

Principles and Procedures

Pete Edwards
CHPQA

Talk Coverage

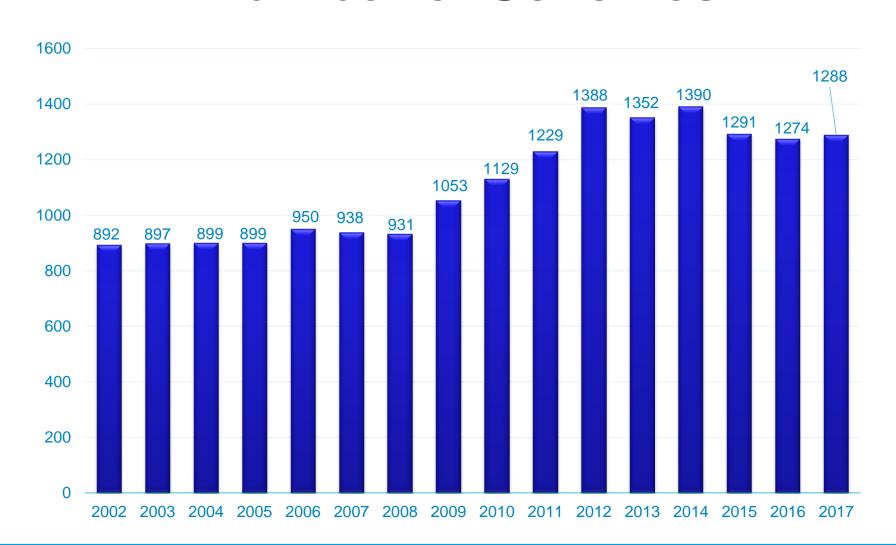
Quick Review

Principles

Roles & Responsibilities

Certificates

CHPQA Procedures


Why CHPQA?

- ▶ It is a tool for measuring the Quality of CHP Schemes
- > A rigorous system is needed to:
 - ensure that incentives are targeted fairly
 - Ensure that it only benefits schemes making significant environmental savings
- CHPQA provides the methods and procedures needed to assess and certify the quality of the full range of CHP Schemes

Number of Schemes

Definition of GQCHP

Set out in the CHPQA Standard

- For Existing Schemes:
 - ➤ Quality Index (QI) ≥100 and
 - Power generation efficiency of ≥ 20%
- For Upgraded & New Schemes:
 - ➤ Quality Index (QI) ≥105 and
 - Power generation efficiency of ≥ 20%.

See Issue 6 - Published October 2016
See also CHPQA Guidance Note 44 Issue 6 with regard to CFD and ROC support

CHPQA QI Formulas

The general definition for QI is:

$$QI = (X \times \eta_{power}) + (Y \times \eta_{heat})$$

Where:

Power Efficiency

and

Heat Efficiency

$$\eta_{Power} = \frac{CHP_{TPO}}{CHP_{TFI}}$$

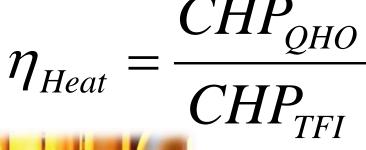
$$\eta_{_{Heat}} = rac{CHP_{_{QHO}}}{CHP_{_{TFI}}}$$

X and Y are parameters which depend on the type of fuel used and size of scheme (MW_e)

CHPQA Power Efficiency

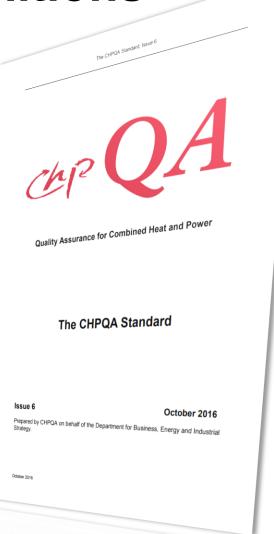
- Power efficiency η_{Power}
- ➤ Determined from CHP_{TFI},
 - The measured fuel input, in MWh
 - Includes all fuels consumed by Scheme
 - Covers full calendar year
 - Determined on a GCV (HHV) basis
- ➤ And from CHP_{TPO},
 - The measured power output, in MWh
 - Includes all power generated by Scheme
 - Covers full calendar year
 - Not to include load banks

$$\eta_{Power} = rac{CHP_{TPO}}{CHP_{TFI}}$$



CHPQA Heat Efficiency

- Heat efficiency η_{Heat}
- Determined from CHP_{TFI}
 - The measured fuel input, in MWh
 - Includes all fuels consumed by Scheme
 - Covers full calendar year
 - Determined on a GCV (HHV) basis
- ➤ And from CHP_{QHO},
 - The measured, useful heat output
 - Covers full calendar year

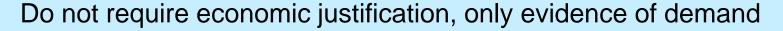


CHPQA X and Y Definitions

- Given in the CHPQA Standard
- Depend on scheme specific fuel type and power capacity
- Full details this afternoon

Size of Scheme (CHP _{TPC})	QI Formula									
CONVENTIONAL FOSSIL FUELS SCHEMES										
Natural gas										
≤1MWe	QI =	249 x	η _{power}	+	113	X η _{heat}				
>1 to ≤10MW _e	QI =	195 x	η_{power}	+	113	X η _{heat}				
>10 to ≤25MW _e	QI =	191 x	η_{power}	+	113	X η _{heat}				
>25 to ≤50MWe	QI =	186 x	η _{power}	+	113	X η _{heat}				
>50 to ≤100MW _e	QI =	179 x	η_{power}	+	113	X η _{heat}				
>100 to ≤200MWe	QI =	176 x	η _{power}	+	113	X η _{heat}				
>200 to ≤500MWe	QI =	173 x	η_{power}	+	113	X η _{heat}				
>500MWe	QI =	172 x	η _{power}	+	113	X η _{heat}				
Oil										
≤1MWe	QI =	249 x	η _{power}	+	115	X η _{heat}				
>1 to ≤25MWe	QI =	191 x	η_{power}	+	115	X η _{heat}				
>25MWe	QI =	176 x	η _{power}	+	115	X η _{heat}				
Coal										
≤1MWe	QI =	249 x	η _{power}	+	115	X η _{heat}				
>1 to ≤25MWe	QI =	191 x	η _{power}	+	115	X η _{heat}				
>25MWe	QI =	176 x	η_{power}	+	115	X η _{heat}				
>25MWe	ŐI =	176 x	Npower	+	115	X 1]heat				
>1 to <25MWe	OI =	191 x	1]power	+	115	X I]heat				

Definition of 'Useful Heat'


- 'Useful Heat' is defined as the heat from a CHP scheme delivered to satisfy an economically-justifiable demand for heat or cooling
 - (Article 3 of the Cogeneration Directive, Article 2 of the EED);
- Demand which does not exceed the needs for heating or cooling, and which
- ➤ Otherwise would be met at market conditions by energy generation processes other than cogeneration.

Examples of 'Useful Heat' loads

- CHP heat used for space heating, hot water and process heat
- CHP heat replacing an existing heat demand
- CHP heat used to meet legislative requirements

- CHP heat used to meet unusual heat loads (e.g. woodchip / wood pellet drying, AD plant heat load)
 - requires economic justification

Basis of Economic Analysis

- Should be undertaken for the alternative to CHP (i.e. assuming that CHP does not exist)
- Heat is only provided through a gas or an oil boiler
- Any fiscal benefits or revenue from CHP will thus be excluded from the cost-benefit analysis
- Analysis can be undertaken in a spreadsheet or in the form of a detailed report
- All assumptions must be fully stated and referenced (for example size of market and corresponding size of heat demand need to be evidenced with suitable market study)
- Calculations must be fully shown (calculation of costs, revenues, and payback period)

Requirements for CHPQA Economic Justification

- > Full description of the business case for the heat load
- A cost-benefit analysis involving:
 - the capital cost of the heat source (i.e. gas boiler)
 - the operating costs (e.g. cost of fuel to run the boiler)
 - the revenue/benefit achieved by utilising the heat
 - a statement of the Company's investment criteria stating what is considered an acceptable payback period.

Self Assessment & Certification

Roles & Responsibilities

- CHPQA Administrator
 - Managed by Ricardo Energy & Environment

- Department for Business, Energy & Industrial Strategy (BEIS)
- Other Government Departments (HMRC, VOA)

Ofgem

- for RHI and ROCs
- Low Carbon Contracts Company
 - for CfD contracts.

CHPQA Guidance Notes

- Range of Guidance Notes available on the CHPQA web site
- Always refer to the web site to be sure of latest version
- Five broad areas
 - 0-9 Introduction & Forms
 - 10-16 Scheme Details & Thresholds
 - 17-29 CHPQA Analysis
 - 30-39 Treatment of Special Cases
 - 40-49 Uses for CHPQA

CHPQA Guidance Notes

- Of particular interest;
 - 11 and 12 Defining & Describing the Scheme
 - 13 Scheme Monitoring
 - 14, 15 and 16 Fuel, Power and Heat Metering
 - 17, 18 and 19 Metering/Monitoring Uncertainty

CHPQA Submission

- > A range of forms:
 - > F1 (contact details);
 - > F3 (scheme predicted performance for new and upgraded schemes).
 - F2 (scheme description); and
 - > F4 (scheme actual performance in previous calendar year).
- Simplified procedure and forms for small single reciprocating engine based schemes (<2MW_e).
 - Only have to provide three figures per year.

CHPQA Forms

- > CHPQA Forms to be submitted:
 - F1...only if RP or company name has changed
 - F2 and F2(S)..only if Scheme boundaries or monitoring arrangement have changed
 - F4 & F4(S) annual submission using actual performance data
 - F3 & F3(S) annual submission using design data. If no change Submit the same form... Once a new or upgraded Scheme has at least 1 month of data in CHP mode, Form F4 or F4(S) must be submitted in the first January of Initial Operation.

Initial Operation

- Initial Operation ends after the first full calendar year of operation
- Scheme commences operation in June 2016
- ➤ IO period ends 31 December 2017
- ➤ QI Threshold during IO is 95

Short Forms for <2MWe CHP Schemes

- Schemes eligible to use short forms:
 - Reciprocating Engine Prime Mover
 - Less than 2MW_e Total Power Capacity
 - Only a single conventional fuel
 - Only include a single prime mover,
 - No heat only boilers
- > F2(S) > 2 pages
- > F3(S) > 4 pages
- > F4(S) > 4 pages

Simplification for <500kWe Schemes

Simple small CHP schemes can use the CHPQA Unit List to determine:

- Gas input (based on power efficiency) and
- Heat output (based on heat-to-power ratio)

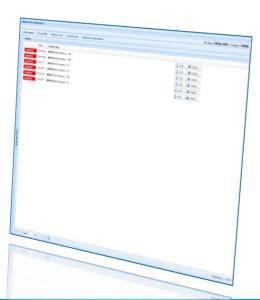
Only CHP units meeting the following criteria:

- CHP Scheme with TPC <500kWe</p>
- Only include a single prime mover
- Using Natural Gas fired engines
- No facility to dump heat

This list is always under review, so make sure you are using the latest

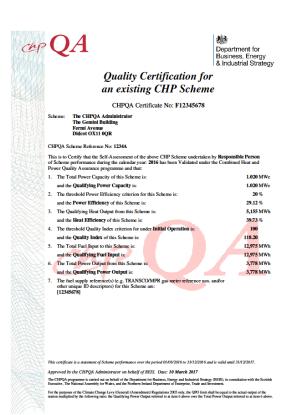
Nanakhar	liktoksi	Errine	R	otal over exity VV	Maxi-bet Culput NAV	Fuell		Pover Hiciency	Maki toPo Rak	ner B	Max Tremal Nicienc y	Over Efficie
ത്താന	Nidio	MANERIE	9	Đ	136	30	0	30	151		45%	759
	C33(30E5	MANEOSSESS.	12 1	Œ	133	31	1	33	121		42%	749
	Nictio	MANERHEIDS	1	2	177	37	3	30	15B		47%	779
	CCCCCED	MNE86E0	2 13	3 D	201	421	_	31	155	_		
	C3CC0HD	MANERATEO	p 14	0	207	444		32			49%	79%
	Nedlo	MANESBOE	16		261	542			148	- 4	\$7%	78%
	GCC058	WWWESPELESC	2 19	R	233		_	31	155	- 4	8 %	79%
	Nttio	MANERATER	21	_		599		33	118	3	99%	72%
	GCCCC	WAVESBEERS	23	_	321	681		31	152	4	7%	78%
	Nittao	Perkins4006TEB1		_	359	742		32	151		9%	
	CCCRF	Pariens4006	307		469	1020		30	153		-	80%
	CECCEE	MANERPLETE			425	990		31	142		9%	76%
	CCCCCOED	WAEBSIESS	_	_	433	990		30		- 44	96	75%
-	Nedlo	Parkins CORTES L	_	_	500	1142		B	139	-44	96	7596
3486	CECORDL	ON CHORE	_	_	633	1363		_	132	449	%	77%
	BAE-6230	- Grust	490		679	1491		0	155	469	16	_
	OPL4Fg	FOURSDA41	. 33		55		3	В	139	469	-	75%
	CPL6NFg	FOREIGNS	38				_		167	-00	0	79%
	EMEG80	MAN	E			152	_ 2	5	194			-
	ORLEGO	Forter			90	200	2	,	_	46%	5	7196
	CPL (BM)	100887			_	•			180	49%		69%
1	BALKOD.		90		130	259	29		150	-	_	000
			95	_	136	300	30		73	50%	+	
		4694	10	_	180	300		1	51	45%	1 7	9%
		MEZOS	70	_	81	347	317	1	B B		75	9%
		MEMER	10		80	308	317	1	35	53%	86	96
	(P)	WARCHARDY	124	1		357	_28	16	_	52%	84	
	HFIG FD	Feltricatos	146	- 1	36	391	30		_	46%	74	
1	P. Dab	WARDEN BW	152	_2	= ==		317	16	-	49%		
100	B.C.B.	IN ERE		_23		318	æ	19	_	50%	799	- 1
ia la	BACKUB -	WADGIDARDY	18:	_8	1	B 6	3t3	18	3	51%	829	6
9	5.00			. 39		S42	31	18		48%	799	6
13	ERG285	CODMY.	206	32	1-5	76 T	321	15		_	799	\vdash
9	E40:00		- 36	390	- 6	85	31	151		19 %	759%	
13	BGGE -	MEGSER	20	395		5		15B		Đ%		
(a)	68G05		28	358		30	321	157	4	896	81%	
ET	F90300	Parameter C	-300	46		7	25		5	096	79%	7
1/4	prati3	PANTE STREET	306	480	11	11	321	175		₽6	8396	7
N	the Di	CRESSOR STREET	409	633	v	ñ	21	159		P/6	69%	\dashv
[741	gre500	GALLADO.	-500	_	TR		30	148			83%	\dashv
Ne	\$100 m	NA CORPORATION	. 68	668	161		30	153	-40		67%	7
- Nr		Man - COLUMN	14	TD)	20		33	196	<u>48</u>			J
	-40)	ASSESSED.	30	Uy			38	130	46		76%	.1
	1	SO CALDER	38	359	310 55p		31	190	49	16	76% 76%	٦

Make sure that the **engine spec** used from Unit List matches the details on your F2



CHPQA Submission

- ➤ Electronic submission is now used for more than 98% of all submissions.
- ➤ It is our intention to migrate to a fully paperless system starting with next years submissions.



Certification Timetable

- CHPQA Certificates cover a calendar year and expire at the end of December
- SoS (CHP Exemption) certificates are open-ended...
- ...provided that a valid CHPQA certificate is obtained no later than end of June every year
- ➤ To obtain an SoS certificate need to make sure you select the correct option

Audits

- > All Schemes are potentially subject to Audit
- Usually performed in autumn of each year
- Look to audit approximately 75 Schemes a year, and larger Schemes every three years
- Selected during validation

Audits

- ➤ I have received an audit notification. What happens at an audit?
 - CHPQA consultant will attend site on the confirmed date.
 - If small scheme, first activity will be a quick set of meter readings (fuel, power and heat)
 - All schemes, two main aspects to audit
 - Desk based audit
 - Site walkdown

Audits

Audit (cont)

- Desk audit will review submitted forms F1, F2 and previous years F4

 against the records held by the RP, so make sure you have records
 to hand
- Site walk-down will require access to CHP, all equipment and monitoring arrangements.
- Small schemes 1-2h, large schemes 3-5h
- Summary of Observations & Actions will follow, with date for completion of actions.
- CHPQA cannot validate schemes where actions are not closed.

Where do you go from here?

- All CHPQA Certificates issued in 2017 will expire on 31st of December 2017
- New self-assessments should be submitted to the CHPQA Administrator before end of March 2018
- Based on 2017 actual data:
 - Fuel used
 - Electricity generated
 - Heat utilised (actual)

▶ If all is in order new certificate (based on 2017 data) will be issued before the end of June 2018

CHPQA Contact Details

CHPQA Administrator

The Gemini Building

Fermi Avenue

Harwell

Didcot

OX11 0QR

E-mail: chpqainfo@chpqa.com

Tel: 01235 75 3004

Web:

https://www.gov.uk/combined-heat-power-quality-assurance-programme