Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

es	Project title	Proposed project costs	Pr
Capacity Building Support Ltd Berry Garden Growers Ltd The University of Lincoln	Autonomous robots to support fruit picking	£741,046	£518,732 $£ 81,667$ $£ 361,041$
Project description - provided by applicants			
We estimate that the UK soft fruit sector employs over 35,000 fruit pickers each day. The roles are low skilled and the sector has a high reliance on EU migrants to fill these posts. The impact of Brexit, plus labour inflation through the national living wage legislation poses a serious and direct threat to the whole sector. The need to drive productivity in the sector is urgent. Of the picking costs we estimate that 30% are for the pickers to simply carry picked fruit from within a greenhouse to an on farm logistics hub. We aim to eliminate or dramatically reduce this cost by developing an autonomous robot which can find a picker and transport picked fruit and empty trays around a farm. The robot will be autonomous, have the capacity to map its environment and to find and safely interact with a picker. The key innovation will be the development of autonomous systems which can work safely and over long periods of time in a complex farm environment. The need to drive productivity in the agri-food sector is a global challenge. This project will directly stimulate new markets and supply chains in the production of advanced autonomous systems to support agricultural producers.			

Note: you can see all Innovate UK-funded projects here
https://www.gov.uk/government/publications/innovate-uk-funded-projects Use the Competition Code given above to search for this competition's results

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
Gendius Ltd Salford Royal NHS Foundation Trust FIECON LIMITED	Intellin: A smart platform to reduce the reoccurrence of diabetic foot ulcers	£281,398	£196,979
Project description - provided by applicants			
Diabetic Foot Ulcers (DFUs) are a major worldwide issue, occurring in 15% of diabetes sufferers and 56% of these patients die within 5 years of the first occurrence. The recurrence rate is approximately 50% per annum with current methods and treatment requiring a multidisciplinary assessment (including diabetes specialists, surgeons and podiatrists). There are currently no universal methods across the UK to stratify patients according to their risk of reoccurrence of a DFU. The consortium consisting of Gendius (Project leader, start-up specialising in MHealth Solutions), Salford Royal Hospital (development and management of clinical trial) and FIECON (development of health economics) have come together to exploit this significant market opportunity through the development of Intellin â $\epsilon^{\prime \prime}$ an AI solution using 'fuzzy logic' to stratify diabetes patients based on DFU risk factors (leading to more specific and effective interventions) and offer personalised advice and reminders based on inputted data, leading to potential annual savings of $£ 100 \mathrm{M}$ for the UK health industry, based on a reduction to the annual reoccurrence of DFUs from 50% to 40%.If successful, market entry for the DFU specific application will be in 2019.			

Note: you can see all Innovate UK-funded projects here
https://www.gov.uk/government/publications/innovate-uk-funded-projects Use the Competition Code given above to search for this competition's results

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant			
Hypha Discovery Limited University College London	PolyCYPs: optimising a preclinical platform tool to reduce pharmaceutical attrition rates	$£ 526,883$				
$£ 149,589$				$	$	$£ 1496,818$
:---						
Project description - provided by applicants						
The major healthcare imperatives are to deliver effective prevention and treatment of diseases. Whist pharmaceutical intervention in disease progress is effective in many cases, the use of medicines can also lead to adverse reactions resulting in the need for further medical intervention, compounding the cost of therapy. The aim of this project is to further develop a platform product for which the technical feasibility has been successfully achieved. The outcome will be a platform technology, which as well as increasing revenues and employment at a UK SME with mainly overseas clients, will allow the greater exploration of the chemical space of a potential drug to overcome the main cause of adverse reactions, polymorphic variation of cytochrome P450 enzymes (CYPs). This will allow greater assessment of drug metabolite safety, enabling Pharma clients to innovatively deliver improved medicines with more predictable properties and will further enable greener routes to the production of complex pharmaceuticals and other chemicals that consume fewer resources and produce less waste.						

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Parti	Project title	Proposed project costs	Proposed project grant
Marlow Foods Branston Ltd PhytoQuest Limited Aberystwyth University Membranology Limited Campden BRI (Chipping Campden) Ltd	Extraction \& purification of calystegines \& iminosugars (C\&I) for use as natural preservatives	$\begin{aligned} & £ 148,091 \\ & £ 35,560 \\ & £ 107,452 \\ & £ 68,813 \\ & £ 25,000 \\ & £ 60,540 \end{aligned}$	$£ 74,046$ $£ 17,780$ $£ 75,216$ $£ 68,813$ $£ 17,500$ $£ 60,540$
Project description - provided by applicants			
Natural food preservatives to extend the shelf life of processed foods are increasingly important in the provision of food safety in sugar \& salt limited recipes. Iminosugars (C\&I) are valuable products which have been shown to provide a natural preservative function in foods. Potato manufacturing process generates out of spec potatoes, known to contain the compounds. The proposed project is designed to generate the technical knowledge for extraction, purification \& concentration of C\&ls \& evaluation of effectiveness through testing in chilled \& ambient processed food systems. This project is innovative in that, if successful, it will be the UK's first major source of new natural preservatives, likely to be widely used, especially where reduction in salt \& sugar may lead to shelf life \& food safety issues. The use in food systems will support public health initiatives - weight management, salt \& sugar regulation, and progression towards a circular economy via the reduction in food waste, supporting business sustainability and innovation strategies.			

[^0]
Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant		
Smith \& Nephew UK Ltd	Resorbable Osteoplasty for	$£ 178,453$	$£ 89,227$		
Lucideon Limited	Orthopedic Applications	$£ 265,047$			
Arterius Limited				\quad	$£ 159,028$
:---					
Project description - provided by applicants					
The primary objective of this 2 year collaborative research project is to develop the world's first resorbable osteoplasty for minimally invasive					
intramedullary stabilisation of osteoporotic bone fractures, which is a growing international healthcare problem that contributes to the $£ 2.3 \mathrm{bn}$					
annual cost of fractures to the NHS. In the UK, the population over 65 will rise from 17.7\% in 2014 to 23.2% by 2034 with osteoporosis affecting					
20\% of women over 70 and 40\% over 80 (Source: International Osteoporosis Foundation). The consortium is led by a global medical device					
company (Smith and Nephew UK Ltd) collaborating with two UK-based SME's, Lucideon UK Ltd, an independent global expert in materials testing,					
analysis and consultancy, and Arterius UK Ltd, who commercialize bioresorbable stents for the cardiovascular industry. The primary output of this					
technical feasibility study will be to develop a demonstrator for pre-clinical assessment in a sheep fracture model, and a platform technology, which					
is applicable in other areas of healthcare such as maxillofacial, reconstruction, spine and dental given its high level of innovation.					

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
Censo Biotechnologies Ltd	Patient Derived iPSCs for High	$£ 1,000,472$	$£ 700,330$
University of Leeds	Grade Glioma (PDi:HGG)	$£ 134,279$	$£ 134,279$

Project description - provided by applicants

The typical patient diagnosed with Glioblastoma multiforme (GBM), which constitutes 45% of all malignant primary brain and CNS tumours, is aged $50-60$ and will survive 15 months after diagnosis. The Patient Derived iPSCs for High Grade Glioma (PDi:HGG) project will provide a new strategy for researchers to develop treatments specifically for this cancer. If successful, the project will have a profound and widespread impact on cancer research. We will bring together two different areas of science which have each developed rapidly in the last ten years. During this time, the capacity to transform human cells into an induced Pluripotent Stem Cell (iPSC) has become a mainstay of biological research. Separately, there has been a growing appreciation that solid tumours include a small number of 'cancer stem cells', which if not entirely removed by therapy can cause the cancer to return. These cancer stem cells are elusive and designing treatments that target them has been largely unsuccessful. PDi:HGG will use iPSC technology to create iPSCs from cells extracted from patients suffering High Grade Glioma, mainly GBM. The project will use the stem cells and derivatives created to support the development of new cancer drugs, which specifically target cancer stem cell differentiation.

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
CHAIN Biotechnology Ltd.	Developing Clostridium as a Novel Secretion System for Therapeutic Ueptides	$£ 504,562$	$£ 353,193$
University of Nottingham			

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
Feed Algae Ltd.	Low Cost, High Quality, Algal	$£ 433,731$	$£ 303,612$
Plymouth University	Biomass for Aquaculture Feed	$£ 129,832$	$£ 129,832$

Project description - provided by applicants

Globally there is increased demand for high-quality protein with health-promoting qualities for use in feeds for farmed fish. Such feed commodites are important to reduce the use of fishmeal and fish oil which are not sustainable, and place increasing pressure on wild fish stocks. Feed Algae has lowered the production cost of high-nutrition algal biomass while increasing the scalabilty of growth systems to produce a strategic commodity to partially reduce the use of fishmeal and fish oil. This additive capacity is generated on desert land, with seawater, in a manner which is fundamentally sustainable. For every ton of fishmeal replaced with Feed Algae biomass, 2.3 tons of wild caught fish is no longer required for fishmeal and fish oil. The method is based on replicating large-scale natural algal blooms on land, with local species. This project will enable Feed Algae to grow candidate species, analyse these and select candidates for in vivo feed trials to accelerate Feed Algae's access to market by 18 months. This will determine the fair value for the algal feed ingredient and enable rapid reinvestment into creating jobs, increasing UK exports and the sustainability of UK trout and salmon aquaculture, while reducing pressure on wild caught fish, by providng omega-3 rich feed

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Pro	s	Proposed project grant
Dunbia Northern Ireland Wirral Sensory Services Ltd Linpac Packaging Limited	An innovative approach to food packaging	£181,625 £69,200 $£ 159,000$	$£ 90,813$ $£ 48,440$ $£ 79,500$
Project description - provided by applicants			
Dunbia is an international food producer and a leading supplier of beef, pork and lamb products into the UK multiple retail sector and European markets. The company works closely with its customers to ensure the food it produces is of the highest quality for consumers. Continuous research, development, market insight and consumer intelligence drive our product innovation strategies. Dunbia is aware of its role in the production of safe, healthly and great tasting food of surpasses its customer expectations and the needs of consumers. This project seeks to extend the total product life of vacuum skin packed chilled meat products supplied into multiple retail in the UK and Europe far beyond current shelf life standards without compromise to product quality. Moreover, the project will explore opportunities to improve the production process leading to enhanced eating quality and increased consumer convenience through the development and testing of a novel approach in food packaging concept and design. This is to support the development and launch of a range of chilled meat products offering both, customers and consumer's flexibility and quality through an improved, longer life product range. The project will seek to reduce food waste and associated packaging waste, improve product yield and sustainability and increase sales for both the manufacturer and the retailer, whilst addressing the needs of today's consumers, who are personally engaged with desiring more convenient healthy and socially responsible food.			

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
Renovos	Harnessing Clay Gels for Bone Tissue Repair	$£ 279,228$	$£ 195,460$
University of Southampton	$£ 101,103$	$£ 101,103$	

Project description - provided by applicants

The UK already spends $£ 2 \mathrm{bn}$ /year on bone fractures and this cost is set to increase as the UK population ages. In fact, by 2030, it is expected that 23% of the UK population will be aged over 65. Many bone fractures lead to orthopaedic operations that, in turn, need to be repeated due to inadequate healing. Bone healing agents are effective, but currently difficult to use as they are mobile in the body and can cause problematic sideeffects at other sites. Innovate UK funding has allowed Renovos, a new orthopaedic regenerative medicine company, spun out from the University of Southampton, to convert decades of musculoskeletal research at the latter into an exciting, innovative product, allowing for the use of bonehealing agents in a more precise, localised manner, increasing their safety. This novel product a clay biomaterial allows for delivery of smaller amounts of the therapeutic agents for the same effect, and therefore can enhance healing and clinical outcomes at lower cost. With Innovate UK funding Renovos will accelerate development of this novel clay product as a therapeutic and prepare it for the process of testing in clinicallyrelevant models leading to first in-man trials. Ultimately, we anticipate our new product will provide a novel solution for difficult-to-treat fractures.

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
GlycoSeLect (UK) Limited Centre for Process Innovation Limited Pall Europe Ltd (ForteBio Pall Life Sciences) Allergan Biologics Ltd	Development of Simple, Rapid \& High-Throughput Glycoanalytics for Biopharmaceuticals	$£ 344,136$ $£ 52,725$ $£ 100,167$ $£ 55,760$	$£ 240,895$ $£ 52,725$ $£ 0$
Project description - provided by applicants			
While biotherapeutics offer potential treatments for some of the most debilitating diseases the development and manufacture of these potentially life changing treatments is risky, technically challenging and expensive. This program will combine GlycoSeLect UK Ltd's glycosylation recognition technology with ForteBio Pall Life Science's unique BLI biosensor based analytical platform technology. This will create a novel analytical platform that will enable rapid and high-throughput analysis of biotherapeutic product glycosylation, a critical product quality attribute that impacts on the efficacy and safety of these therapeutic molecules. This new glycoanalytical platform can be deployed throughout the biotherapeutic development pipeline, and in manufacturing processes, to increase the efficiency and deliver significant cost savings. By working in partnership with Allergan Biologics Ltd, a leading biotherapeutic developer and manufacture, and the Centre for Process Innovation (CPI) this project will demonstrate the value of this new glycoanalytical platform for the rapid glycoanalysis of biotherapeutic products to support the development and manufacture of these important therapeutic products.			

Note: you can see all Innovate UK-funded projects here

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant			
Ablatus Therapeutics Limited eg technology Ltd	Bimodal Electric Tissue Ablation - Next Generation Radiofrequency Ablation	$£ 413,156$				
$£ 221,032$				$	$	$£ 289,209$
:---						
Project description - provided by applicants						
BETA is the next generation of radiofrequency ablation medical device, providing a minimally invasive method for destroying cancerous tissue. It will revolutionise the approach to non-resectable liver metastases, allowing for the non-invasive treatment of large volume with low recurrence risk within patients. BETA is the result of 10 years of academic research, and will significantly improve the provision of medicine in the UK. BETA presents a wide range of benefits, both to patients and trusts including: a minimally invasive treatment approach (removing surgical risk and improving recovery times) and a low treatment cost. Further BETA will make RFA suitable for a wider range of treatment procedures including non- oncology applications such as gynaecology indications and varicose veins. In supporting the development of BETA from a research prototype to a certified medical device, IUK funding will give patients within the UK access to cutting-edge treatment techniques and an improved provision of healthcare.						

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
EMBLATION LIMITED	MTAK - Microwave Therapy for Actinic Keratosis	$£ 206,062$	$£ 144,243$
University of Dundee	$£ 138,389$	$£ 138,389$	
Project description - provided by applicants			

Project description - provided by applicants
It is estimated that 1 in 3 people over 60 years old in the UK has at least one actinic keratosis (AK) lesion. Actinic keratoses are the first appearance of a non-melanoma skin cancer. With a deficit of more than 200 dermatologists in the UK, the ability to diagnose and treat is being diminished. Up to 25% of GP workload is skin based and with an ageing population the crisis in dermatology needs treatments that are effective, decentralised and time efficient. Existing treatments fail to balance effectiveness, side effects and cost.Emblation wish to repurpose a portable microwave platform for use in treating AK. Already a highly effective treatment for plantar warts, through a combined destructive and immune response effect, the potential to treat AK needs to be explored. Measurements of the physical properties of AK will also be taken in order to adapt and develop the current product's hand piece antenna (the part applied to the skin). Studies in a lab will help determine the dose to treat AK cells on humans in a small trial, in addition to investigating the healing mechanisms at play. The results and experimental data will provide a starting point for a Randomised Control Trial (RCT) after the project. An RCT is high risk and cost without this project .

Note: you can see all Innovate UK-funded projects here

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Prop
Image Analysis Ltd St George's University of Londo	Improving Brain Tumor Patient Outcomes through Patient Stratification \& Novel Biomarkers	£310,250	£217,175
Project description - provided by applicants			
Glial tumours are the most common primary brain tumour, and since the majority of these are high-grade (malignant) tumours, overall patient survival is poor. A newly diagnosed glioma may be a slow-growing low-grade ${ }^{\text {TM }}$ or a more heterogeneous, highly infiltrative high-grade ${ }^{\text {TM }}$. Accurate diagnosis of the tumour grade, and delineation of the tumour core and infiltration into normal brain is crucial for optimum treatment. Within this project, we will deliver a fully integrated software application for analysing MRI scans to create a 3D map of the glioma core and its infiltration pattern. The software can be cloud-based to analyse patient MRI scans directly from the scanner and send tumour tissue maps to workstations in neurosurgical and radiotherapy units. Improved patient outcome is possible by use of this information at three points in patient management: i) targeting the best tumour region to obtain tissue for histological (biopsy) diagnosis; ii) enabling optimal surgical removal of the tumour core; iii) improving the planning of radiotherapy that targets the highest dose to the most malignant part of the tumour while keeping the dose to functional brain low.			

Innovate UK

Results of Competition: Health \& Life Sciences Round 1-Over 12 Months or Over 100K Competition Code: 1609_LO_HLS_R1

Total available funding is up to $£ 10 \mathrm{~m}$ for Stream 2

Note: These proposals have succeeded in the assessment stage of this competition. All are subject to grant offer and conditions being met.

Participant organisation names	Project title	Proposed project costs	Proposed project grant
PhoreMost Ltd	UDS: A novel discovery tool for positive selection of signalling pathway inhibitors	$£ 587,419$	$£ 411,193$
Babraham Institute	$£ 183,015$	$£ 183,015$	

Project description - provided by applicants

Public description of project Please describe your project. This description will be published only if your project is subsequently funded by Innovate UK to comply with government requirements. Providing this summary is mandatory but the text will not be assessed. Please ensure it is suitable for public disclosure. Funding will not be provided to successful projects without this. The pharmaceutical industry makes medicines designed to reverse the things that go wrong in cells and cause disease. The list of the targets that go wrong is far from complete, and we do not have the screening tools to find and then develop drugs to these targets. To cope with an increasing healthcare need, we therefore need to expand that list and to make new tools so that we can produce new medicines, more rapidly. At present, our existing screening tools can find new targets to put on the list, but they cannot tell us how to go about repairing them. PhoreMost has tried to solve this problem by directly finding new things to add to the list, at the same time as writing the instruction manual for how to mend them. Our current screening system works, but we want to make it even better, so we have deisgned a new and improved system. This new system is based on turning inhibitory or negative effects on cells into positive effects which are easier for us to identify, because only the disease cells which contain an interesting target can grow. This will make our screening process much quicker, cheaper and more efficient than it was before, allowing us tackle more diseases more quickly. In the first instance, we will use our new screening system to find new targets for cancer.

[^0]: Note: you can see all Innovate UK-funded projects here

