

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

Prepared by: Anatec Limited

Presented to: Hartley Anderson

Date: 16th February 2016

Revision No.: 01

Reference: A3726_HA_TN_01

Anatec Aberdeen Office

Address: 10 Exchange Street, Aberdeen, AB11 6PH, UK

Tel: 01224 253700 Fax: 0709 2367306 Email: aberdeen@anatec.com **Cambridge Office**

cambs@anatec.com

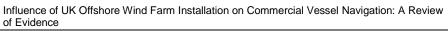
Braemoor, No. 4 The Warren, Witchford, Ely, Cambs, CB6 2HN, UK 01353 661200 0709 2367306

Client: Hartley Anderson

Page:

This study has been carried out by Anatec Ltd on behalf of Department of Energy and Climate Change (DECC). The assessment represents Anatec's best judgment based on the information available at the time of preparation. Any use which a third party makes of this report is the responsibility of such third party. Anatec accepts no responsibility for damages suffered as a result of decisions made or actions taken in reliance on information contained in this report. The content of this document should not be edited without approval from Anatec. All marine traffic data within this report are copyright Anatec unless otherwise stated. No reproduction of these data is allowed without written consent from Anatec.

All figures within the report are used under © Crown Copyright and/or database rights. Reproduced by permission of the Controller of Her Majesty's Stationery Office and the UK Hydrographic Office. www.ukho.gov.uk. Reproduction of these images is not allowed.


Revision Number	Date	Summary of Change
00	28 th January 2016	Initial Draft
01	16 th February 2016	Updates Following Review

Date: 28.01.2016

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Title:

Client: Hartley Anderson

www.anatec.com

TABLE OF CONTENTS

1. IN	TRODUCTION	8
1.1	AIMS OF THE PROJECT	8
1.2	SELECTED AREAS OF ASSESSMENT	8
1.3	Data and Guidance	
1.4	Interpretation of Results	
1.5	CASE HISTORY ASSESSMENT	
2. NO	ORTHERN IRISH SEA AREA	13
2.1	Introduction	13
2.2	NORTHERN IRISH SEA – VESSEL TRACKS	
2.3	NORTHERN IRISH SEA – VESSEL DENSITY	
2.4	NORTHERN IRISH SEA – 90 TH PERCENTILES	
2.5	NORTHERN IRISH SEA – AIS DATA ANALYSIS	18
3. NO	ORTHERN IRISH SEA – SUMMARY OF CHANGES	20
4. SO	UTHERN IRISH SEA AREA	25
4.1	Introduction	25
4.2	SOUTHERN IRISH SEA – VESSEL TRACKS	
4.3	SOUTHERN IRISH SEA – VESSEL DENSITY	28
4.4	SOUTHERN IRISH SEA – 90 th Percentiles	29
4.5	SOUTHERN IRISH SEA – AIS ANALYSIS	30
5. SO	UTHERN IRISH SEA – SUMMARY OF CHANGES	32
6. HU	JMBER AREA	35
6.1	Introduction	35
6.2	HUMBER – VESSEL TRACKS	37
6.3	Humber – Vessel Density	
6.4	HUMBER – 90 th Percentiles	
6.5	HUMBER – AIS ANALYSIS	41
7. HU	JMBER – SUMMARY OF CHANGES	43
8. TH	IAMES ESTUARY & KENT COAST AREA	47
8.1	Introduction	47
8.2	THAMES ESTUARY & KENT COAST – VESSEL TRACKS	
8.3	THAMES ESTUARY & KENT COAST – VESSEL DENSITY	52
8.4	THAMES ESTUARY & KENT COAST – 90 TH PERCENTILES	54
8.5	THAMES ESTUARY & KENT COAST – AIS ANALYSIS	56
9. TF	IAMES ESTUARY & KENT COAST – SUMMARY OF CHANGES	58
10.	NRA CASE HISTORY ASSESSMENT	63
10.1	Post Barrow	63
10.2	POST BARROW, ORMONDE, WALNEY AND WEST OF DUDDON SANDS	

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

navigation.docx

Reference: A3726_HA_TN_01

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

www.anatec.com

	1. ANNUAL AND SEASONAL INCREASES IN THE TRAFFIC DENSITIES WITHIN UK WATERS		
12.	SUMMARY AND KEY CONCLUSIONS	69	
12.1	SUMMARY OF ROUTE CHANGES	69	
12.2	KEY CONCLUSIONS NORTHERN IRISH SEA	71	
12.3	KEY CONCLUSIONS SOUTHERN IRISH SEA	72	
12.4	KEY CONCLUSIONS HUMBER	72	
12.5	KEY CONCLUSIONS THAMES ESTUARY & KENT COAST	73	
12.6	CASE HISTORY ASSESSMENT SUMMARY	73	
13.	REFERENCES	75	

Date: 28.01.2016

Reference:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

navigation.docx A3726_HA_TN_01 Page:

3

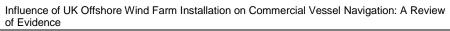
Client: Hartley Anderson

www.anatec.com

Table of Figures

Figure 1.1	Study Area Overview ©	9
Figure 2.1	Northern Irish Sea Overview©	13
Figure 2.2	Northern Irish Sea – Vessel Type ©	15
Figure 2.3	Northern Irish Sea – Vessel Density ©	16
Figure 2.4	Northern Irish Sea – 90 th Percentiles©	17
Figure 2.5	Northern Irish Sea – Vessel Length Distribution	18
Figure 2.6	Northern Irish Sea – Average Speed Distribution	19
Figure 3.1	Northern Irish Sea – Routeing Changes Due to Wind Farm Construction [©] .	23
Figure 3.2	Northern Irish Sea – Routeing Changes Due to Other Infrastructure or	
	Routeing Measure Change©	24
Figure 4.1	Southern Irish Sea Overview©	25
Figure 4.2	Southern Irish Sea – Vessel Type ©	
Figure 4.3	Southern Irish Sea – Vessel Density ©	28
Figure 4.4	Southern Irish Sea – 90 th Percentiles ©	29
Figure 4.5	Southern Irish Sea – Vessel Length Distribution	30
Figure 4.6	Southern Irish Sea – Average Speed Distribution	31
Figure 5.1	Liverpool Bay – Penrhyn (Dredging). Post Rhyl Flats, North Hoyle, Burbo	
	Bank and Gwynt y Mor (Jul. 2015) ©	34
Figure 5.2	Mersey Ports Bound. Post Rhyl Flats, North Hoyle, Burbo Bank and	
	Gwynt y Mor (Jul. 2015) ©	34
Figure 6.1	Humber Overview©	35
Figure 6.2	Humber – Vessel Type©	38
Figure 6.3	Humber – Vessel Density©	
Figure 6.4	Humber – 90 th Percentiles©	40
Figure 6.5	Humber – Vessel Length Distribution	
Figure 6.6	Humber – Average Speed Distribution	42
Figure 7.1	Humber – Wash (Inshore Routeing). Post Lynn, Inner Dowsing and Lincs	
	(Jun. 2013) ©	
Figure 7.2	NE & SW Passing Traffic. Post Sheringham Shoal (Oct. 2012) ©	
Figure 7.3	NE Approaches to Humber. Post Humber Gateway and Westermost Rough	
	(Jul. 2015) ©	
Figure 7.4	Humber NE TSS Traffic. Post Humber Gateway and Westermost Rough (Ju	
	2015) ©	
Figure 8.1	Thames Estuary & Kent Coast Overview ©	
Figure 8.2	Thames Estuary & Kent Coast – Vessel Type ©	
Figure 8.3	Thames Estuary & Kent Coast – Vessel Density©	
Figure 8.4	Thames Estuary & Kent Coast – 90 th Percentiles©	
Figure 8.5	Thames Estuary & Kent Coast – Vessel Length Distribution	
Figure 8.6	Thames Estuary & Kent Coast – Average Speed Distribution	
Figure 9.1	Wind Farms developed within Thames Estuary with no noticeable Impact of	
	Commercial Vessel Routeing©	
Figure 9.2	Southern Thames Estuary. Post Thanet (Jun. 2012) ©	
Figure 9.3	Northern North Sea – Southwards. Post Greater Gabbard (Aug. 2013) ©	62

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel


anatec Project: A3726 Client: Hartley Anderson Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title: www.anatec.com of Evidence Figure 10.1 Post Barrow, Ormonde, Walney & West of Duddon Sands – NRA Figure 10.2 Figure 11.1 Seasonal Increases Associated with Wind Farm Source: MMO, 2014......... 67 Figure 11.2 Annual Increases Associated with Wind Farm Source: MMO, 2014............ 68

Date: 28.01.2016 **Page:**

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Title:

Client: Hartley Anderson

www.anatec.com

Table of Tables

Table 1.1	Impact Definitions	12
Table 2.1	Wind Farm Summary – Northern Irish Sea	13
Table 2.2	Summary of Data Periods – Northern Irish Sea	14
Table 3.1	Summary of Routeing Changes Identified in the Northern Irish Sea	20
Table 4.1	Wind Farm Summary – Southern Irish Sea	25
Table 4.2	Summary of Data Periods – Southern Irish Sea	26
Table 5.1	Summary of Routeing Changes Identified in the Southern Irish Sea Area	32
Table 6.1	Wind Farm Summary – Humber	35
Table 6.2	Summary of Data Periods – Humber	36
Table 7.1	Summary of Routeing Changes Identified in the Humber Area	43
Table 8.1	Wind Farm Summary – Thames Estuary & Kent Coast	47
Table 8.2	Summary of Data Periods – Thames Estuary & Kent Coast	
Table 9.1	Summary of Routeing Changes Identified in the Thames Estuary & Kent C	Coast
	Area	60
Table 12.1	Summary and Key Conclusions	69

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title: of Evidence

anatec

Abbreviations

Automatic Identification System AIS

COLREGs International Regulations for the Preventions of Collisions at Sea

CPA Closest Point of Approach

Department of Energy and Climate Change **DECC**

Deep Water Route **DWR** Dead Weight Tonnage **DWT**

Gross Tonnage GT

International Maritime Organisation IMO

Metre m

Marine Guidance Note **MGN**

Marine Management Organisation **MMO**

MW MegaWatt

Merchant Vessel MV**Nautical Miles** nm

NRA Navigational Risk Assessment

Offshore Energy Strategic Environment Assessment **OESEA**

Offshore Renewable Energy Installation **OREI**

OWF Offshore Wind Farm Roll on Roll off RoRo

Safety of Life at Sea Convention **SOLAS** TSS Traffic Separation Scheme

United Kingdom UK

United Kingdom Hydrographic Office UKHO

VTS Vessel Traffic Services

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

1. Introduction

Anatec have been commissioned by Hartley Anderson to undertake a review of desktop evidence to investigate the impacts on fully commissioned offshore wind farm developments on commercial traffic movements within key areas of United Kingdom (UK) waters. This study is intended to contribute to the current Department of Energy and Climate Change (DECC) offshore energy strategic environmental assessment (OESEA), and will form a publicly available report underpinning the assessment. Automatic Identification System (AIS) data covering 4 weeks in 2007 were analysed during the first OESEA to provide accurate information on important areas for larger vessel navigation. The smallest grid cell size used within this report was 500 metres (m) and was based on interpreted AIS data. The intention of this report is to expand on the data gathered for the OESEA in 2008 by using the now extensive AIS coverage around UK waters to form a realistic picture of commercial vessel movements.

1.1 Aims of the Project

This technical report aims to fulfil the following in order to assess the impact of offshore wind farms on commercial vessel navigation:

- Undertake a review of navigation routes (using the route definition principles of Marine Guidance Note (MGN) 371) followed by commercial vessels within designated study areas (MCA, 2008);
- Identify and summarise the main changes to commercial vessel navigation following the development of each offshore wind farm (including cumulative impacts) within respective study areas;
- Provide an overview of any changes to International Maritime Organisation (IMO) routeing measures that have altered routeing in the vicinity of offshore wind farms;
- Where possible undertake selected case histories of main commercial navigation routes and wind farm interactions in areas with multiple developments, including the conclusions of the Navigational Risk Assessments (NRA) or other AIS based studies.

Selected Areas of Assessment

From Anatec's in house knowledge, experience of commercial vessel routeing changes and known offshore wind farm locations the following areas of assessment (hereby referred as study areas) have been selected for consideration within this report:

- Northern Irish Sea;
- Southern Irish Sea;
- Humber; and
- Thames Estuary and Kent Coast.

Figure 1.1 shows these study areas relative to the UK coastline. Throughout this assessment these study areas have been used to assess AIS data and routeing; these larger areas have been used initially as a greater area is often required to fully identify traffic routeing.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

However the outputs of this report (density grids and 90th percentiles) show a smaller 'results area' which are generally extended by 10 nautical miles (nm) from fully commissioned developments. It should also be noted that partially constructed wind farms have been excluded given their limited temporal effects on traffic; as have consented wind farms whose impacts could only be predicted at this stage.

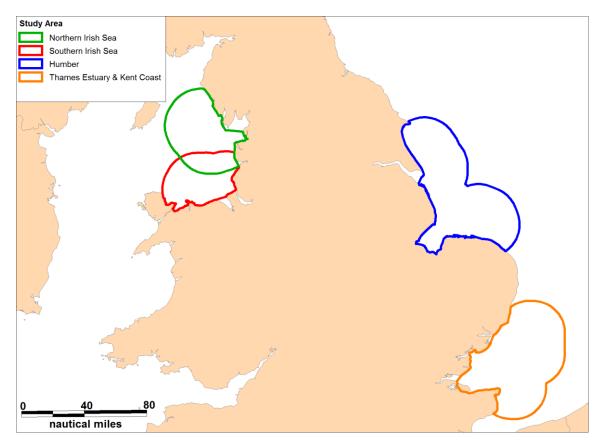


Figure 1.1 Study Area Overview ©

Data and Guidance

1.3.1 AIS Data


The data periods that have been used for each area of assessment have been summarised and illustrated at the beginning of each relevant section. These data periods have generally been selected based on the quality of the data available to ensure comprehensive data coverage for each survey period. The data has also been analysed over different periods to ensure that that the commercial routeing changes following each new wind farm development are reflected.

Regulation 19 of Safety of Life at Sea Convention (SOLAS) Chapter V - Carriage requirements for shipborne navigational systems and equipment (IMO, 2016), sets out navigational equipment to be carried on board vessels according to vessel type. In 2000, IMO adopted a new requirement (as part of a revised new chapter V) for all ships to carry AIS capable of providing information about the ship to other ships and to coastal authorities

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

anatec

automatically. There are two classes of AIS system; A and B, each of which broadcast slightly different data.

The regulation requires AIS to be fitted aboard all ships of 300 gross tonnage (GT) and upwards engaged on international voyages, cargo ships of 500 GT and upwards not engaged on international voyages and all passenger ships irrespective of size. The requirement became effective for all vessels by 31 December 2004 (some vessel types and builds were earlier than this date); however it took several more years for the recording of the data to be most effective.

Class B AIS was specified as a less expensive alternative to Class A with the view to be used by smaller, non-SOLAS vessels such as fishing vessels below 15m and recreational vessels. The data broadcast is not as comprehensive but still contains the main information that is required for collision risk management.

The data (including seasonal variations) is used to characterise the up-to-date passing shipping traffic patterns prior to and post the different wind farm developments, see Section 1.3.5.

1.3.2 Fishing Vessels AIS Carriage Requirements

AIS is now required to be carried by fishing vessels of 15m length; however implementation of AIS was more gradual than for commercial vessels, schedule noted below.

- Fishing vessels of overall length 24m and upwards but less than 45m: not later than 31 May 2012,
- Fishing vessels of overall length 18m and upwards but less than 24m: not later than 31 May 2013,
- Fishing vessels of overall length exceeding 15m but less than 18m: not later than 31 May 2014.

New build fishing vessels of overall length exceeding 15m were subject to AIS carriage from November 2010.

1.3.3 Data Quality

AIS data beyond 20-25nm (depending on atmospheric conditions at the time and the size of vessels) from a receiver is not considered to be fully comprehensive and therefore could not be used in isolation for an effective navigational risk assessment. However for the purposes of this report it does provide a general overview of commercial vessels traffic routeing within the selected study areas (section 1.2) but has not been visually presented to the full extent of the study area within the report.

1.3.4 Other Data Sources and Guidance

Although AIS data provides the most useful tool for assessing the impacts on commercial vessels; the following data sources and guidance documents have also been considered.

Date: 28.01.2016 **Page:** 10

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

- United Kingdom Hydrographic Office (UKHO) charted information;
- Marine Management Organisation (MMO). Mapping UK Shipping Density and Routes from AIS. June 2014.
- MGN 371 Offshore renewable energy installations (OREIs): guidance on UK navigational practice, safety and emergency response issues. 2008.

1.3.5 Data Analysis Methodology

In order to adequately assess the impact of wind farm developments on commercial vessel routeing the following desktop analyses of the aforementioned data sources have been carried out:

- Creation of main route positions (90th Percentiles);
- Vessel types;
- Vessel sizes (lengths and tonnages);
- Speeds (knots) and courses; and
- Range of passing distances to each wind farm.

In order to assess the impact of offshore wind farms on commercial vessel routing, the data has been processed to exclude vessels engaged in fishing, vessels engaged in wind farm construction / operations & maintenance and recreational vessels. However, the AIS data for these vessel types has been illustrated for presentation purposes.

90th percentiles have been identified based on the principles set out in MGN 371: the AIS data has been assessed and vessels transiting at similar headings and to similar locations have been identified as a route. Regular operator routes (e.g. a regular ferry service) have also been identified from the AIS data.

Vessel density grids (comprising of 500m x 500m cells) have been created for each study area and the density is based on the total number of vessel tracks recorded within each individual cell. The classification of density (low – high) is consistent across all survey periods within a given study area.

1.4 Interpretation of Results

Following analysis of the data the results have then been interpreted in order to allow conclusions to be drawn. This has included a review of the navigation routes against the routeing template principles contained within MGN 371, using the aforementioned process of identifying 90th percentiles.

Consideration has also been given to areas where IMO routeing measures (or other changes to navigational routeing measures such as buoyage) have been implemented and routeing (in the vicinity of a developed offshore wind farm) has altered as a result of these changes. Note: IMO routes or buoyage may be out with the wind farm development area.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

anatec

The impact of offshore wind farms, routeing measures and other infrastructure on commercial vessel routeing has been classified using the criteria summarised in Table 1.1.

Table 1.1 Impact Definitions

Impact	Definition	
Direct	Commercial routeing change as a direct result of a single offshore wind	
	farm.	
Independent	Commercial routeing change as independent result of a vessel or external	
	operator alteration.	
In Combination	Commercial routeing change as a result of multiple offshore wind farms.	
Cumulative	Commercial routeing change as a result of offshore wind farm(s)	
	construction and changes to routeing measures and / or other	
	infrastructure newly developed within the area.	

The terms cumulative and in combination are based on classifications defined by The Crown Estate in *Strategic assessment of impacts on navigation of shipping and related effects on other marine activities arising from the development of Offshore Wind Farms in the UK REZ* (Anatec, 2012).

1.5 Case History Assessment

Based on the data analysis and interpretation of results, selected case histories of main commercial navigation routes and wind farm interactions (in areas with multiple developments) an assessment of how predictive work compares to the actual changes observed, following the construction of offshore wind farms, has been undertaken. This has included comparison with the conclusions of the navigational risk assessments (where available) and other technical AIS reports with an emphasis on in-combination risks.

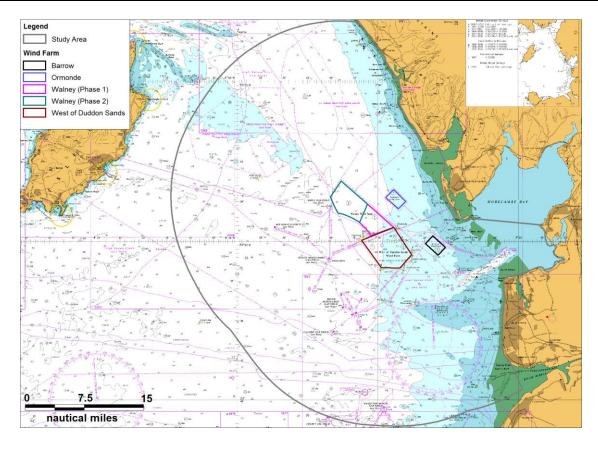
Date: 28.01.2016 **Page:**

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title: of Evidence

anatec


Northern Irish Sea Area 2.

2.1 Introduction

Table 2.1 summarises key details of the wind farm developments considered within the northern Irish Sea study area. Following this, Figure 2.1 illustrates the location of the wind farms considered in Table 2.1 and the study area. Within this study area any significant changes to infrastructure or routeing measures have been identified in order to assess the reasoning behind commercial routeing changes in that area.

Table 2.1 Wind Farm Summary - Northern Irish Sea

Wind Farm	Capacity (MW)	Turbines	Construction Start Date	Construction End Date	Commissioning Date
Barrow	90	30	May 2005	Jun 2006	22 nd Sep 2006
Walney (Phase 1)	183.6	51	10 th Mar 2010	Feb 2011	12 th Jul 2011
Ormonde	150	30	29 th Jul 2010	Aug 2011	22 nd Feb 2012
Walney (Phase 2)	183.6	51	9 th Apr 2011	16 th Dec 2011	14 th Jun 2012
West of Duddon Sands	389	108	30 th Mar 2013	16 th Oct 2014	30 th Oct 2014

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Figure 2.1 Northern Irish Sea Overview©

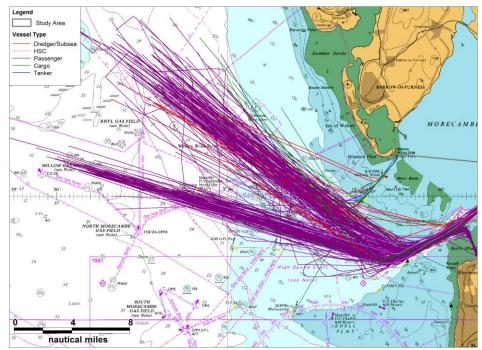
Table 2.2 summarises the data periods assessed in order to identify the impact of these wind farms on commercial vessel routeing. The status (pre or post construction) of each wind farm development considered within this study area during each respective survey period is also indicated.

Table 2.2 Summary of Data Periods - Northern Irish Sea

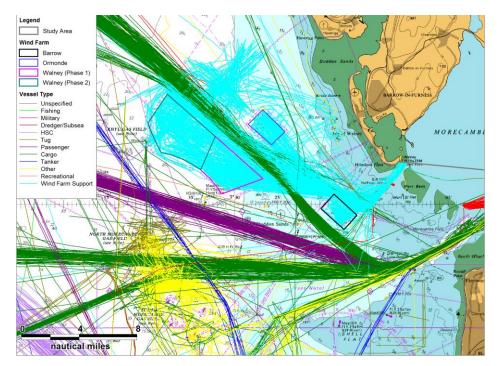
Per	riod	Duration	Wind Farm Status
1.	August / October 2004	28	Pre Barrow
	December 2004 – Siz	gnificant ch	anges to AIS legislation
2.	October 2006	28	Post Barrow
			Post Barrow
3.	February 2010	28	Pre Walney (Phases 1 and 2)
			Pre Ormonde
			Post Barrow
4.	July 2012	28	Post Walney (Phases 1 and 2)
			Post Ormonde
			Post Barrow
5.	February 2013	28	Post Walney (Phases 1 and 2)
3.	reducity 2013	20	Post Ormonde
			Pre West of Duddon Sands
			Post Barrow
6.	January 2015	28	Post Walney (Phases 1 and 2)
"	January 2013	Post Ormonde	
			Post West of Duddon Sands

The following sections present the vessel tracks recorded during each survey period (Section 2.2), vessel density grids (Section 2.3) and the main route 90th percentiles (Section 2.4).

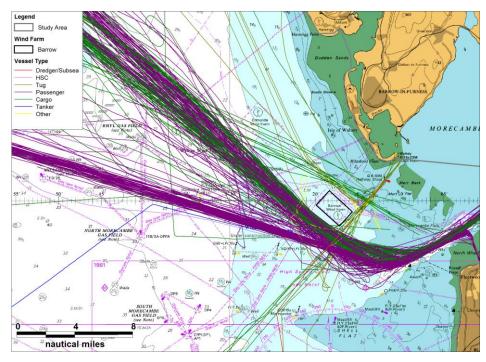
Date: 28.01.2016 Page:


Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc: navigation.docx

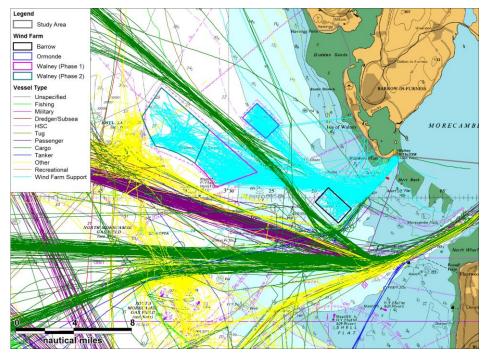
Reference: A3726_HA_TN_01 Client: Hartley Anderson


Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

2.2 Northern Irish Sea – Vessel Tracks

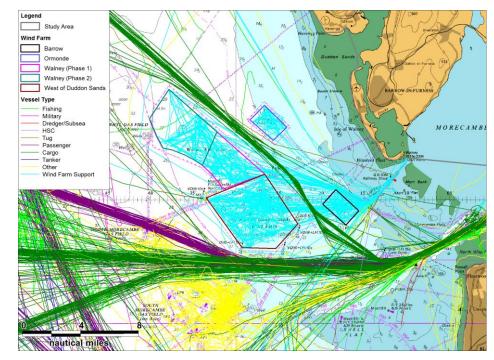


1. Aug / Oct 2004 (Pre Barrow) (Note: Pre Dec 2004 AIS Compliance)



4. Jul 2012 (Post Barrow, Post Ormonde, Post Walney)

Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx


2. Oct 2006 (Post Barrow)

5. Feb 2013 (Post Barrow, Post Ormonde, Post Walney, Pre West of Duddon Sands)

MORECAMBI

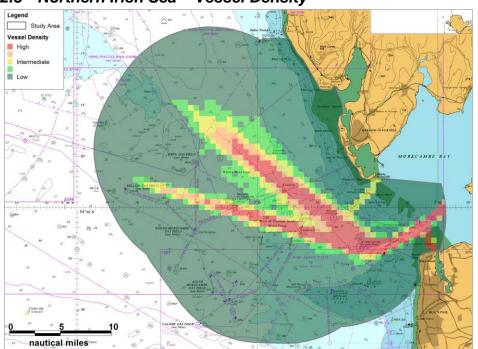
3. Feb 2010 (Post Barrow, Pre Ormonde & Pre Walney)

6. Jan 2015 (Post Barrow, Post Ormonde, Post Walney, Post West of Duddon Sands)

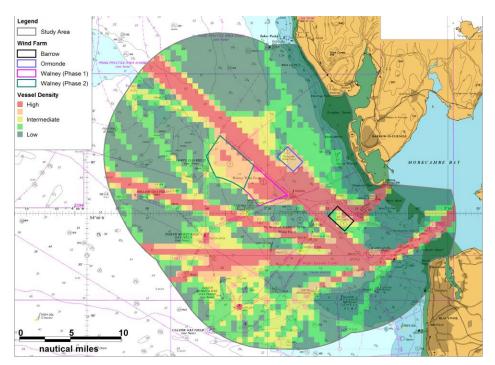
Figure 2.2 Northern Irish Sea – Vessel Type ©

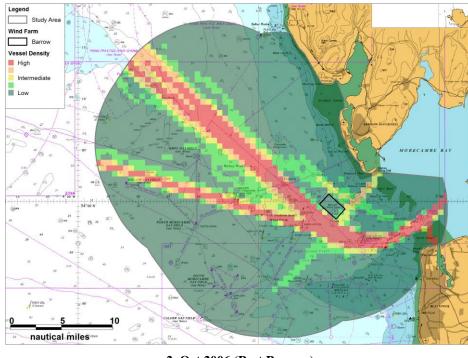
Date: Page: 15

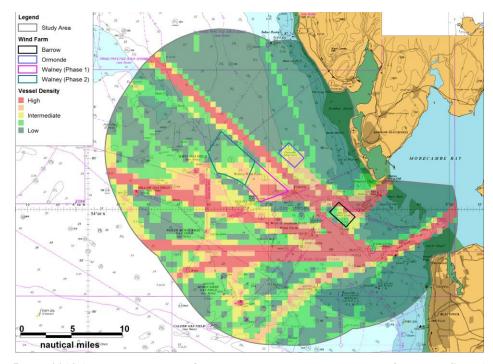
A3726_HA_TN_01 Reference:

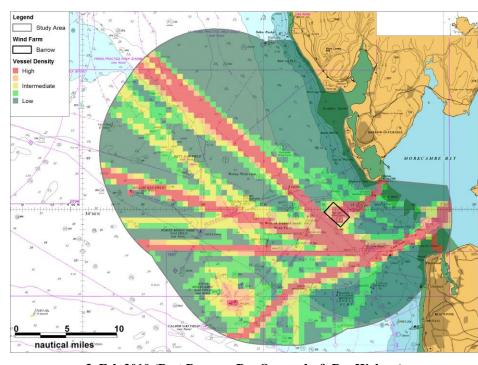

Doc:

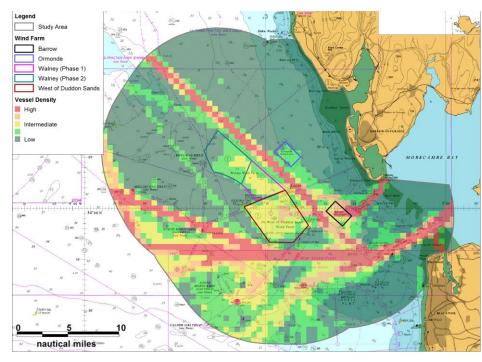
Client: Hartley Anderson


Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


2.3 Northern Irish Sea – Vessel Density


1. Aug / Oct 2004 (Pre Barrow)


4. Jul 2012 (Post Barrow, Post Ormonde, Post Walney)


2. Oct 2006 (Post Barrow)

5. Feb 2013 (Post Barrow, Post Ormonde, Post Walney, Pre West of Duddon Sands)

3. Feb 2010 (Post Barrow, Pre Ormonde & Pre Walney)

6. Jan 2015 (Post Barrow, Post Ormonde, Post Walney, Post West of Duddon Sands)

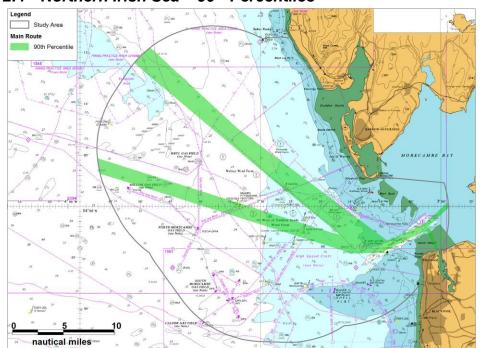
Figure 2.3 Northern Irish Sea – Vessel Density ©

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

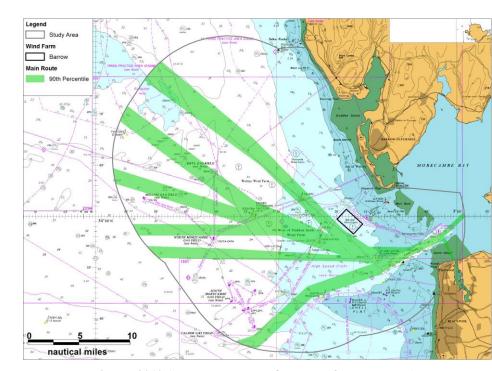
Reference: A3726_HA_TN_01

Page:

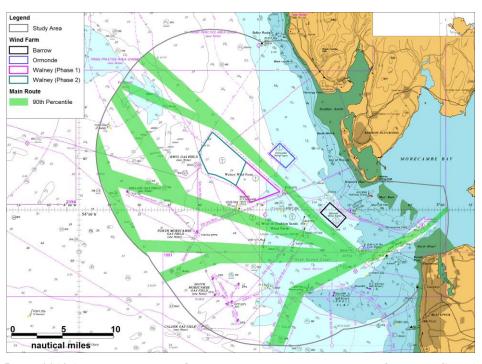

16

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


2.4 Northern Irish Sea – 90th Percentiles

1. Aug / Oct 2004 (Pre Barrow)


2. Oct 2006 (Post Barrow)

3. Feb 2010 (Post Barrow, Pre Ormonde & Pre Walney)

4. Jul 2012 (Post Barrow, Post Ormonde, Post Walney)

5. Feb 2013 (Post Barrow, Post Ormonde, Post Walney, Pre West of Duddon Sands)

6. Jan 2015 (Post Barrow, Post Ormonde, Post Walney, Post West of Duddon Sands)

Figure 2.4 Northern Irish Sea – 90th Percentiles©

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Page:

17

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Northern Irish Sea – AIS Data Analysis

The following subsection presents analysis (vessel length and average speed) of the AIS data collected throughout each survey period for the northern Irish Sea study area. The purpose of this analysis is to identify wider trends in the size and movement of vessels following the development of offshore wind farms within the northern Irish Sea.

Figure 2.5 presents the distribution of vessel lengths recorded throughout each survey period. It should be noted that throughout all survey periods, approximately 4.8% of vessels recorded within the study area did not specify a vessel length and have been excluded from the analysis.

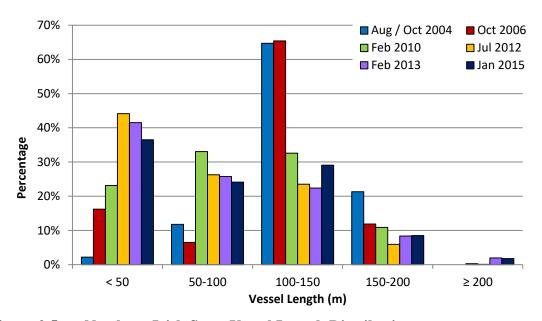


Figure 2.5 Northern Irish Sea – Vessel Length Distribution

The relative proportion of vessels measuring <50m in length has steadily increased over the survey periods, peaking in July 2012 (44.2% of marine traffic). There has also been a corresponding decrease in the proportion of larger vessels (50-200m) recorded within the study area. The reasons for these changes are two-fold:

- Firstly the uptake of AIS has become more widespread as time has passed. During the early survey periods (2004 & 2006) AIS was only carried by large commercial vessels and passenger ferries that were bound to do so by AIS carriage requirements. However, in more recent years the use of AIS has become more commonplace (notably use of AIS B) and it is now carried widely by all commercial vessels and a proportion of smaller fishing and recreational craft.
- Secondly following the increase in the cumulative total number of operational wind farms within the study area, the volume of wind farm support vessels (typically <25m in length) has also steadily increased, resulting in the relative proportion of small

Date: 28.01.2016 Page: 18

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

vessels (<50m) steadily increasing and the relative proportion of larger vessels (50-200m) decreasing over the survey periods.

Overall it can be concluded that very large vessels (≥200m) are not recorded frequently within the study area; however their prevalence has increased in later years (2.0% of marine traffic during Feb. 2013 and 1.8% during Jan. 2015).

Figure 2.6 presents the distribution of average vessel speeds recorded throughout each survey period. It should be noted that speed information was not available for AIS data recorded throughout Oct. 2006. For all other survey periods, speed information was not available for approximately 10.3% of vessels which have been excluded from the analysis.

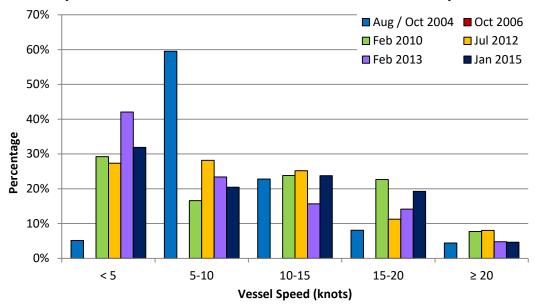


Figure 2.6 Northern Irish Sea – Average Speed Distribution

It can be concluded that the distribution of vessel average speeds has not differed significantly throughout the survey periods with variations most likely due to the prevailing season / meteorological conditions. The average speed of vessels ranged from a minimum of 7.9 knots (Feb. 2013) to a maximum of 10.3 knots (Aug. / Oct. 2004). Although the prevalence of wind farm craft would suggest a combined increase in speeds in the area this has not occurred, mostly likely to vessels transiting at higher speed to the site but operating at lower speeds within, creating a lower average speed.

Overall other than an increase in smaller vessels associated with the wind farm developments (construction as well as operations and maintenance) no significant changes are noted within the parameters of the assessments currently undertaken on the available datasets. It is acknowledged that further and more detailed assessment may highlight changes within the length of the vessels operating within the study area, given known vessel trends, however this is not considered within the scope of this report.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

www.anatec.com

Northern Irish Sea – Summary of Changes 3.

Table 3.1 summarises the main commercial routeing changes identified within the northern Irish Sea area from the first data collected in 2004 through to 2015. It does not specifically identify operators unless that operator is the sole or main user of an individual route; and therefore the specific details of a route prior to a change may not always be clear. Fishing activity and recreational transits that have potentially been impacted by these developments have not been considered.

Table 3.1 Summary of Routeing Changes Identified in the Northern Irish Sea

Route	Identified Change	Main Reason For Change	Other
Impacted	Character 1 and a state of	16	Comments
	Changes due to win		
Fleetwood to	Vessels operating on the	Minor route alteration	Direct
Larne RoRo	Stena Line Fleetwood to	following the construction of	impact –
	Larne RoRo service altered	the Barrow OWF.	Associated
	route to pass to the south west		with the
	of the Barrow OWF site		construction
	boundary, as illustrated in		of the wind
	Figure 3.1.1. Vessels pass		farm.
	post construction at an		
	average of 0.98nm from the		
	site boundary.		
Glasson	The Silver River altered its	Minor route alteration to take	In
Dock –	route to pass to the south of	account of Barrow,	combination
Ramsey (Isle	the Ormonde OWF and north	Ormonde, Walney 1 and 2	impact –
of Man)	east of Walney Phase 2 OWF,	developments.	Associated
	as illustrated in Figure 3.1.2.		with the
			construction
			of the wind
			farms.
Heysham to	Required to alter route to the	Likely to allow increased	In
Belfast RoRo	north east whilst passing the	passing distance from	combination
	Walney Phase 2 OWF.	Barrow, Ormonde and	impact –
		Walney 1 & 2 as illustrated in	Associated
		Figure 3.1.3.	with the
			construction
			of the wind
			farms.
Heysham -	Prior to the construction of	Minor route alteration	Direct
Douglas	the West of Duddon Sands	following the construction of	impact –
passenger	OWF the passenger ferry	the West of Duddon Sands	Associated
ferry	passed through the site	OWF.	with the
	boundary. Following		construction
	construction of the West of		of the wind

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

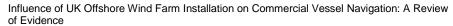
Title:

Client: Hartley Anderson

anatec

www.anatec.com

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


Route	Identified Change	Main Reason For Change	Other
Impacted		Wall Reason 1 of Change	Comments
•	Duddon Sands OWF the		farm.
	passenger ferry service		
	altered route to pass to the		
	south west of the site		
	boundary, as illustrated in		
	Figure 3.1.4. Vessels pass		
	post construction at an		
	average of 0.99nm from the		
	West of Duddon Sands OWF		
TT1	site boundary.	Min an unada altanatian	D'arrest
Heysham – Belfast RoRo	Prior to the construction of the West of Duddon Sands	Minor route alteration	Direct
Bellast Roko		following the construction of	Impact –
	OWF, the RoRo would on occasion alternate from its	the West of Duddon Sands OWF.	Associated with the
	standard route, transiting to	OWI.	construction
	the west of the Walney OWF	It is most likely that this	of the wind
	It is most likely that this	alternate western route is	farm.
	alternate western route is	used during periods of	141111
	used during periods of	adverse weather only.	
	adverse weather site and	, and the second se	
	passes through the West of		
	Duddon Sands OWF site		
	boundary. Following		
	construction of the West of		
	Duddon Sands OWF, vessels		
	operating on the Heysham –		
	Belfast western alternative		
	route altered route to pass to		
	the south west of the site		
	boundary, as illustrated in Figure 3.1.5. Vessels pass		
	post construction at an		
	average of 0.88nm from the		
	West of Duddon Sands OWF		
	site boundary.		
Cl	nanges due to other infrastruct	ure or routeing measure chang	es
Heysham to	The Heysham – Dublin RoRo	It is likely that the change in	Independent
Dublin RoRo	service previously passed to	operator triggered this	Change
	the south of the South	routeing change.	*although
	Morecambe and Calder Gas	_	not
	Fields. However, following a		specifically
	change in the operator of this		the purpose
	route (Norfolkline to Seatruck		of this report

Date: 28.01.2016 Page: 21

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Title:

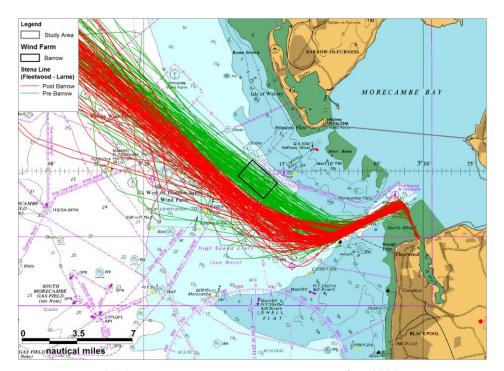
Client: Hartley Anderson

www.anatec.com

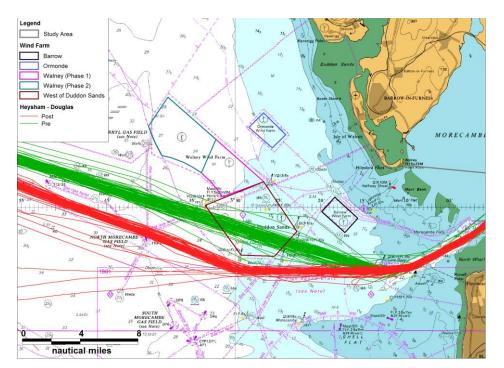
anatec

Route	Identified Change	Main Reason For Change	Other
Impacted			Comments
Heysham –	Ferries) the routeing altered with the newly operated Seatruck Ferries route passing to the north of the South Morecambe Gas Field, as illustrated in Figure 3.2.1. Route previously passed both	The only vessel recorded	has been included for context of routeing changes.
Warrenpoint RoRo	north and south of the North Morecambe Gas Field.	passing to the north of the North Morecambe Gas Field was the <i>Merchant Vessel</i> (MV) Arrow. Following the removal of the MV Arrow from this route, the remaining vessels were only recorded passing to the south of the North Morecambe Gas Field, as illustrated in Figure 3.2.2	Change*alth ough not specifically the purpose of this report has been included for context of routeing changes.

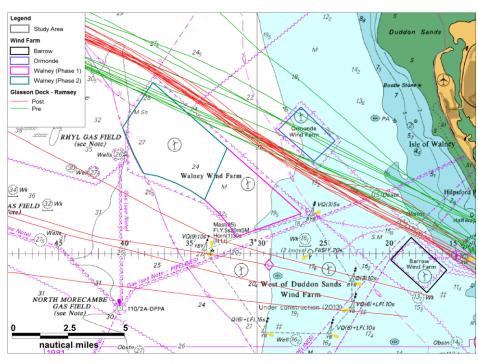
Figure 3.1 presents the commercial routeing changes that have occurred directly because of the construction of wind farms and Figure 3.2 presents changes attributed to other infrastructure and routeing measure changes as identified in Table 3.1.


Date: 28.01.2016 **Page:** 22

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel


Client: Hartley Anderson

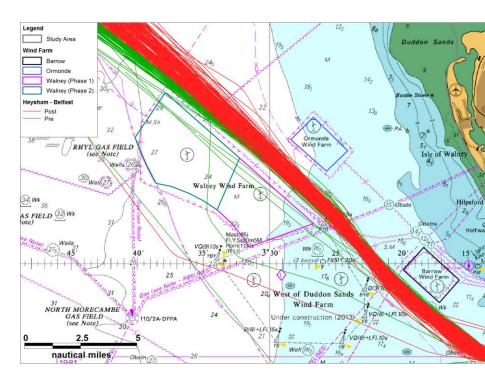
Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence



3.1.1 Fleetwood – Larne. Post Barrow (Oct. 2006)

3.1.4 Heysham – Douglas (Isle of Man). Post Barrow, Ormonde, Walney and West of Duddon Sands (Jan. 2015)

Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx



3.1.2 Glasson Dock – Ramsey (Isle of Man). Post Barrow, Ormonde and Walney (Jul. 2012)

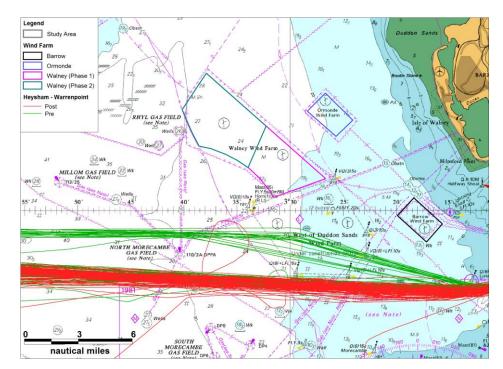
3.1.5 Heysham – Belfast (Alternative). Post Barrow, Ormonde, Walney and West of Duddon Sands (Jan. 2015)

Figure 3.1 Northern Irish Sea – Routeing Changes Due to Wind Farm Construction©

3.1.3 Heysham – Belfast. Post Barrow, Ormonde and Walney (Jul. 2012)

Reference: A3726_HA_TN_01

Doc:


Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

3.2.1 Heysham – Dublin. Post Barrow, Ormonde and Walney (Jul. 2012)

3.2.2 Heysham – Warrenpoint. Post Barrow, Ormonde and Walney (Jul. 2012)

Figure 3.2 Northern Irish Sea – Routeing Changes Due to Other Infrastructure or Routeing Measure Change©

Date: 28.01.20

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

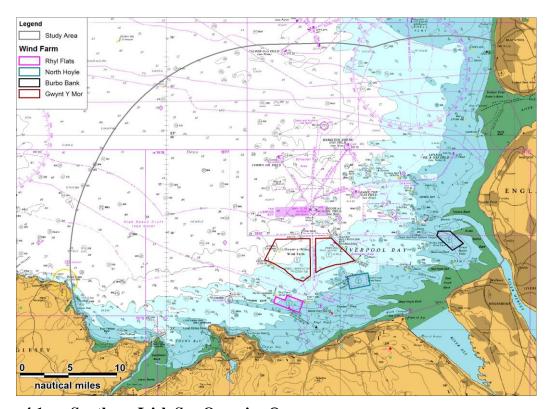
Reference: A3726_HA_TN_01

Page:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence


Southern Irish Sea Area 4.

4.1 Introduction

Table 4.1 summarises key details of the wind farm developments considered within the southern Irish Sea study area. Following this, Figure 4.1 illustrates the location of the wind farms considered in Table 4.1 and the study area. Within this study area any significant changes to infrastructure or routeing measures have been identified in order to assess the reasoning behind commercial routeing changes in that area.

Table 4.1 Wind Farm Summary - Southern Irish Sea

Wind Farm	Capacity (MW)	Turbines	Construction Start Date	Construction End Date	Commissioning Date
North Hoyle	60	30	3 rd Apr 2003	31 st Mar 2004	Jun 2004
Burbo Bank	90	25	10 th Jun 2006	29 th Jun 2007	18 th Oct 2007
Rhyl Flats	90	25	Jun 2007	Oct 2009	2 nd Dec 2009
Gwynt y Mor	576	160	27 th Jan 2012	Apr 2015	18 th Jun 2015

Southern Irish Sea Overview© Figure 4.1

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

anatec

Table 4.2 summarises the data periods assessed in order to identify the impact of these wind farms on commercial vessel routeing. The status (pre or post construction) of each wind farm development considered within this study area during each respective survey period is also indicated.

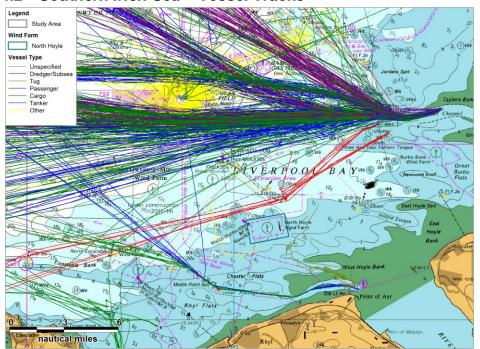
Table 4.2 Summary of Data Periods – Southern Irish Sea

Period	Duration	Wind Farm Status		
1. December 2004	14 days	Post North Hoyle		
December 2004 – Significant changes to AIS legislation				
2. March 2005	14 days	Post North Hoyle		
2. Water 2003		Pre Burbo Bank		
	28 days	Post North Hoyle		
3. May / June 2007		Post Burbo Bank		
		Pre Rhyl Flats		
	2010 28 days	Post North Hoyle		
4. December 2009 / January 2010		Post Burbo Bank		
		Post Rhyl Flats		
	28 days	Post North Hoyle		
5 December 2011		Post Burbo Bank		
5. December 2011		Post Rhyl Flats		
		Pre Gwynt y Mor		
	28 days	Post North Hoyle		
6 July 2015		Post Burbo Bank		
6. July 2015		Post Rhyl Flats		
		Post Gwynt y Mor		

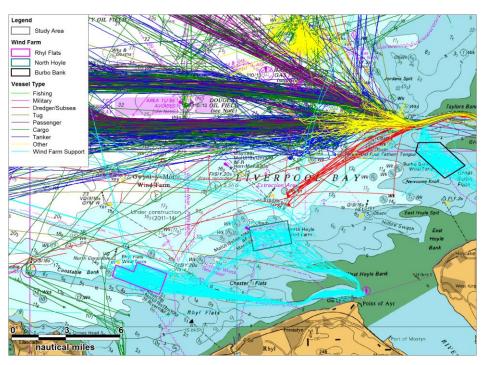
The following sections present the vessel tracks recorded during each survey period (Section 4.2), vessel density grids (Section 4.3) and the main route 90th percentiles (Section 4.4).

Date: 28.01.2016 **Page**: 26

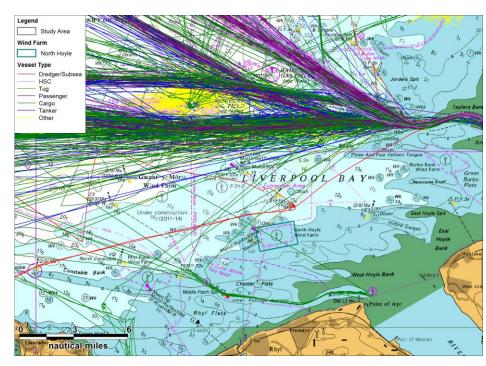
Doc:Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx


Reference: A3726_HA_TN_01

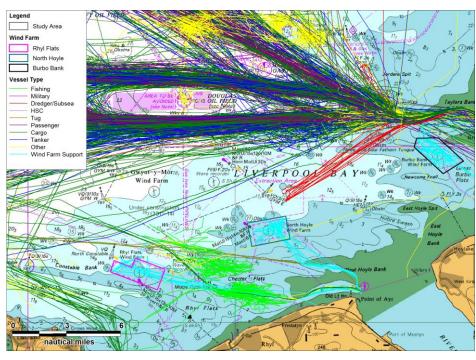
Client: Hartley Anderson


Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

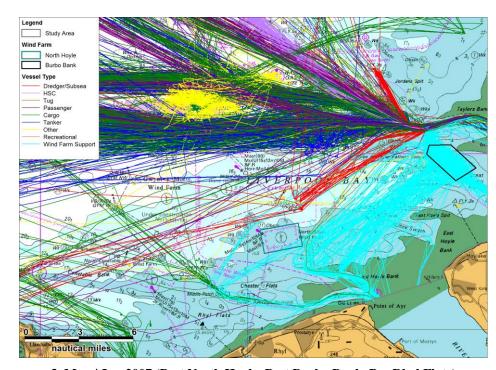
4.2 Southern Irish Sea – Vessel Tracks

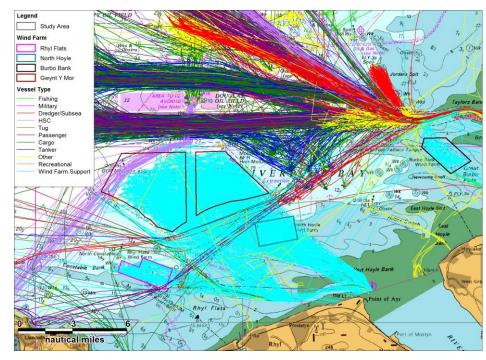


1. Dec 2004 (Post North Hoyle)



4. Dec 2009 / Jan 2010 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats)


Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx


2. Mar 2005 (Post North Hoyle, Pre Burbo Bank)

5. Dec 2011 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Pre Gwynt y Mor)

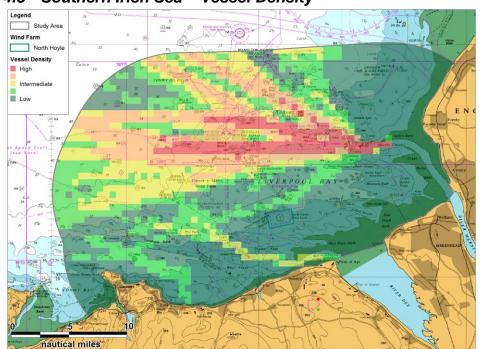
3. May / Jun 2007 (Post North Hoyle, Post Burbo Bank, Pre Rhyl Flats)

6. Jul 2015 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Post Gwynt y Mor)

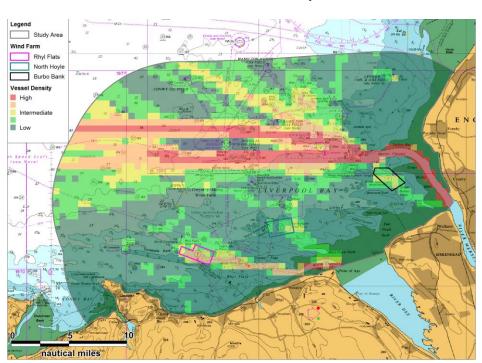
Figure 4.2 Southern Irish Sea – Vessel Type ©

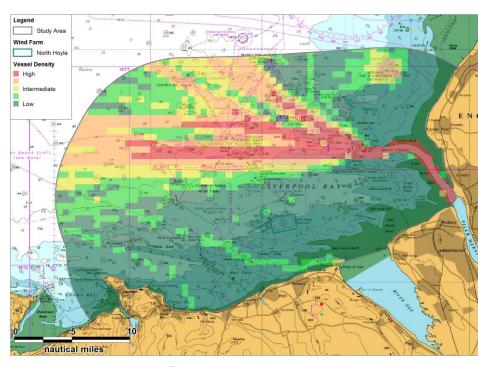
Date: Page: 27

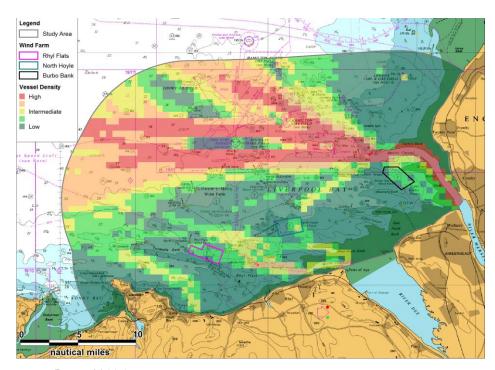
A3726_HA_TN_01 Reference:


Doc:

Client: Hartley Anderson

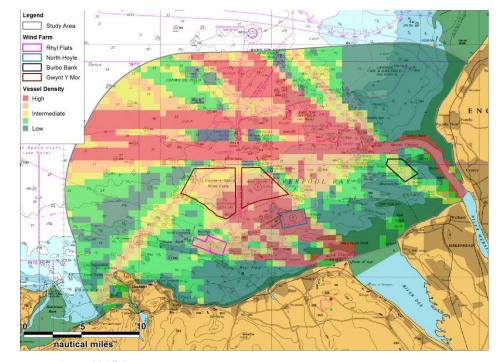

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


4.3 Southern Irish Sea - Vessel Density


1. Dec 2004 (Post North Hoyle)

4. Dec 2009 / Jan 2010 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats)

2. Mar 2005 (Post North Hoyle, Pre Burbo Bank)


5. Dec 2011 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Pre Gwynt y Mor)

Study Area
Wind Farm
North Hoyle
Burbo Bank
Vessel Density
High
Intermediate
Low

A Study Area

A St

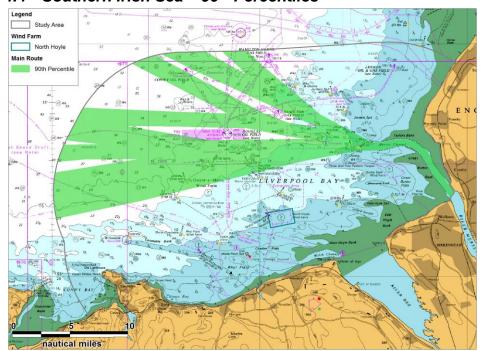
3. May / Jun 2007 (Post North Hoyle, Post Burbo Bank, Pre Rhyl Flats)

6. Jul 2015 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Post Gwynt y Mor)

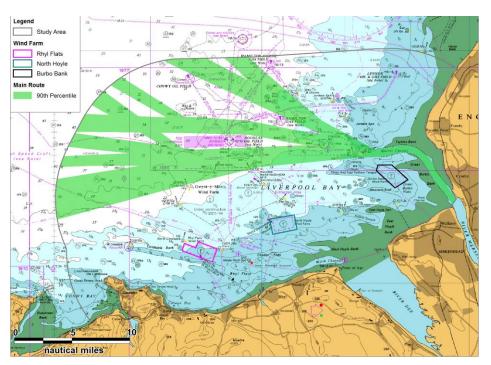
Figure 4.3 Southern Irish Sea – Vessel Density ©

Page: 28.01.2016

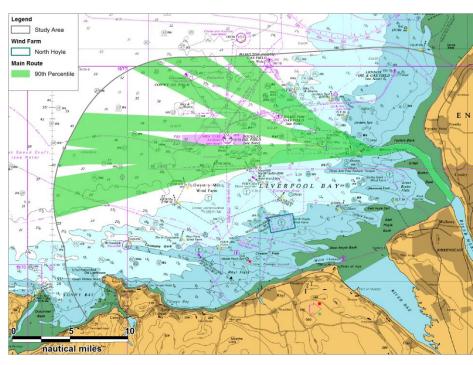
Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx


Reference: A3726_HA_TN_01

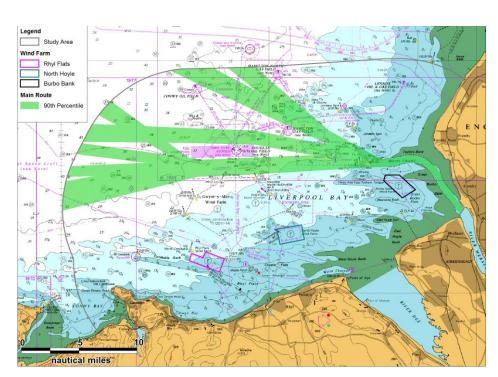
Client: Hartley Anderson


Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

4.4 Southern Irish Sea – 90th Percentiles

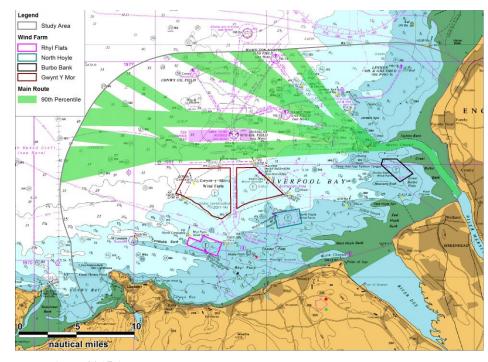


1. Dec 2004 (Post North Hoyle)



4. Dec 2009 / Jan 2010 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats)

Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx


2. Mar 2005 (Post North Hoyle, Pre Burbo Bank)

5. Dec 2011 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Pre Gwynt y Mor)

Main Route

3. May / Jun 2007 (Post North Hoyle, Post Burbo Bank, Pre Rhyl Flats)

6. Jul 2015 (Post North Hoyle, Post Burbo Bank, Post Rhyl Flats, Post Gwynt y Mor)

Figure 4.4 **Southern Irish Sea – 90th Percentiles ©**

Date: Page: 29

A3726_HA_TN_01 Reference:

Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Southern Irish Sea – AIS Analysis

The following subsection presents analysis (vessel length and average speed) of the AIS data collected throughout each survey period for the southern Irish Sea study area. The purpose of this analysis is to identify wider trends in the size and movement of vessels following the development of offshore wind farms within the southern Irish Sea.

Figure 4.5 presents the distribution of vessel lengths recorded throughout each survey period. It should be noted that throughout all survey periods, approximately 1.8% of vessels recorded within the study area did not specify a vessel length and have been excluded from the analysis.

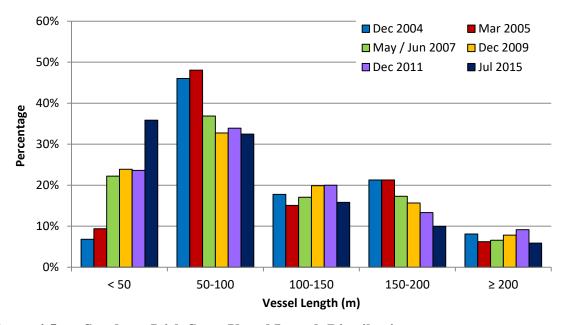


Figure 4.5 Southern Irish Sea – Vessel Length Distribution

The relative proportion of vessels measuring <50m in length has steadily increased over the survey periods, peaking in July 2015 (35.9% of marine traffic). There has also been a corresponding decrease in the proportion of larger vessels (50-100m and 150-200m) recorded within the study area. As per the northern Irish Sea study area, these changes are again due to the increased uptake of AIS in smaller vessels in later years and the increased number of operational wind farm support vessels.

The relative proportions of 100-150m and ≥200m vessels have remained stable throughout all survey periods. The prevalence of very large vessels (≥200m) within the study area is higher when compared to the northern Irish Sea study area, average of 7.3% across all surveys in southern Irish Sea study area compared to 0.7% in northern Irish Sea study area. This is due to the increased number of very large vessels on approach to / exiting Mersey ports within the southern Irish Sea study area.

Date: 28.01.2016 Page: 30

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Page:

Figure 4.6 presents the distribution of average vessel speeds recorded throughout each survey period. It should be noted that throughout all survey periods, speed information was not available for approximately 8.8% of vessels which have been excluded from the analysis.

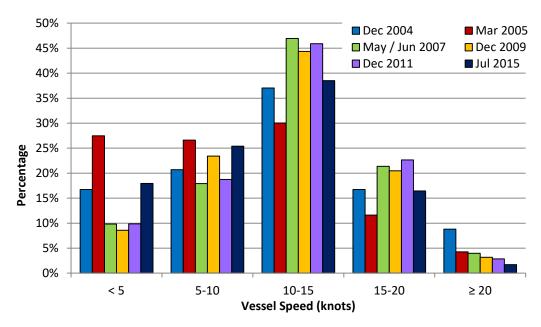


Figure 4.6 Southern Irish Sea – Average Speed Distribution

It can be concluded that the distribution of vessel average speeds has not differed significantly throughout the survey periods with variations most likely due to the prevailing season / meteorological conditions. The average speed of vessels ranged from a minimum of 9.4 knots (Mar. 2005) to a maximum of 11.8 knots (Dec. 2011).

Overall other than an increase in smaller vessels associated with the wind farm developments (construction as well as operations and maintenance) no significant changes are noted within the parameters of the assessments currently undertaken on the available datasets. It is acknowledged that further and more detailed assessment may highlight changes within the length of the vessels operating within the study area, given known vessel trends, however this is not considered within the aims of this report.

Date: 28.01.2016

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

5. Southern Irish Sea – Summary of Changes

Table 5.1 summarises the main commercial routeing changes identified within the southern Irish Sea area from the first data collected in 2004 through to 2015. It does not specifically identify operators unless that operator is the sole or main user of an individual route; and therefore the specific details of a route prior to a change may not always be clear.

It is noted that some of the Round 1 wind farms within the southern Irish Sea study area are nearshore and therefore out with areas where commercial navigation will occur. As already identified within this report fishing activity and recreational transits that potentially be impacted by these near shore developments have not been considered.

Table 5.1 Summary of Routeing Changes Identified in the Southern Irish Sea Area

Route	Identified Change	Main Reason For Change	Other			
Impacted			Comments			
Changes due to wind farm construction						
Liverpool /	Marine aggregate dredgers	Construction of the <i>Gwynt y</i>	Direct impact			
marine	operating between extraction	<i>Mor OWF</i> , causing minor	- Associated			
aggregate	area, Liverpool and Penrhyn.	displacement of the route.	with the			
extraction	Although a minor deviation	Vessel pass (post	construction			
area to east	this route is a good example	construction) at 0.3nm on	of the wind			
of Gwynt y	of how a wind farm	average from the <i>Gwynt y</i>	farm.			
Mor /	construction has created a	<i>Mor OWF</i> boundary.				
Penrhyn	permanent but minor					
	deviation for vessels					
	operating between the					
	extraction area and Penrhyn.					
	Routeing change illustrated in					
	Figure 5.1.					
Mersey Ports	Traffic in bound to the rive	Construction of the <i>Gwynt y</i>	Cumulative			
outwards /	Mersey joins the southern	<i>Mor OWF</i> , which borders	impact - See			
inwards	(inward) Traffic Separation	the southern boundary of the	changes due to			
(various	Scheme (TSS) lane sooner	TSS and therefore prevents	other			
destinations)	than pre-construction	access from the south east at	infrastructure			
	formalising traffic into more	shallow angle.	or routeing			
	defined 90th percentiles. See		measures.			
	Figure 5.2.					
Cl	nanges due to other infrastruct	ure or routeing measure char	iges			
Mersey Ports	Although post construction of	Implementation of the	Cumulative			
outwards /	the Douglas Platform in 1996,	Liverpool Bay TSS in July	impact - See			
inwards	traffic to and from the Mersey	2009. Although it is	changes due to			
(various	has naturally been displaced.	recognised that the	wind farm			
destinations)	Development of the	construction of Gwynt y	construction.			
	Liverpool Bay TSS has seen	<i>Mor OWF</i> would have been				
	traffic guided by the	a key factor given the				

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

Route Impacted	Identified Change	Main Reason For Change	Other Comments
Impacteu	International Regulations for the Prevention of Collisions at Sea (COLREGs) Rule 10 (IMO, 2016), and the requirement for vessel to comply with particular traffic management within that area.	increases in traffic in the area. However not the sole reason given the location of the Douglas Platform and popularity of ports within the river Mersey. The TSS is seen as overarching traffic management mitigation and	Comments

Date: 28.01.2016 Page: 33

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

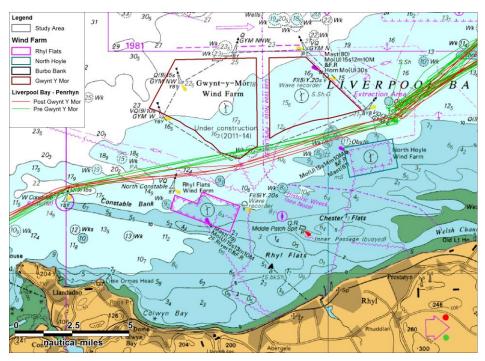


Figure 5.1 Liverpool Bay – Penrhyn (Dredging). Post Rhyl Flats, North Hoyle, Burbo Bank and Gwynt y Mor (Jul. 2015) ©

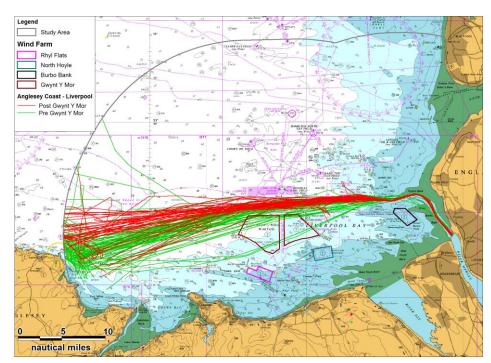


Figure 5.2 Mersey Ports Bound. Post Rhyl Flats, North Hoyle, Burbo Bank and Gwynt y Mor (Jul. 2015) ©

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

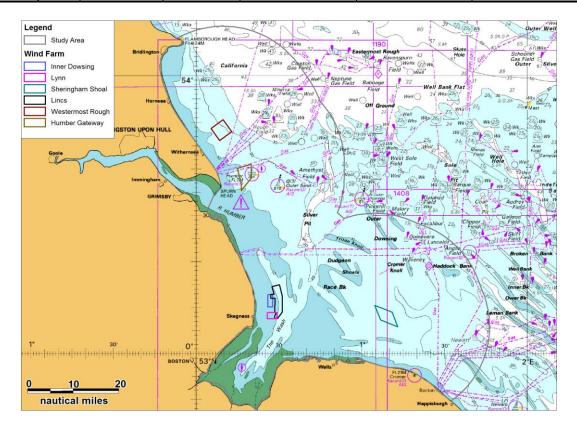
Page:

J-1

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence


6. **Humber Area**

Introduction 6.1

Table 6.1 summarises key details of the wind farm developments considered within the Humber study area. Following this, Figure 6.1 illustrates the location of the wind farms considered in Table 6.1 and the study area. Within this study area any significant changes to infrastructure or routeing measures have been identified in order to assess the reasoning behind commercial routeing changes in that area.

Table 6.1 Wind Farm Summary – Humber

Wind Farm	Capacity (MW)	Turbines	Construction Start Date	Construction End Date	Commissioning Date
Inner Dowsing	97.2	27	Apr 2007	21st Oct 2008	Mar 2009
Lynn	97.2	27	Apr 2007	21st Oct 2008	Mar 2009
Sheringham Shoal	316.8	88	23 rd Oct 2009	10 th Jul 2012	30 th Sep 2012
Lincs	270	75	10 th Mar 2011	25 th Mar 2013	23 rd Sep 2013
Westermost Rough	210	35	Jul 2013	27 th Mar 2015	26 th May 2015
Humber Gateway	219	73	19 th Jul 2013	23 rd Apr 2015	5 th Jun 2015

Date: 28.01.2016 Page: 35

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title:

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

Figure 6.1 **Humber Overview**©

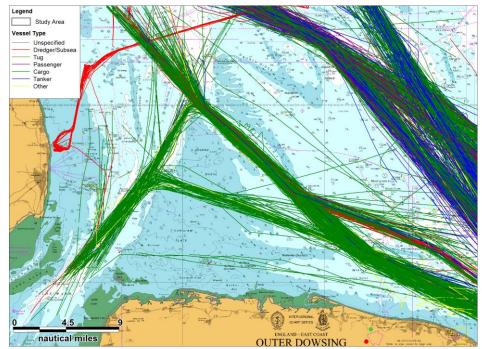
Table 6.2 summarises the data periods assessed in order to identify the impact of these wind farms on commercial vessel routeing. The status (pre-construction, constriction ongoing or post-construction) of each wind farm development considered within this study area during each respective survey period is also indicated.

Table 6.2 Summary of Data Periods – Humber

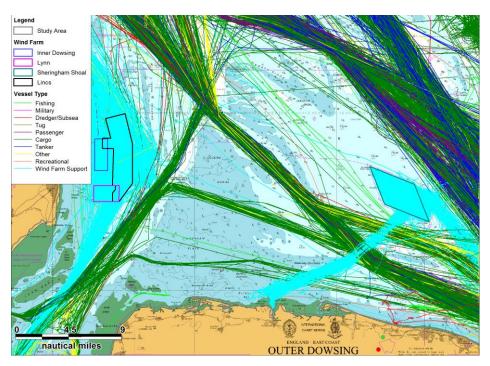
Period	Duration	Wind Farm Status
1 April 2006	20 days	Pre Inner Dowsing
1. April 2006	28 days	Pre Lynn
		Post Inner Dowsing
2. June 2009	28 days	Post Lynn
		Pre Sheringham Shoal
		Post Inner Dowsing
3. February 2011	28 days	Post Lynn
3. February 2011	26 days	Ongoing Construction Sheringham Shoal
		Pre Lincs
		Post Inner Dowsing
4. October 2012	20 days	Post Lynn
4. October 2012	28 days	Post Sheringham Shoal
		Ongoing Construction Lines
		Post Inner Dowsing
		Post Lynn
5. June 2013	28 days	Post Sheringham Shoal
5. Julie 2015	26 days	Post Lincs
		Pre Humber Gateway
		Pre Westermost Rough
		Post Inner Dowsing
6. July 2015		Post Lynn
	20 days	Post Sheringham Shoal
	28 days	Post Lines
		Post Humber Gateway
		Post Westermost Rough

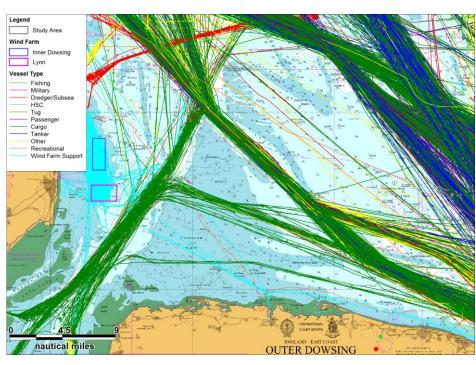
The following sections present the vessel tracks recorded during each survey period (Section 6.2), vessel density grids (Section 6.3) and the main route 90th percentiles (Section 6.4).

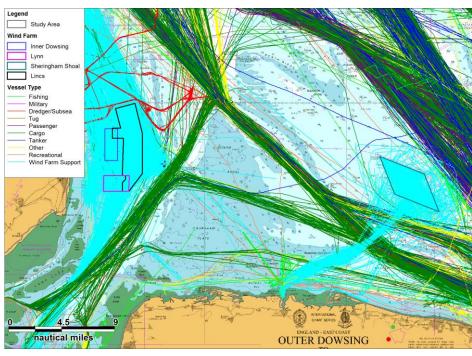
Date: 28.01.2016 Page:

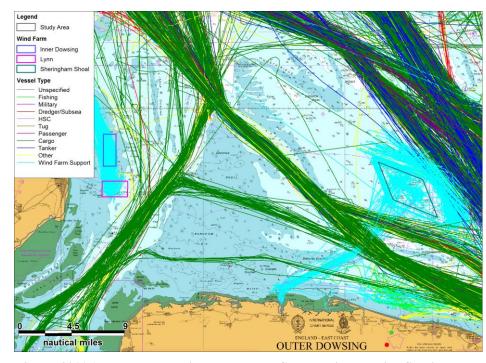

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson


Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


6.2 Humber – Vessel Tracks


1. Apr 2006 (Pre Inner Dowsing, Pre Lynn)

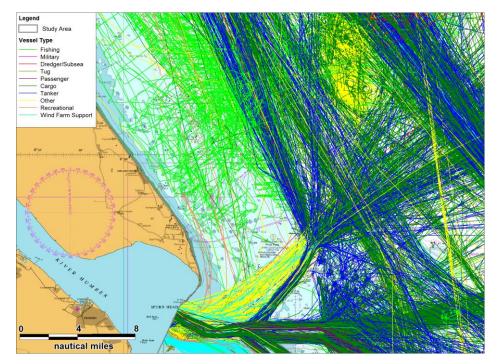

4. Oct 2012 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Construction ongoing Lincs)

2. Jun 2009 (Post Inner Dowsing, Post Lynn, Pre Sheringham Shoal)

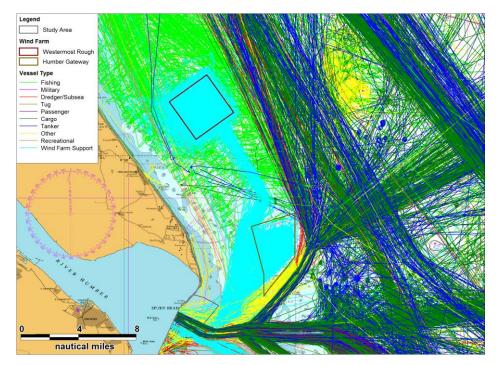
5. Jun 2013 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Post Lincs)

3. Feb 2011 (Post Inner Dowsing, Post Lynn, Construction ongoing Sheringham Shoal, Pre Lincs)

Page: 28.01.2016


Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01


Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

5. Jun 2013 (Pre Humber Gateway, Pre Westermost Rough)

6. Jul 2015 (Post Humber Gateway, Post Westermost Rough)

Figure 6.2 Humber – Vessel Type©

Date: 28.01.201

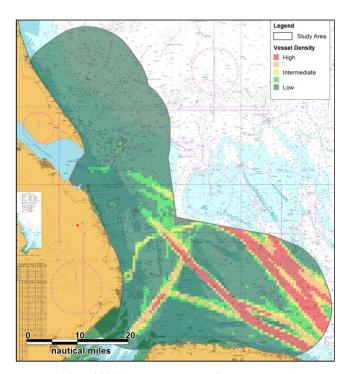
Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

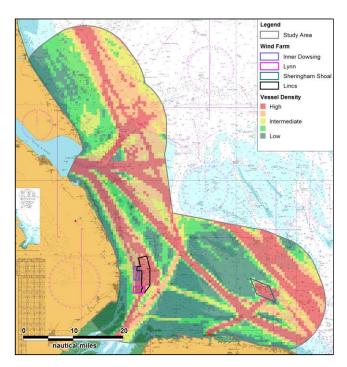
Page:

38

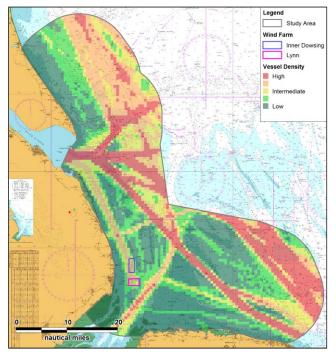
A3726 Project:


Title:

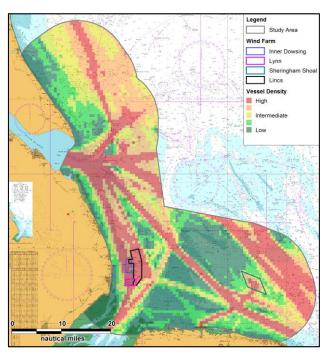
Client: Hartley Anderson


Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

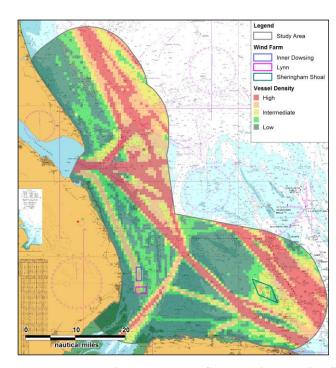
6.3 Humber – Vessel Density

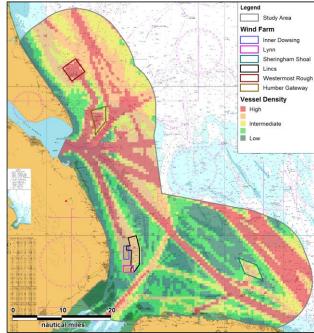


1. Apr 2006 (Pre Inner Dowsing, Pre Lynn)



4. Oct 2012 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Construction ongoing Lincs)


Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx


2. Jun 2009 (Post Inner Dowsing, Post Lynn, Pre Sheringham Shoal)

5. Jun 2013 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Post Lincs, **Pre Humber Gateway, Pre Westermost Rough)**

3. Feb 2011 (Post Inner Dowsing, Post Lynn, Construction ongoing Sheringham **Shoal, Pre Lincs**)

6. Jul 2015 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Post Lincs, Post Humber Gateway, Post Westermost Rough)

Humber – Vessel Density© Figure 6.3

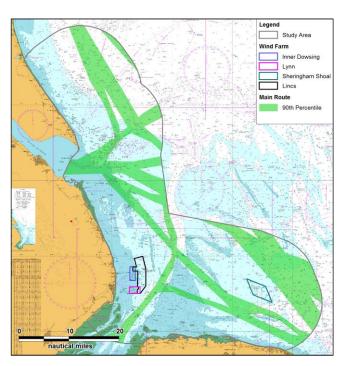
Date: 39

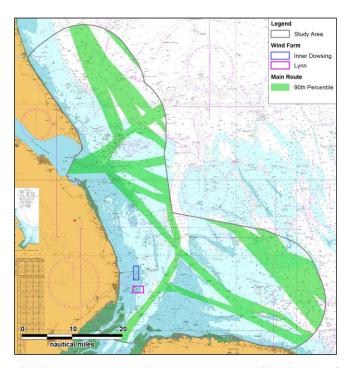
A3726_HA_TN_01 Reference:

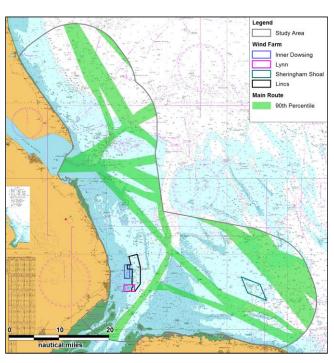
Doc:

Page:

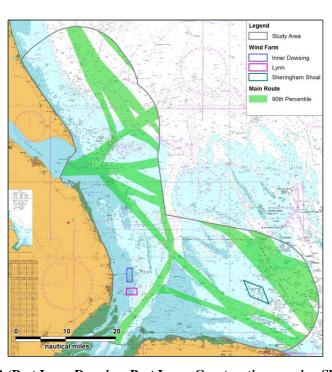
Client: Hartley Anderson


Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

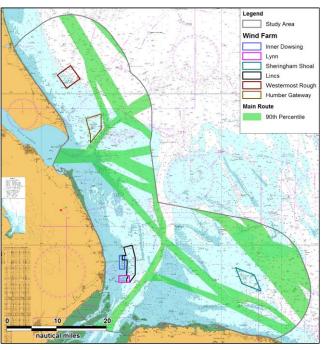

6.4 Humber – 90th Percentiles


1. Apr 2006 (Pre Inner Dowsing, Pre Lynn)

4. Oct 2012 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Construction ongoing Lincs)



2. Jun 2009 (Post Inner Dowsing, Post Lynn, Pre Sheringham Shoal)



5. Jun 2013 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Post Lincs, Pre Humber Gateway, Pre Westermost Rough)

 $Figure~6.4 \qquad Humber-90^{th}~Percentiles @$

3. Feb 2011 (Post Inner Dowsing, Post Lynn, Construction ongoing Sheringham Shoal, Pre Lincs)

6. Jul 2015 (Post Inner Dowsing, Post Lynn, Post Sheringham Shoal, Post Lincs, Post Humber Gateway, Post Westermost Rough)

Page: 40

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Humber – AIS Analysis

The following subsection presents analysis (vessel size and average speed) of the AIS data collected throughout each survey period for the Humber study area. The purpose of this analysis is to identify wider trends in the size and movement of vessels following the development of offshore wind farms within the Humber sea area.

Figure 6.5 presents the distribution of vessel lengths recorded throughout each survey period. It should be noted that throughout all survey periods, approximately 2.0% of vessels recorded within the study area did not specify a vessel length and have been excluded from the analysis.

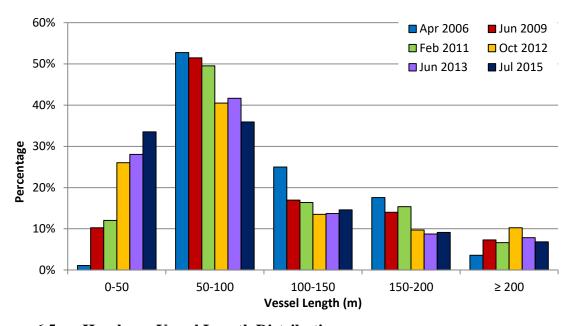


Figure 6.5 **Humber – Vessel Length Distribution**

The relative proportion of vessels measuring <50m in length has steadily increased over the survey periods, peaking in July 2015 (33.5% of marine traffic). There has also been a corresponding decrease in the proportion of larger vessels (50-100m, 100-150m and 150-200m) recorded within the study area. As per both the northern and southern Irish Sea study areas, these changes are again due to the increased uptake of AIS in smaller vessels in later years and the increased number of operational wind farm support vessels.

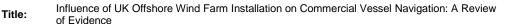

The prevalence of very large vessels (≥ 200 m) within the study area has also steadily increased over the survey periods, peaking in Oct. 2012 (10.3% of marine traffic). This is most likely due to the wider trend within the shipping industry of increasing vessel size, in order to reduce the total number of transits to reduce costs, resulting in a corresponding increase in the proportion of these very large vessels within the Humber study area.

Figure 6.6 presents the distribution of average vessel speeds recorded throughout each survey period. It should be noted that speed information was not available for AIS data recorded

Date: 28.01.2016 Page: 41

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

anatec

throughout Jun. 2009. For all other survey periods, speed information was not available for approximately 6.6% of vessels which have been excluded from the analysis.

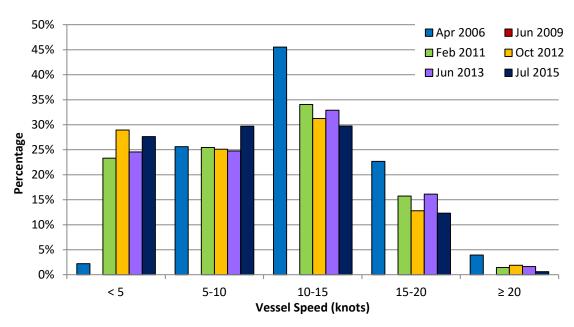


Figure 6.6 Humber – Average Speed Distribution

It can be concluded that the distribution of vessel average speeds has not differed significantly throughout the survey periods with variations most likely due to the prevailing season / meteorological conditions. The average speed of vessels ranged from a minimum of 8.5 knots (Jul. 2015) to a maximum of 12.6 knots (Apr. 2006).

Overall other than an increase in smaller vessels associated with the wind farm developments (construction as well as operations and maintenance) no significant changes are noted within the parameters of the assessments currently undertaken on the available datasets. It is acknowledged that further and more detailed assessment may highlight changes in the length of the vessels operating within the study area, given known vessel trends, however this is not considered within the scope of this report.

Date: 28.01.2016 **Page:**

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

Humber – Summary of Changes 7.

Table 7.1 summarises the main commercial routeing changes identified within the southern Humber area from the first data collected in 2006 through to 2015. It does not specifically identify operators unless that operator is the sole or main user of an individual route; and therefore the specific details of a route prior to a change may not always be clear.

It is noted that some of the round 1 wind farms within the southern Humber study area that are nearshore and therefore out with areas where commercial navigation will occur. As already identified within this report fishing activity and recreational transits could potentially have been impact by these near shore developments have not been considered.

Although some small commercials vessels were noted to have been displaced when looking at the pre and post AIS data, the actual number of vessels requiring alterations were considered to be insignificant and not a commercial vessel route amendment. Near shore wind farms which have a cumulative impact due to larger round 2 wind farms have been identified as such.

Table 7.1 Summary of Routeing Changes Identified in the Humber Area

Route	Identified Change	Main Reason For Change	Other
Impacted			Comments
	Changes due to win	d farm construction	
Humber area	Increased passing distance to	Construction of the <i>Lincs</i>	In
to Wash –	the east for vessels bound	<i>OWF</i> and also the	combination
inshore	between the Humber and	construction of Lynn and	impact –
routeing	Wash estuaries on inshore	Inner Dowsing OWFs*.	Associated
	routes. See Figure 7.1.		with the
			construction
			of the wind
			farms.
Routes	Figure 7.2 demonstrates	Construction of the	Direct impact
passing to	increased passing distances of	Sheringham Shoal OWF,	 Associated
the north east	vessels operating in proximity	however noting that the	with the
and south	to the Sheringham Shoal	impact is on the Closest	construction
west of	OWF. However it is noted	Point of Approach (CPA) of	of the wind
Sheringham	that routeing within the area	some vessels rather than the	farm.
Shoal.	is already constrained by the	overall 90 th percentile for	
	location of sand banks /	the routes.	
	shoals such as Race Bank and		
	Dudgeon Shoal.		
North east	Slight route change and	Amendments to the Humber	Cumulative
approaches	increased CPA following the	TSS post 2009 have	impact - See
to the	construction of the Humber	instigated the majority of	changes due to
Humber	Gateway OWF, see Figure	changes to routeing in this	other
through the	7.3.	area however the	infrastructure

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

www.anatec.com

Route	Identified Change	Main Reason For Change	Other
Impacted			Comments
New Sand		construction of the <i>Humber</i>	or routeing
Hole.		Gateway OWF has also had	measures.
		some effects.	
Vessels	Due to the construction of	Construction of the	Direct impact
bound to /	Westermost Rough OWF,	Westermost Rough OWF.	associated
from NE	traffic bound to /from the NE	However the majority of	with the
Humber	lane of the Humber TSS has	vessels have not been	construction
TSS.	increased its passing distance	impacted (only extremes of	of a wind
	from the UK east coast and	90 th percentile), and	farm.
	wind farm site, with some	therefore no change to	
	minor displacement of	majority of vessel routeing	
	inshore vessels, see Figure	in the area.	
	7.4.		
	nanges due to other infrastruct	ure or routeing measure char	iges
North east	Pre 2009 TSS traffic was	The amendments to the	Cumulative
approaches	routed into the Humber from	Humber TSS were required	Impact -
to the	three distinct directions:	for the purposes of	Please see
Humber		separating opposing streams	changes due to
through the	 The South East 	of traffic, better managing	wind farm
New Sand	through Rosse Reach;	the flow of traffic in the	construction.
Hole.	 The East through Sea 	general area and thus	
	Reach; and	facilitating the preservation	
	 The North East 	of navigational safety and	
	through New Sand	the protection of the marine	
	Hole.	environment. This is an in	
		combination impact due to	
	Post 2009 the TSS was	the deep water anchorage,	
	extended to the NE.	construction of <i>Humber</i>	
		Gateway OWF (consent	
		application submitted in	
		2008) and the general	
		density of traffic entering	
		the Humber from the north	
		east approaches. See Figure	
		7.3.	

Date: 28.01.2016 **Page:** 44

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

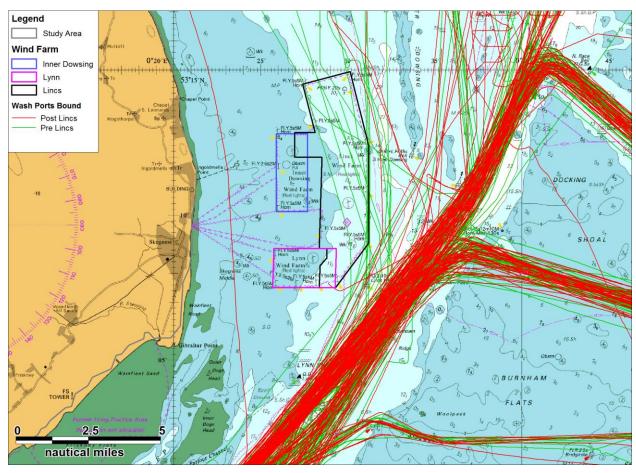
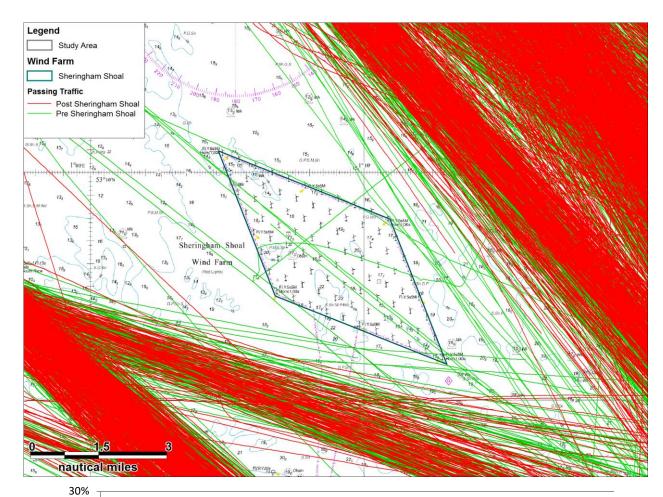



Figure 7.1 Humber – Wash (Inshore Routeing). Post Lynn, Inner Dowsing and Lincs (Jun. 2013) ©

Anatec Influence of UK offshore wind farm instalation on commerical vessel navigation.docx

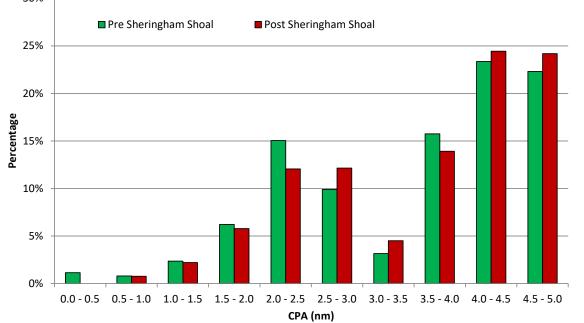
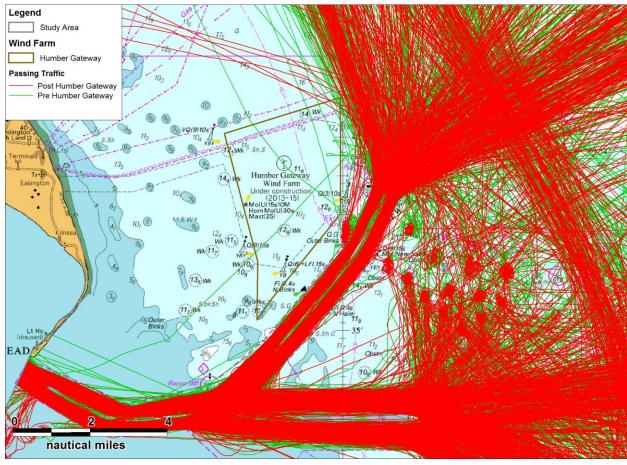


Figure 7.2 NE & SW Passing Traffic. Post Sheringham Shoal (Oct. 2012) ©

Page: 45


Reference: A3726_HA_TN_01

Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

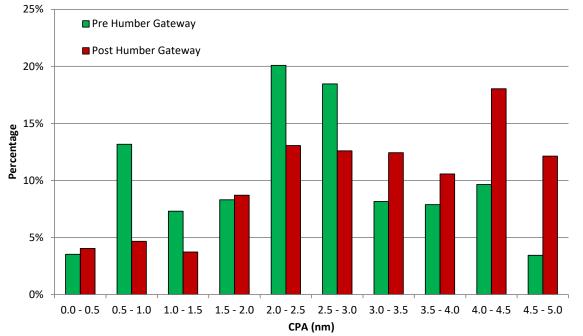
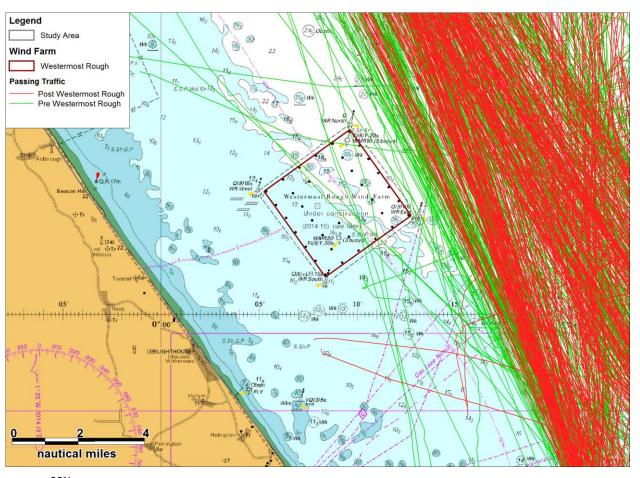



Figure 7.3 NE Approaches to Humber. Post Humber Gateway and Westermost Rough (Jul. 2015) ©

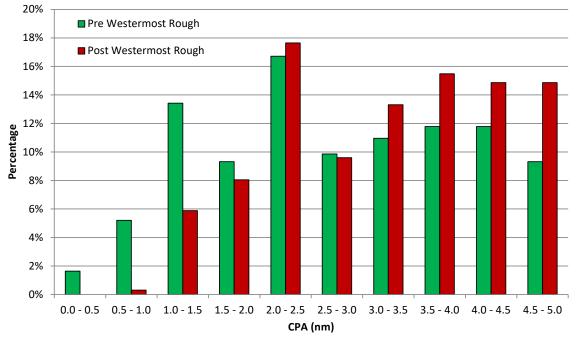


Figure 7.4 Humber NE TSS Traffic. Post Humber Gateway and Westermost Rough (Jul. 2015) ©

Page:

46

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

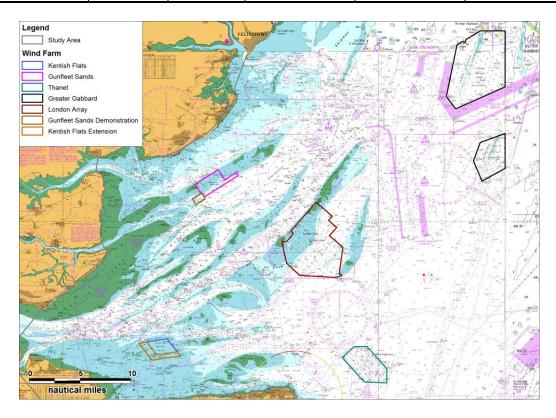
28.01.2016

Date:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title: of Evidence

www.anatec.com


Thames Estuary & Kent Coast Area 8.

Introduction 8.1

Table 8.1 summarises key details of the wind farm developments considered within the Thames Estuary and Kent Coast study area. Following this, Figure 8.1 illustrates the location of the wind farms considered in Table 8.1 and the study area. Within this study area any significant changes to infrastructure or routeing measures have been identified in order to assess the reasoning behind commercial routeing changes in that area.

Table 8.1 Wind Farm Summary – Thames Estuary & Kent Coast

Wind Farm	Capacity (MW)	Turbines	Construction Start Date	Construction End Date	Commissioning Date
Kentish Flats	90	30	22/08/2004	22/08/2005	Dec 2005
Gunfleet Sands	172.8	48	Apr 2008	23/01/2010	15/06/2010
Thanet	300	100	19/03/2009	28/01/2010	23/09/2010
Greater Gabbard	504	140	Jul 2009	09/03/2012	07/08/2013
London Array	630	175	02/01/2011	13/12/2012	06/04/2013
Gunfleet Sands Demonstration	12	2	07/07/2012	18/06/2013	12/09/2013
Kentish Flats Extension	49.5	15	22/10/2014	12/09/2015	02/12/2015

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

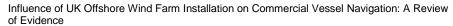
Title: of Evidence

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review

Figure 8.1 Thames Estuary & Kent Coast Overview ©

Table 8.2 summarises the data periods assessed in order to identify the impact of these wind farms on commercial vessel routeing. The status (pre-construction, construction ongoing or post-construction) of each wind farm development considered within this study area during each respective survey period is also indicated.

 ${\bf Summary\ of\ Data\ Periods-Thames\ Estuary\ \&\ Kent\ Coast}$ **Table 8.2**


Period	Duration	Wind Farm Status
1. Sept. / Oct. 2004	28 days	Pre Kentish Flats
December 2004 – Sig	gnificant ch	anges to AIS legislation
2 Mar. 2009	20 days	Post Kentish Flats
2. Mar. 2008	28 days	Pre Gunfleet Sands
		Pre Thanet
		Post Kentish Flats
3. May 2009	28 days	Construction ongoing Gunfleet Sands
	_	Construction ongoing Thanet
		Pre Greater Gabbard
		Post Kentish Flats
4 F 1 2010	20.1	Post Gunfleet Sands
4. Feb. 2010	28 days	Post Thanet
		Construction ongoing Greater Gabbard
		Pre London Array
		Post Kentish Flats
		Post Gunfleet Sands
5. Jun. 2012	28 days	Post Thanet
2.3411. 2012		Construction ongoing Greater Gabbard
		Construction ongoing London Array
		Pre Gunfleet Sands Demonstration
		Post Kentish Flats
		Post Gunfleet Sands
6. Aug. 2013	28 days	Post Thanet
0. Aug. 2013	26 days	Post Greater Gabbard
		Post London Array
		Post Gunfleet Sands Demonstration
		Post Kentish Flats
		Post Gunfleet Sands
		Post Thanet
7. Sept. 2014	28 days	Post Greater Gabbard
	-	Post London Array
		Post Gunfleet Sands Demonstration
		Pre Kentish Flats Extension
		Post Kentish Flats
8. Oct. 2015	28 days	Post Gunfleet Sands
	·	Post Thanet

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

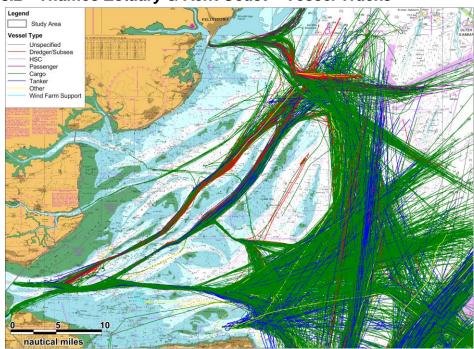
Title:

Client: Hartley Anderson

Period	Duration	Wind Farm Status
		Post Greater Gabbard
	Post London Array	
		Post Gunfleet Sands Demonstration
		Post Kentish Flats Extension

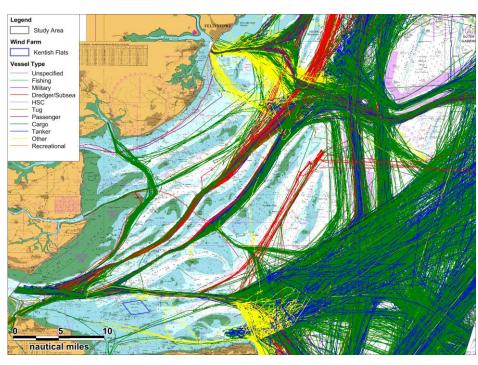
The following sections present the vessel tracks recorded during each survey period (Section 8.2), vessel density grids (Section 8.3) and the main route 90th percentiles (Section 8.4).

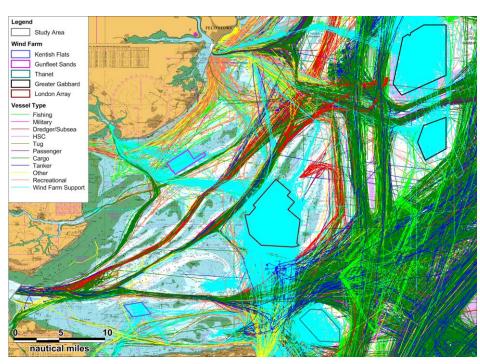
Date: 28.01.2016 **Page:** 49

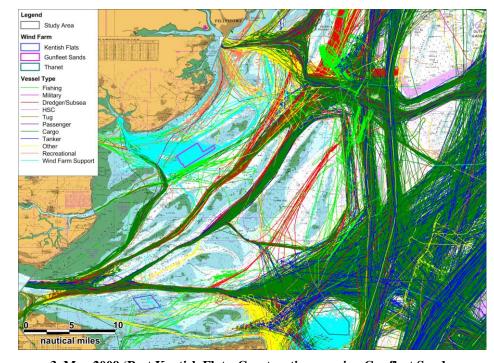

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

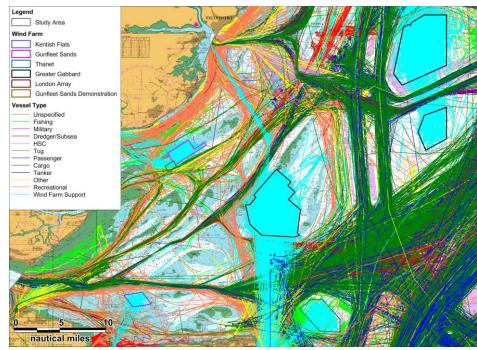
Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence


8.2 Thames Estuary & Kent Coast – Vessel Tracks


1. Sept. / Oct. 2004 (Pre Kentish Flats)


4. Feb. 2010 (Post Kentish Flats, Post Gunfleet Sands, Construction ongoing Thanet and Greater Gabbard, Pre London Array)


2. Mar. 2008 (Post Kentish Flats, Pre Gunfleet Sands, Pre Thanet)

5. Jun 2012 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Construction ongoing Greater Gabbard and London Array, Pre Gunfleet Sands Demonstration)

3. May 2009 (Post Kentish Flats, Construction ongoing Gunfleet Sands, Construction ongoing Thanet, Pre Greater Gabbard)

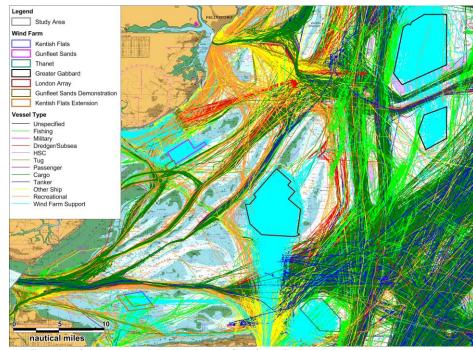
6. Aug. 2013 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration)

Date: 28.01.2016

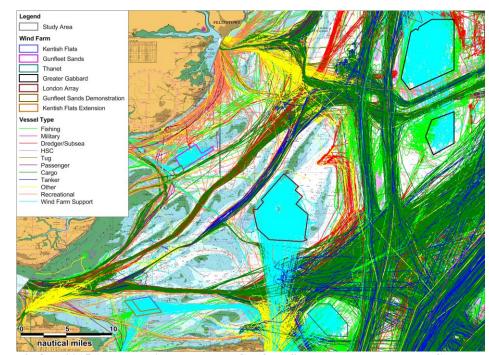
Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Page:


Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence



51

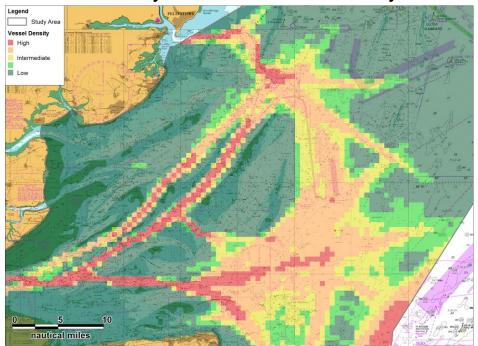
Page:

7. Sep. 2014 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Pre Kentish Flats Extension)

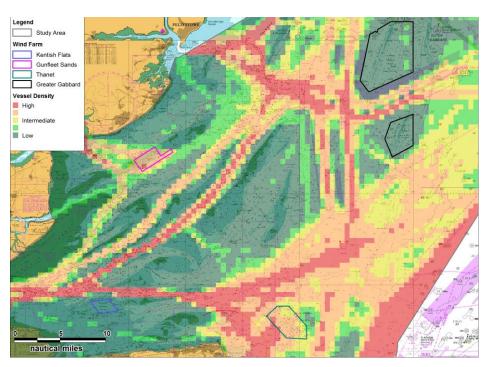
8. Oct. 2015 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Post Kentish Flats Extension)

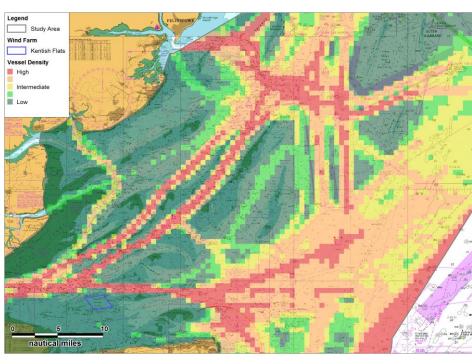
Figure 8.2 Thames Estuary & Kent Coast – Vessel Type ©

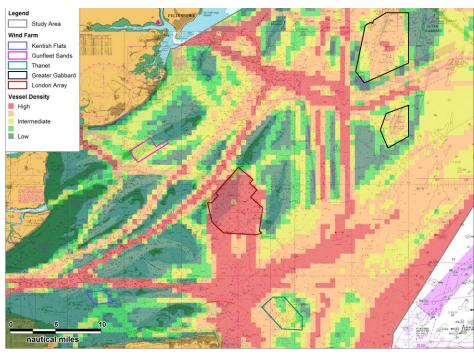
Date: 28.01.2016

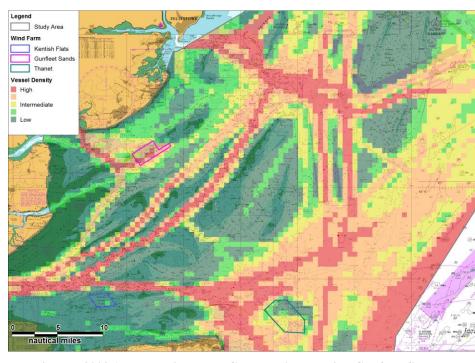

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01




8.3 Thames Estuary & Kent Coast – Vessel Density


1. Sept. / Oct. 2004 (Pre Kentish Flats)


4. Feb. 2010 (Post Kentish Flats, Post Gunfleet Sands, Construction ongoing Thanet and Greater Gabbard, Pre London Array)

2. Mar. 2008 (Post Kentish Flats, Pre Gunfleet Sands, Pre Thanet)

5. Jun 2012 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Construction ongoing Greater Gabbard and London Array, Pre Gunfleet Sands Demonstration)

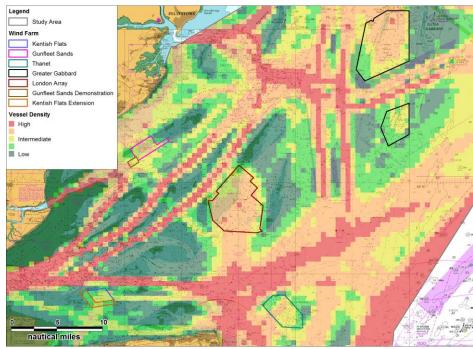
3. May 2009 (Post Kentish Flats, Construction ongoing Gunfleet Sands, Construction ongoing Thanet, Pre Greater Gabbard)

6. Aug. 2013 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration)

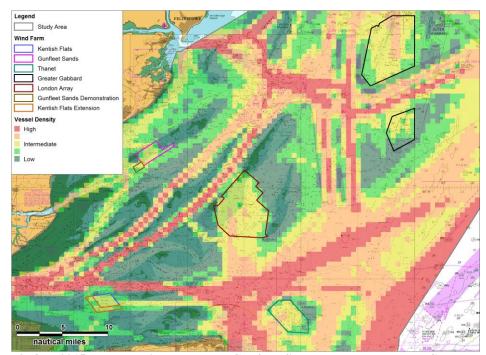
Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01


age:

52


Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

7. Sep. 2014 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Pre Kentish Flats Extension)

8. Oct. 2015 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Post Kentish Flats Extension)

Figure 8.3 Thames Estuary & Kent Coast – Vessel Density©

Date: 28.01.2016

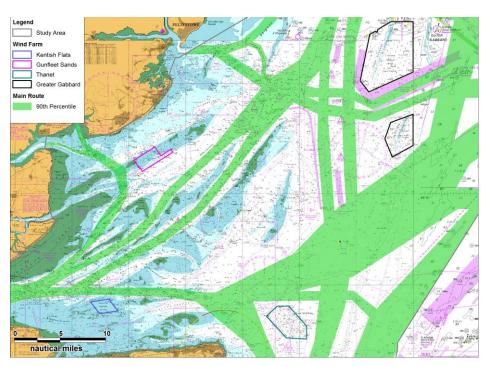
Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

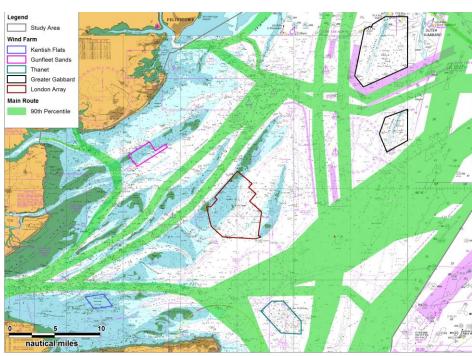
Page:

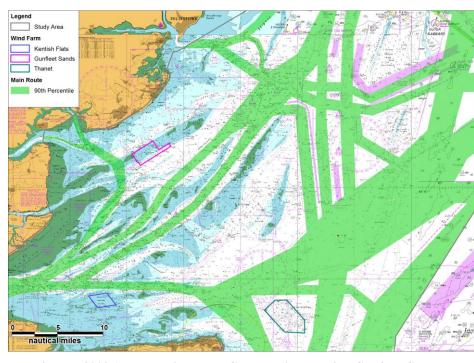
53

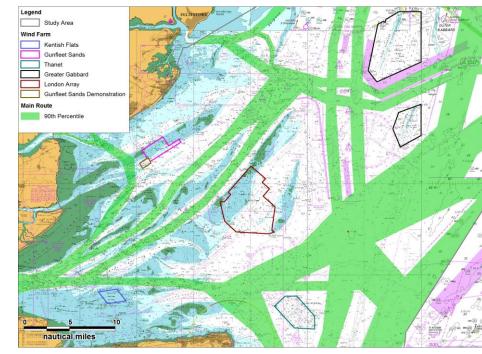
Client: Hartley Anderson


Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

8.4 Thames Estuary & Kent Coast – 90th Percentiles


1. Sept. / Oct. 2004 (Pre Kentish Flats)


4. Feb. 2010 (Post Kentish Flats, Post Gunfleet Sands, Construction ongoing Thanet and Greater Gabbard, Pre London Array)


2. Mar. 2008 (Post Kentish Flats, Pre Gunfleet Sands, Pre Thanet)

5. Jun 2012 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Construction ongoing Greater Gabbard and London Array, Pre Gunfleet Sands Demonstration)

3. May 2009 (Post Kentish Flats, Construction ongoing Gunfleet Sands, Construction ongoing Thanet, Pre Greater Gabbard)

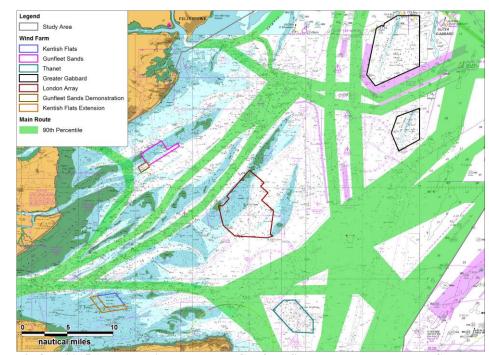
6. Aug. 2013 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard, Post London Array, Post Gunfleet Sands Demonstration)

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx


Reference: A3726_HA_TN_01

200:


Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

7. Sep. 2014 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Pre Kentish Flats Extension)

8. Oct. 2015 (Post Kentish Flats, Post Gunfleet Sands, Post Thanet, Post Greater Gabbard. Post London Array, Post Gunfleet Sands Demonstration, Post Kentish Flats Extension)

Figure 8.4 Thames Estuary & Kent Coast – 90th Percentiles©

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Page:

55

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

56

Thames Estuary & Kent Coast – AIS Analysis

The following subsection presents analysis (vessel size and average speed) of the AIS data collected throughout each survey period for the Thames Estuary & Kent Coast study area. The purpose of this analysis is to identify wider trends in the size and movement of vessels following the development of offshore wind farms within the Thames Estuary & Kent coast sea area.

Figure 8.5 presents the distribution of vessel lengths recorded throughout each survey period. It should be noted that throughout all survey periods, approximately 3.4% of vessels recorded within the study area did not specify a vessel length and have been excluded from the analysis.

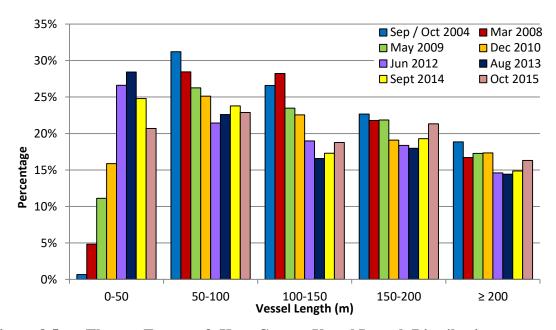


Figure 8.5 Thames Estuary & Kent Coast – Vessel Length Distribution

The relative proportion of vessels measuring <50m in length has steadily increased over the survey periods, peaking in Aug. 2013 (28.4% of marine traffic). There has also been a corresponding decrease in the proportion of larger vessels (50-100m, 100-150m and 150-200m) recorded within the study area. As per other study areas, these changes are again due to the increased uptake of AIS in smaller vessels in later years and the increased number of operational wind farm support vessels.

The prevalence of very large vessels (≥200m) within the study area has not altered significantly over the survey periods, average of 16.3% of marine traffic across all survey periods. This is most likely due to the high number of Deep Water Route (DWR) routeing measures and large commercial ports (e.g. Felixstowe, Harwich, London Gateway) within the study area that are tailored towards very large vessels.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review

of Evidence

Page:

Figure 8.6 presents the distribution of average vessel speeds recorded throughout each survey period. It should be noted that speed information was not available for AIS data recorded throughout Mar. 2008 and May. 2009. For all other survey periods, speed information was not available for approximately 9.4% of vessels which have been excluded from the analysis.

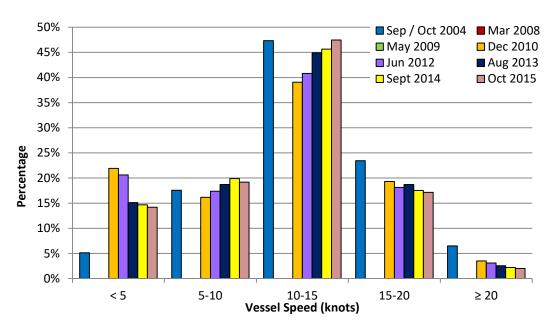


Figure 8.6 Thames Estuary & Kent Coast – Average Speed Distribution

The relative proportion of vessels transiting at speeds of 5-10 knots (peak of 19.9%, Sep. 2014) and 10-15 knots (peak of 47.4%, Oct. 2015) has increased throughout the survey periods. There has also been a corresponding decrease in the proportion of vessels recorded travelling at very slow speeds (< 5 knots) and high speeds (15-20 knots and 20 knots).

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title: of Evidence

anatec

Thames Estuary & Kent Coast – Summary of Changes 9.

Round one and Round two wind farms are generally of a smaller capacity, smaller turbine size and developed within near shore waters upon sand banks and shoals. These smaller developments are generally areas that the large majority of commercial traffic avoids. Therefore some wind farms have been developed within the Thames Estuary and Kent Coast study area that have no noticeable impact on commercial vessel routeing within the area, e.g. Kentish Flats, Gunfleet Sands, London Array, Kentish Flats Extension and Gunfleet Sands Demonstration OWFs. Figure 9.1 illustrates vessel tracks recorded prior to and post construction of each of these respective wind farms.

As already identified within this report fishing activity and recreational transits likely to be impact by these near shore developments have not been considered.

London Array, at the time of writing, is the largest fully commissioned offshore wind farm. A number of commercial vessels were noted to have been displaced when assessing the pre and post AIS data. However the actual number of vessels requiring alterations was considered to be insignificant with the majority of commercial vessels remaining within defined deeper water channels, thus avoiding the shallower water area within which London Array was constructed.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

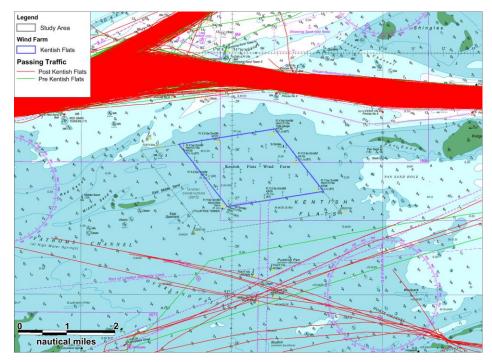


Figure 10.1.1 Princes Channel. Post Kentish Flats (Mar. 2008)

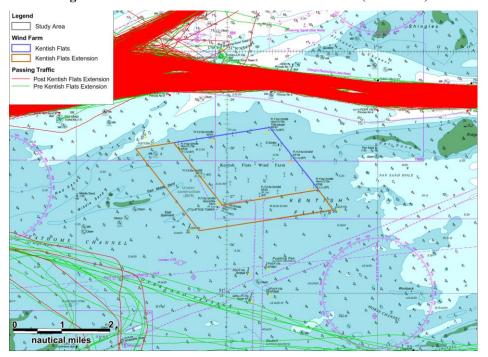


Figure 10.1.2 Princes Channel. Post Kentish Flats & Kentish Flats Extension (Oct. 2015)

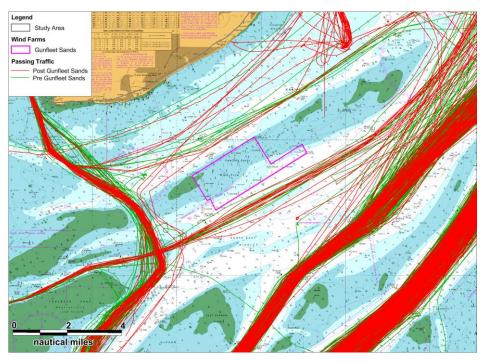


Figure 10.1.3 Passing Traffic. Post Gunfleet Sands (Dec. 2010)

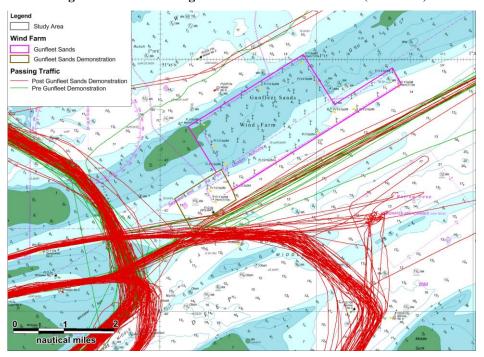


Figure 10.1.4 Passing Traffic. Post Gunfleet Sands and Gunfleet Sands Demonstration (Aug. 2013)

Figure 9.1 Wind Farms developed within Thames Estuary with no noticeable Impact on Commercial Vessel Routeing©

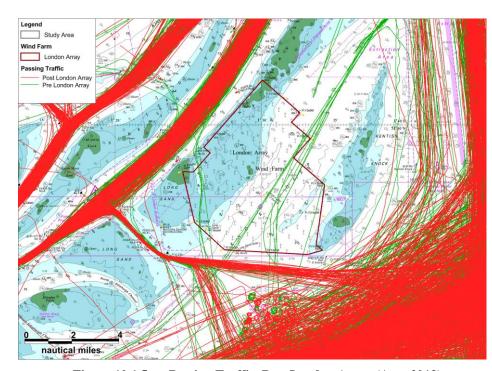


Figure 10.1.5 Passing Traffic. Post London Array (Aug. 2013)

Page: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Client: Hartley Anderson

of Evidence

Page:

Table 9.1 summarises the main commercial routeing changes identified within the Thames Estuary and Kent Coast study area from the first data collected in 2004 through to 2015. It does not specifically identify operators unless that operator is the sole or main user of an individual route; and therefore the specific details of a route prior to a change may not always be clear.

Table 9.1 Summary of Routeing Changes Identified in the Thames Estuary & Kent **Coast Area**

Route	Identified Change	Main Reason For Change	Other
Impacted			Comments
	Changes due to win	d farm construction	
Route inwards and outwards from the southern Thames Estuary	Figure 9.2 shows that the routeing around the Thanet OWF has now become more pronounced and formalised into defined 90 th percentiles, rather than the previous unrestricted movement of traffic across the open area of sea.	Variations in density between the 2008 data and the 2015 data (Figure 9.2) show an increase in density associated with both the route alteration and formalisation of traffic in the area (due to <i>Thanet OWF</i>). Also associated with general increases in traffic numbers and carriage of AIS systems within the area. Of particular note at <i>Thanet OWF</i> is the use of a north cardinal buoy to the north of this site resulting in the majority of traffic (90.3%) passing at least 1.0 nm from	Direct Impact - Associated with the construction of the wind farm.
Route to the East of Greater Gabbard OWF – Vessels transiting from the northern North Sea southwards	Route shifted further to the east due to an increased passing distance from the Outer Gabbard East Cardinal Buoy. Although the majority of north to south traffic has always passed to the east of the Outer Gabbard Buoy, including within the NRA undertaken in 2005, Figure 9.3 now shows a distinct shift in traffic increasing their CPA from the Outer Gabbard Buoy.	the site boundary. Construction of the <i>Greater Gabbard OWF</i> and implementation of the Sunk VTS and routeing measures. Likely due to the presence of the wind farm but also the traffic exiting from between the north and south portions of the wind farm, which vessels transiting in a north / south route prefer to distance themselves from any potential increased risk associated with crossing vessels.	Direct Impact - Associated with the construction of the wind farm.

Date: 28.01.2016

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

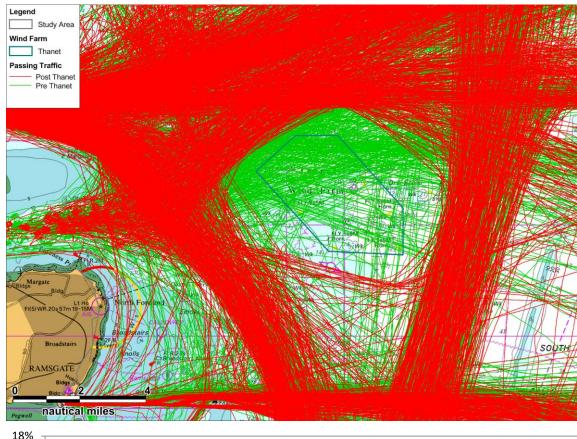
Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:

www.anatec.com

Route	Identified Change	Main Reason For Change	Other
Impacted			Comments
Route	Although already dictated by	Construction of the <i>Greater</i>	Cumulative
inwards and	the sand banks located to the	Gabbard OWF and	Impact -
outwards to	north and south of the	implementation of the Sunk	Please see
the East from	existing route (Inner Gabbard	VTS and routeing measure.	changes due to
the Sunk	and The Galloper), the Sunk		other
Area.	routeing measure and		infrastructure
	construction of the wind farm		or routeing
	have formalised the traffic		measures.
	into distinct routes.		
Cl	nanges due to other infrastruct	ure or routeing measure char	iges
Several	In July 2007 a new Sunk	In July 2007 a new Sunk	Cumulative
routes on the	IMO routeing system was	IMO routeing system	Impact -
inward and	established which	including TSS's and	Please see
outward	significantly altered traffic	precautionary areas were	changes due to
approaches	routeing within the area.	established in order to more	wind farm
to the Sunk		effectively manage traffic	construction.
area.		which previously converged	
		on the Sunk Light Buoy.	
		This change was due, in the	
		majority, to the increased	
		traffic in the area bound	
		for/from the Thames	
		Estuary, Harwich and	
		Felixstowe but also due to	
		the planned construction of	
		the Greater Gabbard OWF	
		which was submitted for	
		consent in 2005.	

Date: 28.01.2016 Page: 61


Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc: navigation.docx

A3726_HA_TN_01 Reference:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

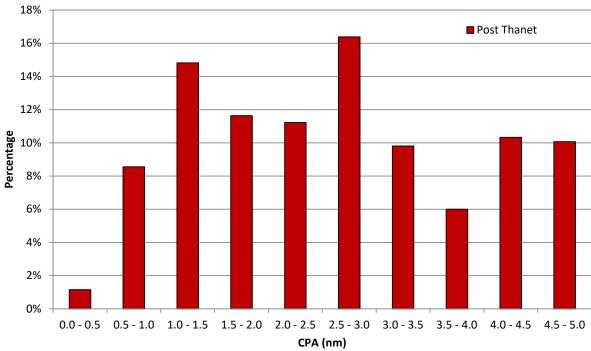


Figure 9.2 Southern Thames Estuary. Post Thanet (Jun. 2012) ©

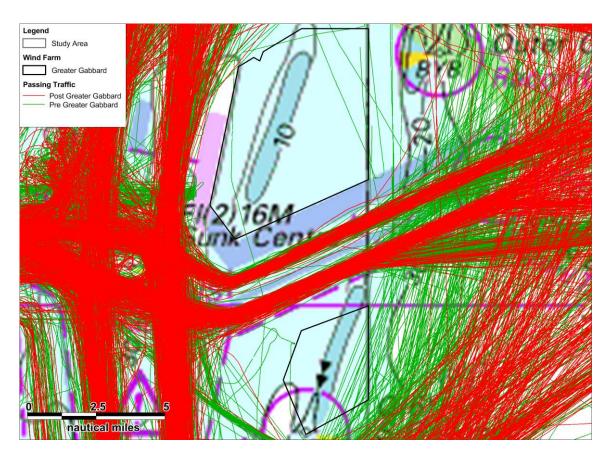


Figure 9.3 Northern North Sea – Southwards. Post Greater Gabbard (Aug. 2013) ©

Page: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel navigation.docx

Reference: A3726_HA_TN_01

Client: Hartley Anderson

Title:

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

NRA Case History Assessment 10.

The following section compares the accuracy of predicted commercial routeing changes (predicted as part of the NRA) with the resultant actual vessel track changes following the construction of wind farms within the northern Irish Sea.

10.1 Post Barrow

The Walney OWF NRA (Anatec, 2006) predicted that following the construction of the Barrow offshore wind farm vessels operating on the Fleetwood – Larne ferry service, "...will maintain a 500m separation from the Barrow site and keep South of the South Cardinal buoy marking the SW corner of the development site, which was indicated to be the likely outcome from the consultation with commercial users. There is some uncertainty associated with this due to the potential impact on ship radar..."

Figure 10.1 presents the predicted main route 90th percentile from the Walney OWF NRA overlaid with vessel tracks recorded (Oct. 2006) following the construction of the Barrow OWF.

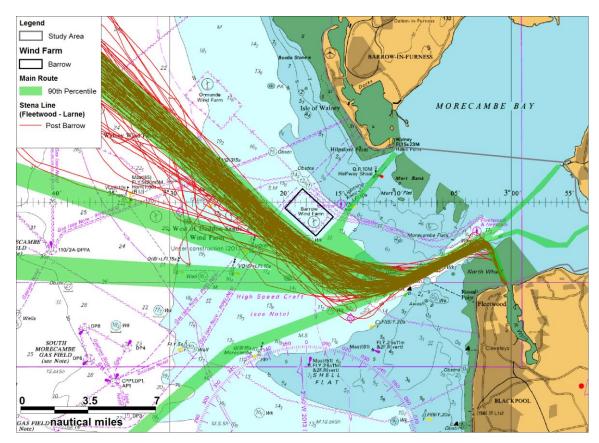


Figure 10.1 Post Barrow - NRA Comparison©

Overall it can be concluded that there is very good agreement between the predicted main route 90th percentile and the actual vessel tracks of the Fleetwood – Larne ferry service. Postconstruction vessels were recorded passing at a minimum of approximately 620m (0.3nm)

Date: 28.01.2016 Page: 63

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review

of Evidence

from the Barrow offshore wind farm site boundary thus representing an increase from the predicted 500m separation. However, overall the predicted impact of the Barrow offshore wind farm on commercial vessel routeing can be considered to be very accurate.

10.2 Post Barrow, Ormonde, Walney and West of Duddon Sands

In addition, the Walney OWF NRA (Anatec, 2006) assessed the cumulative impact of the Barrow, Ormonde, Walney and West of Duddon Sands offshore wind farms on commercial vessel routeing.

Figure 10.2 presents the predicted main route 90th percentiles from the Walney OWF NRA overlaid with vessel tracks recorded (Jan. 2015) following the construction of the West of Duddon Sands OWF, the last wind farm to be constructed within the northern Irish Sea study area.

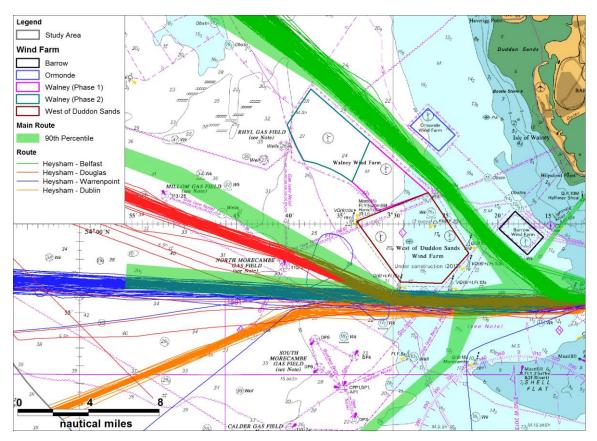


Figure 10.2 Post Barrow, Ormonde, Walney & West of Duddon Sands – NRA Comparison©

The following list summarises the overall level of agreement between the predicted main route 90^{th} percentiles and actual vessel tracks:

• Heysham – Belfast: Overall good agreement. However there are some minor differences: predicted 90th percentile slightly wider whilst passing through Barrow and

Date: 28.01.2016 **Page:** 64

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Title:

Client: Hartley Anderson

of Evidence

Page:

Ormonde / Walney and West of Duddon Sands channel when compared to actual track data. Vessels recorded in actual track data also maintain steady course northeast / southwest whilst approach / passing northern extent of Walney OWF whereas 90^{th} percentile predicted a slight course alteration at this point.

- Heysham Douglas. Overall moderate agreement. Predicted 90th percentile and actual track data show good agreement while passing to the south of West of Duddon Sands OWF. However, 90th percentile predicted that traffic would pass north of both the North Morecambe and Millom gas platforms whereas vessels passed north of the North Morecambe platform and south of the Millom platform in reality.
- Heysham Warrenpoint. Overall good agreement. Only difference relates to passing distance from North Morecambe gas platform: 90th percentile predicted vessels would pass in closer proximity (minimum of 1,000m) to platform compared to actual track data (minimum of 1,750m).
- Heysham Dublin. Overall poor agreement. 90th percentiles predicted that traffic would pass to the south of platforms associated with the South Morecambe Gas Field and north of Shell Flats- vessels previously followed this route. However, actual track data indicates that vessels pass to the north of South Morecambe Gas Field and align with other commercial traffic whilst passing the West of Duddon Sands offshore wind farm. However, this is due to a change in the operator of this route (Norfolkline to Seatruck Ferries), see Figure 3.2.1.

It can therefore be concluded that for the majority of commercial routeing predictive work carried out as part of NRAs has been of a good standard showing good / moderate agreement with resultant shifts in actual vessel traffic. However, as with any predictive work there is a degree of uncertainty and commercial traffic alterations can occur for a number of reasons (e.g. change of vessel operator, master preference, changes to routeing measures, etc.) which cannot be accurately considered during predictive re-routeing, as demonstrated by the case of the Heysham – Dublin vessel routeing changes.

Date: 28.01.2016

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

anatec

11. Annual and Seasonal Increases in the Traffic Densities within UK Waters.

The Marine Management Organisation (MMO) undertook a report in June 2014 titled *Mapping UK Shipping Density and Routes from AIS* (MMO, 2014). The report assessed the current level of shipping within the UK, including analysis of vessel types and size. In relation to this assessment, the report also assessed seasonal and annual data sets to demonstrate any changes in traffic densities through seasonal variations. Figure 11.1 and Figure 11.2 (taken from the report) illustrate that traffic levels around the UK coast (especially around the south coast of the UK, Dover Straits etc.) have decreased. However, in proximity to areas of offshore wind farm development, traffic movements have significantly increased, including within the summer period.

The report states "Increases in vessel transits can be seen between Ramsgate and the offshore wind farm site of London Array (the construction phase of this wind farm completed in December 2012). Further increased traffic can be seen from North Norfolk to Sheringham Shoal offshore wind farm, and to the Lincs offshore OWF." Table 6.1 and Table 8.1 summarise the construction start and end dates for each of the highlighted wind farms, which coincide as expected with the increase in traffic. These findings compare to the notable traffic increases identified within this report, when a wind farm is under construction.

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

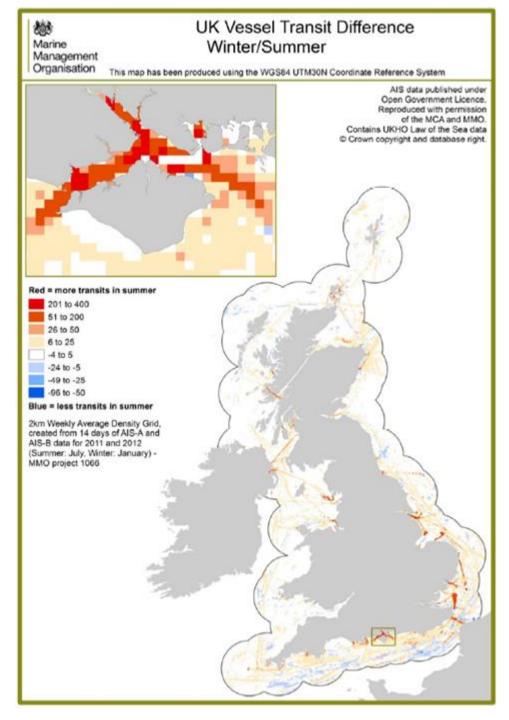


Figure 11.1 Seasonal Increases Associated with Wind Farm Source: MMO, 2014.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Title:

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review

of Evidence

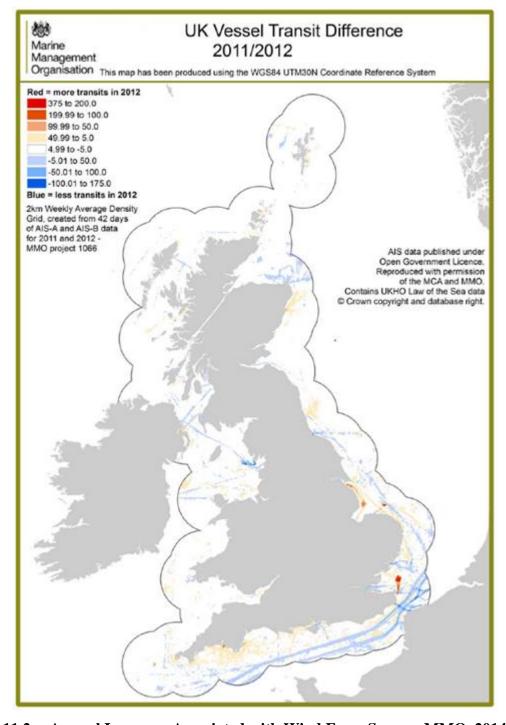


Figure 11.2 Annual Increases Associated with Wind Farm Source: MMO, 2014.

Date: 28.01.2016 **Page:** 68

Doc: Anatec Influence of UK offshore wind farm installation on commercial vessel

Client: Hartley Anderson

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review Title:

of Evidence

12. Summary and Key Conclusions

This section reviews the findings of this report and summarises the main route changes identified.

12.1 Summary of Route Changes

The following table (Table 12.1) reviews all findings from each study area, noting the main cause and effect of each identified route change.

Table 12.1 Summary and Key Conclusions

Impact	Causation	Route	Effect	Reference	
	Northern Irish Sea				
Direct	Barrow OWF	Fleetwood – Larne	Minor route alteration - for single route to pass south of the constructed site.	Figure 3.1.1	
In Combination	Barrow, Ormonde, Walney 1 and 2	Glasson Dock – Ramsey (Isle of Man)	Minor route alteration - for single operator to pass between the constructed sites.	Figure 3.1.2	
In Combination	Barrow, Ormonde, Walney 1 and 2	Heysham – Belfast	Increased passing distance (min. of 0.6nm) – minor route alteration for single route to allow increased passing distance to north east of the constructed Walney site.	Figure 3.1.3	
Direct	West of Duddon Sands OWF	Heysham – Douglas	Minor route alteration - for single route to pass south of the constructed site.	Figure 3.1.4	
Direct	West of Duddon Sands OWF	Heysham – Belfast (Alternate)	Minor route alteration - for single adverse weather route to pass south of the constructed site.	Figure 3.1.5	
Independent Change	Change of Vessel Operator (assumed) *although not specifically the purpose of this report has been included to provide context of routeing changes.	Heysham – Dublin	Significant route alteration Change in vessel operator instigated a change in vessel routeing preference: Change in passing approach to South Morecambe and	Figure 3.2.1	

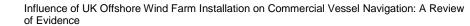
Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

anatec

Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence Title:


Impact	Causation	Route	Effect	Reference
•			Calder Gas Fields.	
Independent Change	Change of Vessel *although not specifically the purpose of this report has been included to provide context of routeing changes.	Heysham - Warrenpoint	Minor route alteration - Change in vessel instigated a change in vessel routeing preference.	Figure 3.2.2
		outhern Irish S	ea	<u> </u>
Direct	Gwynt y Mor OWF	Liverpool Bay – Penrhyn (Dredging)	Minor route alteration – for single operator to pass south of the site	Figure 5.1
Cumulative	Implementation of Liverpool Bay TSS, Gwynt Y Mor and general traffic increases in the area.	Mersey Ports Bound	Multiple but minor route alterations – vessels both using and entering TSS in compliance with COLREGs Rule 10.	Figure 5.2
		Humber		1
In Combination	Lynn OWF, Inner OWF Dowsing and Lincs OWF	Humber – Wash (Inshore Routeing)	Increased passing distance (0.9nm) – minor route alteration (approximately 3°) for single route to allow increased passing distance from the constructed site.	Figure 7.1
Direct	Sheringham Shoal OWF	NE and SW Passing Traffic	Increased passing distance – minor route alteration for multiple vessels to allow increased passing distance from the constructed site – 91.3% of traffic passes in excess of 1.5nm.	Figure 7.2
Cumulative	Humber Approaches TSS, Humber Gateway OWF, deep water anchorage and general traffic increases in the area.	NE Approaches to Humber	Multiple but minor route alterations – vessels both using and entering TSS in compliance with COLREGs Rule 10.	Figure 7.3

Date: 28.01.2016 Page: 70

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Title:

Client: Hartley Anderson

anatec

www.anatec.com

Impact	Causation	Route	Effect	Reference
Direct	Westermost Rough OWF	NE - Humber	Increased passing distance – minor route alteration for multiple routes to allow increased passing distance from the constructed site – 99.7% of traffic passes in excess of 1.0nm.	Figure 7.4
	Thame	es Estuary & Ke	nt Coast	
Direct	Thanet OWF	Southern Thames Bound	Minor route alterations – multiple but minor route alterations and route formalisation.	Figure 9.2
Direct	Greater Gabbard OWF	Northern North Sea – South	Increased passing distance – minor route alteration (approximately 2°) for single route to allow increased passing distance to east of the constructed site and outward bound traffic from the Sunk Routeing Measure.	Figure 9.3
Cumulative	Sunk VTS and Routeing Measure, Greater Gabbard OWF and	Northern North Sea – South	Multiple but minor route alterations – vessels both using and entering TSS in compliance with COLREGs Rule 10.	Figure 9.3

12.2 Key Conclusions Northern Irish Sea

Since 2004 there has been a notable increase in both AIS carriage and coverage. Within the northern Irish Sea the majority of commercial vessels are RoRo, passenger ferry or general cargo vessels (excluding wind farm support); with a visually lower proportion of tanker tracks compared to other areas of the UK. AIS analysis also shows an increase in vessels less than 50m length overall which is associated within the use of wind farm support vessels within the area (both construction and operation phases); however this has not impacted the average speed of vessels over the study period. (*Note comments in section 2.5 with regards to AIS uptake impacting on vessel size distributions*).

Date: 28.01.2016 **Page:**

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Client: Hartley Anderson

The majority of routeing changes within the area are linked to RoRo or passenger vessel movements and are associated with either the development of offshore wind farms, or localised operator / vessel changes. The most frequent area where changes were noted included the approaches to the river Mersey (port of Liverpool) for vessels bound to the Isle of Man, the Republic of Ireland or Northern Ireland. Other infrastructure could also be seen to impact on vessel routeing decisions (i.e. South Morecambe and Calder Gas Fields) in that vessels were seen to be altering courses based on which side they will pass the offshore installation, but overall could not be demonstrated to significantly impact the routeing of vessels in isolation i.e. not a significant course alteration to increase journey length or time

Changes were generally noted as minor route alterations or increased passing distance as shown in Table 12.1.

12.3 Key Conclusions Southern Irish Sea

As with the northern Irish Sea study area since 2004 there has been a notable increase in both AIS carriage and coverage. AIS tracks visually show within the area a mix of vessels types including cargo, tanker as well as RoRo and passenger ferries as seen within the northern Irish Sea. Since 2004 the popularity of ports within the river Mersey has dictated traffic movements within the southern Irish Sea area. However the development of the Douglas Platform in 2006 and the Liverpool Bay TSS in 2009 have significantly formalised traffic routeing. Although the TSS was developed for a number of traffic management issues in that area, it is assumed that Gwynt y Mor OWF (which was in the early stages of planning pre 2009) did contribute to its implementation and has further dictated traffic movements (given its proximity to the southern boundary of the TSS) following its construction and commissioning. Therefore in summary routeing changes in the southern Irish Sea area are in combination impacts associated with the development of the Douglas platform, implementation of the Liverpool Bay TSS and the construction of Gwynt y Mor OWF as well as the general increases in traffic movement to the ports within the river Mersey.

It was noted that smaller, more inshore wind farms located in shallow waters have not impacted commercial vessel movements post their commissioning.

12.4 Key Conclusions Humber

AIS data generally shows a mix of traffic types within the wider Humber area: Within the Wash area there is a higher proportion of cargo vessel traffic compared to tankers. Tankers were recorded generally transiting in deeper water routes (farther offshore) than inshore coastal routes. Since 2006 there have also been some distinctive beach replenishment activities which are identified by areas of dense dredger traffic movement between dredge areas and the coastline. These dense areas of traffic have not been considered commercial routes given their limited temporal operation. As with other areas, AIS shows an overall increase in the number of vessels less than 50m length operating, which is associated with wind farm development, but no significant changes in speed.

The Humber TSS was established in 2009; this was not solely due to the development of the Humber Gateway OWF but was instead a combination of general traffic increases in the area,

Date: 28.01.2016 Page: 72

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review

of Evidence

the deep water anchorage and the proposed wind farm. This saw the traffic, post 2009, alter into more defined routes rather than wider transits of traffic (based on measurement of percentiles). Generally route changes within this area have been noted as increasing of CPAs (directly associated with development of a wind farm) or minor route adjustments (cumulative), due to changes within the wider navigable area.

There are Round 1 wind farms within the southern Humber study area that are nearshore and therefore out with areas where commercial navigation generally occurs. However when Round 1 developments are considered in combination with Round 2 developments these have caused some isolated vessel displacement, as identified within Table 12.1, as well as increased CPAs for the main commercial vessel routes in the area.

12.5 Key Conclusions Thames Estuary & Kent Coast

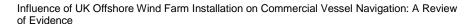
The Thames Estuary and its approaches is a dense area for commercial traffic which generally includes a wide mix of vessel types. The traffic is generally dictated by water depths with a number of charted routes inward/outward between shallower sand banks. In 2007 a new routeing system at the Sunk, which included separation schemes, traffic organisation and vessel traffic services (VTS), was implemented to safely manage increased traffic volumes. The implementation of the Sunk routeing system is assumed not to be as a direct result of the development of the Greater Gabbard OWF: The implementation of the Sunk routeing system is assumed to be one of many cumulative factors within the Humber area. Therefore routeing changes around this area are of a cumulative nature.

The Thanet OWF is an example of where traffic has been significantly altered, but not significantly impacted around an offshore wind farm development. Traffic prior to the development of Thanet OWF was generally unrestricted. Post development (which includes the implementation of a north cardinal buoy to the north of the site) the traffic has become more organised into denser routes and resulted in minor rerouteing for some vessels. The north cardinal buoy has also had notable positive effects by ensuring that most traffic maintains a 1nm passing distance from the development boundary.

As detailed in Section 9, London Array is the largest fully commissioned offshore wind farm (at the time of writing). A number of commercial vessels were noted to have been displaced when assessing the pre and post AIS data. However the actual number of vessels requiring alterations was considered to be insignificant with the majority of commercial vessels remaining within defined deeper water channels, thus avoiding the shallower water area within which London Array was constructed.

As with other areas there has been a noticeable increase in the prevalence of vessels less than 50 metres in length, within no notable changes to vessel speed.

12.6 Case History Assessment Summary


A sample of project NRAs (those available) have been assessed to identify any notable patterns in their conclusions and the routeing identified as part of this report. From this assessment it can be concluded that reasonable re-routeing assumptions can be identified

Date: 28.01.2016 **Page:** 73

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel

Title:

Client: Hartley Anderson

anatec

during the assessment stage of wind farm development given the consideration of other factors (such as other infrastructure or water depths) that dictate vessel movement. It is also noted that factors, such as change of operators / vessels, resulting in routeing changes cannot be predicted.

Based on experience of larger scale developments (Round three) the definition of post development routeing (during the assessment stage) is likely to become more difficult as wind farms are generally being constructed within deeper water and unrestricted areas where more and varied routeing options are available. However what is likely is that routeing changes, both direct and in combination will occur and that vessels size distribution with the UK waters will change to reflect the larger number of wind farm support vessels that are active. Furthermore significant increases in the density of traffic will be seen over short periods (likely over a period of seasonal construction) during the actual construction phase of future Round three developments.

Date: 28.01.2016 Page:

Anatec Influence of UK offshore wind farm instalation on commerical vessel Doc:

Client: Hartley Anderson

Title: Influence of UK Offshore Wind Farm Installation on Commercial Vessel Navigation: A Review of Evidence

www.anatec.com

anatec

13. References

Anatec (2005). Greater Gabbard Offshore Wind Farm Project. Anatec, 7 September 2005.

Anatec (2006). Navigational Risk Assessment Walney Offshore Windfarm. Anatec, 31 January 2006.

Anatec (2012). Strategic assessment of impacts on navigation of shipping and related effects on other marine activities arising from the development of Offshore Wind Farms in the UK REZ. 25th June 2012.

IMO (2016). Convention on the International Regulations for Preventing Collisions at Sea, 1972 (COLREGs). Accessed 21st January 2016.

[http://www.imo.org/en/About/conventions/listofconventions/pages/colreg.aspx]

IMO (2016). Regulations for the Carriage of AIS – Regulation 19 Safety of Life at Sea Convention (SOLAS) Chapter V Carriage requirements for shipborne navigational systems and equipment. Accessed 21 January 2016.

[https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/317770/1066.pdf]

MCA, (2008). Marine Guidance Note (MGN,) 371. Offshore Renewable Energy Installations (OREIs) - Guidance on UK Navigational Practice, Safety and Emergency Response Issues. Maritime and Coastguard Agency.

MMO, (2014). Mapping UK Shipping Density and Routes. June 2014. Accessed 15 January 2016.

[https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/317770/1066.pdf]

Date: 28.01.2016 **Page:** 75

Doc: Anatec Influence of UK offshore wind farm instalation on commercial vessel