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Data inputs 

 Population data 1

Demographic data was collected for England and Wales combined (no separate data 

for England was available), and for each UK local authority separately. Information was 

collected on the age and sex distribution of the population, the distribution of births by 

mother’s age, the total fertility rate and the distribution of deaths by age and sex. 

 

The data were processed as text files, in a format suitable for inclusion in the 

microsimulation programme. The data sources were as follows 

 

Table 1. Population data sources by geography 

Demography Geography Source 

Total 

population 

by age and 

sex 

England 

and Wales 

ONS. Population Estimates for UK, England and Wales, 

Scotland and Northern Ireland: mid-2015. ONS; 2016.(1) 

Local 

authority 

ONS. Population Estimates for UK, England and Wales, 

Scotland and Northern Ireland: mid-2015. ONS; 2016.(1) 

Births by 

mothers age 

England 

and Wales 

ONS. Birth Summary Tables – England and Wales. 

2015. ONS; 2016 (2) 

Local 

authority 

ONS. Births by mothers' usual area of residence in the 

UK. ONS; 2016.(3) 

Total fertility 

rate 

England 

and Wales 

ONS. Birth Summary Tables – England and Wales. 

2015. ONS; 2016 (2) 

Local 

authority 

ONS. Births by mothers' usual area of residence in the 

UK. ONS; 2016.(3) 

Deaths by 

age and sex 

England 

and Wales 

ONS. Deaths registed in Engalnd and Wales 2015. ONS; 

2016 (4) 

Local 

authority 

ONS. Mortality statistics - underlying cause, sex and 

age. ONS; 2016.(5) 

 

 Disease data 2

A number of air pollution-related diseases were modelled (see Table 2). The list of 

diseases modelled for each pollutant was determined after a review of the literature 

available on the dose-response relationship between exposure to air pollutants and risk 

of incidence of disease (Table 2). Decisions were made by the advisory committee to 

include or exclude diseases based on existence of a dose-response relationship and 

availablility of epidemiological data. For instance, while an association exists between 

lung function in children and both NO2 and PM2.5, this condition is not a fixed disease 



Appendix 1. Technical appendix and data inputs 

 

5 

 

with identifiable prevalence, incidence and mortality data, so this condition was 

excluded from the disease list. Pre-term birth was also identified, but low-birth weight 

was considered a better proxy of the process of intrauterine growth reswtriction, and 

excluding pre-term births may avoid double counting. 

 

Table 2. Characteristics of diseases modelled for each pollutant 

 Duration Terminal Age 

category  

Pollutant 

    NO2 PM2.5 

Respiratory outcomes 

Asthma (children) Chronic Yes Child X X 

Asthma (adults) Chronic Yes Adult X  

COPD Chronic Yes Adult  X 

Cardiovascular outcomes 

CHD Chronic Yes Adult  X 

Stroke Chronic Yes Adult  X 

Diabetes Chronic No Adult X X 

Cancer and other outcomes 

Dementia Chronic Yes Adult X  

Low birth weight Acute No Adult X X 

Lung cancer Chronic Yes Adult X X 

 

All diseases except for low birth weight were lifelong, chronic diseases, so once 

acquired, were prevalent for the duration of an individual’s life (see section Module 2: 

Microsimulation model on modelling birth weight for further details). Individuals could 

develop more than one diseases, but these were considered independent of one 

another. All diseases apart from diabetes and low birth weight were terminal. 

  

Epidemiological data on each disease’s incidence, prevalence, mortality and survival 

and dose-response was collected (see Table 3). When a parameter, eg Survival was 

not available from the literature or national statistics, this was computed – see Module 

2: Microsimulation model section Approximating missing disease statistics for methods. 

 

2.1 Summary of data sources 

Table 3. Summary of disease data sources   

Diseases Incidence Prevalence Mortality Survival Relative Risk  

Asthma BLF 

Asthma 

Statistics 

(6) 

BLF Asthma 

Statistics (6)  

ONS, Deaths 

Registrations 

Summary 

Statistics, 

England and 

Wales, 2015 (4)  

Computed 

from 

prevalence 

and mortality  

NO2: Khreis et al. 2016 (7)  

In children =<6 years : OR 

1.08 (1.04; 1.12) per 

4µg/m
3
Converted to 

OR 1.212 (1.103; 1.328) per 

10µg/m
3
REDUCED by 

60%  1.08 (1.01; 1.12) 

per 10µg/m
3
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In children >6 years: OR 

1.03 (1.00; 1.06) per 

4µg/m
3
Converted to OR 

1.08 (1.00; 1.16) per 

10µg/m
3
 REDUCED by 

60%  1.03 (1.00; 1.06) 

per 10µg/m
3
 

Jaquemin et al. 2015 (8) 

In adults: OR 1.10 

(0.99;1.21) per 10µg/m
3
 

REDUCED by 60%  

1.04 (0.996; 1.08) per 

10µg/m
3
 

 

PM2.5: Khreis et al. 2016 (7) 

In children >6 years: OR 1.04 (1.02; 

1.07) per 1µg/m
3
 Converted  

OR 1.48 (1.22 ; 1.97) per 10µg/m
3
 

COPD Computed 

from 

prevalence 

and 

mortality. 

PHE 

modelled 

estimates, 

2008 (9) 

ONS, Deaths 

Registrations 

Summary 

Statistics, 

England and 

Wales, 2015 (4)  

Computed 

from 

prevalence 

and mortality 

PM2.5: COMEAP 2016 (10) 

COMEAP recommend using PM 10 

estimate based on Cai et al. 2014 

estimate for chronic phlegm in never 

smokers in sensitivity analyses: 

OR 1.32 (1.02; 1.71) per 10µg/m
3
 of 

PM10  scale to PM2.5 using the 

conversion factor of PM2.5-> PM10: 

0.7 (or PM10 -> PM2.5:1.42) recently 

used in the air quality index, 

COMEAP: Converted to 1.49 (1.03; 

2.14) per 10µg/m
3
 of PM2.5 

CHD Smolina et 

al 2012. 

Corrected 

data on 

incidence 

and 

mortality in 

2013 (11)  

BHF, 

Cardiovasc

ular 

Disease 

Statistics 

2014 (12)  

ONS, Deaths 

Registrations 

Summary 

Statistics, 

England and 

Wales, 2015 (4)  

Computed 

from 

prevalence 

and mortality 

PM2.5: Cesaroni et al. 2014 (13) 

Estimate used in CAPTOR tool from 

subgroup analysis of participants 

with additional information on CVD 

risk factors: 

HR 1.19 (1.01; 1.42) per 5µg/m
3
 

Converted to 1.41 (1.00 - 2.01) per 

10µg/m
3
 

Diabetes Personal 

communica

tion with dr 

Craig Curry 

from 

Cardiff 

University 

National 

Diabetes 

Audit 2015-

2016(14)  

Non-terminal Non-terminal NO2:  Eze et al. 2015 (15)  

RR 1.12 (1.05; 1.19) per 

10µg/m
3
REDUCED by 60%  

1.05 (1.02; 1.07) per 10µg/m
3 

 

PM2.5: Eze et al. 2015 (15)  

RR 1.10 (1.02; 1.18) per 10µg/m
3
 

Stroke BHF, 

stroke 

BHF, 

Cardiovasc

ONS, Deaths 

Registrations 

Computed 

from 

PM2.5: Scheers et al. 2015 (17)  

HR 1.064 (1.021; 1.109) per 5µg/m
3
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statistics 

2009 (16)  

ular 

Disease 

Statistics 

2014 (12)  

Summary 

Statistics, 

England and 

Wales, 2015 (4)  

prevalence 

and mortality 

Converted to 1.13 (1.04; 1.23) per 

10µg/m
3
 

Dementia Computed 

from 

prevalence 

and 

mortality 

Dementia 

UK 2014 

(18)  

ONS, Deaths 

Registrations 

Summary 

Statistics, 

England and 

Wales, 2015 (4)  

Computed 

from 

prevalence 

and mortality 

NO2: Oudin et al. 2016(19) 

HR 1.08 (1.00; 1.16) per 10µg/m
3
 

NOx. Scaling factor: NOx → NO2: 

0.44 which was developed by 

Anderson et al. based on the ratio 

that fell midway between the average 

or roadside vs urban background 

monitoring sites in London for 2001 

(see Online Supp 2) (20) 

Converted from NOx to NO2:HR 

1.03 (1.00; 1.07) REDUCED by 

60%  1.01 (1.01; 1.03) per 

10µg/m3 of NO2 

Low 

birth 

weight 

ONS Birth 

Characteris

tics, 2015 

(21)  

Considered 

equivalent 

to incidence 

Non-terminal Non-terminal NO2: Pedersen et al. 2013 (22) 

OR 1.09 (1.00; 1.19) per 

10µg/m
3
REDUCED by 

60%  1.04 (1.00; 1.07) 

per 10µg/m
3
 

 

PM2.5: Pedersen et al. 2013 (22) 

OR 1.18 (1.06; 1.33) per 

5µg/m
3
Converted OR 1.39 (1.12; 

1.77) per 10µg/m
3
: 

Lung 

cancer 

CRUK, 

2012-14 

(23)  

Not required 

in model as 

model uses 

incidence 

CRUK, 2012-14 

(23)  

1, 5 year: 

ONS, 2010-14 

(24); 10 year: 

ONS, 2008-12 

(25)  

NO2: Hamra et al. 2015 (26)  

RR 1.04 (1.01; 1.08) per 

10µg/m
3
REDUCED by 60%  

1.02 (1.00; 1.03) per 10µg/m
3
 

PM2.5: Hamra et al. 2014 (27) 

RR 1.09 (1.04; 1.14) per 10µg/m
3
 

All NO2 relative risks reduced by 60% following COMEAP recommendations(28) 
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2.2 Incidence, Prevalence, Mortality data by disease 

Asthma  

 

Table 4. Asthma epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

BLF Asthma Statistics(6) BLF Asthma Statistics(6) ONS 2015(4) 

Data sourced from the THIN 

Database, ICD codes unclear 

Data sourced from the THIN 

Database, ICD codes unclear  

ICD 10: J45-J46 

Age group Both genders Age group Both genders Age group Male Female 

0-5 929.0 0-5 3114.0 <1 0.0 0.0 

        1-4 0.1 0.0 

6-10 561.0 6-10 10079.0 5-14 0.2 0.2 

11-15 356.0 11-15 15899.0       

16-20 170.0 16-20 20180.0 15-24 0.2 0.2 

21-30 150.0 21-30 17306.0       

        25-34 0.2 0.2 

31-40 180.0 31-40 13286.0       

        35-44 0.4 0.3 

41-50 201.0 41-50 11751.0       

        45-54 0.5 1.0 

51-60 204.0 51-60 10903.0       

        55-64 1.1 1.4 

61-70 231.0 61-70 10848.0       

        65-74 1.5 2.9 

71-80 194.0 71-80 11526.0       

        75-84 5.2 12.3 

81+ 111.0 81+ 10135.0 85+ 32.3 56.0 
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Chronic obstructive pulmonary disease (COPD) 

 

COPD incidence was estimated from prevalence and mortality data, – see Module 2: 

Microsimulation model section Approximating missing disease statistics for methods. 

 

Table 5. COPD epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

UKHF Derived estimates  PHE Modelled estimates (2008) (9) ONS 2015(4) 

Computed from Prevalence and 

Mortality 

COPD based on FEV1 

measurements in the Health Survey 

for England 2001 using British 

Thoracic Society criteria 

ICD 10: J40-J44 

Age group Male Female Age group Male Female Age group Male Female 

0-4 1.2 0.0 0-4 4.2 5.9 <1 0.0 0.0 

            1-4 0.0 0.0 

5-9 2.6 3.4 5-9 10.4 6.0 5-9 0.0 0.0 

10-14 2.1 1.6 10-14 23.2 23.1       

15-19 0.0 0.0 15-19 33.7 31.3 15-24 0.0 0.0 

20-24 1.8 1.3 20-24 27.6 12.9       

25-29 3.4 3.4 25-29 36.8 19.6 25-34 0.1 0.1 

30-34 7.9 9.8 30-34 54.0 36.5       

35-39 25.0 28.2 35-39 93.3 85.5 35-44 1.0 0.5 

40-44 52.0 60.4 40-44 218.0 226.3       

45-49 106.0 121.2 45-49 477.1 527.0 45-54 6.4 4.4 

50-54 205.2 174.5 50-54 1003.6 1128.5       

55-59 298.0 235.4 55-59 2015.4 1988.1 55-64 32.0 28.2 

60-64 491.9 326.9 60-64 3466.8 3136.4       

65-69 437.5 216.8 65-69 5817.7 4709.4 65-74 126.6 101.4 

70-74 334.8 228.0 70-74 7860.1 5737.9       

75-79 263.4 0.0 75-79 9392.4 6807.6 75-84 367.7 283.2 

80-84 0.0 0.0 80-84 10579.6 6783.3       

85+ 0.0 0.0 85+ 9857.29 5300.6 85+ 939.45 558.4 
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Coronary heart disease (CHD) 

 

Table 6. CHD epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

Smolina et al. 2012(11) BHF CVD Stats 2014(12) ONS 2015(4) 

ICD 10: I21-I22 ICD 10: I21  ICD 10: I21-I22 

Age group Male Female Age group Male Female Age group Male Female 

      0-44 60.0 30.0 <1 0.0 0.3 

            1-4 0.0 0.0 

            5-9 0.0 0.0 

            15-24 0.1 0.0 

            25-34 0.8 0.2 

30-54 88.1 21.2             

            35-44 4.9 1.4 

      45-54 1070.0 430.0 45-54 21.2 5.2 

55-64 317.0 90.3 55-64 4510.0 1240.0 55-64 52.2 14.2 

65-74 533.0 237.0 65-74 8660.0 2960.0 65-74 109.4 44.6 

75-84 1017.0 597.0 75+ 14780.0 6960.0 75-84 281.0 146.0 

85+ 1987.0 1395.0       85+ 692.0 454.7 
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Stroke 

 

Table 7. Stroke epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

BHF Stroke Statistics 2009(16) BHF CVD Stats 2014(12) ONS 2015(4) 

Based on general practice records, 

ICD codes not given 

ICD 10: I60-I69 ICD: I60-I64 

Age group Male Female Age group Male Female Age group Male Female 

0-44 7.0 6.0 0-44 110.0 110.0 <1 0.3 0.0 

      1-4 0.0 0.1 

      5-9 0.1 0.2 

      15-24 0.5 0.3 

      25-34 0.9 1.0 

      35-44 3.3 2.9 

45-64 114.0 69.0 45-54 890.0 790.0 45-54 9.9 8.0 

   55-64 2690.0 1960.0 55-64 26.1 19.1 

65-74 393.0 275.0 65-74 6400.0 4390.0 65-74 67.7 56.7 

75+ 794.0 879.0 75+ 14890.0 12430.0 75-84 284.6 260.5 

      85+ 915.9 1031.7 
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Diabetes Type 2 

 

Table 8. Diabetes incidence and prevalence estimates (per 100,000 population) 

Incidence Prevalence Mortality 

Personal communication with Dr 

Curry from Cardiff University (29) 

National Diabetes Audit 2015-

2016(14) 

   

ICD 10 codes unknown ICD 10 codes unknown    

Age group Male Female Age group Male Female Age group Male Female 

0-4 56 53 0-4 1.999 2.727 Non terminal  

  5-9 34 42 5-9 6.681 6.372 

10-14 43 40 10-14 15 19.285 

15-19 83 107 15-19 41.744 64.613 

20-24 75 145 20-24 85.329 160.621 

25-29 101 226 25-29 202.748 352.739 

30-34 150 242 30-34 561.584 684.461 

35-39 240 263 35-39 1361.296 1249.819 

40-44 355 333 40-44 2617.251 1898.323 

45-49 561 482 45-49 4338.317 2858.298 

50-54 820 636 50-54 6451.945 4227.206 

55-59 1068 847 55-59 9371.893 6188.7 

60-64 1316 965 60-64 11825.85 7780.135 

65-69 1516 1234 65-69 13621.13 9047.041 

70-74 1763 1378 70-74 16010.86 11196.63 

75-79 1677 1483 75-79 18065.24 13559.67 

80-84 1645 1336 80-84 18464.43 14217.44 

85-89 1300 1169 85+ 15210.91 11513.66 

90+ 546 440      
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Dementia 

 

Dementia incidence was estimated from prevalence and mortality data, – see Module 2: 

Microsimulation model section Approximating missing disease statistics for methods. 

 

In order to align the mortality age groups with the prevalence age groups, prevalence in 

age groups 85 to 89, 90 to 94 and 95+ were pooled . The pooling was weighted based 

on the number of cases in each age group, itself a function of population in each age 

group. 

 

Table 9. Dementia epidemiological data (per 100,000 population) 

Incidence  Prevalence Mortality 

UKHF Derived  estimate  Dementia UK 2014 (18) ONS 2015(4) 

Computed from Prevalence and 

Mortality 

 ICD 10: F00-F03  ICD 10: F01,F03 

Age group Male Female Age group Male Female Age group Male Female 

0-59 0 0       <1     

         1-4     

         5-14     

         15-24     

         25-34     

         35-44     

         45-54 0.1 0.2 

               

         55-64 2.2 1.9 

60-64 488.06 515.88 60-64 900 900        

65-69 304.79 492.8 65-69 1500 1800 65-74 30.4 26.9 

70-74 1278.18 1031.38 70-74 3100 3000        

75-79 1422.62 2875.31 75-79 5300 6600 75-84 349.9 360.4 

80-84  4042.55 2985.94 80-84  10300 11700        

85-89 3363.16 8573.13 85-89 15100 20200 85+ 2025.7 2686.9 

   90-94 22600 33000    

   95+ 28800 44200    
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Low birth weight 

 

The outcome of low birth weight is related to several health outcomes throughout the life 

course, however, these downstream consequences was not be modelled in this project. 

Low birth weight is modelled as an outcome of the mother. Breakdown by maternal age 

was not available, and rates of 7% of all live births being low birth weight have been 

stable since 2011(21). Low birth weight was the only disease not modelled as a lifelong, 

chronic disease. Prevalence of low birth weight in 1 year is considered equivalent to 

incidence, as low birth weight is considered an acute event occurring only in a given 

year. 

 

Table 10. Low birth weight epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

ONS 2015(21)       

ICD 10: P07.1       

Age grp Male Female Age grp Male Female Age grp Male Female 

16-59 NA 7000 Prevalence of low birth weight in 1 

year is considered equivalent to 

incidence. 

Not applicable (non terminal) 

 

Lung cancer 

 

Prevalence data was not available on lung cancer data, but the model does not require 

the input of prevalence, only of incidence, so this paramtere was not required. 

 

Table 11. Lung cancer epidemiological data (per 100,000 population) 

Incidence Prevalence Mortality 

CRUK 2012-14 (23) Prevalence is not a required input 

into the model 

CRUK 2012-14 (23) 

ICD 10: C33-C34   N/A    ICD 10: C33-C34  

Age group Male Female Age group Male Female Age group Male Female 

0-4 0.1 0.0       0-5 0.0 0.0 

                  

5-9 0.0 0.0       5-9 0.0 0.0 

10-14 0.0 0.0       10-14 0.0 0.0 

15-19 0.1 0.1       15-19 0.0 0.0 

20-24 0.3 0.3       20-24 0.1 0.0 

25-29 0.5 0.6       25-29 0.1 0.1 

30-34 0.9 1.3       30-34 0.4 0.5 

35-39 2.3 2.4       35-39 1.4 1.1 

40-44 6.7 5.6       40-44 4.3 3.0 

45-49 15.9 15.1       45-49 10.9 9.6 

50-54 36.0 34.0       50-54 24.9 21.6 

55-59 80.0 72.7       55-59 58.1 48.0 

60-64 151.5 126.2       60-64 109.8 84.1 

65-69 239.5 190.5       65-69 176.2 131.1 

70-74 367.9 264.4       70-74 279.9 190.9 
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75-79 463.2 305.5       75-79 367.8 234.1 

80-84 538.1 337.6       80-84 453.6 283.6 

85-89 608.7 339.1       85-89 564.4 309.4 

90+ 542.0 253.7       90+ 521.2 245.6 
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2.3 Survival data 

Survival statistics for CHD, COPD, Stroke and dementia were not identified in the 

literature. We modelled these using prevalence and mortality data, – see Module 2: 

Microsimulation model section Approximating missing disease statistics for methods. 

 

Asthma 

 

Table 12. Probability of 1, 5 and 1 year survival computed from prevalence and mortality data for 

Asthma. 

Age Survival 
probability – 1 

year 

Survival 
probability – 5 

years 

Survival 
probability – 10 

years 

M F M F M F 

0-74 1.000 1.000 1.000 1.000 1.000 1.000 

75-84 1.000 0.999 1.000 0.999 1.000 0.999 

85-94 0.998 0.997 0.998 0.997 0.998 0.997 

95-107 0.999 0.997 0.999 0.997 0.999 0.997 

108+ 0.999 0.998 0.999 0.998 0.999 0.998 

 

CHD and COPD 

 

Table 13. Probability of 1, 5 and 1 year survival computed from prevalence and mortality data fpr 

Coronary Heart Disease and Chronic Obstructive Pulmonary Disease. 

Age CHD COPD 

Survival 
probability – 1 

year 

Survival 
probability – 5 

year 

Survival 
probability – 

10 year 

Survival 
probability – 1 

year 

Survival 
probability – 5 

year 

Survival 
probability – 

10 year 

M F M F M F M F M F M F 

1-5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

6 0.500 1.000 0.500 1.000 0.500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.667 1.000 0.667 1.000 0.667 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

8 0.750 1.000 0.750 1.000 0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

9 0.800 1.000 0.800 1.000 0.800 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

10 0.833 1.000 0.833 1.000 0.833 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

11 0.857 1.000 0.857 1.000 0.857 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

12 0.875 1.000 0.875 1.000 0.875 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

13 0.889 1.000 0.889 1.000 0.889 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.900 1.000 0.900 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

15 1.000 0.000 1.000 0.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 

16 1.000 0.500 1.000 0.500 1.000 0.500 1.000 1.000 1.000 1.000 1.000 1.000 

17 1.000 0.667 1.000 0.667 1.000 0.667 1.000 1.000 1.000 1.000 1.000 1.000 

18 1.000 0.750 1.000 0.750 1.000 0.750 1.000 1.000 1.000 1.000 1.000 1.000 

19 1.000 0.800 1.000 0.800 1.000 0.800 1.000 1.000 1.000 1.000 1.000 1.000 

20 1.000 0.833 1.000 0.833 1.000 0.833 1.000 1.000 1.000 1.000 1.000 1.000 
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21 1.000 0.857 1.000 0.857 1.000 0.857 1.000 1.000 1.000 1.000 1.000 1.000 

22 1.000 0.875 1.000 0.875 1.000 0.875 1.000 1.000 1.000 1.000 1.000 1.000 

23 1.000 0.889 1.000 0.889 1.000 0.889 1.000 1.000 1.000 1.000 1.000 1.000 

24 1.000 0.900 1.000 0.900 1.000 0.900 1.000 1.000 1.000 1.000 1.000 1.000 

25 0.792 0.849 0.792 0.849 0.792 0.849 1.000 1.000 1.000 1.000 1.000 1.000 

26 0.828 0.868 0.828 0.868 0.828 0.868 1.000 1.000 1.000 1.000 1.000 1.000 

27 0.853 0.884 0.853 0.884 0.853 0.884 1.000 1.000 1.000 1.000 1.000 1.000 

28 0.872 0.896 0.872 0.896 0.872 0.896 1.000 1.000 1.000 1.000 1.000 1.000 

29 0.887 0.906 0.887 0.906 0.887 0.906 1.000 1.000 1.000 1.000 1.000 1.000 

30 0.898 0.914 0.898 0.914 0.898 0.914 0.991 0.992 0.991 0.992 0.991 0.992 

31 0.908 0.921 0.908 0.921 0.908 0.921 0.996 0.996 0.996 0.996 0.996 0.996 

32 0.915 0.927 0.915 0.927 0.915 0.927 0.997 0.997 0.997 0.997 0.997 0.997 

33 0.922 0.932 0.922 0.932 0.922 0.932 0.998 0.998 0.998 0.998 0.998 0.998 

34 0.928 0.936 0.928 0.936 0.928 0.936 0.998 0.998 0.998 0.998 0.998 0.998 

35 0.507 0.595 0.507 0.595 0.507 0.595 0.991 0.989 0.991 0.989 0.991 0.989 

36 0.670 0.712 0.670 0.712 0.670 0.712 0.992 0.991 0.992 0.991 0.992 0.991 

37 0.752 0.776 0.752 0.776 0.752 0.776 0.993 0.992 0.993 0.992 0.993 0.992 

38 0.801 0.817 0.801 0.817 0.801 0.817 0.994 0.993 0.994 0.993 0.994 0.993 

39 0.834 0.845 0.834 0.845 0.834 0.845 0.995 0.993 0.995 0.993 0.995 0.993 

40 0.858 0.866 0.858 0.866 0.858 0.866 0.995 0.994 0.995 0.994 0.995 0.994 

41 0.875 0.882 0.875 0.882 0.875 0.882 0.995 0.995 0.995 0.995 0.995 0.995 

42 0.889 0.894 0.889 0.894 0.889 0.894 0.996 0.995 0.996 0.995 0.996 0.995 

43 0.900 0.905 0.900 0.905 0.900 0.905 0.996 0.995 0.996 0.995 0.996 0.995 

44 0.909 0.913 0.909 0.913 0.909 0.913 0.996 0.996 0.996 0.996 0.996 0.996 

45 0.637 0.583 0.637 0.583 0.637 0.583 0.985 0.985 0.985 0.985 0.985 0.985 

46 0.734 0.706 0.734 0.706 0.734 0.706 0.986 0.986 0.986 0.986 0.986 0.986 

47 0.790 0.773 0.790 0.773 0.790 0.773 0.987 0.986 0.987 0.986 0.987 0.986 

48 0.826 0.815 0.826 0.815 0.826 0.815 0.987 0.987 0.987 0.987 0.987 0.987 

49 0.852 0.844 0.852 0.844 0.852 0.844 0.988 0.988 0.988 0.988 0.988 0.988 

50 0.871 0.865 0.871 0.865 0.871 0.865 0.989 0.988 0.989 0.988 0.989 0.988 

51 0.886 0.881 0.886 0.881 0.886 0.881 0.989 0.989 0.989 0.989 0.989 0.989 

52 0.898 0.894 0.898 0.894 0.898 0.894 0.990 0.989 0.990 0.989 0.990 0.989 

53 0.907 0.904 0.907 0.904 0.907 0.904 0.990 0.990 0.990 0.990 0.990 0.990 

54 0.915 0.912 0.915 0.912 0.915 0.912 0.990 0.990 0.990 0.990 0.990 0.990 

55 0.702 0.638 0.702 0.638 0.702 0.638 0.979 0.977 0.979 0.977 0.979 0.977 

56 0.771 0.734 0.771 0.734 0.771 0.734 0.981 0.980 0.981 0.980 0.981 0.980 

57 0.813 0.790 0.813 0.790 0.813 0.790 0.983 0.982 0.983 0.982 0.983 0.982 

58 0.843 0.827 0.843 0.827 0.843 0.827 0.985 0.984 0.985 0.984 0.985 0.984 

59 0.864 0.852 0.864 0.852 0.864 0.852 0.986 0.986 0.986 0.986 0.986 0.986 

60 0.880 0.871 0.880 0.871 0.880 0.871 0.987 0.987 0.987 0.987 0.987 0.987 

61 0.893 0.886 0.893 0.886 0.893 0.886 0.988 0.988 0.988 0.988 0.988 0.988 

62 0.903 0.898 0.903 0.898 0.903 0.898 0.989 0.989 0.989 0.989 0.989 0.989 

63 0.912 0.907 0.912 0.907 0.912 0.907 0.989 0.989 0.989 0.989 0.989 0.989 

64 0.919 0.915 0.919 0.915 0.919 0.915 0.990 0.990 0.990 0.990 0.990 0.990 
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65 0.757 0.766 0.757 0.766 0.757 0.766 0.981 0.973 0.981 0.973 0.981 0.973 

66 0.804 0.810 0.804 0.810 0.804 0.810 0.983 0.976 0.983 0.976 0.983 0.976 

67 0.836 0.840 0.836 0.840 0.836 0.840 0.984 0.979 0.984 0.979 0.984 0.979 

68 0.859 0.862 0.859 0.862 0.859 0.862 0.985 0.981 0.985 0.981 0.985 0.981 

69 0.876 0.879 0.876 0.879 0.876 0.879 0.986 0.983 0.986 0.983 0.986 0.983 

70 0.890 0.892 0.890 0.892 0.890 0.892 0.987 0.984 0.987 0.984 0.987 0.984 

71 0.901 0.902 0.901 0.902 0.901 0.902 0.988 0.985 0.988 0.985 0.988 0.985 

72 0.910 0.911 0.910 0.911 0.910 0.911 0.988 0.986 0.988 0.986 0.988 0.986 

73 0.917 0.918 0.917 0.918 0.917 0.918 0.989 0.987 0.989 0.987 0.989 0.987 

74 0.923 0.924 0.923 0.924 0.923 0.924 0.989 0.988 0.989 0.988 0.989 0.988 

75 0.817 0.825 0.817 0.825 0.817 0.825 0.975 0.966 0.975 0.966 0.975 0.966 

76 0.845 0.851 0.845 0.851 0.845 0.851 0.977 0.970 0.977 0.970 0.977 0.970 

77 0.865 0.870 0.865 0.870 0.865 0.870 0.978 0.973 0.978 0.973 0.978 0.973 

78 0.881 0.884 0.881 0.884 0.881 0.884 0.980 0.976 0.980 0.976 0.980 0.976 

79 0.893 0.896 0.893 0.896 0.893 0.896 0.981 0.978 0.981 0.978 0.981 0.978 

80 0.903 0.906 0.903 0.906 0.903 0.906 0.982 0.980 0.982 0.980 0.982 0.980 

81 0.911 0.914 0.911 0.914 0.911 0.914 0.983 0.981 0.983 0.981 0.983 0.981 

82 0.918 0.920 0.918 0.920 0.918 0.920 0.984 0.982 0.984 0.982 0.984 0.982 

83 0.924 0.926 0.924 0.926 0.924 0.926 0.984 0.983 0.984 0.983 0.984 0.983 

84 0.929 0.931 0.929 0.931 0.929 0.931 0.985 0.984 0.985 0.984 0.985 0.984 

85 0.846 0.879 0.846 0.879 0.846 0.879 0.966 0.957 0.966 0.957 0.966 0.957 

86 0.865 0.892 0.865 0.892 0.865 0.892 0.969 0.962 0.969 0.962 0.969 0.962 

87 0.880 0.902 0.880 0.902 0.880 0.902 0.971 0.965 0.971 0.965 0.971 0.965 

88 0.892 0.910 0.892 0.910 0.892 0.910 0.973 0.968 0.973 0.968 0.973 0.968 

89 0.902 0.917 0.902 0.917 0.902 0.917 0.974 0.971 0.974 0.971 0.974 0.971 

90 0.910 0.923 0.910 0.923 0.910 0.923 0.975 0.973 0.975 0.973 0.975 0.973 

91 0.917 0.928 0.917 0.928 0.917 0.928 0.977 0.975 0.977 0.975 0.977 0.975 

92 0.922 0.933 0.922 0.933 0.922 0.933 0.978 0.976 0.978 0.976 0.978 0.976 

93 0.927 0.937 0.927 0.937 0.927 0.937 0.979 0.977 0.979 0.977 0.979 0.977 

94 0.932 0.940 0.932 0.940 0.932 0.940 0.979 0.979 0.979 0.979 0.979 0.979 

95 0.936 0.943 0.936 0.943 0.936 0.943 0.980 0.980 0.980 0.980 0.980 0.980 

96 0.939 0.946 0.939 0.946 0.939 0.946 0.981 0.981 0.981 0.981 0.981 0.981 

97 0.942 0.948 0.942 0.948 0.942 0.948 0.982 0.981 0.982 0.981 0.982 0.981 

98 0.945 0.951 0.945 0.951 0.945 0.951 0.982 0.982 0.982 0.982 0.982 0.982 

99 0.947 0.953 0.947 0.953 0.947 0.953 0.983 0.983 0.983 0.983 0.983 0.983 

100 0.949 0.955 0.949 0.955 0.949 0.955 0.983 0.984 0.983 0.984 0.983 0.984 

101 0.951 0.956 0.951 0.956 0.951 0.956 0.984 0.984 0.984 0.984 0.984 0.984 

102 0.953 0.958 0.953 0.958 0.953 0.958 0.984 0.985 0.984 0.985 0.984 0.985 

103 0.955 0.960 0.955 0.960 0.955 0.960 0.985 0.985 0.985 0.985 0.985 0.985 

104 0.956 0.961 0.956 0.961 0.956 0.961 0.985 0.986 0.985 0.986 0.985 0.986 

105 0.958 0.962 0.958 0.962 0.958 0.962 0.985 0.986 0.985 0.986 0.985 0.986 

106 0.959 0.963 0.959 0.963 0.959 0.963 0.986 0.986 0.986 0.986 0.986 0.986 

107 0.960 0.964 0.960 0.964 0.960 0.964 0.986 0.987 0.986 0.987 0.986 0.987 

108 0.962 0.965 0.962 0.965 0.962 0.965 0.986 0.987 0.986 0.987 0.986 0.987 
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109 0.963 0.966 0.963 0.966 0.963 0.966 0.986 0.987 0.986 0.987 0.986 0.987 

109
+ 

0.963 0.966 0.963 0.966 0.963 0.966 0.986 0.987 0.986 0.987 0.986 0.987 
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Stroke and Dementia 

 

Table 14. Probability of 1, 5 and 1 year survival computed from prevalence and mortality data fpr 

Stroke and Dementia. 

Age Stroke Dementia 

Survival 
probability – 1 

year 

Survival 
probability – 5 

year 

Survival 
probability – 

10 year 

Survival 
probability – 1 

year 

Survival 
probability – 5 

year 

Survival 
probability – 

10 year 

M F M F M F M F M F M F 

1 1.000 0.988 1.000 0.988 1.000 0.988 1.000 1.000 1.000 1.000 1.000 1.000 

2 1.000 0.994 1.000 0.994 1.000 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

3 1.000 0.996 1.000 0.996 1.000 0.996 1.000 1.000 1.000 1.000 1.000 1.000 

4 1.000 0.997 1.000 0.997 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

5 0.998 0.995 0.998 0.995 0.998 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

6 0.998 0.996 0.998 0.996 0.998 0.996 1.000 1.000 1.000 1.000 1.000 1.000 

7 0.998 0.996 0.998 0.996 0.998 0.996 1.000 1.000 1.000 1.000 1.000 1.000 

8 0.998 0.997 0.998 0.997 0.998 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

9 0.999 0.997 0.999 0.997 0.999 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

10 0.999 0.997 0.999 0.997 0.999 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

11 0.999 0.998 0.999 0.998 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

12 0.999 0.998 0.999 0.998 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

13 0.999 0.998 0.999 0.998 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

14 0.999 0.998 0.999 0.998 0.999 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

15 0.995 0.997 0.995 0.997 0.995 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

16 0.995 0.997 0.995 0.997 0.995 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

17 0.996 0.997 0.996 0.997 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

18 0.996 0.997 0.996 0.997 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

19 0.996 0.997 0.996 0.997 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

20 0.996 0.997 0.996 0.997 0.996 0.997 1.000 1.000 1.000 1.000 1.000 1.000 

21 0.997 0.998 0.997 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

22 0.997 0.998 0.997 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

23 0.997 0.998 0.997 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

24 0.997 0.998 0.997 0.998 0.997 0.998 1.000 1.000 1.000 1.000 1.000 1.000 

25 0.948 0.994 0.948 0.994 0.948 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

26 0.950 0.994 0.950 0.994 0.950 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

27 0.952 0.994 0.952 0.994 0.952 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

28 0.953 0.994 0.953 0.994 0.953 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

29 0.955 0.994 0.955 0.994 0.955 0.994 1.000 1.000 1.000 1.000 1.000 1.000 

30 0.956 0.995 0.956 0.995 0.956 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

31 0.958 0.995 0.958 0.995 0.958 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

32 0.959 0.995 0.959 0.995 0.959 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

33 0.960 0.995 0.960 0.995 0.960 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

34 0.962 0.995 0.962 0.995 0.962 0.995 1.000 1.000 1.000 1.000 1.000 1.000 

35 0.987 0.986 0.987 0.986 0.987 0.986 1.000 1.000 1.000 1.000 1.000 1.000 

36 0.987 0.987 0.987 0.987 0.987 0.987 1.000 1.000 1.000 1.000 1.000 1.000 
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37 0.987 0.987 0.987 0.987 0.987 0.987 1.000 1.000 1.000 1.000 1.000 1.000 

38 0.988 0.987 0.988 0.987 0.988 0.987 1.000 1.000 1.000 1.000 1.000 1.000 

39 0.988 0.988 0.988 0.988 0.988 0.988 1.000 1.000 1.000 1.000 1.000 1.000 

40 0.988 0.988 0.988 0.988 0.988 0.988 1.000 1.000 1.000 1.000 1.000 1.000 

41 0.989 0.988 0.989 0.988 0.989 0.988 1.000 1.000 1.000 1.000 1.000 1.000 

42 0.989 0.989 0.989 0.989 0.989 0.989 1.000 1.000 1.000 1.000 1.000 1.000 

43 0.989 0.989 0.989 0.989 0.989 0.989 1.000 1.000 1.000 1.000 1.000 1.000 

44 0.989 0.989 0.989 0.989 0.989 0.989 1.000 1.000 1.000 1.000 1.000 1.000 

45 0.977 0.976 0.977 0.976 0.977 0.976 1.000 1.000 1.000 1.000 1.000 1.000 

46 0.982 0.980 0.982 0.980 0.982 0.980 1.000 1.000 1.000 1.000 1.000 1.000 

47 0.985 0.983 0.985 0.983 0.985 0.983 1.000 1.000 1.000 1.000 1.000 1.000 

48 0.987 0.985 0.987 0.985 0.987 0.985 1.000 1.000 1.000 1.000 1.000 1.000 

49 0.989 0.987 0.989 0.987 0.989 0.987 1.000 1.000 1.000 1.000 1.000 1.000 

50 0.990 0.988 0.990 0.988 0.990 0.988 1.000 1.000 1.000 1.000 1.000 1.000 

51 0.991 0.989 0.991 0.989 0.991 0.989 1.000 1.000 1.000 1.000 1.000 1.000 

52 0.992 0.990 0.992 0.990 0.992 0.990 1.000 1.000 1.000 1.000 1.000 1.000 

53 0.993 0.991 0.993 0.991 0.993 0.991 1.000 1.000 1.000 1.000 1.000 1.000 

54 0.993 0.992 0.993 0.992 0.993 0.992 1.000 1.000 1.000 1.000 1.000 1.000 

55 0.983 0.981 0.983 0.981 0.983 0.981 1.000 1.000 1.000 1.000 1.000 1.000 

56 0.984 0.982 0.984 0.982 0.984 0.982 1.000 1.000 1.000 1.000 1.000 1.000 

57 0.985 0.984 0.985 0.984 0.985 0.984 1.000 1.000 1.000 1.000 1.000 1.000 

58 0.986 0.984 0.986 0.984 0.986 0.984 1.000 1.000 1.000 1.000 1.000 1.000 

59 0.987 0.985 0.987 0.985 0.987 0.985 1.000 1.000 1.000 1.000 1.000 1.000 

60 0.988 0.986 0.988 0.986 0.988 0.986 0.845 0.858 0.845 0.858 0.845 0.858 

61 0.988 0.987 0.988 0.987 0.988 0.987 0.866 0.876 0.866 0.876 0.866 0.876 

62 0.989 0.987 0.989 0.987 0.989 0.987 0.882 0.890 0.882 0.890 0.882 0.890 

63 0.989 0.988 0.989 0.988 0.989 0.988 0.894 0.901 0.894 0.901 0.894 0.901 

64 0.990 0.988 0.990 0.988 0.990 0.988 0.904 0.910 0.904 0.910 0.904 0.910 

65 0.977 0.970 0.977 0.970 0.977 0.970 0.431 0.438 0.431 0.438 0.431 0.438 

66 0.980 0.974 0.980 0.974 0.980 0.974 0.637 0.640 0.637 0.640 0.637 0.640 

67 0.982 0.977 0.982 0.977 0.982 0.977 0.734 0.735 0.734 0.735 0.734 0.735 

68 0.983 0.979 0.983 0.979 0.983 0.979 0.790 0.791 0.790 0.791 0.790 0.791 

69 0.985 0.981 0.985 0.981 0.985 0.981 0.826 0.827 0.826 0.827 0.826 0.827 

70 0.986 0.983 0.986 0.983 0.986 0.983 0.852 0.852 0.852 0.852 0.852 0.852 

71 0.987 0.984 0.987 0.984 0.987 0.984 0.871 0.871 0.871 0.871 0.871 0.871 

72 0.988 0.985 0.988 0.985 0.988 0.985 0.886 0.886 0.886 0.886 0.886 0.886 

73 0.989 0.986 0.989 0.986 0.989 0.986 0.897 0.898 0.897 0.898 0.897 0.898 

74 0.989 0.987 0.989 0.987 0.989 0.987 0.907 0.907 0.907 0.907 0.907 0.907 

75 0.960 0.949 0.960 0.949 0.960 0.949 0.482 0.445 0.482 0.445 0.482 0.445 

76 0.964 0.956 0.964 0.956 0.964 0.956 0.658 0.642 0.658 0.642 0.658 0.642 

77 0.967 0.962 0.967 0.962 0.967 0.962 0.744 0.736 0.744 0.736 0.744 0.736 

78 0.969 0.966 0.969 0.966 0.969 0.966 0.796 0.790 0.796 0.790 0.796 0.790 

79 0.972 0.969 0.972 0.969 0.972 0.969 0.830 0.826 0.830 0.826 0.830 0.826 

80 0.973 0.972 0.973 0.972 0.973 0.972 0.854 0.852 0.854 0.852 0.854 0.852 
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81 0.975 0.974 0.975 0.974 0.975 0.974 0.872 0.870 0.872 0.870 0.872 0.870 

82 0.977 0.976 0.977 0.976 0.977 0.976 0.887 0.885 0.887 0.885 0.887 0.885 

83 0.978 0.978 0.978 0.978 0.978 0.978 0.898 0.896 0.898 0.896 0.898 0.896 

84 0.979 0.979 0.979 0.979 0.979 0.979 0.907 0.906 0.907 0.906 0.907 0.906 

85 0.935 0.922 0.935 0.922 0.935 0.922 0.645 0.581 0.645 0.581 0.645 0.581 

86 0.938 0.926 0.938 0.926 0.938 0.926 0.734 0.699 0.734 0.699 0.734 0.699 

87 0.941 0.930 0.941 0.930 0.941 0.930 0.787 0.764 0.787 0.764 0.787 0.764 

88 0.944 0.933 0.944 0.933 0.944 0.933 0.821 0.805 0.821 0.805 0.821 0.805 

89 0.946 0.936 0.946 0.936 0.946 0.936 0.846 0.833 0.846 0.833 0.846 0.833 

90 0.948 0.939 0.948 0.939 0.948 0.939 0.864 0.853 0.864 0.853 0.864 0.853 

91 0.950 0.942 0.950 0.942 0.950 0.942 0.878 0.869 0.878 0.869 0.878 0.869 

92 0.951 0.944 0.951 0.944 0.951 0.944 0.889 0.881 0.889 0.881 0.889 0.881 

93 0.953 0.946 0.953 0.946 0.953 0.946 0.899 0.891 0.899 0.891 0.899 0.891 

94 0.955 0.948 0.955 0.948 0.955 0.948 0.906 0.900 0.906 0.900 0.906 0.900 

95 0.956 0.950 0.956 0.950 0.956 0.950 0.913 0.907 0.913 0.907 0.913 0.907 

96 0.957 0.951 0.957 0.951 0.957 0.951 0.918 0.912 0.918 0.912 0.918 0.912 

97 0.958 0.953 0.958 0.953 0.958 0.953 0.923 0.917 0.923 0.917 0.923 0.917 

98 0.960 0.954 0.960 0.954 0.960 0.954 0.927 0.922 0.927 0.922 0.927 0.922 

99 0.961 0.956 0.961 0.956 0.961 0.956 0.931 0.926 0.931 0.926 0.931 0.926 

100 0.962 0.957 0.962 0.957 0.962 0.957 0.934 0.929 0.934 0.929 0.934 0.929 

101 0.963 0.958 0.963 0.958 0.963 0.958 0.937 0.932 0.937 0.932 0.937 0.932 

102 0.964 0.959 0.964 0.959 0.964 0.959 0.939 0.935 0.939 0.935 0.939 0.935 

103 0.964 0.960 0.964 0.960 0.964 0.960 0.942 0.937 0.942 0.937 0.942 0.937 

104 0.965 0.961 0.965 0.961 0.965 0.961 0.944 0.939 0.944 0.939 0.944 0.939 

105 0.966 0.962 0.966 0.962 0.966 0.962 0.946 0.941 0.946 0.941 0.946 0.941 

106 0.967 0.963 0.967 0.963 0.967 0.963 0.948 0.943 0.948 0.943 0.948 0.943 

107 0.967 0.964 0.967 0.964 0.967 0.964 0.949 0.945 0.949 0.945 0.949 0.945 

108 0.968 0.965 0.968 0.965 0.968 0.965 0.951 0.946 0.951 0.946 0.951 0.946 

109 0.969 0.965 0.969 0.965 0.969 0.965 0.952 0.948 0.952 0.948 0.952 0.948 

109
+ 

0.969 0.965 0.969 0.965 0.969 0.965 0.952 0.948 0.952 0.948 0.952 0.948 

 

Lung cancer 

 

Table 15. Probability of 1, 5 and 1 year survival computed from prevalence and mortality data for 

Lung Cancer 

Age Survival probability 
– 1 year 

Survival probability 
– 5 year 

Survival probability 
– 10 year 

M F M F M F 

15-39 0.615 0.663 0.615 0.663 0.615 0.663 

40-49 0.751 0.774 0.751 0.774 0.751 0.774 

50-59 0.784 0.802 0.784 0.802 0.784 0.802 

60-69 0.790 0.818 0.790 0.818 0.790 0.818 

70-79 0.825 0.859 0.825 0.859 0.825 0.859 

>79 0.945 0.988 0.945 0.988 0.945 0.988 
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2.4 Relative risks 

We searched all relevant and latest reports from Committee on the Medical Effects of 

Air Pollutants (COMEAP), Environmental Protection Agency (EPA) International 

Science Assessments (ISA), World Health Organization (WHO) for long-term effect 

estimates of exposure to the 2 pollutants on chronic diseases, focussing on respiratory 

and cardiovascular disease, and lung cancer. We also conducted PubMed searches for 

association with long-term effects by disease group, using a validated and published 

search strategy (30), see example Pubmed searches: 

 

COPD: 

(((("air pollution"[Title/Abstract] OR ozone[Title/Abstract] OR "particulate 

matter"[Title/Abstract] OR PM[Title/Abstract] OR "nitrogen dioxide"[Title/Abstract] OR 

"NO2"[Title/Abstract])) AND (COPD OR "chronic obstructive pulmonary disease" OR 

"chronic bronchitis" OR emphysema)) AND systematic[sb] AND "last 5 years"[PDat]) 

 

Cardiovascular outcomes: 

(("air pollution"[Title/Abstract] OR ozone[Title/Abstract] OR "particulate 

matter"[Title/Abstract] OR PM[Title/Abstract] OR "nitrogen dioxide"[Title/Abstract] OR 

"NO2"[Title/Abstract])) AND (CVD[Title/Abstract] OR cardiovascular[Title/Abstract] OR 

stroke[Title/Abstract] OR cerebrovascular[Title/Abstract] OR "blood 

pressure"[Title/Abstract] OR hypertension[Title/Abstract] OR diabetes[Title/Abstract])  

 

Effect estimates were included using the following inclusion exclusion and preference 

criteria: 

 

Exposure: Measured or modelled annual exposure to NO2 or PM2.5. Short term studies 

including 24hour, 8 hour concentration data were not extracted. 

 

Outcome: Incidence or prevalence of respiratory diseases, including asthma, COPD, 

bronchitis; cardiovascular diseases, including CHD, stroke, diabetes and lung cancer 

and emerging diseases related to air pollution, including dementia and low birthweight. 

 

Source: COMEAP publications were prioritised, after which systematic reviews and 

meta-analyses preferred to RCT and single cohort studies, but these secondary latter 

sources were considered if no systematic reviews and meta-analyses for a given 

pollutant-outcome pair were identified. The most recent review and meta-analysis was 

preferred, but the inclusion/exclusion criteria and list of included studies was checked 

against other reviews to ensure the analysis was as complete and relevant as possible. 

When cohort and case-control/cross-sectional studies were included in the systematic 

review, these were included, but estimates from subgroup analyses of longitudinal 

cohort studies were preferred if available. Estimates from random effects meta-analyses 
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were extracted as between-study heterogeneity is expected in studies of air pollution 

and health outcomes. When studies presented models adjusting for confounding, the 

model adjusting for the most variables, was selected.  

 

Effect estimates: Effects presented as relative risk ratios (RR), hazard ratios (HR) and 

odds ratios (OR) were extracted. ORs are considered to approximate RR if the effect is 

rare (which is not the case for the majority of outcomes included) or when the effect size 

is small ie above 20% increased odds (31). For estimates above OR =1.2, the baseline 

risk was assessed and was found to range between 2.4 and 13.1%. This would result in 

an overestimation of the RR by less than 10%, so all ORs were considered to 

approximate RRs. HRs were also considered to approximate RRs. 

 

Effect estimates were presented for a range of exposure units and were standardised to 

10µg/m3 for all pollutants. When presented in parts per billion (ppb), conversion factors 

from Defra (32) were used to obtain estimates in µg/m3. Where effect estimates are 

based on PM10, a conversion factor of 1.43 was applied to convert the effect estimate to 

PM2.5, as recommended and performed in the a review of the quality of air index(33). 

When using the. dose-response estimate for effect of NO2 on dementia, the effect 

estimate was for NOx which was converted to NO2 using a scaling factor of 0.44. This 

factor was developed by Anderson et al. based on the ratio that fell midway between the 

average or roadside vs urban background monitoring sites in London for 2001 (see 

online supplement number 2) (20). 

 

Communication with COMEAP and steering group members led to the decision to 

reduce all NO2 effect estimates to 40% of the original RR (a reduction by 60%) to 

adjusts for the effect of PM2.5 and other pollutants. This represents the mid point of 

range of  25-55% reduction recommended to be applied to unadjusted coefficients to 

account for the effect of PM 2.5 and other pollutants (28). Table 16 presents features 

from the studies from which dose-response estiamtes were obtained. 

 

Table 16. Summary of studies identified potential associations between long-term exposure to 

NO2  and PM2.5 of air pollution on chronic disease 

Outcome   Reference / Source Population Exposure 
measurement 

Outcome 
measurement 

Effect size 

NO2 dose-response estimates 
 
 

Asthma  
(children) 

Khreis et al. 2016 (7) 
meta-analysis of 7 

studies 

Children 
aged ≤6 

years 

Monitoring data, 
LUR or dispersion 

modelling of 
annual average 

(per 4µg/m3) 

Varied: 
parental/self- 

report of doctor 
diagnosis; on 

treatment; 
episodes of 

wheeze; hospital 
discharge; 

OR 1.08 
(1.04; 
1.12)  

 

 Khreis et al. 2016 (7) Children   OR 1.03 
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meta-analysis of 14 
studies  

aged >6 
years 

(1.00; 
1.06)  

 

Asthma 
(adults) 

[59] 

Jaquemin et al. 2015 
(8) 

ESCAPE project  
(6 European Cohorts) 
including the ECHRS 
– mentioned in EPA 

ISA 2016  

23704 
participants 
with 1257 
incident 
cases of 
asthma  

LUR models of 
annual average at 
home address (per 

10µg/m3) 

Questionnaire 
(excludes 

asthmatics & 
symptomatics 

within 1 year of 
baseline) 

OR 1.10 
(0.99;1.21)  

Diabetes 
 

Eze et al. 2015 (15)   
meta-analysis of 5 
longitudinal studies 

(other results include 
CC) 

Males & 
females 

LUR models & 
satellite-derived 

estimates of 
annual average at 
home address (per 

10µg/m3) 

Doctor diagnosed  
or antidiabetic 
medication use 

RR 1.12 
(1.05; 
1.19) 

Lung 
cancer 

 

Hamra et al. 2015(26)   
meta-analysis of 15 

studies  

Europe, 
North 

American & 
rest of world 

Fixed site 
monitoring data; 
LUR, dispersion, 
spatiotemporal, 
inverse-distance 

modelling of 
annual average 
exposure (per 

10µg/m3) 

Not reported (lung 
cancer incidence & 

mortality) 

RR 1.04 
(1.01; 
1.08) 

Low birth 
weight 

 

Pedersen et al. 2013  
(22) ESCAPE project 

61452 
women with 

singleton 
term births in 
Europe. 4.2% 

LBW 

LUR models of 
annual average at 
home address (per 

10µg/m3) 

Questionnaire & 
interview 

OR 1.09 
(1.00; 
1.19) 

Dementia  Oudin et al. 2016(19) 
Prospective cohort 

study (Sweden) 

1806 
participants 

from the 
Betula study 
in Sweden 

with no AD at 
baseline 

LUR models of 
annual average of 

NOx at home 
address  (per 

10µg/m3). 

Medical record 
linkage for 

dementia diagnosis 
codes (DSM-IV 

criteria) 

HR 1.08 
(1.00; 
1.16) * 

note, for 
NOx not 

NO2.  
Converted 
from NOx 
to NO2: 
HR 1.03 

(1.00; 
1.07) 

PM2.5 dose-response estimates 
 
 

Asthma  
(children) 

 

Khreis et al. 2016 7) 
 (Meta-analysis) 8 

studies (including all 
relevant studies 

previously identified 
from ISA EPA 2016 

Children 
aged >6 

years 

Monitoring data, 
LUR or dispersion 

modelling of 
annual average 

(per 1µg/m3) 

Varied: 
parental/self- 

report of doctor 
diagnosis; on 

treatment; 
episodes of 

wheeze; hospital 
discharge; 

combinations of 
above criteria 

OR 1.04 
(1.02; 
1.07)  

 

COPD/ 
Chronic 

Bronchitis 

COMEAP 2016 (10) 
Most recent review– 
decided to focus on 

No 
association 
with PM2.5 

Annual average 
(per 10µg/m3 of 

PM10) 

 OR 1.32 
(1.02; 
1.71) 
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 Chronic Bronchitis 
instead of COPD 

but 
recommend 
using PM 10 

estimate 
based on Cai 
et al. 2014 35 
estimate for 

chronic 
phlegm in 

never 
smokers in 
sensitivity 
analyses:  

Can scale 
to PM2.5 

using the 
conversion 

factor of 
PM2.5-> 

PM10: 0.7 
(or PM10 -> 
PM2.5:1.42)  

recently 
used in the 
air quality 

index, 
COMEAP: 
Converted 

to per 
10µg/m3 
of PM2.5: 
OR 1.49 

(1.03; 
2.14) 

CHD Cesaroni et al. 2014 
(13)  

ESCAPE project: 11 
European Cohorts:  
Estimate used in 

CAPTOR tool from 
subgroup analysis of 

participants with 
additional information 
on CVD risk factors 

10,166 
participants 
with 5157  
incident 

events of 
acute MI or 
other  acute 

IHD 

LUR models of 
annual average at 
home address (per 

5µg/m3) 

Linkage to hospital 
discharge & 

mortality registries, 
excluding coronary 

hospitalisations 
28d before event 

HR 1.19 
(1.01; 
1.42) 

  

Stroke 
 

Scheers et al. 2015 
(17)   

(Meta-analysis) 
10 studies from  

>10 million 
people 

Europe & 
America 

Fixe monitoring 
data; LUR models 
of annual average 
at home address 

(per 5µg/m3) 

Not reported (but 
outcome stroke 

incidence or 
mortality, so death 
or hospitalisation 
registry linkage)   

HR 1.064 
(1.021; 
1.109)  

 

Diabetes 
 

Eze et al. 2015 (15)  
(meta-analysis) 

5 longitudinal studies 
(other results include 
case-control design) 

Males & 
females 

 

LUR models & 
satellite-derived 

estimates of 
annual average at 
home address (per 

10µg/m3) 

LUR models & 
satellite-derived 

estimates of 
annual average at 
home address (per 

10µg/m3) 

RR 1.10 
(1.02; 
1.18) 

Lung 
cancer 

 

Hamra et al. 2014 (27) 
(meta-analysis)  

13 studies  

Europe, 
North 

American & 
rest of world 

Fixed site 
monitoring data; 
LUR, dispersion, 
spatiotemporal, 
inverse-distance 

modelling of 
annual average 
exposure (per 

10µg/m3) 

Not reported (lung 
cancer incidence & 

mortality) 

RR 1.09 
(1.04; 
1.14) 

Low birth 
weight 

 

Pedersen et al. 2013 
(22) 

ESCAPE project 

50151 
women with 

singleton 
term births in 
Europe. 1.3% 

LBW 

LUR models of 
annual average at 
home address (per 

5µg/m3) 

Questionnaire & 
interview 

OR 1.18 
(1.06; 
1.33) 
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 Health economic data 3

3.1 Sources of cost data 

Inpatient costs came from the Hospital Episodes Statistics (HES) dataset. We identified 

all episodes in 2010 with a primary diagnosis matching the list of ICD-10 codes in Table 

17. The episode’s HRGs version 4.0 were matched to the national tariffs and adjusted 

for the Market Factor Forces (MFF).   

 

Table 17. List of ICD-10 codes 

Disease ICD code 

Asthma J45  

COPD  J40-J47 

CHD I20-I25 

Stroke I60-I63  

Diabetes E10, E11 and O24.4  

Dementia F00-F03 

Lung Cancer C34 

Respiratory J00-J99 

Cardiovascular I00-I99 

 

Outpatient costs, extracted from the literature (see Appendix 5 for more details), were 

combined with the inpatient costs to estimate the hospitalisation costs.  

 

All the other costs came from the literature, with the exception of outpatient costs for 

asthma which we proxied with the NHS programme budget.  

 

The microsimulation mdoel uses cost per case to calculate the total healthcare costs 

incurred due to the prevalence of disease in a scenario. 

 

Costs were available from the Imperial Business School in 3 different formats, see 

appendix 5: they were provided as total costs (in £ million) for England or the UK 

depending on the study; as costs per case, or as cost per death: 

All of the costs were inflated from the original cost year to 2015. In order to obtain a cost 

per case for each health care category, and for each disease: 

 

1. Total costs were divided by the total number of cases in the cost year for the country. This 

method assumed that the prevalence of diseases obeained for the model for each disease 

was constant over time, as it was not possible to obtain prevalence estimates for each of 

the diseases, for each of the years of cost. However, the prevalence used in the 

microsiimulation model was scaled up to the population in the year of the cost, in order to 
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more accurately reflect the total number of cases of diseases which contributed to the total 

cost in that year. 

2. Cost per case inflated to 2015 (eg for asthma outpatient costs for instance) were used 

directly.  

3. When costs were given per death, they were inflated to 2015 and then adjusted for the ratio 

of deaths to cases for that disease. 

Table 18. Summary of the cost per case identified in the literature per type of care by chronic 

disease  (annual average £ per case) 

Cost type 

(£ per case) 

Primary 

Care 

Social 

Care 

Medication  Hospitalisation 

Asthma 21.28 0.50 87.57 27.02 

Chronic 

Obstructive 

Pulmonary 

Disease 

(COPD)  

400.43 85.30 126.79 587.48 

Coronary 

Heart 

Disease 

(CHD) 

71.57 109.70 818.60 1460.46 

Stroke 36.45 76.05 504.10 722.84 

Diabetes 375.00 601.56 276.88 536.75 

Lung 

cancer 

51.73 89.38 35.10 466.63 

Dementia 430.62 12348.93 310.24 197.24 
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UKHF microsimulation methodology 

 Microsimulation framework 1

Our simulation consists of 2 modules. The first module calculates the predictions of risk 

factor trends over time based on data from rolling cross-sectional studies. The second 

module performs the microsimulation of a virtual population, generated with 

demographic characteristics matching those of the observed data. The health trajectory 

of each individual from the population is simulated over time allowing them to contract, 

survive or die from a set of diseases or injuries related to the analysed risk factors. The 

detailed description of the 2 modules is presented below. 

 

 Microsimulation Module one: Predictions of NO2 and PM2.5 over time 2

NO2 and PM2.5 are analysed within the model as risk factors (RF), as described in Table 

19. 

 

Table 19 Description of the categories used for the risk factors NO2 and PM2.5 

Risk factor (RF) Number of 

categories (N) 

Categories 

Nitrogen dioxide (NO2) 3 NO2 < 20.5 µg m-3  

NO2 from 20.5 to 28.5 µg m-3 

NO2 ≥ 28.5 µg m-3   

Particulate matter (PM2.5) 3 PM2.5 < 12.3 µg m-3  

PM2.5  from 12.3 to 13.5 µg m-3 

PM2.5  ≥ 13.5 µg m-3 

 

 

For the RF, let N be the number of categories for a given risk factor, eg N = 3 for NO2. 

Let 𝑘 = 1, 2, …, N number these categories and 𝑝𝑘(𝑡) denote the prevalence of 

individuals with RF values that correspond to the category 𝑘 at time t. We estimate 𝑝𝑘(𝑡) 

using multinomial logistic regression model with prevalence of RF category 𝑘 as the 

outcome, and time t as a single explanatory variable. For 𝑘 < 𝑁, we have 

 
 

  0 1

1

ln k kkp t
t

p t
 

 
  

 
  (0.1) 

The prevalence of the first category is obtained by using the normalisation constraint 

∑ 𝑝𝑘(𝑡)𝑁
𝑘=1 = 1. Solving equation (0.1) for 𝑝𝑘(𝑡), we obtain 

  
 

 
0 1

N ' '

0 1k 1
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 ,
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k k k
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  (0.2) 
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which respects all constraints on the prevalence values, ie normalisation and [0, 1] 

bounds. 

 

2.1 Multinomial logistic regression for each risk factor 

Measured data consist of sets of probabilities, with their variances, at specific time 

values (typically the year of the survey). For any particular time the sum of these 

probabilities is unity. Typically such data might be the probabilities of low, medium and 

high pollution exposure, as they are extracted from the survey data set. Each data point 

is treated as a normally distributed1 random variable; together they are a set of N 

groups (number of years) of K probabilities {{ti, ki, ki |k[0,K-1]} | i[0,N-1]}. For each 

year the set of K probabilities form a distribution – their sum is equal to unity. 

 

The regression consists of fitting a set of logistic functions {pk(a, b, t)|k[0,K-1]} to these 

data – one function for each k-value. At each time value the sum of these functions is 

unity. Thus, for example, when measuring NO2 in the 3 states already mentioned, the 

k = 0 regression function represents the probability of low pollution exposure over time, 

k = 1 the probability of medium pollution exposure and k = 2 the probability of high 

pollution exposure. 

 

The regression equations are most easily derived from a familiar least square 

minimization. In the following equation set the weighted difference between the 

measured and predicted probabilities is written as S; the logistic regression functions 

pk(a,b;t) are chosen to be ratios of sums of exponentials (This is equivalent to modelling 

the log probability ratios, pk/p0, as linear functions of time). 

  
  

2
1 1

1
2 2

0 0

, ;
,

k K i N
k i ki

k i ki

p t
S





   

 


  

a b
a b   (0.2) 

                                            

 

 
1
 Depending on the circumstances this assumption will be more or less accurate and more or less 

necessary. In general, it is both extremely useful and accurate. For simple surveys the individual 

Bayesian prior and posterior probabilities are Beta distributions – the likelihood being binomial. For 

reasonably large samples, the approximation of the beta distributions by normal distributions is both 

legitimate and a practical necessity. For complex, multi-PSU, stratified surveys, it is again assumed that 

these base probabilities are approximately normally distributed and, again, it is an assumption that makes 

the analysis tractable. 

 

Depending on the nature of the raw data set it may be possible to use non-parametric statistical methods 

for this analysis. This is possible for the HSE and GHS data sets of this study but when this has been 

done the authors can report no discernible difference in the results.       
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The parameters A0, a0 and b0 are all zero and are used merely to preserve the 

symmetry of the expressions and their manipulation. For a K-dimensional set of 

probabilities there will be 2(K-1) regression parameters to be determined.    

For a given dimension K there are K-1 independent functions pk – the remaining 

function being determined from the requirement that complete set of K form a 

distribution and sum to unity. 

 

Note that the parameterization ensures that the necessary requirement that each pk be 

interpretable as a probability – a real number lying between 0 and 1. 

The minimum of the function S is determined from the equations  

 0        for j=1,2,....,k-1
j j

S S
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  (0.3) 

The values of the vectors a, b that satisfy these equations are denoted b,a ˆˆ . They 

provide the trend lines  tpk ;ˆˆ b,a , for the separate probabilities. The confidence intervals 

for the trend lines are derived most easily from the underlying Bayesian analysis of the 

problem. 

 

2.2 Bayesian interpretation 

The 2K-2 regression parameters {a,b} are regarded as random variables whose 

posterior distribution is proportional to the function exp(-S(a,b)). The maximum likelihood 

estimate of this probability distribution function, the minimum of the function S, is 

obtained at the values b,a ˆˆ . Other properties of the (2K-2)-dimensional probability 

distribution function are obtained by first approximating it as a (2K-2)-dimensional 

normal distribution whose mean is the maximum likelihood estimate. This amounts to 

expanding the function S(a,b) in a Taylor series as far as terms quadratic in the 

differences    bb,aa ˆˆ   about the maximum likelihood estimate  b,aS ˆˆˆ S . Hence 
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The (2K-2)-dimensional covariance matrix P is the inverse of the appropriate expansion 

coefficients. This matrix is central to the construction of the confidence limits for the 

trend lines.   

2.2.1 Estimation of the confidence intervals 

The logistic regression functions pk(t) can be approximated as a normally distributed 

time-varying random variable     ttpN kk
2,ˆ   by expanding pk about its maximum 

likelihood estimate (the trend line)    tptpk ,ˆ,ˆˆ ba  
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Denoting mean values by angled brackets, the variance of pk is thereby approximated 

as 
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When K=3 this equation can be written as the 4-dimensional inner product 
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where   jjiicdij ddccP ˆˆ  . The 95% confidence interval for pk(t) is centred given as 

        ttttp kkk  96.1p ,96.1ˆ
k  . 

 

 Module 2: Microsimulation model 3

3.1 Microsimulation initialisation: birth, disease and death models 

Simulated people are generated with the correct demographic statistics in the 

simulation’s start-year. In this year women are stochastically allocated the number and 

years of birth of their children – these are generated from known fertility and mother’s 

age at birth statistics (valid in the start-year). If a woman has children then those 

children are generated as members of the simulation in the appropriate birth year. 

The microsimulation is provided with a list of air pollution-related diseases. These 

diseases used the best available incidence, mortality, survival, relative risk and 

prevalence statistics (by age and gender). Individuals in the model are simulated from 

their year of birth (which may be before the start year of the simulation). In the course of 

their lives, simulated people can die from one of the diseases caused by an air pollutant 

that they might have acquired or from some other cause(s). The probability that a 

person of a given age and gender dies from a cause other than the disease are 

calculated in terms of known death and disease statistics valid in the start-year. It is 

constant over the course of the simulation. 

 

The microsimulation incorporates a sophisticated economic module. The module 

employs a Markov-type simulation of long-term health benefits and health care costs. It 

synthesises and estimates evidence on cost-utility analysis. The model is used to 

project the differences in quality-adjusted life years (QALYs), and direct lifetime health-

care costs over a specified time scale. The direct healthcare costs are presented 

separately in terms of hospital admissions, general practitioner costs, medication costs 

and social care costs. Outputs can be discounted for any specific discount rate. 

This following section provides an overview of the main assumptions of the model.  

 

3.2 Population models 

Populations are implemented as instances of the TPopulation C++ class. The 

TPopulation class is created from a population (*.ppl) file. Usually a simulation will use 

only one population but it can simultaneously process multiple populations (for example, 

different ethnicities within a national population). 

 

3.2.1 Population Editor 

The Population Editor Allows editing and testing of TPopulation objects. The population 

is created in the start-year and propagated forwards in time. An example population 
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pyramid which can be used when initialising the model is shown in Figure 1 shows the 

population distribution for England in 2015 used in the initialisation of the model. 

 

 

Figure 1 Population pyramid for England in 2015 

People within the model can die from specific diseases or from other causes. A disease 

file is created within the program to represent deaths from other causes. The following 

distributions are required by the population editor (Table 20). 

 

Table 20 Summary of the parameters representing the distribution component 

Distribution name symbol note 

MalesByAgeByYear 𝑝𝑚(𝑎) Input in year0 – probability of a male 

having age a 

FemalesByAgeByYear 𝑝𝑓(𝑎) Input in year0 – probability of a female 

having age a 

BirthsByAgeofMother 𝑝𝑏(𝑎) Input in year0 – conditional probability of a 

birth at age a| the mother gives birth. 

NumberOfBirths 𝑝(𝑛) TFR, Poisson distribution, probability of 

giving birth to n children 

 



Appendix 1. Technical appendix and data inputs 

 

35 

 

3.2.1.1 Birth model 

Any female in the child bearing years {AgeAtChild.lo, AgeAtChild.hi} is deemed capable 

of giving birth. The number of children, n, that she has in her life is dictated by the 

Poisson distribution 𝑝(𝑛) where the mean of the Poisson distribution is the Total 

Fertility Rate (TFR) parameter2.  

 

The probability that a mother (who does give birth) gives birth to a child at age a is 

determined from the BirthsByAgeOfMother distribution as 𝑝𝑏(𝑎). For any particular 

mother the births of multiple children are treated as independent events, so that the 

probability that a mother who produces N children produces n of them at age a is given 

as the Binomially distributed variable, 

  
 

     
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  (0.4) 

The probability that the mother gives birth to n children at age a is 
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Performing the summation in this equation gives the simplifying result that the 

probability pb(n at a) is itself Poisson distributed with mean parameter 𝜆𝑝𝑏(𝑎), 
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Thus, on average, a mother at age 𝑎 will produce 𝜆𝑝𝑏(𝑎) children in that year. 

The gender of the children3 is determined by the probability pmale=1-pfemale. In the 

baseline model this is taken to be the probability Nm/(Nm+Nf).  

 

The Population editor’ menu item Population Editor\Tools\Births\show random birthList 

creates an instance of the TPopulation class and uses it to generate and list a 

(selectable) sample of mothers and the years in which they give birth. 

 

3.2.2 Deaths from modelled diseases 

The simulation models any number of specified diseases some of which may be fatal. In 

the start year the simulation’s death model uses the diseases’ own mortality statistics to 

adjust the probabilities of death by age and gender. In the start year the net effect is to 

maintain the same probability of death by age and gender as before; in subsequent 

                                            

 

 
2
 This could be made to be time dependent; in the baseline model it is constant. 

3
 The probability of child gender can be made time dependent.  
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years, however, the rates at which people die from modelled diseases will change as 

modelled risk factors change.  

 

3.3 The risk factor model 

The distribution of risk factors (RF) in the population is estimated using regression 

analysis stratified by both sex S = {male, female} and age group A = {0-4, 5-9, ..., 70-74, 

75+}. The fitted trends are extrapolated to forecast the distribution of each RF category 

in the future. For each sex-and-age-group stratum, the set of cross-sectional, time-

dependent, discrete distributions 𝐷 = {𝑝𝑘(𝑡)|𝑘 = 1, … 𝑁;  𝑡 > 0}, is used to manufacture 

RF trends for individual members of the population. Each air pollutant (eg NO2, PM2.5) 

is modelled as a continuous risk factor. 

3.3.1 Continuous risk factors 

In the case of a continuous RF, for each discrete distribution 𝐷 there is a continuous 

counterpart. Let 𝛽 denote the RF value in the continuous scale and let 𝑓(𝛽|𝐴, 𝑆, 𝑡) be 

the probability density function of 𝛽 for age group 𝐴 and sex 𝑆 at time 𝑡. Then  

    | , | , , .k

k

p t A S f A S t d


 


    (0.7) 

Equations (0.2) and (0.7) both refer to the same quantity. However, equation (0.7) uses 

the definition of the probability density function to express the age-and-sex-specific 

percentage of individuals in RF category k at time t. Equation (0.2) gives an estimate of 

this quantity using equation (0.1) for all k = 0, …, N. The cumulative distribution function 

of 𝛽 is 

    
0

| , , | , , .F A S t f A S t d



      (0.8) 

At time t, a person with sex 𝑆 belonging to the age group 𝐴 is said to be on the 𝑝–th 

percentile of this distribution if 𝐹(𝛽|𝐴, 𝑆, 𝑡) = 𝑝/100. Given the cross-sectional 

information from the set of distributions 𝐷, it is possible to simulate longitudinal 

trajectories by forming pseudo-cohorts within the population. A key requirement for 

these sets of longitudinal trajectories is that they reproduce the cross-sectional 

distribution of RF categories for any year with available data. The method adopted here 

and in our earlier work (1) is based on the assumption that person’s RF value changes 

throughout their lives in such a way that they always have the same associated 

percentile rank. As they age, individuals move from one age group to another and their 

RF value changes so that they have the same percentile rank but of a different RF 

distribution. Crucially it meets the important condition that the cross-sectional RF 

distributions obtained by simulation match the RF distributions of the observed data. 

The above procedure can be explained using the example of the NO2 distribution. The 

NO2 distributions are known for the population stratified by sex and age for all years of 

the simulation (by extrapolation of fitted model, see equation (0.1)). A person who is in 
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age group 𝐴 and who grows ten years older will at some time move into the next age 

group 𝐴′ and will have a BMI that was described first by the distribution 𝑓(𝛽|𝐴, 𝑆, 𝑡) and 

then at the later time 𝑡′ by the distribution 𝑓(𝛽|𝐴′, 𝑆, 𝑡′). If the NO2 exposure level of that 

individual is on the 𝑝-th percentile of the NO2 distribution, their NO2 exposure level will 

change from 𝛽 to 𝛽′ so that 
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Where 𝐹−1
 is the inverse of the cumulative distribution function of 𝛽, which we model 

with a continuous uniform distribution within the RF categories (see Table 19). Equation 

(0.10) guarantees that the transformation taking the random variable 𝛽 to 𝛽′ ensures the 

correct cross-sectional distribution at time 𝑡′. 

 

The microsimulation first generates individuals from the RF distributions of the set 𝐷 

and, once generated, grows the individual’s RF in a way that is also determined by the 

set 𝐷. It is possible to implement equation (0.10) as a suitably fast algorithm. 

 

3.4 Relative risks 

Suppose that  is a risk factor state of some risk factor  and denote by pA (d|,a,s) the 

incidence  probability for the disease d given the risk state, , the person’s age, a, and 

gender, s. The relative risk A is defined by equation (0.10). 
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Where 0 is the zero risk state. 

The incidence probabilities, as reported, can be expressed in terms of the equation, 
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Combining these equations allows the conditional incidence probabilities to be written in 

terms of known quantities 
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Previous to any series of Monte Carlo trials the microsimulation program pre-processes 

the set of diseases and stores the calibrated incidence statistics pA (d|0, a, s). These 

incidence statistics are calibrated to national level data sets for both national level and 

local authority model simulations. In this project the risk factor distributions and 

incidence risks for England are used to calculate the calibrated risks.  

 

3.5 Modelling diseases 

Disease modelling relies heavily on the sets of incidence, mortality, survival, relative risk 

and prevalence statistics. In some cases where a data set is unavailable or not 

available is the specified form for the model, data has been approximated from the 

known sets of the data. 

 

The microsimulation uses risk dependent incidence statistics and these are inferred 

from the relative risk statistics and the distribution of the risk factor within the population. 

In the simulation, individuals are assigned a risk factor trajectory giving their personal 

risk factor history for each year of their lives. Their probability of getting a particular risk 

factor related disease in a particular year will depend on their risk factor state in that 

year. 

 

Once a person has a fatal disease (or diseases) their probability of survival will be 

controlled by a combination of the disease-survival statistics and the probabilities of 

dying from other causes. Disease survival statistics are modelled as age and gender 

dependent exponential distributions.  

 

3.5.1 Mortality statistics 

In any year, in some population, in a sample of N people who have the disease a subset 

N  will die from the disease. 

 

Mortality statistics record the cross sectional probabilities of death as a result of the 

disease – possibly stratifying by age  

 
N

p
N


    (0.11) 

Within some such subset N of people that die in that year from the disease, the 

distribution by year-of-disease is not usually recorded. This distribution would be most 

useful. Consider 2 important idealised, special cases 

Suppose the true probabilities of dying in the years after some age 0a  are 

 0 1 2 3 4, , , ,p p p p p       

The probability of being alive after N years is simply that you don’t die in each year  

        0 0 1 2 11 1 1 .. 1survive Np a N p p p p            (0.12) 
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3.5.2 Survival rates 

It is common practice to describe survival in terms of a survival rate R, supposing an 

exponential death-distribution.  In this formulation the probability of surviving t years 

from some time t0 is given as 

  survival
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t

Ru Rtp t R due e      (0.13) 

For a time period of 1 year   
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For a time period of, for example, 4 years, 
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In short, the Rate is minus the natural log of the 1-year survival probability. 

 

3.5.3 The survival models 

For any potentially terminal disease the model can use any of the 3 survival models, 

numbered ((0, 1, 2)). The parameters describing these models are given below.  

 

Survival model 0  

A single probability of dying  0p , where 0p  is valid for all years. Given the 1-year 

survival probability  1survivalp  

The model uses 1 parameter ((R)) 

   ln 1survivalR p    (0.16) 

Survival model 1 

Two different probabilities of dying  0 1,p p  , where 0p  is valid for the first year; 1p

thereafter. The model uses 2 parameters ((p1, R)). Given the 1-year survival probability 

 1survivalp and the 5-year survival probability  5survivalp  
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Survival model 2 

Three different probabilities of dying  0 1 5, ,p p p   , where 0p  is valid for the first year; 

1p for the second to the fifth year; 5p thereafter. The model uses 3 parameters ((p1, R, 

R>5)) 

Given the 1-year survival probability  1survivalp and the 5-year survival probability 

 5survivalp  
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  (0.18) 

Remember that different probabilities will apply to different age and gender groups. 

Typically the data might be divided into 10 year age groups. 

 

3.5.4 Modelling low birth weight 

The modelling method assumes that low birth weight (LBW) is a disease associated 

with a women who gives birth. The method also assumes that LBW is an acute disease; 

an incidence case in any year affects the prevalence rate in that year only. In the start 

year of the simulation the total of number of births associated to a woman and the year 

of each birth is computed. The probability of a newborn being LBW is calculated using 

the risk factor level (ie, air pollution level) in the year of birth and the associated relative 

risk. This approach is used when modelling other diseases in the simulation.  

 

There are 2 differences between modelling LBW and other diseases. Firstly, a mother 

can have multiple births in a given year which can result in multiple incident cases of 

LBW. In comparison other diseases can be contracted only once in a year. Secondly, it 

is possible that in some years of a mother's life she does not give birth. The probability 

of contracting a LBW in these years is therefore zero.  

 

Limitations  

The modelling method assumes that LBW is a disease per se. A limitation extending 

from this would be that we do not take account of subsequent diseases brought about 

by LBW, eg, diabetes or CHD. The model therefore underestimates the long-term 

economic costs of LBW associated with air pollution. Another limitation is that we allow 

multiple births in the simulation (eg twins), but we do take account of the possible 

impact of multiple births on LBW. Multiple births are simulated as a list of independent 

births having the same probability of causing LBW. 
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3.6 Approximating missing disease statistics 

A number of tools have been developed in the model in order to compute missing 

disease statistics data such as incidence or prevalence. 

 

3.6.1 Approximating survival data from mortality and prevalence 

An example is provided here with a standard life-table analysis for a disease d.     

Consider the 4 following states: 

state Description 
0 alive without disease d 

1 alive with disease d 
2 dead from disease d 

3 dead from another disease 
pik  is the probability of disease d incidence, aged k 

pk  is the probability of dying from the disease d, aged k 

𝑝𝜔̅𝑘 is the probability of dying other than from disease d, aged k 

The state transition matrix is constructed as follows 
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  (0.19) 

It is worth noting that the separate columns correctly sum to unity. 

The disease mortality equation is that for state-2, 

      2 1 21 kp k p p k p k     (0.20) 

The probability of dying from the disease in the age interval [k, k+1] is  kpp k 1  - this is 

otherwise the (cross-sectional) disease mortality, pmor(k). p1(k) is otherwise known as 

the disease prevalence, ppre(k). Hence the relation 

 
 

 
mor

k

pre

p k
p

p k
    (0.21) 

For exponential survival probabilities the probability of dying from the disease in the 

age-interval [k, k+1] is denoted pk and is given by the formula 

  1 ln 1kR

k k kp e R p 


        (0.22) 

When, as is the case for most cancers, these survival probabilities are known the 

microsimulation will use them, when they are not known or are too old to be any longer 

of any use, the microsimulation uses survival statistics inferred from the prevalence and 

mortality statistics (equation (0.21)). An alternative derivation equation (0.21) is as 
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follows. Let Nk be the number of people in the population aged k and let nk be the 

number of people in the population aged k with the disease. Then, the number of deaths 

from the disease of people aged k can be given in 2 ways: as pknk and, equivalently, 

as pmor(k)Nk . Observing that the disease prevalence is nk/Nk leads to the equation 

 

 

 

 
 

k k mor k

k
pre

k

mor

k

pre

p n p k N

n
p k

N

p k
p

p k













  (0.23) 

3.6.2 Approximating disease incidence from prevalence 

The algorithm estimates the probability of contracting a disease given age and sex, 

ˆ( | , )p d a s  from prevalence rates, survival rates and mortality rates.  

 

Step 1: State transition matrix of the algorithm 
 

1 1

1 1

1 1

ˆ( 1| ) (1 ( | ))(1 ( | , )) 0 0 0 ( | )

ˆ( 1| ) (1 ( | )) ( | , ) 0 0 0 ( | )

( 1| ) 0 1 ( | ) 1 ( | ) 0 ( | )

( 1| ) ( | ) ( | ) ( | ) 1 ( |

wd d

d w d

d w w w w d

dead w w w w w dead

p a s p a s p d a s p a s

p a s p a s p d a s p a s

p a s p a s p a s p a s

p a s p a s p a s p a s p a s

 

 

     
   

    
     
   

    )

 
 
 
 
 
 

  (0.24) 

The probability of being in a set of states: 

0S
 

( | )
d

p a s
 

The probability of being alive without disease at 

age a  

1S
 1( | )dp a s

 
The probability of being alive with new disease 

(contracting within a year) at age a  

2S
 

( | )dp a s
 

The probability of being alive with old disease at age 

a  

3S
 

( | )deadp a s
 

The probability of being dead for any reason (from the 

disease or other reasons) at age a  

 

ˆ( | , )p d a s     The estimated incidence probability at age of a given sex type s  . 

( | )wp a s    The probability of dying from other causes at age of a  given sex type s . 

1 1( | )w wp a s   The probability of dying from any reason within the first years of contracting 

the disease at the age of a  given sex type s . 

( | )w wp a s  The probability of dying from any reasons after the first years of contracting 

the disease at the age a  given sex type s . 

1 ( | )survival stp a s  The probability of surviving the first year after contracting the disease at 

the age of a  given sex type s . 
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1( | )survivalp a s  The probability of surviving the year at the age of a  given sex type s . 

 

Step 2: The prevalence for a particular age group 

Estimated prevalence rate can be expressed by, 

 

 

max_

min_

_ max_

min_

ˆ ( | ) ( | )
ˆ ( | )

( | )

a

prea

pre mean a

a

P a s a s
P agegroup s

a s










  (0.25) 

where  

 
1

1

( | ) ( | )ˆ ( | )
( | ) ( | ) ( | )

d d
pre

d d d

p a s p a s
P a s

p a s p a s p a s




 
  (0.26) 

where min_ a is the youngest age in that age group and max_ a  the oldest. ( | )a s  is the 

population distribution stratified by age given sex. 

 

Step 3: Regression 

We have 2 algorithms to find the optimum value of ˆ( | , )p d a s : simplex algorithm and 

cauchy algorithm. Simplex algorithm finds an optimum set of incidence rates of all age 

groups by minimising the distance between the estimated global prevalence rate and 

the actual global prevalence rate, shown in (0.27). We use simplex algorithm for most 

diseases as it is faster. 

 

 
_ _

ˆ ˆ( ( | , )) ( ( | , )) _

ˆarg min arg min ( ( | ) ( | ))pre mean pre mean
set p d a s set p d a s age group

S S P agegroup s P agegroup s
 

  
 
   (0.27) 

Cauchy algorithm finds an optimum incidence rate for each individual age group by 

minimising the distance between the estimated prevalence rate and the actual 

prevalence rate of the age group, shown in (0.28). We use Cauchy algorithm for 

diseases which are associated to certain age groups, eg, dementia which is only 

associated to people older than 60. 

 

  _ _
ˆ ˆ( | , ) ( | , )

ˆarg min arg min ( | ) ( | )pre mean pre mean
p d a s p d a s

S S P agegroup s P agegroup s    (0.29) 

3.7 Model scenarios 

A baseline case and 3 additional scenarios were modelled. The baseline related to the 

current exposure data, which included background levels of air pollution. The second 

scenario modelled the impact of the background air pollutions levels. This scenario was 

used to calculate the diseases and associated costs related to air pollution. The final 2 

scenarios were used to assess the impact of a 1% and 5% drop in annual exposure 

levels each year. 
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The final scenarios are currently being finalised through discussions with Public Health 

England. 

 

3.8 Microsimulation model outputs 

The microsimulation model outputs will be as follows: 

 

 Prevalence cases avoided per 100,000 by disease by year 

 Incidence avoided per 100,000 by disease by year 

 Cumulative incidence avoided per 100,000 by disease by year 

 GP, medication, hospital and social costs by disease by year (£million per 100,000) 

 Costs avoided by year (£million per 100,000) 
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Air Quality tool methodology 

 Summary 1

The tool simulates a closed weighted cohort through time.  

 

 Initialising the weighted cohort 2

The weighted cohort is initialised based on the distribution of sex, age given sex and the 

risk factor group given both age and sex. These weights remain constant throughout the 

simulation for baseline.  

 

 

( ) = probability of a given sex in the population

( | ) probability of a specific age in the population given the sex

( | , ) probability of a specific risk factor group given the age and

p sex

p age sex

p rf age sex



  sex

  (0.30) 

 ( , , ) ( )* ( | )* ( | , )weight age sex rf p sex p age sex p rf age sex   (0.31) 

With the condition that all the weights sum to 1. 

 

 Initialising individual attributes 3

Individuals are assigned a RF value based on the midpoint value from each RF group 

NO2 and PM2.5 will be the RFs simulated in this tool (see Table 19). The current risk factor 

trends are used to determine the corresponding percentile. The individuals’ percentile is 

fixed throughout the simulation. The RF values each year for an individual are 

calculated from the RF trends. 

 

 Projecting prevalence into the future 4

In a given year the model calculates the probability of an individual entering a new state. 

These states include disease states and a death state. The transition probabilities for 

each potential new state are calculated based on the calibrated incidence (BaseRisk) 

and RR’s. Calibrated incidence is calculated in the microsimulation program and stored 

within each disease file. For LA’s it was assumed that the calibrated incidence 

calculated from national level risk factor trends was the same for each individual. 

  

The transition probability for an individual in a given year moving to a new disease state 

is shown in equation (0.32). 
 ( | , , , ) ( , )* ( | , , )T j i age sex rf BaseRisk age sex RR j age sex rf   (0.32) 
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For each individual the probability of being in a disease state (j) is based on their 

probability of being in the disease state in the previous year and the transition 

probability (Tij) (see equation (0.33)).  

 
1

( | , , , ) ( | , , , )* ( | , , , 1)
statesN

i

p j age sex rf year T j i age sex rf p j age sex rf year


    (0.33) 

The probability of being in a disease state is calculated for each individual (n) within the 

cohort.  

 

 Calculating the population level prevalence each year 5

In each year of the model the prevalence is deterministically computed from the weight 

of each individual within the cohort multiplied by the prevalence of the group. 

 
1

( | , , , ) ( , , , )* ( | , , , )
N

n n

n

prevalence j age sex rf year weight age sex rf HI p j age sex rf year


  (0.34) 

 Scenarios 6

The simulated scenarios impact on the risk factor trends. These trends are altered by 

adjusting the risk factor distribution for each age and sex group.  

 

 Model system diagram 7
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 Piloting survey questionnaire 8

Question Response option 

Which organisation do you work 

for? 

 Free text 

What is your role?  Director of Public Health 

 Public health service 

commissioner or programme 

manager 

 Public health researcher 

 Other local government 

employee (please give job title 

below) 

 Employee of another 

organisation (please give job 

title below) 

 Free text 

Is your organisation currently 

implementing, or planning to 

implement, interventions(s) to 

reduce air pollution in your area? 

 Yes (please describe) 

 No 

 Don’t know 

 Free text 

How high a priority is air pollution 

for your organisation? 

 Very high 

 High 

 Medium 

 Low 

 Very low 

 Don’t know 

 Comments box 

Would a tool that quantifies the 

health benefits (such as prevalence 

cases avoided) of changes in air 

pollution exposure be of value to 

your organisation? 

 Yes 

 No 

 Comments box 

And would a tool that quantifies the 

economic benefits (direct, indirect, 

GP, hospital and medication costs) 

of changes in air pollution exposure 

be of value to your organisation? 

 Yes 

 No 

 Comments box 

Are you currently using any tools 

for this purpose? 

 Yes 

 No 

 Comments box – which tools? 
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The tool can be more or less flexible 

in terms of data inputs. We will 

preload the tool with national-level 

data from England. Please select 

from the list below data inputs you 

would like to be able to change: 

 Population data 

 Air pollution exposure data 

 Disease prevalence data for 

your population 

 Disease incidence data for 

your population 

 Disease mortality data for your 

population 

 Cost data associated with 

disease in your population 

 Cost data for social care 

And please consider which of the 

following outputs would be of use 

for you: 

 Disease prevalence 

 Premature mortality avoided 

 Healthcare costs (GP, hospital, 

medications) 

 Social-care costs 

 Non-health care costs (eg lost 

productivity) 

 Cost-benefit ratio 

 Life expectancy 

 Quality-adjusted life years 

 Disability-adjusted life years 

 Years of potential life lost 

 Comments box 

Which platform will you use to run 

the tool? 

 PC 

 Mac 

 Comments box - other 

Do you have access to MS Excel?  Yes 

 No 

 

 Outputs generated by the tool 9

The ouputs generated by the tool are as follows: 

 GP, medication, hospital and social care costs by year 

 Prevalence by disease by year per 100,000  
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