mathbf{~ N}$	Number tested ien	Number confirmed ie \mathbf{x}	Confirmed count	Confidence interval (95\%)
	10	2	0	0	$0-7$
(a)	10	2	1	5	$1-9$
(b)	10	2	2	10	$3-10$
(c)	10	7	5	10	$6-12$
(d)	14	10	5	25	$9-41$
(e)	50				

It should be noted that the practice of confirming 10 colonies can still introduce potential mprecision, especially if the presumptive count is large and some colonies fail to confirm. Hence, the higher the percentage of colonies used for confirmation, the more accurate the result

. 4 Reporting results

The report should be a clear statement of the findings and a further statement on error, to qualify these findings, should not be necessary for routine samples. The sampling strategy should have been established with the aim of acquiring an adequate level of information. The laboratory should have in place a programme of quality assurance to assure adequate performance. If it is necessary that a report for a particular sample warrants a statement on accuracy and precision, then a clear distinction should be made between sampling error due to variability at the water source and possible error introduced by the laboratory methods.

Absence of organisms and unmeasurably high counts should be reported as follows:
(i) No organisms detected. - When the sample is examined and no relevant organisms are detected, this should be reported as "none found in the sample examined", ie $0 / 100 \mathrm{ml}$. If a dilution of the sample is taken and an aliquot is tested, and no organisms are detected, for example, $0 / 10 \mathrm{ml}$, then this should be equated to the reporting volume, for example, less than 10 per 100 ml . However, since theers corresponding equivalence to the concept of "limit of detection" used wiin nemica measurements, an expression of "less than 1 per unit volume" is often weaningless. For reporting purposes, it is recognised that computers used to storethis information cannot recognise text in a numeric field. In addition, if the growth oftarget organisms s obscured by non-target organisms, then a note should be hadele of this effect and consideration should be given to repeating the examination, pessibly by a different technique.
(ii) Overgrowth of membrane filters, or all tubes exhibiting growth in MPN methods. - This means that the laboratory has failed to estimate the true count because of insufficien predilution. With the multiple tube method it is customary to report this, in the appropriate units, as "greater than 180" for the 11 -tube series or "greater than 1800" for the 15-tube series. In reaity, the count could be very much higher. With membrane iltration and similar meds, the "port should isclucy a statement "count too hig be esti tore this information cannot recognise text in a numeric field.

. 5 Correlation between parameter

Recreational and environmental waters are often examined for several microbial parameters, and there has been discussion about which parameters do, or do not, correlate well with each other. Examining a sample of water for a second parameter that correlates well with the first parameter will provide little extra information about water quality. Examining the water for a second parameter that does not correlate well with the first parameter may provide
xtra, different information, which may be of interest. Levels of correlation may be better than at first appears, because of the random variation in the number of organisms occurring between subsamples as the two parameters, by most methods, cannot be measured from the same subsample.

The following example illustrates "best possible" correlation. A series of 50 samples, each of which, after thorough mixing, is divided into two subsamples. These are then examined as duplicates for the same parameter (in this case, total coliform organisms). The pairs of counts are then plotted as shown in Figure 5.1. The counts might be expected to be identical, and lie on a straight line, except for the differences arising from random variation in the number of organisms between the two subsamples. Figure 5.1 shows considerable scatter and the "correlation", as expressed, is $r=0.63$ ($r^{2}=0.39$), where r is the product-moment correlation coefficient. This statistic, r, assumes Normal distribution of the variables, which is often not applicable with microbiological data. Therefore, a non-parametric measure of correlation, such ospearman's rho, may be more appropriate. In Figure 5.1, rho is 0.62 . These data were taken from a series of natural samples of untreated water examined as part of a quality Control scheme ${ }^{(30)}$ and were demonstrated to be "in control" and satisfactory. This example of orrelation can be considered as "best possible", and careful consideration should be given to assessing any apparent lack of correlation between different parameters.

Figure 5.1 Pairs of replicate counts of total coliform organisms

Counts are duplicates and in theory should correlate "exactly", ie $r^{2}=1$ andom variation leads to an r vaue of 0.63 (ie $r^{2}=0.39$) Samples were "natural" and consisted of 100 ml subsample volumes
6. Sampling

1 Surface waters

6.1.1 Introduction

The procedures used to obtain samples can significantly affect the quality of environmenta data. While much attention has been paid to the accuracy and precision of analytical data. While much attention has been paid to the accuracy and precision of analytical preservation Any sample should reflect the quality of the bulk of water being sampled

In addition, there should be an understanding of the purpose for which the sample is being taken and the reason why information is recorded at the time of sampling. Use of appropriate containers and the correct handling and transport of samples are also important if significant changes in the constituents of the sample are not to occur between the time of sampling and its subsequent analysis.

.1.2 Regulatory monitoring

All sites designated under the Bathing Water Directive ${ }^{(2)}$ will have routine monitoring programmes designed to measure water quality during the defined bathing season. The sampling frequency is prescribed, and all samples should be taken from defined locations here the bathing density is recognised as being at its greatest. If the water quality deteriorates, additional samples should be taken.
6.1.3 Site investigations
here any site requires recreational or environmental water quality data to be provided for background information, or needs to be investigated for a source of pollution, a review of all existing knowledge (likely to influence microbiological quality) is an important prerequisite to the design of an appropriate sampling programme. Factors for consideration should include nowledge of polluting, or potentially polluting, sources. Fow and current conditions are mportant characteristics, whilst geographical features, depth profiles and weather conditions may all influence the distribution of micro-organisms.
6.1.4 Sampling locations

Site locations should be such so as to produce adequate data about water quality considering the factors described above. For investigational purposes, a wider range of locations may be equired taking into account recreational activity, known sources of pollution, tidal states and weather conditions. A number of locations should be established, within defined geographical limits, sufficient to provide data about water quality. This should take into account user activity and known or perceived sources of pollution. Where recreational activities extend offshore, boats and satellite-tracking systems may be required to pin-point exact sampling positions. similarly, the monitoring and investigation of offshore discharges may require boats and tracer-type studies. For inland waters, bridges provide ideal sampling positions. Each location should be selected after due consideration has been given to safety and ease of access, particularly in adverse weather conditions.

6.1.5 Sampling frequency

The sampling frequencies for designated waters are defined under various directives ${ }^{2}$ Samples are taken when conditions are appropriate and should reflect all tidal con@gio Additional pre- and post-season sampling may be considered as appropriate. Frin regulatory circumstances, similar frequencies may be adopted for recreationa and obvious signs of pollution, it might be considered adequate to samplol \& slirequently, unless significant changes occur. Where fundamental changes are planne Ar:3reas receive intense public interest, it may be prudent to increase the sampling frequenc.
The sampling frequency for investigational purposes willdepend upon the information required. Tidal waters should be sampled at all tidal states and in different weather conditions. Fresh waters should be sampled during dry weather and after heavy rainfall. In addition, they should be sampled either side of known and suspected sources of pollution. investigational programmes often involve many samples and the accumulation of substantial amounts of data. It is important that such investigations are planned carefully and that data are reviewed frequently in order to modify programmes of work, should circumstances equire it
.1.6 Sampling equipmen
The type of sampling equipment used will depend on the individual circumstances encountered at the sampling site. In shallow waters with good access, direct immersion of he appropriate container to a fixed depth may be satisfactory. This may require sampling should bere ther dist
aused that may result in an unrepresentative sample being taken. It is important that sampling staff have appropriate protective clothing. The use of disposable gloves minimises skin contact with water and reduces contamination. Where access is difficult, or samples ar equired to be taken some distance from the bank of a river, or reservoir, telescopic poles fitted with clamps may be more appropriate. Sampling from bridges, or boats, can be facilitated with the use of stainless steel buckets, or jugs, that can be suitably disinfected and rinsed before use.

Where samples are required at greater depth, depth-samplers or pumping equipment will be needed. Two types of design are available, air displacement samplers and open-ended samplers. With these types of equipment, sterilization between sampling occasions will be Air displacement samplers are of the sample may be the most appropriate (on closed position, which are then released at the appropriate depth. Open-ended samplers are "free-flushing" as thergre lowered and are then sealed when in the appropriate position. These samplers
can se used for sampling from depths, generally, up to 100 m . When sampling takes place in currents, or at greater depths, the cable used to support the sampler is unlikely to be ertical. Hence, the location of the sampling equipment in the water may need to be mined. Further guidance, particularly for sediments, can be found elsewhere in this series ${ }^{311}$.

.1.7 Sample containers

Sample containers may consist of glass or plastic and should be of sufficient volume to provide a sample suitable for subsequent analysis. Containers should be non-toxic and should not possess bacteriostatic properties or provide nutrients to support the growth of microrganisms. Chipped, etched or cracked containers should be discarded. Closures should produce a water-tight seal. Prior to use, containers and closures should be thoroughly leaned and sterilized by autoclaving at $121 \pm 1 \mathrm{C}$ for 15 minutes. Alternatively, sterile disposable containers can be used and discarded after use. Each batch of stenie containers should be identifiable, for example, marked with a batch number, and checked for steriity and marked with a use by date. Preservatives are not, generally, required and guidance on he amount of sample required for specific examinations is given in Table 6.1. Samples of mud and sediments can be placed into sterile, wide-necked, plastic or glass containers of suitable volume

Table 6.1 Approximate sample volumes

Organism	Minimum volume (ml)
Faecal indicators	300
Salmonella	1000
Enteroviruses	10000

1.8 Sampling procedures

Care should be exercised at all times during the sampling procedures so as to avoid contamination. When the cap or seal is removed from the container, the inside of the cap should be protected. For surface samples, the sample container should be held at the base and plunged into the water to an appropriate depth, for example 300 mm is used for sampling bathing waters. The neck of the container should be positioned uppermost, andowing air to escape and the container to fill. In still or static waters, filling of the containe an be encouraged by moving the container in a horizontal position with the neck of the container pointing away from sampling staff or boats. In flowing waters, the container should be positioned with the neck of the container pointing up-stream, away from sampling staff or boats. Sterile sample containers should not be rinsed prior to filing and should be filled lo mare space. e n sampling surface es vessel itself. Mud and sediments can be transferred directly to containers using a sterile

6.1.9 Sample labelling

The sample should be labelled on-site in a clear and durable manner so as to permit unambiguous identification. Additional relevant details can also be recorded at the same me. These may include date and time of sample, location, analysis required, and environmental observations such as tidal state, weather conditions etc
6.1.10 Sample transport

After collection and labelling, samples should be transferred immediately to light-proof boxes and kept at a temperature of between $2-8^{\circ} \mathrm{C}$. This temperature range may be maintained using, for example, insulated boxes or refrigerated conditions. The arrangements for transport the laboratory should ensure that spillage does not occur. Studies ${ }^{32,33}$ to assess microbial levels during transport and storage have yet to provide clear explanations of the effects of transport and storage on resulting analyses. However, the longer the delay between sampling and analysis the more likely the opportunity for change to take place. Samples should he conditions stated above, should not exceed 24 hours before commencement of analysis.

.1.11 Safety aspects of sampling

Staff involved in sampling marine or surface waters will frequently encounter a wide range of conditions and be subject to a variety of health and safety issues. This booklet is not intended as a comprehensive guide, and a thorough assessment of safety should be performed before any sampling programme is undertaken.

Sampling from unsafe sites, such as insecure banks of rivers or reservoirs, should be avoided. necessary, more than one person should be considered for sampling procedures to be undertaken safely. Reasonable access to sampling locations in all weather conditions is important and may be essential for some routine sampling purposes. When samples are to be taken in streams, rivers or estuaries, sampling staff should take into account the possible presence of mud, sand, holes and swift currents. A wading rod, or similar probing instrument, may be essential for safe wading. In addition, traffic can be a hazard when sampling from bridges is being undertaken, or when sampling from bridges over navigable streams. Care should also be taken not to cause injury to others whilst sampling is being carried out.

Suitable safety equipment should be used when working from boats or other vessels, weather conditions constantly observed. Care should be taken when using electrica equipment near water, and staff should always be aware of the risk of handling to 11 lammable materials, and the risks connected with infections from sewage asso materials. Further discussion of safety aspects can be found elsewhere ${ }^{(34)}$.
6.1.12 Quality assurance and quality control

Much attention has already been paid to the quality assurance and deality control practices associated with analytical techniques. Where appropriate, these preciples should be extended to sampling. A good quality assurance system should yrovide an organised, documented and supervised approach to any sampling programme. The documentation should include a clear definition of the programme, is aims and appropriate accuracy and precision requirements. There will need to be selection of sampling methods and containers appropriate to the analytical requirements. Sampling staff should be identified and a documented approach to training used. Sampling sites should also be clearly identified. There should be a system of audit and review of the sampling programme covering all aspects of documentation, and extend g qually control and maintenance of the system of records support sampling activits

There are a number of quality control measures that can be adopted for microbiological sampling. These include the use of field blank samples which, as far as possible, are exposed sampling. These include the use of field blank samples which, as far as possible, are exposed to as many of the sources of contamination as "real" samples. Sterile water can be "l" sal cultures, it is possible to use field check samples to assess potential loss of determinands
uring transport and storage of samples. In addition, routine swabbing of vehicles and insulated boxes, which are used in the sampling process, may help to identify sources of ontamination. Where suitable, sampling boxes should be cleaned and disinfected on a regular basis. Further advice on sampling can be found elsewhere ${ }^{(31,35,36,37)}$.

6.2 Swimming pool waters and spa pool water

6.2.1 Introduction

There are many different kinds of pool waters used for swimming, hydrotherapy and other recreational uses. They often operate under different regimes and at different temperatures, and include a range of different water treatments and disinfection. Properly maintained poo waters with the correct treatment regimes, pH and levels of disinfectant are unlikely to be sources of infection for users. Infections are more likely to occur as a result of poor pool water management and hygiene practices. Failure to achieve good pool water maintenance can ead toeterioration of the microbiological quality of the water. Further advice is given
.2.2 Treatment and disinfection
ost pools include filtration and disinfection procedures as part of water treatment . Aiters usually consist of sand filtration and are designed to remove particulate

Chor in
Chlorine is the most common disinfectant and is used either in the gaseous phase or as hypochlorite solution. Generally, the free chlorine level should be between $1.0-2.0 \mathrm{mg}^{-1}$ and epH between 7.2-7.8 for effective disinfection. Ammonia and organic material can reduce free chlorine levels and produce disinfectant by-products. Ozone is also used as a disinfectant removes many poliutants. Chloroisocyanurate compounds are also used as disinfectants.的 aters. However, levels of cyanuric acid, a dissociation product, should be controlled and monitored. Bromine and bromine-based disinfectants utilise hypobromous acid, the properties of which are similar to those of hypochlorous acid. Bromine-based disinfectants and, in particular, bromochlorodimethylihydantoin are commonly used in whirlpool waters and spa pool waters. Other disinfectants include chlorine dioxide, ultra-violet light with chlorine, metallic ions of copper and silver with chlorine and polymeric biguanide compounds.
6.2.3 Frequency of sampling

Properly maintained pool waters should be sampled at regular intervals and random samples taken when there is a heavy bathing load to help establish that treatment regimes are working correctly. Samples should be taken just before pool waters are closed to users (for whatever reason) and after they are returned for use. Samples should also be taken when obvious contamination has occurred or when medical or epidemiological evidence suggests sufficient cause.

2.2.4 Microbiological parameters used for assessing pool water quality

.2.4.1 Colony count

The total viable colony count of recreational pool waters gives the best overall assessment of water quality. See Table 3.2. The colony count at $37^{\circ} \mathrm{C}$ provides information about the possible presence of pathogenic bacteria resulting from human contamination. In general, colony counts greater than 100 colony forming units per ml at $37^{\circ} \mathrm{C}$ may indicate a water treatment, or disinfection, problem that requires investigation. In addition, a trend with a continuing increase in colony counts may indicate that a water treatment system is beginning o fail and that an investigation should be undertaken.

6.2.4.2 Coliform organisms and faecal coliform organisms

The treatment and disinfection regimes operating for pool waters should be sufficient to ensure that the levels of coliform organisms and faecal coliform organisms shown in Table 3.2 are
 colony count and no frecal coliform organisms, and the pH and disiectant concentration
are satisfactory, and that no coliform organisms are isolated on a subsequent re-examination, the pool water quality may be considered satisfactory.

6.2.4.3 Pseudomonas aeruginosa

Pseudomonads and in particular Pseudomonas aeruginosa are able to grow in moist, warm conditions with low levels of organic nutrients. Many strains are resistant to reasonably high evels of disinfectant, particularly when they are associated with biofilms. Under such circumstances, these organisms may cause problems with pool water quality. Since these organisms are widespread environmental organisms and common skin contaminants, they can be introduced into pool waters directly by users. Failure to maintain disinfectant levels, or o provide adequate treatment, or cleaning regimes, may result in pool waters, or treatment systems, becoming colonised with Pseudomonas aeruginosa.

Staphylococci are common skin organisms and may gain ready access to recreational waters. It is, therefore, likely that they may be found in pool waters, especially where the bathing load is heavy.
6.2.4.5 Legionela

Dutbreaks of legionnaires' disease have been documented ${ }^{(37)}$ where Legionella pneumophila have been found in whirlpool waters that have not been properly maintained. Where pool water quality is poor, particularly with whirlpool waters, tests for legionella should be considered. Advice on sampling and analysis is given in section 10 .
6.2.4.6 Intestinal parasites

There have been a number of documented outbreaks of Cryptosporidium and Giardia associated with swimming pool waters ${ }^{(39)}$. Advice on sampling and analysis is given in section 9.

6.2.5 Sample containers

Glass bottles should not be used in pool waters because of the associated risk of breakage. Plastic, disposable bottles, containing thiosulphate, should be used. The required capacity should not be less than 300 ml . Each batch of sterilized bottles should be tested for sterility and should not be used before this test is satisfactorily completed and results reported. Sterile bottles should be marked with an appropriate "use by" date and stored in suitable locations. Sample bottles should not be used after the "use by" date has expired.

It is essential that sample bottles contain the appropriate neutralising agent commenourat with the disinfectant used in pool water treatment. It is equally important that the cropratory s advised of the type of disinfectant used. Chlorine- and bromine-based disinfectents may be neutralised by the addition of a solution of sodium thiosulphate at a concentration of 18 mgl dded to sample bottles before sterilization. Copper and silver ions may be nesutralised ${ }^{40}$ by he addition of disodium ethylenediaminotetraacetate solution at a condedration of $50 \mathrm{mg}^{-1}$. A solution can be sterilized by filtration and 1 ml added after steriltarion of the sample bottles. For polymeric biguanide disinfection compounds, lecithin ($30 \% \mathrm{~m} / \mathrm{v}$) with polyoxyethylene sorbitan mono-oleate solution, for example 7 wen $80(20 \% \mathrm{~m} / \mathrm{v})$ can be used. Sodium thiosulphate solution should also be incorperated, if a chlorine residual is maintained.

6.2.6 Sampling procedures

Remove the stopper or cap from the sample bottle, ensuring that the neck of the bottle and the inside of the cap do not become contaminated. Immerse the bottle to about 150 mm below the surface of the pool water and allow the bottle to fill, leaving a small air space. Remove the bottle from the water and replace the stopper immediately. Store the sample botle in e dark in an insulated cooi box. Transport the sample box to the laboratory as esibe on-site at the same time as the sample is taken and the results recorded and sent with the sample to the laboratory
6.2.7 Sample location

The sample site should be chosen where the water velocity is low and situated away from any inlet systems. Depending on the size of the pool, it may be necessary to take additional
samples from other locations within the pool. Many leisure pool waters include features, such as flumes, islands, whirlpools and backwaters with complex systems of water flow. Consequently, several water samples may be necessary in order to obtain an overall assessment of water quality.
7. Bacteriological methods

7.1 General laboratory practice

7.1.1 Introduction

The analysis of waters for micro-organisms involves the filtration of measured volumes of water through membrane filters, ie membrane filtration (MF). Alternatively, this may involve the direct inoculation of measured volumes of water into liquid media contained in a series of ubes, or bottles, ie multiple tube method or most probable number (MPN) technique. It is apparacsor test materials. Such contamination will lead to the production of misleading data and erroneous assumptions about water quality, and may lead to substantial amounts of necessary investigative work and expenditure on remedial work that is not required. It is nportant, therefore, that good laboratory practice and good aseptic techniques are adhered to.
7.1.2 Laboratory preparation

All contaminating materials, including samples from previous analyses, should be kept separate from areas where analytical work is to be conducted. All work surfaces should be leaned with suitable disinfectants at the appropriate concentration. Any commercial "wipe" hat is used should be discarded after use. Laboratory coats should be clean and changed regularly or when they become contaminated. The materials and media used in test procedures should be sterilized and checked for sterility prior to use.

7.1.3 Sample preparation

7.1.3.1 Liquid samples

Samples should be thoroughly mixed, for example inverted rapidly several times, in order to distribute the organisms uniformly throughout the water. The sample bottle should also be horoughly shaken before any dilutions are prepared. In general, the results from previous routine sampling and testing may provide information on the number of organisms present at particular locations. This may facilitate the preparation of the appropriate number of dilutions that may be required. Where this information is not available, a range of suitable dilutions should be prepared to ensure that at least one of the test dilutions possesses a suitable number of organisms for counting purposes. For MF, this should be between 20-80 colonies, and for MPN, this should be demonstrated by the absence of growth in some of, but not all, the dilutions tested. For practical purposes, sub-samples of 10 or 1 ml may be ested, or suitable dilutions prepared, and appropriate aliquots tested. For example, measure out suitable volumes (90 or 9 ml) of sterile diluent, such as Ringer's solution, into suitable terile bottles or tubes. Prepare an appropriate range of dilutions by transferring one volume of sample (or previously diluted sample) into 9 volumes of diluent. A clean, fresh, sterile ipette should be used for each occasion. Provided that the dilutions are tested in increasing order of concentration (ie starting with the least concentration first) a single membrane filter apparatus may be used without the need for disinfection between filtrations.

1.1.3.2 Solid samples

Where the number of organisms is very high and the dilutions required sufficiently large to minimise the amount of particulate matter, then semi-solid samples may be treated as above for MF. Alternatively, appropriate dilutions should be prepared and inoculated into isolation media as described for the MPN technique.

Solid samples should be thoroughly mixed and known amounts taken, for example $1 \times 10 \mathrm{~g}$ and $5 \times 1 \mathrm{~g}$ amounts, and treated as described for the MPN technique. The sample can be weighed directly into the isolation media, ensuring there is sufficient media for the sample or example, 10 g of sample can be added to 90 ml of media. The sample should be dispersed with a sterile spatula. Alternatively, a known amount of the sample can be added to recovery diluent in a sterile "stomacher" bag and homogenised before being dispensed into isolation media.

7.1.4 Apparatus

Incubators and water baths should be capable of meeting the temperature tolerances specified in the method. Membrane filtration apparatus and filter units should be able to withstand steam or dry-heat sterilization. Filter units can be disinfected between use, fo cool before use. The base and funnel should be sterilized at the end of each working day

Membrane filters are often made from cellulose esters, usually cellulose acetate or cellulose nitrate, and are, usually, 47 mm in diameter with a nominal pore size of $0.45 \mu \mathrm{~m}$. Other sizes, should be free of toxic substances, grid-marked (to ease counting) and, when used, should show no signs of growth inhibition or stimulation along the grid lines. Membrane filters should be sterilized before use and only used once

Absorbent pads should be the same diameter as the membrane filter and be of at least 1 mm hickness. The pads should be manufactured from high quality paper fibres, free of toxic substances and uniformly absorbent. Pads are available presterilized, or, if necessary, can be sterilized by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes.
etri dishes are available pre-sterilized, or aseptically manufactured, in a variety of sizes for membrane filtration, used with either an incubation pad or a pre-poured medium. Petri
dishes can also be used with selective and nutrient agars for plating broth cultures to obtain solated colonies. It is important that Petri dishes used for colony counts are of a common size to ensure that the surface area and depth of the medium remain constant.

Pipettes of 10 or 1 ml volumes are available pre-sterilized as individually wrapped items to be discarded after use and should be the straight-sided, total delivery type. Glass pipettes should be plugged with non-absorbent cotton wool before being packed into suitable containers, or wrapped in brown paper or aluminium foil, and sterilized. Glass pipettes may be sterilized by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes or by heating to approximately $160^{\circ} \mathrm{C}$ for 60 minutes. Plastic disposable pipettes can also be used. Air displacement pipettes, calibrated gravimetrically, may also be used with sterile polypropylene tips. Altematively, appropriately calibrated automatic pipettes with sterile disposable tips are satisfactory. Where applicable, after use, cotton wool plugs should be removed from pipettes, which should then be placed in jars containing disinfectant solution. Pipettes should be left for at least one hour, or preferably, ovemight. Pipettes should then be rinsed with tap water and soaked in a suitable non-toxic detergent solution followed by rinsing with tap water. They should then be "hed with distilled or de-ionised water and dried. Finally, pipettes should be plugged with. 100 absorbent cotton wool and stacked into metal containers for sterilization

Forceps should be flat-ended and sterilized by immersion in alcohol, follow eating in a Bunsen burn. A plate drier if required, shoud be heated ted by flaming $45^{\circ} \mathrm{C}$ in a Bunsen burner. A plate drier, if required, should be heated te aproximately $45^{\circ} \mathrm{C}$. Petri dishes may be dried by inverting, and then leaving for appeo, inhately 30 minutes. The 50 ml volumes of double-strength media required for any muripiele tube method should be dispensed into screw-capped bottles with a capacity of at leas. 125 ml . The 10 ml volumes of double-strength media should be dispensed in ortest-tubes or containers with a capacity of about 30 ml . Sterile disposable containers thay ve used for certain tests provided he medium is dispensed aseptically before use. For 10 mi volumes of single-strength medium and other liquid media, tubes or containers with a capacity of about 22 ml should be used. When media have to be stored for up to 1 month, screw-capped containers should be used Routine media should be prepared and stored in volumes no larger than 500 ml , and bottl capacities should be of a sufficient size to prevent boiling-over during sterilization, and subsequent melting.

Test tubes, bottles and flasks should be autoclaved at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes after use and cleaned with a brush, washed in water with a non-toxic detergent solution, rinsed in tap water and finally in distilled or de-ionised water. Appropriate laboratory washing machines may be used. Before sterilization, test-tubes and flasks should be plugged with non-absorbent cotton wool or covered with suitable close-fitting caps. The necks and stoppers of flasks and bottles should be covered with brown paper or aluminium foil to prevent contamination.

Glassware may be sterilized in hot air ovens at approximately $160^{\circ} \mathrm{C}$ for a minimum of hour. If this temperature is exceeded, the exposure time may be reduced proportionately A temperature of above $170^{\circ} \mathrm{C}$ should be avoided since cotton wool is rendered friable. Altematively, bottles and tubes may be sterilized by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for a minimum of 15 minutes. If bottles with ground-glass stoppers are used, a strip of brown paper or aluminium foil, approximately $75 \mathrm{~mm} \times 10 \mathrm{~mm}$, should be inserted between the stopper and the neck of the bottle before sterilization. This helps to prevent jamming of the stopper in the neck of the bottle and subsequent damage on cooling.

7.1.5 Membrane filtration

embrane filters are incubated either on absorbent pads (soaked in liquid medium) or on pre-poured agar Petri dishes. Where pads are used, aseptically place sterile pads into Petri dishes. Add sufficient medium to saturate the pad and then drain off the excess medium.

Place
the top
15 Sterile filtration apparatus in position and connect to a source of vacuum with all cocks turned off. Remove the funnel and place a sterile membrane filter, grid-side ds on to the porous disc of the filter base. Hold the outer part of the membrane filter vith sterile forceps. Replace the sterile funnel securely on the filter base. Pour, or pipette, the稘 least 20 ml of sterile diluent should first be added to the funnel. Open the stopcock and me sample slowly through the membrane fifter. Close the stopcock as soon as the sample has been filtered, to prevent excess air being drawn through the membrane filter.

Transfer the membrane filter to the growth medium, ensuring that no air bubbles are trapped between the membrane filter and the medium. Remove the funnel to a boiling water bath Where different volumes of the same sample are to be filtered, the funnel may be re-used without further disinfection, provided the samples are filtered in sequence, starting with the mallest volume. For different samples, remove a funnel from the boiling water bath and allow it to cool. Repeat the filltration process as before.
etri dishes containing membranes should be inverted during incubation. Where an ncubation pad is used, Petri dishes should be incubated in sealed containers to prevent the pad from drying out

7.1.6 Multiple tube method or most probable number technique

he multiple tube method is most often used where samples are too dirty to permit membrane filtration or where organisms are present in very low numbers and a concentration step is required in order to detect them. Volumes of the sample, or dilutions of the sample, are inoculated into bottles, or tubes, containing liquid culture media. During ncubation, each tube that contains one or more organisms should show growth. Provided that some, but not all, of the tubes exhibit no growth of the organism, ie are negative, the most probable number of organisms in the sample can be estimated from tables.

The volume of sample added to the tube should not significantly change the concentration of the medium. Volumes of 1 ml , or less, are usually added to single-strength growth medium and volumes of between 10 and 50 ml are normally added to double-strength medium. Fo arger volumes, more concentrated medium can be used, and for special purposes, dehydrated medium can be dissolved in the sample. When the test is completed, positive ests, ie tubes that show growth of the particular organism under study, can be subcultured on to agar or inoculated directly into confirmatory media

Typically, $1 \times 50 \mathrm{ml}$ volume, $5 \times 10 \mathrm{ml}$ volumes and $5 \times 1 \mathrm{ml}$ volumes are aseptically inoculated into tubes containing media. With more polluted samples, additional volumes of $5 \times 0.1 \mathrm{ml}$ may be added to extra tubes in order to produce tubes exhibiting no growth, ie produce megative results. The adikion of smailer volumes, to accommodate heavily poluted samples, mer eaplaind the mos from aber If acesan postivobe moliz tables. If necessary, positive tubes may be subcultured into enrichment or selective media or confirmation.

Where samples are clear and expected to contain very few organisms, they can be oncentrated by MF and then analysed by the MPN technique. For example, $1 \times 500 \mathrm{ml}$, $5 \times 100 \mathrm{ml}$ and $5 \times 10 \mathrm{ml}$ volumes of sample can be filtered and the respective membrane filters added to tubes containing appropriate medium. The test is then completed in the usual manner.

7.1.7 Analytical quality contro

All media prepared in the laboratory should be subjected to quality control procedures before being released for laboratory use. This will, usually, include checking the final pH of the medium and ensuring that the medium is suitable for the type of micro-organism being etemined, whilst inhibiting or clearly differentiating the growth of unwanted micro rganisms. This type of testing should be carried out on each batch of prepared medium of quality control testing should be recorded at the time of sample testing, and positive, negative and blank controls should be included. The positive control may be an environmental sample known to contain the micro-organism being sought, or a suspension from a stock culture as described above. Negative controls should contain non-target micro organisms which do not grow characteristically on the medium. The blank control may consist of 100 ml of sterile water and is used to ensure sterility of the test media and any apparatus used. Positive, negative and blank controls should be incubated under the same conditions and at the same time as the test samples are analysed and should ensure that the method is satisfactory for the micro-organisms under test. A failure in any of these controls should invalidate the results of the test and consideration should be given to repeating the analysis. However, it is often impracticable to repeat the analysis of a sample as the numbe of organisms in the original sample may change during storage. Hence, laboratories should undertake thorough audits of all procedures after unexpected results are obtained

The recovery efficiency of any method can be determined by carrying out the analysis using suspensions of known concentrations of organisms. This may be undertaken by inoculating laboratory cultures into the types of sample normally tested, or by participating in
appropriate proficiency testing schemes.
7.2 Detection and enumeration of coliform organisms and faecal coliform organisms by membrane filtration

7.2.1 Introduction

Coliform organisms and faecal coliform organisms have become the standard faecal indicators for recreational and environmental water quality. The presence of these orranisms is suggestive of faecal contamination and the numbers enumerated give some ind cation of the degree of contamination. However, the levels of coliform organisms and fafce colifor organisms do not indicate potential pathogen levels, and the absence of these indicator organisms does not indicate the absence of pathogenic organisms in that Nater. Techniques involving MF are subject to considerable statistical variation (see section and great care should be taken over the interpretation of particular results, especill if aliquots of diluted samples have been prepared and analysed

7.2.2 Scope and field of application

This method is suitable for the isolation of coliform orgnisms and faecal coliform organisms from all types of waters. The volume of sample, or diluted sample, to be tested depends upon the degree of faecal contamination. It may, therefore, be advisable to test a range o volumes in order to produce a membrane filter containing a sufficient number of colonies.

2.2.1 Definition and description of the organisms

The family Enterobacteriaceae is a large and complex family of organisms and is subject to considerable re-classification. A significant number of the genera possess the ability to erment lactose and a prerequisite of lactose fermentation is possession of the enzyme ${ }^{[411)}$. This enzyme catalyses the hydrolysis of lactose to form glucose and galactose

Coliform organisms are members of a genus or species within the family Enterobacteriaceae that grow at $37^{\circ} \mathrm{C}$ and possess β-galactosidase. Coliform organisms are also oxidase-negative In the context of the method, organisms that produce acid from lactose and form yellow
colonies on membrane filters after incubation for 4 hours at $30^{\circ} \mathrm{C}$ and 14 hours at $37^{\circ} \mathrm{C}$ are regarded as coliform organisms. Some spore-forming bacteria may also produce acid, and subculture should be made to confirm fermentative properties or the possession of 3 -galactosidase and the absence of oxidase.
some lactose-fermenting strains of Aeromonas species and staphylococcus and bacillus may produce typical small yellow colonies. Where the presence of Aeromonas is suspected, subcultures should be made and the presence of oxidase confirmed ${ }^{(41)}$. Where staphylococcus and bacillus are suspected, isolates should be Gram stained to confirm Gram-positive cocci or rods respectively.
aecal coliform organisms are coliform organisms that grow at $44^{\circ} \mathrm{C}$ and produce acid and generally, gas from lactose, and indole from tryptophan. This group of organisms may
assuluev that, for most cases, these particular organisms will be in the minority and that the mala rity of organisms isolated will be Escherichia coli (E coli). Most strains of E coli possess the nyme $ß$-glucuronidase and substrates specific for this enzyme have been used for the etection and confirmation of E coli isolates.
7.2.2.2 Pathogenicity

Coliform organisms and faecal coliform organisms are present in large numbers in the intestines of humans and animals, and certain strains cause illness. Enterotoxigenic E coli are probably the commonest causes of travellers' diarrhoea. This may relate to lack of previous exposure to the organism, and predisposition to other illnesses.

7.2.3 Principle

A choice of media is available for the isolation and identification of coliform organisms and faecal coliform organisms. Only procedures employing membrane lauryl sulphate broth (MLSB) are described. A number of trials comparing MLSB with other media have been eported ${ }^{[2,243]}$. Volumes of sample, or appropriate aliquots of suitable dilutions, are filtered, and the filters incubated on absorbent pads soaked in MLSB. The organisms produce haracteristic yellow colonies on MLSB at $37^{\circ} \mathrm{C}$ and $44^{\circ} \mathrm{C}$. Confirmation of isolates is carried out by subculture to nutrient agar for 24 hours at $37^{\circ} \mathrm{C}$, together with appropriate testing for he production of acid from lactose at $37^{\circ} \mathrm{C}$ and $44^{\circ} \mathrm{C}$, the production of indole at $44^{\circ} \mathrm{C}$ and the absence of the enzyme oxidase.

7.2.4 Performance characteristic

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, severa membrane filters may be used. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. The limit of detection will, therefore, be one organism in the largest volume of sample that can be filtered. High numbers of competing organisms, in particular aeromonads and non-lactoseermenting bacteria, may inhibit the growth, or detection, of lactose-fermenting organisms. The detection of organisms in waters possessing high turbidities depends on the volume of sample that can be filtered. In addition, with these waters, residues may be left on the surface of the membrane filters. These residues may interfere with the identification of colonies under investigation. Alternatively, highly turbid waters can be analysed using the MPN technique After incubating for 18 hours, membrane filters are examined for characteristic colonies. Confirmation of the organisms isolated may take a further 48 hours.

7.2.5 Reagents and media

7.2.5.1 Membrane lauryl sulphate broth

Yeast extr
40.0 g

Lactose
Phenol red ($0.4 \% \mathrm{~m} / \mathrm{v}$ aqueous solution)
Sodium lauryl sulphate
Water
0.0

50 ml
1.0 g

1000 ml
Dissolve the ingredients in the water and adjust the pH to 7.4 ± 0.2. Dispense the resulting
solution in appropriate volumes into suitable bottles and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm that the pH is 7.4 ± 0.2. An agar form of the medium can be prepared by adding $10-15 \mathrm{~g}$ of agar per litre of solution.
7.2.5.2

Nutrient agar	
Beef extract powder	
Yeast extract	1.0 g
Peptone	2.0 g
Sodium chloride	5.0 g
Agar	5.0 g
Water	$10-15 \mathrm{~g}$
	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable bottles and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Alternatively, the bottled medium may be stored at room temperature in the dark and used within one month. Most non-selective agars are suitable for producing pure cultures for oxidase testing, provided they do not contain fermentable carbohydrates
7.2.5.3

Lactose peptone water	10.0 g
Peptone	5.0 g
Sodium chloride	2.5 ml
Phenol red ($0.4 \% \mathrm{~m} / \mathrm{v}$ aqueous solution $)$	
Lactose	10.0 g

Lactose
2.5 gl

Water
1000 ml
Dissolve the ingredients (except phenol red) in the water and adjust the pH to 7.5 ± 0.2 Add the phenol red solution and dispense the resulting solution in appropriate volumes into suitable containers, or test tubes, appropriately capped. Sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. The medium should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month.
7.2.5.4

Tryptone water	
Tryptone	20.0 g
Sodium chloride	5.0 g
Water	1000 ml

Dissolve the ingredients in the water and adjust the pH to 7.5 ± 0.2. Dispenser the resulting solution (in 5 ml volumes) into suitable containers and sterilize by autoraving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. The sterilized medium should be stored at betweeal $\mathbf{S O}^{\circ} \mathrm{C}$ and used within one month.
7.2.5.5 Kovács' reagent

4-dimethylaminobenzaldehyde
so-amyl alcohol
Hydrochloric acid (concentrated)

Dissolve the aldehyde in the alcohol. Cautiously, add the concentrated acid. The reagent should be light yellow to light brown in colour and should be stored at between 2-8 ${ }^{\circ} \mathrm{C}$ and used within six months.
> 2.2.5.6 Oxidase reagent

> Tetramethyl-p-phenylenediamine dihydrochloride 100 mg
> Water
> 10 ml

Weigh out the tetramethyl-p-phenylenediamine dihydrochloride into a suitable container and dissolve in the water. This reagent does not keep and should be prepared immediately before
use. "Test sticks" are available commercially and may be stored and used according to the manufacturer's instructions.
7.2.6 Analytical procedure

Duplicate volumes of sample, or aliquots of diluted sample, are filtered through membrane filters, which are then placed onto pads soaked in MLSB contained in Petri dishes. The dish is then placed in a container with a tight-fitting lid to prevent pads drying out. Membrane ters used for the isolation of coliform organisms should be incubated for 4 ± 1 hour a $30 \pm 1^{\circ} \mathrm{C}$ followed by 14 hours at $37 \pm 1^{\circ} \mathrm{C}$. Membrane filters used for the isolation of faeca $4.0+0.5^{\circ} \mathrm{C}$.

After incubating for 18 hours, count all yellow colonies (irrespective of size) on each membrane filter. Where a range of dilutions has been filtered, it should, ideally, be possible to courtrim a membrane filter showing between 20-80 colonies (section 5.3.1). Where no specific dilution gives a count within this range, it may usually be satisfactory to average the co ints for two mutually consistent dilutions with counts falling just outside this range. epending on the purposes of the sampling, there may be occasions where it is necessary to a a value, even though insufficient dilutions have been examined or were able sais cknowledged when reporting the the limitations of the reliabi ine membrane filter has been used for a given volume of sample, determine the average number of colonies per membrane filter.

The yellow colonies incubated at $37^{\circ} \mathrm{C}$ are regarded as presumptive coliform organisms and hose at $44^{\circ} \mathrm{C}$ are regarded as presumptive faecal coliform organisms. If membrane filters are examined before 18 hours, for example to obtain a provisional assessment, then they should be quickly returned to the incubator so that the full incubation is completed. Membrane fiters removed from the incubator should be examined as soon as possible, preferably within 10 minutes.

7.2.7 Confirmation

See also section 7.3.7. Where the number of organisms is less than the statutory limit, then consideration should be given as to whether the results need to be confirmed. Where the number of organisms exceeds the statutory limits, then confirmation will often be required see section 5.3.2.3. Selected colonies are subcultured on nutrient agar. At the same time, suitable control organisms, for example E coli and Pseudomonas aeruginosa (Ps. aeruginosa) can be subcultured as part of ongoing quality control. All membrane filters should be stored at between $2-8^{\circ} \mathrm{C}$, until the confirmatory tests are complete.
ncubate all nutrient and MacConkey agar dishes for a minimum of 18 hours at $37^{\circ} \mathrm{C}$ and check each culture for purity. Where cultures are pure, the nutrient agar dishes should be tested for the absence of the enzyme oxidase by transferring some of the colonies to a pad soaked in oxidase reagent. The oxidase test should not be carried out using a nichrome wire. If an organism is oxidase-positive, a blue colour develops, normally within approximately 10 seconds. A negative reaction is indicated when no colour change is produced. The contro organisms should give satisfactory oxidase reactions, ie negative for E coli and positive for Ps. aeruginosa. Where cultures are not pure, an isolated colony of each colony type should be subcultured onto fresh nutrient agar.

Inoculate all oxidasenegative isolates into lactose peptone water and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours, and into lactose peptone water and tryptone water and incubate at $44.0 \pm 0.5^{\circ} \mathrm{C}$ for 24 hours. Include the appropriate control cultures

Examine lactose peptone waters for the production of acid (as demonstrated by the production of a yellow colour). Negative tubes at $37^{\circ} \mathrm{C}$ should be returned to the incubator for a further 24 hours. Add approximately 0.25 ml of Kovács' reagent to the tryptone water and shake. The appearance of a red colour indicates a positive reaction confirming the rescill lulity or colm suitability of confirmation aginst reference procedures.
7.2.8 Reporting results

For each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported; see sections 5.4 and 7.2.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter to be obtained that contains a sfficient number of organisms. The report may also contain details of presumptive organisms, as well as confirmed organisms.

\section*{..3 Detection and enumeration of coliform

..3 Detection and enumeration of coliform
 by the multiple tube method or most probable number technique

7.3.1 Introduction

Coliform organisms and faecal coliform organisms have become the standard faecal ndicators for recreational and environmental water quality. The presence of these organisms ndicates faecal contamination and the numbers enumerated give some indication of the egree of faecal contamination. However, the levels of coliform organisms and faecal coliform rganisms do not indicate potential pathogen levels, and the absence of these indicator rganisms does not indicate the absence of pathogenic organisms in that water. The multiple tube method or MPN technique is subject to considerable statistical variation (see section解 aliquots of diluted samples have been prepared and analysed.

1.3.2 Scope and field of application

This method is suitable for the isolation of coliform organisms and faecal coliform organisms from all types of waters, but is particularly suited for testing sediments and turbid waters that cannot be processed by MF. The volume of sample, or diluted sample, to be tested depends upon the degree of faecal contamination. It may, therefore, be advisable to test a range of volumes, or dilutions, in order to produce a series of tubes in which some of the tubes exhibit no growth, ie negative results are obtained.

7.3.2.1 Definition and description of the organisms

The family Enterobacteriaceae is a large and complex family of organisms and is subject to considerable re-classification. A significant number of the genera possess the ability to ferment lactose and a prerequisite of lactose fermentation is possession of the enzym β-galactosidase ${ }^{(41)}$. This enzyme catalyses the hydrolysis of lactose to form glucose and galactose

Coliform organisms are members of a genus or species within the family Enterobacteria hat grow at $37^{\circ} \mathrm{C}$ and possess B -galactosidase. Coliform organisms are also oxidase-riespative In the context of the method, organisms that exhibit growth after incubating for erpurs at $30^{\circ} \mathrm{C}$ and 14 hours at $37^{\circ} \mathrm{C}$ are regarded as coliform organisms. Some sporeforming bacteria may also grow, and subculture should be made to confirm fermentative pro possession of β-galactosidase and the absence of oxidase.
Some lactose-fermenting strains of Aeromonas species and staphyldeocus and bacillus may also demonstrate growth. Where the presence of Aeromonas is susperted, subcultures should be made and the presence of oxidase confirmed ${ }^{(41)}$. Where staplococcus and bacillus are suspected, isolates should be Gram stained to confirm Ginampositive cocci or rods respectively.
Faecal coliform organisms are coliform organisms that will grow at $44^{\circ} \mathrm{C}$ and produce acid and, generally, gas from lactose, and indole from tryptophan. This group of organisms may include some genera, for example klebsiella species that may not be faecal in origin. It is assumed that, for most cases, these organisms will be in the minority and that the majority of grganisms isolated will be E coli. Most strains of E coli possess the enzyme \bar{B}-glucuronidase, and substrates specific for this enzyme have ben used for the detection and confirmation of coli isolates.

3.3.2.2 Pathogenicity

Coliform organisms and faecal coliform organisms are present in large numbers in the intestines of humans and animals, and certain strains cause illness. Enterotoxigenic E coli are probably the commonest causes of travellers' diarrhoea. This may relate to lack of previous exposure to the organism, and predisposition to other illnesses
7.3.3 Principle

Volumes of sample, or appropriate aliquots of suitable dilutions, are added to a series of ubes, or bottles, containing the isolation medium. Each container that is inoculated with the organism should show growth and acid production after incubation. Provided that some, but not, of all the tubes, exhibit no growth, ie are negative, the most probable number of organisms in the sample can be determined from probability tables. Positive tests, ie those tubes exhibiting growth, are subcultured to confirmatory media to demonstrate the production of acid from lactose at $37^{\circ} \mathrm{C}$ and $44^{\circ} \mathrm{C}$, and the production of indole.
7.3.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volumes of sample that are used. To increase the detection, or volume of sample, MF may be used to concentrate volumes of sample before inoculation into tubes containing media.
When high numbers of organisms are present, their detection is unlimited, provided that appronite dilutions can be prepared and analysed. Tubes may be examined after 24 hours 48 hours.
7.3.5 Reagents and media
7.3.5.1 Double-strength minerals modified glutamate medium
Lactose 20.0
(+) Glutamic acid (sodium salt) $L^{(+)}$Arginine monohydrochloride $\quad 40 \mathrm{mg}$
(-) Aspartic acid
(-) Cystine
Sodium formate
1.8 g

Magnesium sulphate heptahydrate 200 mg
Calcium chloride dihydrate $\quad 20 \mathrm{mg}$
ron(III) citrate
20 mg
Thiamin (aneurin hydrochloride)
Nicotinic acid
Pantothenic acid
2 mg
purple ($1 \% \mathrm{~m} / \mathrm{v}$ ethanolic solution)
2.0 ml

1000 ml
Dissolve all the ingredients in the water. Dispense the resulting solution (in 5 ml volumes) into suitable containers. Sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 6.8 ± 0.2. The sterile medium should be stored in the dark at room temperature and used within one month.

The medium is conveniently prepared in quantities of 10 litres and several of the ingredients added as separate solutions

Solution 1	
L(+) Arginine monohydrochloride	400 mg
L(-) Aspartic acid	480 mg
Water	50 ml

Dissolve the ingredients in the water. This may require gentle heating

Solution 2	
L(-) Cystine	400 mg
5M sodium hydroxide	10 ml
Water	90 ml

Dissolve the ingredients in the water. This may require gentle heating.

Solution 3	
Nicotinic acid	20 mg
Pantothenic acid	20 mg
Water	5 ml

Dissolve the ingredients in the water.

Solution 4	
Iron(III) citrate	200 mg
Water	10 ml

Dissolve the ingredient in the water. This may require gentle heating.

Solution 5	
Calcium chloride dihydrate	5.0 g
Water	100 ml
Concentrated hydrochloric acid	0.1 ml

Dissolve the ingredients in the water and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 20 minutes Keep as a stock solution.

Solution 6	100 mg
Thiamin	100 ml
Water	

Dissolve the ingredient in the water and sterilize by filtration through a sterile
$0.2 \mu \mathrm{~m}$ pore size membrane filter. This solution should be stored at room temperature and used within six weeks.

To prepare 10 litres of double-strength medium, dissolve the appropriate quantities of $\mathrm{L}(+$ glutamic acid, sodium formate, dipotassium hydrogen phosphate, ammonium chloride and magnesium sulphate in 9 litres of hot water. Add solutions $1,2,3$ and 4, and 4.0 ml of solution 5 . Adjust the pH to 6.8 or such that after sterilization the final pH is 6.7 ± 0.2. Ad 20.0 ml of bromocresol purple solution and make the final volume up to 10 litres. For immediate use, add the appropriate quantity of lactose and the thiamin solution, dispense into tubes, or bottles, and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. For stonag without thiamin and lactose, dispense in 500 ml volumes in suitable containers anagzutoclave at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes.
Prepare single-strength medium by diluting double-strength medium with anequal volum of water, dispense (in 5 ml volumes) into suitable containers and sterine bly autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. autoclaving a

A variety of confirmation media is available and should be en(say) as applicable. Confirmatory tests that detect the expression of β-galactosidase and β cracronidase are also available. Confirmation is carried out by subculture to a selective nedium that permits the differentiation of lactose-fermenting organisms from non-lactose-fermenting organisms, for xample MacConkey agar, followed by inoculation of typical colonies into confirmatory media

7.3.5.2	MacConkey agar Bile salts	
	Peptone	5.0 g
	Lactose	20.0 g
	Sodium chloride	10.0 g
	Agar	5.0 g
	Neutral red (1\% m/v aqueous solution)	12.0 g
	Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable bottles and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.5 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Altematively, the bottled medium may be stored in the dark at room temperature and used within one month

7.3.5.3

Nutrient agar	
Beef extract powder	1.0 g
Yeast extract	2.0 g
Peptone	5.0 g
Sodium chloride	$5.0-\mathrm{g}$
Agar	$10-15 \mathrm{~g}$
Water	1000 ml

1.0 g
2.0 g
5.0 g
5.0 g

1000 ml

Dysolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Ispense the resulting solution in appropriate volumes into suitable bottles and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use
 medium may be stored at room temperature in the dark and used within 1 month. Most non-selective agars are suitable for producing pure cultures for oxidase testing, provided they do not contain fermentable carbohydrates
7.3.5.4

Peptone

Sodium chloride

hano
acter
10.0 g
5.0 g
2.5 ml
10.0 g

1000 m
Dissolve the ingredients (except phenol red) in the water and adjust the pH to 7.5 ± 0.2. Add the phenol red solution and dispense the resulting solution in appropriate volumes into suitable containers, or test tubes, appropriately capped. Sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. The medium should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month.
7.3.5.5

Tryptone water	
Tryptone	20.0 g
Sodium chloride	5.0 g
Water	1000 ml

issolve the ingredients in the water and adjust the pH to 7.5 ± 0.2. Dispense the resulting solution (in 5 ml volumes) into suitable containers and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. The sterilized medium should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month.

7.3.5.6	Kovács' reagent	
	4-dimethylaminobenzaldehyde	5.0 g
	Iso-amyl alcohol	75 ml
	Hydrochloric acid (concentrated)	25 ml

Dissolve the aldehyde in the alcohol. Cautiously, add the concentrated acid. The reagent should be light yellow to light brown in colour and should be stored at between 2-8年 and used within six months

Oxidase reagent
Tetramethyl-p-phenylenediamine dihydrochloride

Weigh out the tetramethyl-p-phenylenediamine dihydrochloride into a suitable container and dissolve in the water. This reagent does not keep and should be prepared immediately before use. "Test sticks" are available commercially and may be stored and used according to the manufacturer's instructions.

7.3.6 Analytical procedure

Thoroughly mix the sample and inoculate $1 \times 50 \mathrm{ml}$ and $5 \times 10 \mathrm{ml}$ sample volumes into tubes containing equal volumes of double-strength minerals modified glutamate medium (MMGM). In addition, inoculate $5 \times 1 \mathrm{ml}$ sample volumes into 5 ml of single-strength MMGM Where polluted samples are to be tested, omit the 50 ml inoculation and include $5 \times 0.1 \mathrm{ml}$ into single-strength MMGM. For hes of an appropriately diluted somple, ie a 1 - 100 -fold dilutions, or 1000 -fold or higher dilutions, should be included to ensure that some of the tubes exhibit no growth, ie show negative reactions. For solid and semi-solid samples, see section 7.1.3.2.
noculated tubes should be incubated at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24$ hours. The number of tubes, or bottles, showing growth of organisms, as indicated by acid production, is recorded. Cultures from these tubes are subcultured to two separate Petri dishes containing MacConkey agar. One Petri dish is incubated at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24$ hours, and the other at $44.0 \pm 0.5^{\circ} \mathrm{C}$ for 18-24 hours. All tubes showing growth are retained for a period, since they may be required or repeat subcultures. All tubes showing no growth of organisms are incubated for a further 24 hours and then examined again. Any new tubes showing growth of organisms are inoculated onto MacConkey agar.
7.3.7 Confirmation

See also section 7.2.7. Colonies of coliform organisms on the MacConkey agar are usually circular in shape, convex or low convex with a smooth surface and entire edge. They are usually red in colour, but the depth of colour may vary and colonial differences cannot be elied upon for differentiation within the group. The colony may be surrounded by a halo due to acid precipitation of the bile salts.

Typical isolated colonies from each Petri dish at $37^{\circ} \mathrm{C}$ should be inoculated into lactose peptone water and onto nutrient agar for incubation at $37^{\circ} \mathrm{C}$. Typical isolated colonies from each Petri dish at $44^{\circ} \mathrm{C}$ should be inoculated into lactose peptone water and onto nutrient agar for incubation at $37^{\circ} \mathrm{C}$, and into lactose peptone water and tryptone water for incubation at $44^{\circ} \mathrm{C}$. See also section 5.3.2.3. The MacConkey agar Petri dishes should be etained in case repeat confirmatory tests are required. Appropriate control cultures sioun also be included. Examine lactose peptone waters for the production of acid (as demonstrated by the production of a yellow colour). Negative tubes at $37^{\circ} \mathrm{C}$ sh returned to the incubator for a further 24 hours. Add approximately $0.25 \mathrm{~m} /$ of Rovács' reagent to the tryptone water and shake. The appearance of a red colourindreates a positive reaction confirming the presence of indole, while a yellow colour indicaneca negative reaction. A range of commercially available systems is available for h stest. These should be assessed for suitability of confirmation against reference procedures
Check the nutrient agar cultures for purity. Where culturesarepure, they should be tested for the absence of the enzyme oxidase by transferring some onthe colonies to a pad soaked in oxidase reagent. The oxidase test should not be carried out using a nichrome wire. If an organism is oxidase-positive, a blue colour develops, normally within approximately 10 seconds. A negative reaction is indicated when no colour change is produced. The contro organisms should give satisfactory oxidase reactions, ie negative for E coli and positive for s. aeruginosa. Where cultures are not pure, an isolated colony of each colony type should be subcultured onto fresh nutrient agar.

Where there is interest in the different types of coliform organisms present in a sample, a number of morphologically different colonies can be subcultured from the MacConkey agar dishes. These can be confirmed and subjected to further testing with commercially available products.
7.3.8 Reporting results

For each sample, record the number of tubes which confirm as positive, ie demonstrate growth of organisms, and from tables determine the number of organisms per volume to be eported; see sections 5.4 and 7.3.4. Every effort should be made to prepare sufficient dilutions to enable a series of tubes to be obtained to show that some tubes exhibit no growth while others exhibit some growth. The report may also contain details of presumptive organisms, as well as confirmed organisms.

7.4 Detection and enumeration of enterococci

7.4.1 Introduction

Enterococci include a number of different species that occur in the faeces of humans and warm-blooded animals and can therefore provide an indication of such pollution. In human are \&er more numerous than E coli. Enterococci of faecal origin do not multiply in water arla are more resistant to environmental stress than E coli. They can be found in food ducts and are often unrelated to direct faecal contamination. A related group of bacteria, Aerococcus species, is often found in water and on vegetation.

The species of enterococci in faeces, and therefore those most likely to be found in polluted waters can be found in two main groups. The first group includes Enterococcus faecalis, Enterococcus faecium and Enterococcus durans, which are normally present in humans and various animals. The second group comprises Streptococcus bovis, Streptococcus equinus and enterococcus avium, which are not usually found in humans. Hence, a count of the actual nterococcal species present in water may faciitate the tracing of sources of poliution. The number of E coli organisms in water, compared with enterococci, is sometimes used to assess he nature of recent faecal contamination. A ratio greater than four is regarded as an indication of human pollution, and a ratio of less than one is regarded as an animal source of pollution. This kind of approach is, however, limited owing to such variables as time, emperature and pH . Differential survival rates of the organisms may also affect the validity of he results. While enterococci are regarded as secondary indicator organisms of faecal pollution, they are considered to be better indicators of past, or less recent, contamination, and may be of more value in assessing health risks associated with recreational and environmental waters

7.4.2 Scope and field of application

The MF method ${ }^{(44)}$ is suitable for the isolation of enterococci from all types of waters and the MPN technique is suitable for sediments and sludges and waters containing high levels of particulate matter. The volume of sample, or diluted sample, to be tested depends upon the legree of faecal contamination. It may, therefore, be advisable to test a range of volumes, or dilutions, in order to produce a membrane filter containing sufficient colonies, or a series of tubes, some of which exhibit no growth.

4.2.1 Definition and description of the organism

Enterococci are Gram-positive cocci that tend to form pairs and chains. They are non-sporing, oxidase-negative and catalase-negative, possess Lancefield's Group D antigen and can hydrolyse aesculin. They can grow aerobically and anaerobically in the presence of bile salts, and in concentrations of sodium azide which are inhibitory to coliform organisms and mos Gram-negative bacteria. Enterococcus faecalis and some related species can reduce 2,3,5triphenyltetrazolium chloride (TC) to the insoluble red dye, formazan.

.4.2.2 Pathogenicity

Enterococci often occur in urinary tract infections and in sub-acute bacterial endocarditis.

.4.3 Principle

Membrane filters from filtered samples are incubated on Slanetz and Bartley agar and the number of characteristic colonies, after 48 hours incubation, is recorded. Confirmation is based on the ability of isolated colonies to hydrolyse aesculin

For the MPN technique, a series of tubes containing glucose azide broth can be incubated and examined for growth and reduction of TTC or production of acid respectively

7.4.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered or series of tubes tested. To increase the detection, or volume of sample, several membrane filters may be used. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. The limit of detection will, therefore, be one organism in the largest volume of sample that can be filtered. High numbers of competing organisms may inhibit the growth or detection, of enterococci. Some species of spore-bearing bacillus may produce small red colonies on the medium and confirmation by aesculin hydrolysis is important. The detection of organisms in waters possessing high turbidities depends on the volume of sample that can be filtered. In addition, with these waters, residues may be left on the surface of the membrane filters. These residues may interfere with the identification of colonies under ivestigation. After incubating for 48 hours, membrane filters should be examined for colonies. Confirmation takes a further 2 hours.

7.4.5 Reagents and media

Sodium azide is toxic. Solutions containing sodium azide should not be discharged through metal pipework or drains, as explosive compounds may be formed. Sodium azide can be decomposed by addition of excess nitrite solution.

7.4.5.1	Slanetz and Bartley agar	
	Tryptose	20.0 g
	Yeast extract	5.0 g
	Glucose	2.0 g
	Dipotassium hydrogen phosphate	4.0 g
	Sodium azide	400 mg
	2,3,5-triphenyltetrazolium chloride (TTC)	100 mg
	Agar	15.0 g
	Water	1000 ml

issolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Excessive heating should be avoided to minimise the reduction of TTC. Cool quickly to approximately $50^{\circ} \mathrm{C}$. The pH of the medium should be checked to confirm a pH of 7.2 ± 0. Pour appropriate aliquots of the resulting solution into sterile Petri dishes. Allow the agos solidify, store at between $2-8^{\circ} \mathrm{C}$, and use within one month.
7.4.5.2
Bile aesculin agar
Peptone
Bile salts
Aesculin
Ammonium iron(III) citrate
Agar

Ammon
Agar
Wate
Dissolve the ingredients in the water. To achieve this, wint be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.1 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes. Allow the agar to solidify, store at room mperature in the dark and use within one month

Kanamycin aesculin azide agar	
Tryptone	20.0 g
Yeast extract	5.0 g
Sodium chloride	5.0 g
Sodium citrate	1.0 g
Aesculin	1.0 g
Ammonium iron(III) citrate	500 mg
Sodium azide	150 mg
Kanamycin sulphate	20 mg
Agar	15.0 g
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by auto traving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checkea to confirm a pH of 7.0 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and one month.

7.4.5.4 Glucose azide broth

Peptone
Yeast extract
Sodium chloride
Dipotassium hydrogen phosphat
Potassium dihydrogen phosphat
Glucose
Sodium azide
Bromocresol purple
$1.6 \% \mathrm{~m} / \mathrm{v}$ ethanolic solution
Water

Single-strength	Double-strength
10.0 g	20.0 g
3.0 g	6.0 g
5.0 g	10.0 g
5.0 g	10.0 g
2.0 g	4.0 g
5.0 g	10.0 g
250 mg	500 mg
2.0 ml	4.0 ml
1000 ml	1000 ml

Dissolve the ingredients in the water and adjust the pH to 6.8 ± 0.2. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $115 \pm$ $1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 6.8 ± 0.2. Store at between $2-8^{\circ} \mathrm{C}$ and use within one month

7.4.6 Analytical procedure

A volume of sample, or an aliquot of a diluted sample, is filtered through a membrane filter. The filter is then placed onto Slanetz and Bartley agar and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 4 hours followed by $44.0 \pm 0.5^{\circ} \mathrm{C}$ for 44 hours. After incubation, examine the membrane filters for ypical colonies. Enterococci form red or maroon coloured colonies, 1-2 mm in diameter, hat may, or may not, have a whitish border. Other organisms, in particular spore-bearing bacilli, may produce pin-pointed red colonies. Record all colonies as presumptive enterococci

Alternatively, measured volumes of sample, or dilutions of sample, are added to a series of tubes, or bottles, containing the isolation broth medium. Each container that is inoculated with the organism should show growth after incubation. Provided that some of the tubes exhibit no growth, ie are negative, the most probable number of organisms in the sample an be determined from probability tables. Positive tests are subcultured to confirmatory media

7.4.7 Confirmation

resumptive colonies should be confirmed (see section 5.3.2.3) by transferring the membran filter to bile aesculin azide agar, or kanamycin aesculin azide agar, and incubating at $44.0 \pm 0.5^{\circ} \mathrm{C}$ for 2 hours. Development of a black or brown colour in and around the colony confirms presumptive colonies as enterococci. This is due to the hydrolysis of aesculin.

7.4.8 Reporting results

For each sample, record the number of colonies per volume tested. Alternatively, record the number of tubes that confirm as positive, ie demonstrate growth of organisms, and from
ables determine the number of organisms. Convert this number to the volume to be reported; see sections 5.4 and 7.4.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter to be obtained that contains sufficient organisms, or a series of tubes to be obtained that shows that some tubes exhibit no growth while others exhibit some growth. The report may also contain details of presumptive organisms.

Table 7.1 Biochemical differentiation of enterococci
Table 7.1 summarises different reactions for a number of organisms.

	s. bovis	s. equinus	Ent. durans	Ent. faecalis	Ent. Faecium
Antigen group	D	D*	D	D	D
Growth at $45^{\circ} \mathrm{C}$	++	+	d	+	+
Suvives $60^{\circ} \mathrm{C}$	-	-	+	+	+
-30 minutes					+
Growth in 6.5%	-	-	+	+	+
sodium chloride					
Growth at pH 9.6	-	-	d	+	+
Growth on 40% bile	+	+	+	+	+
Aesculin hydrolysis	+	+	+	+	+
Arginine hydrolysis	-	-	+	+	+
Arabinose (acid)	d	-	-	-	+
Raffinose (acid)	+	-	-	-	-
Glycerol (acid)	-	-	+	+	+
Sorbitol (acid)	-	-	-	+	-
Haemolysis	$\propto /-$	\propto	B/-	B/-	\propto / B

* In the precipitin test, extracts of some strains do not react with antisera

7.5 Detection and enumeration of spore-forming sulphite-reducing clostridia and Clostridium perfingens

7.5.1 Introduction

Clostridium species are environmental bacteria. Clostridium perfringens (CI. perfringens) is an mportant species of the group of anaerobic sulphite-reducing clostridia and is commonly found in human and animal faeces. Most species are saprophytic, normally inhabiting soil water and decomposing plant and animal material. Since these organisms are usually presen in much lower numbers than E coli and enterococci, they are less sensitive as direct iracicator organisms of faecal contamination. Cl. perfringens can form resistant spores that slaye in water and in the environment for much longer periods than E coli and other faecal Indicator organisms.

5.2 Scope and field of application

Several methods ${ }^{(41,45)}$ are suitable for the isolation of Cl. perfringens ${ }^{\text {a }}$. ${ }_{\text {waters including river }}$ waters, estuarine and sea waters, sewage and sewage effluents, and -spa pool waters used for recreational or therapeutic purposes. The volume of sample, degiluted sample, to be tested depends upon the degree of faecal contamination. It mays cherefore, be advisable to test a range of volumes in order to produce a membrane fiver containing sufficient colonies, or a series of tubes, some of which exhibit no growth.

5.5.2.1 Definition and description of the organisms

Sulphite-reducing clostridia are Gram-positive, spore-forming anaerobic rods. The rods are typically large, straight or slightly curved with slightly rounded ends. Most members of the enus are motile, but Cl. perfringens is an important exception. Clostridia active, frequently possessing both saccharolytic and proteolytic enzymes

7.5.2.2 Pathogenicity

The presence of such organisms in recreational and environmental water can be regarded as being a result of faecal contamination. The genus, whilst consisting mainly of saprophytes contains some species which are, generally, regarded as opportunistic pathogenic organisms. or example, Cl. perfring cases of food poisoning.

.5.3 Principle

The methods describe the isolation of sulphite-reducing clostridia by membrane filtration. After preliminary heat treatment, to destroy vegetative bacteria, test volumes of sample, or diluted sample, are filtered. The membrane filters are incubated under anaerobic conditions at $37^{\circ} \mathrm{C}$ for 48 hours, and the number of typical black colonies that develop is recorded. Typical colonies may be confirmed as Cl . perfringens by subculture to Crossley's milk. The production of acid and the formation of the characteristic "stormy clot" by coagulation of casein constitute confirmation.

.5.4 Performance characteristic

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, severa membrane filters may be used. When high numbers of organisms are present, their detection is uni.ined, provided that appropriate dilutions can be prepared and analysed. The limit of etection will, therefore, be one organism in the largest volume of sample that can be yred. High numbers of competing organisms may inhibit the growth, or detection, of the ganism. The detection of organisms in waters possessing high turbidities depends on the me of sample that can be filtered. In addition, with these waters, residues may be left on surface of the membrane filters. These residues may interfere with the identification of
 ed but should be incubated for up to 48 hours before a final record is made. Confirmation will take a further 24 hours.
7.5.5 Reagents and media
7.5.5.1
(TSC) agar
Tryptose

Yeast extract	5.0 g
Soya peptone	5.0 g
Ammonium iron(III) citrate	1.0 g
Sodium metabisulphite	1.0 g
D-cycloserine	400 m
Agar	15 g

D-cycloserine	400 mg
Agar	15 g
Water	1000

Dissolve the ingredients (except D-cycloserine) in the water. To achieve this, it will be necessary to heat to boiling. Adjust the pH to 7.6 ± 0.2 and dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $21 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confim a pH of 7.6 ± 0.2. Add the appropriate amount of D-cycloserine from a suitable stock solution. This solution should be sterilized by membrane filtration through a $0.2 \mu \mathrm{~m}$ pore size filter. Alternatively, the partial medium may be cooled to approximately $50^{\circ} \mathrm{C}$ and the appropriate amount of D-cycloserine solution added. The complete medium is poured into sterile Petri dishes, allowed to solidify, stored at between $2-8^{\circ} \mathrm{C}$ and used within seven days. Any medium that is removed from the refrigerator and remains unused should be discarded. has been shown that warming the medium to room temperature with subsequent cooling for storage reduces the effectiveness of the medium.

7.5.5.2	Perfringens (OPSP) agar ${ }^{\text {477 }}$	
	Tryptone	15.0 g
	Yeast extract	5.0 g
	Soya peptone	5.0 g
	Ammonium iron(III) citrate	1.0 g
	Sodium metabisulphite	1.0 g
	Sodium sulphadiazine	100 mg
	Oleandomycin phosphate	$500 \mu \mathrm{~g}$
	Polymixin B sulphate	10000 iu
	Agar	15.0 g
	Water	1000 ml

Dissolve the ingredients (except the antibiotics, sodium sulphadiazine, oleandomycin phosphate and polymixin B sulphate) in the water. To achieve this, it will be necessary to hea to boiling. Adjust the pH to 7.6 ± 0.2 and dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of and polymixin B sulphate from suitable stock solutions. These solutions should be sterilized by membrane filtration through $0.2 \mu \mathrm{~m}$ pore size filters. Alternatively, the partial medium may be cooled to approximately $50^{\circ} \mathrm{C}$ and the appropriate amounts of sterile antibiotic solution added. The complete medium should be thoroughly mixed and poured into sterile Petri dishes, allowed to solidify, stored at between $2-8^{\circ} \mathrm{C}$ and used within seven days. Any medium that is removed from the refrigerator and remains unused should be discarded. It has been shown that warming the medium to room temperature with subsequent cooling for storage reduces the effectiveness of the medium.
7.5.5.3

Skimmed-milk powder	100.0 g
Peptone	10.0 g
Bromocresol purple	100 mg
Water	1000 ml

Mix the skimmed-milk powder with the water, adding the water gradually. Add the peptone and indicator solution and mix well. Distribute in 10 ml quantities into suitable screw-capped containers and autoclave at $121 \pm 1^{\circ} \mathrm{C}$ for 5 minutes. Remove containers from the autoclave whilst still hot, and tighten the caps to prevent excess air entering the bottles. The pH of the medium should be checked to confirm a pH of 6.8 ± 0.2. The complete medium should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month.

7.5.6 Analytical procedure

For liquid samples, filter a volume of sample, or appropriate dilution of the sample, through a membrane filter and place the filter onto an incubation pad containing sterile quarter strength Ringer's solution. Raise the temperature of the solution to $80^{\circ} \mathrm{C}$ and then incubate a ± 1 C 10 minutes. Alow the membrane fiter to cool to room temperature. Transfer the membrane filter to the TSC or OPSP agar. Invert the Petri dish and incubate in an anaerobic jar at $37 \pm 1^{\circ} \mathrm{C}$ for 48 hours. Examine the membrane filter for typical black colonie (2-4 mm in diameter). For selective enumeration of Cl. perfringens, the Petri dishes can be ncubated at $44 \pm 0.5^{\circ} \mathrm{C}$. Alternatively, heat the volume of sample, or appropriate dilution the sample, to $80^{\circ} \mathrm{C}$ and then incubate at $80 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. Cool to room
的 available for the generation of the correct anaerobic conditions within jars. noticator strips are also available and should be added to each jar to demonstrate complete anarobiosis.
or semi-solid or solid samples, aseptically, weigh out 10 g of sample a sterile "stomacher" bag. Add 90 ml of sterile Ringer's solution and homogehise for 30 second Place the homogenised suspension into a sterile bottle and in (1) ate at $80 \pm 1^{\circ} \mathrm{C}$ for 30 minutes. Allow the bottle to cool to room temperature an anse ette suitable aliquots, or aliquots of suitable dilutions, into sterile Petri dishes. Aad $15-25 \mathrm{ml}$ of sterile molten agar, which has been cooled to approximately $50^{\circ} \mathrm{C}$, and carefully mix thoroughly. Allow the agar to solidify, and incubate under anaerobic conditions at $37 \pm 1^{\circ} \mathrm{C}$ for 48 hours.

7.5.7 Confirmation

Where membrane filters or Petri dishes contain typical black colonies, subculture the colonies into Crossley's milk medium; see section 5.3.2.3. At the same time, subculture a suitable ontrol culture of Cl. perfringens. Incubate the milk medium at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours and xamine for the production of acid, as demonstrated by the change in colour of the medium coagu ore a typical clot. A number of other species lostrin, for example chavoe, may also produce the sto ny loe reaction. rate reduction, lactose fermentation and/or gelatin liquefaction ${ }^{40}$.
.5.8 Reporting results
or each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported. See sections 5.4 and 7.5.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter or Petri dish to be obtained that contains sufficient organisms. The final report may also contain details of presumptive as well as confirmed clostridia.

7.6 Determination of viable colony count using the pour plate method

7.6.1 Introduction

The determination of the viable colony count is usually of little interest for environmental waters. Such waters, generally, possess high bacterial numbers due to the organisms normally present. The determination is, however, of importance in recreational waters where treatmen and disinfection are routinely practised and where such procedures are monitored. Such poolsperate at elevated water temperatures and, often, under heavy bathing loads, which ericaurage the growth of undesirable organisms. The organisms that grow in water at $37^{\circ} \mathrm{C}$, e nerally, only survive with difficulty and are more likely to reflect poor hygiene conditions. nicro-organisms which survive in water at $22^{\circ} \mathrm{C}$ usually reflect the normal microbial population. Hence, colony counts form an important part in the assessment of the hygienic quality of such waters.

7.6.2 Scope and field of application

The pour plate method is suitable for the determination of the viable colony count of waters such as swimming pool waters and spa pool waters. The method detects all bacteria, yeast and moulds capable of growing in or on the medium specified under the test conditions. Many bacteria, once in water, become stressed, or injured, and find it difficult to recover on high-nutnent media. Other bacteria become adapted to a low-nutrient environment and find conventional culture media too nutrient-rich. Hence, a low-nutrient medium ${ }^{\text {(5) }}$ for the numeration of colony counts may also be used. The use of this medium involves longer incubation periods, and, generally, results in more bacteria being recovered than with the conventional colony count medium. This medium may be particularly useful for the isolation of specific organisms, for example Favobacterium. In addition, a method for determining the total viable and non-viable colony count can be carried out using acridine orange ${ }^{(41)}$.

7.6.3 Principle

The normal sample volume is 1 ml , but appropriate dilutions of the sample may need to be used in order to obtain a sufficient number of colonies, normally between 30-300. The sample is mixed with yeast extract agar and incubated at $22^{\circ} \mathrm{C}$ for 72 hours and at $37^{\circ} \mathrm{C}$ for 24 hours.

7.6.4 Performance characteristic

When low numbers of bacteria are present, their detection is dependent only on the volume of sample that can be incorporated into the pour plate procedure and still enable the agar to solidify. When high numbers of bacteria are present, their detection is unlimited, provided hat appropriate dilutions can be prepared and analysed. The limit of detection will, therefore, be one colony in the largest volume of sample that can be processed. High numbers of competing organisms may inhibit the growth, or detection, of the bacteria.

.6.5 Reagents and media

7.6.5.1	Yeast extract agar	
	Yeast extract	3.0 g
	Peptone	5.0 g
	Agar	15.0 g
	Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. ispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.3 ± 0.2. Allow the medium to solidify, stor at room temperature in the dark and use within one month. For use, heat the medium to

Yeast extract	500 mg
Protease peptone number 3 or polypeptone 500 mg	
Casamino acids	500 mg
Glucose	500 mg
Soluble starch	500 mg
Dipotassium hydrogen phosphate	300 mg
Magnesium sulphate heptahydrate	50 mg
Sodium pyruvate	300 mg
Agar	12.0 g
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.2 ± 0.2. Allow the medium to solidify, store at room temperature in the dark and use within one month. For use, heat the medium to approximately $100^{\circ} \mathrm{C}$, cool to approximately $50^{\circ} \mathrm{C}$ and maintain at this temperature until ready for use.

7.6.6 Analytical procedure

For each incubation temperature, pipette 1 ml of the sample, or suitable dilution of the sample, into a 90 mm Petri dish. Add approximately 20 ml of molten medium and mix immediately using rapid, but gentle, backwards, forwards and rotational movements, taking care that the medium does not spill over the side of the dish or adhere to the lid. The time between pipetting the sample and the addition of the medium should not exceed 20 minutes. Allow the medium to solidify, invert the dish and incubate at the appropriate emperature. For the yeast extract agar procedure, incubate one Petri dish at $37 \pm 1^{\circ} \mathrm{C}$ for 24 ± 3 hours and another at $22 \pm 1^{\circ} \mathrm{C}$ for 72 ± 3 hours. For the R2A agar procedure, incubate one Petri dish at $20 \pm 1^{\circ} \mathrm{C}$ for seven days. After incubation, remove the dish from the
incubator and record the number of colonies. The volume of sample, or dilution of sample, should have been prepared and used which enables a colony count of between $30-300$ to be recorded. If the number of colonies on the agar exceeds 300, count the dish prepared with the appropriately diluted sample (which should contain between 30-300 coloniec). In cases where all prepared dishes result in counts in excess of 300 colonies, then consideration should be given to repeating the determination using a freshly submitted sample, (\%) recording the number of colonies in a randomly chosen segment of the dish. See section 5.3.2.2. If the colonies are unevenly distributed, a number of opposing segments of the dish can be used to provide a better estimate of the count. Spreading colonies inay interfere with counts or make counting difficult. Where a chain of colonies appears th belcaused by the disintegration of a clump of organisms, or the growth appears as a fincaround the edge or surface or at the base of the medium, then these colonies should Decounted as 1 colony. - S

As an alternative technique, surface spreading can be usofarwhere it is intended to isolate and identify the organisms grown under the test conations. The molten medium may be poured into the dish and allowed to solidify. A volume of sample, or dilution of the sample normally 0.1 ml , is then pipetted onto the surface of the agar. The sample is evenly distributed onto the surface of the agar until all the liquid has been absorbed into the agar nvert the dish and incubate at the appropriate temperature

-6.7 Reporting results

For each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported. See sections 5.4 and 7.6.4. Every effort should be made to
 colonies. It may for example, greater than 300 , since the correct value might be much higher.
7.7.1 Introduction

Many different serotypes of Salmonellae are present to varying extents in humans, animals and birds. All members of the genus are potentially pathogenic. The low numbers of numbers of salmonellas present in water are, generally, much lower than those of other micro-organisms.

7.7.2 Scope and field of application

he MPN technique is suitable for the isolation of Salmonella species (other than Salmonell yphi) from surface water, sewage and related materials. The sample volume, or diluted sample, to be tested depends upon the degree of faecal contamination but is usually between 100-1000 ml.
$7.1 .2 P_{0}$
Salmonellas nition and description of the organisms
can as normally conform to the general definition of the family Enterobacteriacae ${ }^{(50)}$ nd can be further differentiated, biochemically, into 4 subgroups, subgenus I to IV. Those of -galactosid the largest group, are considered pathogenic towards humans and are -galactosidase-negative. Salmonellas are sub-divided into serovars on the basis of genusdifferentiated into groups by bacteriophage and plasmid typing.

The usual biochemical reactions include production of hydrogen sulphide. Indole and urease are not produced. Citrate is utilised as a carbon source; lysine and ornithine are decarboxylated. Phenylalanine and tryptophan are not oxidatively deaminated, and sucrose, salicin, inositol and amygdalin are not fermented

7.7.2.2 Pathogenicity

Salmonella infections give rise to symptoms of diarrhoea and vomiting. The incubation period ranges from $12-72$ hours and symptoms persist for $2-3$ days. Most cases occur from the consumption of raw, or undercooked, food, in particular poultry, and food containing eggs.

7.7.3 Principle

solation is based on concentration from water by membrane filtration, or the use of a filter aid, followed by pre-enrichment (to recover environmentally stressed organisms) involving incubation in a non-selective medium, for example, buffered peptone water at $37^{\circ} \mathrm{C}$ for 24 hours. Selective enrichment is then carried out using Rappaport Vassiliadis enrichment broth at $41.5^{\circ} \mathrm{C}$, subculturing to selective agar for 24 and 48 hours.

7.7.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volumes of sample that are used. To increase the detection, or volume of sample, MF may be used to concentrate volumes of sample before inoculation into tubes containing media. When membrane filtration is impracticable, a suitable filter-aid, for example diatomaceous earth, may be used. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. High numbers of competing organisms, in particular Ps. aeruginosa, Proteus species and coliform organisms may inhibit the growth, or detection, of the organisms, and Citrobacter species may produce colonies that closely resemble salmonellas. Initial isolation takes 3 days but tests may be incubated for up to 4 days. Subculture and confirmation take a further 48 hours.
7.7.5 Reagents and media
7.7.5.1 Buffered peptone water ${ }^{(51)}$
eptone
Sodium chloride
Disodium hydrogen phosphate
Potassium dilydrog phate
Water
10.0 g
5.0 g
3.5 g
1.5 g
1000 ml

Dissolve the ingredients in the water. Dispense the resulting solution in appropriate volumes into suitable screw-capped bottles and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.2 ± 0.2. Autoclaved media may be stored in the dark at room temperature and used within one month.

7.7.5.2 Rappaport Vassiliadis enrichment broth ${ }^{(52,53)}$

Solution A	
Soya peptone	4.5 g
Sodium chloride	7.2 g
Potassium dihydrogen phosphate	126 mg
Dipotassium hydrogen phosphate	180 mg
Water	800 ml
Solution B	
Magnesium chloride anhydrous	13.6 g
Water	100 ml
Solution C	
Malachite green	40 mg
Water	100 ml

Dissolve the ingredients of solution A in water. To achieve this, it may be necessary to heat to boiling. Prepare this solution on the day of use. To 1000 ml of solution A, add 100 ml of solution B and 10 ml of solution C and mix well. Dispense the resulting solution in 10 ml volumes into suitable containers and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 5.2 ± 0.2. Autoclaved media may be stored in the dark at room temperature and used within one month.
7.7.5.3

Briliant green agar ${ }^{(5 n)}$
 Yeast extract

Proteose peptone or polypeptone
Sodium chloride
Lactose
Sucrose
Phenol red ($0.2 \% \mathrm{~m} / \mathrm{v}$ aqueous solution)
Brilliant green ($0.5 \% \mathrm{~m} / \mathrm{v}$ aqueous solution)
Agar
Wate

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable conrainlers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the plon the medium should be checked to confirm a pH of 6.9 ± 0.2. Cool the molten medium to epproximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes. Allow the medium to solidify, storeat between $2-8^{\circ} \mathrm{C}$ and use within one month. Alternatively, the bottled medium mayroptored in the dark at room emperature and used within one month.

The medium may be more selective by the addition of sulphonamide, for example sulphapyridine at $1000 \mathrm{mg}^{-1}$, or sulphadiazine at $800 \mathrm{mgl}^{-1}$, or sulphamandelate supplement ${ }^{(5)}$ (comprising an aqueous iliter-steriized solution of sodium sulphacetamide at $000 \mathrm{mg}^{-1}$ and sodium mandelate at $250 \mathrm{mgl}^{-1}$. Sodium desoxycholate at $2500 \mathrm{mgl}^{-1}$ has also been used to prevent swarming of Proteus species.

7.7.5.4	Xylose lysine desoxycholate agar Basal Lactose	
	Sucrose	7.5 g
	Xylose	7.5 g
	L(-) Lysine hydrochloride	3.75 g
	Sodium chloride	5.0 g
	5.0 g	

Yeast extract
Phenol red ($0.4 \% \mathrm{~m} / \mathrm{v}$ aqueous solution)

Solution A
Sodium thiosulphate pentahydrate
Ammonium iron(III) citrate

Solution B
Water

Dissurfthe ingredients of the basal medium in the water. This will require gentle heating. ispense the resulting solution in appropriate volumes into suitable screw-capped bottles and Stefilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. The basal medium may be stored in the tark at room temperature and used within one month. Dissolve the ingredients of solution A and solution B in the water and separately pasteurise the individual solutions by heating at approximately $60^{\circ} \mathrm{C}$ for 1 hour. To prepare the complete medium, melt the basal medium and cool to approximately $50^{\circ} \mathrm{C}$. Aseptically, add 2.0 ml of solution A and 2.5 ml of solution B to 100 ml of basal medium and mix well. The pH of the medium should be checked to confirm a pH of 7.4 ± 0.2. Pour the medium into sterile Petri dishes and allow it to solidify. Solutions A and B and the prepared dishes may be stored in the dark at between $2-8^{\circ} \mathrm{C}$ and used within one month.

7.7.5.5

Lysine iron agar	
Peptone	5.0 g
Yeast extract	3.0 g
Glucose	1.0 g
L(-) Lysine	10.0 g
Ammonium iron(III) citrate	500 mg
Sodium thiosulphate pentahydrate	40 mg
Bromocresol purple (1\% m/v ethanolic solution)	2 ml
Agar	15.0 g
Water	1000 m

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solutions in small volumes, ie $5-10 \mathrm{ml}$, into suitable containers. Sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 6.7 ± 0.2. Cool in a sloping position to give an agar slope with a deep butt. The prepared medium may be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month

7.7.5.6	Triple sugar iron agar ${ }^{(58)}$	
	Beef extract	3.0 g
	Yeast extract	3.0 g
	Peptone	20.0 g
	Sodium chloride	5.0 g
	Lactose	10.0 g
Sucrose	10.0 g	
Glucose	1.0 g	
	Iron(III) citrate	300 mg
Sodium thiosulphate pentahydrate	300 mg	
Phenol red (0.4% m/v aqueous solution)	6 ml	
Agar	15.0 g	
Water	1000 ml	

Dissolve the ingredients (except phenol red) in the water. To achieve this, it will be necessary to heat to boiling. Add the indicator solution and mix well. Dispense the resulting solution in small volumes, ie $5-10 \mathrm{ml}$, into suitable containers and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a
pH of 7.4 ± 0.2. Cool in a sloping position to give an agar slope with a deep butt. The prepared medium may be stored at between $2-8^{\circ} \mathrm{C}$, and used within one month.
7.7.5.7 Urea broth

Urea broth	
Broth base	
Peptone	1.0 g
Glucose	1.0 g
Disodium hydrogen phosphate	1.0 g
Potassium dihydrogen phosphate	800 mg
Sodium chloride	5.0 g
Phenol red ($0.4 \% \mathrm{~m} /$ v aqueous solution)	1.0 ml
Water	1000 ml

Dissolve the ingredients in the water and adjust the pH to 6.8 ± 0.2. Dispense the resulting solution in 95 ml volumes into suitable screw-capped bottles and sterilize by autoclaving a $15 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 6.8 ± 0.2. (Prepared medium may be stored in the dark at room temperature and used within one month.) Add 5 ml of an aqueous $40 \% \mathrm{~m} / \mathrm{v}$ filter-sterilized solution of urea to 95 ml of broth base and aseptically dispense in $2-3 \mathrm{ml}$ volumes in sterile containers.
7.7.5.

Filter-aid ${ }^{(50)}$	
Diatomaceous earth	1 g (approximately)
Water	20 ml

Weigh out appropriate amounts of filter-aid into suitable bottles and add the water. Sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. Store in the dark at room temperature and use within 12 months.
7.7.5.9

Neef extract powder	1.0 g
Yeast extract	2.0 g
Peptone	5.0 g
Sodium chloride	5.0 g
Agar	$10-15 \mathrm{~g}$

Sodium chloride
Agar

- 15 g

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boong Dispense the resulting solution in appropriate volumes into suitable bottles and sterilizey autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the mediun should be checked to confirm that the pH is 7.2 ± 0.2. Cool the molten medium to approx Mately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes. Allow the agar to solidify, store at betweer $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. The aliove medium may be dispensed into sterile containers and allowed to solidify in a slopin ation. For serological confirmation, slopes should be stored at between 2-8ic and used within one month. The same medium, without the addition of agar, may be cread to moisten the slopes or flagellar agglutination. Alternatively, the bottled medium reay be stored at room emperature in the dark and used within one month.

7.7.6 Analytical procedure

7.7.6.1 Membrane filtration

For qualitative (presence or absence) determinations, filter an appropriate volume of sample, or diluted sample, for example $100-1000 \mathrm{ml}$. If the sample is turbid, several membranes may be required. After filtration, place the membrane filters into buffered peptone water (BPW) and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours. For quantitative determinations using an MPN enique, $1 \times 500 \mathrm{ml}, 5 \times 100 \mathrm{~m}$ Px 10 mi vole added to appox by the addition 1 ml volumes of can be extended by the adarion waters and solid samples can be similarly treated.

7.7.6.2 Filter-aid

The usual membrane filtration apparatus may be used but with a sterile absorbent pad in place of a membrane filter to act as a supporting base for the filter-aid. One bottle of filter aid is filtered to form an initial layer on the absorbent pad. The contents of a second bottle are mixed with the sample, which is then filtered. For very dirty waters, additional bottles of filter-aid may be required. When filtration is complete, remove the funnel carefully and transfer the absorbent pad and filter-aid to BPW. With the same medium, rinse any filter-aid adhering to the funnel into the culture vessel and make up to 100 ml . Mix well. For qualitative determinations, the contents of the vessel are incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours. For quantitative determinations, $5 \times 10 \mathrm{ml}$ volumes of sample are pipetted into sterile containers. The remaining 50 ml volume is kept as a separate culture. If high counts are suspected, from the 50 ml volume, pipette $5 \times 1 \mathrm{ml}$ and $5 \times 0.1 \mathrm{ml}$ volumes into separate containers each containing 10 ml of BPW. Incubate BPW at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours.

Subvore 0.1 ml of the incubated BPW solutions into 10 ml of Rappaport Vassiliadis nent broth (RVB) and incubate at $41.5 \pm 1^{\circ} \mathrm{C}$. After incubating for 24 and 48 hours, culate the RVB onto xylose lysine desoxycholate agar (XLDA) and brilliant green agar (BGA). Incubate the selective agars at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours.
salmonellas produce smooth red colonies $2-3 \mathrm{~mm}$ in diameter on XLDA, typically with a black centre. Xylose-fermenting coliform organisms produce yellow colonies. Pseudomonas species produce red or yellow colonies with grey-black centres. Shigellas produce small pinkred colonies. Proteus species produce red colonies that are irregular and may have small black entres. Salmonella produce smooth red colonies, approximately 2 mm in diameter on BGA. Lactose- and sucrosefermenting coliform organisms produce yellow/green colonies. Proteus species produce small red colonies, and Pseudomonas species produce small crenated colonies. Where isolates are overgrown, subculture to fresh XLDA and BGA. This facilitates the production of pure cultures and enables typical colonial morphology to be observed.

7.7.7 Confirmation

7.7.7.1 Biochemical confirmation

Subculture characteristic colonies from each Petri dish, using a straight wire, to lysine iron agar (LA), triple sugar iron agar (TSI), urea broth (UB) and nutrient agar (NA) as a check for purity. The wire should be stabbed into the butt and streaked along the slant as it is withdrawn. Avoid stabbing through the butt to the bottom of the tube; the end of the wire should remain approximately 3 mm from the bottom of the tube as gas production may cause the medium to be blown out of the tube. Incubate at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24$ hours. Regard cultures that give characteristic reactions in these confirmatory media as presumptive salmonellas (see Tables 7.2 and 7.3). Alternatively, one of the commercially available dentification systems may be used.

Table 7.2 Reaction in lysine iron agar

Genus	Slope	Butt	$\mathrm{H}_{2} \mathrm{~S}$
Arizona	Alk	Alk	+
Salmonella	Alk	Alk	+
Proteus	Red	A	+ or -
Providencia	Red	A	-
Citrobacter	Alk	A	+
Escherichia	Alk	A or NC	-
Shigella	Alk	A	-
Klebsiella	Alk	Alk	-
Enterobacter	Alk	A	-

[^0]| Genus | Slope | Butt | $\mathrm{H}_{2} \mathrm{~S}$ | Urea broth |
| :--- | :--- | :--- | :--- | :--- |
| Kebsiella | A | AG | - | +or - |
| Enterobacter | A | AG | - | - |
| Escherichia | A | AG | - | - |
| Proteus vulgaris | A | AG | + | + |
| Proteus morganii | NC or Alk | A or AG | - | + |
| Shigella | NC or Alk | A | - | - |
| S. typhi | NC or Alk | A | +(weak) | - |
| Salmonella (other) | NC or Alk | AG | + | - |

A is acid (yellow). AG is acid (yellow) and gas formation.
NC is no change. Alk is alkaline (red).
For $\mathrm{H}_{2} \mathrm{~S}$, + is blackening and - is no change.
For urea broth, + is alkaline (red) and - is no change.

Subculture sharacteristic colonies onto moist NA slopes. Fo optimum flagellar formation, it is essential that fluid is present in the tube and sterile broth should be added if required. Incubate overnight at $37 \pm 1^{\circ} \mathrm{C}$. Carry out a slide agglutination test. For example, using a wire loop or pipette, place 3 separate drops (0.02 ml) of saline solution onto a clean microscope slide. Emulsify growth from the moist butt of the slope in each separate drop to produce homogeneous suspensions. Mix a loopful of Salmonella polyvalent 'O' (PSO) antiserum with the first drop of suspension and a loopful of Salmonella polyvalent ' H ' (PSH) serum with the second drop. Gently rock the slide back and forth and examine for agglutination against a black background. The third drop containing no antiserum indicates whether or not the culture auto-agglutinates. Auto-agglutination strains should be re-plated on XLDA or BGA and dry smooth colonies dealt with as previously described.

Organisms which agglutinate with PSO and PSH antisera or strains which agglutinate with PSH serum only can be regarded as presumptive members of the Salmonella group. It is advisable to check colonial characteristic PSO-negative, PSH-positive and PSH-negative strains for agglutination with Salmonella V_{i} antiserum in order to exclude S . typhi, as the V_{i} antigen may mask the ' O ' and ' H ' antigens.

7.7.8 Reporting results

For qualitative determinations, report the presence or absence of salmonellas in theyplume of sample examined. For quantitative determinations, record the number of tubes mhith confirm as positive, ie demonstrate growth of organisms, and from tables defermine the number of organisms per volume to be reported; see sections 5.4, 7.7.4 and i.7.6. Every effort should be made to prepare sufficient dilutions to enable a seriec tell bes, or containers, to be obtained to show that some tubes exhibit no growth while dherc exhibit some growth The report may also contain details of presumptive organisms, as inel as confirmed salmonellas.

8.8.1 Introduction

Thermophilic campylobacters are not thought to be free-living but are obligate parasites of humans, animals and birds. They are found in the gastrointestinal system, and, being excreted in faeces, can be isolated from sewage and surface waters.

7.8.2 Scope and field of application

The MPN technique using enrichment and selective agars is suitable for the isolation of thermophilic campylobacters from surface waters, sewage and sewage effluents. The sample volume, or diluted sample, depends upon the degree of faecal contamination but is usually between $100-1000 \mathrm{ml}$.
8.2.1 Definition and description of the organisms

Bacteria in the genus campylobacter are slender, spirally curved, Gram-negative rods,
$0.2-0.8 \mu \mathrm{~m}$ diameter and $0.5-8 \mu \mathrm{~m}$ in length. Rods may have one or more spirals and may be S -shaped or appear typically as "gull's wings". In older cultures, coccoid forms may be present and these may be degenerative non-viable forms, or viable forms which are not readily cultured. They do not form spores and are motile by means of a single polar flagellum t one or both ends of the cell, giving a characteristic darting or corkscrew motility. They are micro-aerophilic, requiring oxygen concentration between 3-15\%, but some will grow anaerobically. The thermo-tolerant group comprising Campylobacter jeiuni, Campylobacter col and Camplobater lari (Camplobacter laridis) grow well at $43^{\circ} \mathrm{C}$, but fail to grow at $25^{\circ} \mathrm{C}$

7.8.2.2 Pathogenicity

The thermophilic campylobacter group is recognised as a common cause of enteritis in humans. Campylobacter infections give rise to a flu-like illness with malaise, fever and nyalgia followed by diarrhoea. The incubation period ranges from 1-7 days with an average of 3 days. Most cases occur from the consumption of contaminated raw, or improperly cook of, foods.

Avarety of enrichment and plating media is available for the isolation of campylobacters. Membrane filtration should be used for the concentration of campylobacters from water,片owed by enrichment and culture on selective agar. Filtration aids are, generally, not as ficient at removing all the organisms from the sample. A choice of nutrient media is umbe, and blood-free agar base ${ }^{(60,611)}$.

7.8.4 Performance characteristic

When low numbers of organisms are present, their detection is dependent only on the volumes of sample that are fitered. To increase the detection, or volume of sample, MF may be used to concentrate volumes of sample before inoculation into tubes containing media. several filters may be used to increase this limit. When high numbers of organisms are present, their detection is unimited, provided that appropriate dilutions can be prepared and nalysed. High numbers of competing organisms, in particular Ps. aeruginosa and Proteus species may inhibit the growth or detection of the organisms. Tubes, or containers, should be incubated for 48 hours but tests may involve incubation for up to 4 days. Subculture and confimation take a further 48 hours.

7.8.5 Reagents and media

For enrichment, an aero-tolerant supplement may be added. Lysed horse-blood may be obtained commercially, but defibrinated horse-blood can also be used. Defibrinated horse blood may be lysed by dispensing suitable volumes of horse-blood into sterile containers which are then frozen. Blood, lysed in this way, can be kept frozen until required.

The aero-tolerance supplement should be added to enrichment broth and bottles that have been filled after inoculation and the caps screwed down tightly. Altematively, the caps on inoculated bottles can be left loose and the bottles incubated in micro-aerobic conditions. Selective agar Petri dishes should be incubated in an anaerobic jar containing the appropriate atmosphere. This may be achieved by commercially available gas generating kits. It is important that the kit used is appropriate to the volume of the jar. In addition, since hydrogen is produced, jars should not be opened near a source of ignition.

7.8.5.1 Enrichment broth number $\mathbf{1}^{(41)}$
 Nutrient broth number 2 Iron(II) sulphate heptahydrat Sodium metabisulp
 Water
 25.0 g
 250 mg
 250 mg
 250 mg

Dissolve the ingredients in the water and adjust the pH to 7.4 ± 0.2. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to onfirm a pH of $7.4+0.2$ Autoclaved base may be stored in the dark at room temperature and used within one month.

To improve recovery of the organisms, activated charcoal and lysed horse-blood are added to give final concentrations of 2% and 5% respectively, and the following filter-sterilized solutions added:
(i) Trimethoprim solution - dissolve 500 mg of trimethoprim lactate in 100 ml of water and add 2 ml of this solution to the medium to give a final concentration of $10 \mathrm{mg}^{-1}$.
(ii) Polymixin solution - dissolve 500000 iu of polymixin B sulphate in 40 ml of water and add 0.4 ml of this solution to the medium to give a final concentration of $5000 \mathrm{iul}^{-1}$
(iii) Rifampicin solution - dissolve 200 mg in 20 ml of methanol and add 1 ml of this solution to the medium to give a final concentration of $10 \mathrm{mg}^{-1}$
(iv) Actidione solution - dissolve 2000 mg in 10 ml of methanol and add 1 ml of this solution to the medium to give a final concentration of $100 \mathrm{mg}^{-1}$.

Enrichment broth number $\mathbf{2}^{(2)]}$
 Brain heart infusion
 37.0 g
 ron(II) sulphate heptahydrate
 Sodium metabisulphat
 Wate
 250 mg
 50 mg
 950 m

issolve the ingredients in the water and adjust the pH to 7.5 ± 0.2. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confim a pH of 7.5 ± 0.2. Autoclaved medium may be stored at room temperature and used within one month.

Activated charcoal and lysed horse-blood are added to give final concentrations of 2% and 5% respectively, and the following filter-sterilized solution added:
(i) Antibiotic supplement solution (Butzler supplement) consisting of bacitracin $\left(33,000 \mathrm{iul}^{-1}\right)$ cycloheximide $\left(66 \mathrm{mg}^{-1}\right)$ colistin sulphate $\left(20 \mathrm{mgl}^{-1}\right)$ and novobiocin $6.6 \mathrm{mg}^{-1}$). The supplement should be added at a concentration of 0.8 ml of supplement per 100 ml of medium. This concentration provides better inhibition of competing organisms, in particular Pseudomonas.

-.8.5.3 Selective agar number $\mathbf{1}^{163,}$

Nutrient broth
Bacteriological charcoal
Casein hydrolysate
Sodium desoxycholate
ron(II) sulphate
Sodium pyruvate
Agar

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confim a pH of 7.5 ± 0.2. Cool the medium to approximately $50^{\circ} \mathrm{C}$ and add 1 m quantities of each of filter-sterilized aqueous solutions of cefoperazone (containing 32,000 mg^{-1}) to give a final concentration of $32 \mathrm{mg}^{-1}$, and amphotericin (containing $10000 \mathrm{mg}^{-1}$) to ive a final concentration of 10 mg . Alteratively, the antbiotic supplement described in section 7.8.5.1 can be used. with (he 2 . 8 ced use ntibitic) can be stored in

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.5 ± 0.2. Cool the medium to approximately $50^{\circ} \mathrm{C}$, add lysed horse-blood to give a final concentration of 5% and 1 ml of a filter-sterilized aqueous solution of cefoperazone (containing $32,000 \mathrm{mg}^{-1}$) to give a final concentration of $32 \mathrm{mg}^{-1}$ Alternatively, the supplement described in section 7.8.5.1 can be used. Pour the resulting medMinto sterile Petri dishes and allow the agar to solidify. Agar Petri dishes should be oremared fresh but may be stored between $2-8^{\circ} \mathrm{C}$ and used within 7 days. Alternatively, the baje medium can be stored at room temperature and used within one month

.8.6 Analytical procedure

For quantitative counts using an MPN technique, organisms may be concentrated from large volumes of water by membrane filtration, through 0.2 um pore size membrane filters. Smaller volumes (for example, 10 ml) may be inoculated directly into double-strength medium or ml into single-strength medium. For enrichment medium number 1, screw-capped containers should then be filled with medium and the caps screwed down tightly. For enrichment medium number 2, containers are incubated with the appropriate gas mixture 5% oxygen, 10% carbon dioxide and 85% nitrogen) in an anaerobic jar. Enrichment broths are incubated at $42 \pm 1^{\circ} \mathrm{C}$ for 48 hours, subculturing onto selective agar at 24 and 48 hours.

Agar Petri dishes are incubated in anaerobic jars containing the appropriate gas mixture. After ncubating for 24 hours, the dishes should be examined and those exhibiting no growth should be incubated for a further 24 hours and re-examined

Preliminary identification may be made on the basis of colonial morphology and Gram stain. colonies may vary in size from pin-point to $2-4 \mathrm{~mm}$ in diameter. The size will depend to some extent on the number of competing organisms growing on the agar dish. Large numbers of Proteus or Pseudomonas will restrict the growth, and under such circumstances careful examination of each dish, for example with a hand lens or plate microscope, is mportant. Colonies are typically small, flat and transparent. They may be circular or ovoid and may extend along the line of inoculation. They resemble small flat droplets of water. Where competing organisms are minimal or absent, colonies are slightly convex, with an entire edge, and, again, may extend along the line of inoculation. They are grey or buff in colour and may also exhibit swarming. Occasionally two colony types occur in one culture One is, typically, slightly convex as above, and the other is smaller and more dome-shaped

7.8.7 Confirmation

Carry out an oxidase test on suspect colonies, subculturing onto a blood-free medium and incubate at $42 \pm 1^{\circ} \mathrm{C}$ for 48 hours. Gram-stain any oxidase-positive cultures using 1:20 carbol fuchsin or $0.5 \% \mathrm{~m} / \mathrm{v}$ safranin solutions. Campylobacters are Gram-negative curved rods with ypical "gull's wings", S-shapes or short spirals. For most practical purposes, colonial an cellular morphology, together with the oxidase test, are adequate for identification. If equired, species and sub-species identification may be carried out by using biotypin schemes ${ }^{61,65,66}$

7.8.8 Reporting results

For each sample, record the number of tubes which confirm as positive, ie demonstrate growth of organisms, and from tables determine the number of organisms per volume to be eported; see sections 5.4 and 7.8.4. Every effort should be made to prepare sufficient rill organisms, as well as confirmed campylobacters.

7.9 Detection and enumeration of Staphylococcus aureus

7.9.1 Introduction

Staphylococci have been advocated as indicator organisms of water quality in recreational and environmental waters, and, where appropriate, provide a measure of effective water treatment and disinfection.

7.9.2 Scope and field of application

The MF method is suitable for the isolation of staphylococci, and, in particular, Staphylococcus aureus (S. aureus) from surface water, sewage and related samples. The volume of sample, or diluted sample, to be tested depends upon the degree of faecal contamination. It may, herefore, be advisable to test a range of volumes in order to produce a membrane filte containing a sufficient number of colonies.
7.9.2.1 Definition and description of the organisms

Bacteria in the genus staphylococcus are Gram-positive cocci, approximately
$1 \mu \mathrm{~m}$ in diameter occurring singly, in pairs or in clumps. They are facultatively anaerobic, non-motile and do not form spores, and are catalase-positive and sensitive to lysostaphin. Staphylococci ferment mannitol at $37^{\circ} \mathrm{C}$ in the presence of $7.5 \% \mathrm{~m} / \mathrm{v}$ sodium chloride and $0.005 \% \mathrm{~m} / \mathrm{v}$ sodium azide. s . aureus also produces coagulase.

7.9.2.2 Pathogenicity

Staphylococci are mainly associated with the skin, respiratory tract and gastrointestinal trac of humans and warm-blooded animals. They are also part of the normal flora of the nose. They are readily shed into water when a body is immersed. S. aureus is a pathogenic organism causing wound and localised skin infections. It may also cause urinary tract infections. Some strains produce a heat-stable enterotoxin in food products.

7.9.3 Principle

solation of staphylococci, including S. aureus, is carried out by membrane filtration followed by growth on solid selective media. Baird-Parker agar may be used, which contains sodium pyruvate (to enhance damaged cell recovery) glycine, lithium and tellurite (as selective agents) and egg yolk (to demonstrate lipolytic and proteolytic activity). Confirmation of presumptive staphylococci is determined by sensitivity to lysostaphin, and for s. aureus, by coagulase reaction.

.9.4 Performance characteristic

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, espera membrane filters may be used. When high numbers of organisms are present, nedr detection s unlimited, provided that appropriate dilutions can be prepared and analyset the limit of detection will, therefore, be one organism in the largest volume of samplethat can be filtered. High numbers of competing organisms may inhibit the growth detection, of staphylococci. The detection of organisms in waters possessing hid urbbidities depends on the volume of sample that can be filtered. In addition, with these waters, residues may be left on the surface of the membrane filters. These residues may-in ©ffere with the recognition of typical colonies. After incubating for 48 hours, membrarie niters may be examined and confirmation takes a further 24 hours.
7.9.5 Reagents and media

7.9.5.1	Baird-Parker agar (BPA)	
	Tryptone	
	Beef extract	10.0 g
	Yeast extract	5.0 g
	Sodium pyruvate	1.0 g
	Glycine	10.0 g
	Lithium chloride	12.0 g
	Agar	5.0 g
	Water	20.0 g
	1000 ml	

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Adjust the pH to 6.8 ± 0.2 and dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 6.8 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and add sterile egg yolk emulsion containing 0.2% m / v potassium tellurite to give a final concentration of 5% egg yolk and 0.1% potassium tellurite. Mix thoroughly, pour into sterile Petri dishes and allow the medium to solidify. Agar dishes may be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month. Alternatively, the medium without the addition of egg yolk emulsion can be stored at room temperature in the dark and used within one month.
7.9.5.2 Nutrient agar
Beef extract powder $\quad 1.0 \mathrm{~g}$

- Yeast extract

Sodium chloride
Agar
Water
1.0 g
2.0 g

10-15 g
1000 ml
Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by atoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between 2-8 ${ }^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Altematively, the bottled medium may be stored at room temperature in the dark for up to one month.

.9.6 Analytical procedure

A volume of sample, or an aliquot of a diluted sample, is filtered and the membrane filter placed onto the appropriate agar medium. Incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 48 hours. After ncubation, examine the filters for typical colonies. On BPA, typical colonies are up to 3 mm diameter, convex, shiny and pale black in colour. Count all typical colonies and record as presumptive staphylococci.

7.9.7 Confirmation

The presence of S. aureus may be confimed by testing for the ability of staphylococci to produce coagulase. Commercial coagulase test kits are available. Select individual colonies from each membrane filter, see section 5.3.2.3, and suspend in 0.5 ml of sterile water. Saturate the surface of a nutrient agar Petri dish with the suspension and dry at $37 \pm 1^{\circ} \mathrm{C}$ for 10 to 20 minutes. Place one drop of aqueous lysostaphin solution ($200 \mathrm{mgml}^{-1}$) on one side of the agar dish and one drop of aqueous lysozyme solution ($400 \mathrm{mgm}^{-1}$) on the opposing side. Incubate plates at $37 \pm 1^{\circ} \mathrm{C}$ for 18 hours. Staphylococci are confirmed by the total, or partial, lysis of the bacterial culture in proximity to the drop of lysostaphin. No lysis should occur in proximity to the drop of lysozyme.

.9.8 Reporting results

For each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported. See sections 5.4 and 7.9.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter to be obtained that contains a sufficient number of organisms. The final report may also contain details of presumptive as well as confirmed staphylococci and S. aureus.

7.10 Detection and enumeration of Pseudomonas aeruginosa by membrane filtration

10.1 Introduction

Pseudomonas aeruginosa is an environmental bacterium commonly found in soil and on plants. It is able to grow in waters containing very low levels of nutrients, and is frequently present, in small numbers, in the normal intestinal flora of humans and animals.

710.2 Scope and field of application

The MF method is suitable for the isolation of Ps. aeruginosa from surface waters and sewage and related samples ${ }^{(41, ~ 68)}$. The volume of sample, or diluted sample, to be teted depends
upon the degree of faecal contamination. It may, therefore, be advisable to test a range of volumes in order to produce a membrane filter containing a sufficient number of colonies.

10.2.1 Definition and description of the organisms

Ps. aeruginosa is a Gram-negative, non-sporing bacillus approximately $0.5 \times 1.5 \mu \mathrm{~m}$ in length t is oxidase-positive and catalase-positive, and is essentially aerobic, with a temperature range for growth of between $6-43^{\circ} \mathrm{C}$ and an optimum temperature of $37^{\circ} \mathrm{C}$. Glucose is xidised, nitrates are reduced to nitrogen, and casein is hydrolysed. The organisms produce characteristic colonies on Pseudomonas agar, recognised by the production of characteristic green colonies that fluoresce under ultra-violet light. Greenish-blue pigments (fluorescein and pyocyanin) are produced by most isolates.
7.10.2.2 Pathogenicity
S. aeruginosa is an opportunistic pathogen, particularly in humans who are immunocompromised. The principal infections include septicaemia, skin and burn infections, and espiratory, urinary tract and ear infections. Large numbers growing in polluted waters, forling pool waters or spa pool waters may produce ear infections or a follicular dermatitis following immersion. The organism is important because of its antibiotic resistance.

1.10.3 Principle

This method describes the isolation of Ps. aeruginosa by membrane filtration. The organisms can be isolated on Pseudomonas selective medium, the base of which is a modification of King's A medium containing magnesium chloride and potassium sulphate to enhance pigment production. The medium is made selective by the addition of cetrimide and nalidixic acid. The organisms produce characteristic bluegreen or brown coloured colonies. Confirmation of isolates is by subculture to milk agar to demonstrate hydrolysis of casein.

.10.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, several membrane filters may be used. When high numbers of organisms are present, their detection is unimited, provided that appropriate dilutions can be prepared and analysed. The limit

 rganism. The detection of organisms in waters possessing high turbidities depends on the volume of sample that can be filtered. In addition, with these waters, residues may be left of he surface of the membrane filters. These residues may interfere with the recognition of typical colonies. After incubating for 48 hours, membrane filters should be examined and confirmation takes a further 24 hours.

10.5 Reagents and media

10.5.1 Pseudomonas agar base medium

Gelatin peptone
Casein hydrolysate
Potassium sulphate
Magnesium chlorid
Agar
Water
Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the base medium hould be checked to confirm a pH of 7.1 ± 0.2. Cool the molten base medium to approximately 50 and add cetyl (rimethylammonium bromide (cetrimide) and nalidixic ${ }^{2} \mathrm{mad}^{1}{ }^{2}$. omplete medium Alternatively, the ba within one month

Yeast extract broth	
Bacteriological peptone	10.0 g
Yeast extract	3.0 g
Sodium chloride	5.0 g
Water	1000 m

Dissolve the ingredients in the water. Adjust the pH to 7.3 ± 0.2 and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes.

7.10.5.3	Milk agar with cetrimide Skimmed-milk powder	100.0 g
	Yeast extract broth (see section 7.10 .5 .2$)$	250.0 m
	15.0 g	
	Agar	300 mg
Cetrimide	750 ml	

750 ml
Inoroughly yeast extract broth with the cetrimide and agar, and steam to dissolve noroughly mix the skimmed-milk powder with water. Autoclave the individual solutions milk powder solution to the agar solution, mix thoroughly and pour into sterile Petri dishes Allow the medium to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month.

1.10.6 Analytical procedure

Filter a volume of sample, or appropriate dilution of the sample, and place the filter onto the sseudomonas agar. Incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 48 hours. Examine the membrane filter for colonies that are blue-green or greenish brown in colour. These colonies should be considered as presumptive Ps. aeruginosa. Membrane filters may also be examined for fluorescence under ultra-violet light at a wavelength of $360 \pm 20 \mathrm{~nm}$.

Other members of the Pseudomonas group, in particular the fluorescent Pseudomonads, may e isolated on Pseudomonas agar base supplemented with the following aqueous filterterilized solutions of cetrimide, fucidin and cephaloridine to give final concentrations of $10 \mathrm{mg}^{-1}, 10 \mathrm{mgl}^{-1}$ and $50 \mathrm{mg}^{-1}$ respectively. Incubation should be carried out at $30 \pm 10 \mathrm{C}$ for 48 hours. This medium allows the growth of all non-pigmented and pigmented psychrophilic Pseudomonads as well as Ps. aeruginosa

7.10.7 Confirmation

Colonies should be inoculated onto milk agar and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours for confimation. See section 5.3.2.3. Colonies are $2-4 \mathrm{~mm}$ in diameter and should show typica pigment production and possess a "halo of clearing" around the colony where the casein has been hydrolysed. Typical colonies are recorded as confirmed Ps. aeruginosa. Positive and negative control samples should be included with each batch of confirmatory tests.

Some strains of Ps. aeruginosa fail to produce pigment on the membrane filter. In such cases, the milk agar dishes subcultured for confirmation should be exposed to daylight at room temperature before they are examined. Where pigment is still not produced, a colony should be subcultured onto a fresh milk agar Petri dish and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours in order to provide a pure culture, which can then be confirmed using a commercially available est kit.

.10.8 Reporting results

For each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported. See sections 5.4 and 7.10.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter or Petri dish to be obtained that contains a sufficient number of organisms. The final report may also contain details of presumptive as well as confirmed Ps. aeruginosa.

111 Detection and enumeration of Aeromonas species

.11.1 Introduction

Bacteria of the genus Aeromonas are commonly found in fresh and estuarine waters and
sewage. At present, all the aeromonads may be considered equally significant, and for practical purposes it is not necessary to identify aeromonads beyond the level of genus.

7.11.2 Scope and field of application

A variety of media has been developed for the isolation of aeromonads, including ampicillindextrin agar ${ }^{(69,70,71,72) \text {. The MF method using selective agar is suitable for the isolation of }}$ Aeromonas species from surface waters, sewage, pool waters and other related materials. The sample volume to be tested depends on the degree of faecal contamination but should be between 1-100 ml. Samples of sewage may require dilution before testing. The medium used to grow Aeromonas also encourages the growth of certain Vibrio species. If samples are ikely to contain strains of Vibrio, as might be expected for estuarine waters, then the medium can be made more selective by the addition of 2,4-diamino-6,7-diisopropyl pteridine phosphate ($0 / 129$ phosphate) to produce a final concentration of $50 \mathrm{mgl}^{-1}$
7.11.2.1 Definition and description of the organisms
he taxonomy of the genus Aeromonas is subject to considerable debate. Most isolates can be divided into three groups, corresponding broadly to A. hydrophila, A. caviae and A. vero botype sobria. The genus Aeromonas comprises non-sporing, Gram-negative rods approximately $1.0-4.4 \mu \mathrm{~m} \times 0.4-1.0 \mu \mathrm{~m}$ in length. Members are motile with predominant polar flagellation, and are facultative anaerobes, catalase-positive and oxidase-positive. They erment glucose and other carbohydrates with the production of acid, or acid and gas. The . A. salmonicida grows poorly, if at all, at $37^{\circ} \mathrm{C}$, and the minimum growth temperature is about $10^{\circ} \mathrm{C}$.

Strains are regarded as Aeromonas if they are oxidase-positive, ferment dextrin and mannitol, are fermentative in the test of Hugh and Leifson ${ }^{(73)}$, are able to grow in 1% tryptone water in he absence of sodium chloride but not in 1% tryptone water containing 6% sodium chloride, are resistant to $50 \mathrm{mgl}^{1-}$ of $0 / 129$ phosphate, and hydrolyse arginine in the test o Thornley ${ }^{774}$.

7.11.2.2 Pathogenicity

Some species, notably A. salmonicida, are pathogenic towards fish and reptiles. Other species have been incriminated as pathogenic towards humans. They may colonise, or infect, ounds contaminated with water, and can cause septicaemia in immuno-compromised individuals. They have been incriminated as a cause of diarrhoea. Wound infections related contact with soil and water have also been reported. Aeromonads may also cause post) operative wound infections, urinary tract infections and rare cases of peritonitis, otitis anaendocarditis.
There is some evidence to suggest that environmental strains are non-pathogienic and that pathogenic strains produce cytotoxins. This can be demonstrated using clâsital cytotoxicity ests, or ß-haemolysis of horse-blood on horse-blood agar, or other bigr ehical tests.

.11.3 Principle

The isolation of Aeromonas species is undertaken by membrarr gll tration, followed by growth 2 on solid selective media. Membrane filters are incubated rmanpicillin-dextrin agar containing ampicillin, (as the selective agent) dextrin 1as the fermentable carbohydrate) and bromothymol blue, (as the indicator). Typical yellow colonies are subcultured for confirmation by the oxidase test and fermentative reaction in the Hugh and Leifson O/F test.

.11.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, several membrane filters may be used. When high numbers of organisms are present, their detection is united, provided that appropriate diutions can be prepared and analysed. The litecd. Hi, herefre, be one orgaismisherguine of sam that can be iltered. High Thers of the rgis volune samp filers. These residues may intere wh the recogition

7.11.5 Reagents and media

Samples from estuarine or marine environments may contain Vibrio species, which, under hese conditions, can produce colonies similar to Aeromonas species. For these samples, the isolation medium, before being autoclaved, should be supplemented with 0.05 g of 2,4-diamino-6,7-diisopropyl pteridine phosphate (O/129 phosphate) to each litre of medium
7.11.5.1 Ampicillin-dextrin agar

Tryptose
5.0 g

Yeast extract
2.0 g

Sodium chloride
8. Potassium chloride
$\begin{array}{ll}\text { Potassium chloride } & 2.0 \mathrm{~g} \\ \text { Magnesium sulphate heptahydrate } & 200 \mathrm{~m}\end{array}$
200 m
Iron(iil) chloride
Agar
Sodium desoxycholate
Ampicilin
Water
1000 m

Dissolve all the ingredients except the agar, ampicillin and desoxycholate in the water. Adjust he pH to 8.0 ± 0.2. Add the agar and dissolve. This will require heating the solution to boiling. Dispense the resulting solution in appropriate volumes into suitable containers and terilize by autoclaving at $121^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 8.0 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and add 10 ml of a freshly prepared aqueous filter-steniized solution of ampicilin containing $1 \mathrm{mgml}^{-1}$) and 10 ml of an aqueous filter-stenilized solution of desoxycholate (containing $10 \mathrm{mgml}^{-1}$) per litre of medium. Mix thoroughly, pour into sterile Petri dishes and low the medium to soliarify. The agar plates should be stored at between $2-8^{\circ} \mathrm{C}$ and used within seven days. Alternatively, the medium without ampiciliin and desoxycholate can be stored at room temperature and used within one month.

.11.5.2

Nutrient agar	
Beef extract powder	1.0 g
Yeast extract	2.0 g
Peptone	5.0 g
Sodium chloride	5.0 g
Agar	$10-15 \mathrm{~g}$
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to ensure that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between 2-8 ${ }^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Altematively, the bottled medium may be stored at room temperature in the dark and used within one month. Most non-selective agars are suitable for producing pure cultures and oxidase testing providing they do not contain fermentable carbohydrates
7.11.5.3 Oxidase reagent
Tetramethyl-p-phenylenediamine dihydrochloride $\quad 100 \mathrm{mg}$
Wate
10 ml

Weigh out the tetramethyl-p-phenylenediamine dihydrochloride into a suitable container and dissolve in the water. This reagent does not keep and should be prepared immediately befor use. "Test thicks" are available commercially and may be stored and used according to the manufacturer's instructions.

Sodium chloride
Dipotassium hydrogen phosphate Bromothymol blue ($1 \% \mathrm{~m} / \mathrm{v}$ aqueous solution) Agar
2.0 g

300 m
300 mg
3.0 ml
3.0 g 900 m

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Adjust the pH to 7.1 ± 0.2 and dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the base medium should be checked to confirm a pH of 7.1 ± 0.2. Cool the molten base medium to approximately $50^{\circ} \mathrm{C}$ and add an appropriate volume of an aqueous filter-sterilized solution of dextrin (containing $10 \% \mathrm{~m} / \mathrm{v}$) to give a final concentration of 1%. Dispense the medium into sterile test tubes, or containers, to a depth of about 40 mm , store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Alternatively, the base medium without the dextrin can be stored in the dark at room temperature and used within one month.

7.11.6 Analytical procedure

A volume of sample, or an aliquot of diluted sample, is filtered and the membrane filter placed onto ampicillin-dextrin agar. Incubate at $30 \pm 1^{\circ} \mathrm{C}$ for $20-24$ hours. After incubation, examine the filters for typical colonies that are 2-3 mm in diameter, smooth with an entire edge, and yellow or yellow with a greenish-yellow periphery. Colonies that are completely blue or white, and translucent in appearance should not be counted.

7.11.7 Confirmation

With a straight wire, transfer representative colonies to a nutrient agar Petri dish and then to he bottom of two Hugh and Leifson O/F tubes. see also section 5.3.2.3. With a looped-wire, distribute the colonies on the surface of the agar and incubate the dish at $30^{\circ} \mathrm{C}$ for 20-24 hours. Cover the medium in one of the O/F tubes with a small amount of sterile mineral oil and incubate both tubes at $30^{\circ} \mathrm{C}$ for $20-24$ hours. Altematively, incubate the tube at $30^{\circ} \mathrm{C}$ for 20-24 hours, without mineral oil, in an anaerobe jar.

Examine the agar dishes for growth and test each isolate for cytochrome oxidase production. Remove some of the colonies from the agar and transfer to pads soaked in oxidase reagent. If an organism is oxidase-positive, a blue colour develops within approximately 10 seconds. Where no colour change is observed, this should be regarded as a negative reaction, centrol organisms should be tested at the same time. Negative reactions are given by E colpand positive reactions are given by A. hydrophila. Examine the O / F tubes for growth ana oxidative r fermentative reactions. An oxidative reaction should show acid production in the tube open to the atmosphere. There should be little or no acid production in thetrbe containing he mineral oil or the tube incubated anaerobically. A fermentative reactol will show acid production in both tubes. Presumptive Aeromonas species will fermpon dextrin, give a fermentative reaction in the Hugh and Leifson test and be oxidase positive. Record these numbers for each sample. Confirmation of isolates may also begarried out using commercially available biochemical tests ${ }^{55,76]}$.
solates may be speciated using the following biochemical testing procedure:

	A. hydrophila	A. sobria	A. caviae
Gas from glucose	+	+	-
Aesculin hydrolysis	+	-	+

7.11.8 Reporting results

For each sample, record the number of colonies per volume tested. Convert this number to the volume to be reported. See sections 5.4 and 7.11.4. Every effort should be made to prepare sufficient dilutions to enable a membrane filter to be obtained that contains a sufficient number of organisms. The final report may also contain details of presumptive as well as confirmed Aeromonas species

.12.1 Introduction

Vibrio species occur naturally in brackish and saline waters, but only a few species are capable of surviving in fresh water ecosystems. Most species, including the pathogenic species, are not, nomally, able to grow except under highly eutrophic conditions. Vibrio species have een reported in tropical waters where the temperature remains reasonably constant at about $25^{\circ} \mathrm{C}$.
12.2 Scope and field of application
he MF method is suitable for the isolation of Vibrio species from surface waters, sewage, pool waters, sediments and other related materials. The sample volume to be tested depends upon the nature of the sample and the degree of faecal contamination but is, usually, between 1-100 ml. Samples of sewage and brackish waters may require dilution before
7.2.2.1 Definition and description of the organisms
ibrio species are Gram-negative, curved or "comma-shaped" rods that are oxidase-positive sodium chlorid by means of a single sheathed polar flagellum. Growth is stimulated by
 xidase-positive, Gram-negative and grow within 24 hours at $37^{\circ} \mathrm{C}$ in the presence of bile satts, 1% sodium thiosulphate and 1% sodium citrate without the production of sulphide. Usually, they can also ferment glucose without the production of gas, and are sensitive to , . meschnikovi) grows well on thiosulphate citrate bile salt sucrose agar"7 but is oxidase negative and is not an enteropathogen

7.12.2.2 Pathogenicity

The species V . cholerae can be divided into approximately 140 O -serovars. The organisms that usually produce outbreaks of epidemic cholera are toxin-producing strains of the O serovar, including a more recently reported serovar, O139. Non-O1 V. cholerae can also cause gastroenteritis. V. parahaemolyticus also causes diarrhoea often through the consumption of raw, contaminated seafood. V. fluvialis and V. mimicus also cause diarrhoea. Outbreaks of cholera have been reported following consumption of crops irrigated with sewage contaminated water.

7.12.3 Principle

solation of Vibrio species is carried out by membrane filtration followed by growth on selective media such as alkaline peptone water and thiosulphate citrate bile salt sucrose agar TCBSA). A modification to this method has been described ${ }^{(73)}$. Turbid samples and sediments can be inoculated directly into double-strength and single-strength enrichment media. Typical colonies may be subcultured for confirmation by oxidase and biochemical or serological testing

12.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, several membrane filters may be used. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. The limit detection will, therefore, be one organism in the largest volume of sample that can be filtered. Samples from estuarine or marine environments may contain large numbers of Vibrio species and may well require dilution prior to testing. High numbers of competing organisms may inhibit the growth, or detection, of the organisms. The detection of organisms in waters possessing high turbidities depends on the volume of sample that can be fitered. In addition, hese water, residues may be len in are may interfere win the recognilon of typical colonies. Under such circumstances, akaline peptone water may be inoculated directly using the appropriate volumes of double-strength
 examined after 20-24 hours. Confirmation takes a further 48 hours. It is not advisable to

7.12.5.1	Alkaline peptone water (single-strength)	
	Peptone	10.0 g
	Sodium chloride	5.0 g
	Water	1000 ml

Dissolve the ingredients in the water and adjust the pH to 8.6 ± 0.2. Sterilize the resulting solution by autoclaving at $121^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 8.6 ± 0.2. The medium should be stored at room temperature and used within one month.
7.12.5.2

Thiosulphate citrate bile salt sucrose agar	
Yeast extract	5.0 g
Peptone	10.0 g
Sodium thiosulphate pentahydrate	10.0 g
Sodium citrate	10.0 g
Ox bile	8.0 g
Sucrose	20.0 g
Sodium chloride	10.0 g
Iron(III) citrate	1.0 g
Bromothymol blue (1\% m/v aqueous solution)	4 ml
Thymol blue (1\% m/v aqueous solution)	4 ml
Agar	14.0 g
Water	1000 m

Dissolve the ingredients in the water. This will require heating the solution to boiling. Do not autoclave. After boiling, cool the medium to approximately $50^{\circ} \mathrm{C}$ and check the pH of the medium to confirm a pH of 8.6 ± 0.2. Pour the medium into sterie Petri dishes and allow it to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month.

7.12.5.3

Nutrient agar	
Beef extract powder	1.0 g
Yeast extract	2.0 g
Peptone	5.0 g
Sodium chloride	5.0 g
Agar	$10-15$
Water	1000 g

Dissolve the ingredients in the water. To achieve this, it will be necessan tod heat to boiling Dispense the resulting solution in appropriate volumes into suitablerexainers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the phel the medium should be checked to confirm that the pH is 7.2 ± 0.2. Cool the molten Gegdium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidif/stove at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be drad before use. Alternatively, the bottled medium can be stored at room temperature in the dark and used within one month. Mos non-selective agars are suitable for producing pure cultures and oxidase testing providing they do not contain fermentable carbohydrates
-12.5.4 Oxidase reagent
Tetramethyl-p-phenylenediamine dihydrochloride $\quad 100 \mathrm{mg}$ Water
10 ml

Weigh out the tetramethyl-p-phenylenediamine dihydrochloride into a suitable container and dissolve in the water. This reagent does not keep and should be prepared immediately before dissolve in the water. This reagent does not keep and should be prepared immediately befo mane. Test sticr's instructions
7.12.6 Analytical procedure
or quantitative determinations using the MPN technique, organisms may be concentrated from large volumes of sample by membrane filtration through $0.2 \mu \mathrm{~m}$ membrane filters. This echnique can be used for 500 ml and 100 ml sample volumes. The membrane filters used to filter these aliquots are inoculated directly into single-strength alkaline peptone water. Smaller volumes, for example 10 ml , can be inoculated directly into 10 ml of double-strength medium, and 1 ml volumes into 10 ml of single-strength medium. Where turbidity makes membrane filtration impracticable, larger volumes should be inoculated directly into double strength medium. Incubate the enrichment alkaline peptone waters at $25 \pm 1^{\circ} \mathrm{C}$ for 2 hours followed by $37 \pm 1^{\circ} \mathrm{C}$ for $12-16$ hours.

Subculture the enrichment alkaline peptone waters (from the top of the broth) to Petri dishes containing TCBSA and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for $16-24$ hours. See section 5.3.2.3. Examine the dishes for colonies of Vibrio species, which are usually $1-3 \mathrm{~mm}$ in diameter, and either yellow (zuêrose-fermenting) or blue-green (non-sucrose-fermenting). V . cholerae and V . ivinis are seen as yellow colonies and V . mimicus and V . parahaemolyticus as blue-green $1+1$. Subculture each colony type to Petri dishes containing nutrient agar and incubate at $11^{\circ} \mathrm{C}$ for 24 hours. Check the cultures for purity and carry out an oxidase test. Remove some of the colonies from the agar and transfer them to pads soaked in oxidase reag seconds. Where no colour change is observed, this should be regarded as a negative reaction. Control organisms should be tested at the same time. Negative reactions are produced by E coli, and positive reactions are given by Vibrio species.

7.12.7 Confirmation

Strains that are oxidase-positive require further identification. If epidemic strains of V . cholerae 01 are being determined, then colonies that are both sucrosefermenting (yellow colonies on CBSA) and oxidase-positive can be checked for agglutination with V . cholerae Ol antiserum. An isolate that agglutinates can be regarded as presumptive V . cholerae $\mathrm{O1}$. Commercially available kits can be used to identify oxidase-positive, sucrose-fermenting and non-sucrose fermenting isolates

7.12.8 Reporting results

or each sample, record the number of tubes which confirm as positive, ie demonstrate growth of organisms, and from tables determine the number of organisms per volume to be eported; see sections 5.4 and 7.12.4. Every effort should be made to prepare sufficient dilutions to enable a series of tubes to be obtained to show that some tubes exhibit no growth while others exhibit some growth. The final report may also contain details of presumptive as well as confirmed Vibrio species.

.13 Detection and enumeration of Escherichia coli 0157:H

7.13.1 Introduction

The recovery of Escherichia coli O157:H7 from environmental samples is often difficult because of the altered physiological state that bacteria sometimes develop in order to survive hostile environments. Infections involving E coli O157:H7 have occasionally been implicated with contaminated water, but food-borne infections are more common.

7.13.2 Scope and field of application

The MF method is suitable for the isolation of E coli O157:H7 from all types of water including river waters, estuarine and sea waters, sewage and sewage effluents, and spa poo waters. The volume of sample, or diluted sample, to be tested depends upon the degree of faecal contamination. It may, therefore, be advisable to test a range of volumes in order to produce a membrane filter containing a sufficient number of colonies
7.13.2.1 Definition and description of the organism

E coli O157:H7 is a Gram-negative, oxidasenegative, non-sporing rod bacillus. Most strains of E coli are thermo-tolerant and grow at $44^{\circ} \mathrm{C}$, but E coli $\mathrm{O} 157: \mathrm{H} 7$ grows only poorly at this emperature and does not ferment sorbitol at $37^{\circ} \mathrm{C}$. Sorbitol MacConkey agar can, therefore, led by lack thenzm . H I for identified by lack of the enzyme $ß$ B-g
7.13.2.2 Pathogenicity
coli O 157:H7 is a recognised cause of haemorrhagic colitis, an illness characterised by bloody diarrhoea and severe abdominal pain but little or no fever. It is also one of the causes of haemolytic uraemic syndrome. Outbreaks have been associated with the consumption of food and contaminated water, and person-to-person contact also occurs. Symptoms can persist for up to 7 days. Strains of E coli O157:H7 produce a toxin similar to that produced by 5. dysenteric Type 1, which is cytotoxic to Vero cells in cell culture

E coli 0157:H7 strains which produce verocytotoxin have been re-classified from "Hazard Group 2" to "Hazard Group 3" ${ }^{(79)}$. However, where samples are expected to contain no E coli 157:H7, the routine examination of water for this organism may be undertaken in "Hazard Group 2" containment facilities. Where substantial subculture work is required, this should be undertaken in "Hazard Group 3" containment facilities. In addition, positive control strains should not produce verocytotoxin. Suitable strains are available commercially. Great care should be exercised in the disposal of contaminated materials, especially those containing E coli O157:H7.

7.13.3 Principle

solation is based on membrane filtration and enrichment followed by the use of immunomagnetic separation (IMS) and inoculation onto modified sorbitol MacConkey agar. Typical non-sorbitol-fermenting colonies are selected for identification by biochemical and serological tests. Two enrichment broths have been reported ${ }^{[80,81)}$, namely modified buffered peptone water (MBPW) and modified tryptone soya broth (MTSB).
.13.4 Performance characteristics
When low numbers of organisms are present, their detection is dependent only on the volume of sample that is filtered. To increase the detection, or volume of sample, several membrane filters may be used. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. The limit of detection will, therefore, be one organism in the largest volume of sample that can be filtered. High numbers of competing organisms may inhibit the growth, or detection, of the rganisms. The detection of organisms in waters possessing high turbidities depends on the volume of sample that can be filtered. In addition, with these waters, residues may be left on he surface of the membrane filters. These residues may interfere with the recognition of typical colonies. After incubating for 18 hours, membrane filters may be examined, and confirmation takes a further 24 hours.

13.5 Reagents and media

 mmunomagnetic beads ${ }^{(82)}$ are manufacturer's instructions.
Peptone
 Peptone
 Disodium hydrogen phosphate
 potassium dihydrogen phosphate

 WaterDissolve the ingredients in the water and dispense into suitable volumes in screw-capped containers. Sterilize the resulting solution by autoclaving at
$21 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.2 ± 0.2. The medium may be stored in the dark at room temperature and used within one month. The following antibiotic solutions should be dissolved, wher appropriate, in water and filter-sterilized.
(i) Dissolve 80 mg of vancomycin hydrochloride in 10 ml of water. The filter-sterilized Dissolve 80 mg of vancomycin hydrochloride in 10 ml of water. The filter-sterilized
solution should be stored at approximately $-20^{\circ} \mathrm{C}$ and used within one month. Add 1 ml of this solution to the medium to give a final concentration of $8 \mathrm{mgl}^{-1}$.
(ii) Dissolve 500 mg of cefixime in 100 ml of ethanol. Store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Add 1 ml of this solution to 100 ml of ethanol and add 1 ml of the resulting solution to the medium to give a final concentration of $50 ~ \mu \mathrm{gl}^{-1}$.
(iii) Dissolve 100 mg of cefsulodin sodium salt in 10 ml of water. The filter-sterilized solution should be stored at approximately $-20^{\circ} \mathrm{C}$ and used within one month. Add 1 ml of this solution to the medium to give a final concentration of $10 \mathrm{mgl}-1$.

The complete medium should be prepared on the day of use and dispensed in 20 m volumes into sterile containers.
7.13.5.2 Modified tryptone soya broth

Modified tryptone soya broth	
Tryptone soya broth	30.0 g
Bile salts number 3	1.5 g
Dipotassium hydrogen phosphate	2.5 g
Novobiocin	20 mg
Water	1000 ml

Nater
e.tre ingredients in the water and adjust the pH to 7.3 ± 0.2. Dispense the resulting appropriate volumes into suitable screw-capped containers and sterilize by oclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be necked to confirm a pH of 7.3 ± 0.2. The sterilized medium may be stored at room
ark the dark and used within one month

7.13.5.3 Modified sorbitol MacConkey agar ${ }^{\text {¹ }}$

Peptone	20.0 g
Sorbitol	10.0 g
Bile salts number 3	1.5 g
Neutral red	30.0 mg
Crystal violet	10 mg
Agar	15.0 g
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling ispense in appropriate volumes into suitable screw-capped bottles and sterilize by atoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be hecked to confirm a pH of 7.1 ± 0.2. Allow the medium to cool, store in the dark at roon emperature and use within one month. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and add the following selective supplements, which should be dissolved, where appropriate, in water and filter-sterilized
(i) Dissolve 500 mg of cefixime in 100 ml of ethanol. Store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Add 1 ml of this solution to 100 ml of ethanol and add 1 ml of the resulting solution to the medium to give a final concentration of $50 \mathrm{\mu gl}^{1-1}$.
(ii) Dissolve 25 mg of in potassium tellurite 10 ml of water. The filter-sterilized solution should be stored at approximately $-20^{\circ} \mathrm{C}$ and used within one month. Add 1 ml of this solution to the medium to give a final concentration of $2.5 \mathrm{mg}^{-1}$.

Mix the complete medium thoroughly and pour into sterile Petri dishes and allow the agar to solidify. Petri dishes may be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month. Dishes should be dried in a suitable oven at $45-50^{\circ} \mathrm{C}$ for 30 minutes before use

d saline solutio

Phosphate buffered saine solution	80 g
Sodium chloride	2 g
Potassium chloride	11.5 g
Disodium hydrogen phosphate	2 g
Potassium dihydrogen phosphate	0.5 ml
Polyoxyethylene-sorbitan monolaurate (for example Tween 20)	

Potassium dihydrogen phosphate Water

Dissolve the ingredients in the water and check that the pH is 7.3 ± 0.2. Sterilize the resulting solution by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the solution should be checked to confirm a pH of 7.3 ± 0.2. Allow the solution to cool, store in the dark tho me cerature and use within one month

Nutrient agar	
Beef extract powder	1.0 g
Yeast extract	2.0 g
Peptone	5.0 g
Sodium chloride	5.0 g
Agar	$10-15 \mathrm{~g}$
Water	

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to ensure that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Alternatively, the bottled medium may be stored at room temperature in the dark and used within one month. Most non-selective agars are suitable for producing pure cultures for oxidase testing, provided they do not contain fermentable carbohydrates.

1.13.6 Analytical procedure

Dispense the modified buffered peptone water into suitable sterile containers. Filter $5 \times 100 \mathrm{~m}$ and $5 \times 10 \mathrm{ml}$ volumes of sample, or diluted sample. Additional $5 \times 1 \mathrm{ml}$ volumes may, if necessary, be inoculated directly into enrichment media. For clear waters containing low numbers of organisms, filter $1 \times 500 \mathrm{ml}$ and $5 \times 100 \mathrm{ml}$ volumes. If a presence or absence determination is to be undertaken, filter 1000 ml of sample. Several membrane filters may need to be used, especially if waters possessing high turbidities are to be analysed. Place the membrane filters in the media and incubate at $33^{\circ} \mathrm{C}$ 和 24 hours. Enrichment broths should be subjected to immunomagnetic separation at 6-7 hours and after 24 hours.

Thoroughly mix the antibody-coated paramagnetic beads and transfer 20μ l of the suspension to a 1.5 ml Eppendorf tube. Add 1 ml of the well-mixed enrichment broth to the tube and mix thoroughly, but gently, by inversion. Place the Eppendorf tube onto a rotating mixer and gently mix for approximately 30 minutes. Ensure that no air bubbles are trapped the bottom of the tube. Place the tube into the magnetic particle separator (MPC) with the associated magnetic strip in position. To concentrate the beads into a small pellet onto the side of the tube, gently invert the MPC repeatedly for about 1 minute. With the magneti strip in position, carefully open the Eppendorf tube and aspirate the liquid from the tube arm any remaining liquid that might be inside the cap. Remove the magnetic strip from the MPC and add 1 ml of phosphate buffered saline solution to the Eppendorf tube. Close the cap and ently invert to resuspend the beads. Re-position the magnetic strip in the MPC a concentrate the beads into a small pellet as before. Repeat the rinsing step w phosphate buffered saline solution. Re-suspend the beads in $50 \mu \mathrm{l}$ of phosphate suffered saline solution and inoculate the beads onto modified sorbitol MacConkerar and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours. After incubation, examine the dishes for typisat abn-sorbitolermenting colonies that are smooth and circular, $1-3 \mathrm{~mm}$ in diameere and pale orange in colour. Some strains of E coli, which ferment sorbitol, are pink in celfit

7.13.7 Confirmation

Typical colonies should be inoculated onto nutrient agar and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours. Isolates can then be subjected to serological identlication using commercially available atex suspension kits. Examine the slides for evidence of agglutination and carry out the tests with appropriate positive and negative controls. Some isolates may require further dentification by biochemical testing, as non-sorbitol-fermenting coliforms can cross-react in he latex agglutination test. While chromogenic media can be used to demonstrate the lack of ß-glucuronidase, some strains of E coli O157:H7 may produce atypical biochemical profiles, and results should be interpreted with caution.

13.8 Reporting results

For each sample, record the number of tubes which confirm as positive, ie demonstrate growth of organisms, and from tables determine the number of organisms per volume to be reported; see sections 5.4 and 7.13.4. Every effort should be made to prepare sufficient olutions to enable a series of tubes to be obtained to show that some tubes exhibit no growth while others exhibit some growth

1.14 Detection and enumeration of Shigella specie

7.14.1 Introduction

Members of the genus Shigella normally inhabit the intestinal tract of humans but do not infect animals. Their presence in water is, therefore, an indication of human faecal contamination. Infection is commonly by person-to-person contact, or by the consumption of contaminated food or water.

14.2 Scope and field of application

he multiple tube method using enrichment and selective agars is suitable for the detection and isolation of Shigella from surface waters, including river waters, estuarine and sea waters, sewage effluents and spa pool waters. The sample volume depends upon the degree of faeca contamination but is usually between $100-1000 \mathrm{ml}$.

7.142 .1
Bacerna
in the genus Shigella are facultative anaerobes, Gram-negative, non-motile rods mately $1 \mu \mathrm{~m} \times 2-5 \mu \mathrm{~m}$ in length. Four species are commonly found, namely, 5. dysenteriae, S. sonnei, s. flexneri and S. boydii. The organisms are oxidase-negative and catalase-positive (with the exception of S. dysenteriae type, which is catalase-negative). Citrate ear be used as a sole source of carbon, and, with few exceptions, carbohydrates are fermented without gas production.

-14.2.2 Pathogenicity

Gastro-intestinal disease is commonly a symptom of infection of which dysentery is the most severe. The disease is typical of conditions of poor hygiene and sanitation. In the UK, . sonnei is commonly isolated, although the most severe disease is caused by S. dysenteriae ype 1, which produces a potent exotoxin (Shiga toxin).

.14.3 Principle

rganisms are isolated by membrane filtration followed by enrichment in modified Hajnia GN broth and subculture to modified desoxycholate citrate agar (MDCA) and modified Hektoen gar (HA) and examination for typical colonies. Filtration aids, whilst, generally, not as efficient at removing all the organisms, may be of value in processing very turbid waters. Characteristic colonies are confirmed by slide agglutination and may be subcultured for urther biochemical testing

7.14.4 Performance characteristics

When low numbers of organisms are present, their detection is dependent only on the volumes of sample that are tested. To increase the detection, or volume of sample, MF may be used to concentrate volumes of sample before inoculation into tubes containing media Several filters may be used to increase this limit. When high numbers of organisms are present, their detection is unlimited, provided that appropriate dilutions can be prepared and analysed. High numbers of competing organisms may inhibit the growth or detection of the organisms. Tubes, or containers, should be incubated for 48 hours but tests may involve ncubation for up to 4 days. Subculture and confirmation take a further 48 hours.

14.5 Reagents and media

7.14.5.1	Modified Hajnia GN broth	
	Tryptone	20.0 g
Glucose	1.0 g	
	Mannitol	2.0 g
Sodium citrate	5.0 g	
Sodium desoxycholate	500 mg	
Dipotassium hydrogen phosphate	4.0 g	
Potassium dihydrogen phosphate	1.5 g	
Sodium chloride	5.0 g	
(DL) Serine	1.0 g	
Water	1000 ml	

Dissolve the ingredients in the water and adjust the pH to 7.2 ± 0.2. Dispense the resulting Dissolve the ingredients in the water and adjust the pH to 7.2 ± 0.2. Dispense the resurt
$100 \pm 1^{\circ} \mathrm{C}$ for 30 minutes. After steaming, the pH of the medium should be checked to confim a pH of 7.2 ± 0.2. The medium should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month
7.14.5.2

Modified desoxycholate citrate agar.	
Tryptone	20.0 g
Lactose	10.0 g
Sodium thiosulphate pentahydrate	6.8 g
Ammonium iron(III) citrate	800 mg
Neutral red (1\% m/v aqueous solution)	3 ml
Sodium desoxycholate	500 mg
(DL) Serine	1.0 g
Tetracycline hydrochloride	32 mg
Agar	14.0 g
Water	1000 ml

Dissolve the ingredients (except the tetracycline hydrochloride) in the water. To achieve this, t will be necessary to heat to boiling. Cool the resulting solution to approximately $50^{\circ} \mathrm{C}$ and add the tetracycline as an aqueous filter-sterilized solution to give a final concentration of $32 \mathrm{mg}^{-1}$. Thoroughly mix the complete medium and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared dishes should be dried before use.

14.5.3 Modified Hektoen agar

Yeast extract
Proteose peptone
Lactose
Sucrose
Salicin
Ammonium iron(III) citrate
Acid fuchsin
Bromothymol blue ($1 \% \mathrm{~m} / \mathrm{v}$ aqueous solution)
Bile salts number 3
Sodium chloride
Sodium thiosulphate pentahydrate
Agar
Novobiocin
Water
3.0 g
12.0 g
12.0 g
2.0 g
1.5 g

100 mg
6.5 ml
9.0 g
5.0 g
5.0 g
14.0 g
15.0 mg

1000 ml
Dissolve the ingredients in the water. To achieve this, it will be necessary to hea C opoiling Cool the resulting solution to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petriaishes. Allow the medium to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. pingared dishes should be dried before use.

7.14.5.4 Nutrient agar

Beef extract powder
Yeast extract
Peptone
Sodium chloride
Agar
Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in appropriate volumes into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confim that the pH is 7.2 ± 0.2. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to soliarify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Alternatively, the botled medium may be stored at room temperature in the dark and used within one month. Most on-selective ags are do not contain fermentable carbohydrates.

7.14.6 Analytical procedure

Samples may be concentrated by membrane filtration. The analysis may be carried out either as a presence-absence test or using an MPN technique. After filtration, membrane filters are placed into 20 ml volumes of Hajnia broth in sterile containers and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 6-8 hours. Enrichment broths are gently shaken and inoculated onto MDCA and modified Hektoen agar. Inoculated dishes are incubated at $37 \pm 1^{\circ} \mathrm{C}$ for $18-24$ hours and examined for typical colonies, see Tables 7.4 and 7.5. Typical colonies should be subcultured onto a n-selective medium, for example nutrient agar and after incubation, subjected to further biochemical serological testing

Table 7.4
Colonial appearance of Shigela and other bacteria on MDCA

Organism	Characteristic appearance
Shigella	Small raised cream coloured colonies.
Salmonella	Large black coloured colonies with a thin white periphery.

Proteus
Coliforms Escherichia Very small flat cream coloured colonies Cream coloured colonies with a small black centre Pink coloured mucoid colonies with raised centres. Pale pink coloured colonies with grey centres.

Table 7.5 Colonial appearance of Shigela and other bacteria on Hektoen agar

Organism	Characteristic appearance
Shigella	Moist green coloured colonies 2-4 mm in diameter. S sonnei may produce larger irregular colonies.
Pseudomonas	Large rough textured green coloured colonies. Yellow coloured colonies. The medium around the colonies Coliforms
Often turns salmon pink.	
Proteus	Pale green or ochre yellow coloured colonies.

14.7 Confirmation

Typical colonies should be subcultured onto a non-selective medium, for example nutrient agar, and incubated at $37 \pm 1^{\circ} \mathrm{C}$ for 24 hours. Isolates should then be identified using commercially available biochemical test kits and by slide agglutination using prepared antisera.

7.14.8 Reporting results

For each sample, record the number of tubes which confirm as positive, ie demonstrate growth of organisms, and from tables determine the number of organisms per volume to be reported; see sections 5.4 and 7.14.4. Every effort should be made to prepare sufficient solutions to enable a series of tubes to be obtained to show that some tubes exhibit no growth while others exhibit some growth. The final report may also contain details of presumptive as well as confirmed Shigella species.

.15 Detection and enumeration of F-specific RNA bacteriophages

15.1 Introduction

Bacteriophages are widely distributed in the environment and may be found in water, soil, sewage and sediments. They occur infrequently in the faeces of humans or animals, but ar commonly found in waste waters. The presence of F -specific bacteriophages in waters, bacteria and, for many, in specific strains of bacteria. Bacteriophages are readily adsorbed to particulate material and are inactivated by sunlight. Their survival in the environment particulate material and are inactivated by sunlight. Their survival in the environment, closely resembles that of food- and water-borne enteric viruses.

15.2 Scope and field of application

The method involving incubation of the sample with a susceptible host strain is suitable for
he detection and enumeration of F -specific RNA bacteriophages from surface waters, sewage and associated samples, including sediments and sludges, and extracts from shellfish. The volume of sample depends upon the degree of contamination but is usually $1-5 \mathrm{ml}$. Where high numbers of bacteriophages are suspected, dilution of the sample may be required, and where low numbers are present, a pre-concentration step may be used.
7.15.2.1 Definition and description of the organisms

F-specific RNA bacteriophages are bacterial viruses that consist of simple capsids of cubic symmetry, $21-30 \mathrm{~nm}$ in diameter, containing single stranded RNA as the genome. They are infectious for bacteria that possess the F - or sex plasmid, originally detected in Escherichia coli K12, and absorb to the F- or sex pili coded by this plasmid. The F-plasmid is transferable to a wide range of Gram-negative bacteria. The infectious process is inhibited by the presence of RNase in the growth medium. This can be used to distinguish between the F-specific RNA bacteriophages and the rod-shaped F-specific DNA bacteriophages of the Inoviridae family, Ifection of the host produces visible plaques (clearance zones or zones of inhibition) in a onfluent growth obtained under appropriate culture conditions. The infectious process is inhibited in the presence of RNase in the overlay.

Bacteriophages are highly specific to their bacterial hosts. There is no evidence, at present, to suggest that they pose a threat to humans or animals. However, good laboratory practice should be followed at all times during the test procedures, especially as Salmonella yphimurium is used as a host for the virus. F-specific RNA bacteriophages are very resistant to drying. Appropriate precautions should, therefore, be taken to prevent cross-contamination of materials, particularly when examining or handling cultures, or when inoculating cultures of the host strain.

7.15.3 Principle

The detection and enumeration of F -specific RNA bacteriophages is carried out by direct plating using a semi-solid agar overlay technique ${ }^{(55)}$. Replication usually leads to lysis of the cell and, in the agar overlay, the production of clear areas of lysis called plaques.

The host bacterium used for the assay is S . typhimurium WG 49. Bacteriophage MS2 can be used as a control and E coli K12 can be used to produce the bacteriophage. Samples may need to be de-contaminated using chloroform. F-specific DNA bacteriophages may also produce plaques using these procedures, and incorporation of RNase into the overlay aga may be necessary to confirm this. It is important that during the assay the host bacterieg gro in an exponential phase as they express the F -pilus. The concentration of host bacteriupior he assay should be approximately 10^{8} colony forming units per millilitre (cfuml ${ }^{-1}$. ©rpwth of the host should, therefore, be calibrated by establishing the relationship between avosorbance eadings (as a measure of turbidity) and colony counts.

15.4 Performance characteristics

When low numbers of bacteriophages are present, their detection dependent only on the volumes of sample that can be plated (usually a maximum of 1 mi , 10 increase the detection, or volume of sample, concentration techniques are When high numbers of bactenophages are present, their detection is unlimited porued that appropriate dilutions can be prepared. Their detection will, therefore, depen on the largest volume of sample tha can be concentrated and plated. A replicate number of prates may be used to increase this detection. High numbers of competing organisms may overgrow the host and mask plaque production. After incubation, agar overlay tests are examined after 18 hours

15.5 Reagents and media

ot every nutrient or selective agar is suitable for agar overlay assays and agars should be checked for their suitability before use. Calcium and magnesium ions are important factor for absorption of phages to host bacteria, and highly purified agars are not recommended
saline solutio

Sodium chloride
Water
1.0 g

1000 ml
issolve the ingredients in the water and dispense the resulting solution in appropriate volumes into suitable screw-capped bottles. Sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH 7.0 ± 0.1. Store in the dark at room temperature and use within one month.

7.15.5.2	Tryptone yeast extract glucose broth (TYGB)	
	Trypticase peptone (tryptone)	10.0 g
	Yeast extract	1.0 g
	Sodium chloride	8.0 g
	Water	1000 ml

Dissolve the ingredients in the water. Dispense the resulting solution in 200 ml volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.2 ± 0.1. Stor-abetween $2-8^{\circ} \mathrm{C}$ and use within one month.

Calcium glucose solution	
Calcium chloride dihydrate	3.0 g
Glucose	10.0 g
Water	100 m

Dissolve the ingredients in the water. Filter-sterilize the solution through a
$.22 \mu \mathrm{~m}$ pore size membrane filter, store in sterile screw-capped bottles at between $2-8^{\circ} \mathrm{C}$ and use within one month.

.15.5.4

Complete medium
(see 7.15.5.2) 200 m
Calcium glucose solution (see 7.15.5.3) 2 m
Aseptically add the calcium glucose solution to the TYGB solution and mix well. If not used immediately, store at between $2-8^{\circ} \mathrm{C}$ and use within five days.

7.15.5.5	Tryptone yeast extract glucose agar (TYGA)	
	Trypticase peptone (tryptone)	10.0 g
	Yeast extract	1.0 g
	Sodium chloride	8.0 g
	Agar	$12-20 \mathrm{~g}$
	Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling. Dispense the resulting solution in 200 ml volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.2 ± 0.1. Cool the molten medium to approximately $50^{\circ} \mathrm{C}$ and add 2 ml of calcium glucose solution, mix well and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Alternatively, the medium without the calcium glucose solution can be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month

15.5.6 Semi-solid tryptone yeast extract glucose agar (ssTYGA)

Prepare the basal medium as described in section 7.15.5.5 using half the amount of agar. The gel strength is critical in order to obtain good results, and different concentrations should be ested. Dispense the resulting solution in 50 ml volumes, sterilize and store as described in section 7.15.5.5.
15.5.7 RNase solutio
RNase
00 mg

Dissolve the RNase in the water whilst heating at $100^{\circ} \mathrm{C}$ for 10 minutes. Dispense the resulting solution in 0.5 ml volumes into sterile vials, store at approximately $-15^{\circ} \mathrm{C}$ and use within 12 months Thaw at room temperature before use

Prepare a solution of glycerol in water and dispense in 20 ml volumes into suitable bottles Sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. Store in the dark at room temperature and use within 12 months.
7.15.5.9

MacConkey agar	
Bile salts	5.0 g
Peptone	20.0 g
Lactose	10.0 g
Sodium chloride	5.0 g
Agar	12.0 g
Neutral red (1\% m/v aqueous solution)	5 ml
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling Dispense the resulting solution in appropriate volumes into suitable bottles and sterilize by autoclaving at $115 \pm 1^{\circ} \mathrm{C}$ for 10 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.5 ± 0.2. Cool the medium to approximately $50^{\circ} \mathrm{C}$ and pour into sterile Petri dishes, allow the agar to solidify, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. Prepared Petri dishes should be dried before use. Alternatively, the bottled medium can be stored in the dark at room temperature and used within one month.

.15.6 Analytical procedure

7.15.6.1 Prepare stock cultures of the host bacterium by re-hydrating the contents of a yophilised ampoule of s . typhimurium WG 49 into a small volume of TYGB solution. Transfer the suspension to 25 ml of TYGB in a 300 ml conical flask and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 18 ± 2 hours whilst shaking at $100 \pm 10 \mathrm{rpm}$. Add 10 ml of glycerol solution, mix well, dispense 1.2 ml volumes into sterile cryovials and store at $-70 \pm 10^{\circ} \mathrm{C}$
7.15.6.2 Prepare working cultures of the host bacterium by thawing a vial of stock culture at room temperature. Inoculate onto MacConkey agar and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 18 ± 2 hours. Add 50 ml of TYGB to a 300 ml sterile conical flask and warm to room temperature. Select a small number (for example 3-5) of lactose-positive colonies from the MacConkey agar and inoculate the flask of TYGB. Incubate for 5 ± 1 hour whilst shaking at $100 \pm 1 /$ rpm Add 10 ml of glycerol solution and mix well. Dispense the resulting suspension in 1.2 m volumes into sterile cryovials, store at - $70 \pm 10^{\circ} \mathrm{C}$ and use within 2 years.
7.15.6.3 Thaw a vial of the working culture of the host bacterium at room temperature. Add 50 ml of TYGB to a 300 ml conical flask and transfer a sufficient ampunt co a 10 mm cuvette. Place the cuvette in a spectrophotometer with a filter in the range $500-650 \mathrm{~nm}$ and band-width of 10 nm , and adjust the reading to zero. Add 0.5 ml \& fee working culture to the flask containing TYGB and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for up to 3 howes whilst shaking at $100 \pm$ 10 rpm . After 30 minutes, transfer a sufficient amount of the GB suspension to the same cuvette used to adjust the spectrophotometer reading to vere and measure the absorbance At the same time, prepare a sufficient number of seriail 10 -rold dilutions of the TYGB suspension. These dilutions are used to determine colony counts (of each dilution in duplicate) on TYGA. Incubate the TYGA Petri dishes at $37 \pm 1^{\circ} \mathrm{C}$ for 18 hours and, from those dishes containing $30-300$ colonies, record the number of colonies for the appropriate dilution, and calculate the number of colony forming units per mI of the TYGB suspension. After each 30 minute period, repeat the process, ie absorbance reading and colony count etron absorbance and colony count. From this relationship, determine the absorbance reading ly 10^{8} fuml ${ }^{11}$. Once established, further work may be based on absorbance readings only.
7.15.6.4 Inoculate 25 ml of TYGB with E coli K12 and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 18 ± 2 hours 7.15.6.4 Inoculate 25 ml of TYGB with E coli K12 and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for $18 \pm 2 \mathrm{ho}$ incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 90 ± 10 minutes whilst shaking at $100 \pm 10 \mathrm{rpm}$. Add bacteriophag incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 90 ± 10 minutes whilst shaking at $100 \pm 10 \mathrm{rpm}$. Add bacteriophage
ncubate at $37 \pm 1^{\circ} \mathrm{C}$ for $4-5$ hours. To the suspension, add 2.5 ml of chloroform, mix well and allow to stand ovemight between $2-8^{\circ} \mathrm{C}$. After standing overnight, decant the aqueous phase into centrifuge tubes and centrifuge, for example at 3000 g for 20 minutes. Prepare a sufficient number of 10 -fold serial dilutions and plate out using E coli K 12. Count the number of plaques from the dilution series and prepare $100-1000 \mathrm{ml}$ of a suspension of MS2 in peptone saline solution containing approximately 100 pfuml $^{-1}$. Add 5 ml of solution, mix well, dispense the resulting suspension in 1.2 ml volumes into sterile cryovial and store at less than $-15^{\circ} \mathrm{C}$.
7.15.6.5 The following tests can be carried out as quality control checks to assess the sensitivity of the host strain to bacteriophages. At the same time, ie at time $=0$ hours and ime $=3$ hours, as the calibration tests are undertaken (see section 7.15.6.3) and using the serial dilutions for the colony counts, plate the broth cuture ontres containing 30-300 colonies recoldumber of lactose positive and lactose negative colonies, and calculate the nurnber of lactose-negative colonies relative to the total number of colonies. This should be esp than 5\% of the total population.

In addition, for the appropriate dilutions, the colony count on TYGA at 0 hours should be approximately $1-3 \times 10^{\prime}$ cfuml $^{-1}$ and at 3 hours should be approximately $7-40 \times 10^{\prime}$ cfuml 5. typhimurium WG 49 should be resistant to nalidixic acid and kanamycin. At the same time, e at time $=0$ hours and time $=3$ hours, as the calibration tests are undertaken (see section .15.6.3) and using a 100 -fold dilution of the growth culture, inoculate a MacConkey aga Petri dish. Place two small discs, for example 9 mm in diameter, one containing $130 \mu \mathrm{~g}$ of nalidixic acid and the other disc containing $100 \mathrm{\mu g}$ of kanamycin, onto the agar. Incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 18 ± 2 hours. There should be no zone of inhibition surrounding the disc with he nalidixic acid and the zone of inhibition surrounding the disc containing kanamycin should be less than 15 mm .

As a final check, thaw 4 vials of bacteriophage MS2 to room temperature, combine the contents into one tube and plate out 1 ml volumes, in duplicate, on E coli K12 and S yphimurium WG 49 as described in section 7.15.6.6. Count the plaques on each plate and compare the recovery using s. typhimurium WG 49 with that of E coli K12. The s. yphimurium WG 49 strain can be considered acceptable if the recovery is better than 80% of the E coli K12 strain.
7.15.6.6 Prepare an inoculum culture of the host bacterium by thawing a vial of the working culture to room temperature. Add 50 ml of TYGB to a conical flask and warm to approximately $37^{\circ} \mathrm{C}$. Add 0.5 ml of the working culture to the flask and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for up to 3 hours whilst shaking at $100 \pm 10 \mathrm{rpm}$. Measure the absorbance at 30 minuteintervals until it corresponds to a cell density of approximately 10^{8} cfum $^{-1}$ (as established in section 7.15.6.3). Place the flask into a water-ice mixture and use within 2 hours.

Melt ssTYGA medium, cool to approximately $50^{\circ} \mathrm{C}$, aseptically add calcium glucose solution and dispense in 2.5 ml volumes into suitable tubes or containers. Maintain the temperature at $45 \pm 1^{\circ} \mathrm{C}$. To each tube, add 1 ml of inoculum culture and 1 ml of sample, or diluted sample and mix carefully. For each tube, pour the suspension over the surface of a TYGA Petr dish. Disperse evenly and allow the suspension to solidify. Invert the Petri dish and incubate at $37 \pm 1^{\circ} \mathrm{C}$ for 18 ± 2 hours. After incubation, record the number of plaques on each dish within 4 hours. Increasing the number of replicate determinations will enhance the detection f bacteriophages. With each series of tests, a blank (consisting of sterile diluent) and a positive control (consisting of a standard preparation of bacteriophage MS2) should be included

Where samples are likely to be contaminated with high bacterial numbers, for example Where samples are likely to be contaminated with high bacterial numbers, for example
sewage, the addition of nalidixic acid to a final concentration of $100 \mu \mathrm{gml}^{-1}$ may be necessary the TYGA or the ssTYGA (before autoclaving) or to the ssTYGA (after melting). Where samples are likely to contain low numbers of bacteriophage, TYGA Petri dishes, overlaid with 0 ml of ssTYGA containing 1 ml of inoculum culture and 5 ml of sample, or concentrated sample, may be used.
7.15.7 Confirmation

The host strain, s. typhimurium WG 49, is susceptible to infection with somatic bacteriophages. F-specific RNA bacteriophage infection is inhibited by the addition of RNase at $100 \mathrm{mgml}^{-1}$ to tubes of SsTYGA and analysis of samples in parallel to the standard test Confirmation is particularly important when large, circular, clear plaques with smooth edges are observed, as these are more likely to reflect somatic bacteriophages.
7.15.8 Reporting results

For each sample, record the number of plaques per volume tested. Convert this number to the volume to be reported; see sections 5.4 and 7.15.4. Every effort should be made to obtain a sufficient number of solutions to be tested and plaques to be counted. The fin report may also contain details of presumptive as well as confirmed RNA bacteriophages

7.16 Detection and enumeration of microbial tracers

.16.1 Introduction dispersion characteristics in rivers and marine environments, and can provide information on he investigation of sources of pollution. A number of tracers have been developed for serratia marcescens, Escherichia coli and Enterobacter cloacae
B. globigii spores are relatively resistant in the environment ${ }^{\text {tol }}$ and can be useful in the marine environment where tidal cycles may be studied. Bacteriophages are found naturally in the environment and are useful as tracers. They are easily detected and may be useful in rivers, ground waters and for investigating coastal discharges. Water can, therefore, be spiked with arge numbers of phage particles to compensate for absorption and inactivation. Unlike B. globigii, bacteriophages are readily removed by water treatment and disinfection, and are considered as having no significant health risk for the environment.

7.16.2 Scope and field of application

The methods are suitable for the detection of B. globigii and bacteriophages for all types of water including river waters, estuarine and sea waters, sewage and sewage effluents, and spa ool waters. The volume of sample, or diluted sample, depends upon the concentration of racer organism in the sample but, generally, 100 ml of sample is used for B. globigii determinations and 1 ml of sample for bacteriophages. Where the concentration of tracers known to be high, dilution will be necessary in order to obtain sufficient numbers of tregers.

116.2.1 Definition and description of the organism

The Bacillus species contain a wide range of aerobic, spore-bearing, Gram-positve vacteria. B. globigii are heat-resistant and produce characteristic orange colonies on culiwre. There are a number of bacteriophages available for microbial tracing ${ }^{(87]}$. The coliphace $1 / 52$ is particularly uitable for waters with little pollution. A phage isolated from sewage - ates in a strain of Enterobacter cloacae

7.16.2.2 Pathogenicity

Some members of the Bacillus species are known to be patmanic. B. cereus, B. subtilis and B. licheniformis can cause gastro-enteritis. They may als cause wound infections and septicaemia. The spores can pass through water treatment and are resistant to chlorination The use of B . globigii as a tracer in rivers where water is abstracted for drinking or ground water tracing is, therefore, not to be recommended. It is, however, unlikely to germinate the environment, and for marine tracing is unlikely to represent a risk to public health

Bacteriophages are removed by water treatment and inactivated by disinfection with chlorine As they are host-specific, they are unlikely to infect plants, animals or humans and are not As they are host-specific, they are unlikely to infect plants, animals or humans and are not
considered a risk to public health. The host bacterium should not be a recognised pathogenic considered a isk to public health. The host bacterium should not be a recognised pathoge suspensions for use in the environment are host-free.

7.16.3 Principle

B. globigii can be isolated from samples by membrane filtration and cultured on tryptone water containing glucose and mannitol. Colonies are easily recognised by the production of a
bright orange pigment and can be easily counted after incubation at $30^{\circ} \mathrm{C}$ for 48 hours Samples are pasteurised before filtration to reduce background contamination and enhance spore germination ${ }^{(88)}$. Bacteriophages are detected by plating with a susceptible host using the agar overlay technique (see section 7.15) on selective or non-selective media. For phages that are not susceptible, samples may be decontaminated by the addition of a small amount of chloroform. Bacteriophages produce characteristic plaques in the overlay that are easily counted after overnight incubation. With both types of tracers it is unusual to observe background counts except with coliphages and sewage or heavily polluted surface waters.

With B. globigii, the detection of low levels is dependent on the volume of sample that can be filtered. This will normally be 100 ml . When low numbers of bacteriophages are present, their detection is dependent only on the volumes of sample that can be plated (usually a maximum of 1 ml). To increase the detection, or volume of sample, concentration techniques are C faut Membrane filtration has been used as a means of increasing volumes up to 100 ml . Aliennauvely, samples may be enriched in a broth with the host strain using an MPN eshnique. When high numbers of bacteriophages are present, their detection is unlimited, provided that appropriate dilutions can be prepared. Their detection will, therefore, depend the largest volume of sample that can be concentrated and plated. A replicate number of plates may be used to increase this detection. High numbers of competing organisms may vergrow the host and mask plaque production. After incubating for 18 hours, agar overlay tests are examined for plaque formation

.16.5 Reagents and media

Not every nutrient or selective agar is suitable for agar overlay assays, and agars should be checked for their suitability before use. Calcium and magnesium ions are important factors for absorption of phages to host bacteria, and highly purified agars are not recommended

7.16.5.1	Tryptone glucose mannitol broth	
	Tryptone	20.0 g
	Sodium chloride	5.0 g
	Glucose mannitol solution	100 ml
	Water	900 ml

Dissolve the ingredients (except the glucose mannitol solution) in the water and adjust the pH to 6.8 ± 0.2. Dispense the resulting solution in volumes of 90 ml , or multiples of 90 m into suitable containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the partial medium should be checked to confirm a pH of 6.8 ± 0.2. repare a solution of glucose and mannitol, each $10 \% \mathrm{~m} / \mathrm{v}$, and filter-sterilize using a $0.2 \mu \mathrm{~m}$ pore size membrane filter. Aseptically dispense the solution into sterile containers in 10 m volumes, store at between $2-8^{\circ} \mathrm{C}$ and use within one month. To prepare the complete medium, add 10 ml of glucose mannitol solution to 90 ml of partial medium and dispense onto sterile 47 mm incubation pads contained in sterile Petri dishes. Allow the pads to soak or a minimum of 15 minutes and drain off the excess medium. Drained pads should be used within 1 hour. Altematively, the partial medium can be stored at in the dark at room emperature and used within one month.

7.16.5.2	Growth medium for bacteriophage hosts	
	Brain heart infusion	20.0 g
	Casein hydrolysate	20.0 g
	Yeast extract	1.0 g
	Potassium dihydrogen phosphate	5.0 g
Magnesium sulphate heptahydrate	1.0 g	
Glycerol	20 ml	
Water	1000 ml	

Dissolve the ingredients in the water and adjust the pH to 7.0 ± 0.2. Dispense the resulting solution in suitable volumes (10 ml) into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be hecked to confirm a pH of $7.0+0.2$ The prepared medium can be kept in the dark at room temperature and used within one month

Agar base for agar overlay assay (blood agar base)	
Beef extract powder	10.0 g
Peptone	10.0 g
Sodium chloride	5.0 g
Agar	15.0 g
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling The pH of the medium should be 7.3 ± 0.2. Dispense the resulting solution in suitable volumes in screw-capped containers and sterilise by autoclaving at $121^{\circ} \mathrm{C}$ for 15 minutes. Cool the molten medium to the medium should be checked to confin a pHexile Petri dishes, which should be stored at between $2-8^{\circ} \mathrm{C}$ and used within one month. Petri dishes should be brought to room temperature, but need not be dried, before use. Altematively, the medium can be stored in the dark at room temperature and used within one month.
7.16.5.4 Agar overlay
he concentration of agar given will produce a suitable gel strength and plaque size with $0.1-1.0 \mathrm{ml}$ of sample.

Nutrient broth number 2	11.2 g
Sodium chloride	7.0 g
Agar number 1	5.5 g
Water	1000 ml

Dissolve the ingredients in the water. To achieve this, it will be necessary to heat to boiling he pH of the medium should be 7.3 ± 0.2. Dispense the resulting solution in volumes of 4.0 ml into suitable containers and steriize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.3 ± 0.2. The medium should be stored in the dark at room temperature and used within two weeks. Any bottles showing signs of desiccation should be discarded. For use, melt the overlay agar and maintain at a temperature of approximately $50^{\circ} \mathrm{C}$.

7.16.6 Analytical procedure

7.16.6.1 B. globigii spore

Heat the sample to approximately $63^{\circ} \mathrm{C}$ and maintain at this temperature for 30 minutes. After pasteurisation, cool the sample to room temperature and filter 100 ml , or a suitantedilution. Any remaining sample should be stored at temperatures between $2-8{ }^{\circ}$ (entin the analysis is completed. Place the membrane filter onto the isolation medium (sert
7.16.5.1). Incubate the filters in sealed containers at $30^{\circ} \mathrm{C}$ for 48 hours. Exanine the filters at 24 hours and, if necessary, prepare suitable dilutions (for re-testing) of any ;ample where the corresponding filter shows a large number of colonies that would mako cusequent counting difficult to undertake. Typical colonies are $0.5-2 \mathrm{~mm}$ in diameter in appearance and range in colour. Large numbers of colonies on membrane filters ney restrict the size of individual colonies and a hand lens may be required.

7.16.6.2 Bacteriophages

noculate the host strain into growth medium and incubate ovemight at $37^{\circ} \mathrm{C}$. Add 0.1 ml of host culture to the molten overlay agar medium. Add $0.1-1.0 \mathrm{ml}$ of the sample, mix carefully avoiding formation of air bubbles and pour the resulting suspension onto the agar base, ensuring the base is covered. Allow the overlay agar to solidify, invert the Petri dish and incubate at $37^{\circ} \mathrm{C}$ for $12-24$ hours. After incubation, record the number of plaques (areas of clearing) for each sample. Plaques may be confirmed by picking into fresh overlay agar medium observed

7.16.7 Reporting results

For each sample tested, record the number of colonies or plaque forming units per volume For each sample tested, record the number of colonies or plaque forming units per volume effort should be made to obtain a sufficient number of colonies or plaques to be counted.
3.1 Introduction

Enteric viruses may be found in both fresh and saline waters where there has been faecal contamination. The majority of enterovinuses detectable in water are the vaccine strains of poliovirus and coxsackievirus B. Enteroviruses are transmitted by person-to-person contact and many infections occur with no associated symptoms. None of the enteroviruses cause gastroenteritis except as part of a generalised febrile illness. Other symptoms may include flu-like illness, meningitis or myalgia. Whilst rotavirus is a major cause of diarrhoea in children and elderly adults, it has not been linked to infections via recreational water use.

Enteroviruses should not be regarded as indicators of the presence of other viruses as the epidemiology of the different groups varies considerably. They are, however, indicators of faecal pollution although not necessarily recent pollution. A direct relationship between been found when other indicator organisms have not been. Enteroviruses are human parasites and can not replicate in the environment. They may, however, persist for several weeks in cool, dark places, for example on sediments. Routine monitoring may be worth le as part of a wider microbiological profile when particular circumstances arise, for xample an outbreak of disease is investigated.

3.2 Methodology

Several techniques are available ${ }^{(99)}$ for the determination of enteric viruses. For example, ten Itres of river water or seawater are filtered. A solution of high protein content at high pH is then passed through the filter. Virus particles dissociate from the filter into the solution which is then collected. The pH of the resulting solution is adjusted so that all the protein matter, including viruses, flocculate out of solution. The suspension is centrifuged and any particulate material is re-suspended in 10 ml of phosphate buffer.

At the present time enterovirus and rotavirus can be detected by cell culture-based system. The suspended buffalo green monkey kidney (BGMK) cell plaque assay is sensitive for poliovirus and coxsackevirus B . Microscopy is used for the examination of rotavirus, which is based on a cell culture technique followed by immuno-chemical stain.

Giardia duodenalis and Cryptosporidium parvum are intestinal parasites which commonly infect humans and warm-blooded animals. They may be found in sewage, surface waters and waste waters. Whilst Giardia cysts tend to lose viability quite soon after discharge from the host, Cryptosporidium cysts can survive for long periods in surface waters. Details of detection and enumeration are described elsewhere ${ }^{(90)}$. Methods usually involve concentration followed by clean-up and microscopic examination. Similar methods may also be used for the isolation and identification of free-living amoebae, and the intestinal helminths Ascaris, Trichuris and Ankylostoma, which involve recognition of characteristic ova morphology.

Most species of Legionellaceae have been isolated from the environment and can be found in natural waters, marine waters, cooling towers and spa pool waters. All Legionella species are potentially pathogenic towards humans and legionellosis is transmitted via aerosols. Culture solation of Legionellae from recreational and environmental waters is generally the method of choice, although some isolates grow only slowly and can be inhibited by the growth of other ompeting organisms. Details of sampling, detection and enumeration are described elsewhere ${ }^{(91)}$. Methods usually involve concentration by membrane filtration, followed by acid and heat pretreatment and culture on selective media

Tables of most probable numbers and most probable range

Tables A1 - A3 indicate the estimated number of bacteria in 100 ml of sample from the Tables A1 - A3 indicate the estimated number of bacteria in 100 ml of sample from the
positive and negative reactions for the different volumes examined. It is important to realise that the MPN is only an estimate, based on statistical probability and that the true value may lie within a range of values (see section 5.3.2.1). Approximate 95% confidence intervals,
 tubes, have been pubished : A computing procedure for estimating these approximate more accuratelver but are the accuracy of the methd nd not the likely range ef TMPR illustrates sitions whe the method become imprecise particularly when nearly
la tubes show growth and, in practice, a further dilution should have been made to give a clearer estimate of the MPN.

Tables A1 and A2 give the MPN (and where applicable the MPR) for a 6 -tube series containing $1 \times 50 \mathrm{ml}$ and $5 \times 10 \mathrm{ml}$ volumes: and an 11-tube series with $1 \times 50 \mathrm{ml}, 5 \times 10 \mathrm{ml}$, and $5 \times 1 \mathrm{ml}$ volumes respectively. Table A3 relates to a 15 -tube series with $5 \times 10 \mathrm{ml}, 5 \times 1 \mathrm{ml}$ and $5 \times 0.1 \mathrm{ml}$ volumes, but only the likely combinations of positive and negative reactions are listed. For example, multiple positive reactions in the 0.1 ml tubes would not be expected if all the 10 ml and 1 ml tubes are negative, and so combinations of $0,0,2$ etc are not tabulated. If these unlikely combinations are observed in practice, with a frequency of greater than about 1 in 100 tests, it is an indication that the statistical assumptions underlying the MPN estimation are not being fulfilled ${ }^{25,26,27)}$. For example, the organisms may not have been evenly distributed throughout the sample, or toxic or inhibitory substances may have been present in some of the tubes.

A1 Calculation of MPN values

Record the number of positive reactions, ie the number of tubes that show growth of the particular organism, for each set of tubes and, from the relevant table, read the MPN of organisms present in 100 ml of the sample.

Where a series of dilutions of the sample has been used, apply the following rules:
(i) Use only three consecutive sets of dilutions for calculating the MPN
(ii) Select, wherever possible, three consecutive sets of dilutions, where the results are neither all positive, nor all negative. The most efficient statistical estimate will be obtained when about half the tubes are positive. (See examples a, b and c in Table A4).
(iii) If less than three sets of dilutions give positive results, start with the set containing the largest volume of the sample. (see example d in Table A4).
(iv) If only one set of tubes gives a positive reaction, use this dilution and the one higher and one lower. (See example e in Table A4),

Where there is obvious evidence on inhibition, start with the highest result and use the next two. (See example f in Table A4).
Table A1 MPN and MPR per 100 ml of sample for a 6 -tube series containing $7 \times 5 \mathrm{C} \mathrm{ml}$ and 5×10 \qquad
Number of tubes giving a positive reaction
$1 \times 50 \mathrm{ml} \quad 5 \times 10 \mathrm{ml}$

0	0		
0	1	Gge found	
0	2	2	$4-5$
0	3	3	
0	4	6	
0	0	1	$4-5$
1	1	2	$8-10$
1	2	5	$13-18$
1	3	9	-
1	4	15	
1	5	$>18^{* *}$	-1

* MPR gives the range of counts that are as correct (at least 95\% probability) as the MPN (see section 5.3.21).
* There is no discrimination when all tubes show growth; the theoretical MPN There is no discrimination when all tubes show
$1 \times 50 \mathrm{ml} \quad 5 \times 10 \mathrm{ml} \quad 5 \times 1 \mathrm{ml}$

0	0	0	none found	
0	0	1	1	
0	1	0	1	
0	1	1	2	
0	2	0	2	
0	2	1	3	
0	3	0	3	
1	0	0	1	
1	0	1	2	
1	1	0	2	$4-5$
1	1	1	4	$6-7$
1	1	2	6	$9-10$
1	2	0	4	$7-9$
1	2	1	7	$10-11$
1	2	2	9	$12-15$
1	3	0	8	$15-18$
1	3	1	10	$11-14$
1	3	2	13	$15-19$
1	3	3	17	$19-24$
1	4	0	12	$24-30$
1	4	1	16	$30-38$
1	4	2	21	$20-27$
1	4	3	27	$29-40$
1	4	4	33	$44-65$
1	5	0	23	$75-110$
1	5	1	33	$134-190$
1	5	2	53	
1	5	3	91	
1	5	4	160	$>180 * *$
1	5	5		

* MPR gives counts which are at least 95% as probable as the MPN in being the correct number (see section 5).
*There is no discrimination when all tubes show growth; the theoretical MPN is infinity. The true count is likely to exceed 180

MPN and MPR per 100 ml of sample for a 15 -tube series containing $5 \times 10 \mathrm{ml}, 5 \times 1 \mathrm{ml}$ and $5 \times 0.1 \mathrm{ml}$ volumes.

Number of tubes giving a positive reaction	MPN per 100 ml	MPR* per 100 ml		
$5 \times 10 \mathrm{ml}$	$5 \times 1 \mathrm{ml}$	$5 \times 0.1 \mathrm{ml}$		
0	0	0	none found	
0	0	1	2	
0	1	0	2	
1	0	0	2	
1	0	1	4	
1	1	0	4	
1	2	0	5	
2	0	0	4	
2	0	1	5	
2	1	0	5	

$5 \times 10 \mathrm{ml}$	$5 \times 1 \mathrm{ml}$			
2	1	1	7	
2	2	0	7	7-9
2	3	0	11	
3	0	0	7	
3	0	1	9	
3	1	0	9	
3	1	1	13	
3	2	0	13	
3	2	1	16	14-16
4	0	0	11	14-16
4	0	1	14	11-13
4	1	0	16	14-16
4	1	1	20	18-20
4	2	0	20	18-22
4	2	1	25	23-27
4	3	0	25	23-27
4	3	1	31	29-34
4	4	0	32	29-34
4	4	1	38	34-41
5	0	0	22	20-23
5	0	1	29	25-34
5	0	2	41	36-50
5	1	0	31	27-36
5	1	1	43	36-50
5	1	2	60	50-70
5	1	3	85	70-95
5	2	0	50	40-55
5	2	1	70	60-80
5	2	2	95	80-110
5	2	3	120	105-135
5	3	0	75	65-90
5	3	1	110	90-125
5	3	2	140	120
5	3	3	175	1.5, 200
5	3	4	210	185-240
5	4	0	130	-10-150
5	4	1	170	150-200
5	4	2	220	190-250
5	4	3	280	240-320
5	4	4	345	300-390
5	5	0	(4)	200-280
5	5	1	350	290-420
5	5	2	540	450-600
5	5	3	910	750-1100
5	5	4	1600	1350-1900
5	5	5	>1800**	

* MPR gives the range of counts that are as correct (at least 95\% probability) as the MPN (see section 5)
*There is no discrimination when all tubes show growth; the theoretical MPN is infinity. The true count is likely to exceed 1800

Example in text	Volume of sample (ml)					MPN per 100 ml
	10	1	0.1	0.01	0.001	
a	5	3	$\underline{2}$	0		140
b	5	5	3	$\underline{2}$	0	1400
c	5	5	2	o	0	500
d	3	1	0	0		9
e	o	$\underline{1}$	o	0		2
f	0	2	5	3	2	14000

* Numbers in bold, italic, underlined type indicate those results which should be used for determining the MPN values.

B2.1.1 Saline solution
Saline solution may be used for the preparation of slides for staining, for preparing dilutions or for slide and tube agglutination. Isotonic saline solution may be prepared by dissolving 8.5 g of sodium chloride in 1000 ml of water. The solution may be dispensed into screwcapped containers and sterilized by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. Sterile saline solution may be stored in the dark at room temperature and should be used within 12 months.

2.1.2 Phosphate buffered saline solution

Phosphate buffered saline solution (PBS) may be used for many applications including those listed for saline solution

Sodium chloride	80 g
Potassium chloride	2 g
Disodium hydrogen phosphate	11.5 g
Potassium dihydrogen phosphate	2 g
Water	1000 ml

Dissolve the ingredients in the water and dispense in appropriate volumes into suitable screw capped bottles. Adjust the pH to 7.3 ± 0.2 and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be checked to confirm a pH of 7.3 ± 0.2. Phosphate buffered saline solution may be stored in the dark at room temperature and used within three months.
22.1.3 Quarter-strength Ringer's solution

Quarter-strength Ringer's solution is normally used for the preparation of dilutions.

Sodium chloride	2.25 g
Potassium chloride	105 mg
Calcium chloride hexahydrate	120 mg
Sodium dihydrogen carbonate	50 mg
Water	1000 ml

Dissolve the ingredients in the water and adjust the pH to 7.0 ± 0.2. Dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should checked to confirm a pH of 7.0 ± 0.2. The sterilized medium may be stored at room temperature in the dark and used within three months

B2.1.4 Maximum recovery diluent

Maximum recovery diluent is a combination of saline solution with a low coneentration of peptone designed to give better recovery than that obtained using wateror caline solution alone. Because of the low level of peptone, dilutions should be plated asselon as practicable after preparation.

> Peptone
> Sodium chloride
> Water

Dissolve the ingredients in the water and adjust the pH to 7.0 ± 0.2. Dispense the resulting solution in appropriate volumes into suitable screw-capped containers and sterilize by autoclaving at $121 \pm 1^{\circ} \mathrm{C}$ for 15 minutes. After autoclaving, the pH of the medium should be hecked to confirm a pH of 7.0 ± 0.2. The sterilized medium should be stored at room emperature in the dark and used within one month.

B3 Stains

B3.1 Gram stain

The Gram stain is an important test in the correct differentiation of Enterobacteriaceae from other bacteria. The principle of the method involves "fixing" methyl violet or crystal violet in cells. Subsequent washing with acetone or ethanol removes the indicator from certain
bacteria These are termed "Gram-negative", Other organisms retain the stain and are termed

Gram-positive". The original method (described by Gram in 1884) has been modified and mproved. Gram-positive and Gram-negative controls should be included with each batch of ests. Staphylococcus aureus is a suitable Gram-positive control, and Escherichia coli is a suitable Gram-negative control.

B3.1.1	Methyl violet or crystal violet stain	
	Methyl violet or crystal violet	10.0 g
	Water	1000 ml

$$
\begin{array}{ll}
\text { Methyl violet or crystal violet } & 10.0 \mathrm{~g} \\
\text { Water } & 1000 \mathrm{ml}
\end{array}
$$

Add the indicator to the water and mix thoroughly to dissolve. Filter the solution and store in toppered bottles in the dark at room temperature. The solution should remain stable indefinitely but may precipitate on keeping

B3.1.2	Gram's iodine
H	
lodine	1.0 g
Potassium iodide	2.0 g
	Water
	300 ml

Dissolve the potassium iodide in 50 ml of water and then dissolve the iodine in the resulting solution. Add the remaining water and store the solution in stoppered bottles. This reagent should be stored at room temperature and should be stable for up to 12 months.

B3.1.3
Safranin
Water
1000 ml

Dissolve the safranin in the water and store at room temperature. This stain should be stable indefinitely.

B3.1.4 Procedure
Prepare a culture smear on a microscope slide in saline solution. "Thin" smears should be prepared, as "thick" smears tend to make examination of cellular morphology difficult to observe. In addition, some cells may retain the indicator stain and, hence, appear as Grampositive. Allow the smears to dry and "fix", for example by repeatedly passing the microscope lide quickly through a small Bunsen flame. Saturate the slide with indicator solution and stain for approximately 2 minutes. Remove the excess stain with Gram's iodine solution and saturate the slide with fresh iodine solution. Allow the slide to stain for approximately 2 minutes. Remove excess iodine solution with tap water and allow the slide to drain
ecolourize the slide with acetone or ethanol. De-colourization is, usually, rapid and the slide should be rapidly moved from side to side for $2-3$ seconds whilst the stain is washed out Rinse the slide with tap water. Counterstain the slide with the safranin solution for 2-3 minutes, wash with tap water, and air-dry. Examine the slide under oil immersion. Grampositive bacteria appear as a purple colour and Gram-negative bacteria appear pink. Certain species of organisms, notably Legionella and Campylobacter species stain poorly with counterstain and extended staining for 5 minutes may be required.

3.2 Spore stain ${ }^{(93)}$

Generally, spores may be observed in a Gram-stain. The following simple method may be used to confirm the presence of spores. It involves staining with hot aqueous malachite green solution followed by washing to decolourize vegetative cells, and counter staining with safranin.
33.2.1 Malachite green solution
Water
5.0 g

Dissolve the stain in the water and filter. Store the solution in screw-capped bottles at room temperature. This stain should remain stable indefinitely but may precipitate on storage.
differed from those results obtained by the other laboratories. With fresh waters, there was no significant difference between the methods, except for laboratory G. With sea waters, there were 81 higher counts obtained with the recovery phase compared with 68 obtained without the recovery phase. This difference is not significant (McNemar's test, $p=0.3$). Again the results from laboratory G were significantly different ($p=0.0001$).

4 Observations

xcept for laboratory G, no method, with or without a recovery phase, gave significantly different results. The proportion of isolates at $44^{\circ} \mathrm{C}$ confirming as faecal coliform organism was approximately 95%.

Confirmed faecal coliform counts by membrane filtration with and without

Laboratory	Higher count with recovery phase	Equal	Higher count without recovery phase	Total samples
A	19	2	23	44
B	8	2	15	25
C	54	4	35	93
D	5	4	3	12
E	6	3	6	15
F	42	6	38	86
G	61	12	11	84
H	26	1	22	49
Total	221	34	153	408
Total - G	160	22	142	324

For an additional 47 samples, the confirmed counts were not reported, but the unconfirmed counts showed no significant difference between the methods.

Table C2
Comparison of results with and without the recovery phase

Higher count with recovery phase	Equal	Higher count without recovery phase	Total Samples

| Fresh water
 Laboratory G 30 8 6
 All other
 laboratories 79 15 74
 Sea water 34 168
 Laboratory G 31 4 5
 All ther
 laboratories 81 7 68 | 40 |
| :--- | :--- | :--- | :--- | :--- |

Membrane without recovery phase

Service (1959).
2. EU Directive (EEC/76/160) concerning the quality of bathing water. OJ No. L31/1 1976.
3. Pike, E. B. (1994). Health effects of sea bathing (MWI 9021) Phase III. Final report to the Department of the Environment. WRc.
4. Dadswell, J. J. (1993). Microbiological quality of coastal waters and its health effects. International Journal of Environmental Research, 3, 32-46.
5. Hunter, P. R. (1997). Waterbome disease. Epidemiology and Ecology. J Wiley \& Sons.
6. Prüss, A. (1998). Review of epidemiological studies on health effects from exposure to recreftol all water. Intemational Journal of Epidemiology, 27, 1-9.
7. Fleisher, J. M., Jones, F., Kay, D., Stanwell-Smith, R., Wyer, L. \& Morano, R. (1993). Water and non-water risk factors for gastro-enteritis among bathers exposed to sewagecontaminated marine waters. Intemational Journal of Epidemiology, 22, 698-708.
8. Galbraith, N. S., Barrett, N. J.\& Stanwell-Smith, R. (1987). Water and disease after Croydon: a review of waterborne and water associated diseases in the UK 1937-1986. Journal of the Institute of Water and Environment Management, 1, 7-21.
9. Stanwell-Smith, R. (1994). Recent trends in the epidemiology of waterborne disease. In: Water and Public Health. Ed. Golding A. M. B. (Smith-Gordon, London), 39-56.
10. Gray, J. J., Green, J., Cunliffe, C., Gallimore, C., Lee, J. V., \& Neal, K. (1997). Mixed genogroup SRSV infections amongst a party of canoeists exposed to contaminated recreational water. Journal of Medical Virology, 52, 425-429.
11. The Bathing Waters (Classification) Regulations 1991, Statutory Instrument No 1991/1597
12. EU Directive 79/869/EEC, concerning the methods of measurement and frequencies of sampling and analysis of surface water intended for the abstraction of drinking water in the member states. OJ No. L271/44 1979.
13. EU Directive 79/923/EEC, on the quality required of shelfish waters. OJ No. L281/47 1979.
14. PWTAG (1995). Pool Water Guide. The Treatment and Quality of Swimming Pool Water. Pool Water Treatment Advisory Group. ISBN 0951700715 . See also Hygiene for Spa Pools Public Health Laboratory Service, 1994, ISBN 0901144371.
15. Tillett, H. E. \& Lightfoot, N. F. (1995). Quality control in environmental microbiology: what is homogenous and what is random? Water Science and Technology, 31, 471-477.
16. Tillett, H. E. (1993). Potential inaccuracies of microbiological counts from routine water samples. Water Science and Technology, 27, 15-18.
17. Wyer, M., D., Gough, J., Kay, D. \& Merret, H. (1995). An investigation into parametric relationships between Enterovirus and faecal indicator organisms in the coastal waters of England and Wales. Water Research, 29 (8), 1863-1868.
18. Public Health Laboratory Service Water Surveillance Group. (1995). Preliminary study of microbiological parameters in eight inland recreational waters. Letters in Applied Microbiology, 21, 267-271.
19. Tillett, H. E. \& Farrington, C. P. (1991). Inaccuracy of counts of organisms in water or other samples: effects of pre-dilution. Letters in Applied Microbiology, 13, 168-170.
20. McCrady, M. H. (1915). The numerical interpretation of fermentation-tube results. Journal of Infectious Diseases, 17, 183-212.
21. McCrady, M. H. (1918). Tables for rapid interpretation of fermentation-tube results. Public Health Journal, 9, 201-220.
22. Cochran, W. G. (1950). Estimation of bacterial densities by means of 'the most probable number'. Biometrics, 6, 10-116.
23. Eisenhart, C. \& Wilson, P. W. (1943). Statistical methods and control in bacteriology. Bacteriological Reviews, 7, 57-137.
24. Swaroop, S. (1938). Numerical estimation of B. coli by dilution method. Indian Joumal of Medical Research, 26, 353-378.
25. Swaroop, S. (1951). The range of variation of most probable number of organisms estimated by the dilution method. Indian Journal of Medical Research, 39, 107-134.
26. Woodward, R. L. (1957). How probable is the most probable number? Journal of the American Waterworks Association, 49, 1060-1068.
27. de Man, J. C. (1975). The probability of most probable numbers. European Journal of Applied Microbiology, 1, 67-78.
28. Tillett, H. E. \& Coleman, R. (1985). Estimated numbers of bacteria in samples from nonhomogenised bodies of water: how should MPN and membrane filtration results be reported? Journal of Applied Bacteriology, 59, 381-388.
29. Tillett, H. E. (1987). Most probable numbers of organisms: revised tables for the multiple tube method. Epidemiology and Infection, 99, 471-476
30. Lightfoot, N. F., Tillett, H. E., Boyd, P. \& Eaton, S. (1994). Duplicate split samples for internal quality control in routine water microbiology. Letters in Applied Microbiology, 19, 321-324
31. Standing Committee of Analysts. "General Principles of Sampling Waters and Associated Materials (Second Edition) 1996; Estimation of Flow and Load 1996". Methods for the Examination of Waters and Associated Materials, in this series.
32. A statistical evaluation of the effect of sample storage on faecal indicator conceritration in water samples. Wyer, M., Kay, D. A report to Acer Environmental. April 190
33. Effects of storage on analytical results for total and faecal coliform narameters. DOE
$3705 / 1$. PECD $7 / 7 / 413$. October 1994 . 3705/1, PECD 7/7/413. October 1994

```
\(\checkmark\)
```

34. Wallis, D. E. and Webb, B. W. (1985). Estimating the Disclerge of Contaminants to Coastal Waters by Rivers. Marine Pollution Bulletin, 16, (121) Ps:-492.
35. BSI (1981). British Standard 6068 Section 6.1, Guidance on the Design of Sampling Programmes, London, British Standards Institution.
36. BSI (1983). British Standard 6068 Section 6.2 - Guidance on Sampling Techniques, London, British Standards Institution.
37. BSI (1986). British Standard 6068 Section 6.3 - Guidance on the Preservation and Handling of Samples, London, British Standards Institution.
38. Fallon, R., J. \& Rowbotham, T., J. (1990). Microbiological investigations into an outbreak of Pontiac fever due to Legionella micdade associated with the use of a whirlpool. Journal Clinical Pathology, 43, 470-483
39. Protozoan parasites and water. Eds Betts, W., B., Casemore, D., Fricker, C., Smith, H. \& Watkins, J. (1995). Royal Society of Chemistry.
40. Versteegh, J. F. M., Havelaar, A. H., Hoekstra, A. C. \& Visser, A. (1989). Complexing of copper in drinking water samples to enhance recovery of Aeromonas and other bacteria. ournal of Applied Bacteriology, 67, 561-566.
41. Standing Committee of Analysts. "The Microbiology of Water 1994. Part 1 - Drinking Water". Reports on Public Health and Medical Subjects No 71. Methods for the Examination of Waters and Associated Materials, in this series.
42. Standing Committee of Analysts. "Evaluation trials for two media for the simultaneous detection and enumeration of Escherichia coli and coliform organisms 1998". Methods for the Examination of Waters and Associated Materials, in this series.
43. Standing Committee of Analysts. "An evaluation of presence-absence tests for coliform anisms and Escherichia coli 1996". Methods for the Examination of Waters and Associated raterials, in this series.
44. BSI (1989) BS 6068, Section 4 - Detection and Enumeration of Faecal Streptococci by the Membrane Filter Technique, London, British Standards Institution.
45. Sulphite Reducing Clostridia in Drinking Water Supplies, 1996. DW-02/H2, UK Water ndustry Research Limited. See also Sartory, D. P. (1986) Membrane filtration enumeration of faecal clostridia and Clostridia perfringens in water. Water Research, 10, 1255-1260.
46. Hauschild, A. H. W. \& Hilsheimer, R. (1974). Evaluation and modification of media for enumeration of Clostridium perfringens. Applied Microbiology, 27, 78-82.
47. Handford, P. M. (1974). A new medium for the detection and enumeration of Clostridium perfringens in food. Journal of Applied Bacteriology, 37, 559-570.
48. Harmon, S. M., Kautter, D. A. (1974). Media for confirming Clostridium perfringens from food and faeces. Journal of Food Protection, 41, 626-630
49. Reasoner, D. J., and Geldreich, E. E. (1985). A new medium for the enumeration and subculture of bacteria from potable water. Applied and Environmental Microbiology, 49, 1-7.
50. Le Minor, L., Rhode, R. \& Taylor, J. (1970). Nomenclature des Salmonella. Annals Institut Pasteur. Microbiologie, 119, 206-210.
51. Edel, W. \& Kampelmacher, E. H. (1973). Comparative studies on the isolation of "subethally injured" Salmonellae in nine European laboratories. Bulletin of the World Health Organisation, 48, 167-174.
52. van Schothorst, M., Renaud, A. \& van Beek, C. (1987). Salmonella isolation using RVS broth and MLCB agar. Food Microbiology, 4, 11-18.
53. Peterz, M., Wilberg, C. \& Norberg, P. (1989). The effect of incubation temperature and magnesium chloride concentration on the growth of salmonella in home-made and in commercially available Rappaport-Vassiliadis broths. Joumal of Applied Bacteriology, $\mathbf{6 6}$ 523-528.
54. ICMSF (1978). Micro-organisms in food: 1 - Their significance and methods of enumeration, 2nd edition. International Commission on Microbiological Specifications for enumeration, 2nd edition. International Cons.
Foods. Toronto. University of Toronto Press.
55. Watson, D. C. \& Walker, A. P. (1978). A modification of the brilliant green agar for improved isolation of Salmonella. Journal of Applied Bacteriology, 45, 195-204.
56. Taylor, W. I. \& Harris, B. (1965). Isolation of Shigellae I. Xylose Lysine agars. New media 56. Taylor, W. I. \& Harris, B. (1965). Isolation of Shigellae I. Xylose Lysine agars. New
57. Edwards, P. R. \& Fife, M. A. (1961). Lysine Iron Agar in the detection of Arizona cultures. Applied Microbiology, 9, 478-480,
58. IAMS (1958). Report of Enterobacteriacae Subcommittee and the Nomenclature Committee of the International Association of Microbiological Societies. Intemational Bulletin of Bacterial Nomenclature and Taxonomy, 8, 25-70.
59. Hammarstrom, E \& Ljutov, V. (1954). Concentration technique for demonstrating small amounts of bacteria in tap water. Acta Pathologica et Microbiologica Scandinavia, 35, 365-369.
60. Bolton, F. J., Coates, D., Hinchcliffe, P. M. \& Robertson, L. (1983). Comparison of selective media for isolation of Campylobacter jejuni/coli. Journal of Clinical Pathology, 36, 78-83.
61. Bolton, F. J., Holt, A. V. \& Hutchinson, D.N. (1984). Campylobacter biotyping scheme of epidemiological value. Journal of Clinical Pathology, 37, 677-681.
62. Marcola, B., Watkins, J. \& Riley. A. (1981). The isolation and identification of thermotolerant Campylobacter species from sewage and river waters. Journal of Applied Bacteriology, 51, xii -xiv.
63. Bolton, F. J. \& Robertson, L. (1982). A selective medium for isolating Campylobacter jejuni/coli. Journal of Clinical Pathology, 35, 462-467
64. Bolton, F. J., Hutchinson, D. M. \& Coates, D. (1986). Comparison of three selective agars for isolation of Campylobacter. European Journal of Clinical Microbiology, 5, 466-468.
65. Hutchinson, D. N., Bolton, F. J., Jones, D. M., Sutcliffe, E. M. \& Abbott, J. D. (1987). Application of three typing schemes (Penner, Lior, Preston) to strains of Campylobacter spp. isolated from three outbreaks. Epidemiology and Infection, 98, 139-144.
66. Lior, H. (1984). New, extended biotyping scheme for Campylobacter jejuni, Campylobacter coli and Campylobacter laridis. Journal of Clinical Microbiology, 20 (4) 636-640.
67. Baird-Parker, A. C. (1962). An improved diagnostic and selective medium for isolation of coagulase-positive Staphylococci. Journal of Applied Bacteriology, 25, 12-19.
68. BSI (1989) British Standard 6068 Section 4.7, Detection and enumeration of Pseudiemo aeruginosa by membrane filtration, London, British Standards Institution.
69. Havelaar, A. H., During, M. \& Versteegh, J. F. M. (1987). Ampicillin-dextrin agar medium for the enumeration of Aeromonas species in water by membrane filtration. Joernal of Applied Bacteriology, 62, 279-287.
70. Rippey, S. R. \& Cabelli, V. J. (1979) Membrane filter procedure © Q 70. Rippey, S. R. \& Cabelli, V. J. (1979) Membrane filter procedure onderameration of
Aeromonas hydrophila in fresh water. Applied and Environmental Micesiology, 38, 108-113. 71. Holmes, P. \& Sartory, D. P. (1993). An evaluation of mediator the membrane filtration
numeration of Aeromonas from drinking water. Letters in Applied Microbiology, $17.58-60$ enumeration of Aeromonas from drinking water. Letters in Aqplied Microbiology, 17, 58-60.
71. Holmes, P. \& Nicolls, L. M. (1995). Aeromonads in drinking-water: their occurrence and significance. Journal of the Institution of Water and Environmental Management, 9, 464-469.
72. Hugh, R. \& Leifson, E. (1953). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. Journal of oxidative metabolism of
Bacteriology, 66, 24-26.
73. Thornley, M. J. (1960) The differentiation of Pseudomonas from other Gram-negative bacteria on the basis of arginine metabolism. Journal of Applied Bacteriology, 23, 37-52.
74. Abbott, S. L., Cheung, W. K. W., Kroske-Bystrom, S., Malekzadeh, T. \& Janda, J. M. (1992). Identification of Aeromonas strains to genospecies level in the clinical laboratory. (1992). Identification of Aeromonas strains to g
75. Ogden, I. D., Millar, I. G., Watt, A. J. \& Wood, L. (1994). A comparison of three identification kits for the confirmation of Aeromonas spp. Letters in Applied Microbiology, 18, 97-99.
76. Kobayashi, T., Enomoto, S., Sakazaki, R. \& Kuwahara, S. (1963). A new selective medium for pathogenic vibrios, TCBS agar (modified Nakanishi's agar). Japanese Journal of Bacteriology, 18, 387-411.
77. Toro, A., Gonzalez, N., Torres, J. Dvorsky, E. \& Toranzos, G. A. (1995). Modified culture methods for the detection of Vibrio spp. from estuarine waters. Water Science and Technology, 31, 5-6, 283-290.
78. Categorization of pathogens according to hazard and categories of containment, 1995 Advisory Committee on dangerous Pathogens. London. Stationery Office.
8d. standing
79. .tanding Committee of Analysts. "Method for the isolation and identification of sy herichia coli O157:H7 from waters 1996". Methods for the Examination of Waters and ssociated Materials, in this series. See also PHLS Standing Conference on Water and .
80. Chapman, P. A., Siddons, C. A., Wright, D. J., Norman, P., Fox J. \& Crick, E. (1993). Cattle as a possible source of verocytotoxin-producing Escherichia coli O157:H7 infections in man. Epidemiology and Infection, 111, 439-447.
81. Wright, D. J., Chapman, P. A. \& Siddons, C. A. (1994). Immuno-magnetic separation as a sensitive method for isolating Escherichia coli 0157 from food samples. Epidemiology and infection, 113 (1) 31-40.
82. Zadik, P. M., Chapman, P. A. \& Siddons, C. A. (1993). Use of tellurite for the isolation of verocytotoxigenic Escherichia coli O157. Journal of Medical Microbiology, 39, 155-158.
83. King, S., \& Metzger, W. I. (1968). A new plating medium for the isolation of enteric pathogens. I. Hektoen enteric agar. II. Comparison of Hektoen agar with SS and EMB agar. Applied Microscopy, 16, 577-581.
84. ISO (10705-1:1995). Detection and enumeration of bacteriophages. Part $1-$

Enumeration of F -specific RNA bacteriophages, International Organisation for Standardisation.
86. Evans, C. G. T. \& Harris-Smith, R. (1971). A novel selective method for the production of Bacillus subtilis var. niger spores. Joumal of Applied Bacteriology, 34, 215-219.
87. Drury, D. F. \& Wheeler, D. C. (1982). Applications of a Serratia marcescens bacteriophage as a new microbial tracer in aqueous environments. Journal of Applied Bacteriology, 53, 137142.
88. Pike, E. B., Befton, A. W. J. \& Gould, D. J. (1969). The use of Serratia indica and Bacillus subtilis var. niger spores. Journal of Applied Bacteriology, 32, 206-216.
89. Standing Committee of Analysts. "Methods for isolation and identification of human enteric viruses from waters and associated materials 1995". Methods for the Examination of Waters and Associated Materials, in this series.
90. Standing Committee of Analysts. "Isolation and identification of Cryptosporidium oocysts and Giardia cysts in waters 1999". Methods for the Examination of Waters and Associated Materials, in this series.
91. Standing Committee of Analysts. "Isolation and identification of Legionella in waters". Methods for the Examination of Waters and Associated Materials, in this series, in preparation
92. Hurley, M. A. \& Roscoe, M. E. (1983). Automated statistical analysis of microbial enumeration of dilution series. Journal of Applied Bacteriology, 55, 159-164.
93. Ashby, G. K. (1938). Simplified Schaeffer spore stain. Science, 87, 443
94. Department of the Environment, April 1998, contract number PECD 7/7/207.

Address for correspondence

However well procedures may be tested, there is always the possibility of discovering hitherto unknown problems. Analysts with such information are requested to contact the Secretary of the Standing Committee of Analysts at the address given below.

Standing Committee of Analysts
Environment Agency
Wheatcroft Office Park
Nottingham NG12 4DG

Environment Agency

Standing Committee of Analysts
Members assisting with this booklet

A Barrel
N E Booth
RY Cartwright
SR Cole
Dadswe
A Gawle
P Hale
T Inving
D Law
V Lee
N Lightfoot
P Machray
SL Mawer
D P Milne
H Roberts
D P Sartory
J Sellwood
H E Tillett
Jatkins

CONTACTS:

He ENVIRONMENT AGENCY HEAD OFAC
Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol BS32 4UD.
Tel: 01454624400 Fax: 01454624409
www.environment-agency.gov.uk
wiv.environment-agency.wales gov.uk

ENVIRONMENT AGENCY REGIONAL OFFICES

Kingfisher House
Orton Goldhay
Peterborough PE Peterborough PE2 5ZA
Fax: 01733231 810
MIDLANDS Sapphire East 550 Streetsbrook Road Solikel B91 1QT

north east

Rivers House
21 Park Square South
Leeds LS1 2QG
Tel: 0113244019
Fax: 01132461889
NORTHWEST
Richard Fairclough House Knutsford Road
Warrington WA4 1HG Tel: 01925653999 Fax: 01925415961

SO, THERN Guin (b) ${ }^{3}$ me Hous Chetsworth Road
Worthing
West Sussex BN11 1LD Tel: 01903832000 Fax: 01903821832

SOUTHWEST Manley House Kestrel Way Tel: 01392444000 Fax: 01392444238

THAMES

Kings Meadow House Kings Meadow Road Reading RG1 8DQ Tel: 01189535000 Fax: 01189500388

mes

Rivers House/Plas-yr-Afon St Mellons Business Park St Mellons Cardiff CF3 OEY Tel: 02920770088 Fax: 02920798555

ENVIRONMENT AGENCY
0845933317
ENVIRONMENT AGENCY
08459881188
ENVIRONMENT AGENCY
0800807060

Methods for the Examination of Waters and Associated Materials

[^0]: A is acid (yellow). Alk is alkaline (purple). NC is no change. + is blackening. - is no blackening

