

Phase II Geo-Environmental Assessment Report

C2415 - Water Orton Primary School

September 2017

HSP Consulting Engineers Ltd Lawrence House, 4 Meadowbank Way, Nottingham, NG16 3SB

WATER ORTON PRIMARY SCHOOL PLANK LANE WATER ORTON

Phase II Geo-Environmental Assessment Report

This report was produced by HSP Consulting Engineers Ltd for Wilmott Dixon Construction Ltd as the Phase II Geoenvironmental Assessment Report on the proposed Water Orton Primary School, Water Orton to identify possible areas of contamination and provide an assessment of potential ground related development constraints.

This report may not be used by any person other than Wilmott Dixon Construction Ltd and must not be relied upon by any other party without the explicit written permission of HSP Consulting Engineers Ltd. In any event, HSP Consulting Engineers Ltd accepts no liability for any costs, liabilities or losses arising as a result of the use or reliance upon the contents of this report by any person other than Wilmott Dixon Construction Ltd.

All parties to this report do not intend any of the terms of the Contracts (Rights of Third Party Act 1999) to apply to this report. Please note that this report does not purport to provide definitive legal advice.

Issue & Revision History

Revision	Status	Originated	Checked	Approved	Date
A	FINAL	L.E. Bradley B.Sc (Hons), FGS	J.P. Bridgman B.Sc (Hons) FGS, CGeol	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	12.10.2017
в	FINAL L.E. Bradley B.Sc (Hons), FGS		J.P. Bridgman B.Sc (Hons) FGS, CGeol	H.Pratt B.Eng (Hons), C.Eng, F.Cons.E, M.I.C.E, MI Mgt.	29.11.2017
Project Number : C2415				Document Reference :C2415/PII	

This document is available in hard copy, please contact the author to obtain a copy.

HSP Consulting Engineers Ltd, Lawrence House, 4 Meadowbank Way, Nottingham, NG16 3SB T 01773 535 555 W www.hspconsulting.com

Contents

1.		Introduction	1
	1.1	Background	1
	1.2	Client Brief & Scope	1
	1.3	Report Objectives	1
	1.4	Limitations	1
	1.5	Previous Reports	1
2.		Review of Existing Information & Geoenvironmental Setting	2
	2.1	The Site	2
	2.2	Geology	2
	2.3	Pertinent Site Sensitivity Information	3
3.		Fieldwork & Factual Information	4
	3.1	Exploratory Methods	4
	3.2	In-situ Testing	4
	3.3	Laboratory Testing	4
	3.4	Ground Conditions	5
	3.5	Groundwater Levels	6
	3.6	Ground Gas Monitoring	6
	3.7	Visual and Olfactory Evidence of Contamination	6
4.		Geotechnical Assessment	7
	4.1	Detailed Ground Model	7
	4.2	Earthworks	8
	4.3	Excavations	8
	4.4	Foundations	8
	4.5	Ground Floor Slab1	0
	4.6	Concrete Classification1	0
	4.7	Drainage1	0
5.		Environmental Assessment1	1
	5.1	Introduction1	1
	5.2	Assessment of Soil Analysis Results1	1
	5.3	Human Health Mitigation1	2
	5.4	Water Supply1	2
	5.5	Ground Gas Risk Assessment1	2

	5.6	Waste Classification1	13
	5.7	Updated Conceptual Site Model1	13
6.		References1	16

Appendices

Appendix I	-	Proposed Development Layout
Appendix II	-	Exploratory Hole Logs
Appendix III	-	Ground Investigation Layout Plan
Appendix IV	-	Geotechnical Testing Results
Appendix V	-	Chemical Analysis Results
Appendix VI	-	Ground Gas Monitoring Certificates
Appendix VII	-	Infiltration Test Results
Appendix VIII	-	HazWasteOnline Results

Executive Summary

HSP Consulting has been commissioned by Wilmott Dixon Construction Ltd to provide a Phase II Geoenvironmental Assessment report providing information on likely constraints to the development of the site, parameters for design and recommendations for any mitigation measures should they be required.

The site is an open field located off Plank Lane, Water Orton approximately 0.35km south of Water Orton village centre. The approximate National Grid Reference for the centre of the site is (NGR) 417521,290868. A single storey primary school is proposed in the centre of the site with car parking in the east, hard play area in the west and sports pitches and soft play areas across the remainder of the site.

The ground investigation comprised 10No window sample boreholes to a maximum depth of 5.00m begl, 3No trial pits with soakaway testing to a maximum depth of 1.10m begl and 6No cable percussive boreholes to a maximum depth of 8.00m begl to provide information for foundation design and obtain representative disturbed soil samples to forward for geotechnical and geo-environmental analysis. In addition, six shallow pits were excavated to a maximum depth of 0.90m begl to take samples for waste acceptance criteria testing.

The geology of the site comprises topsoil overlying superficial River Terrace deposits comprising sandy gravelly CLAY to a maximum depth of 2.10m begl overlying SAND and GRAVEL. This was underlain by bedrock deposits of the Mercia Mudstone Formation comprising weathered MUDSTONE and CLAY from a minimum depth of 0.15m begl. Made ground comprising clayey gravelly SAND was encountered in the south of the site to a maximum proven depth of 0.80m begl.

The loadings for the proposed development, based on a column load of 350kN, are likely to be in the range of 150-180kN/m². Four mature oak trees are to be removed from within and adjacent to the building footprint. In accordance with NHBC Standards Chapter 4.2, due to the presence of medium volume change potential fine soils the foundations should be deepened to over 2.50m depth within 6.00m from the centre of the trees, decreasing in steps in line with table 14 in NHBC Standards Chapter 4.2, subject to the ABP being suitable for the development. Heave precautions will be required on any foundations over 1.50m depth.

Due to the variability of the soils there is potential for differential settlement and reinforcement will be required within strip foundations. If pad foundations are chosen then these will need to vary in size across the building footprint.

Should reinforced foundations be considered inappropriate a mini piled foundation may be utilised, founding in the weathered Mercia Mudstone Formation deposits from a minimum depth of 4.00m begl. The design of the pile should be carried out by and warranted by a specialist piling contractor.

It is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with an Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

The chemical analysis and risk assessment undertaken to date indicate that the soils on site should be considered suitable for the proposed end use and mitigation is not required during redevelopment.

Analysis of the ground gas monitoring undertaken indicates the site falls into a Characteristic Situation 1 / Green. Therefore, gas protection measures are not necessary within any new development.

Soakaway testing was undertaken in three of the trial pits. The water level did not drop below 75% of the starting level in any of the pits within a 24 hour period. Comparison of this data with table 7.1 Permeability and Drainage Characteristics of Soils Terzaghi and Peck indicates the ground to be of poor drainage potential. It is therefore considered that the natural fine soils at the site would not be suitable for soakaway drainage.

The executive summary contains an overview of key findings and conclusions. However no reliance should be placed on the executive summary until the whole of the report has been read. Other sections of the report may contain information which puts into context the findings noted within the executive summary.

1. Introduction

1.1 Background

Wilmott Dixon Construction Ltd propose to construct a single storey primary school with associated hard and soft play areas and car parking at Plank Lane, Water Orton. A Proposed Site Development Plan is included in Appendix I. Our Client requires an overview of the contamination and ground conditions at the site in order to inform the design of the buildings.

1.2 Client Brief & Scope

HSP Consulting has been commissioned by Wilmott Dixon Construction Ltd to undertake an intrusive ground investigation at the site to investigate the existing ground conditions and provide information on likely constraints to the development, parameters for design and recommendations for any mitigation measures should they be required.

The report presents the following information:

- a summary of the previous Geo-environmental Reports (Section 1.4 below),
- details of the ground investigation undertaken and the ground conditions encountered,
- details and results of the geotechnical testing and contamination analysis,
- recommendations for mitigating constraints to the proposed development where appropriate and providing parameters for foundation design.

Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites.

1.3 Report Objectives

The objectives of this report are to:

- establish the geological and hydrogeological conditions using existing available/published information;
- summarise available information and identify site specific geotechnical and environmental hazards which may place a constraint upon the proposed site use;
- produce an updated Conceptual Site Model identifying potential pollution linkages between sources of contamination, pathways and receptors;

1.4 Limitations

The recommendations made in this report are based on the findings of the intrusive ground investigation undertaken by HSP Consulting Ltd between 7th to 11th August 2017.

1.5 Previous Reports

No previous reports have been made available to HSP Consulting Engineers Ltd by the Client.

2. Review of Existing Information & Geoenvironmental Setting

2.1 The Site

2.1.1 Location

The site is located off Plank Lane, Water Orton approximately 0.35km south of Water Orton village centre. The approximate National Grid Reference for the centre of the site is (NGR) 417521,290868.

2.1.2 Description

The site is broadly irregular in shape and is approximately 2.65Ha in area.

The site is an open field with an enclosure marked by wooden fencing in the south. A public footpath runs north to south through the east of the site.

A number of trees are present across the site. Four mature oak trees are present in the centre of the site and a mix of beech, apple, holly and oaks are present around the site boundaries.

The site is bound by wooden panel fencing and wooden post and rail fencing to the east and south. The western and northern boundaries are defined by hedgerows and shrubs.

The site slopes down to the west by approximately three metres, from approximately 83.80m in the east and 80.80m in the west. There is a step in elevations running north to south in the centre of the site of approximately 0.50m.

2.1.3 Surrounding Land Use

The main features of interest identified from the site walkover are:

- North: Fields with housing beyond.
- East: Residential properties.
- South: Fields and park with housing and school beyond.
- West: Agricultural land.

2.1.4 Site Access

The main vehicle entrance for the site is in the south through a gate off Plank Lane.

2.1.5 Proposed End Use

A single storey primary school is proposed in the centre of the site with car parking in the east, hard play area in the west and sports pitches and soft play areas across the remainder of the site. A proposed development plan is included in Appendix I.

2.2 Geology

2.2.1 Made Ground

The BGS mapping does not indicate any Made Ground on the site.

2.2.2 Superficial Deposits

The BGS mapping indicates that the site is underlain by superficial River Terrace deposits described by the BGS as Sand and gravel, locally with lenses of silt, clay or peat.

2.2.3 Bedrock Geology

BGS bedrock mapping indicates the site is underlain by bedrock deposits of the Mercia Mudstone Group described by the BGS as *Dominantly red, less commonly green-grey, mudstones and subordinate siltstones with thick halite-bearing units in some basinal areas. Thin beds of gypsum/anhydrite widespread; sandstones are also present.*

2.2.4 Structural Geology

No faults are shown within the site vicinity on the BGS mapping.

2.3 Pertinent Site Sensitivity Information

Based on information available freely from BGS, Ordnance Survey and Environment Agency, the geo-environmental setting of the site is summarised as follows:

- Historic mapping for the site indicates that the site has been an open field in the west with trees in the east since at least 1880. The trees were cleared by 1982. The surrounding area has been predominantly residential with a railway line present 0.25km to the north.
- The site is underlain by River Terrace superficial deposits.
- The site is underlain by Mercia Mudstone Group bedrock deposits.
- Made Ground is not indicated within the site boundary on the published geological mapping.
- The underlying superficial geology is designated as a Secondary A Aquifer.
- The underlying bedrock geology is designated as Secondary B Aquifer.
- Minworth Landfill and Water Orton M42 Landfill are located within 250m of the site.

3. Fieldwork & Factual Information

Site work was carried out between 7th to 11th August 2017. Where applicable, the fieldwork was undertaken in accordance with BS5930:2015 Code of Practice for Site Investigations (Ref. 7) and BS10175:2011+A1:2013 Investigation of Potentially Contaminated Sites (Ref. 9).

The boreholes were positioned as close to the proposed building footprints as possible to provide information for foundation design and obtain representative soil samples for geotechnical and geo-environmental analysis.

3.1 Exploratory Methods

The physical methods of investigation employed were 10No window sample boreholes to a maximum depth of 5.00m begl, 3No trial pits with soakaway testing to a maximum depth of 1.10m begl and 6No cable percussive boreholes to a maximum depth of 8.00m begl. In addition, six shallow pits were excavated to a maximum depth of 0.90m begl to take samples for waste acceptance criteria testing. The exploratory holes were logged and sampled by an Engineer from HSP Consulting Ltd and the logs are presented in Appendix II. The exploratory hole locations are shown on the Ground Investigation Layout Plan presented in Appendix III.

Fragmentary bulk, disturbed and undisturbed samples were recovered from materials revealed within all of the exploratory holes. Geo-environmental samples, placed in plastic tubs and glass jars supplied by the laboratory, were also obtained specifically for chemical analysis. The samples were taken to UKAS accredited laboratories for further examination and testing.

3.2 In-situ Testing

3.2.1 Standard Penetration Tests

Standard Penetration Tests (SPTs) were carried out at 1.00m intervals to 5.00m begl then at 1.50m intervals to the terminal depth within all the boreholes. The SPTs were undertaken in accordance with BS 1377:1990 and the results are included on the appended borehole logs (Appendix II).

3.3 Laboratory Testing

The laboratory testing schedules were prepared by HSP Consulting Ltd.

3.3.1 Geotechnical Testing

Geotechnical testing has been scheduled to be undertaken by a UKAS accredited laboratory as part of the works at the site:

- Particle Size Distribution
- Triaxial Shear Strength Test
- Plasticity Indexes
- Natural Moisture Content
- Sulphate Analysis

The laboratory testing is currently being carried out by Professional Soils Laboratory Limited (UKAS accredited, laboratory No.4043) in accordance with BS1377:1990 using calibrated equipment specifically for the British Standard.

3.3.2 Chemical Analysis

The geo-environmental samples retained specifically for chemical analysis were stored in cooled containers until delivery to the laboratory by courier.

Chemical analysis was scheduled on twelve soil samples for the presence of a selected suite of potential contaminants as outlined in the tables below:

Sample Description
CLAY ^{1,3,4}
CLAY ^{1,3,4}
CLAY ^{1,3,4}
SAND ^{1,3,4}
CLAY ^{1,3,4}
SAND ^{1,3,4}
SAND ^{1,2}
Topsoil ^{1,2}
Topsoil ^{1,2}
CLAY ^{1,2}
Made Ground ^{1,2,3}
Made Ground ^{1,2,3}

¹ HSP Standard Suite

² Organic Matter

³ Asbestos Screen

⁴ Waste Acceptance Criteria

⁵ BS3882 Topsoil Testing

⁶ HSP Leachate Suite

Metals	Cadmium	Chromium (III & VI)	Copper
	Lead	Mercury	Nickel
	Zinc		
Semi Metals and Non-metals	Arsenic	Boron	Selenium
Others	pН	Asbestos	
Inorganic Chemicals	Cyanide	Sulphate	Sulphide
Organic Chemicals	PAH (US EPA 16)	TPH (CWG)	Phenol

The contamination analysis was carried out by Chemtest Environmental Ltd (UKAS accredited, laboratory No. 2183) during the period 11th to 22nd August 2017. The results are presented in Appendix V.

3.4 Ground Conditions

3.4.1 Published Geology

The published geology indicates the site is underlain by superficial River Terrace deposits comprising sand and gravel overlying bedrock deposits comprising the Mercia Mudstone Group as described in section 2.2.3 above.

3.4.2 Ground Conditions on site or General Geology & Revealed Strata

The exploratory hole data generally confirms with the published information, although made ground was identified in the south of the site. The strata across the site generally comprises:

٤	Strata	Depth (mbegl)	Thickness (m)	Description
	MADE GROUND	G.L - 0.10	0.10	MADE GROUND comprising brown sandy clay.
	MADE GROUND	0.10 – 0.50	0.40	MADE GROUND comprising black gravelly sand.
Anthropogenic	MADE GROUND	0.10 – 0.50	0.40	MADE GROUND comprising brown clayey gravelly sand.
	MADE GROUND	0.20 – 0.80	0.30	MADE GROUND comprising brown sandy gravelly clay.
	RIVER TERRACE	0.20 – 2.10	1.55	Firm orangish brown and yellowish brown sandy gravelly CLAY.
Superficial	DEPOSITS	0.35 – 3.10	2.05	Yellowish brown and brown gravelly SAND.
		1.20 – 2.80	0.70	Orangish brown and reddish brown SAND.
Bedrock	MERCIA MUDSTONE	0.15 – 5.00	2.60	Firm to stiff reddish brown and grey sandy gravelly CLAY.
	GROUP	1.90 - 8.00	5.10	Extremely weak reddish brown and grey MUDSTONE.

Table 1 – Encountered Ground Conditions

3.5 Groundwater Levels

Groundwater was not encountered during the site investigation.

Monitoring of the groundwater has been undertaken as part of this investigation on four occasions. Water was encountered in all wells from a minimum depth of 3.61m begl.

3.6 Ground Gas Monitoring

Sources of potential ground gas have been identified in the site vicinity including Minworth Landfill and Water Orton M42 Landfill. Gas monitoring installations were constructed within three of the boreholes at the site (BH1, 2 and 5). Each well has been constructed using 50mm diameter HDPE pipe with the top one metre being plain and the remainder slotted. All of the borehole installations have a 6mm pea gravel surround to the slotted pipe with a bentonite seal above and a gas tap. The covers are cemented flush with ground level and are round lockable stopcock covers.

HSP Consulting uses a GFM 430 Gas Analyser. Prior to its use a calibration check can be performed against gas readings in air. It is recommended that this check is undertaken once on each day the analyser is used. Annual calibration is undertaken on the unit and a copy of this certificate has been included within Appendix VI.

The results of the ground gas monitoring undertaken to date are discussed in Section 5.5 below.

3.7 Visual and Olfactory Evidence of Contamination

Fragments of ash and clinker were noted in WS7 and WS8.

4. Geotechnical Assessment

4.1 Detailed Ground Model

For the purposes of this assessment the window sample and cable percussion borehole information has been utilised. The exploratory hole logs are presented in Appendix II.

4.1.1 Made Ground

Made Ground was identified in WS7, WS8 and WS10. This comprised turf over brown sandy CLAY overlying black gravelly SAND with gravel of brick, ash, clinker and mixed lithology in WS7 and WS8 to a maximum depth of 0.50m begl. This was underlain by reworked natural deposits comprising firm brown slightly gravelly very sandy CLAY with gravel of brick, ash and mixed lithology to a maximum depth of 0.80m begl.

In WS10 brown clayey gravelly SAND with gravel of mixed lithology was identified between 0.10m and 0.50m begl.

4.1.2 River Terrace Deposits

Superficial River Terrace Deposits were encountered in all locations with the exception of BH6, WS5 and WS6. This variously comprised firm orangish brown and yellowish brown sandy gravelly CLAY with gravel of mixed lithology between 0.20m and 2.10m begl in WS3, WS4, WS7 and WS9 and BH1-5.

Yellowish brown and brown fine to coarse SAND and sub-angular to rounded fine to coarse GRAVEL of mixed lithology was encountered in all locations where superficial deposits were identified with the exception of WS9 between 0.35m and 3.10m begl. In WS1, WS4 and WS7 this was interbedded with bands of reddish brown and orangish brown locally clayey fine to coarse SAND between 1.20m and 2.80m begl.

4.1.3 Mercia Mudstone Group

Bedrock deposits of the Mercia Mudstone Group were encountered across the site from a minimum depth of 0.15m begl and comprised weathered firm to stiff reddish brown and grey sandy locally gravelly CLAY with gravel of mixed lithology between 0.15m and 5.00m begl in all window sample locations with the exception of WS7 and WS10.

This was underlain by extremely weak reddish brown and light grey MUDSTONE from a minimum depth of 1.90m begl to a maximum proven depth of 8.00m begl.

4.1.4 In-situ Testing and Assessment

Soil infiltration testing was undertaken by means of soakaways in general accordance with BRE Digest 365 Soakaway Design (Ref. 3) in the three of the trial pits excavated. The results are discussed in section 4.7 below and included in Appendix VIII.

A series of Standard Penetration Tests (SPT's) undertaken within all boreholes have returned a SPT 'N' values in the range of 8 - 36 at 1.00m depth, 10 - 50 at 2.00m depth and 7 - 50 at 3.00m depth. The following table summarises the N values at depth across the site within the natural strata.

Та	ble 2 – SPT N Values			
	Depth (m)	Range of 'N' Values	Mean 'N' Value	Description
	1.00	8 - 36	18.5	SAND/CLAY/MUDSTONE
	2.00	10 – 50	28	SAND/GRAVEL/MUDSTONE
	3.00	7 – 50	27	SAND/GRAVEL/MUDSTONE
	4.00	30 – 44	38	SAND/GRAVELMUDSTONE
	5.00	23 – 50	44	MUDSTONE

Twenty Plasticity Index tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The available results are included in Appendix IV.

The plasticity index of the fine deposits is in the range 10 to 33% indicating clays of low to high plasticity. One sample from WS102 at 1.50m was non-plastic. The modified plasticity index of the fine soils is in the range 9.2% to 33% indicating soils of Low to Medium Volume Change Potential (VCP) in accordance with the NHBC guidance on building near trees (Ref. 11). The natural moisture content of the samples was in the range 10 to 35%.

Four Particle Size Distribution analysis tests have been undertaken to confirm the visual description and engineering behaviour of the soils. The results are included in Appendix IV.

Unconsolidated undrained shear strength tests in triaxial compression were successfully carried out on three samples of clay with returned Cu values of 61 - 112kPa.

4.2 Earthworks

Significant earthwork operations are not expected at the site due to constraints presented by the existing ground levels at the boundaries. It is likely that near surface fine soil arisings generated on site will be suitable for use as engineered fill on site, subject to testing and assessment.

4.3 Excavations

Excavations to proposed formation level for new foundations should generally be readily achievable adopting standard excavation plant. However, random and potentially severe falls should be anticipated from the faces of near vertically sided unsupported excavations carried out at the site. Where personnel are required to enter near vertically sided excavations, it is considered that full support should be provided to the full depth of all excavations.

It is recommended that all support systems are continually assessed by fully trained or experienced personnel.

Groundwater was not encountered during the fieldwork however, there is a possibility that groundwater entries may be encountered at shallow depths during construction. It should be noted that groundwater levels may vary due to seasonal variations or other effects. Should shallow groundwater entries be encountered at the site during groundwork operations traditional sump and pump dewatering should be sufficient if required.

4.4 Foundations

The development proposals for the site indicate a single storey primary school at the site. The proposed development plans for the site can be seen in Appendix I. Should development plans alter a geotechnical engineer from HSP must be consulted to review the foundation options.

For the purpose of this foundation assessment the information gained from all boreholes with the exception of WS1-3 and WS5-6, which are outside the proposed building footprint, has been considered.

The table below indicates the indicative allowable bearing pressure (ABP) that could be achieved using strip or pad foundations across the building footprint. An ABP has been calculated using the mean of the corrected SPT $(N_1)_{60}$ values for the borehole group at 1m intervals from the existing ground level.

The made ground deposits encountered are not considered to be suitable as a formation layer and SPTs within these deposits are not considered within the calculations.

Depth (m)	Mean SPT (N1)₀₀ Value	Range of 'N' Values	Eurocode 7 Soil Strength Description	Consistency (BS5930) Description	Approximate ABP (kN/m ²) – 0.60m wide strip footing	Approximate ABP (kN/m ²) – 2x2m pad footing
1.00	16	8 - 18	Medium Strength	Firm	130	140
2.00	35	16 – 50	Dense/Extremely Weak	Dense/Extremely Weak	150 – 250	150 - 250
3.00	39	17 – 50	Very Dense/Extremely Weak	Very Dense/Extremely Weak	170 - 250	170 - 250
4.00	43	31 – 44	Very Dense/Extremely Weak	Very Dense/Extremely Weak	250	250
5.00	44	23 – 50	Very Dense/Extremely Weak	Very Dense/Extremely Weak	250	250

The loadings for the proposed development, based on a column load of 350kN, are likely to be in the range of 150-180kN/m². Foundations should be designed in accordance with NHBC Standards Chapter 4.2 assuming soils of medium volume change potential. Four mature oak trees are to be removed from within and adjacent to the building footprint. NHBC Standards Chapter 4.2 indicates the foundations within 6.00m of the trees should be Engineer designed. Any stepping should be in accordance with table 14 in NHBC Standards Chapter 4.2, subject to the ABP being suitable for the development. Heave precautions will be required on any foundations greater than 1.50m depth due to the influence of trees.

Due to the variability of the soils there is potential for differential settlement and reinforcement will be required within strip foundations. If pad foundations are chosen then these may need to vary in size across the building footprint to cover the range of allowable bearing pressures given in Table 3.

The allowable bearing capacity value incorporates a factor of safety of 3 and total settlements are not expected to exceed approximately 25mm.

Should traditional reinforced foundations be considered inappropriate a mini piled foundation may be utilised, founding in the weathered Mercia Mudstone Formation deposits from a minimum depth of 4.00m begl. The design of the pile should be carried out by and warranted by a specialist piling contractor.

4.5 Ground Floor Slab

Due to the removal of oak trees from the building footprint and development area and the presence of soils of medium volume change potential a suspended ground floor slab will need to be utilised.

4.6 Concrete Classification

The results of sulphate and pH testing carried out on selected soil samples taken during this investigation have been compared with the recommendations outlined in BRE Special Digest 1, Part 1: 2005.

The guidelines given in BRE Special Digest 1 are based upon a site classification relating to its previous usage. It is considered appropriate to define this site as a 'greenfield site' location for the purposes of concrete classification.

On the basis of the above, it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1.

4.7 Drainage

Soakaway testing was undertaken in three of the trial pits. The results are reported in Appendix VII.

The water level did not drop below 75% of the starting level in any of the pits within a 24 hour period. Comparison of this data with table 7.1 Permeability and Drainage Characteristics of Soils Terzaghi and Peck indicates the ground to be of poor drainage potential. It is therefore considered that the natural fine soils at the site would not be suitable for soakaway drainage.

5. Environmental Assessment

5.1 Introduction

The approach to the human health risk assessment reported here follows the principals given in CRL 11, i.e. application of the following assessment hierarchy:

- Tier 1 risk screening by establishment of potential pollutant linkages, i.e. the preliminary conceptual site model (PCSM), or
- Tier 2 generic quantitative assessment using generic assessment criteria (GACs) that represent 'acceptably low' risk, or
- Tier 3 quantitative risk assessment using site specific assessment criteria (SSACs) that represent 'unacceptable risk', or where generic assessment criteria are not available or they are not applicable to the CSM.

The results of laboratory analysis have been screened against GACs including the Defra Category 4 Screening Levels (C4SL) and LQM and CIEH S4ULs for Human Health Risk Assessment (Copyright Land Quality Management Limited reproduced with permission; Publication Number S4UL3180. All rights reserved) (Refs 11 and 12 respectively).

In the absence of a standard scenario for a school environment, the standard exposure scenario of residential without plant uptake has been used to identify potential exposure pathways for human health receptors. Controlled water, flora and fauna and property receptors have also been included within the CSM.

It should be noted that organic contamination (PAH, TPH and BTEX) have been screened against the GAC for 1%Soil Organic Matter (SOM).

The assessment of PAHs is undertaken using the surrogate marker approach; recommended by Health Protection Agency (2010) guidance, providing the PAH profile is sufficient similar to the coal tars tested by Culp et al (1998). Where PAH profile is not sufficiently coal tar like the TEF method is adopted using the LQM and CIEH S4ULs. Prior to assessment a PAH profile is generated for all samples analysed for PAH using the LQM PAH Profiling Tool v1.3, the graphical output is presented in Appendix V.

5.2 Assessment of Soil Analysis Results

Twelve samples, as detailed in section 3.3.2, were scheduled for analysis from the development area. These provide a basis for characterising the soils to outline the potential impacts on human health and any environmental receptors from any contamination found.

The screening process for on-site human health receptors show that the GACs, representative of minimal risk for a residential with plant uptake setting were not exceeded. The results for the potential contaminants of concern were all below the screening criteria for individual contaminant concentrations.

Eight of the soil samples derived of Made Ground were submitted for asbestos screen and identification. No asbestos was identified.

5.3 Human Health Mitigation

The concentrations of potential contaminants recorded at the site are not considered to pose a significant possibility of significant harm to the proposed end use of the site.

Should any obvious evidence of unexpected contamination be encountered during the redevelopment works it should be reported to HSP so that an inspection can be made and appropriate sampling and assessment work be carried out.

Appropriate health and safety precautions should be adopted during any excavation works to avoid exposure to potentially contaminated soils and dust. Consideration should be given to the HSE document HSG 66 'Protection of workers and the General Public during Redevelopment of Contaminated Land'.

The approval of the local Environmental Health Officer should be sought with respect to the soil contamination assessment and mitigation proposals.

5.4 Water Supply

The environmental testing for the site has been compared to the following document in order to assess the most appropriate pipe material that should be used upon the site for mains water supply:

'Guidance for the selection of water supply pipes to be used in Brownfield sites – UK Water Industry Research – Ref: 10/WM/03/21.'

Based on the chemical analysis report it is considered that specialist materials are not likely to be required for water supply pipes at the site. However confirmation of supply pipes should be sought from utility providers.

5.5 Ground Gas Risk Assessment

Sources of potential ground gas have been identified in the site vicinity. Ground gas concentrations have been monitored on four occasions over a four week period in order to obtain an indication of the ground gas regime at the site.

The results indicate that methane has not been recorded above the limits of detection of the machine. Carbon dioxide has been recorded at concentrations up to a maximum 3.6% by volume in air. Positive gas flows above the limits of detection have not been recorded.

The results have been assessed in line with the guidance provided in NHBC Guidance on Methane and Carbon Dioxide (Ref 15) CIRIA Document C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings' (Ref 16.). Comparison of these results with Table 8.5 of the CIRIA document indicates that the site falls into a Characteristic Situation 1.

Therefore, gas protection measures are not necessary within any new developments upon the site.

Significantly depleted oxygen levels were observed in BH5 during the monitoring. This poses a risk of asphyxiation to construction and maintenance workers in confined spaces such as excavations or manhole chambers. A confined spaces risk assessment should be carried out prior to working in any buried structures or excavations.

The certificates and summary for the gas monitoring are included as Appendix VI.

5.6 Waste Classification

The results of the chemical testing have been assessed using web-based software for classifying hazardous waste, using HazWasteOnlinetm. The majority of the materials tested are likely to be classified as non-hazardous waste, however the levels of zinc in the sample from WAC4 have resulted in the material being classified as hazardous. The results are included in Appendix VIII.

The results of the WAC tests have been compared to Landfill Waste Acceptance Criteria Limits. Fluoride levels in sample WAC2 at 0.50m classify the material as inert hazardous waste.

It may be necessary to carry out a delineation exercise to determine the extent of the hazardous material to reduce costs for off-site removal.

5.7 Updated Conceptual Site Model

The PCSM and Summary of plausible pollutant linkages was produced by undertaking a Source-Pathway-Receptor analysis of the site. Based on the findings of this and the previous investigation the updated conceptual site model has been updated and is presented in the table below.

Source	Pathway	Receptor	Consequence	Probability	Risk	Comments
On site	 P1: Human uptake pathways direct contact, ingestion of soils and dust, inhalation of fugitive dust. 	R1: End Users R2: Construction and maintenance workers	Mild	Unlikely	Very Low	Elevated concentrations of contaminants have not been identified within the topsoil and natural material on site, therefore mitigation measures are not required. The risk is considered to be VERY LOW.
S1: Made Ground in south of site S2: Agricultural Land	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. 	R3: Controlled Water: Groundwater & Surface Water	Mild	Unlikely	Very Low	The underlying geology comprises superficial River Terrace deposits which are classified as a Secondary A Aquifer and Mercia Mudstone Group bedrock deposits which are classified as a Secondary B Aquifer. Elevated concentrations of contaminants have not been identified within the topsoil and natural material on site. Based on the information available, the risk to surface water and groundwater is considered to be VERY LOW.
Off Site (within 250m) S3: Made Ground	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. P5: Vertical and lateral migration of ground gases and/or vapour. 	R1: End Users R2: Construction and maintenance workers	Mild	Unlikely	Very Low	Elevated concentrations of contaminants have not been identified within the topsoil and natural material on site, therefore mitigation measures are not required. The risk is considered to be VERY LOW.
associated with development in the area S4: Landfills S5: Historical & Contemporary Land Use: railway land, agricultural land	 P2: Horizontal and vertical migration of contaminants through potentially permeable soils and rocks. P3: Migration of contaminants along preferential pathways (man-made). P4: Surface runoff. P5: Vertical and lateral migration of ground gases and/or vapour. 	R4: Property, services and substructures R5: Adjacent Residential Properties	Mild	Unlikely	Very Low	The natural and made ground deposits may contain sulphates that present a risk to buried concrete. Testing indicates the soils are unlikely to be aggressive to concrete and it is considered appropriate to adopt a basic Design Sulphate Class of DS-1 together with and Aggressive Chemical Environment for Concrete (ACEC) of AC-1. The chemical analysis of the soils indicates specialist materials are unlikely to be required for water supply pipes at the site. Ground gas monitoring has been carried out on four occasions over a four week period. The results indicate that the site is characterised as CS1. Gas protection measures

Table 6 Undated Co contual Site Model

					will not be required; therefore the risk is considered to be VERY LOW.
P6: Root uptake.	R6: Proposed Flora and fauna	Mild	Unlikely	Very Low	The risk of uptake to proposed flora and fauna is VERY LOW.

6. References

- BRITISH GEOLOGICAL SURVEY. 1996. Birmingham. England and Wales Sheet 168. Bedrock and Superficial Deposits. 1:50,000 (Keyworth, Nottingham: British geological Survey).
- 2. British Geological Survey Lexicon Search http://www.bgs.ac.uk/lexicon/
- Department for Environment, Food and Rural affairs and the Environment Agency (2002) Soil Guideline Value Reports for Individual Soil Contaminants. Report R&D SGV Series. Environment Agency. 2004. Model Procedures for the Management of Contaminated Land CLR 11.
- 4. Department of the Environment Industry Profiles.
- 5. Site Investigation in Construction, Volume 3, Specification for Ground Investigation 2nd Edition.
- 6. BS 5930:2015 Code of Practice for Site Investigations.
- 7. BS 8576:2013 Guidance on investigations for ground gas. Permanent gases and Volatile Organic Compounds (VOCs)
- 8. BS10175:2011 +A1:2013 Investigation of Potentially Contaminated Sites Code of Practice.
- 9. NHBC Standards, Chapter 4.2, Building near trees.
- 10. Land Quality Management and Chartered Institute for Environmental Health. 2009, 2nd Edition. Generic Assessment Criteria for Human Health Risk Assessment.
- 11. Department for Environment, Food and Rural Affairs and Contaminated Land: Applications in Real Environments (CL:AIRE) (December 2013). SP1010: Development of Category 4 Screening Levels for Assessment of Land Affected by Contamination.
- 12. BRE Special Digest 1:Concrete in Aggressive Ground, 2005, Building Research Establishment.
- 13. CL:AIRE The definition of Waste: Development Industry Code of Practice, 2008.
- 14. NHBC & RSK Group Plc, March 2007. Guidance on evaluation of development proposals on sites where methane and carbon dioxide are present. Ed 4.
- 15. CIRIA C665 'Assessing Risks Posed by Hazardous Ground Gases to Buildings'

Appendix I

	ASCH017 - Parking Spaces				
Type Comments Comments Type					
Disabled car parking bay	Disabled bay with 1200mm safety zone	2400x4800			
Disabled car parking bay: 4					
Standard parking bay		2400x4800			
Standard parking bay: 46					
Grand total: 50					

	ASCH016 - Timber Planters	
Description	Type Comments	Туре
Timber planter	To avoid collisions with open windows	450x450x1200
450x450x1200: 7		
Timber planter	To avoid collisions with open windows	450x450x2200
450x450x2200: 1		
Timber planter	To avoid collisions with open windows	450x450x3500
450x450x3500: 15		
Grand total: 23		

Rev	isions		
F	Layout revised to suit clients' comments	21/02/17	FB
Е	Layout revised to suit highways comments	14/02/17	ABW
D	Issue for information	26/08/16	JP
С	Issue for information	25/08/16	JP
В	Site constrains added	12/08/16	FB
No.	Description	Date / Iss	ued by

[
	ASCH015 - Site Areas		
Туре	Description	BB99 Allowance	Area
Grass - Playing Field	Playing Field - 86m x 56m inc run off	8400	4108 m ²
Soft Informal and Social Area	Playing field / Soft play	1925	2242 m ²
Hard Informal and Social Area	Hard Play Area, informal and social	1075	1076 m ²
Hardcourt - MUGA	Multi Use Games Area - 22m x 37m	814	814 m ²
Habitat	Habitat area	668	1967 m ²
Hardcourt - Games Court	Games court, hard surfaced	626	629 m ²
School Pedestrian Area	Pedestrian circulation		906 m ²
Net site area: 7	· ·		11741 m ²
Building Footprint	2FEN Keynes	Non-net area	2186 m ²
School Vehicular Area	Vehicular circulation	Non-net area	2157 m ²
Grass	Residual Grass	Non-net area	13893 m ²
Non-net site area: 3	1		18236 m ²

Non-net site area: 3

Grand total: 10

Site General:

Cycle Storage = 20 no. (10 hoops within polycarbonate shelters)

Note

Traffic and pedestrian Signage to be confirmed.

Use figured dimensions only. All levels and dimensions to be checked on site. This drawing is to be read in conjunction with all other relevant drawings and specifications.

29978 m²

All rights reserved. Hunters South Architects Limited.

hunters south architects

Sussex Business Village Lake Lane, Barnham West Sussex. PO22 0AA

T 01243 558750

info@hunterssoutharchitects www.hunterssoutharchitects

Project Name:

Water Orton Primary School

Dwg Reference: Site Layout - OPT1

Drawn: FB	Chec	ked: ABW	Date: July 20)16
Status: For	Info	ormatior)	
Scale: 1:1	000 @	2 A3		
Job No:		Dwg No:		Rev:
Z018	8	SK-	-100	F

Visibility splay to Christopher Way, in accordance with existing Land Registry drawing no WK347492

e e 1 Site boundary

- 2 Weldmesh fence - 1800mm high, inc. gates

3 Timber Pallisade fencing - 1200mm high

- 4 Chainlink fence - 3000mm high

Appendix II

	6	2					1977 m		Borehole No	0.
	S	ρ				Bo	reho	ole Log	WS101	1
con	sult	ing						U	Sheet 1 of	1
Projec	t Name	: Water Ort	on Prir	mary School	Project No. C2415		Co-ords:	-	Hole Type WS)
Locati	on [.]	Birmingha	m				l evel:		Scale	
Loout	011.	Birninghe					20701.		1:50	
Client	:	Willmott D	Dixon L	td			Dates:	30/10/2017 - 30/10/2017		/
Well	Water Strikes	Sample	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Depair (iii)	Type	results				TOPSOIL: Blackish brown sandy cl	ayey	-
		0.30 - 0.60	U		0.30			TOPSOIL. Light grey and orangish brown clave	ev SAND.	
		0.60 - 0.90	U					Sand is fine to coarse. (River Terrad	ce Deposits)	-
		100 150			1.10			Firm reddish brown and drev sandy	CLAX High	1 -
		1.20 - 1.50	U					plasticity (field description) (Mercia	Mudstone).	
		1.60 - 1.90	U							-
										2 -
		2.30 - 2.60	U							-
		2.60 - 2.90	U							-
					3.00			Reddish brown and grey MUDSTO	NE.	3 -
		3.30 - 3.60	U					to coarse. (Mercia Mudstone)	. Sand is fine	-
		3.60 - 3.90	U							-
		4.10 - 4.40	U							4 -
										-
		4.60 - 4.90	U							
					5.00					_
	1				5.00			End of borehole at 5.00 m		5 -
										-
										-
										-
										-
										1 -
										-
										8 -
										-
										9 —
										-
			1							-
			1							-
			1							10 -
Rema	rks		1				1			
1. No 2. Bor	groundv ehole w	vater was end as terminated	counte d at 5.0	red during the dri 00m depth and ba	lling process. ackfilled with a	arisings.			AGS	

Project Name: Water Location: Birmin Client: Willmo Well <u>Water</u> Sam Depth (1 0.50 - 0. 1.50 - 1.	Orton Prin gham ott Dixon Lt m) Type 80 U 80 U	rimary School	Project No. C2415	Bo Level (m)	rehc Co-ords: Level: Dates: Legend	- 30/10/2017 - 30/10/2017 Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	WS102 Sheet 1 of Hole Type WS Scale 1:50 Logged B LB	2 1 / 1 - 2 -
Project Name: Water Location: Birmin Client: Willmo Well <u>Water</u> Sam Depth (0.50 - 0. 1.50 - 1.	Orton Prin Igham ott Dixon Lt Iples and I m) Type 80 U 80 U	rimary School Ltd d In Situ Testing e Results	Project No. C2415	Level (m)	Co-ords: Level: Dates: Legend	- 30/10/2017 - 30/10/2017 Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	Sheet 1 of Hole Type WS Scale 1:50 Logged B LB	1 -
Project Name: Water Location: Birmin Client: Willmo Well <u>Water</u> Sam Depth (0.50 - 0. 1.50 - 1.	Orton Prin gham ott Dixon Lt ples and I m) Type 80 U 80 U	timary School	C2415 Depth (m) 0.30 2.20	Level (m)	Co-ords: Level: Dates: Legend	- 30/10/2017 - 30/10/2017 Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	rown clayey	1 -
Location: Birmin Client: Willmo Well <u>Water</u> Sam Depth (0.50 - 0. 1.50 - 1.	gham ott Dixon Lt ples and I m) Type 80 U 80 U	Ltd J In Situ Testing e Results	Depth (m) 0.30 2.20	Level (m)	Level: Dates: Legend	30/10/2017 - 30/10/2017 Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	Scale 1:50 Logged B LB rown clayey n SAND te Deposits)	y 1 - 2 -
Client: Willow Well <u>Water</u> Sam Depth (0.50 - 0. 1.50 - 1.	ott Dixon Lt ples and I m) Type 80 U 80 U	Ltd d In Situ Testing e Results	Depth (m) 0.30 2.20	Level (m)	Dates: Legend	30/10/2017 - 30/10/2017 Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	Logged B LB rown clayey n SAND. e Deposits)	y 1 - 2 -
Well Water Sam Depth (0.50 - 0. 1.50 - 1.	m) Type 80 U 80 U	e Results	Depth (m) 0.30 2.20	Level (m)	Legend	Stratum Description TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	rown clayey n SAND. æ Deposits)	1 -
Strikes Depth (0.50 - 0. 1.50 - 1.	m) Type 80 U 80 U	e Results	(m) 0.30 2.20	(m)		TOPSOIL: Turf overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	rown clayey n SAND. e Deposits)	1 -
0.50 - 0.	80 U 80 U		0.30			TOPSOIL: Turr overlying blackish br sandy TOPSOIL. Orangish brown and yellowish brow Sand is fine to coarse. (River Terrac	rown clayey n SAND. .e Deposits)	1 -
			2.20			End of borabole at 2.20 m		2 -
								3 - 4 - 5 - 6 - 7 - 8 - 9 -

h	S	p				Во	reho	ole Log	Borehole N WS10	No. 3
Projec	t Name	· Water Ort	on Prin	nany School	Project No.		Co-orde:		Sheet 1 of Hole Typ	r1 e
Fiojec	i name	. Water Off		nary School	C2415		CO-orus.	-	WS Scale	
Locati	on:	Birmingha	Im				Level:		1:50	
Client	:	Willmott D	ixon L	td			Dates:	30/10/2017 - 30/10/2017	Logged B	Зy
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)		TOPSOIL: Turf overlving blackish b	rown clavev	-
		0.20 - 0.50	U		0.20			sandy TOPSOIL. Firm reddish brown and grey sandy	gravelly	
		0.70 - 1.00	U					CLAY. High plasticity (field descripti fine to medium angular of mudstone	on). Gravel is e. (Mercia	
		1.00 - 1.30	U					Mudstone)		1
								becoming arguelly from 1.30m to 1.50m o	lenth	
					1.50			Reddish and grey MUDSTONE. Re	covered as	-
		1.70 - 2.00						clayey gravelly sand. Sand is fine to (Mercia Mudstone)	o coarse.	
		2.00 - 2.30								2.
		2.70 - 3.00	U							
		3.10 - 3.40	U							3
		3.70 - 4.00	U							
					4.00			End of borehole at 4.00 m		4 -
										5
										6
										7
										8
										9
										10 -
Rema	rks									
1. No 2. Bor	groundv ehole w	vater was end as terminated	counter d at 4.0	red during the dri 0m depth and ba	lling process. ackfilled with a	arisings.			AGS	S

h	С	n				_			Borehole No.).
	2	Ρ				Bo	reho	ole Log	BH1	
cor	sult	ing						•	Sheet 1 of 1	l
Projec	ct Name:	Water Ort	on Prin	nary School	Project No. C2415		Co-ords:	-	Hole Type CP	
Locat	ion:	Birmingha	am				Level:		Scale 1:50	
Client	:	Willmott D	Dixon L	td			Dates:	07/08/2017 - 07/08/2017	Logged By	
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Strikes	Depth (m)	Туре	Results	(m)	(m)				
		0.10 - 0.50	B		0.10			Turf over blackish brown slightly cla gravelly fine to coarse SAND. Grave angular to rounded fine to coarse of	yey slightly el is sub- mixed	-
		0.50 - 1.00			0.60			Loose brown sandy topsoil (Driller's	description)	
	0 	1.00 1.00 - 1.45	D	N=18 (2,3/3,4,5,6))			very sandy CLAY. Low plasticity (fie description). Gravel is sub-rounded fine to coarse of mixed lithology.	to rounded	1 -
		1.50 - 2.00	В		1.50			Medium dense orangish brown sligh clayey fine to coarse SAND. Gravel	itly gravelly is sub-	-
	- - - - - - - - - - - - - - - - - - -	2.00 2.00 - 2.45 2.00 - 2.50	D B	N=31 (3,4/6,6,8,11)			angular to rounded fine to coarse of lithology.	mixed	2 -
		3.00 3.00 - 3.45 3.00 - 3.50	D B	N=30 (4,5/5,8,8,9)	3.10			Extremely weak reddish brown and MUDSTONE recovered as clayey g	grey ravelly fine to	3 -
		4.00 4.00 - 4.45	D	N=31 (4,6/6,7,8,10))			Coarse sand.		4 -
		5.00	D	N=50 (7,10/50 for 265mm)	5.00			End of borehole at 5.00 m		5
Rema 1. No 2. Boi	irks groundw rehole wa	vater was en	counter	red during the drilli 0m depth due to r	ing process. efusal.				1 AGS	9

h	C	2							Borehole N	0.
	5	Ρ				Bo	reho	ole Log	BH2	
con	ISUIL	ing						-	Sheet 1 of	1
Projec	ct Name:	Water Orto	on Prir	mary School	roject No. 2415		Co-ords:	-	Hole Type	÷
Locati	ion:	Birmingha	m				Level:		Scale	
		5							1:50	v
Client	:	Willmott D	ixon L	td	1	1	Dates:	08/08/2017 - 08/08/2017	Logged Dy	y
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
	0	Depth (m)	Туре	Results	()	()		Turf over blackish brown slightly cla	vev slightly	<u> </u>
		$\begin{array}{c} 1.00\\ 1.00 - 1.45\\ 1.50 - 2.00\\ 2.00\\ 2.00 - 2.45\\ 2.00 - 2.50\\ 3.00\\ 3.00 - 3.45\\ 3.50 - 4.00\\ 4.00\\ 4.00\\ 4.00 - 4.45\\ 5.00\\ 5.00 - 5.45\\ \end{array}$	B D B D B D D D D	N=10 (2,1/2,2,3,3) N=34 (10,10/10,8,8,8) N=18 (3,4/3,4,5,6) N=43 (6,6/7,11,10,15) N=39 (6,7/8,10,9,12) N=40 (6,9/7,7,11,15)	0.10 0.70 1.50 2.90			gravelly fine to coarse SAND. Grav angular to rounded fine to coarse of lithology. Loose brown sandy topsoil (Driller's Firm grey and orangish brown sligh very sandy CLAY. Low plasticity (fie description). Gravel is sub-rounded fine to coarse of mixed lithology. Medium dense orangish brown and coarse SAND and sub-angular to ro coarse GRAVEL of mixed lithology. Extremely weak reddish brown and MUDSTONE recovered as clayey g coarse sand.	el is sub- f mixed i description) tly gravelly ld to rounded grey fine to ounded fine to grey iravelly fine to	1 - 2 - 3 - 5 - 6 - 7 - 7 -
		8.00 8.00 - 8.30	D	50 (10,14/50 for 235mm)	8.00			End of borehole at 8.00 m		8 -
Rema 1. No 2. Bor 3. Gas	rks groundw ehole was s and was	vater was enc as terminated	counte l at 8.0 g stan	red during the drillir 00m depth due to re dpipe installed to 5.	ng process. fusal. 00m depth				AGS	9 -

h	С	n							Borehole N	lo.
	2	Ρ				Bo	reho	ole Log	BH3	
con	sult	ing						~	Sheet 1 of	1
Projec	t Name:	Water Orte	on Prir	mary School	Project No. C2415		Co-ords:	-	Hole Type	е
Locatio	on:	Birmingha	m	I			Level:		Scale	
		g							1:50	łv.
Client:		Willmott D	ixon L	td		I	Dates:	09/08/2017 - 09/08/2017	Logged D	'y
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description		
	Suikes	Depth (m)	Туре	Results		(11)		Turf over blackish brown slightly cla	vev slightly	-
		0.10 - 0.50	B		0.10			gravelly fine to coarse SAND. Grave angular to rounded fine to coarse of	el is sub- f mixed	
		0.50 - 1.00			0.60			Loose brown sandy topsoil (Driller's	description) /	
		1.00 1.00 - 1.45	D	N=18 (3,2/2,3,5,8))			Firm orangish brown and grey sligh very sandy CLAY. Low plasticity (fie description). Gravel is sub-angular t fine to coarse of mixed lithology.	tly gravelly ld to rounded	1
		1.50 - 2.00	В		1.50			Medium dense orangish brown and	grey slightly	-
		2.00 2.00 - 2.45	D	N=25 (9,9/8,6,6,5)				gravelly clayey fine to coarse SANE sub-angular to rounded fine to coars lithology.). Gravel is se of mixed	2
		2.00 - 2.50	В							
					2.70			Extremely weak reddish brown and	grey	-
		3.00 3.00 - 3.45	D	N=19 (4,4/6,5,3,5)				coarse sand.	ravelly line to	3
		3.50 - 4.00	в							
		4.00 4.00 - 4.45	D	N=34 (4,7/7,8,9,10))					4
		5.00 5.00 - 5.45	D	N=23 (6,6/6,5,6,6))					5
										6
		6.50		N=50 (6,6/50 for	6.50			End of borehole at 6.50 m		-
		6.50 - 6.90	D	295mm)						
										7
										8
										9
										10

h	C	n							Borehole No	0.
	5	Ρ				Bo	reho	ole Log	BH4	
con	Sult	ing						•	Sheet 1 of	1
Projec	t Name:	Water Ort	on Prir	mary School	Project No. 22415		Co-ords:	-	Hole Type CP	;
Locati	on:	Birmingha	ım	· ·			Level:		Scale	
									1:50	
Client	:	Willmott D	ixon L	td		1	Dates:	09/08/2017 - 09/08/2017		y
Well	Water Strikes	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	1	
		Depth (m)	Туре	Results	()	()		Turf over blackish brown slightly cla	avev slightly	
		0.50 - 1.00 1.00 - 1.45	B		0.10 0.20			gravelly fine to coarse SAND. Grav angular to rounded fine to coarse of lithology. Loose brown sandy topsoil (Driller's Firm orangish brown and grey sligh very sandy CLAY. Low plasticity (fie description). Gravel is sub-angular fine to coarse of mixed lithology.	is sub- f mixed <u>description)</u> tly gravely do rounded	1 -
		2.00 2.00 - 2.45 2.00 - 2.50	DB	N=16 (6,8/6,3,3,4)	1.90			Medium dense orangish brown and gravelly clayey fine to coarse SANE sub-angular to rounded fine to coar lithology.	grey slightly). Gravel is se of mixed	2 -
		3.00 3.00 - 3.45	D	N=29 (3,3/5,7,8,9)	2.80			Extremely weak reddish brown and MUDSTONE recovered as clayey g coarse sand.	grey ravelly fine to	3 -
		3.50 - 4.00	В	N-44 /E 6/9 0 10 14	N.					
		4.00 4.00 - 4.45	D	N=44 (5,6/8,9, 13, 14	•)					4 -
	_	5.00 5.00 - 5.40	D	N=50 (10,10/50 for 270mm)	5.00			End of borehole at 5.00 m		5
										8 -
										9 -
Rema	rks									
1. No 2. Bor	groundw ehole wa	vater was end as terminated	counte d at 5.0	red during the drilli 00m depth due to re	ng process. efusal and b	oackfilled v	vith arising	s.	AGS]

h	С	n							Borehole N	lo.
	2	Ρ				Bo	reho	ole Log	BH5	
con	sult	ıng						<u> </u>	Sheet 1 of	f 1
Projec	t Name:	Water Ort	on Prir	nary School	Project No. C2415		Co-ords:	-	Hole Type CP	е
Locati	on:	Birmingha	ım				Level:		Scale 1:50	
Client	:	Willmott D)ixon L	td			Dates:	10/08/2017 - 10/08/2017	Logged B	iy
Well	Water	Sample	s and	In Situ Testing	Depth	Level	Legend	Stratum Description	' 1	
	Strikes	Depth (m)	Туре	Results	(m)	(m)	Logona			
		0.10 - 0.50 1.00 - 1.45 1.60 2.00 2.00 - 2.45 3.00 3.00 - 3.45 3.50 - 4.00 4.00 4.00 - 4.45 5.00 5.00 - 5.40	B U D B D B	50 (9,14/18,15,17 N=17 (4,4/5,4,4,4 (5,5/7,10,13,14) N=50 (8,10/50 fo 275mm)	() 0.10 0.60 0.90 1.50 ,) 2.70) r 5.00			Turf over blackish brown slightly da gravelly fine to coarse SAND. Grav angular to rounded fine to coarse o lithology. Loose brown sandy topsoil (Driller's Firm orangish brown slightly gravel CLAY. Low plasticity (field descriptin angular to sub- angular fine to coarse ilthology. Firm reddish brown and grey sandy CLAY. Low plasticity (field descriptin angular to sub- angular fine to coarse mudstone. Medium dense orangish brown and fine to coarse SAND. Gravel is sub rounded fine to coarse of mixed lith Extremely weak reddish brown and MUDSTONE recovered as clayey g coarse sand.	ayey slightly el is sub- f mixed s description) /y very sandy on). Gravel is se of mixed gravelly on). Gravel is se of grey gravelly -angular to ology. grey grey gravelly fine to	
Rema 1. No	rks groundv	vater was end	counter	red during the drill	ling process.					9
2. Bor 3. Gas	s and wa	ater monitorin	g stan	dpipe installed to	5.00m depth	I.			AGS	2

h s p									Borehole No.		
					Borehole Log						
consulting					1		Sheet 1 of 1				
Project Name: Water Orton Primary School			Project No. C2415		Co-ords: -		Hole Type CP				
Locat	ion:	Birmingham					l evel		Scale		
		Zinnighan							1:50		
Client	:	Willmott Dixon Ltd				Level (m)	Dates: Legend	11/08/2017 - 11/08/2017	Logged B	Logged By	
Well	Water Strikes	Samples and In Situ Testing			Depth (m)			Stratum Description	I		
		Deptil (III)	туре	Type Results		(,		Turf over blackish brown slightly cla	vev slightly		
	5 - -	0.50 - 1.00 1.00 - 1.45	B		0.10			gravelly fine to coarse SAND. Grav angular to rounded fine to coarse of lithology. Loose brown sandy topsoil (Driller's Extremely weak reddish brown and MUDSTONE recovered as clayey g coarse sand.	description) grey ravelly fine to	1	
	•	1.60	D							-	
		2.00 2.00 - 2.45	D	N=13 (3,3/3,4,3,3)					2 -	
		2.50 - 3.00	B								
	•	2 00		N=50 (0.0/50 for						2	
		3.00		290mm)							
	•	3.00 - 3.45	D								
										-	
	•	4.00		N=44						4 -	
	•	4 00 - 4 45		(11,11/12,10,10,12	2)						
		1.00 1.10								-	
		5.00		50 (11,13/50 for	5.00			End of borehole at 5.00 m		5 -	
		5.00 - 5.35	D	295mm)							
										-	
										6 -	
										-	
										-	
										-	
										8 -	
										-	
										-	
										9 -	
1											
1										-	
1											
									1	10 -	
Rema 1. No 2. Bor	rks groundv ehole w	vater was end as terminated	counter I at 5.0	red during the dril 10m depth due to	ling process. refusal and b	backfilled v	vith arising	js.	AGS	S	

h	C	n				_	_		Borehole No.	
				Borehole Log				WS1		
consulti		ng						v	Sheet 1 of 1	
Project Name:		Water Orton Primary School			^r oject No. 2415		Co-ords:	-	Hole Type WS	
Location: Client:		Birmingha	m				Level:		Scale 1:50	
		Willmott Dixon Ltd					Dates:	09/08/2017 - 09/08/2017	Logged By LB	
Well	Water	Samples and In Situ Testing		In Situ Testing	Depth	Level	Legend	Stratum Description		
	SUIKES	Depth (m)	Туре	Results			14 19 19 19 19 19 19 19 19 19 19 19 19 19	Turf overlying blackish brown slight	v clavev	
		0.30	J		0.40			slightly gravely SAND. Sand is fine Gravel is fine to coarse sub angular of mixed lithology.	to coarse. to rounded	
		0.80 1.00	J	N=36 (4,5/8,8,10,10)				Yellowish brown clayey gravelly SAI fine to coarse. Gravel is fine to coar angular to rounded of mixed litholog	ND. Sand is se sub ly.	
					1.20			Orange brown SAND. Sand is fine t	o coarse.	
		2.00		N=10 (2,2/2,2,3,3)	1.70			Brown SAND and GRAVEL. Sand is coarse. Gravel is fine to coarse sub rounded of mixed lithology.	s fine to angular to	
					2.30			Firm reddish brown sandy CLAY. Hi (field description).	gh plasticity	
		3.00		N=10 (1,1/2,2,3,3)				becoming gravelly. Gravel is fine to coarse mixed lithology from 2.70m depth.	e angular of	
		4.00		N=30 (6,6/6,7,7,10)	4.10			Extremely weak reddich brown and	light grov	
								MUDSTONE. Recovered as a fine t angular gravel.	o coarse	
		5.00		N=50 (5,7/10,15,20,5)	5.00			End of borehole at 5.00 m	!	
									;	
									4	
						<u> </u>			10	

	C	5							Borehole N	No.
					Borehole Log				WS2	
consulting							Sheet 1 of 1			
Project Name: Water Orton Primary School				Project No. C2415		Co-ords:	-	Hole Type WS		
Location:		Birmingham					Level:		Scale	
									Logged By	
Client	:	Willmott Dixon Ltd				Level (m)	Dates: Legend	09/08/2017 - 09/08/2017	LB	,
Well	Water Strikes	Samples and In Situ Testing		Depth (m)	Stratum Description			1		
	Strikes	Depth (m) 0.10 0.60 1.00 2.00 3.00 4.00 5.00	Type J	Results N=32 (4,5/6,8,8,10 N=36 (25 for 105mm/13,12,6,5) N=14 (4,3/4,3,4,3) N=33 (6,6/7,8,8,10 N=50 (7,7/10,13,12,15)	(m) (m) 0.35 (n) 1.90 2.40 3.10 (n) 5.00			Stratum Description Turf overlying blackish brown slight slightly gravelly SAND. Sand is fine Gravel is fine to coarse sub angular of mixed lithology. Orangish brown gravelly SAND. Sa coarse. Gravel is fine to coarse sub rounded of mixed lithologybecoming clayey from 0.80m to 1.10m de Brown SAND and GRAVEL. Sand it coarse. Gravel is fine to coarse sub rounded of mixed lithology. Firm reddish brown slightly gravelly CLAY. High plasticity (Field descript is fine to coarse sub angular to rour lithologywith bands of reddish brown fine to coarse Firm reddish brown and light grey s High plasticity (Field description)becoming stiff from 4.20m depth. End of borehole at 5.00 m	y clayey to coarse. to rounded nd is fine to angular to pth. s fine to angular to very sandy ion). Gravel nded of mixed e sand. andy CLAY.	
										9
Rema 1. No 2. Bor	rks groundv ehole w	vater was end as terminated	counte l at 5.0	red during the drill 00m depth due to r	ing process. efusal and b	backfilled v	with arising	IS.	AGS	10
h	C	n							Borehole No.	
------------	------------------	---------------	----------	--------------------------	--------------------	-----------	----------	---	------------------------	
	5	P				Bo	reho	ole Log	WS3	
con	SUIT	ing						•	Sheet 1 of 1	
Projec	t Name:	Water Orte	on Prir	mary School	roject No. 2415		Co-ords:	-	Hole Type WS	
Locati	on:	Birmingha	m	·			Level:		Scale	
		5							1:50	
Client	:	Willmott D	ixon L	td			Dates:	09/08/2017 - 09/08/2017	Logged by	
Well	Water Strikes	Sample:	s and	In Situ Testing	Depth (m)	Level	Legend	Stratum Description	1	
		Depth (m)	Туре	Results	(,	(,		Turf overlying blackish brown slight	ly clayey	
		0.20	J		0.40			slightly gravelly SAND. Sand is fine	to coarse.	
					0.40			of mixed lithology.	nd is fine to	
		0.80	J		0.00			Crangish brown gravelly SAND. Sa coarse. Gravel is fine to coarse ang	nd is fine to jular to	
		1.00		N=11 (1,3/2,2,4,3)				Firm orangish brown and vellowish	brown slightly	
								gravelly very sandy CLAY. High plas	sticity (Field	
					1.60			rounded of mixed lithology.	e angular to	
								Reddish brown and light grey slight	ly gravelly	
		2.00		N=48				coarse sub rounded to rounded of r	nixed 2 -	
				(5,2/10,13,12,13)				lithology.		
					2.70			Firm to stiff reddish brown light grey	/ sandy CLAY.	
		3.00		N=7 (1,2/2,2,1,2)				description).		
		4.00		N=37 (7,6/7,8,10,12)					4 -	
7///>\$///		5.00		N=40 (5.6/7.10.10.13)	5.00			End of borehole at 5.00 m	5 -	
									6 -	
									7 -	
									8 -	
									9 -	
Don	rko								10 -	
1. No	groundv	vater was end	counte	red durina the drillir	ig process.					
2. Bor	ehole w	as terminated	l at 5.0	00m depth and back	filled with	arisings.			AGS	

CON Project	Sulti Name:	ng				Ro	roha		WS4	
Project	Name:	ing			Borehole Log					
Project Locatio	Name:	oject Name: Water Orton Primary School						_	Sheet 1 of	1
Locatio		Water Orto	on Prin	nary School	2415		Co-ords:	-	Hole Type	e
	on:	Birmingha	m	I			Level:		Scale	
Client [.]		Willmott D	ivon L	td			Dates:	09/08/2017 - 09/08/2017	Logged B	у
		Sampler		In Situ Teeting			Dates.	03/00/2017 - 03/00/2017	LB	
Well	Water Strikes	Depth (m)		Results	_ Depth (m)	Level (m)	Legend	Stratum Description	I	
	Strikes	Depth (m) 0.20 1.00 2.00 2.40 3.00	J J	Results N=8 (1,2/2,2,2,2) N=24 (2,2/1,1,2,20) N=39 (25 for 80mm/17,10,6,6) N=50 (5,7/50 for 295mm)	(m) 0.35 1.90 2.40 2.70 3.00	(m)		Turf overlying blackish brown slight slightly gravelly SAND. Sand is fine Gravel is fine to coarse sub angular of mixed lithology. Firm orangish brown and yellowish gravelly very sandy CLAY. High plas description). Gravel is fine to coarse to rounded of mixed lithology. Reddish brown SAND. Sand is fine Firm grey and brown slightly gravell High plasticity (Field description). G to medium sub rounded to rounded lithology. Reddish brown clayey sandy GRAV fine to coarse. Gravel is fine to coar rounded of mixed lithology. End of borehole at 3.00 m	y clayey to coarse. to rounded brown slightly sticity (Field e sub angular to coarse. y silty CLAY. ravel is fine of mixed EL. Sand is se angular to	
Remar 1. Grou 2. Bore	ks undwate	er was encour	ntered at 3.0	during the drilling p 0m depth due to re	process at 1	1.90m dep backfilled v	th. vith arising	S.		10 -

	2							Borehole N	No.
					Bo	reho	ole Log	WS5	
consulti	ing						_	Sheet 1 of	f 1
Project Name:	Water Orte	on Prin	nary School	Project No. C2415		Co-ords:	-	Hole Type	е
Location [.]	Birmingha	m				l evel:		Scale	
	Dinnight					20101.		1:50	
Client:	Willmott D	ixon Lt	d	1	1	Dates:	09/08/2017 - 09/08/2017	Logged B	у Т
Well Water Strikes	Sample: Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
	0.00	J		0.35			I un overlying blackish brown slight slightly gravelly SAND. Sand is fine Gravel is fine to coarse sub angular of mixed lithology. Firm reddish brown sandy CLAY. Sa coarse. High plasticity (Field descrip End of borehole at 2.00 m	y clayey to coarse. to rounded and is fine to otion).	
Remarks 1. No groundw	rater was end	counter	ed during the dri	lling process.					8 9 9 10

	C	n							Borehole No).
	5	ρ				Bo	reho	ole Log	WS6	
con	sult	ing						•	Sheet 1 of 1	l
Projec	t Name:	Water Orto	on Prim	nary School	Project No. C2415		Co-ords:	-	Hole Type WS	
Locati	on [.]	Birmingha	m		•		l evel [.]		Scale	
20000		Binnigha							1:50	
Client	:	Willmott D	ixon Lt	d		1	Dates:	09/08/2017 - 09/08/2017	Logged By LB	
Well	Water Strikes	Sample:	s and I	n Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	ı –	
	Strikes	Depth (m) 0.10	J	Results	(m) 0.15	(m)		Turf overlying blackish brown slight slightly gravelly SAND. Sand is fine Gravel is fine to coarse sub angular of mixed lithology. Firm reddish brown sandy CLAY. Sa coarse. High plasticity (Field description) Extremely weak reddish brown and MUDSTONE. Recovered as stiff grave. End of borehole at 2.00 m	light grey avelly clay.	1
Rema 1. No 2. Bor	rks groundv ehole wa	vater was end as terminated	counter 1 at 2.0	ed during the dri 0m depth and ba	lling process. ackfilled with a	arisings.			AGS	

	C	n							Borehole No	i.
	5	Р				Bo	reho	ole Log	WS7	
con	sult	ing						•	Sheet 1 of 1	
Projec	t Name:	Water Orto	on Prir	mary School	Project No. C2415		Co-ords:	-	Hole Type WS	
Locati	on [.]	Birmingha	m				l evel:		Scale	
LUCUL	011.	Dimingha							1:50	
Client	:	Willmott D	ixon L	td			Dates:	09/08/2017 - 09/08/2017	Logged By LB	
Well	Water Strikes	Samples	s and	In Situ Testing	Depth (m)	Level (m)	Legend	Stratum Description	1	
		Deptil (III)	туре	Results	(,			MADE GROUND - Turf overlving br	own sandy	
		0.20	J		0.10			Clay. Low plasticity (Field descriptio	n).	
					0.50			fine to coarse. Gravel is fine to coar	se angular to	-
		0.70	J		0.80			sub rounded of brick, ash, clinker a lithology.	nd mixed	
		1.00		N=15 (2,2/2,3,5,5	j)			MADE GROUND - Brown slightly g	ravelly very	1 -
					1.40			Gravel is fine to coarse angular to r	ounded of	
					1.40			brick , ash and mixed lithology (Rev material).	vorked	-
								Firm yellowish brown and grey sligh	ntly gravelly	
		2.00		N=22 (2,2/4,5,7,6	ⁱ⁾ 2.10			description). Gravel is fine to coarse	e sub angular	2 -
					2.30			Reddish brown SAND. Sand is fine	to coarse.	
								Grey and reddish brown very clayer	y SAND.	-
					2.80			Orangish brown clayey SAND. San	d is fine to	
		3.00		N=50	3.00			Coarse. Grey and brown clayey sandy GRA	VEL. Gravel	3 -
				(0,11/13,13,12,12	.)			is fine to coarse angular to rounded lithology.	of mixed	
								End of borehole at 3.00 m	·/	-
										4 -
										-
										5 -
										-
										6 -
										-
										7 -
										-
										8 -
										-
										9 -
										-
									1	0 -
Rema	rks	vator was or a		rod during the deil						
2. Bor	ehole w	as terminated	l at 3.0	00m depth due to	refusal and b	ackfilled v	with arising	S.	AGS	

h	C	5							Borehole N	lo.
	5	ρ				Bo	reho	ole Log	WS8	
con	SUIT	ing					_	•	Sheet 1 of	1
Projec	ct Name:	Water Orto	on Prin	nary School	Project No. C2415		Co-ords:	: -	Hole Type WS	3
Locati	ion:	Birmingha	m				Level:		Scale	
									1:50	
Client	:	Willmott D	ixon Lt	d			Dates:	09/08/2017 - 09/08/2017	Logged D	y
Well	Water Strikes	Samples Depth (m)	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description	1	
Rema 1 No	rks	vater was end	ounter	ed during the dri	Und process			MADE GROUND - Turf overlying br clay. Low plasticity (Field description MADE GROUND - Black gravelly sa fine to coarse. Gravel is fine to coars sub rounded of brick, ash, clinker an lithology. MADE GROUND - Brown slightly gi sandy clay. Low plasticity (Field des Gravel is fine to coarse angular to ro brick, ash and mixed lithology (Rev material). Yellowish brown slightly gravelly SA fine to coarse. Gravel is fine to coarse angular to rounded of mixed litholog Stiff reddish brown and grey slightly sandy CLAY. Low plasticity (Field de Gravel is fine to coarse angular to ro mixed lithology. End of borehole at 1.00 m	own sandy n). and. Sand is se angular to nd mixed ravelly very scription). ounded of vorked ND. Sand is se sub gy. gravelly very escription). ounded of	2
1. No 2. Bor	groundw ehole wa	ater was enc as terminated	ounter at 1.0	ed during the dri Om depth and ba	lling process. ackfilled with a	arisings.			AGS	5

	C	n							Borehole N	о.
	5	P				Bo	reho	ole Log	WS9	
con	suit	ing						-	Sheet 1 of	1
Projec	t Name:	Water Orto	on Prim	nary School	Project No. C2415		Co-ords:	-	Hole Type WS	;
Locati	on:	Birmingha	m				Level:		Scale	
									1:50	
Client		Willmott D	ixon Lt	d		1	Dates:	09/08/2017 - 09/08/2017	Logged Dy	,
Well	Water Strikes	Samples Depth (m)	s and I Type	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	rks				0.20 1.00			Turf overlying brown slightly gravell; CLAY. Low plasticity (Field descripti fine to medium sub angular to round lithology. Firm yellowish brown and grey sligh sandy CLAY. High plasticity (Field d Gravel is fine to medium sub angula of mixed lithology. End of borehole at 1.00 m	y very sandy on). Gravel is ded of mixed itly gravelly escription). ar to rounded	1
1. NO 2. Bor	ehole w	as terminated	at 1.0	om depth and ba	ackfilled with	arisings.			AGS	

	C	n							Borehole No	
	5	ρ				Bo	reho	ole Log	WS10	
con	sult	ing						•	Sheet 1 of 1	
Projec	t Name:	Water Orto	on Prim	nary School	Project No. C2415		Co-ords:	-	Hole Type WS	
Locati	on:	Birmingha	m				Level:		Scale	
		Binnigha							1:50	
Client	:	Willmott D	ixon Lt	d		1	Dates:	09/08/2017 - 09/08/2017	Logged By LB	
Well	Water Strikes	Sample:	s and I	n Situ Testing Results	Depth (m)	Level (m)	Legend	Stratum Description		
Rema	rks			ed during the dri				MADE GROUND - Turf overlying br clay. Low plasticity (Field description MADE GROUND - Brown clayey gr sand is fine to coarse. Gravel is fine angular to rounded of mixed litholog. Yellowish brown clayey gravelly fine SAND. Gravel is fine to coarse angular to rounded of mixed lithology. Stiff reddish brown and grey slightly sandy CLAY. Low plasticity (Field do Gravel is fine to coarse angular to ro mixed lithology. End of borehole at 1.00 m	own sandy n). avelly SAND. e to coarse yy. e to coarse ular to gravelly very escription). bunded of 1	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 9 -
2. Bor	ehole wa	as terminated	at 1.0	0m depth and ba	ackfilled with a	arisings.			AGS	

Appendix III

Appendix IV

LABORATORY REPORT

REPORT

4043

Contract Number: PSL17/5320

Report Date: 23 November 2017

- Client's Reference: C2415
- Client Name: HSP Consulting Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Luke Bradley

Contract Title: Water Orton

Date Received:	1/11/201/
Date Commenced:	1/11/2017
Date Completed:	23/11/2017

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director)

R Berriman (Quality Manager)

L Knight (Senior Technician) S Eyre (Senior Technician) A Fry (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1		В	3.00	3.50	Reddish brown gravelly very sandy CLAY.
BH2		В	3.50	4.00	Reddish brown mottled grey slightly gravelly very sandy CLAY.
BH3		В	3.50	4.00	Reddish brown mottled grey slightly gravelly very sandy CLAY.
BH4		В	0.50	1.00	Brown slightly gravelly sandy CLAY.
BH4		В	3.50	4.00	Brown mottled grey gravelly very sandy CLAY.
BH5		В	3.50	4.00	Brown gravelly very sandy CLAY.
BH6		В	2.50	3.00	Brown gravelly sandy CLAY.
WS101		U	1.20	1.50	Brown mottled grey slightly gravelly sandy CLAY.
WS101		U	1.60	1.90	Brown mottled grey slightly gravelly very sandy CLAY.
WS101		U	2.30	2.60	Brown slightly sandy CLAY.
WS101		U	2.60	2.90	Reddish brown slightly gravelly sandy CLAY.
WS101		U	3.30	3.60	Reddish brown slightly gravelly sandy CLAY.
WS101		U	3.60	3.90	Reddish brown mottled grey sandy CLAY.
WS101		U	4.10	4.40	Reddish brown mottled grey sandy CLAY.
WS101		U	4.60	4.90	Reddish brown mottled grey sandy CLAY.
WS103		U	0.20	0.50	Brown slightly gravelly sandy CLAY.
WS103		U	0.70	1.00	Brown slightly gravelly sandy CLAY.
WS103		U	1.00	1.30	Brown slightly gravelly sandy CLAY.
WS103		U	1.70	2.00	Brown slightly gravelly sandy CLAY.

Ġ			Contract No:
$(\downarrow \downarrow)$		Water Orten	PSL17/5320
	Professional Saila Laboratory	water Orton	Client Ref:
4043	Professional Solis Laboratory		C2415

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
WS103		U	2.00	2.30	Reddish brown mottled grey slightly gravelly very sandy CLAY.
WS103		U	2.70	3.00	Reddish brown mottled grey very sandy CLAY.
WS103		U	3.10	3.40	Brown mottled grey sandy CLAY.
WS103		U	3.70	4.00	Reddish brown very clayey SAND.
WS102		U	1.50	1.80	Brown silty SAND.

a a			Contract No:
	PSL	Water Orten	PSL17/5320
	Professional Sails Laboratory	water Orton	Client Ref:
4043	Professional Solis Laboratory		C2415

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1		В	3.00	3.50	25			35	20	15	82	Intermediate plasticity CI.
BH2		В	3.50	4.00	24			36	21	15	92	Intermediate plasticity CI.
BH3		В	3.50	4.00	26			36	21	15	91	Intermediate plasticity CI.
BH4		В	0.50	1.00	18			44	22	22	96	Intermediate plasticity CI.
BH4		В	3.50	4.00	23			35	21	14	86	Intermediate plasticity CI.
BH5		В	3.50	4.00	29			35	22	13	84	Intermediate plasticity CI.
BH6		В	2.50	3.00	28			46	22	24	82	Intermediate plasticity CI.
WS101		U	1.20	1.50	16			42	21	21	97	Intermediate plasticity CI.
WS101		U	1.60	1.90	15							
WS101		U	2.30	2.60	35			61	28	33	100	High plasticity CH.
WS101		U	3.30	3.60	26			48	23	25	95	Intermediate plasticity CI.
WS101		U	3.60	3.90	28							
WS101		U	4.10	4.40	25			46	23	23	100	Intermediate plasticity CI.
WS101		U	4.60	4.90	24							
WS103		U	0.20	0.50	30			47	24	23	94	Intermediate plasticity CI.
WS103		U	0.70	1.00	33							
WS103		U	1.00	1.30	34			49	24	25	97	Intermediate plasticity CI.
WS103		U	1.70	2.00	29							
WS103		U	2.00	2.30	31			36	21	15	95	Intermediate plasticity CI.

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
WS103		\mathbf{U}	2.70	3.00	30							
WS103		U	3.10	3.40	28			46	23	23	100	Intermediate plasticity CI.
WS103		U	3.70	4.00	19							
WS102		U	1.50	1.80	10				NP			

SYMBOLS : NP : Non Plastic

*: Liquid Limit and Plastic Limit Wet Sieved.

Summary of results

One Dimensional Swell / Strain test - In House Method

Hole Number	Sample Number	Sample Type	Depth m	Strain	Dd (mm)	Moisture Content	Remarks
WS101			1.20	0.0150	9.0	16	
WS101			1.60	0.0074	1.5	13	
WS101			2.30	0.0061	2.1	35	
WS101			2.60	0.0048	0.7	27	
WS101			3.30	0.0023	0.8	26	
WS101			3.60	0.0005	0.1	28	
WS101			4.10	0.0029	0.7	25	
WS101			4.60	0.0009	0.2	24	
Tota	l colum	n Dd TF	P/BH1 =	12.6 mm			
at a							Contract No.
			DG				PSI 17/5320
					Water	Orton	Client Rof.
		Profess	sional So	oils Laboratory		C2/15	
4043							02413

Summary of results

One Dimensional Swell / Strain test - In House Method

Hole Number	Sample Number	Sample Type	Depth m	Strain	Dd (mm)	Moisture Content	Remarks
WS103			0.20	0.0022	0.2	30	itemu no
WS103			0.70	0.0022	1.0	33	
WS103			1.00	0.0018	0.3	34	
WS103			1.00	0.0018	0.3	29	
WS103			2.00	0.0000	0.5	31	
WS103			2.00	0.0009	0.3	30	
WS103			3.10	0.0003	0.0	28	
WS103			3.70	-0.0051	-1 5	19	
110105			5.70	0.0001	1.0	17	
T - 4 -	11	DITT)/DTT1	1.5			
Tota	ii colum		/BHI =	1.5 mm			
5							Contract No:
			P/S				PSL17/5320
					Water	Orton	Client Ref:
4043		Profess	sional Sc	bils Laboratory		C2415	

LABORATORY REPORT

4043

Contract Number: PSL17/3958

Report Date: 04 September 2017

- Client's Reference: C2415
- Client Name: Lawrence House 4 Meadowbank Way Eastwood Nottingham NG16 3SB

For the attention of: Luke Bradley

Contract Title: Water Orton

Date Received:	15/8/2017
Date Commenced:	15/8/2017
Date Completed:	4/9/2017

Notes: Opinions and Interpretations are outside the UKAS Accreditation

A copy of the Laboratory Schedule of accredited tests as issued by UKAS is attached to this report. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced other than in full, without the prior written approval of the laboratory.

Checked and Approved Signatories:

R Gunson (Director) A Watkins (Director) R Berriman (Quality Manager)

A Fry (Senior Technician)

L Knight (Senior Technician)

S Eyre (Senior Technician)

Page 1 of

5 – 7 Hexthorpe Road, Hexthorpe, Doncaster DN4 0AR tel: +44 (0)844 815 6641 fax: +44 (0)844 815 6642 e-mail: rgunson@prosoils.co.uk awatkins@prosoils.co.uk

SUMMARY OF LABORATORY SOIL DESCRIPTIONS

Hole Number	Sample Number	Sample Type	Top Depth m	Base Depth m	Description of Sample
BH1		В	0.50	1.00	Brown gravelly very sandy CLAY
BH1		В	1.50	2.00	Reddish brown slightly gravelly very silty SAND.
BH2		В	1.00	1.50	Brown mottled grey slightly gravelly very sandy CLAY.
BH3		В	0.50	1.00	Brown slightly gravelly very sandy CLAY.
BH4		U	1.00	1.45	Stiff brown sandy CLAY.
BH4		В	1.50	2.00	Brown slightly gravelly sandy CLAY.
BH4		В	2.00	2.50	Brown very clayey SAND and GRAVEL.
BH5		U	1.00	1.45	Stiff brown CLAY.
BH5		В	2.00	2.50	Brown very sandy slightly silty GRAVEL.
BH6		В	0.50	1.00	Brown slightly gravelly slightly sandy CLAY.
BH6		U	1.00	1.45	Stiff brown slightly gravelly CLAY.

SUMMARY OF SOIL CLASSIFICATION TESTS

(BS1377 : PART 2 : 1990)

					Moisture	Linear	Particle	Liquid	Plastic	Plasticity	Passing	
Hole	Sample	Sample	Тор	Base	Content	Shrinkage	Density	Limit	Limit	Index	.425mm	Remarks
Number	Number	Туре	Depth	Depth	%	%	Mg/m ³	%	%	%	%	
			m	m	Clause 3.2	Clause 6.5	Clause 8.2	Clause 4.3/4	Clause 5.3	Clause 5.4		
BH1		В	0.50	1.00	13			29	15	14	82	Low plasticity CL.
BH3		В	0.50	1.00	14			24	14	10	92	Low plasticity CL.
BH4		В	1.50	2.00	25			42	19	23	93	Intermediate plasticity CI.
BH6		В	0.50	1.00	24			53	24	29	93	High plasticity CH.

SYMBOLS : NP : Non Plastic

* : Liquid Limit and Plastic Limit Wet Sieved.

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

PSL005

4043

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

Professional Soils Laboratory

4043

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

PSL005

4043

Professional Soils Laboratory

BS1377 : Part 2 : 1990

Wet Sieve, Clause 9.2

PSL005

4043

Professional Soils Laboratory

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION WITHOUT MEASUREMENT OF PORE PRESSURE

BS1377 : Part7 : 1990: Clause 8

Professional Soils Laboratory

4043

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION without measurement of pore pressure

BS1377 : Part7 : 1990: Clause 8

UNDRAINED SHEAR STRENGTH IN TRIAXIAL COMPRESSION without measurement of pore pressure

BS1377 : Part7 : 1990: Clause 8

4043

Certificate Number 17-08234

Client Professional Soils Laboratory Ltd 5/7 Hexthorpe Road Hexthorpe DN4 0AR

- Our Reference 17-08234
- Client Reference PSL17/3958
 - Order No (not supplied)
 - Contract Title C2415 Water Orton
 - Description 2 Soil samples.
 - Date Received 19-Aug-17
 - Date Started 19-Aug-17
- Date Completed 23-Aug-17

Test Procedures Identified by prefix DETSn (details on request).

Notes Opinions and interpretations are outside the laboratory's scope of ISO 17025 accreditation. This certificate is issued in accordance with the accreditation requirements of the United Kingdom Accreditation Service. The results reported herein relate only to the material supplied to the laboratory. This certificate shall not be reproduced except in full, without the prior written approval of the laboratory.

Approved By

Jun

Adam Fenwick Contracts Manager

23-Aug-17

Summary of Chemical Analysis Soil Samples

Our Ref 17-08234 Client Ref PSL17/3958 Contract Title C2415 - Water Orton

			Lab No	1219444	1219445
		Sa	ample ID	BH1	BH3
			Depth	1.50-2.00	0.50-1.00
			Other ID		
		Sam	ple Type	В	В
		Sampl	ing Date	n/s	n/s
		Sampl	ing Time	n/s	n/s
Test	Method	LOD	Units		
Metals					
Magnesium Aqueous Extract	DETSC 2076*	10	mg/l	< 10	< 10
Inorganics					
рН	DETSC 2008#			7.4	7.3
Chloride Aqueous Extract	DETSC 2055	1	mg/l	4.5	5.9
Nitrate Aqueous Extract as NO3	DETSC 2055	1	mg/l	2.9	< 1.0
Sulphate Aqueous Extract as SO4	DETSC 2076#	10	mg/l	< 10	12
Sulphur as S, Total	DETSC 2320	0.01	%	0.01	0.01
Sulphate as SO4, Total	DETSC 2321#	0.01	%	0.03	0.02

Information in Support of the Analytical Results

Our Ref 17-08234 Client Ref PSL17/3958 Contract C2415 - Water Orton

Containers Received & Deviating Samples

		Date			Inappropriate
Lab No	Sample ID	Sampled	Containers Received	Holding time exceeded for tests	tests
1219444	BH1 1.50-2.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), Total Sulphur ICP (365 days), Total Sulphate ICP (730	
				days), Metals ICP Prep (365 days), pH + Conductivity (7 days)	
1219445	BH3 0.50-1.00 SOIL		PT 500ml	Sample date not supplied, Anions 2:1 (365 days), Total Sulphur ICP (365 days), Total Sulphate ICP (730 days), Metals ICP Prep (365 days), pH + Conductivity (7 days)	

Key: P-Plastic T-Tub

DETS cannot be held responsible for the integrity of samples received whereby the laboratory did not undertake the sampling. In this instance samples received may be deviating. Deviating Sample criteria are based on British and International standards and laboratory trials in conjunction with the UKAS note 'Guidance on Deviating Samples'. All samples received are listed above. However, those samples that have additional comments in relation to hold time, inappropriate containers etc are deviating due to the reasons stated. This means that the analysis is accredited where applicable, but results may be compromised due to sample deviations. If no sampled date (soils) or date+time (waters) has been supplied then samples are deviating. However, if you are able to supply a sampled date (and time for waters) this will prevent samples being reported as deviating where specific hold times are not exceeded and where the container supplied is suitable.

Soil Analysis Notes

lnorganic soil analysis was carried out on a dried sample, crushed to pass a 425μm sieve, in accordance with BS1377. Organic soil analysis was carried out on an 'as received' sample. Organics results are corrected for moisture and expressed on a dry weight basis. The Loss on Drying, used to express organics analysis on an air dried basis, is carried out at a temperature of 28°C +/-2°C.

Disposal

From the issue date of this test certificate, samples will be held for the following times prior to disposal :-Soils - 1 month, Liquids - 2 weeks, Asbestos (test portion) - 6 months

Appendix V

ANALYTICAL TEST REPORT

Contract no:	66593
Contract name:	Water Orton
Client reference:	C2415
Clients name:	HSP Consulting
Clients address:	Lawrence House Meadowbank Way, Eastwood Nottingham NG16 3SB
Samples received:	11 August 2017
Analysis started:	11 August 2017
Analysis completed	18 August 2017
Report issued:	18 August 2017

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

Key:

U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing NAD No Asbestos Detected

Approved by:

. Penkak

Dave Bowerbank Customer Services Co-ordinator

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
66593-1	WS1	0.80	Sandy Clay	-	-	5.3
66593-2	WS3	0.20	Loam	-	-	17.0
66593-3	WS5	0.00	Loam	-	-	22.4
66593-4	WS5	0.90	Clay	-	-	18.9
66593-5	WS7	0.20	Sand with Gravel	-	-	20.1
66593-6	WS7	0.70	Sandy Clay	-	-	11.6

SOILS

Lab number			66593-1	66593-2	66593-3	66593-4	66593-5	66593-6
Sample id			WS1	WS3	WS5	WS5	WS7	WS7
Depth (m)			0.80	0.20	0.00	0.90	0.20	0.70
Date sampled	1		10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017
Test	Method	Units						
Arsenic (total)	CE127 [™]	mg/kg As	3.8	7.9	7.3	3.0	19	2.8
Boron (water soluble)	CE063 ^M	mg/kg B	0.8	0.6	1.0	1.1	1.1	0.6
Cadmium (total)	CE127 ^M	mg/kg Cd	<0.2	0.3	0.3	<0.2	<0.2	<0.2
Chromium (total)	CE127 ^M	mg/kg Cr	80	89	111	76	108	68
Copper (total)	CE127 ^M	mg/kg Cu	8.8	34	31	17	97	10
Lead (total)	CE127 ^M	mg/kg Pb	11	51	79	8.6	30	10
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Nickel (total)	CE127 ^M	mg/kg Ni	12	13	20	38	64	12
Selenium (total)	CE127 ^M	mg/kg Se	0.4	0.6	0.7	0.8	1.6	0.5
Zinc (total)	CE127 ^M	mg/kg Zn	21	74	100	71	74	52
рН	CE004 M	units	7.8	6.2	5.9	7.1	6.5	5.8
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO ₄	12	15	38	<10	63	18
Sulphur (free)	CEO34 ^M	mg/kg S	<10	<10	<10	<10	90	<10
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<1	<1	<1	<1	<1	<1
Cyanide (total)	CE077 ^M	mg/kg CN	<1	<1	<1	<1	<1	<1
Phenols (total)	CE078	mg/kg PhOH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Total Organic Carbon (TOC)	CE072 ^M	% w/w C	<0.1	1.75	2.80	0.11	27.95	0.58
Estimate of OMC (calculated from TOC)	CE072 ^M	% w/w	<0.1	3.02	4.83	0.19	48.19	1.00
РАН		•						
Naphthalene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	CE087 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	CE087 ^M	mg/kg	<0.02	0.03	0.04	<0.02	0.10	<0.02
Anthracene	CE087 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	0.11	<0.02
Fluoranthene	CE087 ^M	mg/kg	<0.02	<0.02	0.11	<0.02	0.18	<0.02
Pyrene	CE087 ^M	mg/kg	<0.02	0.03	0.09	<0.02	0.15	<0.02
Benzo(a)anthracene	CE087 ^U	mg/kg	<0.02	<0.02	0.05	<0.02	0.08	<0.02
Chrysene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	0.09	<0.01
Benzo(b)fluoranthene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	CE087 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	0.10	<0.02
Indeno(123cd)pyrene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(ghi)perylene	CE087 ^M	mg/kg	<0.02	<0.02	0.04	<0.02	0.08	<0.02
PAH (total of USEPA 16)	CE087	mg/kg	<0.27	<0.27	0.32	<0.27	0.87	<0.27
BTEX & TPH								
MTBE	CE057 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

SOILS

Lab number			66593-1	66593-2	66593-3	66593-4	66593-5	66593-6
Sample id			WS1	WS3	WS5	WS5	WS7	WS7
Depth (m)			0.80	0.20	0.00	0.90	0.20	0.70
Date sampled			10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017	10/08/2017
Test	Method	Units						
Ethylbenzene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
m & p-Xylene	CE057 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
o-Xylene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EPH Aliphatic (>C10-C12)	CE068	mg/kg	<4	< 4	< 4	< 4	< 4	< 4
EPH Aliphatic (>C12-C16)	CE068	mg/kg	<4	< 4	< 4	5	< 4	< 4
EPH Aliphatic (>C16-C35)	CE068	mg/kg	<10	22	55	<10	12	<10
EPH Aliphatic (>C35-C44)	CE068	mg/kg	<10	<10	10	<10	<10	<10
Subcontracted analysis								
Asbestos (qualitative)	\$	-	-	-	-	-	NAD	NAD

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.5	mg/kg B
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	10	mg/I SO ₄
CE034	Sulphur (free)	Solvent extraction, HPLC	Dry	М	10	mg/kg S
CE079	Sulphide	Extraction, Continuous Flow Colorimetry	Wet		10	mg/kg S ²⁻
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		1	mg/kg CN
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	Wet	М	1	mg/kg CN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	Wet		0.5	mg/kg PhOH
CE072	Total Organic Carbon (TOC)	Removal of IC by acidification, Carbon Analyser	Dry	М	0.1	% w/w C
CE072	Estimate of OMC (calculated from TOC)	Calculation from Total Organic Carbon	Dry	М	0.1	% w/w
CE087	Naphthalene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	Wet	U	0.01	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	Wet		0.27	mg/kg
CE057	МТВЕ	Headspace GC-FID	Wet	U	0.02	mg/kg
CE057	Benzene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	Toluene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	Ethylbenzene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	m & p-Xylene	Headspace GC-FID	Wet	U	0.02	mg/kg
CE057	o-Xylene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE067	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	Wet		0.01	mg/kg

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE067	VPH Aromatic (>EC7-EC8)	Headspace GC-FID Wet		0.01	mg/kg	
CE067	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	Wet		0.01	mg/kg
CE068	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE067	VPH Aliphatic (>C5-C6)	Headspace GC-FID	Wet		0.1	mg/kg
CE067	VPH Aliphatic (>C6-C8)	Headspace GC-FID	Wet		0.1	mg/kg
CE067	VPH Aliphatic (>C8-C10)	Headspace GC-FID	Wet		0.1	mg/kg
CE068	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID	Wet		10	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- IT Sample not cooled
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
66593-1	WS1	0.80	Ν	
66593-2	WS3	0.20	Ν	
66593-3	WS5	0.00	Ν	
66593-4	WS5	0.90	Ν	
66593-5	WS7	0.20	Ν	
66593-6	WS7	0.70	Ν	

ANALYTICAL TEST REPORT

Contract no:	66593
Contract name:	Water Orton
Client reference:	C2415
Clients name:	HSP Consulting
Clients address:	Lawrence House Meadowbank Way, Eastwood Nottingham NG16 3SB
Samples received:	11 August 2017
Analysis started:	11 August 2017
Analysis completed	18 August 2017
Report issued:	18 August 2017

Notes:Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from
co-eluting compounds.

Key:

U UKAS accredited test M MCERTS & UKAS accredited test \$ Test carried out by an approved subcontractor I/S Insufficient sample to carry out test N/S Sample not suitable for testing NAD No Asbestos Detected

Approved by:

D. Burkuk

Dave Bowerbank Customer Services Co-ordinator

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
66593-1	WS1	0.80	Sandy Clay	-	-	5.3
66593-2	WS3	0.20	Loam	-	-	17.0
66593-3	WS5	0.00	Loam	-	-	22.4
66593-4	WS5	0.90	Clay	-	-	18.9
66593-5	WS7	0.20	Sand with Gravel	-	-	20.1
66593-6	WS7	0.70	Sandy Clay	-	-	11.6

ANALYTICAL TEST REPORT

Contract no:	66644
Contract name:	Water Orton
Client reference:	C2415
Clients name:	HSP Consulting
Clients address:	Lawrence House Meadowbank Way Eastwood, Nottingham NG16 3SB
Samples received:	15 August 2017
Analysis started:	15 August 2017
Analysis completed	22 August 2017
Report issued:	22 August 2017

Notes:

Opinions and interpretations expressed herein are outside the UKAS accreditation scope.
Unless otherwise stated, Chemtech Environmental Ltd was not responsible for sampling.
Methods, procedures and performance data are available on request.
Results reported herein relate only to the material supplied to the laboratory.
This report shall not be reproduced except in full, without prior written approval.
Samples will be disposed of 6 weeks from initial receipt unless otherwise instructed.
BTEX compounds are identified by retention time only and may include interference from co-eluting compounds.

 Key:
 U UKAS accredited test

 M MCERTS & UKAS accredited test

 \$ Test carried out by an approved subcontractor

 I/S Insufficient sample to carry out test

 N/S Sample not suitable for testing

NAD No Asbestos Detected

Approved by:

James Spittle

Customer Services Team Leader

SAMPLE INFORMATION

MCERTS (Soils):

Soil descriptions are only intended to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions. MCERTS accreditation applies for sand, clay and loam/topsoil, or combinations of these whether these are derived from naturally occurring soils or from made ground, as long as these materials constitute the major part of the sample. Other materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

All results are reported on a dry basis. Samples dried at no more than 30°C in a drying cabinet. Analytical results are inclusive of stones.

Lab ref	Sample id	Depth (m)	Sample description	Material removed	% Removed	% Moisture
66644-1	WAC1	0.30	Sandy Clay with Roots	-	-	15.4
66644-2	WAC2	0.50	Sandy Clay	-	-	13.5
66644-3	WAC3	0.80	Clayey Sand	-	-	13.3
66644-4	WAC4	0.40	Clayey Sand	-	-	7.0
66644-5	WAC5	0.90	Sandy Clay	-	-	11.5
66644-6	WAC6	0.60	Sandy Clay	-	-	12.7

SOILS

Lab number			66644-1	66644-2	66644-3	66644-4	66644-5	66644-6
Sample id			WAC1	WAC2	WAC3	WAC4	WAC5	WAC6
Depth (m)			0.30	0.50	0.80	0.40	0.90	0.60
Date sampled	1	1	11/08/2017	11/08/2017	11/08/2017	11/08/2017	11/08/2017	11/08/2017
Test	Method	Units						
Antimony (total)	CE127 ^U	mg/kg Sb	1.3	0.6	0.3	3.2	0.3	0.3
Arsenic (total)	CE127 ^M	mg/kg As	11	5.4	3.3	15	3.5	5.3
Barium (total)	CE127 ^M	mg/kg Ba	131	61	79	2859	46	62
Boron (water soluble)	CE063 ^M	mg/kg B	1.1	1.4	1.0	0.5	0.4	0.5
Cadmium (total)	CE127 ^M	mg/kg Cd	0.4	<0.2	<0.2	1.7	<0.2	<0.2
Chromium (total)	CE127 ^M	mg/kg Cr	81	83	89	171	93	75
Copper (total)	CE127 ^M	mg/kg Cu	31	17	12	92	8.9	9.9
Lead (total)	CE127 ^M	mg/kg Pb	95	28	8.2	189	6.7	15
Mercury (total)	CE127 ^M	mg/kg Hg	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Molybdenum (total)	CE127 ^M	mg/kg Mo	6.4	6.5	5.6	12	6.7	5.1
Nickel (total)	CE127 ^M	mg/kg Ni	18	16	19	49	12	13
Selenium (total)	CE127 ^M	mg/kg Se	0.7	0.5	0.6	2.0	0.4	0.5
Zinc (total)	CE127 ^M	mg/kg Zn	144	56	50	562	28	35
рН	CE004 M	units	6.3	8.0	6.9	7.0	6.0	6.2
Sulphate (2:1 water soluble)	CE061 ^M	mg/I SO ₄	19	54	16	11	<10	<10
Sulphur (free)	CE034 ^M	mg/kg S	<10	<10	<10	<10	<10	<10
Sulphide	CE079	mg/kg S ²⁻	<10	<10	<10	<10	<10	<10
Cyanide (free)	CE077	mg/kg CN	<1	<1	<1	<1	<1	<1
Cyanide (total)	CE077 ^M	mg/kg CN	<1	<1	<1	<1	<1	<1
Phenols (total)	CE078	mg/kg PhOH	0.9	0.7	0.6	<0.5	<0.5	<0.5
РАН								
Naphthalene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthene	CE087 ^M	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	CE087 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	CE087 ^M	mg/kg	0.13	0.11	0.03	0.03	0.03	0.03
Anthracene	CE087 ^U	mg/kg	0.05	<0.02	<0.02	<0.02	<0.02	<0.02
Fluoranthene	CE087 ^M	mg/kg	0.27	0.16	<0.02	<0.02	0.02	0.03
Pyrene	CE087 ^M	mg/kg	0.26	0.15	<0.02	<0.02	<0.02	<0.02
Benzo(a)anthracene	CE087 ^U	mg/kg	0.17	0.08	<0.02	<0.02	<0.02	<0.02
Chrysene	CE087 ^M	mg/kg	0.16	0.11	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	CE087 ^M	mg/kg	0.17	0.10	<0.02	<0.02	<0.02	<0.02
Benzo(k)fluoranthene	CE087 ^M	mg/kg	0.13	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(a)pyrene	CE087 ^U	mg/kg	0.18	0.08	<0.02	<0.02	<0.02	<0.02
Indeno(123cd)pyrene	CE087 ^M	mg/kg	0.09	0.04	<0.02	<0.02	<0.02	<0.02
Dibenz(ah)anthracene	CE087 ^M	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzo(ghi)perylene	CE087 ^M	mg/kg	0.12	0.05	<0.02	<0.02	<0.02	<0.02
PAH (total of USEPA 16)	CE087	mg/kg	1.74	0.87	<0.27	<0.27	<0.27	<0.27

SOLS

Lab number			66644-1	66644-2	66644-3	66644-4	66644-5	66644-6
Sample id			WAC1	WAC2	WAC3	WAC4	WAC5	WAC6
Depth (m)			0.30	0.50	0.80	0.40	0.90	0.60
Date sampled			11/08/2017	11/08/2017	11/08/2017	11/08/2017	11/08/2017	11/08/2017
Test	Method	Units						
BTEX & TPH								
МТВЕ	CE057 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
Benzene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Toluene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Ethylbenzene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
m & p-Xylene	CE057 ^U	mg/kg	<0.02	<0.02	<0.02	<0.02	<0.02	<0.02
o-Xylene	CE057 ^U	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC5-EC7)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC7-EC8)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
VPH Aromatic (>EC8-EC10)	CE067	mg/kg	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
EPH Aromatic (>EC10-EC12)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC12-EC16)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC16-EC21)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC21-EC35)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
EPH Aromatic (>EC35-EC44)	CE068	mg/kg	<1	<1	<1	<1	<1	<1
VPH Aliphatic (>C5-C6)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VPH Aliphatic (>C6-C8)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
VPH Aliphatic (>C8-C10)	CE067	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
EPH Aliphatic (>C10-C12)	CE068	mg/kg	<4	<4	<4	<4	<4	<4
EPH Aliphatic (>C12-C16)	CE068	mg/kg	<4	<4	<4	<4	<4	<4
EPH Aliphatic (>C16-C35)	CE068	mg/kg	40	<10	<10	<10	<10	17
EPH Aliphatic (>C35-C44)	CE068	mg/kg	12	<10	<10	<10	<10	<10
Subcontracted analysis								
Asbestos (qualitative)	\$	-	NAD	NAD	NAD	NAD	NAD	NAD

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE127	Antimony (total)	Aqua regia digest, ICP-MS	Dry	U	0.2	mg/kg Sb
CE127	Arsenic (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg As
CE127	Barium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ba
CE063	Boron (water soluble)	Hot water extract, ICP-OES	Dry	М	0.5	mg/kg B
CE127	Cadmium (total)	Aqua regia digest, ICP-MS	Dry	М	0.2	mg/kg Cd
CE127	Chromium (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cr
CE127	Copper (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Cu
CE127	Lead (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Pb
CE127	Mercury (total)	Aqua regia digest, ICP-MS	Dry	М	0.5	mg/kg Hg
CE127	Molybdenum (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Mo
CE127	Nickel (total)	Aqua regia digest, ICP-MS	Dry	М	1	mg/kg Ni
CE127	Selenium (total)	Aqua regia digest, ICP-MS	Dry	М	0.3	mg/kg Se
CE127	Zinc (total)	Aqua regia digest, ICP-MS	Dry	М	5	mg/kg Zn
CE004	рН	Based on BS 1377, pH Meter	Wet	М	-	units
CE061	Sulphate (2:1 water soluble)	Aqueous extraction, ICP-OES	Dry	М	10	mg/I SO ₄
CE034	Sulphur (free)	Solvent extraction, HPLC	Dry	М	10	mg/kg S
CE079	Sulphide	Extraction, Continuous Flow Colorimetry	Wet		10	mg/kg S ²⁻
CE077	Cyanide (free)	Extraction, Continuous Flow Colorimetry	Wet		1	mg/kg CN
CE077	Cyanide (total)	Extraction, Continuous Flow Colorimetry	Wet	М	1	mg/kg CN
CE078	Phenols (total)	Extraction, Continuous Flow Colorimetry	Wet		0.5	mg/kg PhOH
CE087	Naphthalene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Acenaphthylene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Acenaphthene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Fluorene	Solvent extraction, GC-MS	Wet	U	0.01	mg/kg
CE087	Phenanthrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Pyrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(a)anthracene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Chrysene	Solvent extraction, GC-MS	Wet	М	0.01	mg/kg
CE087	Benzo(b)fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(k)fluoranthene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(a)pyrene	Solvent extraction, GC-MS	Wet	U	0.02	mg/kg
CE087	Indeno(123cd)pyrene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Dibenz(ah)anthracene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	Benzo(ghi)perylene	Solvent extraction, GC-MS	Wet	М	0.02	mg/kg
CE087	PAH (total of USEPA 16)	Solvent extraction, GC-MS	Wet		0.27	mg/kg
CE057	МТВЕ	Headspace GC-FID	Wet	U	0.02	mg/kg
CE057	Benzene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	Toluene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	Ethylbenzene	Headspace GC-FID	Wet	U	0.01	mg/kg
CE057	m & p-Xylene	Headspace GC-FID	Wet	U	0.02	mg/kg
CE057	o-Xylene	Headspace GC-FID	Wet	U	0.01	mg/kg

METHOD DETAILS

METHOD	SOILS	METHOD SUMMARY	SAMPLE	STATUS	LOD	UNITS
CE067	VPH Aromatic (>EC5-EC7)	Headspace GC-FID	Wet		0.01	mg/kg
CE067	VPH Aromatic (>EC7-EC8)	Headspace GC-FID	Wet		0.01	mg/kg
CE067	VPH Aromatic (>EC8-EC10)	Headspace GC-FID	Wet		0.01	mg/kg
CE068	EPH Aromatic (>EC10-EC12)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC12-EC16)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC16-EC21)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC21-EC35)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE068	EPH Aromatic (>EC35-EC44)	Solvent extraction, GC-FID	Wet		1	mg/kg
CE067	VPH Aliphatic (>C5-C6)	Headspace GC-FID	Wet		0.1	mg/kg
CE067	VPH Aliphatic (>C6-C8)	Headspace GC-FID	Wet		0.1	mg/kg
CE067	VPH Aliphatic (>C8-C10)	Headspace GC-FID	Wet		0.1	mg/kg
CE068	EPH Aliphatic (>C10-C12)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C12-C16)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C16-C35)	Solvent extraction, GC-FID	Wet		4	mg/kg
CE068	EPH Aliphatic (>C35-C44)	Solvent extraction, GC-FID	Wet		10	mg/kg
\$	Asbestos (qualitative)	HSG 248, Microscopy	Dry	U	-	-

DEVIATING SAMPLE INFORMATION

Comments

Sample deviation is determined in accordance with the UKAS note "Guidance on Deviating Samples" and based on reference standards and laboratory trials.

For samples identified as deviating, test result(s) may be compromised and may not be representative of the sample at the time of sampling.

Chemtech Environmental Ltd cannot be held responsible for the integrity of sample(s) received if Chemtech Environmental Ltd did not undertake the sampling. Such samples may be deviating.

Key

- N No (not deviating sample)
- Y Yes (deviating sample)
- NSD Sampling date not provided
- NST Sampling time not provided (waters only)
- EHT Sample exceeded holding time(s)
- IC Sample not received in appropriate containers
- HP Headspace present in sample container
- NCF Sample not chemically fixed (where appropriate)
- IT Sample not cooled
- OR Other (specify)

Lab ref	Sample id	Depth (m)	Deviating	Tests (Reason for deviation)
66644-1	WAC1	0.30	Ν	
66644-2	WAC2	0.50	Ν	
66644-3	WAC3	0.80	Ν	
66644-4	WAC4	0.40	Ν	
66644-5	WAC5	0.90	Ν	
66644-6	WAC6	0.60	N	

Sample Details	
Contract Name	Water Orton
Lab Number	66644-1
Sample ID	WAC1 0.30m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

0.207
0.175
18.19
84.61
0.318
1.400
0.240
1.285

Eluate Analysis	Conc ir	Eluate	Amount	Leached	BS EN 12457-3 Limit Val		it Values
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S [^]	10:1
pH (units)	7.3	7.9			Inert	Non-reactive	Hazardous
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste
Conductivity (µS/cm)	57	43	mg/kg	mg/kg		Waste	
Antimony (µg/l Sb)	3.4	1.5	0.007	0.018	0.06	0.7	5
Arsenic (µg/I As)	10.61	7.03	0.021	0.075	0.5	2	25
Barium (µg/l Ba)	14.6	9.7	0.029	0.103	20	100	300
Cadmium (µg/I Cd)	<0.07	<0.07	<0.0002	<0.0007	0.04	1	5
Chromium (µg/I Cr)	1.0	1.3	0.002	0.012	0.5	10	70
Copper (µg/l Cu)	25.1	11.4	0.050	0.132	2	50	100
Lead (µg/I Pb)	6.6	5.8	0.0132	0.059	0.5	10	50
Mercury (µg/I Hg)	0.045	0.027	0.00009	0.00029	0.01	0.2	2
Molybdenum (µg/I Mo)	1.5	0.8	0.003	0.009	0.5	10	30
Nickel (µg/l Ni)	7.0	3.0	0.014	0.035	0.4	10	40
Selenium (µg/l Se)	0.77	0.51	0.002	0.005	0.1	0.5	7
Zinc (µg/I Zn)	34	17	0.067	0.196	4	50	200
Chloride (mg/l Cl)	<1	1.2	<2	<12	800	15000	25000
Fluoride (mg/I F)	0.5	0.5	1.0	5.0	10	150	500
Sulphate (mg/I SO ₄)	<10	<10	<20	<100	1000	20000	50000
Total Dissolved Solids (mg/I TDS)	45	35	90	364	4000	60000	100000
Phenol Index (mg/I PhOH)	<0.01	<0.01	< 0.02	<0.1	1		
Dissolved Organic Carbon (mg/l C	15	9.0	30	98	500	800	1000
Waste Analysis			Units	Result			
Total Organic Carbon			% w/w	2.7	3%	5%	6%
Loss on Ignition			% w/w	6.5			10%
BTEX			mg/kg	<0.06	6		
PCBs (7 congeners)			mg/kg	< 0.045	1		
TPH (C10 - C40)			mg/kg	90	500		
PAH (total)			mg/kg	1.74	100		
рН			pH units	6.3		>6	
Acid Neutralisation Capacity (pH4)			mol/kg	0.09		To be ev	/aluated
Acid Neutralisation Capacity (pH7)			mol/kg	-		To be ev	/aluated

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Report date:

22 August 2017

Director

	6
Sample Details	
Contract Name	Water Orton
Lab Number	66644
Sample ID	WAC2 0.50m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A

N/A

Non-crushable matter

Test Values

Mass of Raw Test Portion (MW) kg	0.202
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	15.65
Dry Matter Content Ratio (DR) %	86.47
Leachant Volume (1) (L2) Litre	0.323
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.235
Eluate Volume (2) (VE2) Litre	1.280

Eluate Analysis	Conc ir	Eluate	Amount	Leached	BS EN 12457-3 Limit Val		it Values
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S ²	10:1
pH (units)	7.6	7.9			Inert	Non-reactive	Hazardous
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste
Conductivity (µS/cm)	514	176	mg/kg	mg/kg		Waste	
Antimony (µg/l Sb)	2.7	1.8	0.005	0.019	0.06	0.7	5
Arsenic (µg/l As)	3.12	2.87	0.006	0.029	0.5	2	25
Barium (µg/l Ba)	25.0	9.1	0.050	0.112	20	100	300
Cadmium (µg/I Cd)	<0.07	<0.07	<0.0002	< 0.0007	0.04	1	5
Chromium (µg/l Cr)	0.9	2.2	0.002	0.021	0.5	10	70
Copper (µg/I Cu)	34.4	20.9	0.069	0.227	2	50	100
Lead (µg/l Pb)	11.4	9.3	0.0229	0.096	0.5	10	50
Mercury (µg/I Hg)	0.047	0.031	0.00009	0.00033	0.01	0.2	2
Molybdenum (µg/l Mo)	39.7	15.1	0.079	0.184	0.5	10	30
Nickel (µg/l Ni)	12.6	8.1	0.025	0.087	0.4	10	40
Selenium (µg/I Se)	1.97	1.14	0.004	0.013	0.1	0.5	7
Zinc (µg/I Zn)	2	7	0.004	0.061	4	50	200
Chloride (mg/l Cl)	18	3.7	36	56	800	15000	25000
Fluoride (mg/I F)	4.4	2.5	8.8	27.6	10	150	500
Sulphate (mg/I SO ₄)	39	<10	78	<139	1000	20000	50000
Total Dissolved Solids (mg/I TDS)	390	135	780	1692	4000	60000	100000
Phenol Index (mg/I PhOH)	<0.01	<0.01	< 0.02	<0.1	1		
Dissolved Organic Carbon (mg/l C	40	26	80	279	500	800	1000
Waste Analysis			Units	Result			
Total Organic Carbon			% w/w	1.2	3%	5%	6%
Loss on Ignition			% w/w	4.3			10%
BTEX			mg/kg	<0.06	6		
PCBs (7 congeners)			mg/kg	<0.045	1		
TPH (C10 - C40)			mg/kg	73	500		
PAH (total)			mg/kg	0.87	100		
рН			pH units	8.0		>6	
Acid Neutralisation Capacity (pH4)			mol/kg	0.16		To be ev	valuated
Acid Neutralisation Capacity (pH7)			mol/kg	0.04		To be ev	valuated

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Report date:

22 August 2017

Director

Sample Details	
Contract Name	Water Orton
Lab Number	6664-3
Sample ID	WAC3 0.80m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.202
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	15.37
Dry Matter Content Ratio (DR) %	86.68
Leachant Volume (1) (L2) Litre	0.323
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.265
Eluate Volume (2) (VE2) Litre	1.310

Eluate Analysis	Conc in Eluate		Amount	Leached	BS EN 12457-3 Limit Values			
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S [^]	10:1	
pH (units)	7.2	7.2			Inert	Non-reactive	Hazardous	
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste	
Conductivity (µS/cm)	156	46	mg/kg	mg/kg		Waste		
Antimony (µg/l Sb)	0.2	0.2	0.000	0.002	0.06	0.7	5	
Arsenic (µg/l As)	0.31	0.32	0.001	0.003	0.5	2	25	
Barium (µg/l Ba)	9.5	6.6	0.019	0.070	20	100	300	
Cadmium (µg/I Cd)	<0.07	<0.07	<0.0002	< 0.0007	0.04	1	5	
Chromium (µg/l Cr)	<0.2	1.8	<0.0004	<0.015	0.5	10	70	
Copper (µg/I Cu)	4.5	2.7	0.009	0.030	2	50	100	
Lead (µg/l Pb)	0.3	0.6	0.0006	0.006	0.5	10	50	
Mercury (µg/I Hg)	<0.008	<0.008	< 0.00002	< 0.00008	0.01	0.2	2	
Molybdenum (µg/I Mo)	1.2	<0.3	0.002	< 0.004	0.5	10	30	
Nickel (µg/l Ni)	3.0	2.2	0.006	0.023	0.4	10	40	
Selenium (µg/l Se)	0.16	0.15	0.000	0.001	0.1	0.5	7	
Zinc (µg/l Zn)	9	3	0.017	0.039	4	50	200	
Chloride (mg/l Cl)	11	2.5	22	38	800	15000	25000	
Fluoride (mg/I F)	0.2	0.3	0.4	2.8	10	150	500	
Sulphate (mg/I SO ₄)	<10	<10	<20	<100	1000	20000	50000	
Total Dissolved Solids (mg/I TDS)	120	35	240	479	4000	60000	100000	
Phenol Index (mg/I PhOH)	<0.01	<0.01	< 0.02	<0.1	1			
Dissolved Organic Carbon (mg/I C	<5	5.6	<10	<55	500	800	1000	
Waste Analysis			Units	Result				
Total Organic Carbon			% w/w	0.3	3%	5%	6%	
Loss on Ignition			% w/w	3.5			10%	
BTEX			mg/kg	<0.06	6			
PCBs (7 congeners)			mg/kg	< 0.045	1			
TPH (C10 - C40)			mg/kg	21	500			
PAH (total)			mg/kg	<0.29	100			
Н			pH units	6.9		>6		
Acid Neutralisation Capacity (pH4)			mol/kg	0.12		To be ev	/aluated	
Acid Neutralisation Capacity (pH7)			mol/kg	-		To be ev	/aluated	

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Director

Report date:

22 August 2017

Sample Details	
Contract Name	Water Orton
Lab Number	66644-4
Sample ID	WAC4 0.40m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.188
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	7.48
Dry Matter Content Ratio (DR) %	93.04
Leachant Volume (1) (L2) Litre	0.337
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.280
Eluate Volume (2) (VE2) Litre	1.325

Eluate Analysis	Conc in Eluate		Amount Leached		BS EN 12457-3 Limit Values			
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S [^]	10:1	
pH (units)	7.2	7.1			Inert	Non-reactive	Hazardous	
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste	
Conductivity (µS/cm)	26	21	mg/kg	mg/kg		Waste		
Antimony (µg/l Sb)	0.7	0.3	0.001	0.004	0.06	0.7	5	
Arsenic (µg/l As)	1.08	1.02	0.002	0.010	0.5	2	25	
Barium (µg/l Ba)	13.5	5.4	0.027	0.067	20	100	300	
Cadmium (µg/I Cd)	<0.07	<0.07	<0.0002	<0.0007	0.04	1	5	
Chromium (µg/l Cr)	2.8	1.4	0.006	0.017	0.5	10	70	
Copper (µg/l Cu)	14.2	7.1	0.028	0.082	2	50	100	
Lead (µg/l Pb)	3.7	3.7	0.0075	0.037	0.5	10	50	
Mercury (µg/I Hg)	0.019	0.015	0.00004	0.00015	0.01	0.2	2	
Molybdenum (µg/l Mo)	0.5	0.3	0.001	0.003	0.5	10	30	
Nickel (µg/l Ni)	3.7	2.1	0.007	0.024	0.4	10	40	
Selenium (µg/I Se)	0.66	0.31	0.001	0.004	0.1	0.5	7	
Zinc (µg/I Zn)	<1	2	<0.002	<0.021	4	50	200	
Chloride (mg/l Cl)	<1	<1	<2	<10	800	15000	25000	
Fluoride (mg/I F)	0.4	0.3	0.8	3.2	10	150	500	
Sulphate (mg/I SO ₄)	<10	<10	<20	<100	1000	20000	50000	
Total Dissolved Solids (mg/I TDS)	20	15	40	158	4000	60000	100000	
Phenol Index (mg/I PhOH)	<0.01	<0.01	< 0.02	<0.1	1			
Dissolved Organic Carbon (mg/l C	9.7	5.7	19	63	500	800	1000	
Waste Analysis			Units	Result				
Total Organic Carbon			% w/w	0.3	3%	5%	6%	
Loss on Ignition			% w/w	2.1			10%	
BTEX			mg/kg	<0.06	6			
PCBs (7 congeners)			mg/kg	< 0.045	1			
TPH (C10 - C40)			mg/kg	<10	500			
PAH (total)			mg/kg	<0.29	100			
рН			pH units	7.0		>6		
Acid Neutralisation Capacity (pH4)			mol/kg	0.12		To be ev	/aluated	
Acid Neutralisation Capacity (pH7)			mol/kg	-		To be ev	aluated	

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Report date:

22 August 2017

Director

Sample Details	
Contract Name	Water Orton
Lab Number	66644-5
Sample ID	WAC5 0.90m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

0.198
0.175
13.05
88.46
0.327
1.400
0.235
1.280

Eluate Analysis	Conc in Eluate		Amount	Leached	BS EN 12457-3 Limit Values			
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S 1	10:1	
pH (units)	7.0	6.9			Inert	Non-reactive	Hazardous	
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste	
Conductivity (µS/cm)	26	17	mg/kg	mg/kg		Waste		
Antimony (µg/l Sb)	0.7	0.2	0.001	0.003	0.06	0.7	5	
Arsenic (µg/l As)	0.83	0.99	0.002	0.010	0.5	2	25	
Barium (μg/l Ba)	9.9	4.5	0.020	0.052	20	100	300	
Cadmium (µg/I Cd)	<0.07	0.10	<0.0002	<0.001	0.04	1	5	
Chromium (µg/l Cr)	2.1	1.4	0.004	0.015	0.5	10	70	
Copper (µg/l Cu)	11.3	6.7	0.023	0.073	2	50	100	
Lead (µg/l Pb)	1.3	2.8	0.0026	0.026	0.5	10	50	
Mercury (µg/l Hg)	<0.008	0.012	< 0.00002	< 0.00012	0.01	0.2	2	
Molybdenum (µg/I Mo)	<0.3	<0.3	<0.0006	< 0.003	0.5	10	30	
Nickel (µg/l Ni)	1.9	1.3	0.004	0.014	0.4	10	40	
Selenium (µg/I Se)	0.29	0.19	0.001	0.002	0.1	0.5	7	
Zinc (µg/I Zn)	<1	3	<0.002	< 0.027	4	50	200	
Chloride (mg/l Cl)	<1	<1	<2	<10	800	15000	25000	
Fluoride (mg/I F)	0.1	0.1	0.2	1.0	10	150	500	
Sulphate (mg/I SO ₄)	<10	<10	<20	<100	1000	20000	50000	
Total Dissolved Solids (mg/I TDS)	20	15	40	157	4000	60000	100000	
Phenol Index (mg/I PhOH)	<0.01	<0.01	<0.02	<0.1	1			
Dissolved Organic Carbon (mg/l C	7.3	5.2	15	55	500	800	1000	
Waste Analysis			Units	Result				
Total Organic Carbon			% w/w	0.1	3%	5%	6%	
Loss on Ignition			% w/w	1.8			10%	
BTEX			mg/kg	<0.06	6			
PCBs (7 congeners)			mg/kg	<0.045	1			
ТРН (С10 - С40)			mg/kg	<10	500			
PAH (total)			mg/kg	<0.29	100			
рН			pH units	6.0		>6		
Acid Neutralisation Capacity (pH4)			mol/kg	0.08		To be ev	/aluated	
Acid Neutralisation Capacity (pH7)			mol/kg	-		To be ev	/aluated	

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Report date:

22 August 2017

Director

Sample Details	
Contract Name	Water Orton
Lab Number	66644-6
Sample ID	WAC6 0.60m
Date Sampled	11 August 2017
Date Received	15 August 2017
Particle Size (<4mm)	-
Method of size reduction	N/A
Non-crushable matter	N/A

Test Values

Mass of Raw Test Portion (MW) kg	0.200
Mass of Dried Test Portion (MD) kg	0.175
Moisture Content Ratio (MC) %	14.53
Dry Matter Content Ratio (DR) %	87.32
Leachant Volume (1) (L2) Litre	0.325
Leachant Volume (2) (L8) Litre	1.400
Eluate Volume (1) (VE1) Litre	0.225
Eluate Volume (2) (VE2) Litre	1.265

Eluate Analysis	Conc in Eluate		Amount	Leached	BS EN 12457-3 Limit Values			
Liquid : Waste Ratio	2:1	8:1			mg.	/kg at L:S [^]	10:1	
pH (units)	7.0	8.0			Inert	Non-reactive	Hazardous	
Temperature (°C)	20	20	2:1	10:1	Waste	Hazardous	Waste	
Conductivity (µS/cm)	23	47	mg/kg	mg/kg		Waste		
Antimony (µg/l Sb)	0.8	0.4	0.002	0.004	0.06	0.7	5	
Arsenic (µg/l As)	0.94	0.99	0.002	0.010	0.5	2	25	
Barium (µg/l Ba)	7.6	6.1	0.015	0.063	20	100	300	
Cadmium (µg/I Cd)	<0.07	0.29	<0.0002	< 0.003	0.04	1	5	
Chromium (µg/l Cr)	1.8	0.9	0.004	0.010	0.5	10	70	
Copper (µg/I Cu)	10.4	7.8	0.021	0.081	2	50	100	
Lead (µg/l Pb)	3.3	11.4	0.0066	0.103	0.5	10	50	
Mercury (µg/I Hg)	<0.008	0.009	< 0.00002	< 0.00009	0.01	0.2	2	
Molybdenum (µg/I Mo)	< 0.3	0.4	<0.0006	< 0.004	0.5	10	30	
Nickel (µg/l Ni)	2.2	1.9	0.004	0.019	0.4	10	40	
Selenium (µg/l Se)	0.30	0.32	0.001	0.003	0.1	0.5	7	
Zinc (µg/l Zn)	<1	16	<0.002	<0.141	4	50	200	
Chloride (mg/l Cl)	<1	1.2	<2	<12	800	15000	25000	
Fluoride (mg/I F)	0.3	0.3	0.6	3.0	10	150	500	
Sulphate (mg/I SO ₄)	<10	<10	<20	<100	1000	20000	50000	
Total Dissolved Solids (mg/I TDS)	15	35	30	324	4000	60000	100000	
Phenol Index (mg/I PhOH)	<0.01	<0.01	< 0.02	<0.1	1			
Dissolved Organic Carbon (mg/l C	11	9.6	22	98	500	800	1000	
Waste Analysis			Units	Result				
Total Organic Carbon			% w/w	0.4	3%	5%	6%	
Loss on Ignition			% w/w	3.3			10%	
BTEX			mg/kg	<0.06	6			
PCBs (7 congeners)			mg/kg	<0.045	1			
TPH (C10 - C40)			mg/kg	15	500			
PAH (total)			mg/kg	<0.29	100			
Н			pH units	6.2		>6		
Acid Neutralisation Capacity (pH4)			mol/kg	0.09		To be ev	/aluated	
Acid Neutralisation Capacity (pH7)			mol/kg	-		To be ev	aluated	

Disclaimer : The Landfill Waste Acceptance Criteria limits in this report are provided for guidance only. Chemtech Environmental Ltd does not take responsibility for any errors or omissions. Data is correct as of 01/09/2005. Samples will be disposed of 6 weeks from initial receipt unless written instructions are received and further storage is agreed. Waste Acceptance Criteria testing is outside the scope of the laboratory's UKAS accreditation.

Comments

Authorised by:

J. Campbell

Name: Position: John Campbell

Director

Report date:

22 August 2017

Appendix VI

Project Number Project Name Client	r C2415 Water Orton, Birmingham Willmott Dixon Ltd								BH1	
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.0	<0.1	<0.1	20.7	< 0.1	<1	<1		5.62	3.89
00:15	0.0	<0.1	<0.1	18.5	2.4	1	2		5.62	3.89
00:30	0.0	<0.1	<0.1	18.2	2.5	1	<1		5.62	3.89
00:45	0.0	<0.1	<0.1	18.2	2.6	1	<1		5.62	3.89
01:00	0.0	<0.1	<0.1	18.1	2.6	<1	<1		5.62	3.89
01:15	0.0	<0.1	<0.1	18.1	2.6	<1	<1		5.62	3.89
01:30	0.0	<0.1	<0.1	18.1	2.6	1	<1		5.62	3.89
01:45	0.0	<0.1	<0.1	18.1	2.6	1	<1		5.62	3.89
02:00	0.0	<0.1	<0.1	18.0	2.6	1	<1		5.62	3.89
02:15	0.0	<0.1	<0.1	18.0	2.6	1	<1		5.62	3.89
02:30	0.0	<0.1	<0.1	18.0	2.6	1	<1		5.62	3.89
02:45	0.0	<0.1	<0.1	18.0	2.6	2	<1		5.62	3.89
03:00	0.0	<0.1	<0.1	18.0	2.6	2	<1		5.62	3.89
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	18.0	2.6	2.0	<1	#####	5.62	3.89
Peak	0.0	0.0	0.0	20.7	2.6	2.0	2.0	0.0	5.62	3.89
Date 05.09.2017	Engine	Notes: Engineer DRS			Barometric Pressure, mbar				10	001
	Fauinn	nent	GEM43	30		Pressu Air Te	mn (°C	d)	Ste	eady 19
	Lyuipii	iciit	011/143		Air Temp (°C)				19	

Project Number Project Name Client	C2415 Water O Willmott	2415 Vater Orton, Birmingham Villmott Dixon Ltd							BH2	
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.0	<0.1	< 0.1	20.6	< 0.1	<1	<1		4.47	4.00
00:15	0.0	<0.1	<0.1	18.8	2.0	<1	<1		4.47	4.00
00:30	0.0	< 0.1	<0.1	18.8	2.0	<1	<1		4.47	4.00
00:45	0.0	< 0.1	<0.1	18.7	2.0	<1	<1		4.47	4.00
01:00	0.0	< 0.1	<0.1	18.6	2.0	<1	<1		4.47	4.00
01:15	0.0	<0.1	<0.1	18.6	2.0	<1	<1		4.47	4.00
01:30	0.0	<0.1	< 0.1	18.6	2.0	<1	<1		4.47	4.00
01:45	0.0	<0.1	< 0.1	18.6	2.0	<1	<1		4.47	4.00
02:00	0.0	<0.1	<0.1	18.6	2.0	<1	<1		4.47	4.00
02:15	0.0	<0.1	<0.1	18.5	2.0	<1	<1		4.47	4.00
02:30	0.0	<0.1	<0.1	18.5	2.0	<1	<1		4.47	4.00
02:45	0.0	<0.1	<0.1	18.5	2.0	<1	<1		4.47	4.00
03:00	0.0	<0.1	<0.1	18.5	2.0	<1	<1		4.47	4.00
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	18.5	2.0	<1	<1	#####	4.47	4.00
Peak	0.0	0.0	0.0	20.6	2.0	0.0	0.0	0.0	4.47	4.00
Date 05.09.2017	Engine	Notes: Engineer DRS			Barometric Pressure, mbar				10	001
						Pressure Trend			Ste	eady
	Equipm	ent	GFM43	30	Air Temp (°C)				19	

Pro Pro Cli	oject Number oject Name ient	C V V	2415 Vater O Villmott	r	ton, Bir Dixon L	mingha td	m					BI	-15
							Det	ection l	imit				
					<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
	Time		Gas Flow Rate. (I/hr)		Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
	00:00	T	0.0		<0.1	<0.1	20.7	<0.1	<1	<1		5.45	3.67
	00:15		0.0		<0.1	<0.1	17.4	2.9	<1	<1		5.45	3.67
	00:30		0.0		<0.1	<0.1	17.0	2.9	<1	<1		5.45	3.67
	00:45	1	0.0		<0.1	<0.1	16.9	3.0	<1	<1		5.45	3.67
	01:00		0.0		<0.1	<0.1	16.8	3.0	<1	<1		5.45	3.67
	01:15		0.0		<0.1	<0.1	16.8	3.0	<1	<1		5.45	3.67
	01:30		0.0		<0.1	<0.1	16.8	3.0	<1	<1		5.45	3.67
	01:45		0.0		<0.1	<0.1	16.8	3.1	<1	<1		5.45	3.67
	02:00		0.0		<0.1	<0.1	16.8	3.1	<1	<1		5.45	3.67
	02:15		0.0		<0.1	<0.1	16.8	3.1	<1	<1		5.45	3.67
	02:30		0.0		<0.1	<0.1	16.7	3.1	<1	<1		5.45	3.67
	02:45		0.0		<0.1	<0.1	16.7	3.1	<1	<1		5.45	3.67
	03:00		0.0		<0.1	<0.1	16.7	3.1	<1	<1		5.45	3.67
	03:15		0.0		<0.1	<0.1	16.7	3.1	<1	<1		5.45	3.67
	03:30		0.0		<0.1	<0.1	16.7	3.2	<1	<1		5.45	3.67
	03:45		0.0		<0.1	<0.1	16.6	3.2	<1	<1		5.45	3.67
	04:00		0.0		<0.1	<0.1	16.6	3.2	<1	<1		5.45	3.67
	04:15		0.0		<0.1	<0.1	16.6	3.2	<1	<1		5.45	3.67
	04:30		0.0		<0.1	<0.1	16.6	3.3	<1	<1		5.45	3.67
	04:45		0.0		<0.1	<0.1	16.5	3.3	<1	<1		5.45	3.67
	05:00		0.0	0.0 <0.1			16.3	3.3	<1	<1		5.45	3.67
	Steady		0.0	0.0 <0.1			16.3	3.3	<1	<1	#####	5.45	3.67
	Peak		0.0		0.0	0.0	20.7	3.3	0.0	0.0	0.0	5.45	3.67
	Date 05.09.2017		Enginee	Note Engineer [otes: DRS		Barometric Pressure, mba			ar 1001	
			Fauinm	<u>،</u>	ont	GENAA	30		Δir T	emn (°C	<u>')</u>	1	auy IQ
			Lyuipn	10	5111	GFIVI43	50			emh (C	·)		19

Detection Limit <0.1	Project Number Project Name Client	C V V	22415 Vater Or Villmott	rton, Bir Dixon L	mingha td			0				
Image: construction of the second s						Det	ection L	imit				
Image: construction of the sector o				<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
00:00 00:15 00:16 00:17 <th< td=""><td>lime</td><td></td><td>Gas Flow Rate. (I/hr)</td><td>Methane. (%LEL)</td><td>Methane. (%vol)</td><td>Oxygen. (%vol)</td><td>Carbon Dioxide. (%vol)</td><td>Hydrogen Sulphide. (ppm)</td><td>Carbon Monoxide. (ppm)</td><td>Volatile Organic Carbon (ppr</td><td>Depth of Installation. (mbgl)</td><td>Depth of Groundwater (mbg</td></th<>	lime		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:15 Image: state in the	00:00											
00:30	00:15	T										
00:45 Image: state of the state of th	00:30	Т										
01:00 Image: start s	00:45											
01:15 Image: constraint of the system of	01:00											
01:30 Image: starting of the sta	01:15	01:15										
01:45 I <td>01:30</td> <td></td>	01:30											
02:00 Image: constraint of the second se	01:45											
02:15	02:00											
02:30 02:45 <td< td=""><td>02:15</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	02:15											
02:45	02:30											
03:00 I <td>02:45</td> <td></td>	02:45											
03:15 I <td>03:00</td> <td></td>	03:00											
03:30 I <td>03:15</td> <td></td>	03:15											
03:45 I <td>03:30</td> <td></td>	03:30											
04:00 I <td>03:45</td> <td></td>	03:45											
04:15 I <td>04:00</td> <td>Ц</td> <td></td> <td> </td> <td>ļ</td> <td></td> <td></td> <td>ļ</td> <td>ļ</td> <td></td> <td><u> </u></td> <td></td>	04:00	Ц		 	ļ			ļ	ļ		<u> </u>	
04:30 04:45 05:45 05:45 05:45 05:45 05:45 05:45 05:45 05:45 04:45 <td< td=""><td>04:15</td><td>\parallel</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td><u> </u></td><td></td></td<>	04:15	\parallel									<u> </u>	
04:45 Image: Constraint of the second se	04:30	Щ		<u> </u>							<u> </u>	
05:00 ###### ###### ###### ###### ###### ###### ###### ###### ###### ###### ####################################	04:45	4		<u> </u>							<u> </u>	
Steady ###### ###### ###### ###### ####################################	05:00	Ц									<u> </u>	
Peak 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.00	Steady	Ц	#####	#####	#####	#####	#####	#####	#####	#####	#####	######
DateNotes:100105.09.2017EngineerDRSBarometric Pressure, mbar	Peak		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
	Date 05.09.2017		Enginee	Notes: er DRS			Barometric Pressure, mbar				1001	
Pressure Trend Stead			Equipment GEM430				Pressure Trend			Steady		

Project Number Project Name Client	C V V	2415 Vater Oi Villmott	rton, Bir Dixon L			0					
					Det	ection l	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
lime		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00											
00:15											
00:30											
00:45											
01:00											
01:15											
01:30											
01:45											
02:00											
02:15											
02:30											
02:45											
03:00											
03:15											
03:30											
03:45									└───┨		
04:00											
04:15	\parallel		 						└───┨	ļ	
04:30											
04:45			 							I	
05:00											
Steady		#####	#####	#####	#####	#####	#####	#####	#####	#####	######
Peak		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Date 05.09.2017		Enginee	Notes: gineer DRS				Barometric Pressure, mbar				001
						Pressure Trend			Ste	eady	
		Pressure Trer Equipment GFM430 Air Temp (°C					mp (°C)		19		

Project Number Project Name Client	(\ \	C2415 Water O Willmott	rton, Bir Dixon L	mingha td			0				
					Det	ection L	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
ime		Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	1										
00:15	T									Ī	
00:30											
00:45											
01:00											
01:15											
01:30											
01:45											
02:00											
02:15											
02:30											
02:45											
03:00	_										
03:15	_										
03:30	+	▎▁▎▎	 							ļ	
03:45	+	┞──┨	 								
04:00	+		<u> </u>						┝──╂		
04:15	+	╞╴╴┨							┝──╂		
04:30	+	╏──┨	<u> </u>						┝──╂		
04:45	+	╏──┨									
UU:CU	╉	<u>нн</u> илл	**** ****						######	ннппп	######
Peak	╉	##### 0.0	##### 0.0	##### 0.0	###### 0.0	<u>*****</u>	##### 0.0	##### 0.0	###### 0 00	###### 0 00	
			0.0 0.0 0.0 0.0				0.0		5.50	0.00	
05.09.2017		Engine	ineer DRS				Barometric Pressure, mbar				001
						Pressure Trend			Ste	eady	
		Equipm	ent	GFM43	30		Air Te	emp (°C)		19	

Project Number Project Name Client	(\ \	C2415 Water O Willmott	rton, Bir Dixon L	mingha td			0				
					Det	ection l	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
ime		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Jepth of Groundwater (mbgl
00:00											
00:15	╈										
00:30											
00:45											
01:00	1										
01:15											
01:30											
01:45											
02:00											
02:15											
02:30											
02:45											
03:00											
03:15											
03:30											
03:45			 	ļ	ļ		ļ			ļ	
04:00	_		<u> </u>	<u> </u>	<u> </u>		<u> </u>		╞───┨		
04:15	\downarrow	┞──┨	 								
04:30	+	┞──┨	┨───							 	
04:45	+	┞──┤							├───┨		
05:00	╉										
Steady	╉	#####	#####	#####	#####	#####	#####	#####	#####	#####	######
Реак		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Date 05.09.2017		Engine	Notes: ngineer DRS				Barometric Pressure, mbar				001
						Pressure Trend			Ste	eady	
		Equipm	ient	GFM43	30		Air Te	mp (°C)		19	

Project Number Project Name Client	(\ \	C2415 Water O Willmott	rton, Bir Dixon L	mingha td	m						0
					Det	ection l	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Iime		Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00											
00:15											
00:30											
00:45											
01:00											
01:15											
01:30											
01:45											
02:00											
02:15											
02:30											
02:45											
03:00											
03:15											
03:30											
03:45			<u> </u>	<u> </u>	<u> </u>		<u> </u>			<u> </u>	
04:00		┞──┨	 								
04:15		┞──┨									
04:30		╏──┤									
04:45			<u> </u>						╞───┨		
05:00											
Steady		#####	#####	#####	#####	#####	#####	#####	#####	#####	######
Реак		0.0	0.0 0.0 0			0.0	0.0	0.0	0.0	0.00	0.00
Date 05.09.2017		Engine	Notes: gineer DRS				Barometric Pressure, mbar				001
							Pressure Trend			Ste	eady
		Equipm	ent	GFM43	30		Air Te	mp (°C)		19	

Project Number Project Name Client	C2415 Water Willm	2415 Vater Orton, Birmingham Villmott Dixon Ltd									0
					Det	ection L	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
ime	Gas Flow Rate. (I/hr)		Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Jepth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00									-		
00:15											
00:30											
00:45											
01:00											
01:15	01:15										
01:30											
01:45											
02:00											
02:15											
02:30											
02:45											
03:00											
03:15											
03:30											
03:45											
04:00											
04:15											
04:30											
04:45											
05:00											
Steady	####	ŧ#	#####	#####	#####	#####	#####	#####	#####	#####	######
Реак	0.0	'	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Date 05.09.2017	Engi	nee	Notes: er DRS			Barometric Pressure, mbar				10	
							Pressu	re Tren	d	Ste	eady
	Equi	pm	ent	GFM43	30		Air Te	mp (°C)		1	19

Project Number Project Name Client	C V V	2415 Vater Or Villmott	rton, Bi Dixon I	rmingha Ltd			0				
					Det	ection l	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
ine		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	Τ			-							
00:15	\dagger										
00:30	Т										
00:45	Т										
01:00											
01:15											
01:30	П										
01:45	П										
02:00											
02:15											
02:30											
02:45											
03:00											
03:15											
03:30											
03:45											
04:00											
04:15											
04:30											
04:45	Ц										
05:00											
Steady	Ц	#####	**** ****** ****** ****** ****** *****						#####	#####	######
Peak		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.00	0.00
Date 05.09.2017		Notes: Engineer DRS Barometric Pressure, mbar					e, mbar	10	001		
		Pressure Trend						d	Ste	eady	
		Equipm	ent	GFM43	30		Air Te	mp (°C)			19

Project Number Project Name Client	C2415 Water (Willmo	Drton, Bi tt Dixon l	rmingha Ltd	m					BI	H1
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.0	<0.1	<0.1	20.7	<0.1	<1	<1		5.54	3.89
00:15	0.0	<0.1	<0.1	18.2	2.4	<1	<1		5.54	3.89
00:30	0.0	<0.1	<0.1	18.0	2.4	<1	<1		5.54	3.89
00:45	0.0	<0.1	<0.1	17.9	2.4	<1	<1		5.54	3.89
01:00	0.0	<0.1	<0.1	17.9	2.4	1	<1		5.54	3.89
01:15	0.0	<0.1	<0.1	17.9	2.4	<1	<1		5.54	3.89
01:30	0.0	<0.1	<0.1	17.8	2.5	<1	<1		5.54	3.89
01:45	0.0	<0.1	<0.1	17.9	2.5	<1	<1		5.54	3.89
02:00	0.0	<0.1	<0.1	17.9	2.5	<1	<1		5.54	3.89
02:15	0.0	<0.1	<0.1	17.9	2.5	<1	<1		5.54	3.89
02:30	0.0	<0.1	<0.1	17.9	2.5	<1	<1		5.54	3.89
02:45	0.0	<0.1	<0.1	17.9	2.5	<1	<1		5.54	3.89
03:00		11								
03:15										
03:30										
03:45										
04:00		11								
04:15		11								
04:30		11								
04:45		11								
05:00										
Steady	0.0	<0.1	<0.1	17.9	2.5	<1	<1	#####	5.54	3.89
Peak	0.0	0.0	0.0	20.7	2.5	1.0	0.0	0.0	5.54	3.89
Date 12.09.2017	Engine	Notes: Engineer DRS				Barometric Pressure, mbar				96
	Equip	Engineer DRS Equipment GFM430				Air Te	emp (°C)	Fallimg 17	

Project Number Project Name Client	C2415 Water Or Willmott	rton, Bir Dixon L	mingha td	m					BH2	
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.0	0.0 <0.1 <0.1 20.5 <0.1 <1 <1								3.97
00:15	0.0	< 0.1	<0.1	18.4	1.7	1	<1		4.56	3.97
00:30	0.0	<0.1	<0.1	18.2	1.7	1	<1		4.56	3.97
00:45	0.0	<0.1	<0.1	18.1	1.7	1	<1		4.56	3.97
01:00	0.0	<0.1	<0.1	18.0	1.8	1	<1		4.56	3.97
01:15	0.0	<0.1	<0.1	18.0	1.8	1	<1		4.56	3.97
01:30	0.0	<0.1	<0.1	18.0	1.8	<1	<1		4.56	3.97
01:45	0.0	<0.1	<0.1	18.0	1.8	<1	<1		4.56	3.97
02:00	0.0	<0.1	<0.1	17.9	1.8	<1	<1		4.56	3.97
02:15	0.0	<0.1	<0.1	17.9	1.8	<1	<1		4.56	3.97
02:30	0.0	<0.1	<0.1	17.9	1.8	<1	<1		4.56	3.97
02:45	0.0	<0.1	<0.1	17.9	1.8	1	<1		4.56	3.97
03:00										
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	17.9	1.8	1.0	<1	#####	4.56	3.97
Peak	0.0	0.0	0.0	20.5	1.8	1.0	0.0	4.56	3.97	
Date 12.09.2017	Notes: Engineer DRS				Barometric Pressure, mbar				9	96
					Pressure Trend				Fal	limg
	Equipm	ent	GFM43	80		Air Te	mp (°C))	17	

Project Number Project Name Client		C2415 Water O Willmott	15 ter Orton, Birmingham Imott Dixon Ltd							BI	-15
					Det	ection l	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	T	0.0	<0.1	<0.1	26.0	<0.1	<1	<1		5.42	3.61
00:15		0.0	<0.1	<0.1	17.0	3.0	<1	2		5.42	3.61
00:30		0.0	<0.1	<0.1	17.2	3.1	1	2		5.42	3.61
00:45		0.0	<0.1	<0.1	17.1	3.1	<1	2		5.42	3.61
01:00		0.0	<0.1	<0.1	17.1	3.1	<1	2		5.42	3.61
01:15		0.0	<0.1	<0.1	17.1	3.1	1	<1		5.42	3.61
01:30		0.0	<0.1	<0.1	17.1	3.2	<1	<1		5.42	3.61
01:45		0.0	<0.1	<0.1	17.0	3.2	<1	<1		5.42	3.61
02:00		0.0	<0.1	<0.1	17.0	3.2	<1	2		5.42	3.61
02:15		0.0	<0.1	<0.1	17.0	3.2	<1	<1		5.42	3.61
02:30		0.0	<0.1	<0.1	17.0	3.2	1	<1		5.42	3.61
02:45		0.0	<0.1	<0.1	17.0	3.2	<1	2		5.42	3.61
03:00											
03:15											
03:30											
03:45											
04:00											
04:15											
04:30											
04:45											
05:00											
Steady		0.0	<0.1	<0.1	17.0	3.2	<1	2.0	#####	5.42	3.61
Peak		0.0	0.0	0.0	26.0	3.2	1.0	2.0	0.0	5.42	3.61
Date		Engine	Not	tes:		Baro	metric	Pressur	e mhar	9	96
12.05.2017						Baro	Pressi	ure Tren	d	Fal	limg
		Equipm	ient	GFM43	30		Air Te	emp (°C)	17	

Project Number Project Name Client	C2415 Water (Willmot	15 er Orton, Birmingham mott Dixon Ltd							BI	H1
				Det	ection L	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl)
00:00	0.0	<0.1	<0.1	20.6	<0.1	<1	<1		5.60	3.92
00:15	0.0	<0.1	<0.1	18.0	2.5	<1	<1		5.60	3.92
00:30	0.0	<0.1	<0.1	17.9	2.6	1	<1		5.60	3.92
00:45	0.0	<0.1	<0.1	17.8	2.6	<1	<1		5.60	3.92
01:00	0.0	<0.1	<0.1	17.8	2.6	<1	<1		5.60	3.92
01:15	0.0	<0.1	<0.1	17.7	2.6	1	<1		5.60	3.92
01:30	0.0	<0.1	<0.1	17.7	2.6	<1	<1		5.60	3.92
01:45	0.0	<0.1	<0.1	17.7	2.6	1	<1		5.60	3.92
02:00	0.0	<0.1	<0.1	17.7	2.6	<1	<1		5.60	3.92
02:15	0.0	<0.1	<0.1	17.7	2.7	<1	<1		5.60	3.92
02:30	0.0	<0.1	<0.1	17.7	2.7	<1	<1		5.60	3.92
02:45	0.0	<0.1	<0.1	17.7	2.7	<1	<1		5.60	3.92
03:00	0.0	<0.1	<0.1	17.7	2.7	<1	<1		5.60	3.92
03:15	0.0	<0.1	<0.1	17.7	2.7	1	<1		5.60	3.92
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	17.7	2.7	1.0	<1	#####	5.60	3.92
Peak	0.0	0.0	0.0	20.6	2.7	1.0	0.0	0.0	5.60	3.92
Date 19.9.2017	Engine	No ¹ eer	tes: DRS		Baroi	metric F	Pressure	e, mbar	10	010
						Pressu	re Tren	d	Ste	eady
	Equip	nent	GFM43	30		Air Te	mp (°C))	1	L5

Project Number Project Name Client	C2415 Water O Willmot	15 er Orton, Birmingham mott Dixon Ltd							BI	H2
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.0	<0.1	<0.1	20.7	<0.1	<1	<1		4.49	4.04
00:15	0.0	<0.1	<0.1	17.6	2.2	<1	<1		4.49	4.04
00:30	0.0	<0.1	<0.1	17.2	2.3	<1	<1		4.49	4.04
00:45	0.0	<0.1	<0.1	17.1	2.3	<1	<1		4.49	4.04
01:00	0.0	<0.1	<0.1	17.1	2.3	<1	<1		4.49	4.04
01:15	0.0	<0.1	<0.1	17.1	2.3	<1	<1		4.49	4.04
01:30	0.0	<0.1	<0.1	17.0	2.3	<1	<1		4.49	4.04
01:45	0.0	<0.1	<0.1	17.0	2.3	<1	<1		4.49	4.04
02:00	0.0	<0.1	<0.1	17.0	2.3	<1	<1		4.49	4.04
02:15	0.0	<0.1	<0.1	16.9	2.3	<1	<1		4.49	4.04
02:30	0.0	<0.1	<0.1	16.9	2.4	<1	<1		4.49	4.04
02:45	0.0	<0.1	<0.1	16.9	2.4	<1	<1		4.49	4.04
03:00	0.0	<0.1	<0.1	16.8	2.4	<1	<1		4.49	4.04
03:15	0.0	<0.1	<0.1	16.8	2.4	<1	<1		4.49	4.04
03:30	0.0	<0.1	<0.1	16.8	2.4	<1	<1		4.49	4.04
03:45	0.0	<0.1	<0.1	16.7	2.4	<1	<1		4.49	4.04
04:00	0.0	<0.1	<0.1	16.7	2.4	<1	<1		4.49	4.04
04:15	0.0	<0.1	<0.1	16.7	2.5	1	<1		4.49	4.04
04:30	0.0	<0.1	<0.1	16.6	2.5	<1	<1		4.49	4.04
04:45	0.0	<0.1	<0.1	16.6	2.5	<1	<1		4.49	4.04
05:00	0.0	<0.1	<0.1	16.6	2.5	<1	<1		4.49	4.04
Steady	0.0	<0.1	<0.1	16.6	2.5	<1	<1	#####	4.49	4.04
Peak	0.0	0.0	0.0	20.7	2.5	1.0	0.0	0.0	4.49	4.04
Date 19.9.2017	Engine	Not er	es: DRS		Baro	metric F Pressu	Pressure re Tren	e, mbar d	10 Ste)10 eady
	Equipn	ipment GFN		30		Air Te	mp (°C))	15	

Project Number Project Name Client	C2415 Water O Willmott	15 ter Orton, Birmingham mott Dixon Ltd							BI	-15
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.0	< 0.1	<0.1	20.6	< 0.1	<1	<1		5.48	3.75
00:15	0.0	< 0.1	< 0.1	17.4	3.2	1	2		5.48	3.75
00:30	0.0	<0.1	<0.1	17.1	3.2	2	<1		5.48	3.75
00:45	0.0	<0.1	<0.1	17.0	3.3	2	<1		5.48	3.75
01:00	0.0	<0.1	<0.1	16.9	3.3	2	<1		5.48	3.75
01:15	0.0	<0.1	<0.1	16.9	3.3	3	<1		5.48	3.75
01:30	0.0	<0.1	<0.1	16.9	3.3	2	<1		5.48	3.75
01:45	0.0	< 0.1	<0.1	16.9	3.3	2	<1		5.48	3.75
02:00	0.0	<0.1	<0.1	16.9	3.3	3	<1		5.48	3.75
02:15	0.0	<0.1	<0.1	1.6	3.3	2	2		5.48	3.75
02:30	0.0	<0.1	<0.1	1.6	3.3	3	2		5.48	3.75
02:45	0.0	< 0.1	<0.1	1.6	3.3	2	<1		5.48	3.75
03:00	0.0	< 0.1	<0.1	1.6	3.3	2	<1		5.48	3.75
03:15										
03:30										
03:45										
04:00										
04:15	<u> </u>]									
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	1.6	3.3	2.0	<1	#####	5.48	3.75
Peak	0.0	0.0	0.0	20.6	3.3	3.0	2.0	0.0	5.48	3.75
Date 19.9.2017	Engine	Not er	es: DRS		Baro	metric l	Pressure	e, mbar	10	010
	_					Pressu	ire Tren	d	Ste	ady
	Equipm	uipment GFM430		30		Air Te	emp (°C)	15	

Project Number Project Name Client	C V V	2415 Vater Or Villmott	115 ter Orton, Birmingham Imott Dixon Ltd							BI	-11
					Det	ection L	imit				
			<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time		Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppn	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00		0.0	<0.1	<0.1	20.7	<0.1	<1	<1		5.60	3.92
00:15		0.0	<0.1	<0.1	17.6	3.0	1	2		5.60	3.92
00:30		0.0	<0.1	<0.1	17.2	3.0	<1	<1		5.60	3.92
00:45		0.0	<0.1	<0.1	17.1	3.0	1	<1		5.60	3.92
01:00		0.0	<0.1	<0.1	17.0	3.1	1	2		5.60	3.92
01:15		0.0	<0.1	<0.1	17.0	3.1	1	2		5.60	3.92
01:30		0.0	<0.1	<0.1	17.0	3.1	1	2		5.60	3.92
01:45		0.0	<0.1	<0.1	17.0	3.1	<1	5		5.60	3.92
02:00		0.0	<0.1	<0.1	17.0	3.1	2	5		5.60	3.92
02:15		0.0	<0.1	<0.1	17.0	3.1	2	<1		5.60	3.92
02:30		0.0	<0.1	<0.1	17.0	3.1	1	2		5.60	3.92
02:45		0.0	<0.1	<0.1	17.0	3.1	<1	2		5.60	3.92
03:00											
03:15											
03:30											
03:45											
04:00											
04:15											
04:30											
04:45											
05:00											
Steady		0.0	<0.1	<0.1	17.0	3.1	<1	2.0	#####	5.60	3.92
Peak		0.0	0.0	0.0	20.7	3.1	2.0	5.0	0.0	5.60	3.92
Date 26.09.2017		Enginee	Not er	es: DRS		Baroi	metric F	Pressure	e, mbar	10)13
							Pressu	re Tren	d	Ste	ady
		Equipm	ent	GFM43	30		Air Te	mp (°C		1	.8

Project Number (Project Name) Client)	C2415 Water Or Willmott	15 er Orton, Birmingham mott Dixon Ltd							BI	-12
				Det	ection L	.imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (l/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (ppr	Depth of Installation. (mbgl)	Depth of Groundwater (mbgl
00:00	0.0	<0.1	<0.1	20.7	<0.1	<1	<1		4.50	4.07
00:15	0.0	<0.1	<0.1	17.0	2.8	1	2		4.50	4.07
00:30	0.0	<0.1	<0.1	16.5	2.9	<1	5		4.50	4.07
00:45	0.0	<0.1	<0.1	16.4	2.9	3	7		4.50	4.07
01:00	0.0	<0.1	<0.1	16.3	3.0	2	5		4.50	4.07
01:15	0.0	<0.1	<0.1	16.3	3.0	1	5		4.50	4.07
01:30	0.0	<0.1	<0.1	16.3	3.0	1	5		4.50	4.07
01:45	0.0	<0.1	<0.1	16.2	3.0	1	7		4.50	4.07
02:00	0.0	<0.1	<0.1	16.2	3.0	1	5		4.50	4.07
02:15	0.0	<0.1	<0.1	16.1	3.0	1	7		4.50	4.07
02:30	0.0	<0.1	<0.1	16.1	3.1	<1	7		4.50	4.07
02:45	0.0	<0.1	<0.1	16.1	3.1	2	7		4.50	4.07
03:00	0.0	<0.1	<0.1	16.0	3.1	2	5		4.50	4.07
03:15	0.0	<0.1	<0.1	16.0	3.2	1	5		4.50	4.07
03:30	0.0	<0.1	<0.1	15.9	3.2	1	10		4.50	4.07
03:45	0.0	<0.1	<0.1	15.9	3.2	1	2		4.50	4.07
04:00	0.0	<0.1	<0.1	15.9	3.2	<1	5		4.50	4.07
04:15	0.0	<0.1	<0.1	15.8	3.3	1	5		4.50	4.07
04:30	0.0	<0.1	<0.1	15.8	3.3	2	5		4.50	4.07
04:45	0.0	<0.1	<0.1	15.7	3.4	1	5		4.50	4.07
05:00	0.0	<0.1	<0.1	15.7	3.4	1	5		4.50	4.07
Steady	0.0	<0.1	<0.1	15.7	3.4	1.0	5.0	#####	4.50	4.07
Peak	0.0	0.0 0.0		20.7	3.4	3.0	10.0	0.0	4.50	4.07
Date 26.09.2017	Enginee	Note Engineer ا		tes: DRS		Barometric Pressure, mbar			1013	
	Equipm	pment GFM430			Air Te	mp (°C)	u	Steady 18		

Project Number Project Name Client	C2415 Water Oi Willmott	415 ter Orton, Birmingham Imott Dixon Ltd							BI	-15
				Det	ection l	imit				
		<0.1	<0.1	<0.1	<0.1	<1	<1	<0.1		
Time	Gas Flow Rate. (I/hr)	Methane. (%LEL)	Methane. (%vol)	Oxygen. (%vol)	Carbon Dioxide. (%vol)	Hydrogen Sulphide. (ppm)	Carbon Monoxide. (ppm)	Volatile Organic Carbon (pp	Depth of Installation. (mbgl)	Depth of Groundwater (mbg
00:00	0.0	<0.1	<0.1	20.7	<0.1	<1	<1		5.50	3.78
00:15	0.0	< 0.1	<0.1	17.0	3.5	<1	2		5.50	3.78
00:30	0.0	<0.1	<0.1	16.4	3.5	<1	2		5.50	3.78
00:45	0.0	<0.1	<0.1	16.3	3.6	<1	2		5.50	3.78
01:00	0.0	<0.1	<0.1	16.3	3.6	<1	2		5.50	3.78
01:15	0.0	<0.1	<0.1	16.3	3.6	<1	2		5.50	3.78
01:30	0.0	< 0.1	<0.1	16.2	3.6	1	2		5.50	3.78
01:45	0.0	< 0.1	<0.1	16.2	3.6	<1	<1		5.50	3.78
02:00	0.0	<0.1	<0.1	16.1	3.6	<1	<1		5.50	3.78
02:15	0.0	<0.1	<0.1	16.1	3.6	<1	2		5.50	3.78
02:30	0.0	<0.1	<0.1	16.1	3.6	<1	2		5.50	3.78
02:45	0.0	<0.1	< 0.1	16.1	3.6	1	<1		5.50	3.78
03:00	0.0	<0.1	<0.1	16.1	3.6	1	2		5.50	3.78
03:15										
03:30										
03:45										
04:00										
04:15										
04:30										
04:45										
05:00										
Steady	0.0	<0.1	<0.1	16.1	3.6	1.0	2.0	#####	5.50	3.78
Peak	0.0	0.0	0.0	20.7	3.6	1.0	2.0	0.0	5.50	3.78
Date 26.09.2017	Enginee	Not er	tes: DRS		Baro	metric	Pressure	e, mbar	10)13
						Pressu	ure Tren	d	Ste	ady
	Equipm	ent	GFM43	30		Air Te	emp (°C)	1	.8

Gas Testing Summary

Project Number	C2415
Project Name	Water Orton, Birmingham
Client	Willmott Dixon Ltd

Me	ethane. (%L	EL)				
BH1	<0.1	<0.1	<0.1	<0.1	0	0
BH2	<0.1	<0.1	<0.1	<0.1	0	0
BH5	<0.1	<0.1	<0.1	<0.1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Me	ethane. (%	vol)				
BH1	<0.1	<0.1	<0.1	<0.1	0	0
BH2	<0.1	<0.1	<0.1	<0.1	0	0
BH5	<0.1	<0.1	<0.1	<0.1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

0)	Oxygen. (%vol)									
BH1	18	17.9	17.7	17	0	0				
BH2	18.5	17.9	16.6	15.7	0	0				
BH5	16.3	17	1.6	16.1	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				
0	0	0	0	0	0	0				

Gas Testing Summary

	<u>4</u>
Client	Willmott Dixon Ltd
Project Name	Water Orton, Birmingham
Project Number	C2415

Carbo	n Dioxide.	(%vol)				
BH1	2.6	2.5	2.7	3.1	0	0
BH2	2	1.8	2.5	3.4	0	0
BH5	3.3	3.2	3.3	3.6	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Hydrog	en Sulphide	e. (ppm)				
BH1	2	<1	1	<1	0	0
BH2	<1	1	<1	1	0	0
BH5	<1	<1	2	1	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Carbor	n Monoxide	. (ppm)				
BH1	<1	<1	<1	2	0	0
BH2	<1	<1	<1	5	0	0
BH5	<1	2	<1	2	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Gas Testing Summary

Project Number	C2415
Project Name	Water Orton, Birmingham
Client	Willmott Dixon Ltd

Gas	Flow Rate ((l/hr)				
BH1	0	0	0	0	0	0
BH2	0	0	0	0	0	0
BH5	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Volatile O	rganic Carb	ons (ppm)				
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

Atmosph	eric Pressu	ire Range				
	1001	0	0	0	0	0

0

2

5 0

0

0

Max Methane Concentration (%vol)

Max Carbon Dioxide Concentration (%vol) 3.6

Max Carbon Monoxide Concentration (ppm)

Max Hydrogen Sulphide Concentration (ppm)

Max Flow Rate (l/hr)

Max Volatile Organic Carbon Concentration (ppm)

Methane Gas Screening Value

Carbon Dioxide Gas Screening Value 0

Carbon Monoxide Gas Screening Value	0
Hydrogen Sulphide Gas Screening Value	0
Maximum Gas Screening Value	0
Characteristic Situation 1	PASS
Characteristic Situation 2	PASS
Characteristic Situation 3	PASS
Characteristic Situation 4	PASS
Characteristic Situation 5	PASS
Characteristic Situation 6	PASS
Hydrocarbon Vapour Barrier Required?	NO

TEST DAT	EAND CONDI	TIONS	
Date	04.07.17		
Atmospheric Pre	ssure	1001	mB
Ambient Temperature		22.4	°C
Environics Serial No.		508	9

GFM430 Final Inspection & Calibration Check Certificate GAS DATA LTD Pegasus House Seven Stars Estate Wheler Rd Coventry CV3 4LB Tel 02476303311 Fax 02476307711

Ten	Temperature Checks			
Calibration Temperature Applied Temperature ºC	Instrument Tempera	nture Reading ºC		
-10.0	-10.0	Accept +/- 2.0		
0.0	0.0	Accept +/- 1.0		
30.0	30.0	Accept +/- 1.0		
60.0	60.0	Accept +/- 1.0		
100.0	100.0	Accept +/- 1.0		

Technician:	Date Tested:
J.Rutland	04.07.17

The instrument identified by the serial number stated above has been tested by Gas Data personnel for calibration accuracy on the date and under the ambient conditions stated. Gas Data Ltd internal BS EN ISO9001:2015 compliant workshop procedures were followed to apply known calibration test gases, gas flow rates, pressures and temperatures of the values stated. The results displayed on the instrument at each stage are recorded above.

Gas Data Ltd is certified to BS EN ISO9001:2015. Certificate NQA 8374. Valid until 22/03/2019

TEST DATE AN	D COND	ITIONS	
Date	04.07	7.17	
Atmospheric Pressure		1001	mB
Ambient Temperature		22.4	°C
Environics Serial No.	de mar al	508	9

GFM430 Final Inspection & Calibration Check Certificate

Pegasus House Seven Stars Estate Wheler Rd Coventry CV3 4LB Tel 02476303311 Fax 02476307711

GAS DATA LTD

Customer	HSP Consulting Engineers Ltd	
Certificate Number	119411	
Order Number	317508	

Serial Number	10152	Recalibration DUE Date
Software Version	G430-00.0024/0013	04.07.18

Market School Springer Strategies	ALEN MALSHA	Instrum	ent Checks			
Keyboard		✓	Display Contrast		1	
Pump Flow In	500	Accept > 200 cc/min	Pump Flow @ -200mB	200	Accept > 200 cc/min	1
Clock Set / Running	1		Labels Fitted		✓	1

and the second s	Los States Reality		Gas Checks				
Sensor	CH	I4	C	0 ₂	02		
	Instrument Gas Readings %	True Gas Value %	Instrument Gas Readings %	True Gas Value %	Instrument Gas Readings %	True Gas Value %	
	60	60	39.5	4.0	20.9	20.9	
5. GA 15, 14	Accept +/- 3.0	00	Accept +/- 3.0	TU	Accept +/- 0.5	20,7	
	4.8	Ę	4.7	5	6.0	6	
a mineral a	Accept +/- 0.3	3	Accept +/- 0.3	.	Accept +/- 0.3	U	
Zero Reading	Zero Reading 0.0		0.0	0.0	0.0	0.0	
100% N ₂	Accept +/- 0.0	0.0	Accept +/- 0.0	0.0	Accept + 0.1	0.0	

		Option	al Gas Check	S			
Applied Gas 8	Applied Gas & Range of GFM Concentration		Instrument Readings (ppm)				
Toxic Gas	Range (ppm)	Tested @ (ppm)	Zero	Reading	Instrume	ent Gas Reading	
H2S	2000	1500	0.0	Accept +/-0.0	1504	Accept +/-5.0	
CO	2000	1000	0.0	Accept +/-0.0	1002	Accept +/-5.0	
				Accept +/-0.0		Accept +/-5.0	
				Accept +/-0.0		Accept +/-5.0	

	a ppini			Inst	rument	Readings (ppm)	
Foxic Gas	Concentration	Toxic 1:	H2S	Toxic 2:	CO	Toxic 3:	Toxic 4:
H2S	1500	150)4	0			
CO	1000	45	5	100	2		

			Pressure Checks			
At	mospheric Pres	sure [AP] (mB)	Static Pressure [SP] (mB)			
Current Atmospheric Pressure (mB)	Instrument Atmospheric Pressure Reading (mB)			Applied Pressure (mB)	Instrument Pressure (mB)	
All Ports	Open Ports	1001	Accept +/- 2.0	0.0mB	Accept +/- 0.0	
AP Port (Internal)	+800 mB	801	Accept +/- 5.0	+50mB	Accept +/- 2.0	
AP Port (Internal)	+1200mb	1200	Accept +/- 5.0	-100mB	Accept +/- 2.0	

The second s	index and in the second	Flow Che	cks)		the second state of the second state
Borehole Flow	I t FI	Deading (1/h)	essure		
Applied Flow Reading (1/h)	Instrument Flow Reading (I/h)		Instrument	DP Reading (Pa)	Applied DP Pressure (Pa)
-30.0	-28.6	Accept +/-3.0	-268	Accept +/-50	-273
-3.0	-2.9	Accept +/-1.0	-11	Accept +/-6.0	-12
0.0	0.0	Accept +/-0.0	0.0	Accept +/-0.5	0.0
+3.0	3.0	Accept +/-0.5	12	Accept +/-3.0	12
+30.0	29.5	Accept +/-3.0	277	Accept +/-50	282
+60.0	59.1	Accept +/-6.0	863	Accept +/-130	875
+90.0	89.5	Accept +/-9.0	1755	Accept +/-250	1751

TEST DATE AND CO	NDITIONS
Date	47.17
Atmospheric Pressure	1001 mB
Ambient Temp	22.4°C
Environics Serial No.	5089

Γ

GAS DATA LTD Pegasus House Seven Stars Estate Wheler Rd Coventry CV3 4LB Tel 02476303311 Fax 02476307711

GFM430 -1 OUTWARD INSPECTION & QUALITY CHECK SHEET INSTRUMENT DETAILS

		INSTRUMENT DETAILS		
SO Number	Instrument Type	Instrument Serial Number + SW Version	li III	Job Number(s)
317508	GFM 430	10152 G430-00.0024/00	3 100	152270617
Calibration Tech	nician). Rel	Date	4.7.17
Inspection Tech	nician	Mitt	Date	5.7.17

	INSTRUMENT	Pass (P), Fail (F) or	INSTRUMENT PACKING	Tick if
1	CHECKS	not applicable (NA)	LIST	included
Function	Dust Caps Fitted	P	Instrument	V
Tests	Keyboard Test (All Keys)	р	Leather Case	1
	Backlight	P	Instrument Strap	1
	Clock Set / Running	P	AC Battery Charger (UK)	1
	Comms Test	4	AC Battery Charger (EURO)	V
	Pump Flow Test (In & Out)	マ	AC Battery Charger (US)	v
	Overall Leak Test (30mB)	NIA	AC Battery Charger (AUS)	X
	Battery Charge Test	P	Gas Sample Pipe	2
	Service Date set to?	4.7.18	Carry Case	x
Channel	Data Logging Enabled?	P	Spares Pot	X
Test	Verify CH4/LEL	P	Allen Key	Y
	Verify CO2	P	Flow Sample Pipe	1
	Verify O2	P	Temperature Probe	r
	Verify LEL	P	Vane Anemometer	X
	Verify 1 st Option Gas 1425	P	USB Cable	V
	Verify 2 nd Option Gas CO	P	USB Memory stick	5
	Verify 3 rd Option Gas	NIA	SiteMan Software Ver / 1/5	XI
	Verify 4 th Option Gas	NIA	Internal Filter Pack Qty	N
	Verify Atmospheric pressure	P	External Filter Pack Qty	X
	Verify static pressure	NIA	Field Guide	×
	Verify differential pressure	P	Operation Manual (hard copy)	X
	Verify flow	P	Extra Items:	~~
	Verify temperature probe input	P		
	Verify vane anemometer input	P		
DataBase	Jobcard(s) completed and signed	P		
Checks	Jobcard(s) booked off database	P		
	Calibration certificate completed	P		
	Complete & print QI record	NA	Comments:	
Label	No. of Calibration label fitted	606138	 Comit Pretovenje Vod Solen 	
Checks	Warranty label fitted	AT A		
	H2S Range from Sales Order	ZODDARM		
	H2S Range from Cal Cert	200010M		
	Over-range value correct?	P		

Appendix VII

INSITU SOAKAWAY TEST RESULTS

Page 1 of 1

Trialpit No.: SK1

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	TOPSOIL - Grass overlying brown sandy slightly clayey slightly gravelly topsoil.
0.40	0.90	SAND & GRAVEL - Medium dense orangish reddish brown sand and gravel.
0.90	1.60	SAND - Medium dense reddisg brown very gravelly very clayey sand.

Sketch plan of test zone

INSITU SOAKAWAY TEST RESULTS

Page 1 of 1

Trialpit No.: SK2

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.40	TOPSOIL - Grass overlying brown sandy slightly clayey slightly gravelly topsoil.
0.40	0.80	SAND & GRAVEL - Medium dense orangish reddish brown sand and gravel.
0.80	1.50	SAND - Medium dense reddisg brown very gravelly very clayey sand.

Sketch plan of test zone

INSITU SOAKAWAY TEST RESULTS

Page 1 of 1

Trialpit No.: SK3

Soil Profile:

Depth (m)		Description
From:	To:	
0.00	0.30	TOPSOIL - Grass overlying brown sandy clayey slighlty gravelly topsoil.
0.30	0.50	CLAY - Soft reddish brown very sandy slightly gravelly clay.
0.50	1.50	CLAY - Firm to stiff reddish brown slightly sandy slightly gravelly clay.

Sketch plan of test zone

Appendix VIII

Waste Classification Report

o name
15 - Water Orton Primary School
scription/Comments
nject
e

Waste Stream Template

Contaminated Soils Chemtest Determinand Order

Classified by

Name: Luke Bradley Date: 10/12/2017 10:58:20 AM UTC Telephone: 01773 535555 Company: HSP Consulting Lawrence House 4 Meadowbank Way, Eastwood Nottingham NG16 3SB

Report

Created by: Luke Bradley Created date: 10/12/2017 10:58 UTC

Job summary

#	Sample Name	Depth [m]	Classification Result	Hazard properties	Page
1	WS1 0.80	0.80	Non Hazardous		3
2	WS3 0.20	0.20	Non Hazardous		5
3	WS5 0.00	0.00	Non Hazardous		7
4	WS5 0.90	0.90	Non Hazardous		9
5	WS7 0.20	0.20	Non Hazardous		11
6	WS7 0.70	0.70	Non Hazardous		13
7	WAC1 0.30	0.30	Non Hazardous		15
8	WAC2 0.50	0.50	Non Hazardous		17
9	WAC3 0.80	0.80	Non Hazardous		19
10	WAC4 0.40	0.40	Hazardous	HP 7	21
11	WAC5 0.90	0.90	Non Hazardous		23
12	WAC6 0.60	0.60	Non Hazardous		25

Appendices	Page
Appendix A: Classifier defined and non CLP determinands	27
Appendix B: Rationale for selection of metal species	28

Appendices Appendix C: Version

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

Classification of sample: WS1 0.80

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
WS1 0.80	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.80 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
5.3%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 5.3% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	User entered data		er entered data Conv. Factor Compound conc		conc.	Classification value	MC Applied	Conc. Not Used
1	8	confirm TPH has N	OT arisen from dies	sel or petrol	-	Ø								
2	9	рН		PH	-	7.8	pН		7.8	рН	7.8 pH			
3	<pre>boron { boron tribromide/trichloride/trifluoride (combined) }</pre>				=	0.8	mg/kg	13.43	10.744	mg/kg	0.00107 %			
4	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark>	1327-53-3		3.8	mg/kg	1.32	5.017	mg/kg	0.000502 %			
5	<pre>chromium in chromium(III) compounds { chromium(III) oxide } </pre>					80	mg/kg	1.462	116.924	mg/kg	0.0117 %			
6	4	copper { [●] dicoppe 029-002-00-X	er oxide; copper (I) (215-270-7	<mark>oxide</mark> }		8.8	mg/kg	1.126	9.908	mg/kg	0.000991 %			
7	4	nickel { nickel dihyc 028-008-00-X	<mark>Iroxide</mark> } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		12	mg/kg	1.579	18.954	mg/kg	0.0019 %			
8	4	lead { <mark>lead chroma:</mark> 082-004-00-2	<mark>te</mark> } 231-846-0	7758-97-6	1	11	mg/kg	1.56	17.158	mg/kg	0.0011 %			
9	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				_	0.4	mg/kg	2.554	1.021	mg/kg	0.000102 %			
10	4	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }			21	mg/kg	2.774	58.257	mg/kg	0.00583 %			
		·		·						Total:	0.0232 %			

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CL P: Note 1	Only the metal concentration has been used for closeification

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WS3 0.20

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
WS3 0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
17%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 17% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data		Conv. Factor	Compound conc.		Classification value	MC Applied	Conc. Not Used
1	8	confirm TPH has N	NOT arisen from die	sel or petrol		Ø							
2	8	рН		PH	_	6.2	pН		6.2	рН	6.2 pH		
3	\$	<pre>boron { • boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2</pre>				0.6	mg/kg	13.43	8.058	mg/kg	0.000806 %		
4	4	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		7.9	mg/kg	1.32	10.431	mg/kg	0.00104 %		
5	4	cadmium { cadmiu 048-010-00-4	m sulfide } 215-147-8	1306-23-6	1	0.3	mg/kg	1.285	0.386	mg/kg	0.00003 %		
6	<pre>chromium in chromium(III) compounds { Chromium(III) oxide } </pre>				89	mg/kg	1.462	130.078	mg/kg	0.013 %			
7	4	copper { [®] dicopp	er oxide; copper (I)	oxide }	_	34	mg/kg	1.126	38.28	mg/kg	0.00383 %		
8	\$	nickel { nickel dihyd 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]	_	13	mg/kg	1.579	20.533	mg/kg	0.00205 %		
9	*	lead {	<mark>ite</mark> } 231-846-0	7758-97-6	1	51	mg/kg	1.56	79.551	mg/kg	0.0051 %		
10	*	selenium { selenium cadmium sulphose in this Annex } 034-002-00-8	m compounds with elenide and those sp	the exception of pecified elsewhere		0.6	mg/kg	2.554	1.532	mg/kg	0.000153 %		
11	4	zinc { zinc chromat	t <mark>e</mark> }	1		74	mg/kg	2.774	205.287	mg/kg	0.0205 %		
12	8	TPH (C6 to C40) p	etroleum group	ТРН	_	22	mg/kg		22	mg/kg	0.0022 %		

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
13	9	phenanthrene				0.03 mg/kg		0.03 mg/kg	0.000003 %		
			201-581-5	85-01-8							
14	۲	pyrene			0.03 ma/ka	r	0.03 ma/ka	0.000003 %			
'4			204-927-3	129-00-0		5.5		5.5			
								Total:	0.0488 %		

Key	
	User supplied data
0	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Classification of sample: WS5 0.00

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name: WS5 0.00 Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.00 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
22.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 22.4% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Nu	ımber	LP Note	User entered data	Conv. Factor Compound conc.		Classification value	1C Applied	Conc. Not Used
1	8	confirm TPH has NOT arisen from diesel or petrol		0					2	
2	9	pH PH			5.9 pH		5.9 pH	5.9 pH		
3	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4 10294-34-5 7637-07-2	4, 5,		1 mg/kg	13.43	13.43 mg/kg	0.00134 %		
4	4	arsenic { arsenic trioxide }			7.3 mg/kg	1.32	9.638 mg/kg	0.000964 %		
5	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6		1	0.3 mg/kg	1.285	0.386 mg/kg	0.00003 %		
6	4	chromium in chromium(III) compounds { Chrom oxide }	<mark>ium(III)</mark>		111 mg/kg	1.462	162.233 mg/kg	0.0162 %		
7	4	copper { dicopper oxide; copper (I) oxide }			31 mg/kg	1.126	34.903 mg/kg	0.00349 %		
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 234-348-1 [2] 11113-74-5	7 [1] 9 [2]		20 mg/kg	1.579	31.59 mg/kg	0.00316 %		
9	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6		1	79 mg/kg	1.56	123.225 mg/kg	0.0079 %		
10	4	selenium { selenium compounds with the exception cadmium sulphoselenide and those specified else in this Annex } 034-002-00-8	n of where		0.7 mg/kg	2.554	1.788 mg/kg	0.000179 %		
11	4	zinc { <mark>zinc chromate</mark> }			100 mg/kg	2.774	277.415 mg/kg	0.0277 %		
12		TPH (C6 to C40) petroleum group			65 mg/kg		65 mg/kg	0.0065 %		

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
13		phenanthrene	201-581-5	85-01-8		0.04 mg/kg		0.04 mg/kg	0.000004 %		
14	8	fluoranthene	205-912-4	206-44-0		0.11 mg/kg		0.11 mg/kg	0.000011 %		
15	۵	pyrene	204-927-3	129-00-0		0.09 mg/kg		0.09 mg/kg	0.000009 %		
16		benzo[a]anthracene 601-033-00-9	e 200-280-6	56-55-3		0.05 mg/kg		0.05 mg/kg	0.000005 %		
17		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8			0.05 mg/kg		0.05 mg/kg	0.000005 %			
18	۲	benzo[ghi]perylene	205-883-8	191-24-2		0.04 mg/kg		0.04 mg/kg	0.000004 %		
								Total:	0.0676 %		

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CLP. Note 1	Only the metal concentration has been used for classification

Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Classification of sample: WS5 0.90

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	
WS5 0.90	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.90 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
18.9%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 18.9% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	IC Applied	Conc. Not Used
1		confirm TPH has N	IOT arisen from dies	sel or petrol								2	
2	0	рН		PH	-	7.1	pН		7.1	рН	7.1 pH		
3	4	boron { [•] boron tri (combined) }	bromide/trichloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2	-	1.1	mg/kg	13.43	14.773	mg/kg	0.00148 %		
4	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		3	mg/kg	1.32	3.961	mg/kg	0.000396 %		
5	\$	chromium in chrom <mark>oxide</mark> }	hium(III) compounds	{ • chromium(III)		76	mg/kg	1.462	111.078	mg/kg	0.0111 %		
6	*	copper {	er oxide; copper (I) o 215-270-7	<mark>oxide</mark> }	_	17	mg/kg	1.126	19.14	mg/kg	0.00191 %		
7	4	nickel { nickel dihyd 028-008-00-X	droxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]	_	38	mg/kg	1.579	60.021	mg/kg	0.006 %		
8	4	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	8.6	mg/kg	1.56	13.414	mg/kg	0.00086 %		
9	*	selenium { selenium cadmium sulphose in this Annex } 034-002-00-8	n compounds with t lenide and those sp	he exception of ecified elsewhere		0.8	mg/kg	2.554	2.043	mg/kg	0.000204 %		
10	~	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }		-	71	mg/kg	2.774	196.964	mg/kg	0.0197 %		
11	0	TPH (C6 to C40) p	etroleum group	ТРН		5	mg/kg		5	mg/kg	0.0005 %		
		1	1						l	Total:	0.0422 %		

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CLP: Note 1	Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Classification of sample: WS7 0.20

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name:	LoW Code:	
WS7 0.20	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.20 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
20.1%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 20.1% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	LP Note	User entered data	Conv. Factor	Compound conc.	Classification value	1C Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol						2	
2	0	рН [РН	_	6.5 pH		6.5 pH	6.5 pH		
3	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2	_	1.1 mg/kg	13.43	14.773 mg/kg	0.00148 %		
4	*	arsenic { arsenic trioxide }		19 mg/kg	1.32	25.086 mg/kg	0.00251 %		
5	\$	chromium in chromium(III) compounds { Chromium(III) oxide }		108 mg/kg	1.462	157.848 mg/kg	0.0158 %		
6	*	copper { dicopper oxide; copper (I) oxide }	-	97 mg/kg	1.126	109.211 mg/kg	0.0109 %		
7	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	-	64 mg/kg	1.579	101.088 mg/kg	0.0101 %		
8	&	lead { lead chromate }	1	30 mg/kg	1.56	46.794 mg/kg	0.003 %		
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex } 034-002-00-8	-	1.6 mg/kg	2.554	4.086 mg/kg	0.000409 %		
10	4	zinc { zinc chromate }		74 mg/kg	2.774	205.287 mg/kg	0.0205 %		
11	0	TPH (C6 to C40) petroleum group		12 mg/kg		12 mg/kg	0.0012 %		
12	8	phenanthrene 201-581-5 85-01-8		0.1 mg/kg		0.1 mg/kg	0.00001 %		

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
13	۵	anthracene	204-371-1	120-12-7		0.11 mg/kg		0.11 mg/kg	0.000011 %		
14	۵	fluoranthene	205-912-4	206-44-0		0.18 mg/kg		0.18 mg/kg	0.000018 %		
15	8	pyrene	204-927-3	129-00-0		0.15 mg/kg		0.15 mg/kg	0.000015 %		
16		benzo[a]anthracene 601-033-00-9	e 200-280-6	56-55-3		0.08 mg/kg		0.08 mg/kg	0.000008 %		
17		chrysene 601-048-00-0	205-923-4	218-01-9		0.09 mg/kg		0.09 mg/kg	0.000009 %		
18		benzo[a]pyrene; be 601-032-00-3	nzo[def]chrysene 200-028-5	50-32-8		0.08 mg/kg		0.08 mg/kg	0.000008 %		
19		benzo[ghi]perylene	205-883-8	191-24-2		0.08 mg/kg		0.08 mg/kg	0.000008 %		
								Total:	0.066 %		

Key

.

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Classification of sample: WS7 0.70

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	

Sample details

Sample Name:	LoW Code:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth: 0.70 m	Entry:	from contaminated sites) 17 05 04 (Soil and stopes other than those mentioned in 17 05
Moisture content:	Lind y.	03)
11.6% (no correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.6% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	d data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	confirm TPH has N	OT arisen from die	sel or petrol		V							
2	9	рН		PH		5.8	pН		5.8	pН	5.8 pH		
3	8	boron { [•] boron tri (combined) }	bromide/trichloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.6	mg/kg	13.43	8.058	mg/kg	0.000806 %		
4	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark> } 215-481-4	1327-53-3	_	2.8	mg/kg	1.32	3.697	mg/kg	0.00037 %		
5	4	chromium in chrom <mark>oxide</mark> }	ium(III) compounds	{ • chromium(III)		68	mg/kg	1.462	99.386	mg/kg	0.00994 %		
6	4	copper {	er oxide; copper (I) (215-270-7	<mark>oxide</mark> }		10	mg/kg	1.126	11.259	mg/kg	0.00113 %		
7	*	nickel { nickel dihyc 028-008-00-X	<mark>Iroxide</mark> } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		12	mg/kg	1.579	18.954	mg/kg	0.0019 %		
8	*	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	10	mg/kg	1.56	15.598	mg/kg	0.001 %		
9	4	selenium { seleniur cadmium sulphose in this Annex 034-002-00-8	n compounds with t lenide and those sp	he exception of ecified elsewhere		0.5	mg/kg	2.554	1.277	mg/kg	0.000128 %		
10	*	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }			52	mg/kg	2.774	144.256	mg/kg	0.0144 %		
		·		·						Total:	0.0297 %		

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CL P: Note 1	Only the metal concentration has been used for closeification

CLP: Note 1 Only the metal concentration has been used for classification

Classification of sample: WAC1 0.30

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name:	LoW Code:	
WAC1 0.30	Chapter:	17: Construction and Demolition wastes (including excavated soli
Sample Depth:		from contaminated sites)
0.30 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
15.4%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 15.4% No Moisture Correction applied (MC)

#		Determinand CLP index number EC Number CAS Number	D Note	User ent	ered data	Conv. Factor	Compound conc.	Classification value	IC Applied	Conc. Not Used
1	0	confirm TPH has NOT arisen from diesel or petrol							2	
2	0	рН		6.3	pН		6.3 pH	6.3 pH		
3	4	boron { boron tribromide/trichloride/trifluoride (combined) } 10294-33-4, 10294-34-5, 7637-07-2		1.1	mg/kg	13.43	14.773 mg/k	0.00148 %		
4	4	arsenic { arsenic trioxide }		11	mg/kg	1.32	14.524 mg/kg	0.00145 %		
5	4	cadmium { cadmium sulfide } 048-010-00-4 215-147-8 1306-23-6		0.4	mg/kg	1.285	0.514 mg/kg	0.00004 %		
6	4	chromium in chromium(III) compounds { chromium(I oxide }	I)	81	mg/kg	1.462	118.386 mg/kg	0.0118 %		
7	4	copper { dicopper oxide; copper (I) oxide } 029-002-00-X 215-270-7 1317-39-1		31	mg/kg	1.126	34.903 mg/k	0.00349 %		
8	4	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]	_	18	mg/kg	1.579	28.431 mg/kg	0.00284 %		
9	4	lead { lead chromate } 082-004-00-2 231-846-0 7758-97-6		95	mg/kg	1.56	148.182 mg/kg	0.0095 %		
10	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewher in this Annex }	•	0.7	mg/kg	2.554	1.788 mg/kg	0.000179 %		
11	4	zinc { zinc chromate }		144	mg/kg	2.774	399.477 mg/kg	0.0399 %		
12	9	TPH (C6 to C40) petroleum group		52	mg/kg		52 mg/k	0.0052 %		

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

#		Determinand CLP index number EC Number CAS Number	CLP Note	User entered dat	Conv Facto	V. or Compound conc.	Classification value	MC Applied	Conc. Not Used
13	Θ	phenanthrene 201-581-5 85-01-8	_	0.13 mg	kg	0.13 mg/kg	0.000013 %		
14	٥	anthracene 204-371-1 120-12-7		0.05 mg	kg	0.05 mg/kg	0.000005 %		
15	٥	fluoranthene 205-912-4 206-44-0		0.27 mg	kg	0.27 mg/kg	0.000027 %		
16	8	pyrene 204-927-3 129-00-0		0.26 mg	kg	0.26 mg/kg	0.000026 %		
17		benzo[a]anthracene 601-033-00-9 200-280-6 56-55-3		0.17 mg	kg	0.17 mg/kg	0.000017 %		
18		chrysene 601-048-00-0 205-923-4 218-01-9		0.16 mg	kg	0.16 mg/kg	0.000016 %		
19		benzo[b]fluoranthene 601-034-00-4 205-911-9 205-99-2		0.17 mg	kg	0.17 mg/kg	0.000017 %		
20		benzo[k]fluoranthene 601-036-00-5 205-916-6 207-08-9	-	0.13 mg	kg	0.13 mg/kg	0.000013 %		
21		benzo[a]pyrene; benzo[def]chrysene 601-032-00-3 200-028-5 50-32-8		0.18 mg	kg	0.18 mg/kg	0.000018 %		
22	8	indeno[123-cd]pyrene 205-893-2 193-39-5		0.09 mg	kg	0.09 mg/kg	0.000009 %		
23	0	benzo[ghi]perylene 205-883-8 191-24-2		0.12 mg	kg	0.12 mg/kg	0.000012 %		
		· · · · · · · · · · · · · · · · · · ·				Total:	0.0761 %	1	

Key

.

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 Only the metal concentration has been used for classification

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Classification of sample: WAC2 0.50

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name: WAC2 0.50 Sample Depth: 0.50 m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
Moisture content: 13.5% (no correction)	Linuy.	03)

Hazard properties

None identified

Determinands

Moisture content: 13.5% No Moisture Correction applied (MC)

#			Determinand		User entered data		l data	Conv. Factor	Compound conc.		Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLF							MC	
1	Θ	confirm TPH has NOT arisen from diesel or petrol											
		[
2	Θ	pH			_	8	pН		8	pН	8pH		
	PH				┝━┝━								
	44	boron { • boron tribromide/trichloride/trifluoride					ma/ka	13.43	18.802	ma/ka	0.00188 %		
3		{ (comiano) }				1.4							
				10294-33-4, 10294-34-5			5.5			5, 2			
				7637-07-2									
4	æ	arsenic { arsenic trioxide }				5.4	ma/ka	1 32	7 13	ma/ka	0 000713 %		
4		033-003-00-0 21	5-481-4	1327-53-3			iiig/kg	1.02	7.10	iiig/kg	0.000710 %		
5	4	<pre>chromium in chromium(III) compounds {</pre>			83	83	mg/kg	1.462	121.309	mg/kg	0.0121 %		
		21	5-160-9	1308-38-9									
6	<pre>copper { ^e dicopper oxide; copper (I) oxide }</pre>			xide }		17	mg/kg	1.126	19.14	mg/kg	0.00191 %		
	-	029-002-00-X 215-270-7 1317-39-1			+								
7	44	nickel { nickel dihydroxide }				16	ma/ka	1 579	25 272	ma/ka	0 00253 %		
<i>'</i>		028-008-00-X 23 23	5-008-5 [1] 4-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]			iiig/kg	1.575	20.272	iiig/kg	0.00233 /0		
8	ai a	lead { lead chromate }			1	28	ma/ka	1 56	43.675	ma/ka	0.0028 %		
_		082-004-00-2 23	1-846-0	7758-97-6	1.			1.00				\downarrow	
9	4	selenium { selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex }				0.5	mg/kg	2.554	1.277	mg/kg	0.000128 %		
		034-002-00-8											
10	4	zinc { zinc chromate }			56	mg/kg	2.774	155.352	mg/kg	0.0155 %			
		024-007-00-3											
11	•	phenanthrene				0.11	mg/kg		0.11 mg/k	mg/kg	0.000011 %		
12		201-581-5 85-01-8										-	
	Θ	tiuoranthene	5-912-4	206-44-0		0.16	mg/kg		0.16	mg/kg	0.000016 %		
		20.	0 0 12-4	200 -++-0								1	

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
13	8	pyrene	204-927-3	129-00-0		0.15	mg/kg		0.15	mg/kg	0.000015 %		
14		benzo[a]anthracend 601-033-00-9	e 200-280-6	56-55-3		0.08	mg/kg		0.08	mg/kg	0.000008 %		
15		chrysene 601-048-00-0	205-923-4	218-01-9		0.11	mg/kg		0.11	mg/kg	0.000011 %		
16		benzo[b]fluoranthei 601-034-00-4	ne 205-911-9	205-99-2		0.1	mg/kg		0.1	mg/kg	0.00001 %		
17		benzo[a]pyrene; be 601-032-00-3	nzo[def]chrysene 200-028-5	50-32-8		0.08	mg/kg		0.08	mg/kg	0.000008 %		
18	8	indeno[123-cd]pyre	ene 205-893-2	193-39-5		0.04	mg/kg		0.04	mg/kg	0.000004 %		
19	8	benzo[ghi]perylene	205-883-8	191-24-2		0.05	mg/kg		0.05	mg/kg	0.000005 %		
		•						·		Total:	0.0377 %		

Key

0

User supplied data

Determinand defined or amended by HazWasteOnline (see Appendix A)

4 Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Classification of sample: WAC3 0.80

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name: WAC3 0.80 Sample Depth:	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
0.80 m Moisture content:	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05 03)
13.3% (no correction)		

Hazard properties

None identified

Determinands

Moisture content: 13.3% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered	l data	Conv. Factor	Compound	conc.	Classification value	1C Applied	Conc. Not Used
1	0	confirm TPH has N	IOT arisen from dies	sel or petrol								2	
2	8	рН		PH	_	6.9	pН		6.9	рН	6.9 pH		
3	*	boron { [•] boron tri (combined) }	ibromide/trichloride/	trifluoride 10294-33-4, 10294-34-5, 7637-07-2		1	mg/kg	13.43	13.43	mg/kg	0.00134 %		
4	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		3.3	mg/kg	1.32	4.357	mg/kg	0.000436 %		
5	\$	chromium in chrom <mark>oxide</mark> }	hium(III) compounds	• { • chromium(III)		89	mg/kg	1.462	130.078	mg/kg	0.013 %		
6	*	copper { [●] dicopper	er oxide; copper (I) o	<mark>oxide</mark> } 1317-39-1	-	12	mg/kg	1.126	13.511	mg/kg	0.00135 %		
7	4	nickel { nickel dihyd 028-008-00-X	<mark>droxide</mark> } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]	_	19	mg/kg	1.579	30.01	mg/kg	0.003 %		
8	*	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	8.2	mg/kg	1.56	12.79	mg/kg	0.00082 %		
9	4	selenium { seleniur cadmium sulphose in this Annex } 034-002-00-8	m compounds with t elenide and those sp	he exception of ecified elsewhere		0.6	mg/kg	2.554	1.532	mg/kg	0.000153 %		
10	~	zinc { zinc chromat 024-007-00-3	t <mark>e</mark> }		-	50	mg/kg	2.774	138.707	mg/kg	0.0139 %		
11	0	phenanthrene	201-581-5	85-01-8		0.03	mg/kg		0.03	mg/kg	0.000003 %		
		l							I	Total:	0.034 %		

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CL P: Note 1	Only the metal concentration has been used for closeification

Classification of sample: WAC4 0.40

🛆 Hazardous Waste	
Classified as 17 05 03 *	
in the List of Waste	
-	

Sample details

Sample Name:	LoW Code:	
WAC4 0.40	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.40 m	Entry:	17 05 03 * (Soil and stones containing hazardous substances)
Moisture content:		
7%		
(no correction)		

Hazard properties

HP 7: Carcinogenic "waste which induces cancer or increases its incidence"

Hazard Statements hit:

Carc. 1A; H350 "May cause cancer [state route of exposure if it is conclusively proven that no other routes of exposure cause the hazard]."

Because of determinand:

zinc chromate: (compound conc.: 0.156%)

Determinands

Moisture content: 7% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered	data	Conv. Factor	Compound	conc.	Classification value	MC Applied	Conc. Not Used
1	8	confirm TPH has N	OT arisen from dies	sel or petrol									
2	8	рН		PH	-	7	pН		7	pН	7pH		
3	4	boron { ^e boron trib (combined) }	promide/trichloride/t	rifluoride 10294-33-4, 10294-34-5, 7637-07-2		0.5	mg/kg	13.43	6.715	mg/kg	0.000672 %		
4	4	arsenic { arsenic tri 033-003-00-0	<mark>oxide</mark>	1327-53-3		15	mg/kg	1.32	19.805	mg/kg	0.00198 %		
5	4	cadmium { cadmiun 048-010-00-4	<mark>n sulfide</mark> } 215-147-8	1306-23-6	1	1.7	mg/kg	1.285	2.185	mg/kg	0.00017 %		
6	4	chromium in chrom <mark>oxide</mark> }	ium(III) compounds 215-160-9	{ [•] chromium(III)		171	mg/kg	1.462	249.926	mg/kg	0.025 %		
7	4	copper {	<mark>er oxide; copper (I) c</mark> 215-270-7	<mark>xide</mark> }		92	mg/kg	1.126	103.582	mg/kg	0.0104 %		
8	4	nickel { nickel dihyd 028-008-00-X	roxide } 235-008-5 [1] 234-348-1 [2]	12054-48-7 [1] 11113-74-9 [2]		49	mg/kg	1.579	77.395	mg/kg	0.00774 %		
9	4	lead { <mark>lead chromat</mark> 082-004-00-2	<mark>e</mark> } 231-846-0	7758-97-6	1	189	mg/kg	1.56	294.805	mg/kg	0.0189 %		

HazWasteOnline[™] Report created by Luke Bradley on 10/12/2017

#		CLP index number	Determinand EC Number	CAS Number	CLP Note	User entered data	Conv. Factor	Compound conc.	Classification value	MC Applied	Conc. Not Used
10	4	selenium { seleniur cadmium sulphose in this Annex 034-002-00-8	n compounds with t lenide and those sp	the exception of becified elsewhere		2 mg/kg	2.554	5.107 mg/kg	0.000511 %		
11	4	zinc { zinc chromat 024-007-00-3	<mark>e</mark> }			562 mg/kg	2.774	1559.07 mg/kg	0.156 %		
12	٥	phenanthrene	201-581-5	85-01-8		0.03 mg/kg		0.03 mg/kg	0.000003 %		
		4	·					Total:	0.221 %		

Key

4

User	supplied	data

Hazardous result

Determinand defined or amended by HazWasteOnline (see Appendix A)

Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

Classification of sample: WAC5 0.90

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
·	

Sample details

Sample Name:	LoW Code:	
WAC5 0.90	Chapter:	17: Construction and Demolition Wastes (including excavated soil
Sample Depth:		from contaminated sites)
0.90 m	Entry:	17 05 04 (Soil and stones other than those mentioned in 17 05
Moisture content:		03)
11.5%		
(no correction)		

Hazard properties

None identified

Determinands

Moisture content: 11.5% No Moisture Correction applied (MC)

#		CLP index number	Determinand EC Number	CAS Number	LP Note	User entered data		Conv. Factor Compound conc.		Classification value	1C Applied	Conc. Not Used	
1	0	confirm TPH has N	IOT arisen from dies	sel or petrol		Ø						2	
2	0	pH		-	6	pН		6	рН	6pH			
3	4	<pre>boron {</pre>		-	0.4	mg/kg	13.43	5.372	mg/kg	0.000537 %			
4	*	arsenic { arsenic tr 033-003-00-0	<mark>ioxide</mark> } 215-481-4	1327-53-3		3.5	mg/kg	1.32	4.621	mg/kg	0.000462 %	Π	
5	\$	chromium in chrom <mark>oxide</mark> }	hium(III) compounds	• { • chromium(III)		93	mg/kg	1.462	135.925	mg/kg	0.0136 %		
6	*	copper { dicopper oxide; copper (I) oxide }			8.9	mg/kg	1.126	10.02	mg/kg	0.001 %	Π		
7	*	nickel { nickel dihydroxide } 028-008-00-X 235-008-5 [1] 12054-48-7 [1] 234-348-1 [2] 11113-74-9 [2]		_	12	mg/kg	1.579	18.954	mg/kg	0.0019 %			
8	\$	lead {	<mark>te</mark> } 231-846-0	7758-97-6	1	6.7	mg/kg	1.56	10.451	mg/kg	0.00067 %		
9	\$	selenium { selenium cadmium sulphose in this Annex } 034-002-00-8	m compounds with t elenide and those sp	he exception of ecified elsewhere		0.4	mg/kg	2.554	1.021	mg/kg	0.000102 %		
10	~	zinc { zinc chromat 024-007-00-3	t <mark>e</mark> }	<u></u>	-	28	mg/kg	2.774	77.676	mg/kg	0.00777 %	Π	
11		phenanthrene	201-581-5	85-01-8		0.03	mg/kg		0.03	mg/kg	0.000003 %	\square	
		l								Total:	0.026 %		

Key	
	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Deteminand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration
CL P: Note 1	Only the metal concentration has been used for classification

Classification of sample: WAC6 0.60

Non Hazardous Waste	
Classified as 17 05 04	
in the List of Waste	
•	

Sample details

Sample Name: WAC6 0.60 Sample Depth: 0 60 m	LoW Code: Chapter:	17: Construction and Demolition Wastes (including excavated soil from contaminated sites)
Moisture content: 12.7% (no correction)	Lindy.	03)

Hazard properties

None identified

Determinands

Moisture content: 12.7% No Moisture Correction applied (MC)

#		Determinand	O Number	P Note	User entered data	Conv. Factor Compound conc.		Classification value	: Applied	Conc. Not Used
		CLP Index number EC Number CA	AS Number	5 C					δ	
1	8	confirm TPH has NOT arisen from diesel or p	petrol							
2	Θ	pH			6.2 pH		6.2 pH	6.2 pH		
3	~	boron { ^w boron tribromide/trichloride/trifluor (combined) } 10294 10294 7637-	1-33-4, 1-34-5, 07-2		0.5 mg/kg	13.43	6.715 mg/kg	0.000672 %		
4	4	arsenic { arsenic trioxide }	53-3		5.3 mg/kg	1.32	6.998 mg/kg	0.0007 %		
5	4	<pre>chromium in chromium(III) compounds {</pre>			75 mg/kg	1.462	109.617 mg/kg	0.011 %		
6	4	copper { • dicopper oxide; copper (I) oxide }	00-5		9.9 mg/kg	1.126	11.146 mg/kg	0.00111 %		
	-	U29-UU2-UU-X 215-270-7 [1317-39-1								
7	4	028-008-00-X 235-008-5 [1] 12054 234-348-1 [2] 11113	4-48-7 [1] 3-74-9 [2]		13 mg/kg	1.579	20.533 mg/kg	0.00205 %		
8	4	lead { lead chromate }			15 ma/ka	1 56	23.397 ma/ka	0 0015 %		
Ŭ		082-004-00-2 231-846-0 7758-	97-6			1.00	20.007 mg/kg		\perp	
9	4	selenium { selenium compounds with the exc cadmium sulphoselenide and those specified in this Annex }	ception of delsewhere		0.5 mg/kg	2.554	1.277 mg/kg	0.000128 %		
	æ	zinc { zinc chromate }								
10	~	024-007-00-3			35 mg/kg	2.774	97.095 mg/kg	0.00971 %		
11	0	TPH (C6 to C40) petroleum group	PH (C6 to C40) petroleum group		17 ma/ka		17 ma/ka	0.0017 %		
		TPH			ing/kg			0.0017 /0		
12	Θ	phenanthrene 201-581-5 85-01	-8		0.03 mg/kg		0.03 mg/kg	0.000003 %		

#		Determinand			Note	User entered data	Conv. Factor	Compound conc.	Classification value	Applied	Conc. Not Used
		CLP index number	EC Number	CAS Number	CLP					MC	
13	8	fluoranthene			0.03 mg/kg		0.03 mg/kg	0.000003 %			
-			205-912-4	206-44-0		0.0		5 5			
								Total:	0.0285 %		

Key

	User supplied data
	Determinand defined or amended by HazWasteOnline (see Appendix A)
4	Speciated Determinand - Unless the Determinand is Note 1, the Conversion Factor is used to calculate the compound concentration

CLP: Note 1 $\,$ Only the metal concentration has been used for classification $\,$

Supplementary Hazardous Property Information

HP 3(i) on Flam. Liq. 1; H224, Flam. Liq. 2; H225, Flam. Liq. 3; H226: Force this Hazardous property to non hazardous because No liquid phase

Appendix A: Classifier defined and non CLP determinands

[®] confirm TPH has NOT arisen from diesel or petrol

Description/Comments: Chapter 3, section 4b requires a positive confirmation for benzo[a]pyrene to be used as a marker in evaluating Carc. 1B; H350 (HP 7) and Muta. 1B; H340 (HP 11) Data source: WM3 1st Edition 2015 Data source date: 5/25/2015 Risk Phrases: None. Hazard Statements: None.

pH (CAS Number: PH)

Description/Comments: Appendix C4 Data source: WM3 1st Edition 2015 Data source date: 5/25/2015 Risk Phrases: None. Hazard Statements: None.

• boron tribromide/trichloride/trifluoride (combined) (CAS Number: 10294-33-4, 10294-34-5, 7637-07-2)

Conversion factor: 13.43 Description/Comments: Combines the hazard statements and the average of the conversion factors for boron tribromide, boron trichloride and boron trifluoride Data source: N/A Data source date: 8/6/2015 Risk Phrases: R14, T+ R26/28, C R34, C R35 Hazard Statements: EUH014, Acute Tox. 2 H330, Acute Tox. 2 H300, Skin Corr. 1A H314, Skin Corr. 1B H314

• chromium(III) oxide (EC Number: 215-160-9, CAS Number: 1308-38-9)

Conversion factor: 1.462 Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 7/17/2015 Risk Phrases: R20, R22, R36, R37, R38, R42, R43, R50/53, R60, R61 Hazard Statements: Acute Tox. 4 H332, Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Resp. Sens. 1 H334, Skin Sens. 1 H317, Repr. 1B H360FD, Aquatic Acute 1 H400, Aquatic Chronic 1 H410

^e dicopper oxide; copper (I) oxide (EC Number: 215-270-7, CAS Number: 1317-39-1)

CLP index number: 029-002-00-X Data source: Regulation (EU) 2016/1179 of 19 July 2016 (ATP9) Additional Risk Phrases: N R50/53 , N R50/53 >= 0.25 % Additional Hazard Statement(s): None. Reason for additional Hazards Statement(s)/Risk Phrase(s): 10/10/2016 - N R50/53 risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases 10/10/2016 - N R50/53 >= 0.25 % risk phrase sourced from: WM3 v1 still uses ecotoxic risk phrases

• TPH (C6 to C40) petroleum group (CAS Number: TPH)

Description/Comments: Hazard statements taken from WM3 1st Edition 2015; Risk phrases: WM2 3rd Edition 2013 Data source: WM3 1st Edition 2015 Data source date: 5/25/2015 Risk Phrases: R10, R45, R46, R51/53, R63, R65 Hazard Statements: Flam. Liq. 3 H226, Asp. Tox. 1 H304, STOT RE 2 H373, Muta. 1B H340, Carc. 1B H350, Repr. 2 H361d, Aquatic Chronic 2 H411

• phenanthrene (EC Number: 201-581-5, CAS Number: 85-01-8)

Description/Comments: Data from C&L Inventory Database Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 8/6/2015 Risk Phrases: R22, R36, R37, R38, R40, R43, N R50/53 Hazard Statements: Acute Tox. 4 H302, Eye Irrit. 2 H319, STOT SE 3 H335, Carc. 2 H351, Skin Sens. 1 H317, Aquatic Acute 1 H400 Acute Character of LH410, Skin Kerit, 2 H315

, Aquatic Chronic 1 H410 , Skin Irrit. 2 H315

anthracene (EC Number: 204-371-1, CAS Number: 120-12-7)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Data source date: 7/17/2015 Pick Phrases: P36 P37 P38 P/3 N P50/53
Hazard Statements: Eye Irrit. 2 H319, STOT SE 3 H335, Skin Irrit. 2 H315, Skin Sens. 1 H317, Aquatic Acute 1 H400, Aquatic
Chronic 1 H410
• fluoranthene (EC Number: 205-912-4, CAS Number: 206-44-0)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Risk Phrases: Xn R22, N R50/53
Hazard Statements: Acute Tox. 4 H302, Aquatic Acute 1 H400, Aquatic Chronic 1 H410
pyrene (EC Number: 204-927-3, CAS Number: 129-00-0)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 2014
Data source: http://ecna.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 8/21/2015
Risk Phrases: Xi R36/37/38, N R50/53
Hazard Statements: Skin Irrit. 2 H315, Eye Irrit. 2 H319, STOT SE 3 H335, Aquatic Acute 1 H400, Aquatic Chronic 1 H410
indeno[123-cd]pyrene (EC Number: 205-893-2, CAS Number: 193-39-5)
Description/Comments: Data from C&L Inventory Database
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database
Risk Phrases: R40
Hazard Statements: Carc. 2 H351
• benzo[ghi]perylene (EC Number: 205-883-8, CAS Number: 191-24-2)
Description/Comments: Data from C&L Inventory Database; SDS Sigma Aldrich 28/02/2015
Data source: http://echa.europa.eu/web/guest/information-on-chemicals/cl-inventory-database Data source date: 7/23/2015
Risk Phrases: N R50/53
Hazard Statements: Aquatic Acute 1 H400, Aquatic Chronic 1 H410
Annendix B: Rationale for selection of metal species
heren (heren tribromide/trichleride/triflueride (combined))
Worst case species based on bazerd statements
Worst case species based on bazerd statements
Werst eace encodes based on based at tetemente
Copper {dicopper oxide; copper (i) oxide}
worst case species based on nazard statements
lead {lead chromate}
vvorst case species based on hazard statements
selenium (selenium compounds with the exception of cadmium sulphoselenide and those specified elsewhere in this Annex)
worst case species based on hazard statements
zinc {zinc chromate}
Worst case species based on hazard statements

Appendix C: Version

HazWasteOnline Classification Engine: WM3 1st Edition, May 2015 HazWasteOnline Classification Engine Version: 2017.269.3405.6897 (26 Sep 2017) HazWasteOnline Database: 2017.270.3406.6898 (28 Sep 2017)

This classification utilises the following guidance and legislation: **WM3 - Waste Classification** - May 2015 CLP Regulation - Regulation 1272/2008/EC of 16 December 2008 1st ATP - Regulation 790/2009/EC of 10 August 2009 2nd ATP - Regulation 286/2011/EC of 10 March 2011 **3rd ATP** - Regulation 618/2012/EU of 10 July 2012 4th ATP - Regulation 487/2013/EU of 8 May 2013 Correction to 1st ATP - Regulation 758/2013/EU of 7 August 2013 5th ATP - Regulation 944/2013/EU of 2 October 2013 6th ATP - Regulation 605/2014/EU of 5 June 2014 WFD Annex III replacement - Regulation 1357/2014/EU of 18 December 2014 Revised List of Wastes 2014 - Decision 2014/955/EU of 18 December 2014 7th ATP - Regulation 2015/1221/EU of 24 July 2015 8th ATP - Regulation (EU) 2016/918 of 19 May 2016 9th ATP - Regulation (EU) 2016/1179 of 19 July 2016 10th ATP - Regulation (EU) 2017/776 of 4 May 2017 POPs Regulation 2004 - Regulation 850/2004/EC of 29 April 2004 1st ATP to POPs Regulation - Regulation 756/2010/EU of 24 August 2010 2nd ATP to POPs Regulation - Regulation 757/2010/EU of 24 August 2010