

Protocols for Improving the Proficiency of Material Testing Laboratories in Mozambique – ANE/LEM PTS

PTS First Round - Baseline Report (final)

Author: Barry Pearce

Project No. MOZ2094A

22 November 2017

The views in this document are those of the authors and they do not necessarily reflect the views of the Research for Community Access Partnership (ReCAP), or Cardno Emerging Markets (UK) Ltd for whom the document was prepared.

Cover Image: PTS sample preparation and testing

Quality assurance and review table								
Version	Author(s)	Reviewer(s)	Date					
Draft	Barry Pearce	Robert Geddes	27 October 2017					
		Henry Nkwanga	29 th October 2017					
		Nkululeko Leta	31 st October 2017					
Draft Final	Barry Pearce Robert Geddes	Henry Nkwanga	2 nd November 2017					
Final	Barry Pearce Robert Geddes		18 November 2017					

ReCAP Project Management Unit

Cardno Emerging Market (UK) Ltd

Oxford House, Oxford Road

Thame

OX9 2AH

United Kingdom

ReCAP Completion Report Template

ReCAP Database Det	ReCAP Database Details: Economic Growth through Effective Road Asset Management										
Reference No:	MOZ2094A	Location	Mozambique								
Source of Proposal	Tender	Procurement Method	Open Competitive Tendering								
Theme		Sub-Theme									
Lead Implementation Organisation	Civil Design Solutions	Partner Organisation	Learning Matters etc								
Total Approved Budget		Total Used Budget									
Start Date	13 December 2016	End Date	31 July 2018								
Report Due Date	31 October 2017	Date Received	2 November 2017 (V2)								

Key Words

Materials, Quality Control, Capacity Development, Proficiency Testing

Acronyms, Units and Currencies

10% FACT	10 % Fines Aggregate Crushing Test
\$	United States Dollars
AASHTO	American Association of State Highway and Transport Officials
ACV	Aggregate Crushing Value
AFCAP	Africa Community Access Partnership
AIV	Aggregate Impact Value
ALD	Average Least Dimension
AMRL	AASHTO Materials Reference Laboratory
ANE	Administração Nacional de Estradas; National Road Administration
ARMFA	African Road Maintenance Fund Association
ASCAP	Asia Community Access Partnership
BS	British Standard
CBR	California Bearing Ratio
CDS	Civil Design Solutions
CSIR	Council for Scientific and Industrial Research
DCP	Dynamic Cone Penetrometer
DFID	Department for Further International Development
DIMAN	Directorate of Maintenance
DIPLAN	Directorate of Planning
DIPRO	Directorate of Projects
DN	Number of mm penetration per blow of a DCP
EU	European Union
FACT	Fines Aggregate Crushing Test
FI	Fineness Index
FM	Fineness Modulus
FWD	Falling Weight Deflectometer
GM	Grading Modulus
GPS	Global Positioning System
ISO	International Standards Organisation's
INNOQ	Instituto Nacional de Normalização e Qualidade
LL	Liquid Limit
LMetc	Learning Matters etc
LNEC	Laboratório Nacional de Engenharia Civil (Portugal)
LS	Linear Shrinkage
LVR	Low Volume Road
MCA	Millennium Challenge Account
MDD	Maximum Dry Density
NLA	National Laboratory Association
NP	Non Plastic
OMC	Optimal Moisture Content
PMU	Project Management Unit
PI	Plasticity Index
PL	Plastic Limit
РТ	Proficiency Testing
PTS	Proficiency Testing Scheme
ReCAP	Research for Community Access Partnership
RL	Reference Laboratory
RTFOT	Rolling Thin Film Oven Test
SA	South Africa
SADCAS	Southern African Development Community Accreditation Service
SANAS	South African Accreditation Service
SANS	South African National Standards

SE	Sand Equivalent
SC	Steering Committee
SP	Slightly Plastic
ТМН	Technical Methods for Highways
UK	United Kingdom (of Great Britain and Northern Ireland)
UKAid	United Kingdom Aid (Department for International Development, UK)

Contents

A	cronym	s, Units and Currenciesiii
C	ontents	v
1	Intr	oduction1
	1.1 1.2 1.3 1.4 1.5	Background to the Project.1Objectives1Approach2Participating laboratories2Purpose of this Report.2
2	Met	hodology5
	2.1 2.2 2.3 2.4 2.5	System Design
3	Test	Results
	3.1 3.2 3.3 3.4	Crushed Granular Material
4	Sum	mary of Findings, Recommendations and Next Steps78
	4.1 4.2 4.3	Findings

1 Introduction

1.1 Background to the Project

The Africa Community Access Partnership (AfCAP) is providing a range of support to Mozambique. This support includes the development of design guidelines for low volume roads and the evaluation of existing road experimental sections constructed previously in Mozambique.

The validity of research on roads in Mozambique and the region depends on the reliability of laboratory test results. As a result, AfCAP is supporting the implementation of a pilot project for Proficiency Testing in selected laboratories. The overall objective is to establish laboratory testing in Mozambique that is in line with international practices and standards and test results that can be used with confidence.

The Proficiency Testing Scheme (PTS) is developing a baseline for the precision limits for the common tests on road building materials. The baseline will be used to assess laboratory capacity and identify where constraints lie and where specific training and other interventions may be required. It is expected that participating laboratories will ultimately become accredited to the International Standards Organisation's standard ISO/IEC 17025.

The Mozambique PTS project is a pilot project for Mozambique and for a possible AfCAP regional initiative to support capacity development in materials laboratory testing through a PTS process. This will improve the confidence level in test results being used for research, design and quality control purposes during construction and maintenance operations.

1.2 Objectives

The objectives of the assignment are as follows:

- To identify the repeatability and reproducibility (precision limits) of the principal test methods currently being carried out in Mozambican laboratories; evaluate the existing testing competence of laboratories in Mozambique.
- Determine how the test results of the Mozambican laboratories compare with those of internationally accredited (ISO/IEC 17025) laboratories. Two SANAS accredited laboratories were selected from South Africa and used as independent controls in the baseline survey and PTS pilot.
- Identify where interventions are needed for improving test results and the type of intervention required.
- Design and manage a pilot PTS and transfer knowledge and expertise to Mozambican laboratory personnel on how to implement a PTS and to evaluate the test results obtained.
- Keep ANE and sector stakeholders fully informed on project implementation and outcomes in order for precision limits of tests to be included in relevant National Standards for Roads in Mozambique.

1.3 Approach

The approach to the project implementation focuses on the following key objectives:

- 1. To ensure that ANE and LEM are the leaders of the research process.
- 2. To ensure effective linkages with parallel and associated project initiatives.
- 3. Establish linkages between the participating laboratories.

The purpose of establishing linkages between the participating laboratories is to promote the concept of a self-supporting network of laboratories, with a joint commitment to quality and reliability of results.

1.4 Participating laboratories

The laboratories that are participating in the first round of the pilot PTS are as follows:

- 1. LEM
- 2. ANE Maputo
- 3. ANE Nampula
- 4. ANE Manica
- 5. ANE Inhambane
- 6. JJR (Maputo private)
- 7. Soil-Lab (Maputo private)
- 8. Geoma (Maputo private)
- 9. Letaba Laboratory (Nelspruit private)
- 10. SoilCo Laboratory (Pinetown private).

1.5 Purpose of this Report

This report presents the analysis of test results received from the participating laboratories in the first round of the pilot PTS of 2017.

The following tests were included for this round:

FORM A¹ – Crushed granular material

- Wet preparation and sieve analysis
- Atterberg Limits
- MDD/OMC
- CBR

FORM B – Plastic fines material

• Atterberg Limits

¹ Form A, B, C and D included in the "Protocols for Testing Gravel Samples (Indicator, OMC/MDD & CBR) & Aggregates Samples (Grading, FI, ALD, ACV & 10% FACT). May 2017.

FORM C – Aggregate material

- Sieve analysis
- Flakiness Index
- Average Least Dimension
- ACV & 10 % FACT

FORM D – Sand material

- Wet preparation and sieve analysis
- Atterberg Limits
- MDD/OMC
- CBR

The samples for the first round of the PTS were provided by JJR Construction, ANE Maputo & ANE Inhambane. The splitting was undertaken at LEM in Maputo. ANE would like to acknowledge these contributions.

The results are presented in a form that laboratories should find useful, but the participating laboratories are encouraged to submit comments on the format to the organizers of the PTS should they have suggestions as to how this format could be improved.

In the report on the test results (Chapter 3) a unique code was used to identify each participating laboratory. The laboratories have been informed of their own code but not the codes used of the other laboratories.

The following terms and abbreviations are used in Chapter 3.

- a) OE Obvious error (listed but excluded from analysis of results)
- b) CV Coefficient of variance
- c) NP Non-plastic (Used to define the PI classification for a zero (0) % shrinkage only)
- d) SP Slightly-plastic (Used to define the PI classification for shrinkage less than 1.5 % only)
- e) Null No value submitted (test not undertaken either due to the equipment not being available or when the PL is not being undertaken due to the LL not being determinable).
- f) CBD Could not be determined (When a test is undertaken but a result is not determinable, for example LL when the material is NP or SP).

- g) MC Moisture content
- h) LL Liquid limit
- i) PL Plastic limit
- j) LS Linear shrinkage limit
- k) PI Plasticity index
- I) GM Grading modulus
- m) FM Fineness modulus
- n) MDD Maximum dry density
- o) OMC Optimum moisture content
- p) CBR California bearing ratio
- q) ACV Aggregate crushing value
- r) 10% FACT 10 % Fine Aggregate Crushing Test
- s) FI Flakiness index
- t) ALD Average least dimension

2 Methodology

2.1 System Design

The objective of the ANE/LEM PTS is to provide laboratories with an external mechanism for having their results compared with a relatively large sample of other materials laboratories.

Whilst it is not possible to guarantee a single 'target' value for evaluation purposes given the inherent variability of civil roads materials, the organizers are confident that the H15 robust mean and H15 standard deviation is representative of each sample. In the case where the result submitted is an obvious error (OE), the result was excluded from the analysis.

2.2 Stability and Homogeneity testing

Based on the results received, the samples provided to the participating laboratories are considered to be sufficiently stable and homogenous.

2.3 Statistics Employed

A convenient and internationally accepted statistical method for analyzing test results is to calculate a z-score for each laboratory's result. A z-score is a normalised value which gives a "score" to each result, relative to the other numbers in the data set.

A standard formula for the calculation of z-scores is:

$$z_i = \frac{x_i - x}{s}$$

Where:

 (x_i) is the ith result

 (\bar{x}) is the assigned value (e.g. mean or median)

s is an estimate of the spread of all results e.g. robust standard deviation or fitness for purpose criteria.

A z-score value close to zero therefore means that the result agrees well with those from the other laboratories.

In order to use as many results as possible and not have to make decisions with regard to outliers, Robust Indicators were used. The Robust Indicators include both a Robust Mean and Robust Standard Deviation.

The H15 Robust Mean and H15 Robust Standard Deviation are used to analyse the data due to their ability to include outliers in the data set as analysed while applying a weighting to each value. This weighting allows the data values wider of the H15 mean to have less of an effect on the results, both for the mean and the standard deviation. This results in a more accurate mean and standard

deviation determination that better identifies the consensus mean and z-score analysis of the data set.

Results were evaluated using the standard z-score as detailed in the AMRL² method.

2.4 AMRL Method of Evaluation

A more stringent rating is used by AMRL as laid out below, which may be a more acceptable rating scale than the standard z-score rating.

The laboratory rating calculation is based on the absolute value of the Z-Score (or number of standard deviations from the average). The following describes the laboratory rating system:

•	If Z-Score ≤ 1	Then Rating = 5
•	If Z-Score > 1 and \leq 1.5	Then Rating = 4
•	If Z-Score > 1.5 and \leq 2	Then Rating = 3 – needs investigation
•	If Z-Score > 2 and \leq 2.5	Then Rating = 2 - problematic
•	If Z-Score > 2.5 and \leq 3	Then Rating = 1 – needs in-depth investigation
•	If Z-Score > 3	Then Rating = 0 – unacceptable

In this report the results are given as a calculated z-score accurate to three decimal places and colour coded according to the above rating for easier identification of where each facility lies in relation to the mean and the other rating groups.

A negative sign on a Z-Score or Rating indicates that the laboratory's result was below the average, while a positive Z-Score or Rating indicates that the laboratory's result was above the average.

Reference:

- AMRL: AASHTO Materials Reference Laboratory
- AASHTO: American Association of State Highway and Transportation Officials

2.5 Scoring of Proficiency Samples by AMRL

Scoring of proficiency test samples is determined by fitting a standard normal distribution to the data from all laboratories (with outliers eliminated³). Laboratories whose results fall within one standard normal deviation from the mean are assigned a numerical score of "5." Laboratories whose results fall between 1 and 1½ standard normal deviations from the mean are assigned a score of "4," and the ratings are further decreased one point for each half standard normal deviate thereafter. A

² AASHTO Materials Reference Laboratory.

 $^{^{3}}$ No results have been excluded in this report as it is a base line of the current situation. Outliers are identified as those with exceptionally high z-score values i.e.> 3.

positive sign (+) indicates the lab result is above the mean, and a negative sign (-) indicates the lab result is below the mean. This system can be depicted graphically, as follows:

Sample Calculation

- Assume mean, μ = 20.73 and standard deviation, σ = 0.65 with lab result, x = 19.8
- Standard normal deviations from mean = (lab result mean)/(standard deviation) = (19.8 20.7)/0.65 = -1.38
- Note that negative sign here indicates the lab result is below the mean.
- The lab result is between 1 and 1½ standard normal deviations below the mean, so that the lab rating for this particular result, according to the figure shown above, would be -4.

3 Test Results

3.1 Crushed Granular Material

Liquid Limit (LL), Plastic Limit (PL), Linear Shrinkage (LS) and Plasticity Index (PI) tests

Lab code	LL %	z- score	Lab code	PL %	z-score	Lab code	LS %	z-score	Lab code	PI %	z-score
CV6ZX	0	-7.120	CV6ZX	0	-2.069	AB4XQ	0	-1.000	DG3DK	2	-0.569
WQ3LN	20.8	-0.501	AO7VU	18.7	0.262	CV6ZX	0	-1.000	YY3QP	2.7	-0.448
YY3QP	22.2	-0.056	YY3QP	19.5	0.362	DG3DK	0.4	-0.689	AO7VU	11.2	1.016
AB4XQ	22.5	0.040	DG3DK	22	0.673	YY3QP	1.0	-0.223	DF6CP	CBD	
DG3DK	24	0.517	DF6CP	CBD		EN2QS	1.5	0.166	TF5SK	CBD	
AO7VU	29.9	2.395	EN2QS	CBD		WQ3LN	2.0	0.554	CV6ZX	NP	
DF6CP	CBD		TF5SK	CBD		DK9WF	2.3	0.787	DK9WF	NP	
EN2QS	CBD		WQ3LN	CBD		AO7VU	4.0	2.108	AB4XQ	NULL	
TF5SK	CBD		DK9WF	NP		DF6CP	CBD		WQ3LN	NULL	
DK9WF	NP		AB4XQ	NULL		TF5SK	NULL		EN2QS	SP	

Test method information

Test method	AASHTO T88/89	SANS 3001 GR10/11/12	TMH1 A2, A3 & A4	Non-responsive
# participants	3 (30 %)	2 (20 %)	4 (40 %)	1 (NULL)

	LL	PL	LS	PI
H15 mean	22.37	16.60	1.29	5.30
H15 Std Dev	3.14	8.02	1.29	5.80
Range	29.90	22.00	4.00	9.20
cv	14.0%	48.3%	100.0%	109.5%

	LL	PL	LS	PI
Additional participant statistics			-	-
Number of participants	10	10	10	10
CBD	3	4	1	2
NP	1	1	-	2
SP	-	-	-	1
NULL	-	1	1	2
Non-participants	-	-	-	-
ОВ	-	-	-	-

Statistics for Z-scores < ±1

Range	3.2	3.3	1.9	0.7
Percentage of participants	67 %	75 %	63 %	67 %

Reporting format

Participants reported correctly to 1 %	2	2	2	1
Participants reported to 0.1 %	4	2	6	2

Comments – Atterberg limits

- Three test methods were used by the 10 participants in the PI determination.
- Only three facilities of the ten obtained a PI value.
- Much needs to be done to get the results reported correctly of this range of test methods.
- In general, the results are too variable for the PL, LS and PI.
- The LL, although it has a low CV, is still not constant enough to identify the material as either having plasticity or not

Optimum Moisture Content test

#	Lab code	OMC %	OMC z-score
1	WQ3LN	6.4	-1.089
2	AO7VU	6.8	-0.871
3	EN2QS	6.9	-0.817
4	CV6ZX	7.2	-0.654
5	TF5SK	7.5	-0.490
6	YY3QP	9.0	0.327
7	DF6CP	9.6	0.654
8	DG3DK	9.6	0.654
9	AB4XQ	10.0	0.871
10	DK9WF	11.0	1.416

	ОМС
H15 mean	8.40
H15 Std Dev	1.836
Range	4.60
CV	21.9%

Test method information

Test method	AASHTO T180	AASHTO T99	SANS 3001 GR30	TMH1 A7	Non-responsive
# participants	3 (30 %)	1 (10 %)	2 (20 %)	4 (40 %)	0 (NULL)

Apparatus information

Automatic	Manual	Non-responsive
2	7	1 (NULL)

Additional participant statistics

Number of participants	10
Non-participants	-
ОВ	-

Statistics for Z-scores < ±1

Range	3.20
Percentage of participants	80.0%

Reporting format				
Participants reported correctly to 0.1 %	10			

Comments - Optimum Moisture Content (OMC) test

- Four test methods were used by the 10 participants in the OMC determination
- These results were reasonable given the low StDev, although there is still scope for improvement by reducing the range of the overall results.

Maximum Dry Density test

#	Lab code	MDD kg/m ³	MDD z-score
1	AO7VU	1802	-3.294
2	EN2QS	1882	-0.992
3	WQ3LN	1893	-0.676
4	DG3DK	1911.0	-0.158
5	YY3QP	1911	-0.158
6	CV6ZX	1922	0.158
7	TF5SK	1923	0.187
8	AB4XQ	1940	0.676
9	DF6CP	1950	0.964
10	DK9WF	1972	1.597

	MDD
H15 mean	1916.5
H15 Std Dev	34.762
Range 170.00	
CV	1.8%

Test method information

Test method	AASHTO T180	AASHTO T99	SANS 3001 GR30	TMH1 A7	Non-responsive
# participants	3 (30 %)	1 (10 %)	2 (20 %)	4 (40 %)	0 (NULL)

Additional participant statistics

Number of participants	10
Non-participants	-
ОВ	-

Statistics for Z-scores < ±1

Range	68.0
Percentage of participants	80.0%

Reporting format

Participants reported to 1 kg/m ³	4
Participants reported to 0.1 kg/m ³	1
Participants reported to 0.001	5

Comments - Maximum Dry Density (MDD) test

- Four test methods were reportedly used by the 10 participants in the MDD determination.
- The results for the MDD were all converted to kg/m³ for ease of analysis. This is as a result of the different test methods making use of various reporting formats.
- The range of 170 kg/m³ looks high and represents a variation of just under 9 %. This value drops to 68 kg/m³ for the z-scores less ± 1.
- The use of manual versus the automatic hammer would influence the results. Half the participants made use of automatic hammers. This value may increase as two participants didn't provide the information as requested. This point is also applicable to the CBR determinations.

CBR Hygroscopic Moisture Contents test

#	Lab code	Hygroscopic MC (%)	z-score
1	DK9WF	0.0	-1.070
2	AB4XQ	0.6	-0.655
3	DG3DK	0.8	-0.517
4	EN2QS	1.0	-0.379
5	CV6ZX	2.4	0.589
6	TF5SK	2.48	0.644
7	WQ3LN	53	35.561
8	AO7VU	NULL	
9	DF6CP	NULL	
10	YY3QP		

	Hygroscopic MC (%)
H15 mean	1.55
H15 Std Dev	1.447
Range	53.00
CV	93.5%

Test method information

Test method	Test method AASHTO T193		TMH1 A8	Non-responsive
# participants	4 (40 %)	2 (20 %)	4 (40 %)	0 (NULL)

Apparatus information

Automatic	Manual	Non-responsive
5	3	2 (NULL)
Proving Ring	Load Cell	Non-responsive
-	4	6 (NULL)

Additional participant statistics

Number of participants	9
Non-participants	1
NULL	2
OB	-

Statistics for Z-scores < ±1		
Range	1.88	
Percentage of participants	71.4%	

Reporting format			
ants reported to 1 % 1			
ants reported correctly to 0.1 % 5			
ants reported to 0.01 % 1			
ants reported correctly to 0.1 %5ants reported to 0.01 %1			

Comments - Hygroscopic Moisture Contents test

- Four test methods were used by the 10 participants in the CBR determination
- The values vary vastly. This value should represent the moisture in the material after air drying. It should not be zero (0) percent nor should it be as high as 53 %.
- Most of the results provided were reasonably close to one another.

CBR - % Swell (A, B & C moulds)

	% Swell								
Lab code	A	Z-score		Lab Code	В	Z-score	Lab Code	С	Z-score
AB4XQ	0	-0.603		AB4XQ	0	-0.603	AB4XQ	0	-0.603
EN2QS	0	-0.603		EN2QS	0	-0.603	EN2QS	0	-0.603
YY3QP	0.00	-0.603		YY3QP	0.00	-0.603	YY3QP	0.00	-0.603
CV6ZX	0.02	0.467		CV6ZX	0.04	0.467	CV6ZX	0.06	0.467
DG3DK	2.9	154.537		DG3DK	3.0	79.653	DG3DK	3.0	52.908
DF6CP	CBD			DF6CP	CBD		DF6CP	CBD	
TF5SK	CBD			TF5SK	CBD		TF5SK	CBD	
AO7VU	NULL			AO7VU	NULL		A07VU	NULL	
DK9WF	NULL			DK9WF	NULL		DK9WF	NULL	
WQ3LN	NULL			WQ3LN	NULL		WQ3LN	NULL	

	Swell A %	Swell B %	Swell C %
H15 mean	0.011	0.023	0.034
H15 Std Dev	0.019	0.037	0.056
Range	2.90	3.00	3.00
cv	165.8%	165.8%	165.7%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	5	5	5
Non-participants	-	-	-
CBD	2	2	2
NULL	3	3	3
OB	-	-	-

Statistics for Z-scores < ±1

Range	0.02	0.04	0.06
Percentage of participants	71.4%	80.0%	80.0%

Reporting format

i v			
Participants reported correctly to 1 %	2	2	2
Participants reported to 0.1 %	1	1	1
Participants reported to 0.01 %	2	2	2

Comments - % Swell (A, B & C moulds)

- The swell values are far too variable reporting from 0 % up to 3 %.
- Reporting the swell to a single decimal point should result in an improvement in the variability especially when there are very low swell values.
- Special care is required to ensure that the swell gauge is not reset once the initial reading is taken and placed in exactly the same place when taking the readings at end of the four-day soaking process. This is necessary to obtain an acceptable swell reading.

Maximum Dry Density % (A, B & C moulds)

		% DD									
Lab Code	A	Z-score		Lab Code	В	Z-score		Lab Code	С	Z-score	
TF5SK	93.4	-4.965		TF5SK	91.7	-2.837		TF5SK	87.9	- 3.161	
DK9WF	99.3	-0.806		WQ3LN	93.5	-1.259		DF6CP	90	-0.988	
AB4XQ	99.9	-0.383		DK9WF	94.4	-0.470		DG3DK	90.4	-0.574	
DF6CP	100	-0.312		DF6CP	95	0.056		YY3QP	90.6	-0.367	
CV6ZX	100.4	-0.030		AB4XQ	95.1	0.144		EN2QS	91.2	0.254	
DG3DK	100.6	0.111		DG3DK	95.3	0.319		DK9WF	91.3	0.358	
EN2QS	100.8	0.252		CV6ZX	95.9	0.845		AB4XQ	91.7	0.772	
YY3QP	102.1	1.168		EN2QS	95.9	0.845		CV6ZX	91.7	0.772	
WQ3LN	105.4	3.495		YY3QP	96.0	0.933		WQ3LN	92.1	1.186	
AO7VU	NULL			AO7VU	NULL			AO7VU	NULL		

	Α%	В %	С %
H15 mean	100.44	94.94	90.95
H15 Std Dev	1.418	1.141	0.966
Range	12.00	4.30	4.20
CV	1.4%	1.2%	1.1%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	9	9	9
Non-participants	-	-	-
NULL	1	1	1
OB	-	-	-

Statistics for Z-scores < ±1

Range	1.50	1.60	1.70
Percentage of participants	66.7%	77.8%	77.8%

Reporting format

Participants reported to 1 %	1	1	1
Participants reported to 0.1 %	8	8	8

Comments - Maximum Dry Density % (A, B & C moulds)

- Although the mean reflects the expected results of close to 100 %, 95 % and 90 % of MDD, the range of the results are too high especially for mould A.
- This points to a possible problem with the laboratories ability to divide the bulk sample as supplied into representative portions for use in the 5 MDD and 3 CBR points.

CBR - Dry Density kg/m³ (A, B & C moulds)

	Dry Density (kg/m ³)									
Lab Code	A	Z-score		Lab Code	В	Z-score		Lab Code	С	Z-score
TF5SK	1797	-4.261		TF5SK	1764	-1.940		TF5SK	1691	-1.292
EN2QS	1897	-1.144		EN2QS	1805	-0.915		EN2QS	1716	-0.758
DG3DK	1922.9	-0.337		DG3DK	1821.0	-0.515		DG3DK	1727.8	-0.506
CV6ZX	1929	-0.147		YY3QP	1834	-0.189		YY3QP	1731	-0.438
AB4XQ	1939	0.165		CV6ZX	1843	0.036		DF6CP	1739	-0.267
DF6CP	1940	0.196		AB4XQ	1845	0.086		CV6ZX	1762	0.224
YY3QP	1951	0.539		DK9WF	1862	0.511		AB4XQ	1779	0.587
DK9WF	1957	0.726		DF6CP	1881	0.986		DK9WF	1800	1.036
WQ3LN	2209	8.580		WQ3LN	1959	2.937		WQ3LN	1930	3.812
AO7VU	NULL			AO7VU	NULL			AO7VU	NULL	

	А	В	С
H15 mean	1933.70	1842	1751
H15 Std Dev	32.085	40.0	46.8
Range	412.00	195.00	239.00
CV	1.7%	2.2%	2.7%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	9	9	9
Non-participants	-	-	-
NULL	1	1	1
OB	-	-	-

Statistics for Z-scores < ±1

Range (kg/m ³)	34.1	76.0	63.0
Percentage of participants	66.7%	77.8%	66.7%

Reporting format

Participants reported correctly to 1 kg/m ³	5	5	5
Participants reported correctly to 0.001	5	5	5

Comments - Dry Density kg/m³ (A, B & C moulds)

- Most of the results are within an acceptable range.
- Although the CV is acceptably low, the range is far too high. The range for the value with z-score of ±1 is far more acceptable.
- Laboratories should check that their A mould density is as close as possible to the MDD

<u>CBR %</u>

	CBR %									
Lab Code	100%	Z-score		Lab Code	95%	Z-score		Lab Code	90%	Z-score
WQ3LN	49.83	-1.386		YY3QP	27.7	-1.300		WQ3LN	10.11	-1.214
YY3QP	68.7	-0.950		CV6ZX	38	-0.902		YY3QP	15.1	-0.934
DF6CP	80	-0.688		WQ3LN	49.25	-0.468		CV6ZX	18	-0.771
CV6ZX	104	-0.133		DF6CP	50	-0.439		DG3DK	25.5	-0.350
AB4XQ	106	-0.087		DG3DK	59.3	-0.079		EN2QS	36	0.239
TF5SK	130	0.468		TF5SK	69	0.295		AB4XQ	37	0.295
DG3DK	138.2	0.658		EN2QS	74	0.489		DK9WF	38.0	0.351
EN2QS	152	0.977		AB4XQ	87	0.991		DF6CP	50	1.024
DK9WF	159.0	1.139		DK9WF	125.0	2.459		TF5SK	56	1.360
AO7VU	NULL			AO7VU	NULL			AO7VU	NULL	

CBR %	100%	95%	90%
H15 mean	109.7	61.4	31.7
H15 Std Dev	43.23	25.88	17.83
Range	109.17	97.30	45.89
CV	39.4%	42.2%	56.2%

Page 23

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	9	9	9
Non-participants	-	-	-
NULL	1	1	1
OB	-	-	-

Statistics for Z-scores < ±1

Range (%)	83.3	49.0	22.9
Percentage of participants	77.8%	77.8%	66.7%

Reporting format

Participants reported correctly to 1 %	5	5	5
Participants reported to 0.1 %	3	3	3
Participants reported to 0.01 %	1	1	1

Comments – CBR %

- The CBR results are highly variable but this is to be expected given the nature of the material in this sample, which contains larger crushed particles.
 - If a large stone particle lies directly below the CBR piston head, the results will be skewed to the high side especially if there is another stone below
 - The result is expected to be more consistent with finer grained material.
- The z-score between ±1 are also still too high.

Washed Grading Sample Mass

#	Lab code	Sample mass (g)	z-score
1	WQ3LN	2122.4	-1.006
2	AO7VU	3175	0.366
3	YY3QP	3385.0	0.640
4	AB4XQ		
5	CV6ZX		
6	DF6CP		
7	DG3DK		
8	DK9WF		
9	EN2QS		
10	TF5SK		

	Reduction Factor
H15 mean	2894.1
H15 Std Dev	766.8
Range	1262.6
cv	26.5%

Test method information

Test method		AASHTO	ASTM	SANS 3001	TMH1	TMH1	Non-
Test method	AA3HTU 127	T88	C136	GR1	A1 (a)	A1	responsive
# participants	2 (20 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)	2 (20 %)	0 (NULL)

Sample Mass

Number of participants	3
Non-participants	7
ОВ	-

Range	210.0
Percentage of participants	66.7%

Participants reported to 1 g	1
Participants reported to 0.1 g	2

Comments - Washed grading sample mass

• Too few results were reported to make any meaningful deductions regarding the sample mass used.

Washed Grading

NOTE: Fraction 100 mm, 75 mm, 63 mm and 50 mm were not analyzed as they all had 100 % passing

Lab Code	37.5 mm	Z-Score
AB4XQ	86.2	-1.74E+14
AO7VU	100	0.357
CV6ZX	100	0.357
DK9WF	100.0	0.357
EN2QS	100	0.357
TF5SK	100.00	0.357
YY3QP	100	0.357
DF6CP		
DG3DK		
WQ3LN		

Lab Code	28/25 mm	Z-Score	
WQ3LN	69.1	-1.855	
AB4XQ	75.1	-1.127	
AO7VU	80.0	-0.533	
DK9WF	84.7	0.038	
TF5SK	86.42	0.247	
EN2QS	87	0.317	
DG3DK	87.50	0.378	
CV6ZX	90	0.681	
DF6CP	100	1.895	
YY3QP			

Lab Code	20/19 mm	Z-Score
WQ3LN	47.8	-2.474
AB4XQ	59.7	-0.925
AO7VU	59.7	-0.925
YY3QP	65.92	-0.116
DK9WF	67.6	0.103
CV6ZX	68	0.155
TF5SK	68.76	0.254
DG3DK	70.6	0.493
DF6CP	74.2	0.962
EN2QS	79	1.586

% passing 37,5 mm		28/25 mm	20/19 mm		
H15 mean	100.0	84.4	66.8		
H15 Std Dev	7.953E-14	8.240	7.685		
Range	13.80	30.90	31.20		
CV	0.0%	9.8%	11.5%		

Lab Code	14/13.2 mm	Z-Score
A07VU	27.9	-1.425
WQ3LN	31.5	-1.170
AB4XQ	40.2	-0.554
CV6ZX	51	0.211
TF5SK	51.11	0.219
DF6CP	52.6	0.325
DK9WF	53.7	0.403
DG3DK	56.0	0.566
EN2QS	69	1.487
YY3QP		

Lab Code	10/9.5 mm	Z-Score
AO7VU	14.5	-1.837
WQ3LN	23.2	-1.120
DF6CP	39.4	0.214
DK9WF	41.7	0.404
TF5SK	41.81	0.413
YY3QP	44.54	0.637
DG3DK	47.0	0.840
AB4XQ		
CV6ZX		
EN2QS		

Lab Code	7.1/6.7 mm	Z-Score
AO7VU	11.1	-1.476
WQ3LN	18.7	-0.820
DF6CP	32.8	0.397
TF5SK	33.15	0.427
DK9WF	33.8	0.483
DG3DK	38.4	0.880
AB4XQ		
CV6ZX		
EN2QS		
YY3QP		

% passing	14/13.2 mm	10/9.5 mm	7.1/6.7 mm
H15 mean	48.0	36.8	28.2
H15 Std Dev	14.114	12.140	11.588
Range	41.10	32.50	27.30
CV	29.4%	33.0%	41.1%

Lab Code	5/4.75 mm	Z-Score
AO7VU	9.5	-2.095
WQ3LN	15.2	-1.408
AB4XQ	24.7	-0.263
DF6CP	25.2	-0.203
CV6ZX	28	0.135
DK9WF	29.1	0.268
TF5SK	29.28	0.289
YY3QP	31.26	0.528
DG3DK	32.3	0.653
EN2QS	45	2.184

Lab Code	3.35 mm	Z-Score
TF5SK	24.32	
AB4XQ		
AO7VU		
CV6ZX		
DF6CP		
DG3DK		
DK9WF		
EN2QS		
WQ3LN		
YY3QP		

Lab Code	2/2.360 mm	Z-Score
A07VU	5.7	-1.709
WQ3LN	9.5	-1.188
AB4XQ	11.8	-0.872
CV6ZX	18.7	0.076
DK9WF	19.7	0.213
TF5SK	20.28	0.293
DF6CP	21.4	0.447
DG3DK	21.7	0.488
YY3QP	22.09	0.542
EN2QS	30	1.628

% passing	5/4.75 mm	3.35 mm	2/2.36 mm
H15 mean	26.9	24.3	18.1
H15 Std Dev	8.296	0.000	7.281
Range	35.50	0.00	24.30
cv	30.9%	0.0%	40.1%

Lab Code	1/1.18 mm	Z-Score	Lab Code	0.600 mm	Z-Score	Lab Code	0.425 mm	Z-Score
AO7VU	4.4	-1.404	A07VU	3.3	-1.340	A07VU	3.0	-1.111
WQ3LN	6.3	-1.037	WQ3LN	4.0	-1.172	WQ3LN	3.2	-1.061
YY3QP	11.75	0.016	DK9WF	9.6	0.178	AB4XQ	5.0	-0.607
DK9WF	13.7	0.393	TF5SK	10.44	0.380	DK9WF	7.8	0.098
DF6CP	14	0.451	DF6CP	11	0.515	DF6CP	8.1	0.174
TF5SK	14.62	0.571	YY3QP	11.40	0.611	CV6ZX	8.7	0.325
DG3DK	16.8	0.992	DG3DK	12.3	0.828	DG3DK	10.5	0.778
AB4XQ			AB4XQ			EN2QS	14	1.660
CV6ZX			CV6ZX			TF5SK		
EN2QS			EN2QS			YY3QP		

% passing	1/1.18 mm	0.600 mm	0.425 mm
H15 mean	11.7	8.9	7.4
H15 Std Dev	5.174	4.150	3.970
Range	12.40	9.00	11.00
cv	44.4%	46.8%	53.6%

Lab Code	0.300 mm	Z-Score
WQ3LN	2.4	-1.303
A07VU	2.7	-1.196
DF6CP	6.6	0.195
DK9WF	6.8	0.266
TF5SK	7.46	0.501
YY3QP	8.12	0.736
DG3DK	8.3	0.801
AB4XQ		
CV6ZX		
EN2QS		

Lab Code	0.150 mm	Z-Score
WQ3LN	1.4	-1.341
AO7VU	1.9	-1.130
DK9WF	4.8	0.098
TF5SK	5.29	0.305
DF6CP	5.9	0.564
YY3QP	5.99	0.602
DG3DK	6.7	0.902
AB4XQ		
CV6ZX		
EN2QS		

Lab Code	0.075 mm	Z-Score
AB4XQ	0	-1.461
WQ3LN	0.8	-1.112
AO7VU	1.1	-0.981
CV6ZX	3.6	0.109
DK9WF	3.6	0.109
TF5SK	3.90	0.240
DF6CP	4.2	0.371
YY3QP	4.71	0.593
DG3DK	5.5	0.938
EN2QS	6	1.156

% passing	0.300 mm	0.150 mm	0.075 mm	
H15 mean	6.1	4.6	3.3	
H15 Std Dev	2.805	2.363	2.294	
Range	5.90	5.30	6.00	
CV	46.3%	51.7%	68.5%	

	37,5 mm	28/25 mm	20/19 mm	14/13. 2 mm	10/9.5 mm	7.1/6.7 mm	5/4.75 mm	3.35 mm
Additional participant statistic	s							
Number of participants	7	9	10	9	7	6	10	1
Non-participants	3	1	-	1	3	4	-	9
OB	-	-	-	-	-	-	-	-

Statistics for Z-scores < ±1								
Range	0.00	10.00	14.50	15.80	7.60	19.70	7.60	-
Percentage of participants	85.7%	66.7%	80.0%	66.7%	71.4%	83.3%	70.0%	-
Reporting format								

Participants reported to 1 %	3	3	2	2	-	-	2	-
Participants reported to 0.1 %	3	4	6	6	5	5	6	-
Participants reported to 0.01 %	1	2	2	1	2	1	2	2

	2/2.36 mm	1/1.18 mm	0.600 mm	0.425 mm	0.300 mm	0.150 mm	0,075 mm		
Additional participant statistics									
Number of participants	10	7	7	8	7	7	10		
Non-participants	-	3	3	2	3	3	-		
OB	-	-	-	-	-	-	-		

Statistics for Z-scores < ±1

Range	10.29	5.05	2.70	5.50	1.70	1.90	4.40
Percentage of participants	70.0%	71.4%	71.4%	62.5%	71.4%	71.4%	70.0%

Reporting format

Protocols for Improving the Proficiency of Material Testing Laboratories in Mozambique – ANE/LEM PTS

Participants reported to 1 %	1	1	1	1	-	-	2
Participants reported to 0.1 %	7	4	4	7	5	5	6
Participants reported to 0.01 %	2	2	2	-	2	2	2

Comments – Washed Grading

- Six test methods were used by the 10 participants in the grading analysis.
- Some of the test methods used are for aggregates, whereas this material is a crushed material with both coarse and fine material which more represents a graded soil than an aggregate sample.
 - These types of discrepancies in the test method used need to be resolved to obtain more consistent results.
Soil Mortar based on grading analysis

Lab Code	GM	Z-Score
EN2QS	2.49	-1.542
DG3DK	2.62	-0.815
CV6ZX	2.69	-0.423
DK9WF	2.75	-0.087
DF6CP	2.78	0.080
WQ3LN	2.87	0.584
A07VU	2.9	0.752
AB4XQ	3	1.311
TF5SK		
YY3QP		

Lab Code	Coarse Sand	Z-Score
DG3DK	8.3	-1.040
CV6ZX	10	-1.002
YY3QP	10.7	-0.987
EN2QS	53	-0.050
DK9WF	86.3	0.687
DF6CP	89	0.747
WQ3LN	90.5	0.780
AO7VU	94.3	0.864
TF5SK	NULL	
AB4XQ		

Lab Code	Coarse Sand ratio	Z-Score
EN2QS	0.53	-0.822
WQ3LN	0.91	-0.692
AO7VU	2.4	-0.185
DK9WF	4.0	0.359
DG3DK	9.4	2.197
DF6CP	CBD	
AB4XQ		
CV6ZX		
TF5SK		
YY3QP		

% passing	GM	Coarse Sand	Coarse Sand Ratio
H15 mean	2.77	55.26	2.94
H15 Std Dev	0.179	45.158	2.938
Range	0.51	86.00	8.87
cv	6.5%	81.7%	99.8%

Test method information

Test method	AASHTO T27	AASHTO T88	ASTM C136	SANS 3001 PR5	TMH1 A1 (a)	TMH1 B4	Non- responsive
# participants	2 (20 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)	1 (10 %)	1 (NULL)

Lab Code	Coarse Fine Sand	Z-Score	Lab Code	Fine Fine Sand	Z-Score	Lab Code	Fine Sand	Z-Score
AO7VU	0.6	-0.966	WQ3LN	1.6	-0.792	AO7VU	1.6	-0.742
DK9WF	2.8	-0.375	DK9WF	3.2	-0.158	WQ3LN	1.6	-0.742
DF6CP	2.9	-0.348	EN2QS	6	0.951	DF6CP	1.7	-0.671
WQ3LN	5.5	0.350	AO7VU	NULL		DG3DK	2.8	0.109
EN2QS	12	2.096	TF5SK	NULL		DK9WF	3.6	0.677
TF5SK	NULL		AB4XQ			CV6ZX	5.1	1.741
AB4XQ			CV6ZX			YY3QP	5.4/1.3	
CV6ZX			DF6CP			EN2QS	NULL	
DG3DK			DG3DK			TF5SK	NULL	
YY3QP			YY3QP			AB4XQ		

% passing	Coarse Fine Sand	Fine Fine Sand	Fine Sand
H15 mean	4.20	3.60	2.65
H15 Std Dev	3.723	2.524	1.410
Range	11.40	4.40	3.50
CV	88.7%	70.1%	53.3%

Lab Code	Medium Fine Sand	Z-Score	Lab Code	Soil Mortar	Z-Score
WQ3LN	0.8	-0.822	WQ3LN	0.8	-0.797
DF6CP	2.1	-0.457	AO7VU	1.1	-0.782
DG3DK	4.0	0.077	DG3DK	5.5	-0.561
EN2QS	8	1.202	CV6ZX	18.7	0.102
A07VU	NULL		EN2QS	30	0.670
TF5SK	NULL		DF6CP	7000	350.771
AB4XQ			TF5SK	NULL	
CV6ZX			AB4XQ		
DK9WF			DK9WF		
YY3QP			YY3QP		

% passing	Coarse Fine Sand	Fine Fine Sand		
H15 mean	3.73	16.67		
H15 Std Dev	3.557	19.909		
Range	7.20	6999.20		
cv	95.5%	119.4%		

Comments – Soil mortars

-3

- This portion of the report was the worst in the reported results.
 - It seems as if what was required was not well understood by the various facilities and these uncertainties need to be resolved before the next round, or this section on Soil Mortars analysis needs to be removed.

-3

• The GM had an acceptable result with a low CV and range.

3.2 Plastic Material

Liquid Limit (LL), Plastic Limit (PL), Linear Shrinkage (LS) and Plasticity Index (PI) tests

Lab code	LL %	z- score	Lab code	PL %	z-score	Lab code	LS %	z-score	Lab co	de PI %	z-score
WQ3LN	20.8	-3.870	AO7VU	9.1	-2.323	AB4XQ	0.2	-1.480	CV6Z	X 4.9	-0.982
DK9WF	29.6	-1.203	DK9WF	19.0	-0.854	WQ3LN	2.0	-0.540	DG3D	6 б	-0.756
EN2QS	32	-0.476	TF5SK	20	-0.705	CV6ZX	2.2	-0.435	EN2C	QS 6	-0.756
CV6ZX	34.1	0.160	EN2QS	26	0.185	DG3DK	2.5	-0.278	AB4X	Q 8	-0.344
AO7VU	34.3	0.221	AB4XQ	27.2	0.364	EN2QS	3	-0.017	YY3C	P 10.4	0.149
AB4XQ	35	0.433	DG3DK	29	0.631	DK9WF	3.5	0.244	DK9V	/F 10.6	0.190
DG3DK	35	0.433	CV6ZX	29.2	0.661	YY3QP	5	1.027	TF5S	к 15	1.095
TF5SK	35	0.433	YY3QP	32.3	1.121	A07VU	9.3	3.273	A07\	'U 25.2	3.193
YY3QP	42.7	2.766	DF6CP	CBD		DF6CP	CBD		DF6C	P CBD	
DF6CP	CBD		WQ3LN	CBD		TF5SK	NULL		WQ3	N NULL	

Test method information

Test method	AASHTO T89	SANS 3001 GR10/11/12	TMH1 A2, A3 & A4	Non-responsive
# participants	4 (30 %)	2 (20 %)	4 (40 %)	0 (NULL)

	LL	PL	LS	PI
H15 mean	33.57	24.75	3.03	9.67
H15 Std Dev	3.300	6.736	1.915	4.862
Range	21.90	23.20	9.10	20.30
cv	9.8%	27.2%	63.1%	50.3%

Protocols for Improving the Proficiency of Material Testing Laboratories in Mozambique – ANE/LEM PTS

	LL	PL	LS	PI
Additional participant statistics				
Number of participants	10	10	10	10
Non-participants	-	-	-	-
CBD	1	2	1	1
NULL	-	-	1	1
ОВ	-	-	-	-

Statistics for Z-scores < ±1				
Range	3.00	10.20	1.50	5.70
Percentage of participants	66.7%	75.0%	62.5%	75.0%
Reporting format				

Reporting format				
Participants reported correctly to 1 %	4	3	2	4
Participants reported to 0.1 %	5	5	6	4

Page 35

Comments – Atterberg limits

- It was expected that this material would be more difficult to obtain a result, but the fine plastic material provided better results than the crushed granular material although there is still much to be done to reduce the range and variability of the results.
- The difference in how the material is prepared needs to be limited to provide more consistent results.
 - This relates back to the variety in test methods used between the facilities with some doing the test from dry to wet and others doing from wet to dry.
- Three test methods were used by the 10 participants in the PI determination.
- Eight facilities of the ten obtained a PI value although two reported that the material was not plastic.
- Much needs to be done to get the results reported correctly of this test method.
- In general, the results are too variable for the PL, LS and PI.

3.3 Aggregate Material

Average Least Dimension (ALD)

#	Lab code	ALD (mm)	z-score
1	AB4XQ	3.8	-1.178
2	DF6CP	4.11	-1.111
3	CV6ZX	9.8	0.112
4	EN2QS	10.0	0.155
5	DK9WF	10.19	0.196
6	DG3DK	11.71	0.522
7	AO7VU	15.35	1.305
8	TF5SK		
9	WQ3LN		
10	YY3QP		

	Reduction Factor
H15 mean	9.280
H15 Std Dev	4.653
Range	11.55
cv	50.1%

Test method information

Test method	AASHTO	TMH 1 B1 & B2	TMH 1 B18(a)	SANS 3001 AG2	Non- responsive
# participants	1 (10 %)	1 (10 %)	3 (10 %)	2 (20 %)	3 (NULL)

	ALD
Number of participants	7
Non-participants	3
OB	-
Range	6.1
Percentage of participants	71.4%
Participants reported to 0.1 mm	3
Participants reported to 0,01	4

Additional Information on ALD

Lab Code	# particles	Z-Score	Lab Code	Specimen mass	Z-Score
AO7VU	50	-1.745	AO7VU	80	-1.027
AB4XQ	200	-0.242	DF6CP	111.9	-0.983
DF6CP	200	-0.242	CV6ZX	669.1	-0.222
DG3DK	200	-0.242	AB4XQ	753	-0.108
CV6ZX	204	-0.202	DG3DK	943.50	0.152
DK9WF	317	0.930	DK9WF	1415.8	0.797
EN2QS	555	3.315	EN2QS	1910.7	1.473
TF5SK			TF5SK		
WQ3LN			WQ3LN		
YY3QP			YY3QP		

% passing	# particles counted	Specimen mass
H15 mean	224.191	831.838
H15 Std Dev	99.804	732.409
Range	505.00	1830.70
cv	44.5%	88.0%

	# Particle Count	Sample Mass
Number of participants	7	7
Non-participants	3	3
OB	-	-
Range	4.0	831.6
Percentage of participants	71.4%	71.4%
Participants reported to 1	7	2
Participants reported to 0.1	-	4
Participants reported to 0.01	-	1

Comments – ALD Direct Measurement

- Four test methods were used by the seven participants in the ALD determination.
- Three participants did not provide a result.
- The variability can be attributed to the difference in mass used by the various facilities which varied from 80 g to 2 000 g as well as the corresponding particle counts varying from 50 to 555.

Flakiness Index (FI)

#	Lab code	FI	z-score
1	DK9WF	4.9	-1.112
2	AB4XQ	5.1	-1.096
3	DG3DK	5.3	-1.080
4	CV6ZX	17.9	-0.091
5	YY3QP	19.16	0.008
6	EN2QS	19.8	0.059
7	AO7VU	24.1	0.396
8	TF5SK	25.79	0.529
9	WQ3LN	31.3	0.962
10	DF6CP	37.29	1.432

	Reduction Factor
H15 mean	19.054
H15 Std Dev	12.732
Range	32.39
cv	66.8%

Test method information

Test method	AASHTO	ASTM D4791	TMH 1 847	TMH 1 B3	SANS 3001 AG4	Non- responsive
# participants	1 (10 %)	1 (10 %)	1 (10 %)	4 (40 %)	2 (20 %)	1 (NULL)

	FI
Number of participants	10
Non-participants	-
OB	-
Range	14.1
Percentage of participants	71.4%
Participants reported to 0.1 mm	7
Participants reported to 0,01	3

Additional Information on FI

Lab Code	FI sample mass	Z-Score
AB4XQ	725	-1.148
DK9WF	1415.8	-0.607
AO7VU	1535	-0.513
DG3DK	1537.7	-0.511
EN2QS	1600.8	-0.462
CV6ZX	1678.1	-0.401
YY3QP	2486.4	0.232
WQ3LN	2914.1	0.567
DF6CP	5000	2.202
TF5SK	6467.00	3.351

% passing	# particles counted
H15 mean	2190.3
H15 Std Dev	1276.2
Range	5742.0
cv	58.3%

	FI sample mass
Number of participants	10
Non-participants	-
OB	-
Range	185.0
Percentage of participants	71.4%
Participants reported to 1	3
Participants reported to 0.1	6
Participants reported to 0.01	1

Comments – Flakiness Index

- Five test methods were used by the 10 participants in the FI determination.
- As with the ALD the mass of the sample varied vastly from 725 g to 6 467 g contributing to the variability of the results.

• The interpretation of the test methods could further add to the differences e.g. are fractions weighing less than 10 % excluded from the analysis.

Aggregate Crushing Value (ACV)

Lab Code	ACV %	Z-Score	Lab Code	Specimen mass	Z-Score
TF5SK	14.65	-0.973	DK9WF	2122.0	-1.132
EN2QS	14.8	-0.935	DG3DK	2220	-0.918
DF6CP	15.33	-0.799	AB4XQ	2383	-0.563
CV6ZX	15.7	-0.704	EN2QS	2396.0	-0.535
DK9WF	16.0	-0.627	CV6ZX	2428	-0.465
YY3QP	19.6	0.295	DF6CP	2530.3	-0.242
AO7VU	21.50	0.782	AO7VU	3000	0.781
AB4XQ	22	0.910	YY3QP	3000.0	0.781
WQ3LN	22.0	0.910	WQ3LN	3042.2	0.873
DG3DK	22.9	1.141	TF5SK	5359.67	5.921

% passing	ACV %	Specimen mass	
H15 mean	18.45	2641.60	
H15 Std Dev	3.90	459.08	
Range	8.25	3237.67	
сv	21.2%	17.4%	

Test method information (ACV & 10% FACT)

Test method	AASHTO	ASTM D5821	TMH 1 841	TMH 1 B1/B2	SANS 3001 AG10	Non- responsive
# participants	1 (10 %)	1 (10 %)	1 (10 %)	4 (40 %)	2 (20 %)	1 (NULL)

	ACV	Specimen mass
Number of participants	10	10
Non-participants	-	-
ОВ	-	-
Range	7.4	822.2
Percentage of participants	90.0%	80.0%
Participants reported to 1	1	4
Participants reported to 0.1	6	5
Participants reported to 0.01	3	1

Comments – ACV

- Five test methods were used by the 10 participants in the ACV determination.
- The mass used per sample is possibly a reason for the variability, but this particular test should provide a better correlation with a lower CV and range than obtained in the round.
- Calibration of the apparatus may also add to the variability of the results.

10% Fines Aggregate Crushing Test (10% FACT)

Lab Code	10 % FACT kN	Z-Score	Lab Code	Specimen mass	Z-Score
AO7VU	19.50	-4.470	WQ3LN	2202.0	-0.983
WQ3LN	201	-0.666	DG3DK	2291	-0.785
DG3DK	203	-0.624	AB4XQ	2383	-0.580
AB4XQ	210	-0.477	EN2QS	2401.4	-0.539
YY3QP	220	-0.267	DF6CP	2595.4	-0.106
DF6CP	265.9	0.695	AO7VU	3000.00	0.795
EN2QS	266	0.697	YY3QP	3000	0.795
DK9WF	278.7	0.963	TF5SK	5384.33	6.108
TF5SK	285	1.095	CV6ZX		
CV6ZX			DK9WF		

% passing	10 % FACT kN	Specimen mass	
H15 mean	232.76	2643.15	
H15 Std Dev	47.71	448.81	
Range	265.50	3182.33	
сv	20.5%	17.0%	

	10 % FACT kN	Specimen mass
Number of participants	9	8
Non-participants	1	2
OB	-	-
Range	77.7	798.0
Percentage of participants	66.7%	87.5%
Participants reported to 1	6	3
Participants reported to 0.1	2	3
Participants reported to 0.01	1	2

Comments – 10 % FACT

- Five test methods were used by the 10 participants in the 10 % FACT determination.
- One facility did not provide a result.
- The range and the CV are higher than would be acceptable.

Aggregate Grading Sample Mass

#	Lab code	Sample mass (g)	z-score
1	EN2QS	1600.8	-1.001
2	TF5SK	1603.32	-0.997
3	CV6ZX	1678.1	-0.893
4	A07VU	2022	-0.415
5	DK9WF	2425.0	0.145
6	DF6CP	2500	0.250
7	YY3QP	2735.5	0.577
8	WQ3LN	2981.4	0.919
9	AB4XQ	7150	6.715
10	DG3DK		

	Sample	
	mass	
H15 mean	2320.47	
H15 Std Dev	719.26	
Range	5549.20	
cv	31.0%	

Test method information

Test method	AASHTO T27	AASHTO T88	ASTM C136	SANS 3001 GR1	SANS 3001 AG1	TMH1 A1 (a)	TMH1 B4	Non- responsive
# participants	2 (20 %)	1 (10 %)	1 (10 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)	0 (NULL)

	Sample Mass
Number of participants	9
Non-participants	1
OB	-
Range	74.8
Percentage of participants	66.7%
Participants reported to 1 g	3
Participants reported to 0.1 g	5
Participants reported to 0.01 g	1

Comments – Aggregate grading sample mass

• The sample mass, as with the other aggregate test methods, varies too much.

Washed Grading

NOTE: Fraction 100 mm, 75 mm, 63 mm, 50 mm, 37,5 mm & 28/25 mm were not analyzed as they all had 100 % passing

Lab Code	20/19 mm	Z-Score
AO7VU	70.3	-46.605
DK9WF	98.5	-1.834
DF6CP	99.7	0.071
AB4XQ	100	0.548
CV6ZX	100	0.548
EN2QS	100	0.548
TF5SK	100.00	0.548
YY3QP	100.00	0.548
DG3DK		
WQ3LN		

Lab Code	14/13.2 mm	Z-Score
AO7VU	23.7	-1.634
DF6CP	31.7	-0.670
WQ3LN	32.7	-0.549
AB4XQ	33	-0.513
TF5SK	36.51	-0.090
DK9WF	40.5	0.391
DG3DK	41.40	0.499
CV6ZX	45	0.933
EN2QS	52	1.777
YY3QP		

Lab Code	10/9.5 mm Z-Score	
DF6CP	5.1	-0.838
WQ3LN	5.1	-0.838
TF5SK	5.44	-0.694
DK9WF	5.6	-0.626
CV6ZX	5.7	-0.584
EN2QS	7	-0.033
DG3DK	7.4	0.137
AB4XQ	8.7	0.688
AO7VU	10.3	1.367
YY3QP	11.86	2.028

% passing	20/19 mm	14/13.2 mm	10/9.5 mm
H15 mean	99.66	37.26	7.08
H15 Std Dev	0.63	8.30	2.36
Range	29.70	28.30	6.76
сv	0.6%	22.3%	33.3%

Lab Code	7.1/6.7 mm	Z-Score
DF6CP	1.1	-1.552
TF5SK	2	-0.900
AB4XQ	2.1	-0.466
WQ3LN	2.3	-0.248
CV6ZX	2.4	-0.140
DK9WF	2.9	0.404
EN2QS	3	0.512
DG3DK	3.3	0.838
A07VU	7.8	5.727
YY3QP		

Lab Code	5/4.75 mm	Z-Score
TF5SK	1.14	-0.914
AB4XQ	1.4	-0.689
WQ3LN	1	-0.689
CV6ZX	1.5	-0.603
EN2QS	2	-0.170
DK9WF	2.1	-0.084
DG3DK	2.6	0.349
AO7VU	3.8	1.387
YY3QP	9.11	5.980
DF6CP	NULL	

Lab Code	2/2.36 mm	Z-Score
TF5SK	0.67	-0.899
CV6ZX	1	-0.758
WQ3LN	0.8	-0.758
EN2QS	1	-0.540
AB4XQ	1.2	-0.322
DK9WF	1.5	0.004
DG3DK	2.1	0.658
AO7VU	2.6	1.202
YY3QP	8.99	8.159
DF6CP		

% passing	7.1/6.37 mm	5/4.75 mm	2/2.36 mm
H15 mean	2.53	2.20	1.50
H15 Std Dev	0.92	1.16	0.92
Range	6.70	7.97	8.32
cv	36.4%	52.6%	61.4%

Protocols for Improving the Proficiency of Material Testing Laboratories in Mozambique – ANE/LEM PTS

Lab Code	1/1.18 mm	Z-Score
TF5SK	0.59	-1.015
WQ3LN	0.6	-1.003
EN2QS	1	-0.524
AB4XQ	1.2	-0.284
DK9WF	1.4	-0.045
DG3DK	2.0	0.674
A07VU	2.1	0.794
YY3QP	8.99	9.047
CV6ZX		
DF6CP		

Lab Code	0.600 mm	Z-Score
WQ3LN	0.5	-1.057
TF5SK	0.55	-0.985
EN2QS	0.8	-0.624
AB4XQ	1.2	-0.046
DK9WF	1.3	0.099
AO7VU	1.4	0.243
DG3DK	1.9	0.965
YY3QP	8.99	11.205
CV6ZX		
DF6CP		

Lab Code	0.425 mm	Z-Score
WQ3LN	0.5	-1.068
CV6ZX	0.6	-0.850
EN2QS	0.8	-0.413
A07VU	0.9	-0.195
AB4XQ	1.2	0.460
DK9WF	1.3	0.679
DG3DK	1.9	1.989
DF6CP		
TF5SK		
YY3QP		

% passing	1/1.18 mm	0.600 mm	0.425 mm
H15 mean	1.44	1.23	0.99
H15 Std Dev	0.83	0.69	0.46
Range	8.40	8.49	1.40
cv	58.1%	56.2%	46.3%

Lab Code	0.300 mm	Z-Score	Lab Code	0.150 mm	Z-Score		Lab Code	0.075 mm	Z-Score
AO7VU	0.4	-0.877	A07VU	0.1	-1.062		AO7VU	0.1	-0.898
WQ3LN	0.4	-0.877	WQ3LN	0.3	-0.818		WQ3LN	0.1	-0.898
DK9WF	0.51	-0.733	TF5SK	0.43	-0.658		TF5SK	0.3	-0.661
DF6CP	0.8	-0.352	EN2QS	0.7	-0.3		CV6ZX	0.3	-0.634
DG3DK	1.1	0.042	AB4XQ	1.1	0.2		EN2QS	0.6	-0.239
AB4XQ	1.3	0.304	DK9WF	1.2	0.284		AB4XQ	1.0	0.288
TF5SK	1.9	1.091	DG3DK	1.8	1.018		DK9WF	1.1	0.419
CV6ZX	8.98	10.381	YY3QP	8.98	9.807		DG3DK	1.7	1.210
EN2QS			CV6ZX]	YY3QP	8.97	10.785
YY3QP			DF6CP]	DF6CP		

% passing	0.300 mm	0.150 mm	0.075 mm
H15 mean	1.07	0.97	0.78
H15 Std Dev	0.76	0.82	0.76
Range	8.58	8.88	8.87
CV	71.3%	84.4%	97.1%

Additional participant statistic	20/19 mm s	14/13. 2 mm	10/9.5 mm	7.1/6.7 mm	5/4.75 mm	2/2.36 mm	1/1.18 mm	0.600 mm
Number of participants	8	9	10	9	9	9	8	8
Non-participants	2	1	-	1	1	1	2	2
ОВ	-	-	-	-	-	-	-	-

Statistics for Z-scores < ±1

Range	1.2	1.0	0.3	0.4	0.0	0.0	0.4	0.3
Percentage of participants	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%	66.7%

Reporting format

Participants reported to 1 %	3	3	1	2	2	2	1	-
Participants reported to 0.1 %	3	4	7	7	5	5	5	6
Participants reported to 0.01 %	2	2	2	-	2	2	2	2

	0.425	0.300	0.150	0,075				
	mm	mm	mm	mm				
Additional participant statistics								
Number of participants	7	8	8	9				
Non-participants	3	2	2	1				
OB	-	-	-	-				

Statistics for Z-scores < ±1

Range	0.2	0.1	0.1	0.2
Percentage of participants	66.7%	66.7%	66.7%	66.7%

Reporting format

Participants reported to 1 %	-	-	-	-
Participants reported to 0.1 %	7	7	6	8
Participants reported to 0.01 %	-	2	2	1

Comments – Aggregate Grading

- Seven test methods were used by the 10 participants in the aggregate grading determination.
- Most of the results are acceptable with only one or two facilities with values vastly different from the mean as calculated.
- The different sieve sizes used in the various test methods does make the analysis and deductions more difficult to make with any certainty.

3.4 Sand Material

Lab code	LL %	z- score	Lab code	PL %	z-score	Lab code	LS %	z-score	Lab code	PI %	z-score
CV6ZX	0	-2.920	CV6ZX	0	-1.019	CV6ZX	0	-0.714	YY3QP	0	-0.614
TF5SK	13	-0.533	DG3DK	17.0	0.492	DK9WF	0.0	-0.714	DG3DK	1	-0.397
WQ3LN	16.2	0.055	AO7VU	17.4	0.527	EN2QS	0	-0.714	A07VU	7.5	1.011
AB4XQ	16.4	0.092	DF6CP	CBD		AB4XQ	0.4	-0.162	DF6CP	CBD	
DG3DK	18.0	0.385	EN2QS	CBD		DG3DK	0.4	-0.162	TF5SK	CBD	
AO7VU	24.9	1.652	TF5SK	CBD		WQ3LN	1.3	1.079	CV6ZX	NP	
DF6CP	CBD		WQ3LN	CBD		AO7VU	4.0	4.801	DK9WF	NP	
EN2QS	CBD		DK9WF	NP		DF6CP	CBD		EN2QS	NP	
DK9WF	NP		YY3QP	NP		YY3QP	NP		AB4XQ	NULL	
YY3QP	NP		AB4XQ	NULL		TF5SK	NULL		WQ3LN	NULL	

Liquid Limit (LL), Plastic Limit (PL), Linear Shrinkage (LS) and Plasticity Index (PI) tests

Test method information

Test method	AASHTO T27	AASHTO T89	SANS 3001 GR10/11/12	TMH1 A2, A3 & A4	Non-responsive
# participants	1 (10 %)	3 (30 %)	2 (20 %)	4 (40 %)	0 (NULL)

	LL	PL	LS	PI
H15 mean	15.90	11.47	0.52	2.83
H15 Std Dev	5.446	11.257	0.725	4.615
Range	24.90	17.40	4.00	7.50
сv	34.3%	98.2%	140.1%	162.9%

	LL	PL	LS	PI		
Additional participant statistics						
Number of participants	10	10	10	10		
CBD	2	4	1	2		
NP	2	2	1	3		
SP	-	-	-	-		
NULL	-	1	1	2		
Non-participants	-	-	-	-		
ОВ	-	-	-	-		

Statistics for Z-scores < ±1

Range	5.0	0.4	0.4	1.0
Percentage of participants	66.7%	66.7%	71.4%	66.7%

Reporting format

Participants reported correctly to 1 %	2	1	2	2
Participants reported to 0.1 %	4	2	5	1

Comments – Atterberg Limits

- This material was used as a basis to check for consistencies in the more variable test methods such as Atterberg and CBR.
 - \circ $\;$ It is assumed that the material is NP.
- Four test methods were used by the 10 participants in the PI determination.
- Eight facilities of the ten concluded the material was NP.
- Much needs to be done to get the results reported correctly of this test method.

Optimum Moisture Content test

#	Lab code	OMC %	OMC z-score
1	CV6ZX	6.7	-1.343
2	DK9WF	6.8	-1.221
3	WQ3LN	7.4	-0.488
4	EN2QS	7.5	-0.366
5	DG3DK	7.6	-0.244
6	YY3QP	8.1	0.366
7	AB4XQ	8.2	0.488
8	TF5SK	8.3	0.610
9	DF6CP	8.5	0.855
10	A07VU	8.9	1.343

	ОМС
H15 mean	7.80
H15 Std Dev	0.819
Range	2.20
cv	10.5%

Test method information

Test method	AASHTO T180	AASHTO T99	SANS 3001 GR30	TMH1 A7	Non-responsive
# participants	2 (20 %)	1 (10 %)	1 (20 %)	4 (40 %)	2 (NULL)

Apparatus information

Automatic	Manual	Non-responsive
2	7	1 (NULL)

Additional participant statistics

Number of participants	10
Non-participants	-
OB	-

Statistics for Z-scores < ±1			
Range	1.1		
Percentage of participants 70.0%			

Reporting formatParticipants reported correctly to 0.1 %10

Comments - Optimum Moisture Content (OMC) Test

- Four test methods were used by the 10 participants in the OMC determination.
- These results are considered good given the low StDev and CV.

Maximum Dry Density test

#	Lab code	MDD kg/m ³	MDD z-score
1	DF6CP	1935	-1.376
2	CV6ZX	1956	-0.779
3	TF5SK	1959	-0.694
4	YY3QP	1960	-0.665
5	WQ3LN	1977	-0.182
6	EN2QS	1994	0.301
7	AB4XQ	2000	0.472
8	DG3DK	2002.1	0.531
9	DK9WF	2018	0.983
10	AO7VU	2033	1.410

	MDD
H15 mean	1983.4
H15 Std Dev	35.18
Range	98.00
cv	1.8%

Test method information

Test method	AASHTO T180	AASHTO T99	SANS 3001 GR30	TMH1 A7	Non-responsive
# participants	2 (20 %)	1 (10 %)	1 (20 %)	4 (40 %)	2 (NULL)

Additional participant statistics

Number of participants	10
Non-participants	-
ОВ	-

Statistics for Z-scores < ±1

Range	62.0
Percentage of participants	80.0%

Reporting format

Participants reported to 1 kg/m ³	4
Participants reported to 0.1 kg/m ³	1
Participants reported to 0.001	5

Comments - Maximum Dry Density (MDD) test

•

- It is somewhat surprising that the borrow pit sand had a slightly higher MDD to the crushed granular material.
- Four test methods were used by the 10 participants in the MDD determination.
 - The results for the MDD were all converted to kg/m³ for ease of analysis.
 - This is as a result of the different test methods making use of various reporting formats.
- The use of a rubber mat by some of the facilities to contain the sand during the compaction process could influence the densities obtained.

CBR Hygroscopic Moisture Contents test

#	Lab code	Hygroscopic %	z-score
1	DG3DK	0.6	-0.694
2	AB4XQ	0.7	-0.600
3	EN2QS	0.7	-0.600
4	CV6ZX	1.0	-0.320
5	TF5SK	2.25	0.847
6	WQ3LN	29	25.821
7	DF6CP	NULL	
8	A07VU		
9	DK9WF		
10	YY3QP		

	Hygroscopic MC %
H15 mean	1.34
H15 Std Dev	1.07
Range	28.40
CV	79.8%

Test method information

Test method	AASHTO T193	SANS 3001 GR40	TMH1 A8	Non-responsive
# participants	4 (40 %)	1 (20 %)	4 (40 %)	1 (NULL)

Apparatus information

Automatic	Manual	Non-responsive
5	4	1 (NULL)
Proving Ring	Load Cell	Non-responsive
1	4	5 (NULL)

Additional participant statistics

Number of participants	9
Non-participants	1
NULL	2
OB	-

Statistics for Z-scores < ±1

Range	1.6

Percentage of participants	83.3%
----------------------------	-------

Reporting	format

Participants reported to 1 %	1
Participants reported correctly to 0.1 %	4
Participants reported to 0.01 %	1

Comments - Hygroscopic Moisture Contents test

- Two of the results varied drastically from the mean.
 - This value should represent the moisture in the material after air drying.
 - It should not be anywhere near as high as 29 %.
- Most of the results provided were reasonably close to one another.

CBR - % Swell (A, B & C moulds)

				% S	well			
Lab code	A	Z-score	Lab Code	В	Z-score	Lab Code	С	Z-score
AB4XQ	0	-0.517	AB4XQ	0	-0.518	AB4XQ	0	-0.519
DK9WF	0.0	-0.517	DK9WF	0.0	-0.518	DK9WF	0.0	-0.519
EN2QS	0	-0.517	EN2QS	0	-0.518	EN2QS	0	-0.519
YY3QP	0.00	-0.517	YY3QP	0.00	-0.518	YY3QP	0.00	-0.519
CV6ZX	0.01	-0.511	CV6ZX	0.02	-0.506	CV6ZX	0.03	-0.502
DG3DK	2.9	1.188	DG3DK	3.0	1.188	DG3DK	3.1	1.187
AO7VU	10.2	5.478	AO7VU	11.6	6.077	A07VU	11.3	5.700
DF6CP	CBD		DF6CP	CBD		DF6CP	CBD	
TF5SK	CBD		TF5SK	CBD		TF5SK	CBD	
WQ3LN	NULL		WQ3LN	NULL		WQ3LN	NULL	

	Swell A %	Swell B %	Swell C %
H15 mean	0.88	0.91	0.94
H15 Std Dev	1.702	1.759	1.817
Range	10.20	11.60	11.30
CV	193.5%	193.1%	192.8%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	10	10	10
Non-participants	-	-	-
CBD	2	2	2
NULL	1	1	1
OB	-	-	-

Statistics for Z-scores < ±1

Range	0.01	0.02	0.03
Percentage of participants	71.4%	71.4%	71.4%

Reporting format

Participants reported correctly to 1 %	2	2	2
Participants reported to 0.1 %	3	3	3
Participants reported to 0.01 %	2	2	2

Comments - % Swell (A, B & C Moulds)

- The swell values are far too variable reporting from 0 % up to 11.3 %.
- Setting up the swell gauge and taking the readings before and after soaking could well be the result of the variability in the results.

Dry Density % (A, B & C moulds)

				%	DD			
Lab Code	A	Z-score	Lab Code	В	Z-score	Lab Code	С	Z-score
AO7VU	9.0	-59.867	AO7VU	9.0	-72.473	AO7VU	9.0	-77.707
WQ3LN	94.9	-2.753	WQ3LN	91.9	-2.514	DF6CP	90	-0.889
TF5SK	97.8	-0.825	DK9WF	94.4	-0.404	DG3DK	90.2	-0.699
DK9WF	99.0	-0.027	CV6ZX	94.8	-0.066	CV6ZX	90.4	-0.510
AB4XQ	99.9	0.572	DF6CP	95	0.102	WQ3LN	90.7	-0.225
YY3QP	99.9	0.572	DG3DK	95.2	0.271	AB4XQ	91.4	0.439
CV6ZX	100	0.638	TF5SK	95.3	0.355	YY3QP	91.5	0.533
DF6CP	100	0.638	YY3QP	95.4	0.440	EN2QS	91.6	0.628
DG3DK	100.0	0.638	AB4XQ	95.9	0.862	DK9WF	91.7	0.723
EN2QS	100.0	0.638	EN2QS	96.4	1.284	TF5SK	93.5	2.430

_	Α%	В %	С%
H15 mean	99.0	94.9	90.9
H15 Std Dev	1.504	1.185	1.054
Range	91.00	87.40	84.50
CV	1.5%	1.2%	1.2%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	10	10	10
Non-participants	-	-	-
NULL	-	-	-
OB	-	-	-

Statistics for Z-scores < ±1

Range	2.2	3.1	0.7
Percentage of participants	80.0%	70.0%	80.0%

Reporting format

Participants reported to 1 %	2	1	1
Participants reported to 0.1 %	8	9	9

Comments - Maximum Dry Density % (A, B & C Moulds)

- Although the mean reflects the expected results of close to 100 %, 95 % and 90 % of MDD the range of the results are too high.
- This material was not expected to have such high variability.

CBR - Dry Density kg/m³ (A, B & C moulds)

Dry Density (kg/m³)										
Lab Code	A	Z-score		Lab Code	В	Z-score		Lab Code	С	Z-score
TF5SK	1915	-1.748		DF6CP	1818	-2.158		DF6CP	1756	-1.520
DF6CP	1930	-1.284		CV6ZX	1855	-1.087		CV6ZX	1769	-1.199
CV6ZX	1957	-0.450		TF5SK	1867	-0.740		YY3QP	1793	-0.606
YY3QP	1958	-0.419		YY3QP	1870	-0.654		DG3DK	1805.1	-0.307
AO7VU	1966	-0.172		DG3DK	1905.5	0.373		EN2QS	1827	0.234
WQ3LN	1987	0.477		DK9WF	1906	0.388		AB4XQ	1829	0.284
EN2QS	1995	0.724		AO7VU	1914	0.619		TF5SK	1831	0.333
AB4XQ	1997	0.786		AB4XQ	1917	0.706		AO7VU	1836	0.457
DK9WF	1998	0.817		EN2QS	1923	0.880		DK9WF	1850	0.803
DG3DK	2002.1	0.943		WQ3LN	1925	0.938		WQ3LN	1900	2.039

	А	В	С
H15 mean	1972	1893	1818
H15 Std Dev	32.37	34.57	40.46
Range	87.10	107.00	144.00
cv	1.6%	1.8%	2.2%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	10	10	10
Non-participants	-	-	-
NULL	-	-	-
OB	-	-	-

Statistics for Z-scores < ±1

Range (kg/m ³)	45.1	58.0	57.0
Percentage of participants	80.0%	80.0%	70.0%

Reporting format

Participants reported correctly to 1 kg/m ³	4	4	4
Participants reported correctly to 0.1 kg/m ³	1	1	1
Participants reported correctly to 0.001	5	5	5

Comments - Dry Density kg/m³ (A, B & C moulds)

• Most of the results are within an acceptable range with a low CV.

<u>CBR %</u>

	CBR %									
Lab Code	100%	Z-score		Lab Code	95%	Z-score		Lab Code	90%	Z-score
YY3QP	7.5	-1.034		YY3QP	4.3	-1.022		WQ3LN	1.0	-1.033
WQ3LN	7.8	-1.024		DF6CP	5.5	-0.964		DF6CP	4.0	-0.822
DF6CP	9.0	-0.987		WQ3LN	5.7	-0.955		YY3QP	4.2	-0.808
AO7VU	28.8	-0.362		CV6ZX	16	-0.459		CV6ZX	7	-0.611
CV6ZX	30	-0.324		EN2QS	20	-0.266		EN2QS	9	-0.471
EN2QS	43	0.086		AO7VU	24.0	-0.074		AO7VU	15.1	-0.043
AB4XQ	53	0.401		TF5SK	38	0.601		TF5SK	23	0.512
DK9WF	74.17	1.068		AB4XQ	42	0.793		DG3DK	27.8	0.849
DG3DK	74.6	1.082		DG3DK	45.5	0.962		AB4XQ	30	1.004
					54.2				47.5	
TF5SK	75	1.095		DK9WF	9	1.385		DK9WF	2	2.234

CBR %	100% 95%		90%
H15 mean	40.29	25.53	15.71
H15 Std Dev	31.714	20.767	14.241
Range	67.50	49.99	46.52
сv	78.7%	81.3%	90.7%

	A mould	B mould	C mould
Additional participant statistics			
Number of participants	10	10	10
Non-participants	-	-	-
NULL	-	-	-
OB	-	-	-

Statistics for Z-scores < ±1

Range (kg/m ³)	44.0	40.0	23.8
Percentage of participants	50.0%	80.0%	70.0%

Reporting format

Participants reported correctly to 1 %	4	4	4
Participants reported to 0.1 %	5	5	5
Participants reported to 0.01 %	1	1	1

Comments –CBR %

- The CBR results are highly variable.
- The CV is almost double that of the crushed material which is expected to provide a more variable set of results due to the coarser aggregate present in the crushed material.
- Given the nature of the finer graded borrow pit sand in this sample, the CBR results were expected to be more constant than the crushed granular materials results.

Washed Grading Sample Mass

#	Lab code	Sample mass (g)	z-score
1	YY3QP	500.0	-0.939
2	EN2QS	535.4	-0.876
3	AB4XQ	971.5	-0.103
4	DF6CP	1000	-0.053
5	DK9WF	1372.0	0.606
6	WQ3LN	1800	1.365
7	AO7VU		
8	CV6ZX		
9	DG3DK		
10	TF5SK		

	Reduction Factor
H15 mean	1029.8
H15 Std Dev	564.36
Range	1300.00
cv	54.8%

Test method information

Test method	AASHTO T27	E-239 1970	SANS 3001 GR1	TMH1 A1 (a)	TMH1 A8	Non- responsive
# participants	2 (20 %)	1 (10 %)	1 (10 %)	3 (30 %)	1 (20 %)	2 (NULL)

	Sample Mass
Number of participants	6
Non-participants	4
OB	-
Range	872.0
Percentage of participants	83.3%
Participants reported to 1 g	2
Participants reported to 0.1 g	4

Comments - Washed Grading Sample Mass

- Five test methods were used by the 10 participants in the grading analysis.
- The large range in the mass used needs to be resolved to ensure more consistent results

Washed Grading

NOTE: Fraction 5 mm and 3.35 mm were not analyzed as they all had 100 % passing

Lab Code	2/2.36 mm	Z-Score
DF6CP	99.9	-1.3E+12
AB4XQ	100	0.360
CV6ZX	100	0.360
DK9WF	100.0	0.360
EN2QS	100	0.360
TF5SK	100.00	0.360
WQ3LN	100.00	0.360
YY3QP	100.00	0.360
AO7VU		
DG3DK		

Lab Code	1/1.18 mm	Z-Score
TF5SK	99.31	-2.890
DF6CP	99.6	-0.869
DG3DK	99.8	0.524
DK9WF	99.8	0.524
WQ3LN	99.8	0.524
YY3QP	99.82	0.664
AB4XQ		
A07VU		
CV6ZX		
EN2QS		

Lab Code	0.600 mm	Z-Score
DF6CP	93.1	-2.684
DK9WF	95.8	-0.466
DG3DK	97.0	0.520
WQ3LN	97.1	0.602
YY3QP	97.20	0.684
AB4XQ		
A07VU		
CV6ZX		
EN2QS		
TF5SK		

% passing	2/2.36 mm	1/1.18 mm	0.600 mm
H15 mean	100.00	99.72	96.37
H15 Std Dev	0.000	0.144	1.217
Range	0.10	0.51	4.10
сv	0.0%	0.1%	1.3%

Lab Code	0.425 mm	Z-Score	Lab Code	0.300 mm	Z-Score	Lab Code	0.250 mm	Z-Score
DF6CP	50.30	-6.928	DF6CP	38	-0.842	TF5SK	61.63	-
DK9WF	70.7	-3.034	DK9WF	40.1	-0.722	AB4XQ		
DG3DK	87.8	0.230	DG3DK	47.1	-0.322	A07VU		
AB4XQ	88.4	0.344	YY3QP	69.00	0.932	CV6ZX		
CV6ZX	88.6	0.383	WQ3LN	69.4	0.955	DF6CP		
WQ3LN	88.8	0.421	AB4XQ			DG3DK		
EN2QS	90	0.650	A07VU			DK9WF		
TF5SK	90.66	0.776	CV6ZX			EN2QS		
AO7VU			EN2QS			WQ3LN		
YY3QP			TF5SK			YY3QP		

% passing	0.425 mm	0.300 mm	0.250 mm
H15 mean	86.60	52.72	-
H15 Std Dev	5.239	17.474	-
Range	40.36	31.40	-
cv	6.1%	33.1%	-

Lab Code	0.150 mm	Z-Score	Lab Code	0.075 mm	Z-Score
DF6CP	15.4	-1.124	CV6ZX	10.3	-2.739
DK9WF	16.5	-0.742	DK9WF	12.6	-0.828
DG3DK	18.4	-0.082	AB4XQ	13	-0.495
WQ3LN	19.1	0.161	YY3QP	13.00	-0.495
YY3QP	19.84	0.418	TF5SK	13.97	0.311
TF5SK	23.88	1.822	EN2QS	14	0.336
AB4XQ			DG3DK	14.1	0.419
AO7VU			WQ3LN	14.5	0.751
CV6ZX			DF6CP	126.1	93.494
EN2QS			AO7VU		

% passing	0.150 mm	0.075 mm		
H15 mean	18.64	13.60		
H15 Std Dev	2.879	1.203		
Range	8.48	115.80		
cv	15.4%	8.9%		

	2/2.36	1/1.18	0.600	0.425	0.300	0.250	0.150	0,075			
	mm	mm	mm	mm	mm	mm	mm	mm			
Additional participant statistics											
Number of participants	8	6	5	8	5	1	6	9			
Non-participants	2	4	5	2	5	9	4	1			
ОВ	-	-	-	-	-	-	-	-			

Statistics for Z-scores < ±1

Range	0.0	0.2	1.4	2.9	31.4	-	3.3	1.9
Percentage of participants	85.7%	83.3%	66.7%	66.7%	100.0%	-	66.7%	77.8%

Reporting format

Participants reported to 1 %	3	-	-	1	1	-	-	2
Participants reported to 0.1 %	2	4	4	5	3	-	4	5
Participants reported to 0.01 %	3	2	1	2	1	1	2	2

Comments - Washed Grading

• Due to the various test methods used some of the sieve sizes do not have a full set of results making it more difficult to determine the trends.

Soil Mortar based on grading analysis

Lab Code	GM	Z-Score	Lab Code	FM	Z-Score	Lab Code	Soil Mortar	Z-Score
AO7VU	0.88	-1.164	AO7VU	0.300	-1.125	DG3DK	14.1	-0.843
EN2QS	0.96	-0.498	WQ3LN	0.55	-0.711	WQ3LN	14.5	-0.837
WQ3LN	0.97	-0.414	YY3QP	1.14	0.265	AO7VU	36.4	-0.517
DG3DK	0.98	-0.331	DG3DK	1.37	0.646	CV6ZX	100	0.414
AB4XQ	1	-0.165	DF6CP	1.539	0.925	EN2QS	100	0.414
CV6ZX	1.01	-0.081	EN2QS	NULL		DF6CP	1000	13.581
DK9WF	1.17	1.251	AB4XQ			TF5SK	NULL	
DF6CP	1.37	2.916	CV6ZX			AB4XQ		
TF5SK			DK9WF			DK9WF		
YY3QP			TF5SK			YY3QP		

% passing	GM	FM	Soil Mortar
H15 mean	1.020	0.980	71.71
H15 Std Dev	0.120	0.604	68.35
Range	0.49	1.24	985.90
сv	11.8%	61.7%	95.3%

Test method information

Test method	AASHTO T27	AASHTO T88	ASTM C136	SANS 3001 PR5	TMH1 A1 (a)	TMH1 B4	Non- responsive
# participants	2 (20 %)	1 (10 %)	1 (10 %)	2 (20 %)	2 (20 %)	1 (10 %)	1 (NULL)

Lab Code	Coarse Sand	Z-Score	Lab Code	Coarse Sand Ratio	Z-Score	Lab Code	Coarse Fine Sand	Z-Score
AO7VU	0.0	-0.734	EN2QS	0.10	-1.003	WQ3LN	2.9	-0.955
DK9WF	0.2	-0.697	DK9WF	4.0	0.346	DF6CP	6.5	-0.817
DF6CP	0.4	-0.660	AO7VU	4.9	0.657	EN2QS	30	0.084
YY3QP	2.8	-0.217	WQ3LN	NULL		AO7VU	44.0	0.620
DG3DK	3.0	-0.180	AB4XQ			DK9WF	55.7	1.069
EN2QS	10	1.115	CV6ZX			TF5SK	NULL	
CV6ZX	11.4	1.374	DF6CP			AB4XQ		
TF5SK	NULL		DG3DK			CV6ZX		
WQ3LN	NULL		TF5SK			DG3DK		
AB4XQ			YY3QP			YY3QP		

% passing	Coarse Sand	Coarse Sand Ratio	Coarse Fine Sand	
H15 mean	4.0	3.0	27.8	
H15 Std Dev	5.41	2.89	26.09	
Range	11.40	4.80	52.80	
cv	136.2%	96.4%	93.8%	

Lab Code	Fine Fine Sand	Z-Score
EN2QS	9	-0.624
DK9WF	27.4	0.624
DF6CP	CBD	
A07VU	NULL	
TF5SK	NULL	
WQ3LN	NULL	
AB4XQ		
CV6ZX		
DG3DK		
YY3QP		

Lab Code	Fine Sand	Z-Score
DK9WF	12.6	-0.795
AO7VU	14.7	-0.738
DF6CP	25.3	-0.445
DG3DK	33.0	-0.233
CV6ZX	78.3	1.015
WQ3LN	84.9	1.197
YY3QP	77.4/6.8	
EN2QS	NULL	
TF5SK	NULL	
AB4XQ		

Lab Code	Medium Fine Sand	Z-Score
WQ3LN	27.8	-1.043
EN2QS	37	-0.389
DG3DK	49.9	0.528
DF6CP	55.2	0.904
AO7VU	NULL	
TF5SK	NULL	
AB4XQ		
CV6ZX		
DK9WF		
YY3QP		

% passing	Fine Fine Sand	Fine Sand	Medium Fine Sand
H15 mean	18.2	41.5	42.5
H15 Std Dev	14.75	36.29	14.07
Range	18.40	72.30	27.40
сv	81.0%	87.5%	33.1%

Comments on Soil Mortars

• This portion of the report was poorly reported. Evidently what was required was not well understood and the uncertainties need to be resolved before the next round.

4 Summary of Findings, Recommendations and Next Steps

4.1 Findings

Facilities Participating

A total of ten facilities took part in the first pilot PTS.

Test Methods

There needs to be consistency in the test methods used throughout Mozambique to be able to identify with greater clarity the issues in the various facilities. At present the variety of test methods adds to the variability of the results obtained. It is unlikely that this matter will be resolved before the next two rounds of the PTS have been completed, and these differences will need to be considered in the evaluation of the results.

The SANS 3001 test methods are recommended for Mozambique because they have been developed with years of experience on local materials found in the Southern African environment. The SANS methods are precise in the way they are specified whereas the AASHTO methods are less clearly set out.

The adoption of SANS 3001 would require some laboratories to purchase new equipment:

- The laboratories that are currently testing on TMH1 would need to purchase of a new set of sieves for aggregates and granular testing and a new flakiness gauge due to the sieve size change. The ACV & 10% FACT press would not need to be changed although the CBR press may need to be recalibrated. There is an option to leave the CBR press calibrated to the imperial requirements as it is in TMH1.
- It is not expected that the laboratories that are currently testing on AASHTO or ASTM methods will need to replace equipment, but they will need to confirm this by checking compliance to the apparatus requirements as stipulated in the applicable methods.

Analysis of Results

In this first pilot round no results were removed from the analysis and noted as obvious errors (OE). All results as provided where included in the statistical analysis.

All the results from the first round are variable. This is not unusual as the process of PTS is a new concept and it will take some time to get the participants to be familiar with how to present the results and how to follow the test methods more consistently. It is also expected that as additional facilities join the PTS over time they will need to undergo the same process of getting used to what is required in a formal PTS. A better correlation of results is expected as the PTS gains momentum.

On average 60 - 70 % of the results per test method are within a z-score of ±1. All facilities need to aim towards obtaining results in the range of ±1. It is expected that the proportion of results within a z-score of ± 1 could be increased to around 75 % per test method.

Information Provided by Laboratories

The resolution of the answers reported by the various facilities needs to be more closely followed to ensure results can be compared effectively with one another. An answer of 0 is seen very differently in statistical analysis to an answer of 0.4 due to rounding off. More consistency in the way the results are calculated and reported by the laboratories will assist greatly in this regard.

The information requested for the various test methods and apparatus used, as well as some of the additional testing requirements, is necessary to assist in identifying where some of the test methods are being undertaken incorrectly. All the facilities are urged to provide all the information as requested on the forms to ensure greater accuracy in the analysis of the results and easier identification of where facilities need to pay further attention in their testing procedures.

Areas Requiring Attention

As this is the first round undertaken in Mozambique, it is difficult to identify clearly where some of the difficulties lie. This will become clearer as further rounds of the PTS are undertaken and specific trends are identified over time. However, there are some obvious issues that need to be resolved in some of the facilities before the second round is undertaken, to ensure a more representative set of results and lower the variability in the results as reported in the first round.

From the results, the test methods that require most attention are as follows

- Sample mass used per test method
- PI
- CBR and swell
- ACV

These areas are briefly discussed below with additional comments under the relevant sections in Chapter 3.

- The variability in the sample mass used per test method needs to be addressed to ensure each result is as representative as possible. Some facilities are using too small a sample to obtain a representative result.
- The PI seems to be a problem in the identification of material with or without plasticity. Also, how the information is reported for the various PI components requires improvement. For example, a LL cannot be reported if there is no PL.
- The CBR test method will require additional training input as this test method is notoriously variable. It was expected that the borrow pit sample with the finer sandy type material would present a more uniform and constant set of results, but this was not the case. Both samples i.e. crushed granular and borrow pit sand, were however equally variable.
- Swell measurements can be variable due to the difficulty in fixing the initial reading point and using the exact same place for the last reading to determine the actual swell. The variability in the results, especially for the borrow pit material, is concerning.
- The ACV was more variable than would be expected. This is a result that normally provides a good reproducibility result. It is possible that there are problems with the calibration of the apparatus assuming the test method is being followed correctly.

Summary of Findings

The results of the first round of the PTS have provided a starting point which indicates the variability of the results currently being produced in Mozambique. Given the importance of the decisions that are made based on such results, it is imperative that the variability in the results produced by the individual facilities be reduced. From this baseline it is expected that improvements can be achieved through continuous monitoring

whilst persistent issues are noted and addressed with the various facilities. The high variability in the first round was expected and this variability should reduce over the next two rounds. If the PTS becomes a regular activity in the monitoring of laboratory consistency in Mozambique, the variability should over time be reduced even further. The results of such a PTS can be used to assist client bodies and laboratories to evaluate their results and aim towards a process of continual improvement hence providing quality results that are reliable and valid.

4.2 Recommendations

The main recommendation is that it is imperative for Mozambique to agree a standard series of test methods for use in Mozambique e.g. SANS 3001 or AASHTO. This would ensure that PTS results can be evaluated without built-in variations due to a variety of the testing methods in use across the country.

4.3 Next Steps

The next step in the project is a visit to the participating ANE and LEM laboratories by the Materials Testing Expert in November 2017. Feedback will be provided at each facility during the site visit on how to read the report and action the comments applicable to each facility. The revisions to the test methods will be witnessed during the visits to assist in making additional corrections where required to assist in reducing the variability in the results for the following two rounds of the PTS. It is noted that the visit of the expert will not include the private laboratories in Mozambique and South Africa.

After the November laboratory visits a recommendation will be made on whether the participating laboratory personnel should gather for another workshop to discuss the PTS process.

Following the analysis of the results obtained from the laboratories from the second round of the PTS, a third round will be launched. The third round will be the final round under the current project.