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Abstract 

This paper investigates the industrial effects of true state dependence, the sales-to-capital ratio and 

unobserved heterogeneity on the rate of investment in plant, machinery and equipment (PME) in 

Swaziland. A range of fixed and random effects estimators are compared. In all the methods used, the 

first-order autoregressive – AR(1) – model with unobserved firm-specific effects and the sales-to-

capital ratio have insignificant coefficients. Similarly, the impact of unobserved firm-specific 

characteristics underlying investment decisions is also insignificant. Most interestingly; however, our 

novel result is that we show how missing investment values reduce the probability of investing under 

both exogeneity and endogeneity assumptions. Missing investments at time     reduce the 

likelihood of investing at time   by               ] depending on regressor exogeneity or 

endogeneity assumptions, respectively. By interacting missing investments with labour, a probability 

of up to 0.55% of capital substitution for labour is estimated. Furthermore, notice that the Generalized 

Method of Moments (GMM) and multilevel methods naturally assume a single investment regime by 

default. When an endogenous switching regime model of investment with unobserved separation is 

estimated, it produces negative but significant results in both regimes. Notably, all the switching 

regime results are scale-independent, where firm size is defined as the inverse of the previous period 

capital stock. However, a Wald-test of equation independence across regimes confirms a single 

investment regime produced by the GMM and multilevel models. 
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1. Introduction 

The purpose of this paper is to estimate a dynamic structural model of industrial investment in 

Swaziland for 1994-2003: a period of trade liberalization in the Southern African Customs Union 

(SACU). This is an interesting period in its own right because of observed micro churning dynamics 

and industrial reorganization induced by the trade reforms in the sub-region. It is also interesting 

because it uses an unbalanced firm-level panel data set that has never been used before to identify 

determinants of industrial investment decisions in one of the peripheral SACU member economies. 

The achievement of this goal is important for both policymakers and practitioners working in the field 

to investigate investment patterns in plant, machinery and equipment (PME) in the presence of a high 

incidence of zero investments. 

Typically, the framework of analysis relates the investment rate at time   to its own     realizations 

aka structural state dependence, the marginal q and control variables as explanatory regressors. 

Structural state dependence is a relationship between the current and the probability of future 

investment. With structural state dependence, the conditional probability of positive investment in 

capital goods is a function of past capital investments, see Heckman (1981b). One explanation for this 

offered in the literature is that preferences, prices and constraints that are fundamental to future 

investment choices can be directly altered. Another explanation is that firms may differ in certain 

unobserved firm-specific characteristics underlying their propensity to invest in capital goods. If 

unobserved heterogeneity is correlated over time, and is not controlled for, past investment may 

appear to be a genuine cause of future investment simply because it is a proxy for persistent 

unobservables. In a structural model of investment, it is important to distinguish between the two 

explanations in order to design appropriate industrial policies that promote firm-level investment. 

Tobin‘s assertion that investment is a function of marginal q and that it is also equivalent to the firm‘s 

optimal capital accumulation problem with adjustment costs is now widely recognized, see Hayashi 

(1982), Caballero and Engel (1999), and Cooper and Haltiwanger (2006). The variation in the 

structural model of investment is therefore explained by the variation in the shadow price of capital, 

or marginal q. Although marginal q is a priori appropriate for characterizing the relationship between 

movements in the shadow price of capital with investment variation, its unobservability makes it only 

indirectly applicable in empirical work, see Caballero and Leahy (1996).
1
 An alternative candidate is 

the ratio of the firm‘s stock market value to its capital replacement cost; that is, Tobin‘s average q. 

Caballero and Leahy (1996) argue that Tobin‘s q is potentially a better covariate in investment 

regression analyses than marginal q in the presence of fixed costs of capital adjustment. They also 

                                                           
1
 One exception is Gala (2015) who abstracts away from the counterfactual capital adjustment cost assumptions 

to develop a state-space measure of marginal q that is anchored on the joint measurability of the market value of 

the firm and its underlying state variables. 
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provide conditions for it to be a sufficient statistic of capital. However, most industrial firms in 

Swaziland are not traded in the stock exchange and therefore one cannot use the market value of the 

firm in constructing a proxy for marginal q. Furthermore, as in Nielson and Schiantarelli (2003), the 

fact that the data set does not distinguish between multi-plant and single-plant firms, it is not clear 

how firm-level stock valuations need to be used.  

Under the same conditions; nonetheless, the ratio of sales-to-capital is a sufficient statistic of 

investment. Eberly, Rebelo and Vincent (2012) suggest that simultaneous inclusion of both the sales-

to-capital and Tobin‘s q as regressors might constitute informational redundancy, on condition there is 

no measurement error in q (also see Erickson and Whited, 2000 for a detailed discussion of 

measurement error in q). In a structural model of investment, Letterie and Pfann (2007) use the sales-

to-capital ratio, average profit of capital and the profit rate as proxies for marginal q.  

An extension of this framework is provided by Abel and Eberly (1994) who rely on the theory of 

investment under uncertainty. In this case, non-convexity, a wedge between the procurement and sale 

price of capital as well as potential investment irreversibility are key ingredients of their exposition. 

As is typical, investment is a non-decreasing function of the shadow price of installed capital. This 

permits identification of firms that sort into a high or low investment regime under conditions of ex 

ante known or unknown sample separation (see Nabi, 1989 and Hu and Schiantarelli, 1998).  

This paper therefore estimates a structural model of investment that determines the impact of the 

lagged response, the proxy of marginal q and unobserved heterogeneity in manufacturing in 

Swaziland. A good understanding of the driving forces of investment dynamics is crucial for 

designing well-functioning incentives for industrial development. It requires a distinction between 

true state dependence of investment and its spurious form. The presence of state dependence in firm-

level investment data means that industrial policy that encourages current investment improves the 

probability of future investment
2
.  

The empirical distinction between longitudinal or within-firm dependence induced by previous 

realizations and the dependence caused by unobserved heterogeneity is important in studies of 

dynamic panel data (DPD). In such cases, when investment is treated as a continuous dependent 

variable, methods for solving initial conditions problems are now standard in DPD models in 

econometrics, see Anderson and Hsiao (1981, 1982), Arellano and Bond (1991), Blundell and Bond 

(1998) and Bun and Windmeijer (2010). Corresponding methods for handling the initial conditions 

problem in discrete response settings are less well developed and are scattered all over the literature. 

                                                           
2
 For example, Christiano, Eichenbaum and Evans (2005) predict joint presence of lagged investment effects 

together with cash-flow and q effects in an investment model. In a study by Eberly et al. (2012) based on the 

same framework, the lagged investment rate variable has a stronger effect on the current investment rate than 

the effects of q and cash-flow combined. 
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In the binary case, Heckman (1981a) models the initial dependent variable jointly with its subsequent 

response while Wooldridge (2005) conditions on the initial response. In Skrondal and Rabe-Hesketh 

(2014), these pieces are put together in a multilevel modelling setting to handle initial conditions and 

covariate endogeneity for dynamic models of binary decisions under unobserved heterogeneity.
3
 This 

approach is applied by Drakos and Konstantinou (2013) to a Greek manufacturing panel dataset. 

Our empirical strategy implements the Generalized Method of Moments (GMM) approach to estimate 

the impact of the previous investment response and other covariates on the current level of 

investment. Explanatory variables include the proxy for marginal q and control variables, in this case 

the logarithm of employment level. This also allows us to determine the impact of primary input 

substitutability during episodes of economic reforms and heightened uncertainty. We also use two 

competing modelling approaches. The first one is a joint model of initial conditions and subsequent 

response based on the factor modelling approach, see Bock and Lieberman (1970) and Aitkin and 

Alfo (2003). This approach allows us to distinguish between exogeneity and endogeneity of 

explanatory variables. The second one models the distribution of the random intercept conditional on 

initial conditions and covariates. In order to relax the normality assumption of the random intercept, 

we also use nonparametric methods to estimate the conditional model, see Heckman and Singer 

(1984) and Rabe-Hesketh et al. (2003) for details. We finally extend the GMM and multilevel 

investigations to endogenous switching regime regressions in order to establish whether or not firms 

switch between high and low investment regimes, see Maddala (1983), Dutoit (2007), Hu and 

Schiantarelli (1998), Nielson and Schiantarelli (2003). 

Our findings are that true state dependence and unobserved heterogeneity in the structural model of 

investment for the manufacturing sector during the trade liberalization period have insignificant 

effects on investment. The results are consistent with firms exercising their option to wait until 

uncertainty is resolved, leading to significant substitution of capital for labour. Specifically, firms 

concentrated more on maintaining and repairing existing machinery and equipment rather than 

investing in new physical capital. This implies a generally high rate of obsolescence in capital assets 

and therefore low capital productivity. At the same time, the missing values of investment substituted 

investment for employment by up to 0.55 percent and reduced the likelihood for future investment by 

5.56 percent. 

Our contribution to the investment body of knowledge lies in three areas. Firstly, the high incidence 

of missing values of the response variable means that purging fixed effects using first-differences 

magnifies the gaps in the transformed unbalanced panel. However, the comparative strength of this 

transform is that longer lags of regressors remain orthogonal to the noise and available as instruments, 

                                                           
3
 The specific Skrondal Rabe-Hesketh model is designed for the human health sciences applied to children‘s 

wheezing. 
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see Roodman (2009a). Nonetheless, in order to minimize data losses arising from the first-difference 

transform, we use instead the Helmert‘s transformation to implement the forward orthogonal 

deviations, see Arellano and Bover (1995) and Roodman (2009a). Secondly, the untransformed data 

structure also means that the Heckman (1981a) and Wooldridge (2005) methods for estimating 

dynamic random effects models are faced with an insufficient observations problem when estimating 

state dependence and random-intercept effects. We overcome this hurdle, to our knowledge for the 

first time in investment analysis, by reverting to novel techniques proposed by Skrondal and Rabe-

Hesketh (2014) which do not insist on balanced panel data to efficiently deal with initial conditions 

and endogenous regressors. Finally, a range of multilevel dynamic random-effects probit model 

estimators is performed for comparison with the GMM results and also for extensive comparison of 

results among the random-effects estimators. Like Stewart (2007), we use normal heterogeneity in the 

joint and conditional models to handle initial conditions and endogeneity problems. In addition, we 

also use nonparametric maximum likelihood (NPMLE) methods to estimate the random-effects 

models.   

This paper is organized as follows: The next section describes the panel dataset and performs 

descriptive analyses of industrial investment rates. In Section 3, the shape of the empirical hazard and 

fixed adjustment costs are investigated. Section 4 discusses econometric estimators and empirical 

results of the structural model of investment are presented in Section 5. Section 6 discusses the results 

and Section 7 summarises and concludes the analysis.  

2. Data And Descriptive Analysis 

This section focuses on the diagnosis of the data set by describing a few features that are suggestive of 

the relevance of the organizing framework outlined in the introduction. The dataset consists of an 

unbalanced census panel of manufacturing firms collected by the Central Statistical Office (CSO) in 

Swaziland for the period 1994-2003. Although this is referred to as a census because the data 

collection instrument is administered to all respondents in the sector, the response rate falls short of 

100 percent. As a result, a total of 227 firms and 1 448 plant year observations populate the dataset. 

However, although there is nonresponse by some firms, missing responses from those that contribute 

significantly to sectoral GDP are followed up until they return the data collection instruments. In the 

case of (dis)investment variable response, expenditure in and sales of PME are reported either with 

missing values or with real numbers.  

In structural modelling of investment, movement in investment rates is a function of variation in the 

sufficient statistics of capital identified by Caballero and Leahy (1996) and Letterie and Pfann (2007). 

The sufficient statistics are capital ratios of cash flow         ⁄   , sales revenue        ⁄   and 

operating profits        ⁄  , all measured in constant values and expressed in natural logarithm. It is 
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now standard to consider such statistics as proxies of the marginal q, see Gilchrist and Himmelberg 

(1998) and Letterie and Pfann (2007). The unique feature of our dataset relative to other case studies 

is that it has disaggregated information on expenditure and sales of capital assets and thus these 

sufficient statistics can be calculated.
4
  

Table 1 presents summary statistics for selected variables of interest in the sample. All the variables 

are mesokurtic; that is, the mean is always greater than the median, except for real capital stock (  ). 

Investment rates (      ⁄ ) and the associated proxies for the shadow price of capital are positively 

skewed, suggesting a small fraction of larger firms are distributed along the right fat tails. The 

variability in a typical proxy of marginal q is approximately  
 

 
  times higher than that of the 

investment rate. The investment rate variation measured by the standard deviation is relatively low at 

0.29, with an average investment rate of      and (       )  (          ) 5 It is striking that the 

investment rate and all proxies reveal no marked patterns of heterogeneity across firms. That is, the 

behaviour of each proxy over time is insignificantly different from the orders of magnitude of other 

proxies. Hence, a choice to use any one of the proxies to study the behaviour of investment rates is 

likely to suffice. 

Table 1:  Summary Moments of Key Variables  

 Key Variables  Proxies of Marginal q  

Statistics                 
         ⁄        ⁄         ⁄        ⁄  

     3.55 12.46 9.54 0.11 0.24 1.29 1.29 1.18 

Median 3.22 12.34 9.61 0.10 0.20 1.23 1.23 1.11 

Std Dev 1.54 2.70 1.51 0.03 0.29 0.36 0.36 0.34 

       ⁄  0.43 0.22 0.16 0.27 1.21 0.28 0.28 0.29 

Skewness 0.69  0.10  0.47 8.29 1.15 8.47 8.49 7.89 

kurtosis 3.11 4.08 5.28 124.42 6.72 116.26 116.55 102.48 

IQR 1.96 3.69 1.79 0.02 0.33 0.22 0.22 0.20 

Observations 1288 533 1267 1267 401 911 911 907 

Key:        denotes the log of     stock of employment,    is the log of net investment in plant, machinery 

and equipment,    represents the log of capital stock at time  ,    is time   log of real sales revenue from firm 

output,     is the log of cash-flow at time   and    refers to time   log of profits. 

There are at least two explanations for the patterns observed in Table 1. First, the Swaziland 

Government initiated a programme of factory-shell construction in the 1990s to promote foreign 

direct investment in manufacturing. Specifically, the Textile as well as the Clothing and Wearing 

Apparel industries were the main beneficiaries of the factory-shell programme due to the AGOA 

arrangements. This had the effect of reducing private sector capital expenditure on building 

construction in the sector. Thus, the composition of firms‘ portfolios of capital goods mostly included 

                                                           
4
 Whenever capital retirement is available in datasets in the literature, it includes the scrap value of capital 

disposals as a result of obsolescence and sale of capital, see in Cooper and Haltiwanger (2006). In Nielsen and 

Schiantarelli (2003), net investment is defined as expenditure minus sales of fixed capital. 

5
 Cooper and Haltiwanger (2006) report an average rate of investment of 12.2 and a standard deviation of 33.7 

for NT=100,000 covering large plants that were in continual operation during 1972-1988. 
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machinery and equipment. Second, the low investment level in PME may be a reflection of risk 

aversion translating into firms‘ decisions to exercise the option to wait until the uncertainty induced 

by economic reforms declined to acceptable levels. 

Table 2 presents a correlation matrix of investment rates and proxies of marginal q. The first moment 

is first-order serial correlation of investment and is estimated at     . A relationship between the 

current investment and its lagged level suggests a potential presence of state dependence. Similarly, 

corporate financial performance in the manufacturing sector in Swaziland is almost scale-invariant; 

i.e., the correlation coefficient between all marginal q proxies and the inverse of capital stock   
    is 

at most     .  

Table 2:  The Correlation Matrix of the Main Variables  

 

  
    

 
    

    
 

    

    
 

    

    
 

    

    
 

 

  
   

 

       

  

    
 

   

    
 

  

    
 

      ⁄  1.00 

                 ⁄  0.61 1.00 

                ⁄  0.42 0.52 1.00 

               ⁄  0.45 0.60 0.66 1.00 

              ⁄  0.45 0.53 0.62 0.75 1.00 

       
   0.43 0.21 0.04 0.12 0.05 1.00 

           0.40 0.38 0.47 0.62 0.80 0.18 1.00 

         ⁄  0.26 0.71 0.33 0.33 0.33 0.03 0.13 1.00 

         ⁄  0.26 0.72 0.33 0.33 0.33 0.03 0.13 1.00 1.00 

       ⁄  0.33 0.76 0.33 0.37 0.38 0.02 0.13 0.96 0.97 1.00 

Key:        denotes the log of     stock of employment,    is the log of net investment in plant, machinery 

and equipment,    represents the log of capital stock at time  ,    is time   log of real sales revenue from firm 

output,     is the log of cash-flow at time   and    refers to time   log of profits. 

In the correlation matrix, there is low correlation between contemporaneous investment rates and each 

proxy measure of marginal q. However, the relationship increases significantly to over 0.71 if we look 

at     investment rates and proxies. This suggests that establishments make sales first and then 

assess the business capital needs before making investments. Thus, there are high investment rates 

during periods of high sales revenue, high cash flows and high profitability in the sector. As expected, 

the correlation among marginal q proxies is at least 96 percent. From this point forward, our 

discussion focuses only on the relationship between investment rates and sales revenue as in Letterie 

and Pfann (2007) for the Dutch case. Similarly, Figure 2 also reports relatively high fourth-order 

serial correlation in the plant-level investment rate series. This is consistent with the commonly held 

perception of high autocorrelation of shocks to demand and productivity
6
.    

A further characterization of patterns of investment (      ⁄ )-marginal q relation based on       ⁄  is 

graphically presented in Figure 1. In the first panel, a local polynomial smooth of investment rates 

plotted against the real sales/capital ratio shows a high frequency distribution around an average of 

                                                           
6
 See Cooper and Haltiwanger (2006:614). 
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      with a standard deviation of      . This panel considers all observations, including outliers. The 

right panel considers the distribution of plant-year observations for       ⁄     where the clustering 

of observations becomes more sparsely populated. The distribution in this case shows the majority of 

firms that are consistent with the property that       ⁄          .  

Figure 1: Investment Rate Relationship with the Sales/Capital Ratio 

 

As in Cooper, Haltiwanger and Power (1999) and Cooper and Haltiwanger (2006), the rest of this 

chapter defines net investment in terms of real gross expenditure (     ) on PME and real sales 

(       ) for firm i at time t for the class of capital goods concerned. One striking feature of the 

expenditure series is that it isolates the cost of maintenance and repairs, permitting a sharper 

investigation of non-smoothness of (dis)investments. Hence 

                   (1) 

and 

     (    )     ,    (2) 

which is the perpetual inventory method (PIM) of estimating capital stock, where    is the measure of 

real capital stock,    is the in-use depreciation rate. In Figure 2, the data set is sliced into two non-

normal histograms of investment rate with and without maintenance and repairs in panels (a) and (b), 

respectively. It is characterized by significant mass around zero, fat tails, considerable skewness to the 

right and high kurtosis.
7
 That is, there is a high incidence of zero investments with only a few 

occasions of lumpy net expenses on capital goods whether or not the cost of maintenance and repairs 

is included. This exact pattern of investment rate distribution remains unchanged even if the data set is 

                                                           
7
 Standard tests of normality yield strong evidence of skewness and kurtosis at           
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sliced to remove outliers as observed in Figure 4.1a, which reduces the observations by 50 percent. 

Furthermore, Table 4.1 reports a skewness of 1.15 and a kurtosis of 6.72 while the investment rate 

distribution for the sample of outlying observations reports skewness and kurtosis of 2.11 and 8.48, 

respectively. The characteristic skewness and kurtosis of the investment rate distribution without the 

cost of maintenance and repairs remains valid in Figure 2a. These investment distributional patterns 

have been found in the literature to characterize investment behaviour even at the aggregate level, see 

Caballero et al. (1995), and Doms and Dunne (1998). The pronounced level of skewness, high 

kurtosis and significant mass around zero in the distribution of investment rates is indicative of the 

presence of nonconvexities in the capital adjustment technologies. The observed fat tails in Figure 2b 

suggest the presence of a small fraction of large capital adjustments due to sales and procurement. 

Figure 2: Distribution of Investment Rates of PME. 

    

In summary, the analysis thus far provides several lessons. It reveals that there is low propensity to 

invest in capital goods and that the observed heterogeneity in the rate of investment is just as low. As 

is typical in the literature, investment inactivity dominates the distribution of investment rates, 

whether or not maintenance and repairs (M&R) are accounted for. The cross-sectional distribution of 

investment rate is characterized by skewness and high kurtosis, suggesting the presence of 

nonconvexities in the capital adjustment costs. Firm-level investment behaviour, including financially 

unconstrained firms, is also consistent with increased focus on M&R by firms while participating 

rarely in lumpy investment. These patterns imply the presence of low costs of capital adjustment in 

manufacturing and a high rate of obsolescence in machinery and equipment needed for use in 

production. The significantly low level of investment in relation to the observed variation in any one 

of the chosen sufficient statistics indicates that firm-level revenue is not reinvested in capital goods. 

Hence, the sales/capital ratio may not have any explanatory power on investment rate changes. 

However, the investigation thus far has assumed that investment behaviour of firms is homogenous 

across size categories. In their study of determinants of African manufacturing investment, Gunning 

and Mengistae (2001) find that the profit rate of small plants has a significant impact on investment 
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rate while remaining insignificant in the case of large firms. The next section studies the shape of the 

investment hazard and fixed adjustment costs by firm size category. 

3. The Shape of the Hazard and Fixed Adjustment Costs 

This section investigates patterns of investments in PME to determine spells of inactivity prior to an 

investment spike. We follow Kalbefleisch and Prentice (2002) and Cameron and Trivedi (2005) who 

define the cumulative distribution function representing the probability of a spell length of inactivity 

as 

 ( )    (   ) 

The sample survivor function  ( )    (   )     ( )  is a step function that decreases by     

at each observed time  , where   is the number of firms at risk of experiencing an investment spike. It 

is useful to express the probability of a firm staying in the zone of inaction until time    using the 

nonparametric Kaplan-Meier estimator of the survivor function   ̂( ) 

 ̂( )  ∏
     

  
      

 

where    is the number of firms experiencing an investment spike. The Kaplan-Meier estimator, or 

product limit estimate, calculates the probability of investment inactivity past time  , or the 

probability of a lumpy investment after time  . This measure precisely aligns with the observed 

proportion (    ⁄ ) of the    firms at risk of experiencing a spike  see Kalbefleisch and Prentice 

(2002:16).  

In order to estimate this model, it is pertinent to define an investment spike and what constitutes the 

zone of investment inactivity. Economic theory provides no guidance concerning the definition of a 

lumpy investment episode. However, Cooper et al. (1999) use gross investment rate in excess of 

   percent to represent an investment spike. There are some exceptions to this rule. These include 

Bigsten et al (2005) who define a spiky investment as gross investment rate in excess of    percent. 

Studies by Cooper et al. (1995) and McClelland (1997) argue and demonstrate that the shape of the 

hazard rate is robust to any choice of an ad hoc definition of a spiky threshold. In this paper, we adopt 

the definition provided by Cooper et al. (1999). Additionally, we define the zone of inaction in terms 
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of investment rate that is bounded as 
   

     
                    rather than the standard restriction 

of 
   

     
   8  

In spite of definitional modifications, it is possible to ask whether firm-level investment lumpiness is 

the same across firm sizes during this period. It is of interest to compare the empirical distributions of 

the survival patterns of large versus small firms‘ lumpy investment episodes to determine if both 

samples arose from identical survivor functions. In the left panel of Figure 3, firm scale-independence 

means the null hypothesis                                 is not true, where large firms employ 

more than 50 workers. The Peto-Peto-Prentice test does not support the null at standard levels of 

significance.
9
  This means the distributions of survival rates for larger (size=1) and smaller (size=0) 

firms past time t are significantly different to each other. It can be concluded that larger firms 

experience lumpy investments relatively more often than their smaller counterparts.
10

 Put differently, 

the probability of smaller firms staying in the zone of investment inaction is higher than that for larger 

firms. This suggests that the frequency of investment spikes is scale-dependent in the Swazi 

manufacturing sector. 

Another important area of duration analysis for firm-level investments involves the shape of the 

hazard estimate. For example, Cooper et al. (1999) allow for several characteristics of investment in 

their machine replacement model to identify three specific patterns of the hazard. First, when 

exogenous shocks to plants‘ profitability are serially correlated and some additional assumptions hold, 

the likelihood of capital asset replacement increases with the time since the last replacement. Second, 

adding convex adjustment costs to the autocorrelation assumption ensures the presence of serial 

correlation in investments and therefore a downward sloping hazard. Third, a combination of 

autocorrelation in exogenous shocks and the absence of adjustment costs produce a flat hazard.  

In order to investigate the shape of the hazard in the Swazi data, we first define the probability of 

experiencing a spike, conditional on remaining in the zone of inaction until time  , as  

                      (       ) ,   (4) 

where   (       ) represents the interval since the last spike, while t denotes calendar time. We 

then define discrete time as     at which plant i exits the state of inactivity to have an investment spike 

                                                           
8
 However, using zero as a cut-off point for investment rates does not alter our results. 

9
 Hypothesis tests based on the Log-Rank (or Generalized Savage), the Generalized Wilcoxon-Breslow and the 

Tarone-Ware confirm the results. 

10
 Using the exponentially extended function does not alter the survival patterns in the zone of inactivity. 



12 

 

at the j
th
 spell. For completeness and more clarity, our investment spike is defined as investment rates 

in excess of 20 percent. The model is estimated for investment in PME and plotted below by 

establishment size (size     workers or size   0) and large (size     workers or size  1). 

Figure 3: Kaplan-Meier Survival and Hazard Estimates of Investment 

 

The right panel in Figure 4.3 plots the empirical hazard expressed in Eq. 4 against the time since the 

last investment. It shows that the probability of having a lumpy investment episode is scale-

dependent, where larger firms have a relatively higher probability of an investment spike compared to 

smaller firms. The hazard is increasing in the time since the last investment spike. Specifically, the 

hazard distribution is relatively flat initially and its slope becomes steeper soon thereafter reflecting 

increasing expenditure in M&R. Note that its shape is independent of whether the threshold 

investment spike used is 20 percent or 10 percent. The most striking result though is that the highest 

probability of a PME investment spike is less than 0.07 in the time elapsed since the last spike episode 

in Swaziland.
11

 

This pattern of investment is consistent with an initially timid manufacturing sector seeking to wait 

until the uncertainty brought about by trade liberalization and entry/exit dynamics settles. In the 

                                                           
11

 This may appear to compare unfavourably with the probability of an investment spike of 0.66 for the USA in 

the year immediately succeeding an investment spike, 0.40 for Norway, 0.55 for Mexico and 0.60 for Colombia, 

(see Cooper et al., 1999; Nielson and Schiantarelli, 2003; and Gelos and Isgut, 2001). All these studies consider 

only investment in equipment. Otherwise, the probability of plant acquisitions is likely to be lower than the 

probability of machinery procurement, while equipment purchasing is likely to occur more frequently than 

either plant or machinery transactions due to varying degrees of irreversibility. Thus, the probability of a spiky 

investment in all three asset classes combined will be reduced by the infrequent occurrence of investment in new 

physical plant. 
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process, depreciation and obsolescence of capital assets prevailed while their M&R increasingly 

became necessary during this period. Thus, and consistent with Cooper et al. (1999), this pattern of 

the hazard was primarily driven by the dominance of within-firm rather than between-firm effects in 

PME investments. 

4. Econometric Models and Estimators 

This section presents models and associated estimators that are useful in determining the probability 

of investing in durable capital goods in an environment of high inactivity. It uses several estimators as 

an unavoidable choice in a quantitative study based on an unbalanced dataset that has never been used 

before. Such dataset may potentially have measurement issues that are not yet fully understood. 

Therefore, the comparison of estimates obtained from different approaches is designed to rigorously 

scrutinize the robustness of estimates produced by any one of the estimators. Consequently, the 

section distinguishes between methods based on continuous and discrete responses according to how 

they handle initial conditions and endogeneity problems. It also makes a distinction between 

longitudinal dependence caused by the effects of preceding responses on succeeding responses and 

dependence arising from unobserved heterogeneity. In each of the modelling approaches, any 

setbacks related to estimation and potential solutions are discussed.  

In that regard, three methods are outlined and discussed. First, for continuous responses, the long 

tradition of GMM approaches in estimating dynamic panel data models dominates empirical research, 

see Arellano and Bond (1991) and Blundell and Bond (1998). Kiviet et al. (2017) provide an 

extensive yet accessible exposition of the accuracy and efficiency of various GMM techniques in 

these models. Second, in the case of binary response models, a distinction between true state 

dependence and unobserved heterogeneity is achieved through dynamic modelling that includes a 

lagged response and a random intercept. The multilevel framework of analysis can be used to 

investigate the problem of these responses by constructing a joint model of the initial response with 

subsequent responses (e.g. Heckman, 1981a) and a model that conditions on the initial response (e.g. 

Wooldridge, 2005). A nonparametric maximum likelihood estimation (NPMLE) method due to 

Heckman and Singer (1984) can also be used in categorical responses. In both continuous and binary 

models, the assumption is that agents do not sort according to whether an agent operates in a high or 

low participation regime. Third, the final model therefore closes this gap by distinguishing between 

agents in high and low regimes of participation, see Lee and Frost (1978), Maddala (1983) and 

Lokshin and Sajaia (2004).  

4.1. The GMM Approach 

The linear dynamic panel data (DPD) model to be estimated is of the form 
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                    ,         (5) 

for        , and        ,   a vector coefficients and   a vector of covariates, where a large N 

and small T DPD structure are assumed. The measure of state dependence      12 ensures 

convergence of the system, where    denotes individual-specific effects and     is the random error 

term. Arellano and Bond (1991) start with a first-order autoregressive – AR(1)   version of Eq. 5 that 

excludes the vector of strictly exogenous variables,     

                       (6) 

where            is the standard one-way error component structure representing fixed effects and 

random noise. The expected values of    and     are assumed equal to zero and  (     )    for 

         and        . It is also assumed that  (      )    for     and initial conditions 

satisfy (      )   . Taking first-differences (FD) of Eq. 6 yields 

                           (7) 

The  -coefficient of the lagged response        is the parameter of interest and measures the influence 

of the lagged response on the current behaviour of the dependent variable. 

4.1.1 The Difference GMM  

The moment restrictions above are associated with 
 

 
(   )(   ) linear orthogonality conditions 

in parameters for the GMM estimator; see Arellano and Bond (1991), Blundell and Bond (1998), and 

Bun and Windmeijer (2010). Using the notation of Bun and Windmeijer (2010), and Hayakawa and 

Pesaran (2015), it is assumed that  

 (  
       )    for          where   

    (               )
  and                

             . 

The resultant sparse instrument matrix for the i
th
 firm       is then constructed as 

     

(

  
 

                                                                              
                                                                             

                                                                    

                                                                                     
                                                                                         )

  
 

    

                                                           
12

 See Hayakawa (2009, 2014) for a large N and large T DPD model. 



15 

 

where the set of linear moment conditions gives rise to an asymptotically efficient GMM that 

minimizes the following GMM criterion function, which is in turn based on Hansen (1982): 

 ( ̂)  (∑   
     

 

   

)  (∑    
    

 

   

)  

The associated GMM estimator for   is given by Arellano and Bond (1991) and presented here as 

 ̂     
    

       
     

   

    
       

     
     

 

where    (   
     

       
  ) ,                      and    (   

     
       

 )  and    is 

a two-step weighting matrix assuring validity of efficiency properties for the GMM estimator. The 

matrix is defined as 

             (
 

 
∑    

   ̂ 

 

   

  ̂ 
     )

  

 

Similarly, the one-step weighting matrix is given by 

          [
 

 
∑(  

    )

 

   

]

  

 

and does not depend on estimated parameters. The square matrix H is of a (   )(   ) dimension 

with 2s on the main diagonal, -1s on the immediate off-diagonal and zeroes elsewhere (see Bond, 

2002).  

A few observations concerning the GMM DIFF estimator  ̂      need to be made. First, notice that 

   depends on parameter estimates through   ̂         ̂       and causes a downward bias on 

the estimated asymptotic standard errors of the two-step  ̂      , see Alonso-Borrego and Arellano 

(1999), Ziliak (1997) and Altonji and Segal (1996). Using the Taylor series expansion, Windmeijer 

(2005) identifies the source of bias and provides corrected asymptotic standard errors for the two-step 

GMM estimator. Second, as      the number of orthogonality conditions increases. Since growth 

in the number of moment conditions is quadratic in    this leads to an explosion of instrument count. 

The standard solution to this in empirical studies involves collapsing the instrument set and/or 

curtailing its lag depth. Thirdly, in applications with persistent series where   ̂is near unity, for which 

the System GMM is more suitable, the process takes long to decay (see Roodman, 2009b and Han and 

Philips, 2010). It might also be the case that (      ⁄ )     implying a random walk with firm-
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specific drifts, creating weak correlations between first differences and lagged levels, or the weak 

instruments problem (see Blundell and Bond, 2000:325).  

4.1.2 The System GMM 

The unsatisfactory performance of the two-step differenced GMM estimator prompted Blundell and 

Bond (1998) to develop an estimator initially proposed by Arellano and Bover (1995). These authors 

proposed a System GMM estimator in which the moment conditions allow for the joint use of DIFF 

and LEV to circumvent the weak instruments problem and enhance the efficiency of the estimator. 

This required restrictions on the initial conditions and the assumption that  

 (      )    

which holds when the process is mean-stationary (see Bun and Windmeijer, 2010) as 

    
  

   
    

where  (  )   (    )   . If the regularity conditions above hold, then 
 

 
(   )(   ) moment 

conditions below are valid 

 (      
   )    

where    
    (                  )

 . With these moment conditions, it is possible to define a 

level‘s instrumental matrix as  

     

(

 
 

                                                                                              
                                                                                           

                                                                                                             
                                                                                              

  )

 
 

  

together with    

(

  
 

   

   

 
 
 

   )

  
 

.  

Following Bun and Windmeijer (2010), it is also true that 

 (      
   )   (   

   )     

Therefore, the levels GMM estimator constructed from these moment conditions and    is 
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 ̂    
   

     
    

  

   
     

    
    

  

Finally, the full set of moment conditions as supplied by Bun and Windmeijer (2010) based on the 

assumptions above can summarized as  

,
 (  

       )   

 (      
   )   

 

or 

 (   
   )    

and the instrumental matrix for calculating the system GMM is then given by 

       

(

  
 

                                          

                                          

                                      
                                                          

                                                       )

  
 

 (
                         

                       
) 

and     (
   

  
). 

The systems GMM estimator based on the full set of moment conditions is given by 

 ̂    
   

      
    

  

   
      

    
    

 

where    (   
    

 )   In this case, the weighting matrix is given by 

    (
 

 
∑    

      

 

   

)

  

 

where   [
             
            

] or, as in Blundell and Bond (1998),   [
             
             

]        with      

representing an identity matrix.  
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When these conditions are met, the system GMM estimator has better finite sample properties than the 

differenced GMM estimator in terms of bias and root mean squared error (RMSE), see Blundell and 

Bond (1998) and Blundell, Bond and Windmeijer (2000).
13

  

4.1.3 Forward Orthogonality Deviations, First Differences Transform and Instrument Proliferation 

The first-difference transform has a specific weakness in that data gaps are magnified, especially in 

unbalanced panels. For example, suppose     is missing, then      and        are missing as well. 

This problem was first motivated by Arellano and Bover (1995) who developed a forward orthogonal 

deviations‘ operator that subtracts the average of all future values of the variable of interest. As an 

alternative to the FD routine, the orthogonal deviations transform is usefully applicable in models 

with predetermined regressors. The construction of the transform is explained in Arellano and Bover 

(1995:41) and simplified in Roodman (2009a). It relies on the Helmert‘s transformation for the 

variable   formulated as 

      
     (    

 

   
∑   

   

) 

where the scale factor,    , is chosen such that     √
   

(     )
 14 The term in brackets measures the 

deviations of each     from the mean of its     remaining future values. For an unbalanced dataset, 

the forward deviations operator is 

      [
   

 
    

 

 
]
  ⁄

  

[
 
 
 
 
 
 
 
 

   (   )     (   )       (   )      (   )      (   )  

                        (   )       (   )      (   )      (   )  

                                                                                                                             
                                                                                                                             
                                                                                                                             

                                                                                           
 

 
                

 

 
                 

                                                                                                                           
]
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13

 The problem of high autoregressive parameter;  ̂    and (      ⁄ )     leading to the weak instruments 

problem also characterizes the SYS GMM estimator (see Bun and Windmeijer, 2010 and Han and Philips, 

2010). Econometric theorists making propositions for optimizing the parametric efficiency of the SYS GMM 

include Bun and Windmeijer (2010), Han and Philips (2010), Youssef et al. (2014), Youssef and Abonazel 

(2015) and Kiviet et al. (2017). 

14
 Demeaning the data prior to the Helmert transformation has no effect on the final results, see Appendix A4.2 

for details.  
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In the case of a balanced dataset, for example, Roodman (2009a) provides an operator for the forward 

orthogonal transform typically expressed as      , where 

   

{
 
 
 
 

 
 
 
 

√
(   )

 
     

 

√ (   )
 

        
 

√ (   )
 

           

                      √
(   )

(   )
           

 

√(   )(   ) 
   

                                                 √
(   )

(   )
             

}
 
 
 
 

 
 
 
 

 

In this transformation, the rows of    are orthogonal to each other. This means that     remains 

independently distributed even after the transformation. The choice of     ensures that     is also i.i.d.; 

i.e.     
   . This is an expression portraying the assumption of homoscedasticity carried out in 

Arellano and Bond (1991).  

It remains a concern that the GMM approach suffers from instrument proliferation arising from the 

increase in moment conditions as T increases, see Tauchen (1986), Ziliak (1997), Altonji and Segal 

(1996) and Bowsher (2002). In the discussion by Roodman (2009b) and Kiviet et al. (2017), the 

excessive number of instruments over-fit endogenous variables, produce imprecise estimates of the 

optimal weighting matrix, bias the two-step standard errors downward and weaken the Hansen Test of 

instrument validity. When instrument explosion characterizes the analysis, there are three standard 

methods for reducing the instrument count: (1) truncation of the lag depth of endogenous explanatory 

variables, (2) collapsing the instrument matrix (see Roodman, 2009a) and (3) both truncation of lag 

length and collapsing of instrument matrix. A new technique based on the principal component 

analysis has been theoretically analysed by Kapetanios and Marcellino (2007), Bai and Ng (2010) and 

Mehrhoff (2009) and has been empirically developed by Bontempi and Mammi (2015).  

4.2 Nonlinear Dynamic Random-Effects Models and Estimators 

4.2.1 The Multilevel Model 

The GMM approach relies on continuous responses when treating state dependence and initial 

conditions in DPD models. In order to distinguish between the effects of true state dependence and 

unobserved heterogeneity on investment rates, we use a dichotomous dynamic response model that 

incorporates a lagged response and a firm-specific random-intercept. Three approaches to treating the 

initial conditions problem are adopted: (1) joint modelling of initial and subsequent responses using 

the one-factor model of Aitkin and Alfo (2003), (2) conditional modelling of subsequent responses 

given initial conditions and (3) the nonparametric maximum likelihood estimation (NPMLE). 
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Specifically, we draw heavily from Skrondal and Rabe-Hesketh (2014) who provide extensions of 

joint and conditional approaches. This method presents the probability of an outcome of the response 

variable using the standard assumption of normally distributed idiosyncratic shocks and the random-

intercept term as 

,
  (                      )     (  

       
              )

  (              )     (  
       

        )
,                (8) 

   
    

       
                          ( )  

where     (   )  j=1, …, N,        and    are the coefficient vectors for the time-invariant    and 

time-varying     covariates, respectively. The link function  ( ) is a probit function linking the 

conditional expectation of     to the linear predictor on the right-hand side; that is,  (   )  

   (   )   where       (                      ). Eq. 8 can be expressed in latent form as in 

Eq. ( )   Here the threshold model connects observed responses to latent responses as     

 (   
   ) and      (   

   ). The indicator function,  ( )  takes the value of 1 if the expression in 

the bracket holds and 0 otherwise. In this case, the firm-specific random-effects specification used 

here implies that the correlation between the total error component             in any two different 

occasions is constant: 
 

   
. 

In Skrondal and Rabe-Hesketh (2014), a one-factor component with occasion-specific factor loading 

   is introduced to the right-hand side of Eq. 8. This factor model for binary responses is naturally 

restricted to have one free factor loading    for the initial response and      for the subsequent 

responses. In order to control for level 2 endogeneity of     in the one-factor model, we follow the 

standard practice due to Mundlak (1978) and Chamberlain (1984) by using the auxiliary model  

     ̅  
 ̅      

where     (   ) is independent of  ̅  . Chamberlain (1984) observes that in nonlinear random-

intercept models, the auxiliary equation represents a proper statistical model which must be correctly 

specified. Thus the use of  ̅   instead of     restricts the correlations between the random-intercept and 

the time-varying covariates to be constant over time. 

When      has missing values, using longitudinal means is usually the only viable option in practice, 

see Rabe-Hesketh and Skrondal (2012). In that case, the calculation of  ̅   is based on only those 

occasions for which the response variable     contributes to the analysis. Substituting the auxiliary 

equation in Eq. 8, the linear model of latent responses becomes  
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,
  (                      )     (  

       
     ̅  

   ̅            )

  (              )     (  
       

     ̅  
     ̅      )

, i=1, …, T-1 (9) 

Again, in order to handle level 2 endogeneity, the conditional modelling approach used is  

           
       

      ̅  
   ̅           (10) 

where the longitudinal averages can be calculated according to Rabe-Hesketh and Skrondal (2013) as 

 ̅  
 

   
∑   

 

 

 

and a probit link in Eq. 9 is maintained.  

4.2.2 The Nonparametric Maximum Likelihood Estimator 

In Heckman and Singer (1984), a nonparametric maximum likelihood estimation (NPMLE) procedure 

that avoids ad hoc functional specifications for the unobserved scalar heterogeneity   is proposed. 

The nonparametric characterization of the marginal density of investment  (     ) becomes 

 (     )  ∑ (        )  

 

   

 

where ∑                     is the number of points of support,    is probability mass point, 

   is a locator of    such that        (    ). Under random sampling, the log-likelihood for 

investment rates is given by 

   ∑  ∑ (        )

 

   

 

   

    

Lindsay (1983) provides conditions for global solution to the maximization of LL using the Gateaux 

variation. The Gateaux derivative of the log-likelihood function with respect to   is defined as 

 (   )  ∑*
 ( 

 
     )

 ( 
 
   )

   +  

 

   

 

The log-likelihood function is maximized if and only if  (   )                  see the Mass Point 

Method section in Huh and Sickles (1994). Heckman and Singer (1984) derive               over 

which  ( 
 
      ) is supported. The Heckman-Singer estimator has been found consistent for mixing 

distributions with a small number of points of support.  
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4.3 Endogenous Switching Regression Model of Investment 

DPD models of investment estimated using the GMM approach or multilevel methods assume that an 

optimal rate of investment is characterized by a single investment regime. For example, Abel and 

Eberly (1994) and Abel (2014) demonstrate that the optimal rate of investment can be located in more 

than one regime. In such environments, micro investment decisions concern not only whether a firm 

invests, but also how much it invests in a regime. The goal here is to estimate the switching regression 

model specified in Eq. 11  

{
 

 
   

     
     

                                                     

   

     
     

                                                       

    (11) 

and 

(
  

  

 
)        (   )     with        .

   
             

        
       

              

/  

where the     vector includes variables in the switching regression function and an additional variable 

to operate as an exclusion restriction to correct for selection bias, see Cameron and Trivedi (2009).  

The non-zero covariance between investment shocks            and      in Eq. 11 is correlated with 

other firms‘ characteristics. Since the conditions that either        or        or both are assumed 

to hold, then Eq. 11 is an endogenous switching regression model. Investment rates observed in each 

period t for each firm i are generated from either the High-q or Low-q regime, but never in both at any 

one time. As a consequence, the covariance between      and      does not exist, see Maddala (1983). 

By definition, the vector      (   ) is a set of observable exogenous explanatory variables. As in 

Lee and Porter (1984) and Hu and Schiantarelli (1998), it is unknown ex ante whether the observed 

investment rate is generated from the High-q or Low-q regime. That is, unlike Nabi (1989), we have a 

case of unknown sample separation in the model.  

5 Empirical Results 

We now take our GMM estimators, dynamic nonlinear random effects models and endogenous 

regime switching models to the Swazi manufacturing panel data. As argued earlier, our preferred 

sufficient statistic that measures or poses as a proxy for marginal q is the sales-to-capital ratio. 

Another covariate is the time     investment rate accommodating the conditional probability of a 

positive investment in the future as a function of previous investment that captures investment 

dynamics; see Heckman (1981b). It is also standard in state dependence research to control for 



23 

 

unobserved heterogeneity. We therefore control for individual characteristics underlying the firm‘s 

decision to either invest or exercise its option to wait. In view of the argument presented by Hsiao 

(2003) and Chrysanthou (2008) that state dependence and unobserved heterogeneity have opposite 

effects on firms‘ investment decisions, it is necessary to determine the relative importance of each one 

of them. Finally, the empirical estimation strategy takes into account the likelihood of capital/labour 

substitutability in production by introducing employment as a control variable. 

The linear DPD in Eq. 5 can therefore be specified as a structural empirical model of investment in 

the form shown in Eq. 12 

            

           
  (

              

           
)    (

       

           
)    (

         

           
)    (     )    (       )       (12) 

where the two-way error structure is defined as                for        ,     and    are the 

unobservable firm-specific effect and time effects, respectively; while     is the random error term. The 

dependant variable is the rate of investment in PME in the manufacturing sector. Its lagged regressor 

measures the state dependence of investment on the producer‘s previous decisions to invest. The 

contemporaneous sales-to-capital ratio included as a proxy for marginal q, while employment controls 

for primary input substitution effects.  

The empirical DPD literature is awash with evidence of upward-biasedness of the OLS estimator 

when applied to Eq.12; that is,    plim ( ̂   )     see Blundell, Bond and Windmeijer (2000). This 

inconsistency arises from, inter alia, the correlation of the lagged level of the dependent 

variable, 
              

           
  with the stochastic error term    , see Bond (2002). According to Judson and 

Owen (1999), the bias of  ̂    is much more severe than that of  ̂. Similarly, the within-groups (WG) 

estimator has proved to be downward-biased. Alvarez and Bond (2003) demonstrate that the 

asymptotic bias in GMM is always smaller than the bias in WG, provided    . Therefore, a 

consistent estimator   ̂ should be bounded below and above such that  ̂  ( ̂    ̂   ). The rest of 

the results are estimated using the GMM technique, methods for the estimation of dynamic nonlinear 

random effects models with unbalanced panel data and the endogenous investment switching regime 

approach. 

5.1 The GMM Estimates 

5.1.1 The Difference and System GMM Results 

Judson and Owen (1999) propose that when      and      , Difference and System GMM 

should be used in estimating DPD models. Moreover, the added advantage of the System GMM is that 

it performs better than the Difference GMM in applications with near unit-root time series data. In 
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such cases, lagged levels of variables are weak instruments for subsequent variations – see Roodman 

(2009b), Blundell and Bond (1998, 2000), and Blundell et al. (2000). 

Table 3 summarizes the empirical anatomy of section 4. The first column characterizes the GMM 

parameters   [ ̂  ̂   ̂   ̂   ̂ ]. These are estimated using the One-Step and Two-Step approaches 

of the Difference and System GMM. The parameter estimate   ̂  denotes the estimated lagged 

response coefficient and the rest are coefficients of other explanatory variables that may be assumed 

endogenous, predetermined or strictly exogenous.
15

 However, moment conditions by Arellano and 

Bond (1991) for Difference GMM and by Blundell and Bond (1998) for System GMM ensure 

asymptotic consistency of parameters. 

Table 3: Schema for the GMM Estimator Using Arellano and Bond (1991) for  ̂      and 

Blundell and Bond (1998) for  ̂    

 

Parameter  ̂     
    

       
     

   

    
       

     
     

  ̂    
   

      
    

  

   
      

    
    

 

One Step Two Step One Step Two Step 

 ̂  ̂       ̂       ̂      ̂     

 ̂   ̂         ̂         ̂        ̂       

 ̂   ̂         ̂         ̂        ̂       

 ̂   ̂         ̂         ̂        ̂       

 ̂   ̂         ̂         ̂        ̂       

Constant      ̂   ̂  

The schema in Table 3 treats the model as a system of equations, one for each time period, as in 

Bontempi and Golinelli (2014). First, the predetermined and endogenous variables in first-differences 

are instrumented with suitable lags of their own levels. Second, predetermined and endogenous 

variables in levels are instrumented with suitable lags of their own first-differences. Lastly, strictly 

exogenous and any other instruments enter the instrument matrix with one column per instrument. 

The empirical model in Eq.12 is first estimated by WG and OLS methods to get the estimate  ̂  

(           ) of the true value for  .
16

 Table 4 estimates Eq.12 to produce baseline results based on 

a priori considerations that investment is a function of previous period‘s investment decisions and 

marginal q; that is, it is state dependent. Theory argues that although marginal q is a sufficient statistic 

for investment rate, the sales/capital ratio is also a sufficient statistic for investment rate as discussed, 

see Caballero and Leahy (1996). This means that, since marginal q is unobservable, the sales/capital 

variable can be used as a regressor instead. Therefore the empirical equation expresses the investment 

rate as a function of its     lag, the contemporaneous sales/capital ratio and its     lag.  

                                                           
15

 See definitions in Appendix A1. 
16

 Full results are available from the author on request. 
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Table 4 reports estimates of true state dependence of real investment rates (
    

    
) as well as   and 

    sales/capital ratio. To achieve this, the one-step and two-step GMM parameters for  ̂     

and  ̂    are respectively presented. The first-order autoregressive parameter is high and falls above 

the upper limit provided by the OLS estimator; that is,  ̂     [and it might also be the case that 

(      ⁄ )      This implies a random walk with firm-specific drift, creating weak correlations 

between first differences and lagged levels, or the weak instruments problem (see Blundell and Bond, 

2000:325, and Han and Phillips (2010)). It may be a reflection of an imprecisely measured parameter 

due to high correlation between the sales/capital variable and omitted variables and other factors. 

Such is a natural characteristic of the GMM DIFF estimator while the GMM SYS estimator 

circumvents the problem. The one-step GMM SYS estimator has the autoregressive parameter  ̂   , 

rendering the system non-convergent. The two-step GMM estimator barely passes the AR (1) 

restriction; and Roodman (2009a) suggests that the validity of the model need not be readily accepted 

in such cases. Furthermore, standard errors are Windmeijer (2005) robust bias-corrected.  

Table 4: GMM Estimation of Investment Rate Dynamics using an Instrument Reduction 

Technique and the Helmert’s Transform
17

  

 GMM DIFF (COLL) GMM SYS (COLL) 

 

One Step Two Step One Step Two Step 

    

    

 
0.872* 0.584 1.044** 0.855 

(0.4173) (0.5609) (0.4042) (0.4367) 
  

    

 
 0.774*  0.607  0.853*  0.794*   

(0.3366) (0.4079) (0.3508) (0.3917) 
    

    

 
0.106 0.09 0.239 0.074 

(0.1572) (0.2265) (0.1717) (0.1838) 

Constant     0.702 0.853 

 

    (0.3922) (0.4386) 

NT 103 103 172 172 

N 44 44 69 69 

AR(1) p-value 0.035 0.205 0.037 0.082 

AR(2) p-value 0.105 0.227 0.12 0.128 

Sargan  p-value 0.1306 0.1306 0.029 0.029 

Hansen  p-value 0.1395 0.1395 0.233 0.233 

#Z 18 18 21 21 

#X 10 10 10 10 

Wald    Test 42.97 47.54 39.52 37.06 

  
  0 0 0 0.0001 

h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Notes: All models include Year Dummies. 

Moreover, these results are an outcome of instrument proliferation that is controlled for by first 

collapsing the instrument count and truncation of lag depth to    . Instrument explosion curtailed by 

both mechanisms reduces proliferation from 79 to 18 instruments for Difference GMM and from 100 

                                                           
17

 A robustness check based on Bontempi and Mammi‘s (2015) principal component analysis technique presents 

similar results in Appendix A4.1. 
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to 21 instruments for System GMM. Furthermore, the a priori estimates of the variance-covariance of 

the transformed errors given by the blocks of H were used alternately between h(2) and h(3). By 

design, this has no effect on the  ̂     results, but h(3) has the effect of slightly increasing the size of 

 ̂    as evident on the table. Among the existing methods for expunging fixed effects, the method of 

forward orthogonal deviations is preferred due to its resilience to the gaps‘ problem. Such problems 

might be exacerbated, for example, by the use of the standard first difference deviations transform, 

given the high incidence of missing values in the investment data.  

It is therefore not possible to draw sound conclusions on whether or not there exists true state 

dependence in Swazi manufacturing investments based on the table 4 results. Since micro level 

investment is shown in the survival rate section to differ by firm size, estimating the same structural 

model by controlling for firm-level employment alters the results somewhat. This is shown in Table 5 

where the empirical model is estimated in full with employment as an additional control variable for 

primary input substitutability. 

Table 5: GMM Estimation of Investment Rate Dynamics with the Control Variable using an 

Instrument Reduction Technique and the Helmert’s Transform  

Variables 

GMM DIFF (COLL) GMM SYS (COLL) 

One Step Two Step One Step Two Step 

    

    

 
0.329 0.198 0.338 0.144 

(0.3041) (0.4454) (0.3509) (0.4684) 
  

    

 
 0.279  0.121  0.26  0.073 

(0.2722) (0.4135) (0.3378) (0.5149) 
    

    

 
0.086 0.099 0.068 0.118 

(0.1341) (0.2337) (0.1253) (0.2168) 

     
 

 0.02 0.083  0.147  0.147 

(0.2592) (0.3723) (0.158) (0.2343) 

       

 

0.349* 0.386 0.297 0.273 

(0.1696) (0.2002) (0.1728) (0.2152) 

Constant      0.36  0.475 

 

    (0.4997) (0.6846) 

NT 103 103 171 171 

N 44 44 68 68 

AR(1) p-value 0.035 0.097 0.023 0.08 

AR(2) p-value 0.041 0.094 0.021 0.134 

Sargan  p-value 0.1477 0.1477 0.2006 0.2006 

Hansen  p-value 0.1939 0.1939 0.3242 0.3242 

#Z 25 25 29 29 

#X 12 12 12 12 

Wald    Test 106.53 76.23 93.57 71.21 

  
  0 0 0 0 

h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Notes: All models include Year Dummies. 

Although the size of the AR(1) parameter is substantially reduced across all estimators, it remains 

insignificant within the (      ) bounds. However, only the two-step GMM SYS (COLL) estimator 
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passes the AR(1) and AR(2) Arellano-Bond (1991) diagnostic tests while the rest do not. However, in 

spite of lag length truncation and collapsing of instruments, the Hansen tests of over-identifying 

restrictions and joint instrument validity remain unsatisfied. For instance, the Hansen p-value of 

0.3242 far exceeds the cautionary p-value of 0.25 suggested by Roodman (2009a). It therefore may be 

the case that the moment conditions are still too high thereby rendering the Sargan/Hansen test weak. 

 

One interpretation of these results partly suggests the absence of persistence in investments due; inter 

alia, to the over 70% incidence of investment inactivity during the period of trade reforms gleaned in 

Figure 4.2. The dominant zone of inactivity in the data is modelled to respond to the previous period‘s 

inactivity and the sale/capital variable as a theoretical sufficient statistic of investment. Remember, 

the correlation between     investment rate and   sales/capital ratio in Table 2 is 0.71 while the 

correlation between the current investment rate and its lag is 0.61. Firstly, the introduction of the 

    investment rate and the   sales/capital ratio as explanatory variables causes collinearity and 

imprecision in the parametric estimation of the structural model. Secondly, turning to the use of only 

the     explanatory variables without controls worsens the precision of the estimates potentially due 

to the impact of serial correlation since the     sales/capital ratio is correlated with the     

investment rate. This     investment rate is in turn correlated with its subsequent level.  Again, the 

coefficients are measured with significant imprecision.  

Nonetheless, although insignificant, the measure of state dependence is consistent with the findings in 

the literature in terms of its sign and order of magnitude; see Eberly et al. (2012) and Drakos and 

Konstantinou (2013). Taken at face value, an increase in the ratio of investment/capital stock at     

in the two-step GMM SYS (COLL) estimator, ceteris paribus, is more likely to have a positive effect 

on the probability of investing at time   than otherwise. Both contemporaneous control covariates; that 

is, the proxy for marginal q and the employment variable, might have negative effects on current 

investment rates while the     individual lags might positively affect the time   investment rate.
18

  

As discussed; however, this framework of analysis ignores the potential effect of serial correlation in 

the time-varying errors much against the objection advanced by Honoré and Kyriazidou (2000).  

In general, one explanation of the apparent industrial lacklustre performance in Swaziland is that 

capital irreversibility due to market failures acted as an investment deterrent in the uncertain business 

environment during the two decades since the 1990s in the customs union.
19

 Most firms in the active 

group chose to exercise their option to wait for uncertainty to come down while maintaining and 

repairing existing plant, machinery and equipment. Only a few of the active firms engaged in lumpy 

                                                           
18

 It is possible that the time   covariates are correlated with firm-specific effects in the one-way error structure, 

thereby generating simultaneity problems. However, their exclusion in favour of retaining the     covariates 

does not alter our results. 
19

 Market failures in this case may be driven by ‗lemon effects‘ and capital specificity, see Abel, Dixit, Eberly 

and Pindyck (1996). 



28 

 

investments after spells on inactivity. In this sense, investment decisions could not significantly 

respond to changes in the ratio of sales/capital and to changes in employment. The next section 

performs robustness checks to the estimation of the theoretical model and the model with controls 

using a different deviations transform to the data set to answer this question.  

5.1.2 Sensitivity Analysis of the GMM Results 

This section estimates the empirical model allowing for the impact of gaps in the dataset created by 

missing investment values. In order to check the robustness of the results obtained using the forward 

deviations orthogonality transform without ‗employment‘ in the previous section, table 6 implements 

the same model but this time uses the first-difference deviations transform. In the absence of the 

employment variable, the coefficient of the lagged investment rate variable increases as expected and 

is weakly significant in three out of four cases. The magnification effect of the first-difference 

deviations transform in the estimation of GMM parameters is evident and marginally raises the 

coefficients above those estimated with our preferred forward orthogonality transform. However, the 

AR(1) parameter still lies outside the (      ) bracket. 

Table 6: GMM Estimation of Investment Dynamics using the Roodman (2009b) Method of 

Instrument Reduction with Standard First Difference Deviations Transform without Controls 

 GMM DIFF GMM SYS 

Variables One Step Two Step One Step Two Step 

    

    

 
1.014* 0.692 1.237** 0.972**  

(0.4244) (0.5766) (0.4494) (0.3308) 
  

    

 
 0.955*  0.74  1.127*  0.963**  

(0.4234) (0.4959) (0.4755) (0.3739) 
    

    

 
0.106 0.106 0.207 0.054 

(0.1749) (0.2331) (0.2033) (0.1418) 

Constant     1.055 1.080*   

 
    (0.6158) (0.4368) 

NT 100 100 172 172 

N 43 43 69 69 

AR(1) p-value 0.033 0.218 0.052 0.076 

AR(2) p-value 0.126 0.257 0.164 0.148 

Sargan  p-value 0.172 0.172 0.1213 0.1213 

Hansen  p-value 0.2414 0.2414 0.4336 0.4336 

#Z 18 18 21 21 

#X 10 10 10 10 

Wald    Test 33.61 31.25 30.6 28.37 

  
  0.0002 0.0005 0.0007 0.0016 

h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Notes: All models include Year Dummies. 

As a further robustness check, table 7 applies the first-difference transform to estimate the empirical 

structural equation with controls. Here we control for employment size but continue with the standard 

first-difference deviations transform to estimate the model. Although it is substantially reduced in 
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absolute terms, the true state dependence coefficient is still insignificant at any level. Although the 

autoregressive coefficient remains statistically insignificant and positive, its increase might also 

increase the probability of investing at time   by the order of approximately 0.30. Both the sales-to-

capital ratio and employment behave similarly to the preferred specification.
20

 The orders of 

magnitude and signs of these results mimic the findings of Drakos and Constantinou (2013) for the 

Greek manufacturing sector, whose estimated state dependence according to the research by these 

authors is found to lie between 0.19 and 0.33 for a similar period of analysis. 

Table 7: GMM Estimation of Investment Dynamics using the Roodman (2009b) Method of 

Instrument Reduction with Standard First Difference Deviations Transform with Controls 

 GMM DIFF GMM SYS 

Variables One Step Two Step One Step Two Step 

    

    

 
0.482 0.336 0.455 0.301 

(0.2904) (0.3532) (0.3752) (0.532) 
  

    

 
 0.416  0.193  0.377  0.26 

(0.2992) (0.4574) (0.3532) (0.5876) 
    

    

 
0.077 0.087 0.069 0.116 

(0.1353) (0.2029) (0.12) (0.1923) 

     

 

0.111 0.249  0.136  0.161 

(0.3511) (0.3596) (0.1994) (0.2282) 

       
 

0.523* 0.644* 0.271 0.252 

(0.2371) (0.2932) (0.2148) (0.23) 

Constant      0.166  0.124 

 

    (0.5313) (0.8102) 

NT 100 100 171 171 

N 44 44 68 68 

AR(1) p-value 0.042 0.093 0.025 0.091 

AR(2) p-value 0.057 0.05 0.033 0.116 

Sargan  p-value 0.1991 0.1991 0.1246 0.1246 

Hansen  p-value 0.1722 0.1722 0.2605 0.2605 

#Z 25 25 29 29 

#X 12 12 12 12 

Wald    Test 55.74 43.29 56.3 37.8 

  
  0 0 0 0.0002 

h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Notes: All models include Year Dummies. 

 

Overall, the GMM results predict that micro investment rates in Swazi manufacturing insignificantly 

influence their own levels positively in the next period, and remain insignificant even when 

employment is controlled for. This is robust to the choice of deviations transform used. The results 

further reveal that the impact of contemporaneous sale-to-capital ratio is negative and insignificant 

while its     coefficient is positive although still insignificant. This same pattern of parametric 

behaviour obtains in the case of the control variable. Thus, investment performance is invariant to the 

                                                           
20

 These results are robust to using the average profit of capital defined by Abel and Blanchard (1986) as 

(
          

    
)  to using cash-flow to capital ratio (

     

    
) and operating profit to capital ratio  (

    

    
) defined by 

Letterie and Pfann (2007). All three are considered as proxies for the shadow price of capital. 
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choice of a deviations‘ transform applied to the treatment of missing values. Are these conclusions 

sensitive to the treatment method applied to missing values of investment? Does an interaction 

between missingness patterns of values and employment variations has an effect on the rate of 

investment? 

In this framework, the impact of firms‘ investment inactivity on industrial investment patterns can 

potentially be indirectly accounted for through variations in the orthogonality conditions assumed. 

The purging of individual fixed effects in the GMM approach removes information about plant-level 

heterogeneity in investment decisions. Browning and Carro (2010) and Skrondal and Rabe-Hesketh 

(2014) develop binary discrete choice models with heterogeneity as an important factor to take into 

account in inference analysis based on microdata. In the next section, we depart from modelling 

continuous responses of investment and introduce a binary method to estimating dynamic nonlinear 

random effects models of unbalanced panels of firms in a multilevel setting of investment.  

5.2 Dynamic Random-Effects Estimates 

5.2.1 Empirical Multilevel Analysis of Investment Decisions  

The empirical version of the dynamic random-effects model follows directly from the theoretical 

specification and can be concisely summarized as  

      ,(
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)   
  

(     )     
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still a binary response variable taking the value of   if firm   invests at occasion   and   otherwise. 

The associated component of the joint model is as before where the initial response is modelled at 
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The empirical auxiliary model of within-means is constructed as follows 
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In the case of the conditional model, we implement the following auxiliary model  
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5.2.2 Patterns of Investment Decisions and Estimates of the Structural Investment Model  



31 

 

The descriptive analysis covered in this section presents low patterns of participation of firms in 

capital investments. With missing data, it is possible to analyse all survey waves for which the 

investment rate      and associated explanatory variables      are not missing for a subject. It is also 

useful to consider each occasion that precedes an occasion with missing data as an initial occasion and 

assume that the second line of Eq. 9 holds for all initial responses. As in Hyslop (1999) and Chay and 

Hyslop (2000), in order to improve our understanding of the fit of the models estimated, we first 

present frequencies of a firm‘s discrete choice to invest in a given occasion as shown in Table 8. 

For each sequence in Table 8, a ―1‖ in the i
th
 position denotes an observed positive investment in the 

i
th
 period, whereas a ―0‖ indicates a missing value of investment. For example, the pattern of 

missingness characterized by the sequence ‗0000000000‘ in Panel A indicates that 100 out of 227 

firms have no responses for investment in any of the 10 years from 1994-2003, while ‗0111111111‘ in 

Panel C means only one out of the same number of firms invested consecutively after the first year of 

inaction in the sample. However, isolated observations that follow sequences like ‗0101010101‘ 

cannot be used because only initial values are supplied rather than the required consecutive sequences. 

Nonetheless, several sequence types of non-missing values of investment participation by a firm can 

be used, e.g. ‗1101100100‘. In this case, the initial response is      for the first sequence and      for 

the second sequence and so on. The parameters of the auxiliary model can then vary according to the 

location of the initial occasion. Another practical matter is to analyse only contiguous sequences of 

non-missing data that start at occasion 0 and discard firms with patterns of the form ‗0101000000‘. In 

such ad hoc approaches, the missing values of      are implicitly imputed by     and      is assumed to 

be missing at random (MAR). 

Analysing relationships between the response variable and covariates based on either contiguous 

investments or investments with non-missing patterns ensures accurate estimation of the likelihood 

function and unbiased parameter estimates, see Skrondal and Rabe-Hesketh (2014) and Seaman 

Galati, Jackson and Carlin  (2013)
21

. However, this might present us with the technical problem of 

‗not enough observations‘ prevalent in finite samples with short T, see Akay (2012) and Albarran et 

al. (2015).  

                                                           
21

 See Seaman et al. (2013) on handling ―Missing at Random‖ and ―Missing Completely at Random‖ datasets as 

well as potential implications for the likelihood function.  
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Table 8: Manufacturing Patterns of Missing Values and Investment Participation (    
   

     
) in Swaziland (1994-2003) 

Panel A Panel B Panel C 

Missing Values‘ 

Patterns Freq. Percent Cum. 

Missing Values‘ 

Patterns Freq. Percent Cum. 

Missing Values‘ 

Patterns Freq. Percent Cum. 

0000000000 100 44.05 44.05 0000101000 1 0.44 72.25 0011101111 1 0.44 87.22 

0000000001 10 4.41 48.46 0000101111 1 0.44 72.69 0011111010 1 0.44 87.67 

0000000010 7 3.08 51.54 0000110001 1 0.44 73.13 0011111101 1 0.44 88.11 

0000000011 5 2.20 53.74 0000110010 1 0.44 73.57 0011111111 2 0.88 88.99 

0000000100 4 1.76 55.51 0000111000 2 0.88 74.45 0100000000 3 1.32 90.31 

0000000101 1 0.44 55.95 0000111110 2 0.88 75.33 0100001110 1 0.44 90.75 

0000000110 2 0.88 56.83 0000111111 1 0.44 75.77 0100011110 1 0.44 91.19 

0000000111 4 1.76 58.59 0001000000 2 0.88 76.65 0100011111 2 0.88 92.07 

0000001000 4 1.76 60.35 0001001100 2 0.88 77.53 0100100000 1 0.44 92.51 

0000001001 2 0.88 61.23 0001001110 2 0.88 78.41 0100100011 1 0.44 92.95 

0000001010 2 0.88 62.11 0001010111 1 0.44 78.85 0100101110 1 0.44 93.39 

0000001011 1 0.44 62.56 0001011110 2 0.88 79.74 0100111110 1 0.44 93.83 

0000001100 1 0.44 63.00 0001100000 2 0.88 80.62 0101111101 1 0.44 94.27 

0000001110 5 2.20 65.20 0001100100 1 0.44 81.06 0110000000 1 0.44 94.71 

0000001111 2 0.88 66.08 0001101111 1 0.44 81.50 0110000010 1 0.44 95.15 

0000010000 2 0.88 66.96 0001111011 1 0.44 81.94 0110000111 1 0.44 95.59 

0000010001 1 0.44 67.40 0001111110 2 0.88 82.82 0110101000 1 0.44 96.04 

0000010110 1 0.44 67.84 0001111111 1 0.44 83.26 0110110000 1 0.44 96.48 

0000011000 1 0.44 68.28 0010000001 1 0.44 83.70 0110111000 1 0.44 96.92 

0000011001 1 0.44 68.72 0010000011 1 0.44 84.14 0110111111 1 0.44 97.36 

0000011011 1 0.44 69.16 0010011010 1 0.44 84.58 0111000000 2 0.88 98.24 

0000011100 1 0.44 69.60 0010011111 1 0.44 85.02 0111000110 1 0.44 98.68 

0000011110 2 0.88 70.48 0010100000 1 0.44 85.46 0111110000 1 0.44 99.12 

0000100000 1 0.44 70.93 0010100100 1 0.44 85.90 0111111110 1 0.44 99.56 

0000100010 1 0.44 71.37 0010100111 1 0.44 86.34 0111111111 1 0.44 100.00 

0000100011 1 0.44 71.81 0011000000 1 0.44 86.78 Total 227 100.00  

A total of 82 out of 227 observations in the sample have at least 2 consecutive non-missing sequences, implying that only 36.12 percent of the firms provide 

descriptive evidence of some serial persistence. Viewed with the high incidence of inaction, this suggests the possibility that the underlying process is largely 

independent over time. These investment transitions point to adopting a model that includes: a first-order Markov chain to capture any degree of true state 

dependence, and/or serially correlated errors as well as unobserved heterogeneity in order to fit the sequences, see Rabe-Hesketh and Skrondal (2014). 
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Table 9: Multilevel Parameter Estimates and Robust Standard Errors for Dynamic Random Effects 

Probit Models of Investment. 

Structural  

Parameters 

 
Naïve  

 

Estimates for Joint Models  

 
Estimates for Conditional 

Maximum Likelihood Model  

Exogenous 

     

Endogenous 

     
Conditional 

Estimator 

NPMLE 

(Mass Point Method) 

(
      

      

) 
2.0634** 0.2189 0.5556 0.9143 0.7327 

(0.6817) (0.7428) (0.6900) (0.6566) (0.6166) 

(
   

      

) 
 0.7291 0.2655 0.1574 1.0331 1.2758 

(0.3892) (0.5596) (0.4487) (0.7938) (0.7857) 

(     ) 

 

0.2341* 0.0928 0.0526 0.2921 0.7240 

(0.1003) (0.1054) (0.4742) (0.4443) (0.5415) 

      

  

 5.5564***  4.9138** 

  

 

(1.5658) (1.5898) 

  
(

   

      

)         

1.8706 2.0390 

  

 

(1.1988) (1.1943) 

  (     )        

  

0.5516** 0.4258* 

  

 

(0.2081) (0.2084) 

  
(

   

      

)

 

    

 2.8371*  2.5949 

   

(1.2537) (1.4484) 

(     )
 

    

 0.7460  1.3585 

   

(0.5493) (0.7236) 

(
   

    

̅̅ ̅̅
)    

0.7728 0.1701 

   

(1.0795) (0.7960) 

(   
   

̅̅ ̅̅ ̅̅ ̅̅ ) 
   0.8757 1.2089 

   (0.6294) (0.7561) 

Constant 

 

1.0008 1.5484* 0.7161 0.6352 0.9435 

(0.6159) (0.7167) (0.6804) (0.9313) (1.6922) 

cbri1 

       

 

0 

  

0.3770* 

 0 

  

(0.1761) 

 cbr1_1l 

           

  

 0.2818 0.1866 

  

 

(0.3313) (0.6448) 

  cbr1_1 

     One 

  

0.8661*** 0.5763** 

  

 

(0.2040) (0.2081) 

  f1: 

     
(
   

   

̃

 

)   

 0.139 

  

  

(0.2169) 

  (   ̃   ) 

   

0.1995 

  

  

(0.4335) 

  z2_1_1 

     Constant 

     

 0.9755 

    

(1.4523) 

p2_1 

     Constant 

     

0.8836 

    

(0.4512) 

Number of Firms 350 911 626 480 480 

Log-likelihood  95.3007  184.086  166.715  133.386  130.03 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Table 9 presents estimates of the empirical model and distinguishes each model on the basis of 

various assumptions about the initial conditions problem and endogeneity of covariates. The Naïve 

results are presented in Model 1. The joint distribution model coefficients are presented in Model 2 



34 

 

and Model 3. Model 4 presents results for the conditional model while Model 5 presents results for 

the same model using the NPMLE methods based on the mass point procedure. 

The Naïve specification uses all the available observations for the dependent variable. The model is 

estimated with Stata‘s xtprobit command to produce biased standard errors, but correct parameters 

(see Skrondal and Rabe-Hesketh, 2014). The routine achieves this by performing a sensitivity 

evaluation of the results using quadrature checks, and we keep adding an integration point until the 

log-likelihood remains unchanged. However, since the standard errors are biased upward, we also use 

the gllamm command and adaptive quadrature for accurate point estimates and robust standard errors. 

In this model, as shown in column (1), longitudinal dependence is almost completely due to state 

dependence as a result of ignoring initial conditions and endogeneity of covariates. As expected, the 

coefficient of investment rate at     is significant and large at 2.06 percent, spuriously suggesting 

significant persistence of true state dependence of investment rates. The estimated variance of the 

random-intercept is 0.00. 

In estimating the joint distribution model with exogeneity assumption, all available data, including the 

missing investment rate lag, are used. The approach adopted allows for different coefficients for 

initial responses. Although still positive, the coefficient on lagged investment rate is greatly reduced 

in absolute terms to 0.22 percent and is insignificant at conventional levels. A dummy variable, 

Nolag, represents all observations with missing data on investment rates at time     and enters the 

model significantly at 1 percent level. It is not surprising that the dummy is negative and significant, 

given the high incidence of single investment rates that are sandwiched between missing values in 

Swazi manufacturing reflected in Table 4.8. This means a unit percentage point increase in net PME 

investment inactivity at     reduces the probability of investment by               percent at 

time  . When Nolag is interacted with      , it produces a positive and significant coefficient at the 

10 percent level. This is consistent with larger firms, measured in terms of employment size, not 

investing at    . The larger firms‘ reasons for this might be related to the potential substitution of 

capital adjustment plans for increased (possibly fixed contract) labour at time  .
22

 Such decisions 

would continue until the uncertainty about the Southern African economic outlook brought about by 

trade reforms in the 1990s was resolved, see similar arguments by Bloom (2009) for the U.S. case. 

The endogeneity assumption concerning covariates in the joint distribution model also uses all 

available data. However, in contrast to the exogeneity model, it relies on different coefficients for all 

initial responses. Its longitudinal means needed to obtain an appropriate linear predictor for consistent 

estimation are based on occasions where the investment rate variable is not missing. Notably, the 

estimated factor loading for the linear predictor multiplying the random-intercept enters the auxiliary 

                                                           
22

 Capital irreversibility and the relative ease of employment termination for contract workers are assumed. 
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model insignificantly at all conventional levels.
23

 Furthermore, Skrondal and Rabe-Hesketh (2014) 

suggest that a test of      ̅
(

   

   

̃

 
)

  ̅
(   ̃   )

   is equivalent to a level 2 test of exogeneity. Since 

both statistics are insignificant, the exogeneity hypothesis cannot be rejected. Thus, there is no 

material difference between the results of the two joint distribution models and therefore the key 

predictions of the model under exogeneity assumptions are maintained.  

An alternative to the joint distribution models used in this analysis is the conditional model that 

conditions on initial responses and explanatory covariates. Instead of using all available data, the 

method is designed to rely on consecutive sequences of at least two non-missing values of investment 

rates in order to analyse contiguous sequences only. However, the change in the definition of the 

response variable poses a barrier to the estimation of the model when the dataset is densely 

populkated with missing values in the investment series as shown in the descriptive analysis of 

Section 4.2.
24

 When erratic investments are excluded in the analysis, only about two firms have at 

least two consecutive sequences of investment in each of the patterns of missing values during the 

ten-year period.  

As a consequence of this difficulty, the estimation of the conditional model is now based on all the 

data and the coefficients for initial period explanatory variables are unfortunately constrained to be 

equal to coefficients of subsequent periods. For a critique on using the entire sample and initial 

conditions to compute within-firm means, see Rabe-Hesketh and Skrondal (2013). The model is 

therefore estimated just to provide upper bounds for coefficients of the joint distribution models. 

Thus, the estimated random-error variance is 0.377 and the associated intraclass correlation of the 

latent variable    
   in Eq. 9   given the observed sales/capital ratio and labour, is 

 

   
     . That is, 

approximately 27 percent of the variance in real investment rates that is not explained by the observed 

covariates is produced by unobserved time-invariant firm-specific characteristics. Similarly, the 

suitability of the restricted one-factor model is measured by the statistical insignificance from unity of 

    that is,     . This is estimated to range between               . 

We also use the NPMLE approach to replicate the conditional model results by using the Rabe-Hesketh 

et al. (2005) adaptive quadrature to maximize the likelihood function and determine the optimal mass-point 
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 This indicates that the random-intercept regressed on longitudinal means based on non-missing investment 

rates in the auxiliary equation, (
   

   

̃

 
) and (   ̃   ), can be used in the generalized linear latent and mixed 

modelling approach embedded in f1: a. b, where a and b represent a one-factor probit model described in 

Arulampalam and Stewart (2009). These are averages representing the extent to which item    in an item 

response setting, discriminates between firms of different propensities to invest thereby allowing the analyst to 

extract unobserved heterogeneity. 

24
 An experiment conducted using the Heckman (1981a) estimator for serially independent idiosyncratic shocks 

using Stewart (2006) failed to estimate the probit model for     due to insufficient observations. 
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based on the Gâteaux derivative method. This technique avoids making any assumptions about the 

distribution of the random-intercept; see Heckman and Singer (1984) and Rabe-Hesketh et al. (2003) 

for details on this method. It produces structural coefficients that are similar to those of the 

conditional model and are indeed systematically greater in absolute terms than those produced by the 

joint models. 

5.2.3 Estimation of an Endogenous Regime Switching Model 

The analysis thus far has focussed largely on the properties and estimation of true state dependence as 

well as individual firm-specific heterogeneity underlying firms‘ investment choices. It is of interest 

therefore to also study the parametric patterns of the proxy of marginal q to determine if there is any 

switching of investments across different regimes as implied by Abel and Eberly (1994) and recently 

Abel (2014). Firms may sort their investments in terms of either high or low regimes as in Drakos and 

Konstantinou (2013) for the case of Greece. The next sections concentrate on this task. 

This section presents estimates of the structural investment equation using full information maximum 

likelihood (FIML) methods. This efficient method for estimating the endogenous regime switching 

regression model was first proposed by Lee and Frost (1978), and described for Stata by Lokshin and 

Sajaia (2004). Such methods simultaneously estimate the discrete probit criterion or selection equation 

and the continuous model to produce consistent standard errors. It sorts out investment rates according 

to two different states and simultaneously estimates the binary and continuous components of the 

empirical model. Firstly, the two sets of parameters of interest are     and    representing the high and 

low investment regimes respectively, which measure the effects of the     covariates that determine 

investment rates. The second parameter vector is   which measures the effects of     covariates 

included in the switching function. Thirdly, the standard deviations of    
  and    

 ; namely,     and      

can be estimated. Lastly, the correlation coefficients     and     in both investment regimes are easy to 

estimate. Thus, the endogenous switching regression model of investment is suitable for estimating this 

model. 

It is common practice in selection models like ours to introduce a variable(s) that can produce nontrivial 

variation in the selection part of the model while not affecting the outcome variable directly. Although 

three variables; namely, material input, energy and the inverse of firm-size measure are available, the 

latter is adopted here because it affects only the extensive margin of investment in the switching 

function rather than the intensive margin (see Letterie and Pfann, 2007).
25

 This implies three scenarios: 

(1) that if larger firms are more likely to locate in the higher investment regime, the firm-size 

                                                           
25

 However, the exclusion restriction may cause global concavity failure in some settings, in which case the 

model may be identified by nonlinearities thereby causing the selection equation to contain only the regressors 

in the continuous equations. 
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measure (   )
    will produce a negative sign. (2) In contrast, the sign will be positive if smaller firms 

have a higher propensity to locate in the high investment regime. (3) If firm selection into the high 

investment regime is scale-independent, then the exclusion restriction imposed by the introduction of 

the inverse of capital stock will be insignificantly different from zero in the switching function. 

Table 10 presents results of a structural endogenous switching regression model which reveal some 

form of existence and differences in high and low investment expenditures in PME at the firm level in 

Swaziland.
26

 In order to make inferences about investment behaviour between regimes, two tests are 

conducted principally for Model 1 and Model 4 because of their central role in the GMM approach in 

the previous section. This exercise is also performed for the other components of fundamentals; that is, 

the squares, averages and squares of averages of each model to determine their individual behaviour 

across regimes.  

In the case of the investment response to movements in the     employment and its components, we 

find insignificant coefficients in the high regime and highly significant and negative coefficients in the 

low regime. More specifically, firms in the high investment regime category of Models 1-3 substitute 

investment expenditure in PME for employment insignificantly while low investment regime firms 

chose a relatively higher capital-labour substitution pattern. In all three cases, the single regime 

hypothesis      
          is not supported by the   –distribution of the Wald-test statistic at the 1 

percent level.
27

 For example, this is    (1) = 269.67 with  -value 0.0000 for the linear relationship 

expressed in Model 1. In this model, given the strong empirical evidence that the data generating 

process is consistent with two significantly different regimes, it is instructive to discuss the variables 

influencing the likelihood that an observation belongs to the high or low investment regime. Since the 

coefficient of the investors of the capital stock (   )
    is insignificant, the location of an observation in 

the high regime is not a function of firm size.  Therefore, the endogenous switching regression results 

confirm visually and technically that the dataset is generated by two investment regimes in the capital 

adjustment-employment nexus, in contrast to the single regime structure presented through the 

systems GMM approach. 

                                                           
26

 Convergence difficulties of the likelihood function, even after changing starting values, required a slight 

adjustment in the presentation of the empirical model results, in contrast to Letterie and Pfann (2007). This 

allowed us to analyse each component of the structural model separately as Hu and Schiantarelli (1998) for the 

U.S. case. 

27
 Hu and Schiantarelli (1998), Nielsen and Schiantarelli (2003) and Letterie and Pfann (2007) note the 

difficulty computing the degrees of freedom if the null hypothesis holds because the parameters in the switching 

function are unidentified, and the likelihood ratio (LR) test might not even have a   –distribution. Goldfeld and 

Quandt (1973) also show that the use of a   –distribution for the LR test with degrees of freedom equal to the 

number of constraints plus the number of unidentified parameters yields a test that favours non-rejection of the 

restrictions. 
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Table 10: FIML Estimation of Endogenous Switching Regression Models: 1994-2003  

   = {   
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̅
)

 

 (    )
         } 
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̅
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̅̅ ̅̅ ̅̅
     

 0.003***                 

    

(0.0005)                 
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̅
)

 

      

0.000*** 

 

     

(0.0000) 

 Constant 7.803*** 7.396*** 7.715*** 7.203*** 7.208*** 7.186*** 

 

 

(0.368) (0.2298) (0.3942) (0.4299) (0.333) (0.3276) 

        

 

 0.821*** 

    

                

 (0.1829) 

    

                

       
  

  

 0.110*** 
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    ̅̅ ̅̅ ̅̅  

   

 0.962*** 
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̅
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(0.0043) 
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(0.4943) (0.4837) (0.497) (3.0102) (1.089) (1.0567) 
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̅̅ ̅̅ ̅̅
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(0.0176)                 
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̅
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0.002 

 

     

(0.005) 

     

 

 0.154  0.187  0.073 0.785 1.384 1.846 

 (0.1491) (0.1673) (0.3839) (3.1523) (1.1185) (1.301) 

 Constant  0.147 0.566  0.523* 0.479 0.568 0.56 

 

 

(0.4144) (0.3813) (0.2622) (0.5853) (0.4119) (0.4331) 

Statistics     1.8183 1.7881 1.8476 1.6548 1.7930 1.7846 

  (0.0947) (0.0958) (0.1003) (0.4094) (0.3629) (0.3649) 

     1.3066 1.2785 1.3626 1.6008 1.3316 1.2839 

  (0.2412) (0.2265) (0.2534) (1.4987) (0.2741) (0.1474) 

  ̂    0.9167  0.8810  0.9066  0.8816  0.8833  0.874 

  (0.06) (0.0819) (0.0631) (0.4736) (0.4027) (0.4304) 
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  ̂    0.6075  0.5779  0.6723  0.7911  0.48047  0.2744 

  (0.2886) (0.2976) (0.2270) (0.9093) (0.6104) (0.6129) 

 NT 378 378 378 252 358 358 

 Log Likelihood  820.14  820.188  830.692  540.799  790.234  791.973 

  :            for Model 1:                                                 (1) = 269.67, Prob >    = 0.0000 

  :            for Model 4:                                                 (1) = 0.75, Prob >    = 0.3868 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

The adopted proxy for the shadow price of capital and related components in Models 3-4 produced 

significant and negative results in both regimes, but more so in the low investment regime. That is, the 

coefficients for the sale/capital ratio in the high and low investment regimes are 

             and              respectively. The standard levels of significance suggest that 

           in the statistical sense. However, the   –distribution of the Wald-test statistic supports 

the equality null hypothesis for Model 4 coefficients at    (1) = 0.75 with  -value 0.3868. These 

results are robust to chosen transformations of the proxy variable for the shadow price of capital. This 

means that the investment function can be expressed as a single investment regime problem and 

therefore the parameters of the switching function are not identified and validates the conclusions drawn 

from the systems GMM approach. 

Finally, the correlation coefficients  ̂   and  ̂
  

  measure the relationships between the error terms in 

the high and low investment regimes and the error term in the switching function. As in Nielson and 

Schiantarelli (2003, footnote 26) and Letterie and Pfann (2007, p. 810), the statistic  ̂     in 

absolute terms, which is typical of switching models.
28

 Our results mimic those of Hu and 

Schiantarelli (1998) for the U.S., Nielsen and Schiantarelli (2003) for Norway and Letterie and 

Pfann (2007) for the Netherlands.  

6 Discussion of Results 

In the analysis of the dynamic structural model of investment, the descriptive statistics show patterns 

of significant microeconomic lumpiness and discontinuous investment in plant, machinery and 

equipment (PME). The data is characterized by a high incidence of zero investment rates and this 

stylized fact is distribution-free. Even if the data is divided into investments with or without 

expenditure on maintenance and repair (M&R), it still produces a high incidence of zeros at 44 

percent and 73 percent, respectively. For ease of comparison with other country studies, the analysis 

subsequently focuses on the data with investment cost of M&R. As a result, only 36.12 percent of 

observations have a sequence of at least two consecutive non-missing values of investment. 

Considering the ten-year span of investment inactivity for a significant number of establishments in 

                                                           
28

 See Goldfeld and Quandt, (1973). Hu and Schiantarelli (1998) break their sample into two samples to 

minimize endogeneity problems induced by the correlation between the error terms in the investment functions 

and the switching equation. However, this creates new problems by imposing restrictions on the nature of the 

firm-specific effects.
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manufacturing, the sector was characterized by deepening capital obsolescence and a potential decline 

in capital productivity. Investments also feature a mesokurtic; that is, skewness and high kurtosis in 

investment distribution. These preliminary empirical regularities already suggest that the 

microeconomic industrial capital adjustment costs in Swaziland are nonconvex, and can translate to 

similar aggregate patterns as in Cooper et al. (1995) and Khan and Thomas (2008).  

Looking at industrial investment hazard functions, slicing the data into groups of small and large 

plants produces interesting results. A firm‘s discrete choice to invest in PME appears to be scale 

dependent. Large firms‘ propensity to invest in excess of 20 percent is significantly higher than that of 

small firms at standard statistical levels. This story remains unchanged when the definition of an 

investment spike is reduced to 10 percent. However, the probability of an industrial spike for either 

group of plants is less than seven percent during the period under study. This re-enforces the earlier 

conclusion about general investment passivity among Swazi firms during the entire period of trade 

liberalization. Our conjecture is that this period ushered in new market competition that forced 

inefficient establishments out of business while foreign plants relocated back in home markets to 

experience economies of scale. For remaining firms, the re-integration of South Africa back to the 

world economy brought substantial business uncertainty in the customs union which required Swazi 

firms to monitor their own market share dynamics and hold back on major new capital investments. 

The data is further taken to rigorous analysis using a structural model of investment to establish the 

impact of state dependence of investment decisions and the sales/capital ratio, controlling for plant 

size. We begin with generalized method of moments (GMM) estimators that exploit orthogonality 

conditions applied to the theoretical model. This effort produces imprecise coefficients of previous 

investment, sales/capital ratio and employment. One obvious source of imprecision in the estimation 

of model parameters is the small sample size of firms and high investment heterogeneity. This 

obscures any potential persistence in the investment rate series. Another likely explanation involves 

omitted variables that may be correlated with included regressors and this has confounding effects on 

parameters. Nonetheless, the orders of magnitude and the signs of the coefficients remain consistent 

with findings in the larger literature; see for example, Drakos and Konstantinou (2013) for the case of 

Greece. 

This approach is subsequently extended to a multilevel discrete choice binary data analysis that allows 

for both longitudinal within-firm dependence and unobserved heterogeneity. It further makes 

provision for the direct analysis of the impact of a firm‘s option to exercise its option to wait-and-see 

in an uncertain environment and the associated interaction with sales/capital ratio and firm-size. The 

method we use to handle initial conditions and endogenous explanatory variables in the model of 

binary data with unobserved heterogeneity confirms the GMM results. That is, the theoretical model‘s 

parameters are still imprecisely measured. However, when firms defer investment by a single lag, the 
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cost of exercising this option is 5.56 percent or 4.91 percent depending on whether covariates are 

assumed exogenous or endogenous, respectively. Although interacting investment lags with the 

sales/capital ratio remains insignificant, the results change when the     investment lag is interacted 

with firm-size. When a large firm begins investment after a single period of inactivity, this increases 

investments by 0.55 percent or 0.42 percent in the manufacturing sector depending on exogeneity-

endogeneity assumptions made about the covariates, respectively. 

The scale-dependence of industrial investment patterns in Swaziland is further subjected to a 

framework that provides for endogenous switching of firms between high and low investment 

regimes,    and   ; respectively. This helps in our understanding of the behaviour of investment 

patterns by small and large firms in periods of uncertainty in a small member of a customs union. This 

procedure reports a valid switch of investments between the high and low regimes. The high regime 

coefficients,   , are either insignificant or persistently zero but negatively charged. On the other 

hand, the low investment regime switchers report significantly negative coefficients,   . However, 

these results fail to corroborate the validity of scale-dependence in investments if the definition of 

firm size changes from employment to the inverse of real capital stock as in Letterie and Pfan (2007). 

That is, (   )
   is insignificant. 

7 Summary and Conclusion  

This paper investigates the presence of state dependence, unobserved heterogeneity and the impact of 

real sales/capital ratio on investment rates for the manufacturing sector in Swaziland. It begins with a 

descriptive analysis of a panel dataset for 13 industries and finds that the rate of investment is as low 

as      percent every year, with the observed investment heterogeneity measured by the standard 

deviation just as low at     .  

The analysis of the microeconomic investment spike hazard confirms the lacklustre investment 

patterns of the manufacturing sector during the period of trade liberalization in the Customs Union. 

Using the definition of an investment spike presented by Cooper et al. (1999), which is investment 

rate in excess of 20 percent, the probability distribution of spiky events is less than 0.07. The fact that 

the empirical hazard is upward-sloping is taken as evidence of within-plant effects instead of 

between-plant effects. These lumpy investments are scale-dependent in that they are dominated by 

firms employing more than 50 workers.  

Using a structural model of investment, we investigated the effects of past investments, unobserved 

heterogeneity and real sales/capital ratio on investment rates by relying on three methods. These were 

the GMM approach, multilevel random-effects and the switching regression regime methods. We find 

that the impact of true state dependence is insignificant in all models. That is, previous investment has 
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no influence on the current decision to invest in the Swazi manufacturing sector. However, this is not 

an indictment of the conventional wisdom that the best predictor of current investment is its lagged 

levels as discussed in the descriptive analysis section. It is simply a reflection of a non-investing 

sector because of high uncertainty and associated firm-level entry/exit dynamics. The ratio of real 

sales/capital also has insignificant effects on investment rates across model specifications. 

Furthermore, the impact of unobserved individual firm characteristics underlying the discrete choice 

to invest in PME had insignificant effects on investment rates. This suggests that technological change 

does not translate into transformational and entrepreneurial investment. Therefore, unobserved 

heterogeneity and investment dynamics confer insignificant effects in the structural model. 

However, allowing for self-selection of firms into high and low investment regimes, the endogenous 

regime switching model adds more clarity on the results obtained in the GMM and multilevel random 

intercept models. While the empirical hazard function displays large firm dominance in spiky 

investment episodes, the endogenous investment regime switching model produces scale-independent 

results. That is, the inverse of capital stock remains insignificant in all model specifications. Thus, 

both firm sizes locate in either regime in the manufacturing sector. More specifically, high regime 

investors are largely in the zone of inaction while those in the low investment regime are accountable 

for observed disinvestments. A Wald-test of model independence in the switching regression model is 

generally confirmed. Firms are subject to common exogenous shocks of trade liberalization, and 

investment decisions are characterized by herd behaviour leading to a dominant response of 

exercising the option to withholding     investment until period  .  

Our structural model only included time-variant covariates. The variation in investment rates that is 

not explained by changes in marginal q, investment dynamics and employment is captured through 

the intraclass correlation of 27 percent. That is, omitted time-constant regressors might also be 

important in the model. 

For the first time as far as we are aware, we obtain the most interesting results when the impact of 

missing values of net PME expenditure on the investment rate is investigated in more depth. This 

involves identifying firm-level consecutive sequences of positive investments, along with instances of 

non-response to capture cases with no     investment values. The impact of such missing values 

significantly reduces the decision to invest by             percent. This means that the cost of 

delaying investment in the sector by one period is a reduction of investment in the next period by a 

significant percentage in Swaziland. An increase in the lag depth of firms‘ exercising of the option to 

wait before investing generates an increase in the industrial investment cost. However, when the 

incidence of missing values is interacted with employment, the probability of investment substitution 

by employment is significantly increased by                 percent in the sector. This means that the 
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lack of robust investment in capital goods in the sector was compensated for by increasing 

employment, at the margin. 

As a whole, this means that the manufacturing sector in Swaziland experienced a high incidence of 

zero investment in plant, machinery and equipment in the period 1994-2003. More specifically, firms 

refrained from large capital investments for the establishment of new plants but maintained and 

repaired the machinery and equipment to keep business operations running. This was complemented 

with some capital substitution for employment. A consequence of this investment behaviour by Swazi 

manufacturers was a deterioration and becoming obsolete of capital goods in the sector, leading to a 

general decline in technological advancement. Another effect involved the loss of predictive power of 

current investment concerning future investments. The timidity and herd behaviour observed among 

firms also dampened any impact of unobserved industrial heterogeneity. That is, firms‘ capital 

adjustment plans were largely similar among producers and insignificant across industries. 

Since the conditional model in this paper conditions on initial responses and explanatory covariates, 

and uses consecutive sequences of at least two non-missing values of investment rates to analyse 

contiguous sequences, it fails in datasets with limited successive sequences. Therefore, the next 

research agenda involves nonlinear methods of estimation that directly account for the unbalanced 

nature of investment data. Such methods need to allow for the use of all available observations while 

relaxing the assumption that observations are completely missing at random. A similar idea is 

conceptualized by Albarran et al. (2015) who develop some dynamic nonlinear random effects 

models with unbalanced panels based on all available information. Wooldridge (2010) also presents 

useful correlated random effects models with unbalanced panels. 

The structural model studied here can be extended in other directions. One such extension would 

involve relaxing the first-order Markov structure by considering an increased lag depth of the 

investment rate or by specifying models where the lagged investment has time-varying parameters, 

see Skrondal and Rabe-Hesketh (2014). Second, Francis, Stott and Davies (1996) and Albert and 

Follmann (2003) construct models which allow covariate parameters and the impact of the random 

intercept to depend on own previous states. Third, a direct extension of this work can also entail 

nominal, ordinal or censored responses or counts, including the conditional approach discussed in 

Wooldridge (2005) for various response types. Fourth, investment dynamics can be expressed in 

terms of latent Markov models; that is, in terms of       
  as in Pudney (2008). Alternatively, we could 

follow Heckman (1981a) who generalizes a transition model of binary responses that incorporates 

lags for both observed and latent responses. Fifth, we could relax the longitudinal independence 

assumption concerning the level 1 error as in Hyslop (1999), Stewart (2006) and Hajivassiliou and 

Ioannides (2007). Sixth, the use of a random intercept to specify unobserved heterogeneity could be 
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replaced with more general specifications involving several random coefficients or common factors as 

in Heckman (1981a), Bollen and Curran (2004) and Skrondal and Rabe-Hesketh (2014).  
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APPENDICES 

Appendix A4.1: Definition of Terms for the GMM Estimation 

Endogeneity: when     is endogenous, it is correlated with current and deeper lags of shocks; i.e. 

 (       )          and  (       )         ,          ,            . Lagged values 

dated t 2 and earlier are therefore valid instruments; hence, variables in first differences are 

instrumented with suitable lags of their own levels. 

Predetermined: when     is predetermined, it is uncorrelated with future shocks but is correlated with 

their lags; i.e.  (       )          and  (       )         ,          ,            . The 

first differenced equation has t 1 and earlier valid instruments. 

Exogeneity: strict exogeneity of     means the entire time series is a valid set of instruments in each of 

the first differenced equations in addition to the response variable t 2 and earlier. In this 

case,  (       )             ,             together with any other instrument, can enter the 

instrument matrix, Z, in FD, with one column per instrument. 

Appendix A4.2: Equality of Results from Helmert Transformation of Raw and Demeaned Data 

Arellano and Bover (1995) formerly developed a data transformation approach based on the Helmert 

technique that does not suffer from the gap problem experienced when using the first-difference 

method. Love and Zicchino (2006) then developed a panel vector autoregression code for stata 

(pvar2), see also Ryan Decker‘s Note on the Helmert‘s transformation. This Appendix proves the 

equivalence between the results generated from either raw or demeaned data when using the Forward 

Orthogonal Deviations Transform.  

Definitions: Suppose    
  denotes the Helmert-transformed version of raw data for, say, sector i over 

time  . Then  
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(    

 

   
∑    

 

     

) 

where   (       ). Notice that    
  for time   is the average of all future observations from time 

    through  . Observe also that this expression weighs heavily for observations closer to the 

beginning of the time series.  

Now consider    
   to be a time-demeaned Helmert-transformation so that 
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where   ̈        ̅  and  ̅  
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Appendix A4.3: GMM Estimation of the Structural Equation of Investment using the Principal 

Component Analysis (PCA) for Reduction of Instrument Proliferation 

Variable 

GMM DIFF PCA GMM SYS PCA 

One Step Two Step One Step Two Step 

    

    

 
 0.014 0.025 0.358 0.358*   

(0.2536) (0.2817) (0.1839) (0.1665) 
  

    

 
 0.187  0.244  0.163  0.162 

(0.1801) (0.199) (0.1692) (0.1584) 
    

    

 
 0.051  0.059 0.215* 0.225*   

(0.1026) (0.0845) (0.0969) (0.1053) 

     
 

 0.01  0.006  0.128  0.146 

(0.1411) (0.1642) (0.1315) (0.1419) 

       

 

0.16 0.185 0.181 0.199 

(0.1385) (0.1527) (0.1305) (0.1389) 

Constant      0.221  0.232 

 

    (0.2193) (0.2047) 

NT 100 100 171 171 

N 43 43 68 68 

AR(1) p-value 0.062 0.17 0.024 0.069 

AR(2) p-value 0.033 0.13 0.047 0.145 

Sargan  p-value 0.0499 0.0499 0.0348 0.0348 

Hansen  p-value 0.9992 0.9992 0.967 0.967 

#Z 76 76 78 78 

#X 12 12 12 12 

Wald    Test 77.9 47.85 279.87 166.22 

  
  0 0 0 0 

h 3 3 3 3 

Legend: Standard errors in parentheses. * p<0.1; ** p<0.05; *** p<0.01. 

Note: The high Hansen p-value suggests that high instrument proliferation caused over-fitting of endogenous 

variables, see Roodman (2009a, p. 98). The covariate estimates can therefore serve as upper bounds.  
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