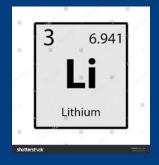
ENERGY AND CLIMATE CHANGE ENVIRONMENT AND SUSTAINABILITY INFRASTRUCTURE AND UTILITIES LAND AND PROPERTY MINING, QUARRYING AND MINERAL ESTATES WASTE RESOURCE MANAGEMENT

International Seminar - Innovations in the lithium supply chain. Views from Latin America and the United Kingdom.

Santiago & Buenos Aires - April 2018

INNOVATION THE DRIVE FOR LITHIUM

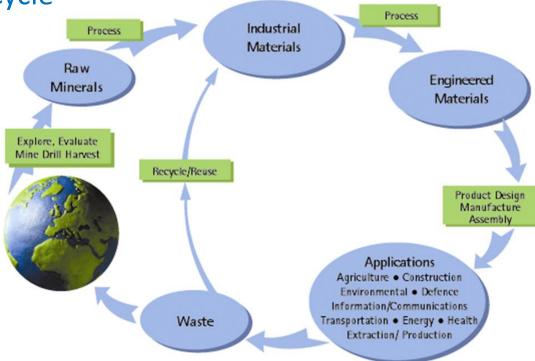
Dr Chris Broadbent


Research Director, Wardell Armstrong

The Institute of Materials, Minerals and Mining

CONTENTS

- IOM3 Introduction and funding opportunities
- Lithium Demand
- Lithium Producers
- Lithium Minerals
- Lithium Analysis Issues
- European Potential
 - Hard Rock
 - Brine
 - EU Research Programme FAME
- R&D around the World
- Conclusions



wardell-armstrong.com IOM3 VISION

To be recognised as the global leader for professionals involved with the materials cycle

The Institute of Materials, Minerals and Mining

Materials Cycle

IOM3 AT A GLANCE

- 16,000 members 20% outside the UK
- 90 IAS members (Company members)
- 1,200 SAS members (School members)
- 50 members of staff

- 3 UK offices
- 54 Local Societies
- 8 International Local Societies

IOM3 Technical Communities

Materials Divisions	Minerals & Mining	Applications Divisions	Multidisciplinary groups
The Polymer Society The Ceramics Society The British Composites Society Light Metals Division The Iron & Steel Society Materials Science & Technology Division The Wood Technology Society	Mining Technology Division Oil & Gas Division Applied Earth Science Division Mineral Processing & Extractive Metallurgy Division	Automotive Applications Division Biomedical Applications Division Casting & Solidification Division Electronic Applications Division The Packaging Society Surface Engineering Division	Construction Materials Group Energy Materials Group Natural Materials Association Sustainable Development Group

FUNDING OPPORTUNITIES

UK Government initiatives, e.g. the Faraday Battery Challenge: Industry Strategy Challenge Fund

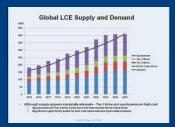
UK Government will invest £246 Million to support the development of new battery technologies

This will fund: Research, Innovation and scale up facilities for batteries for EV's

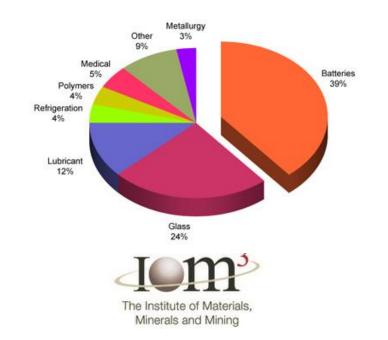
https://www.gov.uk/government/collections/faraday-batterychallenge-industrial-strategy-challenge-fund

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 641650.

EU Horizon 2020 Programme e.g. FAME 7.4 million Euros

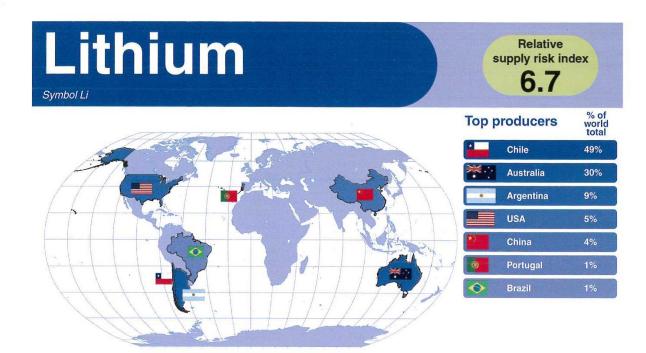


NOVATION


BRITAIN & NORTHERN IRELAND

LITHIUM DEMAND

"In terms of new lithium supply the industry needs all the supply it can get. SQM, traditionally conservative of its lithium estimates, is expecting an 800,000tpa LCE market by 2027. These numbers are staggering considering the market was at 180,000tpa LCE in 2017."


Source: Mining Journal – Interview with Simon Moores – MD Benchmark Mineral Intelligence – 5th September 2017

CURRENT LITHIUM PRODUCERS

Source: BGS World Mineral Production



The Institute of Materials, Minerals and Mining

CURRENT PRODUCTION

BRINE (South America)

Low OPEX Relatively high CAPEX Time to Production HARD ROCK (Australia)

High OPEX Relatively low CAPEX Quick to Production

• Future market increasingly dominated by batteries

V

- Therefore battery grade needed
- Impurities key

Carbonate V Hydroxide

he Institute of Materials, Minerals and Mining

COMPOSITION OF LITHIUM MINERALS

COMMON LI-PHASES AND ASSOCIATED MINERALS

Abbreviation	Li-mineral	Mineral formulae				
Pt (Lpd)	Polylithionite-trilithionite *	$KLi_{2}AI[Si_{4}O_{10}][F,OH]_{2} - K[Li_{1.5}AI_{1.5}][AISi_{3}O_{10}][(F,OH]_{2}]$				
Zwd	Zinnwaldite	KLiFe ²⁺ AI[AlSi ₃ O ₁₀][F,OH] ₂				
Spd	Spodumene	LiAlSi ₂ O ₆				
	Petalite	LiAI[Si ₄ O ₁₀]				
Lt	Lithiophilite-triphylite	Li[Mn,Fe]PO ₄				
Am	Amblygonite-montebrasite	LiAI[PO ₄][F,OH]				
Brl	Beryl					
Qz	Quartz					
PI	Plagioclase	UK Li Mineralogy Expertise Available:				
Kfs	K-feldspar	Particularly at NHM, London and CSM, Cornwall				
Ар	Apatite					
Chl	Chlorite					
Као	Kaolinite					
Tz	Тораz					

* Note: "Lepidolite" is a loosely defined name commonly used for Li-mica of the Pt-series

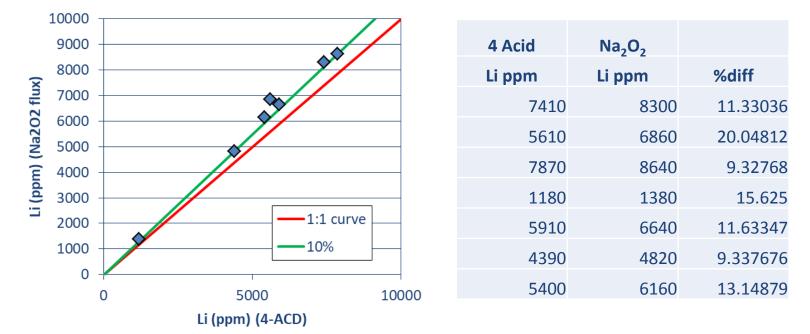
your earth our world

armstrong

WHOLE ROCK ANALYSIS (LI ASSAYS)

- Li is not that straight forward to analyse in whole rock
 - Its low mass means that there are low fluorescence yields and long wave-length characteristic radiation rule out lab-based XRF and pXRF
 - We cannot use conventional fluxes as these are generally Li-based
 - We can use "older" non Li fluxes such as Na₂O₂ but then there maybe contamination issues in the instruments
 - We can use multi-acid digests (HF+HNO₃+HClO₄ digestion with HClleach) (FAME used the ALS ME-MS61) however there may still be contamination issues and potentially incomplete digestion.
- It has been noted that the comparability between methods is sometimes poor (>10% difference)

Source: R Amstrong, NHM – The Challenge of Li Determination in Minerals, Geol Soc, London, April 2018


The Institute of Materials, Minerals and Mining

COMPARISON OF METHODS: AN EXAMPLE

- Samples from the Kaustinen area spodumene pegmatites supplied to the FAME project by Keliber Oy Finland.
- 4 acid digestion vs Na₂O₂ flux then acid both with ICP-AES finish

Source: R Amstrong, NHM – The Challenge of Li Determination in Minerals, Geol Soc, London, April 2018

HISTORY OF LITHIUM PRODUCTION IN EUROPE

LIBRARY **GEOLOGICAL SCIENCES** California Institute of Technolog

UNITED STATES DEPARTMENT OF THE INTERIOR J. A. KRUG. SECRETARY BUREAU OF MINES R. R. SAYERS, DIRECTOR INFORMATION CIRCULAR UNITED STATES DEPARTMENT OF THE INTERIOR J. A. KRUG, SECRETARY M IN GERMANY BUREAU OF MINES R. R. SAYERS, DIRECTOR INFORMATION CIRCULAR

EXTRACTION AND USES OF LITHIUM IN GERMANY

I. C. 7361

First large scale Lithium production

in the world: Zinnwald / Germany

for lithium mica (Zinnwaldite)

Start in 1922: Re-mining of Tin-Tungsten tailings

Processing plant

Tin-Tungsten tailings containing Li mica

EUROPEAN LI POTENTIAL (HARD ROCK)

European lithium producers 2016 and advanced (post conceptual study) lithium projects

Country	Company	Deposit	Main mineral	Stage	Production 2016 t LCE	Resources		Reserves	
						Mt	Li20 %	Mt	Li20 %
Austria	European Lithium	Wolfsbeg	Spod	PFS o	-	12.6	1.17	-	-
Czech Republic	European Metals	Cinovec	Zinn	PFS f	- 000	656.5	0.40	-	-
Finland	Keliber	Several	Spod	DFS o	-	8.1	1.19	4.5	1.10
Portugal	Sociedad Mineira de Pegmatites	Castanho	Spod?	Prod	1200	?	?	?	?
Portugal	FELMICA	Gondiães	Pet	Prod	150	?	?	?	?
Portugal	Imery Ceramics Portugal SA.	Imery Ceramics Portugal SA.	Spod	Prod	190	?	?	7	?
Portugal	José Aldeia Lagoa & Filhos	Gonçalo Sul	Lep	Prod	50	?	?	?	?
Portugal	Sociedade Mineira Carolinos	Alvarrões	Lep	Prod	150	?	?	?	?
Serbia	Rio Tinto	Jadar	Jad	PFS o	-	136.0	1.80	-	-
Spain	Imerys	Alberto	Lep?	Prod	100	?	?	?	?
Total					1840	813.2	0.65	4.5	1.10

Minerals: Spod = Spodumene, Zinn = Zinnwaldite, Pet = Petalite, Lep = Lepidolite, Jad = Jadaite.

Stage: DFS o = Definite Feasibility Study on-going; PFS f = Pre-feasibility study finished, PFS o = Pre-feasibility study on-going, Prod = Production

Source: Lamberg & Broadbent – Materials World, February 2018

LITHIUM IN CORNWALL

- A long history of mining and mineral extraction
- Cornwall has hosted 2000 mines over the last 400 years
- There is a "pro-mining" culture and the county still hosts the world renowned Camborne School of Mines
- Excellent infrastructure grid power, road, rail, airport etc.
- Cornwall is increasingly becoming a centre for renewable energy (wind and solar)
- UK government is focussed on increasing UK industrial activity post Brexit vote
- Underground mining in Cornwall was plagued by upwelling hot water which made working conditions very challenging. It is this same water that contains lithium

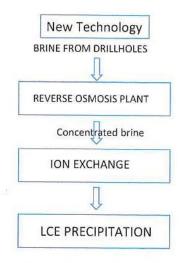
South Crofty Tin Mine

Source: BusinessCornwall.co.uk

Source: J Wrathall, A New Metal from an Old Mining Area Current Developments in the UK Mining Industry, MTD Conference, October 2017

CORNWALL A GIANT PRESSURE COOKER

Cornwall - A Giant Pressure Cooker


CORNISH BRINE PROCESSING

Processing

enra

New processes to extract lithium directly from brine have been developed by the following companies

VEOLIA

posco

The Institute of Materials. Minerals and Mining

ERAMET

tenova® @PurLucid.

Source: J Wrathall, A New Metal from an Old Mining Area Current Developments in the UK Mining Industry, MTD Conference, October 2017

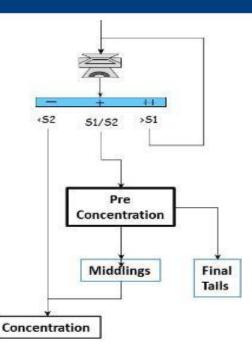
EU FUNDED R&I – FAME (WHAT IS FAME)

- Horizon 2020 PROJECT
 Flexible And Mobile Economic Processing EU Research and Innovation Project co-ordinated by Wardell Armstrong
- 7.4 Million Euros
- 16 Partners 7 countries
- Start Date 01/01/2015
- End Date 31/12/2018

FAME

FAME REFERENCE ORES

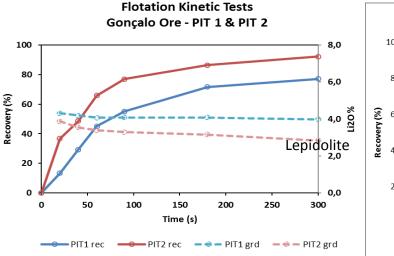
PRE-CONCENTRATION

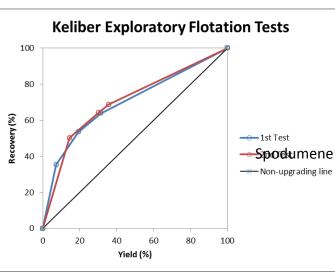

- Removal of barren rock (i.e. PRECONCENTRATION) will be important for successful Li Processing
- There may be uses for the barren rock (gangue) otherwise tailings for disposal with low Li content
- If pre-concentration is possible at coarse sizes, the reduced amount of or going for crushing leads to significant energy savings and increases head grade (Li Content) of feed
- A number of Different Sorting Techniques Considered:

Good results using Optical sorter (colour differences between Li-rich minerals and gangue)

The Institute of Materials, Minerals and Mining

Pre-concentration of Lepidolite using an optical sorter



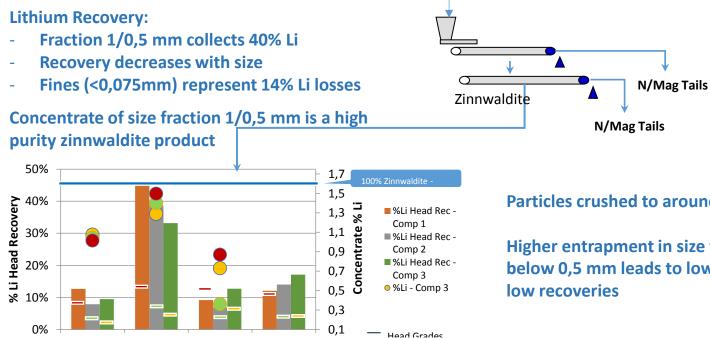

```
your earth our world
```

FLOTATION

- (Almost all) Li minerals can be upgraded to Concentrates of Higher Li content using Froth Flotation (However – Max Li Content 6-8%)
- FAME has developed intensive Flotation to improve Li recovery from lepidolite and spodumene ores close to a 100% recovery aim

- Comminution down to k₈₀ ~ 150μm;
- Flotation in acidic media, using specific collectors
- Li recoveries = 80-90%; concentrates upgrade above

4.5 – 5 %Li₂O



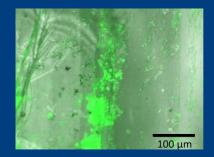
MAGNETIC SEPARATION

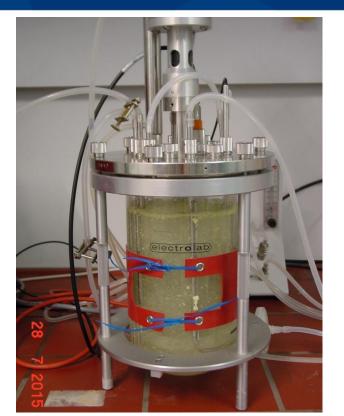
+2/1,0 mm 1,0/0,15 mm 0,15/0,075 mm <0,075 mm

SAMPLES FROM CINOVEC

Particles crushed to around 1mm

Higher entrapment in size fractions below 0,5 mm leads to low grades and


Dry Medium Intensity Magnetic Separation (Permroll type) seems to be suitable for zinnwaldite recovery



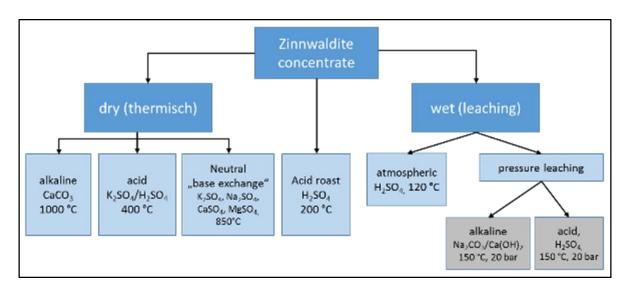
BIOLEACHING – BATCH BIOREACTOR

Volume: Pulp density:	2 to 4 l 5 % (zinnwaldite added at exponential growth phase)
Temperature:	30 °C
Medium:	DSMZ 71 + elemental sulfur (5 g/l)
Grain fraction:	<45 μm
Innoculation:	acidophilic mixed culture (6.5 10 ⁻⁷)

Pure minerals (mica blade and crystalline sulphur) added to investigate biofilm formation)

Zinnwaldite (mica) ground < 45 μm

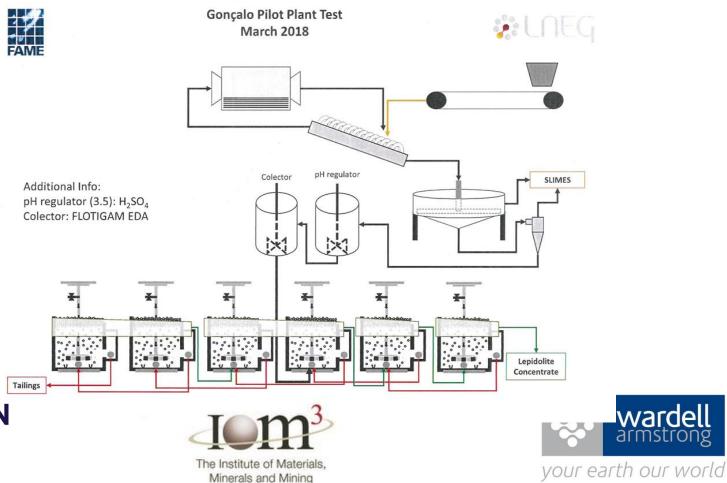
The Institute of Materials, Minerals and Mining


Zinnwaldite (blade) and sulfur

BRITAIN & NORTHERN IRELAND


OVERVIEW OF POTENTIAL CHEMICAL PROCESSING ROUTES FOR LITHIUM PROCESSING FROM MICAS OR SPODUMENE

Overview of the technologies for lithium silicate digestion


FAME EXAMPLE: SULPHURIC ACID LEACHING TESTS ON ZINNWALDITE MICA:

wardell armstrong

PILOT PLANT – LI MICA FLOTATION TESTS AT LNEG

LNEG Wednesday 28 March 2018 lepidolite flotation tests

The Institute of Materials, Minerals and Mining

LI RESEARCH

- Mineral Processing
- Chemical Processing e.g. SiLeach[®] – Australia
- Brine Purification Technologies
 - Reverse Osmosis
 - Membranes
- Battery Developments Grade
 - Impurities?
 - Hydroxide or Carbonate or Other?

Lithium Australia's SiLeach on track for patents in 148 countries

CONCLUSIONS

- Room for Brine and Hardrock producers, dramatic growth in Lithium demand due to Electric Vehicles
- Brine always lower OPEX but often longer to production than Hardrock Projects
- Li analysis
 - Issues with historical data
 - Caution
 - Li Analysis Difficult
- Work with Battery Manufacturers impurities etc?
- Other issues to be aware of:
 - Source of "Ethical" supply of Cobalt
 - High Purity Ni
 - Li is not designated a Critical Raw Material <u>BUT</u> is very strategic
- Security of Supply? INNOVATION IS GREAT

The Institute of Materials, Minerals and Mining

THANK YOU FOR YOUR ATTENTION

cbroadbent@wardell-armstrong.com

www.wardell-armstrong.com

The Institute of Materials, Minerals and Mining

