

North London Anaerobic Digestion Facility

Site Environmental Permit: Attachment 5 - Site Condition Report

February 2016

1.0 SITE DETAILS	
Name of the Applicant	Agrivert Ltd.
Activity Address	North London AD Facility
	Coursers Farm
	Coursers Rd
	St Albans
	Hertfordshire
	AL4 0PG
National Grid Reference	National Grid Reference TL 204 048
Document Reference	Attachment 5 - Site Condition Report to support environmental permit application for North London AD – February 2016
Dates for Site	
Condition Report at	
and Surrender	
Document References	See Attachment 4 – Site Plans for Site Location and Site Layout plans
for Site Plans	
boundaries)	
2.0 CONDITION OF TH	E LAND AT PERMIT ISSUE
Environmental Setting	Location and Current Land Use
	The proposed Anaerobic Digestion (AD) plant is located on land used for the
	grazing of livestock and is part of an agricultural unit known as Coursers
	Farm, part of the Tyttenhanger Estate. Coursers Farm, part of Tyttenhanger
	Estate is located approximately 2km north of Junction 22 (London Colney)
	southwest of the village of the Colney Heath at OS grid reference TL 204
	048. It is located within the District of Hertsmere and the Parish of Ridge.
	The site, measuring approximately 5.2 hectares (ha), is bordered to the west
	by Tyttenhanger Quarry which is operated by Lafarge Aggregates. The site
	is bordered to the east by two large agricultural barns, fields and yards
	which form the Coursers Farm complex. A footpath runs through Coursers
	application site lies Tyttenhanger Stream Coursers Road forming the
	northern boundary of the application site. links Colney Heath with the Dell
	roundabout and the M25. In addition, an electricity substation is located

adjacent to the northwest corner of the application site.

Surrounding Land Use

The site is bordered to the east by two large agricultural barns, fields and yards which form the Coursers Farm complex. A footpath runs through Coursers Farm, to the east of the site, and approximately 100m from the southern boundary of the application site lies Tyttenhanger Stream. Coursers Road, forming the northern boundary of the application site, links Colney Heath with the Bell roundabout and the M25. In addition, an electricity substation is located adjacent to the northwest corner of the application site. Planning permission for a new grain store at Coursers Farm was granted by Hertsmere Borough Council in April 2004 (planning permission reference TP/03/0870). As part of this planning permission screening bunds were constructed from imported inert material and topsoil stripped from the site. The site is also used for livestock grazing. Two ponds are present on the site

Geology

The geological setting of this area is shown in detail on plan titled: "Geology – Extract of British Geological Survey Sheet 239 Hertford". The site is underlain by boulder clay which overlies more extensive deposits of sand and gravel as demonstrated by the presence of Tyttenhanger Quarry adjacent to the site.

Hydrogeology

The site is located within the catchment for the River Colne. The majority of the ponds in this area are underlain by boulder clay, reflecting the lower permeability of the subsurface strata. They are expected to be ephemeral features fed by rainfall runoff from adjacent land.

Hydrology

The site is located within the outer catchment for the defined Source Protection Zone (SPZ) for two abstractions for public water supply in the vicinity of Colney Heath (some 1.5km to the north-northwest and northnortheast of the site).Groundwater was not encountered within the excavations or probeholes.

Examination of the EA's database of Public Water Supply Abstraction indicates the site is not located within any defined groundwater Source Protection Zones (SPZ).

Ecology

The ecological desk study revealed that the site is not covered by any statutory nature conservation designations. There are no internationally designated sites present within 5km, however there are two statutorily

designated sites within a 2km radius. These are;

Redwell Wood Site of Special Scientific Interest (SSSI) is a broadleaved, mixed and yew woodland situated within 2km of the site; and

Colney Heath Local Nature Reserve (LNR) contains a remnant of the heath vegetation community that used to be extensive in Hertfordshire, and is located within 0.5km of the site boundary.

The desk study has identified 28 Local Wildlife Sites within a 2km radius of the site. These are; Smallford Pit, Knight's Wood, Tyttenhanger Gravel Pits, St. Mark's Churchyard and Graveyard, River Colne (SW of Colney Heath), St. Mark's Close (London), Colney Heath Common, Colney Heath Farm Meadows, Sleapshyde Gravel Pit, Bush Wood, Tollgate Wood, Frederick's Wood, Coppice Wood, The New Plantation, River Colne by Bowmansgreen Farm, Walsingham Wood, Cobs Ash, Cangsley Grove, Round Wood, Scrubby grassland by Frederick's Wood, Shenley Lodge Farm Wood, Potwells, North Mymms Park, North Mymms Churchyard, North Mymms Park Area, North Mymms Icehouse, Coursers Farm Area and Coursers Road Gravel Pit.

The data search undertaken for the desk top study also revealed a number of species on record in the area.

Bats

A number of bat records were returned by HBRC as within 1km of the site. Species recorded include brown long-eared (Plecotus auritus), Natterer's (Myotis nattereri) and pipistrelle species (Pipistrellus sp.).

Other Mammals

There are records of badger (Meles meles) and water vole within 1km of the site. Dormice (Muscardinus avellanarius) have been recorded within 2km of the site.

Birds

There are several records of tree sparrow in the vicinity of Coursers Farm. This species has a Local Biodiversity Action Plan and in addition an important breeding area has been identified for tree sparrows located at Coursers Gravel Pit. The tree sparrow is listed as having the highest conservation concern, being categorised as a Red List Species within the UK.

Amphibians and Reptiles

There are records for common lizard (Lacerta vivipara) and grass snake (Natrix natrix) within 1km of the site, and whilst HBRC and the London, Essex and Hertfordshire Amphibian and Reptile Trust hold no records of great crested newts within 1km, several have been recorded within 5km of

	the proposed development. However, it is understood that this species has been recorded on the adjacent site managed by Lafarge Aggregates.
	A Field Survey was undertaken at the site in March 2011. The site comprises Amenity grassland, Hedgerow, Open Water (Ponds), Running Water (wet ditch), Scattered Scrub, Mature trees and Arable habitats.
	The survey found no notable habitats within the site. The presence of great crested newts has been confirmed in the two ponds within the site. The site has limited potential to support breeding birds within the scrub and hedgerow. No other protected or notable species are likely to be affected by the development proposals.
	Great Crested Newt Surveys were undertaken and a mitigation strategy agreed and implemented under a Licence granted by Natural England for the construction of the development.
	Information taken from Attachment 5 iii) – Coursers Farm Proposed Anaerobic Digestion Facility: Habitat Survey, October 2013.
Pollution History	There is no recorded pollution at the site of the proposed AD plant.
Evidence for Historic Contamination	The site is designated as Grade 2 agricultural land that is currently used for grazing livestock. Part of the site is used by the adjacent Coursers Farm Stables for exercising horses.
	Three large earth mounds / screening bunds with maximum heights 4 to 5 m above the original ground level were constructed to screen the barn development across the eastern half of the site. The bunds comprised of site won topsoil and subsoil and imported inert fill. The soil bunds were removed during the construction of the site.
	This site is not, therefore, deemed to be contaminated land. The only potential sources of contamination at this site, which are considered to be low risk, could include the use of agricultural machinery and fertilisers. However, as stated previously this site is used to graze cattle and for grazing and for exercising horses and as such the use of pesticides and artificial fertilisers has been at a very low level.
	Site contamination is not present as seen in Attachment 5 ii) ESG Ground Investigation Report No 22056/GI
Baseline Soil and Groundwater Reference Data	Attachment 5 ii) ESG Report No 22056/GI
Supporting	Attachment 5 ii) ESG Report No 22056/GI
mormation	Attachment 5 iii) Coursers Farm Proposed Anaerobic Digestion Facility: Extended Phase 1 Habitat Survey by EDP, January 2012, submitted as part of the planning application.

3.0 PERMITTED ACTIVITIES		
Permitted Activities	See Section 10 the permit application Supporting Statement	
Non-permitted Activities	Agrivert is not proposing to undertake any non-permitted activities on the site other than those to be captured within the Environmental Permit.	
Document References	Not applicable	

During operational phase of the Permit, the following sections of the SCR template (EPR: H5) will be maintained for the whole site in order that Agrivert Ltd. can demonstrate that the land is in a 'satisfactory state' at time of Permit surrender.

4.0 Changes to the Activity	
Have there been any changes to the activity boundary?	
Have there been any changes to the permitted activities?	
Have any 'dangerous substances' not identified in the	
Application Site Condition Report been used or produced as a	
result of the permitted activities?	
Supporting Information	
5.0 Measures Taken to Protect Land	
Supporting Information	
6.0 Pollution Incidents that may have had an Impact on Land	and their Remediation
Supporting Information	
7.0 Soil Gas and Water Quality Monitoring (Where Undertaker	1)
Supporting Information	

At Permit surrender, the following sections of the SCR template (EPR: H5) will be completed and submitted to the EA as part of the Permit Surrender Application. Information that has been gathered during the operational phase of the Permit following the 'lifetime approach' will be used to identify whether the land is in a satisfactory condition. Site surrender reference data will be collected if required.

8.0 Decommissioning and Removal of Pollution Risk		
Supporting Information		
9.0 Reference Data and Remedia	ation (where relevant)	
Supporting Information		
10.0 Statement of Site Condition	۱ 	

Coursers Farm, Colney Heath, Hertfordshire

Ground Investigation

Carried out for: Agrivert Limited

Report No 22056/GI

www.esg.co.uk

March 2013

COURSERS FARM, COLNEY HEATH, HERTFORDSHIRE

GROUND INVESTIGATION

Carried out for : Agrivert Limited

ESG Geotechnical Services

Glossop House Hogwood Lane Wokingham Berkshire RG40 4QW Tel: +44 (0) 118 932 4453 Fax: +44 (0) 118 932 8383 Email: clv.wokingham@esg.co.uk

CONTENTS

		Page
1	INTRODUCTION1.1Engagement of ESG1.2Proposed Development1.3Preliminary Risk Assessment1.4Scope of Work	1 1 1 2
2	SITE DESCRIPTION AND HISTORY 2.1 Site Description	2 2
3	PUBLISHED GEOLOGY, HYDROLOGY AND HYDROGEOLOGY	3
4	FIELDWORK4.1Cable Percussion Boreholes4.2Trial Pits4.3Installations4.4Groundwater Monitoring	3 4 4 5
5	LABORATORY TESTING5.1Chemical Laboratory Testing5.2Geotechnical Laboratory Testing5.3Horticultural Laboratory Testing	5 5 6
6	GROUND CONDITIONS6.1General Comments6.2Topsoil and Subsoil6.3Made Ground6.4Glacial Deposits6.5Upper Chalk6.6Groundwater6.7Observed Contamination	7 7 8 8 9 10 10
7	GEOTECHNICAL ENGINEERING ASSESSMENT7.1Proposed Development7.2Foundations7.3Chalk – Mining and Dissolution7.4Ground Floor Slabs7.5Pavements7.6Buried Concrete	10 10 13 14 14 14
8	UK CONTAMINATED LAND LEGISLATIVE FRAMEWORK 8.1 Legislation on Contaminated Land 8.2 Risk Assessment	15 15 16
9	 SUMMARY OF CONCEPTUAL SITE MODEL 9.1 Potential Sources 9.2 Potential Pathways 9.3 Potential Receptors 9.4 Potential Significant Pollutant Linkages Considered 	16 16 17 17 18
10	HUMAN HEALTH RISK ASSESSMENT SCREENING 10.1 Technical Approach 10.2 Human Health Risk Assessment Screening	18 18 19
11	CONTROLLED WATERS RISK ASSESSMENT SCREENING 11.1 Technical Approach 11.2 Controlled Waters Risk Assessment Screening	21 21 21

12 C 1 1 1	CONCLUSIONS AND RECOMMENDATIONS12.1Ground and Groundwater Conditions12.2Geotechnical Engineering Assessment12.3Risk Assessment Screening	23 23 23 24
REFERE	ENCES	25
TABLES	S (included in text)	
Table 1	Summary of Monitoring Installation Construction	5
Table 2	Summary of Soil Chemical Laboratory Testing	5
Table 3	Summary of Leachate Chemical Laboratory Testing	6
Table 4	Summary of Geotechnical Laboratory Testing	6
Table 5	Summary of Soil Chemical Laboratory Testing	6
Table 6	Summary of Laboratory Test Results on Topsoil and Subsoil	7
Table 7	Summary of Laboratory Test Results on Predominantly Granular Glacial Deposits	9
Table 8	Summary of Laboratory Test Results on Predominantly Cohesive Glacial Deposits	9
Table 9	Comparison of Soil Analytical Results with Commercial / Industrial GAC	19
Table 10	0 Comparison of Maximum Leachate Concentrations with Target Concentrations (Ct)	21

FIGURES

Figure 1 Key Plan

Figure 2 All SPT N-Values against Depth

Figure 3 Undrained Shear Strength against Depth

DRAWINGS

22056/GI/001Site Plan22056/GI/001Bund Cross SectionsCOU001-P300 rev 1Site Plan and Indicative Landscaping

APPENDICES

- A Exploratory Hole Logs
- B Chemical Laboratory Testing Results
- C Geotechnical Laboratory Testing Results
- D Horticultural Laboratory Testing Results
- E Plates

1 INTRODUCTION

1.1 Engagement of ESG

Environmental Scientifics Group (ESG) was instructed by Agrivert Limited (AL) to carry out a Ground Investigation for the site known as Coursers Farm, Colney Heath, Hertfordshire. The scope of work was presented in ESG Proposal reference QLO/22-E-0090/001/SM dated 31 October 2012. The Proposal was accepted by AL by means of an email dated 7 November 2012.

1.2 Proposed Development

The proposed development is understood to comprise an anaerobic digestion facility as outlined in Hertfordshire County Council's Planning Consent referenced 0/0262-12 (CM0937). The facility will include eight 28 m diameter digestion and storage tanks, a reception building, a site office, weighbridges, gas engines and ancillary equipment, internal roads, car parking, soft landscaping and an attenuation pond.

The proposed layout is shown on AL Drawing No COU001-P300 Rev 1 Site Plan and Indicative Landscaping (appended).

1.3 Preliminary Risk Assessment

A Land Contamination Preliminary Risk Assessment Report (AL Ref CL PRA Report, 2011) was prepared by AL and dated December 2011. The Preliminary Risk Assessment (PRA) is understood to have been reviewed and accepted by the Regulatory Authorities (Environment Agency, Hertfordshire County Council (HCC) and Hertsmere Borough Council).

The PRA report states that the site does not pose a significant contaminated land risk to future site users or controlled waters and that further site investigation or risk assessments are required to refine the conceptual site model. Therefore, with the exception of the investigation of the earth bunds, which includes a geoenvironmental element, the ground investigation has focused solely on geotechnical issues.

Planning Condition 9 requires the cross sections of proposed screening bunds be provided to HCC for prior approval. The existing three earth bunds were constructed on the site in 2005 to screen views to a recently constructed farm building and the core of the bunds is understood to consist of imported soils. As the material from within the existing bunds is proposed to be used to make the new screening bunds a site investigation within the bunds is required to identify the quality and volumes of material that make the existing bunds.

1.4 Scope of Work

The scope of work comprised the following:

- Intrusive investigation comprising boreholes sunk by cable percussive methods and machine dug trial pitting within the bunds.
- Factual record of the intrusive investigation, sampling, in-situ testing and laboratory testing.
- Laboratory analysis of soil samples collected from the bunds for a range of potential contaminants.
- Assessment of the geotechnical properties of the ground and the assessment of geotechnical parameters for use in design.
- Interpretative assessment of any contamination found within the material that makes up the bunds.

2 SITE DESCRIPTION AND HISTORY

2.1 Site Description

The site is situated to the south of Coursers Road, approximately 1 km south of Colney Heath and 3 km east of London Colney, Hertfordshire and is centred upon National Grid Reference TL 203 046 as shown on the Key Plan, Figure 1. The site, which measures approximately 5.2 ha in area, is currently open grassland used for livestock grazing.

The site is bound to the north by Coursers Road and arable farmland, to the east by the farm buildings of Coursers Farm and hard standing associated with a plant hire company, to the south by pasture and to the west by Tyttenhanger Quarry which is operated by Lafarge Aggregates. With the exception of the raised bunds, the site is relatively flat, with a slight fall in elevation from north to south, from approximately +76 to +75 m OD.

Three large earth mounds / screening bunds with maximum heights of 81.5 m OD (4 to 5 m above the original ground level) are present across the eastern half of the site. The bunds are understood to be comprised of site won topsoil and subsoil and imported inert fill.

High voltage overhead power lines run in an east to west direction across the northern end of the site parallel to Coursers Round. Two electrical pylons and one electrical substation are located just outside the north west of the site boundary.

3 PUBLISHED GEOLOGY, HYDROLOGY AND HYDROGEOLOGY

According to the published British Geological Survey (BGS) plan for the area (Map Sheet 239, Hertford Drift Geology, 1:50,000 Scale, 1978), the underlying geology of the site is generally considered to comprise Glacial Clay over Upper Chalk. In addition Glacial Sand and Gravel is likely to be present above the Upper Chalk in places as it is identified to the west of the site and would be associated with Tyttenhanger Quarry.

The Environment Agency (EA) website indicates that the site lies on a Principal aquifer (Upper Chalk) and within a groundwater Source Protection Zone 3 (SPZ3). A SPZ3 is a source catchment protection zone and is defined as:

"the area around a source within which all groundwater recharge is presumed to be discharged at the source. In confined aquifers, the source catchment may be displaced some distance from the source. For heavily exploited aquifers, the final Source Catchment Protection Zone can be defined as the whole aquifer recharge area where the ratio of groundwater abstraction to aquifer recharge (average recharge multiplied by outcrop area) is >0.75".

The nearest surface watercourse to the site is Tyttenhanger Stream which lies approximately 100 m to the south of the site boundary. A small pond is located in the north west of the site and several drainage ditches are located around the western and southern boundaries of the site. A larger pond is located approximately 100 m to the north east of the site boundary. Great Crested Newts were identified within the on site pond and larger pond to the north east of the site during an ecological survey of the site.

4 FIELDWORK

All site works were completed under the instruction and supervision of ESG in accordance with BS 5930+A2 (2010) Code of Practice for Site Investigations. The exploratory hole logs are based on BS 5930+A2 (2010) incorporating Amendment 2 and are therefore compliant with Eurocode 7.

Exploratory hole locations were marked out by ESG in advance of the fieldwork and the locations were cleared and positioned away from identified or suspected buried services. All locations were subject to a Cable Avoidance Tool (CAT) scan by ESG at each location prior to breaking ground. Hand dug inspection pits were undertaken at each cable percussive location to a depth of 1.2 m bgl. It should be noted that the locations of the exploratory holes could not be optimised for the current planned layout of the structures as the cable percussion rigs could not be operated on the areas of the existing bunds. The exploratory holes were therefore located at the nearest accessible locations.

The locations of the exploratory holes are shown on ESG Drawing No 22056/GI/001. The exploratory hole logs are presented in Appendix A. The details of the fieldwork undertaken are presented below.

4.1 Cable Percussion Boreholes

Seven cable percussive boreholes designated as BH1 to BH7 were sunk to depths of between 15.45 m and 24.45 m bgl using Dando 1000 and Dando 3000 cable percussive drilling rigs.

Standard Penetration Tests (SPTs), alternating with driven undisturbed (U100) sampling where appropriate in cohesive soils, were carried out. Bulk samples and disturbed samples were taken from each stratum encountered.

4.2 Trial Pits

Ten trial pits designated as TP1 to TP10 were excavated to a maximum depth of 3.6 m bgl using a 7 tonne tracked mini-digger within the three raised bunds.

The trial pitting methodology was agreed with an ecologist on site prior to the machine entering the site. The ecologist also supervised the removal of the turf layer at each of the trial pit locations to ensure the works would not impact the local population of Great Crested Newts.

Environmental soil samples were collected from the imported soils that made up the core of the bunds, together with any materials suspected of containing elevated concentrations of contaminants. Samples were also taken from the topsoil and subsoil placed as a capping layer above the imported material. Each soil sample comprised two 1 litre plastic tubs, a 125 ml amber glass jar and a 60 ml amber glass jar for volatile organic compounds (VOC) testing.

On completion the trial pits were backfilled with arisings. Photographs of the trial pits are included in the Plates (Appendix E).

4.3 Installations

On completion, three of the cable percussive boreholes were installed with 50 mm HDPE standpipes for the purpose of groundwater monitoring.

The depths of the response zones were specified by ESG and were positioned to enable groundwater monitoring and sampling where appropriate. Each response zone was formed using an inert gravel filter pack sealed above and below with bentonite and gas valves were placed at the top of each gas monitoring standpipe. Details of the installations are presented in Table 1 and on the relevant borehole records in Appendix A.

Borehole	Standpipe Diameter (mm)	Response Zone (m bgl)	Stratum
BH1	50	1.7 – 6.1	Glacial Deposits
BH5	50	1.0 – 12.2	Glacial Deposits
BH6	50	1.0 – 11.4	Glacial Deposits

Table 1	Summary	v of Monitoring	Installation	Construction
	Gaillia	y or mornioring	in otanation	0011011 0011011

4.4 Groundwater Monitoring

Groundwater depth monitoring was carried out approximately four weeks after the completion of the fieldwork.

5 LABORATORY TESTING

5.1 Chemical Laboratory Testing

A programme of chemical laboratory testing was scheduled by ESG on selected soil samples obtained from within the bunds. Soil leachate tests were also carried out for a range of inorganic determinands.

The testing was undertaken at the Burton-on-Trent laboratories of ESG. The scheduled laboratory tests are detailed in Tables 2 and 3 and the results are presented in Appendix B.

Table 2	Summary	of Soil Chemica	I Laboratory Testing
---------	---------	-----------------	----------------------

Determinand	No. of tests
Metals and semi-metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium and zinc)	10
Hexavalent chromium	7
Cyanide (total)	10
Phenols Index	10
рН	10
Asbestos (screening)	7
Asbestos (quantification)	1
PCBs (12 congeners)	3
Total Petroleum Hydrocarbon (TPH) by GCFID (C8 to C40) with aliphatic and aromatic class separation and carbon banding	10
Polycyclic aromatic hydrocarbons (PAH) (16 priority)	10
Gasoline Range Organics (GRO) and BTEX Compounds	7
SVOCs (Target list)	3
VOCs (Target list)	3
Total organic carbon	5

Table 3 Summary of Leachate Chemical Laboratory Testing

Determinand	No. of tests
Metals and semi-metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel, selenium, and zinc)	5
Hexavalent chromium	5
Cyanide (free)	5
рН	5

5.2 Geotechnical Laboratory Testing

A programme of laboratory testing was scheduled by ESG to determine the geotechnical properties of selected soil samples obtained from the investigation (see Table 4). The laboratory testing was carried out in accordance with BS1377 (1990). The results of the laboratory geotechnical testing are presented in Appendix C.

Table 4 Summary of Geotechnical Laboratory Testing

Determinand	No. of tests
Atterberg Limits	26
Moisture Content	26
Particle Size Distribution	9
Undrained Unconsolidated Triaxial	11
CBR	7
One Dimensional Consolidation	5
BRE Special Digest 1 (SD1)	12

5.3 Horticultural Laboratory Testing

A programme of horticultural laboratory testing was scheduled by ESG on selected topsoil and subsoil samples obtained from within the bunds for a range of horticultural soil properties.

The testing was undertaken at the Bracknell laboratories of NRM. The scheduled laboratory tests are detailed in Table 5 and the results are presented in Appendix D.

 Table 5
 Summary of Soil Chemical Laboratory Testing

Determinand	No. of tests
Sand, silt and clay content	3
Stone content (2-10 mm, 10-50 mm and >50 mm)	3
pH value	3
Electrical conductivity	3

Determinand	No. of tests
Organic matter content	3
Nutrient content (total nitrogen, available phosphorus, available potassium and available magnesium	2

6 GROUND CONDITIONS

6.1 General Comments

The ground conditions encountered during the investigation are consistent with those shown on the published geological map. This comprises Topsoil and Subsoil overlying Glacial Deposits which in turn overlie Upper Chalk. In addition Made Ground was encountered below the Topsoil within the mounds.

For full details of the materials encountered, reference should be made to the exploratory hole records presented in Appendix A. Cross sections of the mounds are presented in Drawing 22056/GI/002.

6.2 Topsoil and Subsoil

Topsoil comprising sandy gravelly Clay was encountered to a maximum depth 0.6 m bgl at all exploratory locations. Subsoil comprising sandy gravelly Clay was encountered to a maximum depth of 1.7 m bgl at all exploratory hole locations, with the exceptions of some locations within the mounds where the Topsoil was directly underlain by Made Ground.

The pH value, sulphate content, CBR value, Atterberg limits and undrained shear strength were determined for selected samples of this material and the results are summarised in Table 6.

Parameter	No of Tests	Range of Results
SD1		
Sulphate (acid extract) (mg/kg)		312 to 515
Sulphate (H ₂ 0 extract) (mg/l)	4	16 to 47
Total sulphur (%)		0.018 to 0.043
pH		7.2 to 8.1
CBR		
CBR value (%)		Top: 0.11 to 2.2 : Base: 0.15 to 1.6
Bulk density (Mg/m ³)	5	1.95 to 2.16
Dry density (Mg/m ³)		1.54 to 1.89
Moisture content (%)		Top: 15 to 26 : Base: 14 to 26
Moisture content (%)	2	7.4 and 13
Liquid limit (%)	2	30 and 39
Plastic limit (%)	2	17
Plasticity index (%)	2	13 and 22
Unconsolidated Undrained Triaxial Compression		
Undrained shear strength (Cu) kPa		49
Bulk density (Mg/m ³)	1	2.21
Dry density (Mg/m ³)		1.96
Moisture content (%)		13

 Table 6
 Summary of Laboratory Test Results on Topsoil and Subsoil

6.3 Made Ground

The core of the mounds and up to 1.5 m below the base of the mounds were found to comprise imported fill / Made Ground comprising sandy, gravelly, clay with pockets of firm clay was encountered in nine of the ten exploratory hole locations. The Made Ground contained frequent gravel and cobbles of concrete, brick, tarmacadam and occasional fragments of wood, plastic and metal.

Made Ground was not encountered in areas of the site away from the mounds.

6.4 Glacial Deposits

Glacial Deposits were encountered in all the exploratory borehole locations. The top of the stratum was encountered between 0.8 and 1.7 m bgl and the base between 19.2 and 21.3 m bgl (only encountered in two boreholes).

This stratum comprises both cohesive and granular materials. Shallower cohesive deposits were present in layers across the northern part of the site (BH1 to BH4) from below the subsoil to depths of up to 9.3 m bgl, with a maximum single stratum thickness was 3.2 m. This consists of greyish brown, yellowish brown and bluish grey slightly sandy slightly gravelly Clay. A deeper 2.5 to greater than 4 m thick deposit is found generally across the site at depths of between 13 and 17 m bgl. This is a bluish grey slightly gravelly Clay.

The predominant granular deposit is generally a yellowish brown, sandy Gravel to gravelly Sand with occasional clay lenses. Granular deposits were found between the cohesive layers where they are present in the north and below the subsoil in the south of the site. A granular deposit was also encountered across the site between the deeper cohesive glacial deposit and Upper Chalk.

A total of 61 SPTs were undertaken in the predominantly granular deposits yielding SPT N-values ranging from 3 to greater than 50 indicating they are very loose to very dense.

A total of 10 SPTs were undertaken in the predominantly cohesive deposits yielding SPT N-values ranging from 5 to 48.

The Particle Size Distribution, pH value, sulphate content, Atterberg limits, undrained shear strength and CBR values were determined for selected samples of this material. The results for the predominantly granular deposits are summarised in Table 7 and those for the predominantly cohesive deposits are summarised in Table 8.

Table 7 Summary of Laboratory Test Results on Predominantly Granular Glacial Deposits

Parameter	No of Tests	Range of Results
Particle Size Distribution (%)		
Cobbles/boulders		0
Gravel	7	15 to 83
Sand		16 to 79
Silt/Clay		0 to 16
SD1		
Sulphate (acid extract) (mg/kg)		55 to 102
Sulphate (H ₂ 0 extract) (mg/l)	3	15 to 26
Total sulphur (%)		0.008 to 0.024
pH		8.1 to 8.5
CBR		
CBR value (%)		Top: 27 and 45 : Base: 11 and 31
Bulk density (Mg/m ³)	2	2.08 and 2.23
Dry density (Mg/m ³)		1.97 and 2.09
Moisture content (%)		Top: 5.2 and 6.3 : Base: 5.4 and 6.5
Moisture content (%)	1	8
Liquid limit (%)	1	24
Plastic limit (%)	1	Non Plastic
Plasticity index (%)	1	Non Plastic

Table 8 Summary of Laboratory Test Results on Predominantly Cohesive Glacial Deposits

Parameter	No of Tests	Range of Results
Particle Size Distribution (%)		
Cobbles/boulders		0
Gravel	2	2 and 8
Sand	2	17 and 18
Silt		24 and 36
Clay		45 and 50
SD1		
Sulphate (acid extract) (mg/kg)		169 to 1430
Sulphate (H ₂ 0 extract) (mg/l)	5	<10 to 376
Total sulphur (%)		0.015 to 0.658
рН		7.7 to 9.0
Moisture content (%)	23	12 to 32
Liquid limit (%)	23	31 to 81
Plastic limit (%)	23	14 to 29
Plasticity index (%)	23	15 to 52
Unconsolidated Undrained Triaxial Compression		
Undrained shear strength (Cu) kPa		31 to 286
Bulk density (Mg/m ³)	10	1.94 to 2.19
Dry density (Mg/m ³)		1.49 to 1.91
Moisture content (%)		12 to 30

Five oedometer consolidation tests were also carried out on samples from this stratum. The results of these tests are discussed in Section 7.2.

6.5 Upper Chalk

The top of the Upper Chalk was penetrated in two of the boreholes at depths of 19.2 and 21.3 m bgl, with a maximum penetration of 3.15 m. The Chalk was described as very weak yellowish white fine grained Chalk with occasional gravel of fine to coarse, subrounded flint.

A total of 2 SPTs were undertaken in the Upper Chalk yielding SPT N-values of 15 and 22.

6.6 Groundwater

During the cable percussive boring, groundwater was first struck at depths from 1.2 to 2.6 m bgl. Groundwater was not encountered within the bunds during the trial pitting.

During the monitoring visit on 27 February 2013, groundwater levels were recorded in the standpipes with response zones in the Glacial Deposits at depths of 2.9 m bgl in BH1, 9 m bgl in BH5 and 8.5 m bgl in BH6 indicating that there may be perched water within the upper granular Glacial Deposits and groundwater within the deeper granular Glacial Deposits.

6.7 Observed Contamination

No notable contamination was observed during the site works by either visual or olfactory means other than general inclusions of builders waste including brick, concrete, metal and tarmacadam in the Made Ground.

7 GEOTECHNICAL ENGINEERING ASSESSMENT

7.1 Proposed Development

The proposed development is understood to comprise an anaerobic digestion facility. This will include 8 No 28 m diameter digester and storage tanks, a reception building, a site office, weighbridges, gas engines and ancillary equipment, internal roads, car parking, soft landscaping and an attenuation pond. The proposed layout is shown on AL Drawing No TRU001 COU001-P300 Rev 1 (appended).

Details of loadings on the ground from the proposed development have not been provided. However, from previous, similar developments it is understood that loads up to 50 kPa could be applied to the ground under the ancillary buildings. Under the Reception Building, storage tanks and digesters, this increases to around 135 kPa.

7.2 Foundations

The investigation has identified a layer of Topsoil and Subsoil up to 1.7 m thick overlying the Glacial clays, sands and gravels. Upper Chalk is present at depths of around 20 m below current ground level. Groundwater is likely to be encountered around 3 m below current ground level, although this may only be a local perched level. It has been assumed that the topsoil will be removed prior to development. The subsoil is not dissimilar to the underlying cohesive Glacial Deposits, where present at shallow depth, albeit generally softer. It is recommended that the tanks and buildings are founded in the underlying Glacial Deposits. However, it may be possible to found the lighter items of plant within this subsoil, subject to the excavation of unsuitable materials and compaction of the ground below the plant.

The Glacial Deposits are variably clay, sand and gravel, with near surface deposits being clay over gravel towards the north of the site and gravel only towards the south of the site. In addition a second layer of clay, between 6 and 9 m below ground level at its thickest, occurs on the northern part of the site. This is not present on the southern part. A lower clay layer, typically 3 to 4 m thick with its upper surface between 12 to 15 m below ground level, is present across the whole of the site.

The results of the Standard Penetration Tests (SPT) are shown on Figure 2. These are divided into those which were carried out in the clay strata, those which were carried out in the granular (sand and gravel) strata and those which were carried out in the Chalk. However, the variability in predominant soil type means that some of these may have been carried out in a mixture of sand and clay. The results of laboratory undrained strength tests on predominantly clay samples are shown on Figure 3, along with estimates of strength from the SPT N-Values taken in the predominantly clay strata using a factor of 4.5. The classification tests indicate the clay to be of low to intermediate plasticity, although there are three results, all from clays at depths between 6.0 and 7.5 m, with high to very high plasticity.

The results of the in situ testing indicate that the granular strata are generally medium dense to dense, occasionally very dense, within approximately the top 6 m below ground level with a characteristic SPT N-Value of around 30 (equivalent to an angle of internal friction of 36°). However below 6 m the relative density decreases such that between 10 and 15 m depth, the granular deposit is loose with a SPT N-Value ranging from 3 to 45, an average value of 15 and a suggested characteristic value of around 10 (equivalent to an angle of internal friction of 30°). Below 15 m the relative density increase again, with a characteristic SPT N-Value of around 30 again at the top of the Chalk around 20 m depth.

The results of the laboratory and in situ testing indicate that the clay strata have an undrained shear strength of around 25 kPa at 2 m depth increasing with depth to around 150 kPa at a depth of 15 m. A reasonable correlation in strengths between the measured laboratory values and the estimates from the SPT N-Values can be seen on Figure 3. However, it is noted that there is one particularly low SPT result in the clay in BH2 at 15.3 m depth which equates to a strength of around 40 kPa. This is lower than would be expected when compared with the remainder of the data. The reason for this is not clear but the result has been considered as anomalous in the overall assessment of the ground conditions.

It is recommended that foundation design for the main structures be based on an undrained strength of 25 kPa (where clay is present) or an angle of friction of 36° (where granular deposits are present) at a depth of 2.0 m in the Glacial Deposits. It is also recommended that in all locations the foundations penetrate at least 2 m below ground level or at least 0.3 m into the Glacial Deposits, whichever is the greater. This should ensure that the foundations are still above the current groundwater level. It is only in the northern part of the site (BH2, BH3 and BH4) where the weaker clay is at this foundation depth of 2 m. Extending the foundation depth to 3.5 m in these areas will place the foundation on the stronger granular deposits. However, this will place the foundation below the highest groundwater table and

although this may only be perched water, the quantities of water which could enter any excavation could still be large. Any groundwater or surface water ingress to the excavations will need to be controlled in order that softening of the clays or loosening of the granular deposits does not occur. Where the base of the excavation is in granular deposits, this may require the groundwater flow cutting off by the use of dewatering, sheet piling or similar. All excavations should have a blinding layer of concrete applied to the final formation as soon as possible after exposure to reduce any softening due to ingress of surface or groundwater. No formation surface should be left open overnight. Any loose or soft zones revealed in the formation should be excavated and replaced with placed and compacted granular fill.

It should be noted that the preceding recommendations are for the design of the safe bearing pressures for the foundations. Settlements under these loads may be larger than is normally the case, especially for the larger structures, as a result of the loose granular deposits below a depth of 10 m. This is discussed further in the following paragraphs.

The smaller ancillary buildings with a maximum loading of 50 kPa should be founded below the topsoil and subsoil. At a depth of 2 m, the allowable bearing pressure is around 60 kPa where the foundation is on the upper softer clays and somewhat greater where the foundation is on the granular Glacial Deposits. This should provide a suitable foundation and should result in settlements not exceeding approximately 25 mm.

It is recommended that the more highly stressed foundations for the Reception Building and tanks be founded below the near surface clays (ie 3.5 m below current ground level on the northern part of the site, 2 m elsewhere). In the case of the northern part of the site, this could be below the groundwater table which was at 2.9 m in BH1. This should provide an allowable bearing pressure in excess of 135 kPa. However, the width of these structures means that the zone of ground stressed by the load will include the looser granular materials between approximately 10 and 15 m depth, the lower clay layer and, in the case of the northern part of the site, the clay layer at variably 6 to 9 m below ground level. Allowing for a 2 m embedment on the southern part of the site (ie Reception Building and four southern tanks), settlements should not exceed around 80 mm. Allowing for a deeper 3.5 m embedment on the northern part of the site (ie four northern tanks), where there is an additional layer of clay, settlements should not exceed around 100 mm.

It is recommended that the formation for all foundations should be inspected and any areas of soft clay or loose granular material removed and backfilled with compacted granular fill. The formation should also be proof rolled with a heavy roller.

An alternative to the above shallow foundations, would be to adopt deep foundations (eg piles) for these tanks. The use of piles would limit settlements further, typically to less than 25 mm. The total load on each tank at 135 kPa is approximately 83,000 kN. Assuming a pile spacing of around 2 m, this indicates approximately 150 piles per tank, giving a working load of 550 kN per pile. Typically, 450 mm diameter piles to around 18 m depth would be required to support this load. This is only provided as an indicative pile design and the advise of a specialist contractor should be sought as to the suitability and capacities of their techniques in these ground conditions. Stone columns or other forms of ground reinforcement (eg grouted columns) may offer an alternative to the use of piles. However, the strength of the ground and the magnitude of the loading may preclude the use of such methods. The advise of a specialist contractor should be sought as to the suitability and capacities of their techniques in these ground to the suitability and capacities of such methods. The advise of a specialist contractor should be sought as to the suitability and capacities of their techniques in these ground conditions.

The Glacial Deposit clays generally have a low to medium volume change potential. At present there are no trees on the site. However, any planned planting of trees will need to make allowance for the potential volume change of any clays below the building foundations (NHBC, 2011).

7.3 Chalk – Mining and Dissolution

The site is underlain by the Upper Chalk at depths of around 20 m below current ground levels. The general area of Hertfordshire in which the site is located has had a past record of mining and dissolution features.

Mining typically takes the form of Deneholes and Chalkwells, which both involve sinking a vertical shaft through the overlying deposits. These shafts and the mined zone of Chalk are often badly backfilled and subsidence ensues. Whilst the 20 m of cover here has probably mitigated against surface mining on this site, shafts in excess of this depth have been recorded in the past. No obvious signs of subsidence have been noted on the site, but it is possible that the ponds noted in the locality could mark areas of old subsidence.

Dissolution features are similar but natural occurring phenomena. In this case water flow has dissolved a vertical pipe into the top of the Chalk which then fills with loose deposits. These loose zones can then migrate to the surface, typically causing subsidence but in extreme cases creating a significant crater at the ground surface.

Whilst the risk to the facility from either of these features is considered to be low, it cannot be totally ruled out and the effects of subsidence can be significant. Normally a desk study carried out prior to the investigation would have highlighted and potentially investigated the possibility of such features with a search of local records. However, this may do no more than indicate the possibility of their presence on site. A full investigation of the Chalk surface over the whole site with a suitable density of exploratory holes or probes can be a lengthy and expensive exercise.

At this stage it is recommended that further enquiries be made with the Local Authority, library, archives etc to see if any records exist of features on or near to the site. The design of the structures may need to allow for the possibility of local subsidence over part of a tank or structure. A frequent trigger for subsidence from these features is a burst or leaking pipe. Therefore particular attention should be taken with the design and installation of water bearing pipes on the site to ensure their integrity for the lifetime of the facility.

7.4 Ground Floor Slabs

Lightly loaded floor slabs may be designed to be ground bearing only if there is a fairly uniform subgrade of low compressibility material and no cohesive material with a potential for heave are present. Suspended floor slabs should be used in the areas of Topsoil and Subsoil to eliminate the risk of differential settlements. Alternatively, the Topsoil, subsoil and any underlying clay could be removed to a depth of at least 500 mm in the areas. It should be replaced with an appropriate engineered and compacted granular fill. Prior to placing the fill the exposed formation should be inspected and any clay or areas of loose granular material removed and backfilled with compacted granular fill. The formation should also be proof rolled with a heavy roller.

7.5 Pavements

Pavements, hardstanding and car parking areas are expected to be founded on the Topsoil or, more likely, the Subsoil or near surface sands and clays. The results of laboratory testing indicate CBR values in the range 0.11 to 2.2%. It is recommended that pavements are designed using a CBR value of 0.1%, which may prove impractical. Removal of the softer materials and replacement with a compacted granular fill, separated from the underlying soil by a geotextile layer, may therefore be necessary. Wherever an in situ formation is exposed it should be proof rolled with a heavy roller prior to the placing of the fill or capping and any soft spots or cohesive materials removed and backfilled with compacted granular fill. Further in situ CBR testing in specific areas designated for pavements may result in higher values at the proposed formation level.

7.6 Buried Concrete

The results of the chemical analyses on samples taken from the Made Ground and underlying materials indicate pH values in the range 7.2 to 9.0. The results of water soluble sulphate (SO_4) determinations fall within the range of 10 to 376 mg/l and total sulphur in the range 0.01 to 0.66%. Using the guidelines from BRE (2005), it can be assessed that pyrite is probably not present on this site at shallow depths.

For shallow concrete foundations, assuming a Brownfield location and mobile groundwater, concrete in contact with the ground should be designed to Design Sulphate Class DS-1 and Aggressive Chemical Environment for Concrete classification AC-1, as defined by BRE (2005).

One of the two results of the chemical analyses from around 16 m depth in BH3 implies that pyrite may be present in the deeper soils. At such depths, this should not be a problem as there is little potential for oxidisation. A Design Sulphate Class based on Total Potential Sulphate is not therefore considered to be warranted for any deeper piled foundations

8 UK CONTAMINATED LAND LEGISLATIVE FRAMEWORK

8.1 Legislation on Contaminated Land

Part IIA of the Environmental Protection Act, 1990, which was enacted by Section 57 of the Environment Act 1995 and the associated Contaminated Land (England) Regulations 2000 (SI 2000/227), was brought into full effect on 1 April 2000. This legislation created a statutory regime for the identification and remediation of potentially contaminated land. The principal feature of this legislation is that the hazards associated with contaminated land should be evaluated in the context of a site-specific risk-based framework.

Part IIA of the EPA 1990 defines contaminated land as:

"any land which appears to the Local Authority in whose area it is situated to be in such a condition by reason of substances in, on or under the land, that significant harm is being caused, or that there is a significant possibility of significant harm being caused, or that pollution of controlled waters is being or is likely to be caused".

Controlled waters are considered to be all groundwaters, inland surface waters and estuarine and coastal waters.

To determine whether land falls under the Part IIA definition of contaminated land, it is necessary to establish whether a pollutant linkage is present, the degree of harm resulting from the linkage, and the significance of such harm to the receptor. A pollutant linkage comprises:

- Source a contaminant at a concentration capable of causing adverse health or environmental effects.
- Pathway there must be an exposure pathway through which the receptor comes into contact with the contamination source.
- Receptor there must be a human or environmental receptor present, which may be at risk of harm or impact from the source.

The responsible authority then needs to consider whether the identified pollution linkage:

- is resulting in significant harm being caused to the receptor in the pollutant linkage;
- presents a significant possibility of significant harm being caused to that receptor;
- is resulting in the significant pollution of controlled waters, which constitute the receptor; or is likely to result in such pollution.

If a pollutant linkage is demonstrated, then the Part IIA legislation provides powers for remedial action to be enforced by the Local Authority in whose area the contaminated land is situated.

The planning process for developing land affected by contamination, as outlined in the National Planning Policy Framework (March 2012), is intended to ensure that unacceptable risk is removed and that the site is suitable for its new use. Furthermore, the National Planning Policy Framework states that, as a minimum "after remediation under Planning, the land should not be capable of being determined as contaminated land under Part IIA".

Although Part IIA is not being enforced in respect of this site and in fact the site is very unlikely to come under the definition, the above regime nevertheless provides an appropriate framework for the assessment of contaminated land or potentially contaminated land.

8.2 Risk Assessment

The assessment of contaminated land is typically a two-phase process, which is initially based on a qualitative assessment of the likelihood of pollution linkages being present, followed if necessary by a quantitative assessment, which seeks to determine the degree and the significance of the pollution. The process of assessing risks from contaminated land is outlined in "Guidelines for Environmental Risk Assessment and Management" (Department for the Environment, Transport and the Regions (DETR), 2000) and "Model Procedures for the Management of Land Contamination" (CLR11; EA 2004).

9 SUMMARY OF CONCEPTUAL SITE MODEL

9.1 Potential Sources

Information gathered during the site research has been used to identify the likely contaminants, their sources and their spatial distribution.

The PRA Report (AL Ref CL PRA Report, 2011) identified the following primary sources of contamination:

• Fill materials within the core of the three bunds – believed to be inert but possibility of some contaminants being present.

9.2 Potential Pathways

To develop further an understanding of the potential risks posed by the contaminants to human receptors, the pathways through which contaminants may impact sensitive receptors need to be identified. The Contaminated Land Exposure Assessment (CLEA) model (DEFRA & EA 2009) indicates potential exposure routes for assessing risks to human health as follows:

- Direct soil and dust ingestion;
- Dermal contact with soil and dust; and
- Inhalation of particulates and vapours;

It is considered that the potential pathways with respect to controlled waters will include:

- Downward migration through Made Ground to groundwater;
- Lateral migration through groundwater to surface water; and
- Lateral migration by means of man-made pathways (i.e. services) and surface water run-off to surface water.

9.3 Potential Receptors

A proposed end-use as an anaerobic digestion facility and known neighbouring land uses have been used to develop an understanding of the likely sensitive human receptors. It is envisaged that the potential receptors of contamination (if present on site) are:

- Construction workers critical receptor female adult;
- Future site users critical receptor female adult; and
- Neighbouring properties plant hire site and farmland critical receptor female adult.

Information gathered during the site research has been used to develop an understanding of the likely sensitive controlled waters receptors. The potential controlled waters receptors of contamination (if present on site) are considered to be:

- Surface water (Tyttenhanger Stream);
- Groundwater (Principal Aquifer).

9.4 Potential Significant Pollutant Linkages Considered

The potential sources, pathways and receptors, as detailed above, have been assessed in respect of whether they constitute potentially significant pollutant linkages. This has been updated from the PRA Report (AL Ref CL PRA Report, 2011) and incorporates the findings of the fieldwork carried out.

SOURCE		PATHWAY		ON-SITE RECEPTOR	OFF-SITE RECEPTOR	SIGNIFICANCE
Contaminated soils / Groundwater	\rightarrow	Outdoor inhalation	\rightarrow	Female Adult	Female Adult	Low to Moderate
Contaminated soils	\rightarrow	Dermal exposure	\rightarrow	Female Adult	n/a	Low
Contaminated soils	\rightarrow	Ingestion	\rightarrow	Female Adult	n/a	Low
Contaminated soils	\rightarrow	Inhalation of particulates	\rightarrow	Female Adult	Female Adult	Moderate
Leachate from Contaminated soils	\rightarrow	Downward migration through Made Ground	\rightarrow	Groundwater (Principal) Aquifer)	Surface water (Tyttenhanger Stream)	Low to Moderate
Asbestos contaminated soils	\rightarrow	Dust inhalation and deposition	\rightarrow	Female Adult	Female Adult Farmland	Low to Moderate

10 HUMAN HEALTH RISK ASSESSMENT SCREENING

10.1 Technical Approach

Human health risk assessment for long term exposure has been undertaken initially by comparing the maximum measured soil concentrations with Soil Guideline Values (SGVs) published by the EA. A review of the published SGVs was carried out in December 2006 by the EA which resulted in the SGVs being withdrawn from use. In 2009, the EA published a series of documents which updated the technical basis of the CLEA model and reconsidered the rationale for the generic land use scenarios used to derive SGVs; revised SGVs for a number of determinands were also published at this time (EA, 2009d-n).

As revised SGVs are only available for a certain number of contaminants, generic assessment criteria (GAC) have been derived by ESG in line with the CLEA guidance for substances without SGVs. The GAC have been derived using the CLEA 1.06 software with default generic receptors, exposure parameters and soil types appropriate for the site usage. Chemical data have been input into the model from peer reviewed sources, and EA data have been used where available. The GAC have been adjusted for soil organic matter (SOM) where appropriate in order to render them suitably conservative; the default SOM of 6% used in the derivation of SGVs is not considered to be sufficiently conservative for GACs for all sites. The CLEA model used for this risk assessment can be provided to regulators on request.

The exposure pathways considered in the model are dependent on the land use scenario; in the case of the proposed commercial end use of the site, the relevant pathways include direct soil and dust ingestion, dermal contact with soil and inhalation of dust and vapours indoors and outdoors.

10.2 Human Health Risk Assessment Screening

The recorded concentrations of contaminants in soils are compared with commercial / industrial GAC (adjusted for 1.0% SOM), in Table 9. The ICRCL Guidance Note 64/85 Action Level has been used as a screening value to assess the risks from asbestos.

Determinand	Maximum Measured Concentration (mg/kg)	Generic Assessment Criterion (GAC) (mg/kg)	No. of results exceeding GAC (no. of tests in brackets)					
Metals & semi- metals								
Arsenic	31.6	640	0 (10)					
Cadmium	0.44	230	0 (10)					
Chromium (total)	43.4	8400	0 (10)					
Chromium VI	<0.1	35	0 (10)					
Copper	34.7	72000	0 (10)					
Lead	243.5	750	0 (10)					
Mercury	<0.6	3600	0 (10)					
Nickel	32.1	1800	0 (10)					
Selenium	0.7	13000	0 (10)					
Zinc	153.1	660000	0 (10)					
Polycyclic Aromatic Hydroca	rbons							
Acenaphthene	0.28	85000	0 (10)					
Acenaphthylene	<0.11	84000	0 (10)					
Anthracene	0.34	520000	0 (10)					
Benzo(a)anthracene	2.4	130	0 (10)					
Benzo(a)pyrene	3.29	14	0 (10)					

Table 9 Comparison of Soil Analytical Results with Commercial / Industrial GAC

COURSERS FARM, COLNEY HEATH, HERTFORDSHIRE GROUND INVESTIGATION

Determinand	Maximum Measured Concentration (mg/kg)	Generic Assessment Criterion (GAC) (mg/kg)	No. of results exceeding GAC (no. of tests in brackets)
Benzo(b)fluoranthene	4.2	140	0 (10)
Benzo(g,h,i)perylene	2.19	1400	0 (10)
Benzo(k)fluoranthene	2.1	140	0 (10)
Chrysene	2.87	1400	0 (10)
Dibenzo(a,h)anthracene	0.5	14	0 (10)
Fluoranthene	2.94	23000	0 (10)
Fluorene	0.21	64000	0 (10)
Indeno(1,2,3,c,d)pyrene	2.14	140	0 (10)
Naphthalene	0.3	980	0 (10)
Phenanthrene	1.46	22000	0 (10)
Pyrene	3.63	54000	0 (10)
Total Petroleum Hydrocarbon	IS		
TPH – >C5-C8	0.67	3600 ¹	0 (7)
TPH - >C8-C10	<3	2100 ¹	0 (10)
TPH - >C10-C12	4	5100 ¹	0 (10)
TPH - >C12-C16	24.8	34000 ¹	0 (10)
TPH - >C16-C21	55.1	27000 ¹	0 (10)
TPH – >C21-C35	185	28000 ¹	0 (10)
Other compounds (including	SVOCs and VOCs greater than	LOD)	
PCBs	<0.063	9.0	0 (3)
Benzene	<0.013	28	0 (7)
Asbestos	<0.001%	0.001% ³	0 (7)
Phenol index	<0.7	32000	0 (10)
Cyanide (total)	<0.7	1200 ²	0 (10)

GACs assume that no free phase is present.

Using most applicable and conservative TPH fraction GAC.

² GAC based on calculated minimum concentration of CN to produce enough toxic gas to classify as hazardous by H12.

³ ICRCL Guidance Note 64/85 Action Level

As shown in Table 9, none of the contaminants of concern exceed the relevant GAC, indicating that there is no significant risk to future site users from these substances in soil.

Asbestos was detected by the laboratory within one of the Made Ground samples (Trial Pit TP10 at a depth of 0.7 m bgl) within the bunds; the lab described the material as free fibres of chrysotile and amosite. Subsequent quantification of asbestos content of the sample found the concentration of asbestos to be less than the ICRCL Guidance Note 64/85 Action Level of 0.001 percent by weight, indicating that there is a low chance of asbestos fibres being released into the atmosphere where they can cause a hazard to construction works or future site users if inhaled.

However, should any visual evidence of potential asbestos-containing materials be identified during work on site, ESG should be contacted for advice on the way to proceed.

In order to protect construction workers against exposure to contamination, contact with the Made Ground should be avoided and standard site hygiene procedures should be implemented, such as wearing gloves and overalls and providing adequate washing facilities. Eating, drinking and smoking should be banned in the working areas to prevent inadvertent ingestion of the soil. Dust suppression measures should be implemented as and when necessary and P3 dusk masks should be worn by construction workers during dusty conditions.

11 CONTROLLED WATERS RISK ASSESSMENT SCREENING

11.1 Technical Approach

The assessment of risks to controlled waters follows guidance provided by the EA and DEFRA in the Contaminated Land (England) Regulations 2000 (SI 2000/227).

Due to the site's setting, the Principal Aquifer below the Glacial Deposits and Tyttenhanger Stream are considered to be the most sensitive controlled waters receptors in the vicinity of the site.

The target concentrations (Ct) have been based on the environmental quality standards (EQS; freshwater) or the UK Drinking Water Standards whichever is lower. Where appropriate, EQS values have been adjusted to account for water hardness. The Drinking Water Inspectorate water hardness map of England and Wales, indicates that the site falls within an area of very hard water (>300 mg/l CaCO₃) supply. Therefore, the EQS corresponding to the water hardness band (>250 mg/l CaCO3) has been used.

11.2 Controlled Waters Risk Assessment Screening

To determine whether there is a source of contamination at a concentration posing a risk to the quality of controlled waters, leachate concentrations are compared to their respective target concentrations (Ct) in Table 10.

Contaminants of Concern	Maximum Leachate Concentration (mg/l)	Ct ¹ (mg/l)	Results greater than Ct?	No. of Results Exceeding Ct (No. of tests in brackets)
Arsenic	0.008	0.01 ¹	NO	0 (5)
Cadmium	0.0006	0.00025 ²	YES	1 (5)
Chromium	0.002	0.0047 ²	NO	0 (5)
Copper	0.021	0.028 ²	NO	0 (5)
Lead	0.009	0.0072 ²	YES	1 (5)

Table 10	Comparison of	f Maximum	Leachate	Concentrations	with T	Farget (Concentrations	(Ct)
----------	---------------	-----------	----------	----------------	--------	----------	----------------	------

Contaminants of Concern	Maximum Leachate Concentration (mg/l)	Ct ¹ Results greater than (mg/l) Ct?		No. of Results Exceeding Ct (No. of tests in brackets)
Mercury	<0.0001	0.00005 ²	NO	0 (5)
Nickel	0.005	0.02 ^{1 and 2}	NO	0 (5)
Selenium	0.002	0.01 ¹	NO	0 (5)
Zinc	0.123	0.125 ²	NO	0 (5)
Cyanide (free)	<0.02	0.001 ²	YES	5 (5)

¹ UKDWS Ct value

² EQS Ct value

From Table 10, it can be seen that the concentrations of inorganic determinands in leachates were generally less than their respective Ct in the five samples of Made Ground scheduled for testing. However, elevated concentrations of cadmium and lead were encountered in the sample recovered from TP5 at 1.0 m and cyanide (free) was identified as potentially being present at concentrations greater than the Ct in all five samples.

However, the laboratory limit of detection (LOD) for cyanide (free) was greater than the Ct and free cyanide was not recorded in any of the five leachate samples. In addition total cyanide was not detected within any of the 10 soil samples obtained from the Made Ground.

The concentrations of cadmium and lead were elevated above the Ct in one of the five samples. The remaining four leachate samples did not detect concentrations of cadmium above the laboratory limit of detection, while the recorded concentrations of lead were well below the Ct. No significantly elevated concentrations of cadmium or lead were recorded in the soil samples.

Therefore, based on the analytical results it is unlikely that the site soils pose a significant risk to controlled waters.

CONCLUSIONS AND RECOMMENDATIONS

11.3 Ground and Groundwater Conditions

Topsoil was encountered across the majority of the site to a maximum depth of 0.6 m bgl. The Topsoil was underlain by Made Ground within the bunds and outside the bunds sequentially by subsoil, Glacial Deposits and Upper Chalk.

Made Ground was encountered within the bunds to a maximum depth of 1.5 m below the surrounding ground level. The minimum depth to the top of the Glacial Deposits was 1.7 m bgl and the Upper Chalk was encountered at 19.2 and 21.3 m bgl.

During the subsequent monitoring visit groundwater levels in the Glacial Deposits ranged between 2.9 and 9.0 m bgl.

11.4 Geotechnical Engineering Assessment

It is likely that shallow foundations will be suitable for the proposed structures. For the smaller structures, an allowable bearing pressure of 60 kPa is suggested for foundations at least 2 m below the current ground level. For the Reception Building and tanks, it is recommended that the foundation levels should be below the near surface clays, ie 2 to 3.5 m below current ground level. This should provide an allowable bearing pressure in excess of 135 kPa. Any water ingress to the foundation excavations will need to be controlled. Groundwater levels could be above the proposed foundation levels on the northern part of the site.

Settlements of the Reception Building and tanks should not exceed 100 mm.

The possibility of mining and dissolution features in the Chalk causing subsidence on the site cannot be ruled out, although the risk is considered to be low. Further enquiries are recommended along with attention to the design and installation of water bearing pipes.

Road pavement design should be based on a CBR value of 0.1%, but further in situ testing is recommended to identify areas with possibly higher CBR values at formation level.

Below ground concrete should be designed for Design Sulphate Class DS-1 and Aggressive Chemical Environment AC-1.

11.5 Risk Assessment Screening

A human health risk assessment screening has been undertaken on the Made Ground within the bunds in line with the latest guidance and CLEA methodology. Generic assessment criteria (GAC) have been derived by ESG in line with the current CLEA guidance. The GACs used relate to a commercial / industrial end use.

None of the contaminants of concern exceed the relevant GAC, indicating that there is no significant risk to future site users from these substances in soil.

In order to protect construction workers against exposure to contamination, contact with soil should be avoided and standard site hygiene procedures should be implemented, such as wearing gloves and overalls and providing adequate washing facilities. Eating, drinking and smoking should be banned in the working areas to prevent inadvertent ingestion of the soil. Construction workers should be alert to the possible presence of asbestos when excavating within Made Ground, dust suppression measures should be put in place as necessary and P3 asbestos dust masks worn by construction workers during dusty conditions.

A controlled waters risk assessment screening has been carried out in line with guidance provided by the EA and DEFRA. No contaminants were identified within the site soils that could be considered to pose a significant risk to controlled waters.

For Environmental Scientifics Group Simon Mason

Soil and Environmental Scientist

Charlotte Reeve

Operations Manager, Contaminated Land

REFERENCES

- AL: 2011: Proposed Anaerobic Digestion Facility, Coursers Farm, Colney Heath: Land Contamination Preliminary Risk Assessment. Report Reference AL CL PRA Report, Agrivert Limited, December 2011.
- BGS: 1978: Map Sheet 239, Hertford Drift Geology, 1:50,000 Scale. British Geological Survey.
- BS 1377 : 1990 : Methods for test for soils for civil engineering purposes. British Standards Institution.
- BS 5930 : 1999 +A2 : 2010 : Code of Practice for Site Investigations. British Standards Institution.
- BS 10175 : 2011 : Code of Practice for investigation of potentially contaminated sites. British Standards Institution.
- DETR : 2000 : Department of the Environment Transport and the Regions Circular 02/2000, Contaminated Land: Implementation of Part IIA of the Environmental Protection Act 1990. Defra, Nobel House.
- EA : 2004 : Model Procedures for the Management of Land Contamination. CLR11; Environment Agency, Bristol.
- EA : 2008 : Guidance for the Safe Development of Housing on Land Affected by Contamination. R&D Publication 66.
- EA : 2009a : Science Report SC050021/SR3. Updated technical background to the CLEA model. Environment Agency, Bristol.
- EA : 2009b : Science Report SC050021/SR2. Human health toxicological assessment of contaminants in soils. Environment Agency, Bristol.
- EA : 2009c : Science Report SC050021/SR7. Compilation of Data for Priority Organic Pollutants for Derivation of Soil Guideline Values. Environment Agency, Bristol.
- EA : 2009d : Science Report SC050021. Soil Guideline Values for mercury in soil. Environment Agency, Bristol.
- EA : 2009e : Science Report SC050021. Soil Guideline Values for selenium in soil. Environment Agency, Bristol.
- EA : 2009f : Science Report SC050021. Soil Guideline Values for benzene in soil. Environment Agency, Bristol.

- EA : 2009g : Science Report SC050021. Soil Guideline Values for toluene in soil. Environment Agency, Bristol.
- EA : 2009h : Science Report SC050021. Soil Guideline Values for ethylbenzene in soil. Environment Agency, Bristol.
- EA : 2009i : Science Report SC050021. Soil Guideline Values for xylene in soil. Environment Agency, Bristol.
- EA : 2009j : Science Report SC050021. Soil Guideline Values for arsenic in soil. Environment Agency, Bristol.
- EA : 2009k : Science Report SC050021. Soil Guideline Values for nickel in soil. Environment Agency, Bristol.
- EA : 2009I : Science Report SC050021. Soil Guideline Values for cadmium in soil. Environment Agency, Bristol.
- EA : 2009m : Science Report SC050021. Soil Guideline Values for phenol in soil. Environment Agency, Bristol.
- EA : 2009n : Science Report SC050021. Soil Guideline Values for dioxins, furans and dioxin-like PCBs in soil. Environment Agency, Bristol.

Environment Agency website : <u>www.environment-agency.gov.uk</u>.

HSE : 2005 : EH40 / 2005 Workplace Exposure Limits. Health and Safety Executive. Norwich.

ICRCL : 1990 : Asbestos on contaminated sites. Guidance Note 64/85 Second Edition. Interdepartmental Committee on the Redevelopment of Contaminated Land.

FIGURES

Key	/ Plan
All SPT N-Values against D	Depth
Undrained Shear Strength against D	Depth

Reproduced from the 1998 Ordnance Survey 1:50,000 scale Landranger map, sheet no. 176 with the permission of Ordnance Survey on behalf of The Controller of Her Majesty's Stationery Office, © Crown Copyright, Environmental Sciences Group Limited, Licence No. AL 100006060.

Figure 1 Coursers Farm, Colney Heath, Hertfordshire Report No 22056/GI

Figure 2 All SPT N-Values against Depth Coursers Farm, Colney Heath Report No 22056/GI

Figure 3 Undrained Shear Strength against Depth Coursers Farm, Colney Heath Report No 22056/GI

DRAWINGS

22056/GI/001 22056/GI/001 COU001-P300 rev 1 Site Plan Bund Cross Sections Site Plan and Indicative Landscaping

	-														
				GENE	RAL NOTE:	S									
	1.F D	Reproc rawin	duced fi g No. F	rom A 200.	grivert L	.td's									
	LEGEND TO SYMBOLS														
	Borehole Location Trial Pit Location														
	Trial Pit Location														
7															
	1	BS	14/03/2013	SM	14/03/2013	Added E	BH Location	าร							
	Rev	Drawn	Date	Approv.	Date	Modifica	ation Detail	5							
	Title			AM	ENDMENTS										
Note: an ar															
naler in d	Duri														
\$	Proje	ect	СС	URS	ERS F		И,								
8			CC C	OURS OLN	ERS F EY HE	ROAI ATH), I								
	Clier	ıt													
24.67			Þ	AGRI	VERT I	LTD									
			En	vironmen		s Group	Þ								
	Date	1/12/:	2012	Drawn	BS	/	Approv.	^{⊳y} SM							
	Shee	et Size	Scal	e		-	Proj	ect No							
	Draw	/ing No						Rev							
		-	2:	2056/0	001			1							

Section Drawing

	This drawing & the ir remains the property use of which in who consent. Do not sca be checked on site.	nformation contained herr y of Agrivert Ltd. The rep le or inpart is not permit ale from this drawing. All	ein is copyright & production and/or ted without prior dimensions are to
	Notes.		
	1. Reprodu Map with th Her Majest Copyright.	ced from the Ordnan ne permission of the (y's Stationary Office, Licence Number 100	ce Survey Controller of Crown 020449.
	2. All bunds indicative p 3. Material	s shown on this plan urposes only. finishes are indicativ	are for e only.
	Laward		
		Planning Bo	undary
		Ownership E	Boundary
		Indicative Gras	ss Planting
		Indicative Shru	ıb Planting
	\bigcirc	Indicative Bun Contours	d
	© © ©	Indicative Tree	Planting
		Existing Trees	
		Proposed Hardstanding	
		Proposed Hedgerow	
	Rev Descriptio	n	Date By
	Agrivert Limited The Stables, Radford, Chipping Norton, OX7 4EB	Tel 016 Fax 016 email m	08 677 700, 08 677 711, all@agrivert.co.uk
	Project Anaerobic Coursers F Colney Hea	Digestion Fac arm ath	ility
	^{Title} Site Plan &	Indicative La	ndscaping
	Scale @ A3 1:1250	Drawn by/Checked by	Date 16.12.11

APPENDIX A EXPLORATORY HOLE LOGS

Key to Exploratory Hole Records Borehole Records Trial Pit Records

Key to Exploratory Hole Records

SAMPLES

Undisturbed U UT TW P L CBR BLK CS	Driven tube sam Driven thin wall Pushed thin wall Pushed piston s Liner sample (fro CBR mould sam Block sample Core sample (fro	nple tube sample I tube sample ample om Windowless nple om rotary core) f	→ nominally 100 m or similar sampler taken for laborator	nm diameter and full), full recovery unless y testing	recovery unless other otherwise stated	wise stated
AMAL Disturbed	Amalgamated sa	ample				
B	Small sample Bulk sample					
Other W G	Water sample Gas sample					
ES EW	Environmental c Soil sample Water sample	hemistry sample	es (in more than or	ne container where ap	opropriate)	
Comments	Sample reference made to take a t	ce numbers are tube sample, ho	assigned to every wever, there was r	sample taken. A sam io recovery.	ple reference of 'NR' i	ndicates that attempt was
	Monitoring samp	oles taken after o	completion of hole	construction are not	shown on the explorat	ory hole logs.
TESTS						
SPT S or SPT C	Standard Peneti	ration Test, oper	n shoe (S) or solid	cone (C)		
	The Standard Per Field Records or (SW) is noted. N N = ** in the Tes (without the N =	enetration Test i olumn; each inci Where the full 30 st column. Wher prefix).	is defined in BS EN rement is 75 mm u 00 mm test drive is e the test drive blo	NISO 22476-3 (2005) nless stated otherwis achieved the total nu ws reach 50 the total	. The incremental blo e and any penetration Imber of blows for the blow count beyond th	w counts are given in the under self weight in mm test drive is presented as e seating drive is given
IV HV PP KFH, KRH, KPI	<i>in situ</i> Vane she Hand vane shea Pocket penetron Permeability tes column (one val	ar strength, pea ar strength, peak neter test, conve ts (KFH = falling ue per stage for	k (p) and remoulde (p) and remoulde erted to shear strer head, KRH = risir packer tests)	ed (r) d (r) ngth ng head; KPI = packe	r inflow); results provic	led in Field Records
DRILLING RECOR	DS					
The mechanical ind	lices (TCR/SCR/RC	QD & If) are defi	ned in BS 5930+A	2 (2010)		
TCR SCR RQD If	Total Core Reco Solid Core Reco Rock Quality De Fracture spacing non-intact (NI) is	overy, % overy, % esignation, % g, mm. Minimur s used where the	n, typical and maxi e core is fragmente	mum spacings are pr ed.	esented. The term	
Flush returns, estim	nated percentage w	vith colour where	e relevant, are give	n in the Records colu	mn	
CRF AZCL NR	Core recovered Assessed zone Not recovered	(length in m) in of core loss	the following run			
GROUNDWATER						
\bigtriangledown	Groundwater str Groundwater lev	ike vel after standing	g period			
Notes: See report text for full reference	es of standards	Project Project No. Carried out for	Coursers Farm, Coln 22056/GI Agrivert Limited	ey Heath, Hertfordshire		Key

Key to Exploratory Hole Records

INSTALLATION

Standpipe/ piezometer	Details of standp depths including	pipe/piezometer slotted pipe sec	installations are tion or tip depth	given on the Reco , response zone fil	rd. Legend columr ter material type ar	n shows installe and layers of bac	d instrument kfill.
SP SPIE PPIE EPIE	The type of instr Standpipe Standpipe piezo Pneumatic piezo Electronic piezo	ument installed i meter meter neter	s indicated by a	code in the Legen	d column at the de	pth of the respo	onse zone:
Inclinometer or Slip Indicator	The installation of column.	of vertical profilin	ig instruments is	indicated on the F	Record. The base c	of tubing is show	vn in the Legend
ICE	The type of instr Biaxial inclinome Inclinometer tubi Slip indicator	ument installed i eter ing for use with p	s indicated by a probe	code in the Legen	d column at the ba	se of the tubing	j:
Settlement Points or Pressure Cells	The installation of the Legend column	of single point in: mn.	struments is ind	icated on the Reco	ord. The location of	the measuring	device is shown in
ESET ETM EPCE PPCE	The type of instr Electronic settler Magnetic extens Electronic embe Electronic push i	ument installed i ment cell/gauge ometer settleme dment pressure in pressure cell	s indicated by a nt point cell	code in the Legen	d column:		
INSTALLATION LEGENDS	A legend describ describe the bac	bing the installati kfill materials as	on is shown in t indicated below	he rightmost colum v.	nn. Legends additic	onal to BS5930	are used to
	Arisings		Grout	Bentonite	Sand	Gravel	Macadam
NOTES 1	Soils and rocks a amplified by BS	are described in 5930+A2 (2010)	accordance with	n BS EN ISO 1468	8-1 (2002) and 146	689-1 (2003) res	spectively as
2	For fine soils, co available. Where reason, the repo as appropriate. I firm) means less situ condition, no	nsistency detern the logger cons rted consistency Hence (Probably certainty. When consistency is	nined during des siders that the sa is given in brac firm) indicates t e the samples a given.	scription is reported ample may not be r kets. The reliability the logger is reason vailable are too dis	d for those strata w representative of th y of the sample is in nably confident of the sturbed to allow a r	there undisturb the condition in s ndicated by Pro the assessment easonable asse	ed samples are bitu, for whatever bably or Possibly t, but (Possibly essment of the in
3	Evidence of the of the of the of their size in re	occurrence of ve lation to the exp ass.	ery coarse partic loratory hole the	les (cobbles and b ese records may no	oulders) is present ot be fully represen	ed on the logs, tative of their si	however, because ze and frequency
4	The declination of will be the dip.	of bedding and jo	oints is given wit	h respect to the no	ormal to the core as	kis. Thus in a ve	ertical borehole this
5	The assessment	of SCR, RQD a	nd Fracture Spa	acing excludes artif	ficial fractures		
6	Strata legends a	re in accordance	e with BS 5930+	A2 (2010).			
7	Water level obse log and in the Le does not necess groundwater can than water can n water levels in th given in the Rec	ervations of disce gend column. T arily indicate tha not be observed nake its way into he hole at the tim ords column.	ernible entries d he term "none o t the hole has n d, for instance, d t he borehole (r he of recovering	uring the advancing bserved" is used w ot been advanced Irilling with water flu ef BS5930+A2:201 individual samples	g of the exploratory where no discrete e below groundwate ush or overwater, o 10, Clause 47.2.7). or carrying out in	/ hole are given ntries are ident r level. Under c or boring at a ra In addition, who situ tests and a	at the foot of the ified although this ertain conditions te much faster ere appropriate, t shift changes are
8	The borehole log interpretation. He present) some ju conditions.	gs present the re owever, in certai idgement may b	sults of Standar n ground condit e necessary in c	d Penetration Test ions (eg high hydra considering whethe	is recorded in the fi aulic head or where er the results are re	eld without corr e very coarse pa presentative of	rection or articles are in situ mass
Notes: See report text for full references	s of standards	Project	Coursers Farm, Co	olney Heath, Hertfordsh	ire		
		Project No. Carried out for	22056/GI Agrivert Limited				Key Sheet 2 of 2

DrilledJWLoggedKSCheckedSM	Start 17/01/2013 End 24/01/2013	Equipment, Methods ar Hand excavated inspecti boring from 1.2 m with D	nd Remarks on pit from G ando 1000.	äL to 1.2m	depth. Cable percussive 0.00m 9.50m 200mm 9.50m 9.50m 15.00m 150mm 15.00m	Ground Level Coordinates National Grid Chainage	
Sample	s and Tests	;		I	Strata	1	
Depth	Type & No	Records	Date	Time Water	Description	Depth, Level	Legend Backfill/
0.05	D 1 B 2				(TOPSOIL) Grass over soft dark brown slightly gravelly, slightly sandy CLAY. Sand is fine to medium. Gravel is fine subrounded to subangular of flint.	0.10	
- - - - - - - - - - - - - - - - - - -	6 U3	25 blows	1.50		(SUBSOIL) Firm yellowish brown slightly sandy gravelly CLAY. Sand is fine to medium. Gravel is fine, subrounded of flint.	- - (1.60) - -	
					Medium dense yellowish brown slightly sandy GRAVEL. Gravel is fine to medium, rounded to subrounded of flint. (GLACIAL DEPOSITS)	- 1.70 	· · · · · · · · · · · · · · · · · · ·
- 2.50-2.95 - 2.50-2.95 	SPT C D 4	N=16 (4,5/4,4,4,4)	2.50	1.50			
- 3.50-3.95 - 3.50-3.95 	SPT C D 5	N=22 (3,5/6,5,5,6)	3.30	3.00		- - - - - - (4.40)	
- - - 4.50-4.95 - - - - - - - - - - - - - - - - - - -	SPT C D 6	N=28 (3,5/6,7,7,8)	4.50	3.40	5.20 m Clay lens [—]		
6.00-6.45 6.00-6.45 6.10 6.40 6.40 6.40	SPT C D 7 D 8 D 9 D 10	N=13 (5,2/3,3,3,4)	6.00	5.20	Very soft to stiff yellowish brown to bluish grey slightly gravelly sandy CLAY. Sand is fine to medium. Gravel is fine to medium, rounded to subrounded of flint and chalk. (GLACIAL DEPOSITS) 6.80-7.40 m Becoming stiff	6.10	SP
- 7.20 - 7.40 - 7.50-7.95	D 11 D 12 U 13	7 blows			7.40-7.60 m [—] Becoming soft 7.60-8.40 m Becoming very	(3.20)	
7.95-8.00 8.40	D 14 D 15				sont 		4 - 1 - 4 4 - 1 - 4 4 - 1 - 4
- 8.71 - 9.00-9.45 - 9.00-9.45	D 16 SPT S D 17	N=29 (2,2/3,10,9,7)	9.00	8.20			
- 9.50-10.00) B 18				Dense brownish grey slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint and	- 9.30 - - - - -	
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 12.20 m		
Groundwater No. Struck (m) 1.20	Entries Post strike behav Water seepage	iour observed	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For expla abbreviations se levels in metres in depth column	anation of symbols at ee key sheet. All dep . Stratum thickness ().	nd ths and reduced given in brackets	Project Project N Carried o	lo. Jout for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH1 heet 1 of 2

Drilled JW Logged KS Checked SM	Start 17/01/2013 End 24/01/2013	Equipment, Methods an Hand excavated inspection boring from 1.2 m with Da	d Remarks on pit from G ando 1000.	L to 1.2m	depth. Cable percussive 0.00m 9.50m 200mm 9.50m 9.50m 15.00m 150mm 15.00m	Ground Level Coordinates National Grid Chainage	
Samples a	I Ind Tests				Strata	-	
Depth	Type & No	Becords	Date	Time	Description	Depth, Level	Legend Backfill/
- - - - - - - - - - - - - - - - - - -	SPT C D 19 B 20	N=45 (6,7/10,11,12,12)	10.50	9.50	chalk. (GLACIAL DEPOSITS)	(1110kHess)	
- - - - - - - - - - - - - - - - - - -	SPT C D 21	N=6 (5,6/2,1,2,1)	12.00	10.30	Loose to medium dense yellowish brown slightly gravelly SAND. Gravel is fine to medium, subrounded to rounded of flint. (GLACIAL DEPOSITS)	12.20	
- 13.50-13.95 - 13.50-13.95 - 13.50-13.95 	SPT C D 22	N=16 (1,2/3,3,4,6)	13.50	12.00	-	- - - - - - - - - - - - - - - - - - -	
	SPT S D 23	N=29 (5,6/6,7,8,8)	15.00	14.30	Stiff bluish grey slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine, subrounded to rounded of chalk. (GLACIAL DEPOSITS) EXPLORATORY HOLE ENDS AT 15.45 m	- 14.80 - (0.65) - 15.45 	· · · · · · · · · · · · · · · · · · ·
 	Type & No ries sst strike behav	Records	Date Casing Depth so	Time Water ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Fime Tools used
Notes: For explanati abbreviations see ke levels in metres. Str. in depth column. Scale 1:50	on of symbols a y sheet. All dep atum thickness ((c 44	nd ths and reduced jiven in brackets ESG www.esg.co.uk	Project Project No Carried ou	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH1 neet 2 of 2

Drilled JW Logged KS Checked SM	Start 25/01/2013 End 26/01/2013	Equipment, Methods ar Hand excavated inspection boring from 1.2 m with Da	nd Remarks on pit from G ando 1000.	s àL to 1.2m	depth. Cable percussive Depth from to Diameter Casing Dep 0.00m 8.50m 200mm 8.50m 8.50m 15.00m 150mm 15.00m	h Ground Level Coordinates National Grid Chainage	
Samples a	Ind Tests				Strata		
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
0.05	D 1		Casing	water	(TOPSOIL) Grass over soft dark brown slightly sandy CLAY. Sand is fine to medium.		
- 0.50-1.00 - - - - -	82				(SUBSOIL) Soft brown slightly gravelly, sandy CLAY. Sand is fine to medium. Gravel is fine to coarse, subrounded to rounded of flint.	- - (1.20) 	1.46 14
- 1.30 - 1.50-1.95 	D 3 U 4	7 blows			Firm brown slightly sandy CLAY. Sand is fine. (GLACIAL DEPOSITS)		
1.95-2.00 	D 5 D 6					 (2.00)	
- 2.50-2.95 - 2.50-2.95 	SPT S D 7	N=5 (1,2/1,1,1,2)	2.50	0.00			
- - - 3.50-3.95 - 3.50-3.95 - -	SPT C B 8	N=47 (9,12/12,11,12,12)	3.30	2.90	Dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)		
- 4.50-4.95 - 4.50-4.95 	SPT C B 9	N=47 (7,10/11,11,12,13)	4.50	4.00	4.95-7.20 m Becoming sandy	- - - - - - - - - - - - - - - - - - -	
- - - - 6.00-6.45 - 6.00-6.45 -	SPT C B 10	N=36 (7,7/8,9,9,10)	6.00	4.50			
7.20 7.50-7.95	D 11 U 12	18 blows			Stiff greyish brown mottled yellowish brown slightly sandy CLAY with occasional fine subangular to subrounded gravel of flint. Sand is fine to medium.	7.20	
7.95-8.00 8.20 	D 13 D 14				(GLACIAL DEPOSITS) 8.00-8.40 m Becoming soft and gravely Loose to medium dense yellowish brown sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (CLACIAL DEPOSITS)	8.40	
	SPT C B 15	N=13 (4,3/4,3,3,3)	9.00	8.60	9.45-11.90 m Becoming sandy		
Depth	Type & No	Records	Date	Time Water	Stratum continues to 11.90 m	·	
Groundwater Ent No. Struck Po (m) None observed	ries ost strike behav (see Key Shee	iour >t)	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanati abbreviations see ke levels in metres. Stra in depth column.	ion of symbols a ey sheet. All dep atum thickness ((c	nd ths and reduced jiven in brackets	Project Project N Carried o	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH2 Sheet 1 of 2

Drilled JW Logged KS Checked SM	Start 25/01/2013 End 26/01/2013	Equipment, Methods and Hand excavated inspectiboring from 1.2 m with D	nd Remarks ion pit from G bando 1000.	L to 1.2m	depth. Cable percussive 5.50m	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests	4			Strata	-	
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
	71		Casing	Water	(Continued from Sheet 1)	(Thickness)	Instruments
- 10.50-10.95 - 10.50-10.95 - 10.50-10.95 	SPT C B 16	N=7 (3,3/2,1,2,2)	10.50	9.00	sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	(3.50)	
12.00-12.45 12.00-12.45	SPT C B 17	N=6 (1,2/1,1,2,2)	12.00	10.80	Loose yellowish brown slightly gravelly SAND. Gravel is fine, subangluar to subrounded of flint. (GLACIAL DEPOSITS)	- - - - - - - - - - - - - - - - - - -	b
- 13.50-13.95 - 13.50-13.95 - 13.50-13.95 	SPT C B 18	N=8 (1,2/3,2,2,1)	13.50	12.00		(2.50)	b. v. b. b. v.
 	D 19				Stiff bluish grey slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine, subangular to		
 15.00-15.45 	SPT S D 20	N=9 (3,3/2,2,2,3)	15.00	14.50	subrounded of chalk. (GLACIAL DEPOSITS)	(1.05) 	1. 1.
Depth	Type & No ries	Records	Date Casing	Time Water	EXPLORATORY HOLE ENDS AT 15.45 m	Chiselling	
No. Struck Po (m) None observed (st strike behav	iour ३१)	Depth s	ealed (m)	From to (m)	Depths (m) 1	l'ime Tools used
Notes: For explanation abbreviations see ke levels in metres. Stra- in depth column. Scale 1:50	on of symbols a y sheet. All dep atum thickness ((c	nd ths and reduced given in brackets	Project Project N Carried o	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole St	BH2 neet 2 of 2

Drilled JW Logged KS Checked SM	Start 08/01/2013 End 11/01/2013	Equipment, Methods and Hand excavated inspectior boring from 1.2 m with Dar	I Remarks n pit from C ndo 1000.	յ ՅL to 1.2m	depth. Cable percussive Depth from to Diameter Casing Depth 0.00m 15.00m 200mm 15.00m 15.00m 24.00m 150mm 24.00m	Ground Level Coordinates National Grid Chainage	
Samples (I Tests	<u>_</u>			Ctrata	Channage	
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
0.05	D 1		Casing	Water		(Thickness) - 0.10	Instruments
_			l	I	Grass over soft dark brown sandy CLAY. Sand is fine to medium.	#	0.0
- 0.50-1.00	В 2		l	ļ	(SUBSOIL)	(0.90)	÷
- - -			l	ļ	Firm brown sandy slightly gravelly CLAY. Gravel is fine to coarse, subangular to		
			l	ļ	subrounded of flint.	Z ^{1.00}	· · · ·
- 1.25 	D 3	1	l	ļ	occasional rounded to subrounded gravel	1	1.7.1
- 1.50-າ.ອວ - -	U 4	8 blows	l	I	(GLACIAL DEPOSITS) Becoming firm	1	F _ 3.
- 1.95-2.00	D 5		l	ļ	-	- (1.80)	÷:
- 2.25	D 6		l	ļ		1	
- - - 2.50-2.95	SPT S	N=47 (2,3/5,9,15,18)	2.50	dry		-	· _:-
- 2.50-2.95 - -	D7		l	ļ		2.80	·
-			l	ļ	Dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse,	-	
-			l	ļ	GLACIAL DEPOSITS)	1	
- - 3.50-3.95 - 3.50-3.95	SPT C	N=48 (5,7/10,12,12,14)	3.30	2.00		-	
-			l	ļ		1	
- 			l	ļ	4.00 m Clay lens	(2.30)	
- - -			l	ļ			0.0
- 4.50-4.90 - 4.50-4.95	SPT C B 9	50 (10,12/14,15,16,5 for 22mm)	4.50	2.20		1	
-			l	ļ		1	
			l	ļ	Dense vellowish brown verv gravellv	5.10	2.0
-			l	ļ	SAND. Gravel is rounded to subrounded, 5.30 m Clay lens ⁻ fine to medium of flint.	1	
-			l	ļ	(GLACIAL DEPOSITS)	-	р
- - - 6.00-6.45	SPT C	N=37 (7,9/9,9,9,10)	6.00	3.30	_	(1.50)	P_0
- 6.00-6.45	B 10			ľ			
-			l	ļ			0.0
- - -			l	ļ	Stiff grey mottled brown slightly	- 6.60 -	
- 7.00-7.50	B 11		l	ļ	fine to coarse, subangular to rounded of	(1.00)	
-			l	ļ	(GLACIAL DEPOSITS)		
- - 7.50-7.95 -	U 12	16 blows	l	I		7.60	· · ·
- - -	- 10		l	ļ	Yellowish brown gravelly SAND. Gravel is fine to medium, rounded to subrounded	3	0.0
7.95-8.00 	D 13			ļ	of flint (GLACIAL DEPOSITS)	-	0
-				ļ		(1.50)	0
- - -				ļ			0.0
- - - 0.0.9 45	SPT S	N-14 (3 4/4 4 3 3)	0.00	drv	_	-	e
- 9.00-9.45 - 9.00-9.45	D 14	N=14 (0,4/4,4,0,0)	9.00	с, _у	Medium dense yellowish brown sandy	9.10	a.
- - - 9.50-10.00	B 15		l	I	GRAVEL. Gravel is fine to coarse, rounded to subrounded of flint.	-	° . – °
_				ļ	(GLACIAL DEPOSITS) 9.60 m - Occasional	-	
- - -		ļ!	Date	Time	cobbles of flint	-	
Depth	Type & No	Records	Casing	Water	Stratum continues to 11.20 m	Chiselling	
No. Struck Pc (m) 2.80 R	Sose to 2.60 m	<i>i</i> iour ı after 20 minutes. Mediur	Depth s	ealed (m)	Depth Helated Hernarks From to (m)	Depths (m)	Time Tools used
Notes: For explanati abbreviations see k levels in metres. Str	ion of symbols a ey sheet. All der ratum thickness	and pths and reduced given in brackets	Project		Coursers Farm, Colney Heath, Hertfordshire	Borehole	RH3
in depth column.	((c) ESG www.esg.co.uk	Carried c	out for	Agrivert Limited	S	heet 1 of 3

Drilled JW Logged KS Checked SM	Start 08/01/2013 End 11/01/2013	Equipment, Methods ar Hand excavated inspection boring from 1.2 m with Date	nd Remarks on pit from G ando 1000.	iL to 1.2m	depth. Cable percussive Depth from t 0.00m 15.1 15.00m 24.1	o Diameter Casing Depth 00m 200mm 15.00m 00m 150mm 24.00m	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests				Strata			
Depth	Type & No	Records	Date Casing	Time Water	Description (Continued from Shee	st 1)	Depth, Level (Thickness)	Legend Backfill/
- - - - 10.50-10.95 - 10.50-10.95 - - - -	SPT C B 16	N=5 (1,2/1,1,1,2)	10.50	dry	Medium dense yellowish brown sandy GRAVEL. Gravel is fine to coarse, rounded to subrounded of flint. (GLACIAL DEPOSITS)	10.50-11.20 m - Becoming very - sandy -	(2.10)	· • • • • • • • • • • • • • • • • • • •
- - - - - - - - - - - - - - - - - - -	B 17	N-4 (1 1/1 1 1 1)	12.00	10.00	Loose yellowish brown slightly gravelly SAND. Gravel is fine to medium, rounder to subrounded of flint. (GLACIAL DEPOSITS)	ed	11.20	9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9
- 12.00-12.45 - 12.00-12.45 	SPT C B 19	N=8 (1,2/2,3,1,2)	13.50	10.40		-	(4.00)	
- - - - - - - - - - - - - - - - - - -	SPT C B 20	N=31 (5,5/5,6,8,12)	15.00	11.00	Stiff bluish grey slightly sandy, slightly gravelly CLAY. Gravel is fine to medium, subangular to subrounded chalk and flint. Sand is fine to medium. (GLACIAL DEPOSITS)	of	15.20	9. 9. 9. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
- 16.00 	U 22 D 23	60 blows				16.90-17.30 m	(2.10)	
- - - - - - - - - - - - - - - - - - -	SPT C B 24	N=15 (3,2/3,4,4,4)	18.00	17.00	Medium dense greyish brown sandy GF with numerous cobbles of flint. Gravel is fine to coarse, rounded to subrounder of flint. (GLACIAL DEPOSITS)	AVEL	17.30	4 . 0 . 0 . 4
- - - - - - - -	D 25					18.70-18.90 m	(4.00)	
– 19.50-19.95 – 19.50-19.95 –	SPT S D 26	N=35 (1,4/6,9,8,12)	19.50 Date	17.00 Time		Dense		0.00
Depth Groundwater Entr No. Struck Po (m)	i ype & No ries Ist strike behav	records	Casing	Water ealed (m)	Depth Related Remarks * From to (m)		Chiselling Depths (m)	Time Tools used
Notes: For explanationabbreviations see ker levels in metres. Stratin depth column. Scale 1:50	on of symbols a y sheet. All dep ttum thickness g (c) 42	nd ths and reduced tiven in brackets ESG www.esg.co.uk 5.4814/03/2013 13:11:39	Project Project Ne Carried of	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited		Borehole	BH3 heet 2 of 3

Drilled JW Logged KS Checked SM	Start 08/01/2013 End 11/01/2013	Equipment, Methods an Hand excavated inspecti boring from 1.2 m with D	n d Remarks on pit from GL ando 1000.	L to 1.2m	depth. Cable percussive	Depth from to Diameter Casir 0.00m 15.00m 200mm 15.0 15.00m 24.00m 150mm 24.0	ig Depth 00m 00m	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests	j			Strata				
Depth	Type & No	Records	Date	Time Water	(6)	Description		Depth, Level	Legend Back
 	SPT C	N=28 (1,3/5,5,8,10)	21.00	17.00	Medium dense greyish with numerous cobbles is fine to coarse, rounde of flint. (GLACIAL DEPOSITS)	brown sandy GRAVEL of flint. Gravel ed to subrounded	- - - - - - - - -		
21.00-21.45 21.50 21.50	B 27 D 28				Very weak yellowish wh CHALK with occasional fine to coarse, subround (UPPER CHALK)	ite fine grained gravel. Gravel is ded of flint.	- - - - - - - - - - - - - - - - - - -	21.30	
22.50-22.95 22.50-22.95 23.00-23.50	SPT S D 29 B 30	N=15 (1,1/2,2,3,8)	22.50	17.00				(3.15)	
 24.00-24.45 24.00-24.45 	SPT S D 31	N=22 (2,4/5,6,6,5)	24.00	18.20			- - - - - - -	24.45	
	Type & No tries	Records	Date Casing	Time Water	Depth Related Remarks *			Chiselling	
Groundwater Ent No. Struck Po (m)	ries ost strike behav	iour	Depth se	ealed (m)	Depth Related Remarks * From to (m)			Chiselling Depths (m) T	ime Tools used
Notes: For explanati abbreviations see ke levels in metres. Stra- in depth column. Scale 1:50	on of symbols a y sheet. All dep atum thickness ((c ⁻	nd ths and reduced given in brackets	Project Project No Carried ou). It for	Coursers Farm, Colney Hea 22056 Agrivert Limited	ath, Hertfordshire		Borehole	BH3 eet 3 of 3

DrilledJWLoggedKSCheckedSM	Start 25/01/2013 End 28/01/2013	Hand excavated inspection boring from 1.2 m with Di	on pit from G ando 1000.	i àL to 1.2m	depth. Cable percussive 0.00m 200m 9.00m 9.00m 9.00m 9.00m 9.00m	Coordinates National Grid Chainage		-
Samples a	and Tests				Strata			
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend	Backfill
0.05	D 1		ousing	match	(TOPSOIL) Grass over soft dark brown slightly	0.10	* <u>-</u>	
- - 0.50-1.00 - - -	B 2				(SUBSOIL) Firm brown slightly sandy, slightly gravelly CLAY. Sand id fine to medium.	(0.90)	1. 1. 1. 1. 1. 1.	
-					Gravel is fine to medium, rounded to	7 1.00 Z	* *	11
1.25 1.50-1.95 	D 3 U 4				Firm brown slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to medium, rounded to subrounded of flint. (GLACIAL DEPOSITS)	(1.30)		
- - - 2.50-2.95 - - -	SPT C B 5	N=46 (4,8/9,11,13,13)	2.50	2.00	Medium dense to dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	2.30	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	
- - - - - - - - - - - -	SPT C B 6	N=49 (7,9/10,13,12,14)	3.30	2.70	3.30 m Clay lens [—]			
- - - - 4.50-4.95 - - - - -	SPT C B 7	N=27 (5,7/3,3,9,12)	4.50	4.00		(3.80)		
- 	SPT C B 8	N=30 (1,2/4,8,8,10)	6.00	5.20	Stiff grey slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine, rounded to subrounded of flint. (GLACIAL DEPOSITS)	6.10 (0.30) 6.40	· · · · · · · · · · · · · · · · · · ·	
- - - - - - - - - - - - - - - - - - -	SPT C B 9	N=20 (12,10/6,3,5,6)	7.50	6.00	Medium dense to dense yellowish brown Slightly sandy GRAVEL. Gravel fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS) 7.70 m Clay lens	(3.30)		
- - - - - - - 9.00-9.45 - - - - -	SPT C B 10	N=42 (7,9/10,10,12,10)	9.00	8.50		9.70		
-						-	.0.0	
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 13.30 m			
Groundwater Ent No. Struck Po (m) None observed	tries ost strike behav (see Key Shee	iour et)	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools	used
Notes: For explanat abbreviations see k levels in metres. Str in depth column.	ion of symbols a ey sheet. All dep atum thickness g	nd ths and reduced given in brackets	Project Project N	o.	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivent Limited	Borehole	BH4	

Drilled JW Logged KS Checked SM	Start 25/01/2013 End 28/01/2013	Equipment, Methods at Hand excavated inspecti boring from 1.2 m with D	n d Remarks on pit from GL ando 1000.	. to 1.2m	lepth. Cable percussive 0.00m 9.00m	to Diameter 9.00m 200mm 15.00m 150mm	Casing Depth 9.00m 15.00m	Ground Level Coordinates National Grid Chainage	-
Samples a	nd Tests				Strata				
Depth	Type & No	Becords	Date	Time	Descriptio	n		Depth, Level	Legend Backfill/
- 10.50-10.95 - 10.50-10.95 - 10.50-10.95 	SPT C B 11	N=3 (1,-/1,-,1,1)	10.50	9.70	Very loose to loose yellowish brown slightly gravelly SAND. Gravel is fin to medium, rounded to subrounded flint. (GLACIAL DEPOSITS)	Sneet 1) e of		(Inickness)	
- 12.00-12.45 12.00-12.45	SPT C B 12	N=8 (1,1/1,2,2,3)	12.00	10.60				(3.60)	
13.50-13.95 13.95-14.00	U 13 D 14	43 blows			Stiff bluish grey slightly sandy, slightly gravelly CLAY. Sand is fine medium. Gravel is fine to medium, subangular to rounded of flint and chalk. (GLACIAL DEPOSITS)	to		13.30 (2.15)	
	SPT S D 15	N=35 (3,6/7,8,9,11)	13.50	dry 			- 	15.45	· · · ·
	Type & No	Records	Date Casing	Time Water					
Groundwater Entr No. Struck Po (m) None observed (ries ost strike behav (see Key Shee	iour >t)	Depth se	aled (m)	Depth Related Remarks * From to (m)			Chiselling Depths (m) 1	ime Tools used
Notes: For explanationabreviations see kerelevels in metres. Stratin depth column.	on of symbols an y sheet. All dep atum thickness ((c;	nd ths and reduced jiven in brackets ESG www.esg.co.uk	Project Project No. Carried ou	t for	Coursers Farm, Colney Heath, Hertfords 22056 Agrivert Limited	hire		Borehole Sh	BH4 eet 2 of 2

Dri Lo Ch	illed Igged KS Necked SM	Start 16/01/2013 End 16/01/2013	Equipment, Methods and Hand excavated inspectior boring from 1.2 m with Dar	1 Remarks 1 pit from G ndo 1000.	iL to 1.2m	depth. Cable percussive Depth from to Diameter Casing Depth 0.00m 8.00m 200mm 8.00m 8.00m 15.00m 150mm 15.00m	Ground Level Coordinates National Grid Chainage	
9	Samples a	I nd Tests	J			Strata	1	
	Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
	0.05	D 1 B 2		Casing	Water	(TOPSOIL) Grass over soft dark brown slightly sandy CLAY. Sand is fine to medium. (SUBSOIL) Firm brown slightly sandy, gravelly CLAY. Gravel is fine to medium, rounded to subrounded of flint. Sand is fine to	0.10 (0.90) 1.00	
	1.50-1.95 1.50-1.95	SPT C B 3	N=39 (5,5/5,11,11,12)	1.50	1.00	\medium.		
	2.50-2.58 2.50-2.95	SPT C D 4	(6) 10/bouncing for seating and main drive	2.50	1.80			
	3.50-3.86 3.50-3.95	SPT C B 5	50 (10,11/11,21,18 for 58mm)	3.30	2.90	3.70 m Clay lens	(4.90)	
	4.50-4.58 4.50-4.95	SPT C B 6	(15) 10/bouncing for seating and main drive	4.50	4.00			
	6.00-6.45 6.00-6.45	SPT C B 7	N=3 (1,-/1,-,1,1)	6.00	5.20	Very loose to loose yellowish brown slightly gravelly SAND. Gravel is fine to medium, subrounded to rounded of flint. (GLACIAL DEPOSITS)	5.90	
	7.50-7.95 7.50-7.95	SPT C B 8	N=8 (1,1/2,1,2,3)	7.50	6.80	7.95-10.50 m Becoming medium dense		
	9.00-9.45 9.00-9.45	SPT C B 9	N=17 (1,1/2,4,5,6)	9.00	7.80		(6.30)	
	Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 12.20 m	<u> </u>	P 30 - 10 - 12 -
G No	roundwater Entr o. Struck Po (m) lone observed (:	ies st strike behav see Key Shei	riour et)	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
No abb lev in c Sc	tes: For explanatic previations see key els in metres. Stra depth column.	on of symbols a y sheet. All dep atum thickness ((c	nd iths and reduced given in brackets) ESG www.esg.co.uk	Project Project No Carried or	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH5 Sheet 1 of 2

Drilled Logged KS Checked SM	Start 16/01/2013 End 16/01/2013	Equipment, Methods ar Hand excavated inspection boring from 1.2 m with Da	nd Remarks on pit from GL to 1.2m ando 1000.	depth. Cable percussive	Depth from to I 0.00m 8.00m 8.00m 15.00m	Diameter Casing Depth 200mm 8.00m 150mm 15.00m	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests			Strata	•			
Depth	Type & No	Records	Date Time Casing Water	(Co	Description		Depth, <i>Level</i> (Thickness)	Legend Backfill/
- - - - 10.50-10.95 - 10.50-10.95 - - - - -	SPT C B 10	N=7 (1,-/1,1,2,3)	10.50 10.00	Very loose to loose yello slightly gravelly SAND. (to medium, subrounded flint. (GLACIAL DEPOSITS)	wish brown Gravel is fine to rounded of	10.50-12.20 m - Loose - - - - - - - - - -		
- - - - - - - - - - - - - - - - - - -	SPT C B 11	N=21 (2,2/3,4,7,7)	12.00 11.20	Stiff bluish grey slightly s slightly gravelly CLAY. G rounded to subrounded chalk. (GLACIAL DEPOSITS)	andy, aravel is fine, of flint and		12.20	
13.00 	D 12							
13.50-13.95 13.95-14.00	U 13 D 14	31 blows					(3.25)	1. 40 - 40
 14.50	D 15							
 15.00-15.45 15.00-15.45 	SPT S D 16	N=43 (5,6/8,11,12,12)	13.00 dry					a
E	Type & No ies st strike behav see Key Shee	Records	Date Time Casing Water Depth sealed (m)	EXPLORATORY HOLE	ENDS AT 15.45 m		15.45 Chiselling Depths (m)	īme Tools used
None observed (see Key Shee	e de la companya de la					Davehalt	
Notes: For explanatic abbreviations see key levels in metres. Stra in depth column. Scale 1:50	v or symbols and s	iu ihs and reduced jiven in brackets ESG www.esg.co.uk 5.4814/03/2013 13:11:47	Project Project No. Carried out for	Coursers Farm, Colney Heat 22056 Agrivert Limited	th, Hertfordshire		Borenole Sh	BH5 eet 2 of 2

Drilled JW Logged KS Checked SM	Start 14/01/2013 End 15/01/2013	Equipment, Methods and Hand excavated inspection boring from 1.2 m with D	nd Remarks on pit from G ando 1000.	s GL to 1.2m	depth. Cable percussive Depth from to Diameter Casing Depth 0.00m 15.00m 200mm 15.00m	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Backfill/
_ 0.05 	D 1 B 2		eacing		(TOPSOIL) Grass over soft brown slightly sandy CLAY. Sand is fine to medium. (SUBSOIL) Soft brown slightly sandy, slightly	0.10	
 	SPT C B 3	N=38 (7,9/9,9,10,10)	1.50	1.00	gravelly CLAY. Gravel is fine to coarse, subrounded to rounded of flint.		
 2.50-2.95 	SPT C B 4	N=35 (6,7/9,8,9,9)	2.50	2.00		(4.20)	
- 3.50-3.95 - 3.50-3.95 	SPT C B 5	N=18 (6,7/7,4,4,3)	3.30	2.00	3.70 m Clay lens [—]		
- 4.50-4.95 - 4.50-4.95 	SPT C B 6	N=21 (4,4/6,7,5,3)	4.50	4.20	Dense yellowish brown very gravelly SAND. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	5.00	
- 6.00-6.45 - 6.00-6.45 	SPT C B 7	N=43 (6,6/9,11,11,12)	6.00	5.50	6.80-8.50 m Becoming very dense		
- 7.50-7.95 - 7.50-7.95 	SPT C B 8	N=50 (4,6/10,13,13,14)	7.50	6.30	8.50-11.40 m Becoming loose	(6.40)	
- 9.00-9.45 - 9.00-9.45 	SPT S B 9	N=7 (1,-/1,2,2,2)	9.00	8.50			
Depth	Type & No	Records	Casing	Water	Stratum continues to 11.40 m		
Groundwater Entr No. Struck Po (m) None observed (ries ost strike behav see Key Shee	iour	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanationabbreviations see ke levels in metres. Stratin depth column. Scale 1:50	on of symbols a y sheet. All dep atum thickness g (c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6414/03/2013 13:11:49	Project Project N Carried o	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH6 heet 1 of 2

Drilled JW Logged KS Checked SM	Start 14/01/2013 End 15/01/2013	Equipment, Methods ar Hand excavated inspecti boring from 1.2 m with D	nd Remarks on pit from G /ando 1000.	iL to 1.2m	depth. Cable percussive Depth from to Diameter Casing Depth 0.00m 15.00m 200mm 15.00m	Ground Level Coordinates National Grid Chainage	
Samples a	and Tests	لـــــ			Strata	4	
Depth	Type & No	Becords	Date	Time	Description	Depth, Level	Legend Backfill/
 _ 10.50-10.95 _ 10.50-10.95 	SPT S B 10	N=11 (1,2/1,3,3,4)	10.50	9.70	Dense yellowish brown very gravelly SAND. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	(INTERNESS)	
11.50-12.00 12.00-12.45 12.45-12.50 13.00	B 11 U 12 D 13	22 blows			Stiff bluish grey slightly sandy, slightly gravelly CLAY. Gravel is fine, subangular to subrounded, of chalk. (GLACIAL DEPOSITS)	11.40	SP
- 13.50-13.95 - 13.50-13.95 - 13.50-13.95 	SPT S D 15	N=47 (4,6/8,11,13,15)	12.00	dry		(4.05)	10 . 1. ab . 1. a
- 14.50 	D 16 U 17	40 blows				- - - - - - - - - - - - - - - - - - -	+ 4 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -
	Type & No	Records	Date	Time			
Depth Groundwater Ent No. Struck Pr (m) None observed	ries ost strike behav (see Key Shee	riour et)	Casing Depth se	Water ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanati abbreviations see kr levels in metres. Str in depth column. Scale 1:50	on of symbols ar ey sheet. All dep atum thickness ((c	nd ths and reduced given in brackets) ESG www.esg.co.uk	Project Project Ne Carried o	o. Jut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole	BH6 neet 2 of 2

Drilled PW Logged KS Checked SM	Start 22/01/2013 End 24/01/2013	Equipment, Methods ar Hand excavated inspective boring from 1.2 m with Date	nd Remarks on pit from G ando 3000.	L to 1.2m	depth. Cable percussive Depth from to Diameter Casing Depth	Ground Level Coordinates National Grid Chainage	-
Samples a	nd Tests				Strata		
Depth	Type & No	Records	Date Casing	Time Water	Description	Depth, Level (Thickness)	Legend Backfill/ Instruments
0.00-0.30 0.05 	B2 D1 D3				(TOPSOIL) Grass over soft dark brown slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to	(0.50) 0.50	e
 	SPT C D 5	N=42 (3,4/5,7,12,18)	1.20	dry	(SUBSOIL) Soft brown sandy, very gravelly CLAY. Gravel is fine to coarse, subrounded to rounded of flint.	(0.70) 1.20	
1.20-1.65 	B 6 D 7				Dense yellowish brown gravelly, very clayey SAND. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	(0.50) 1.70	· · · · ·
- 2.20-2.65 - 2.20 - 2.20-2.65 	SPT C D 8 B 9	N=27 (3,4/5.6.8.8)	2.20	0.00	Medium dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)		
 - 3.20-3.65 - 3.20-3.65 - 3.50 	SPT C D 10 B 12 D 13	N=14 (4,5/4,3,4,3)	3.20	0.00	3.50 m Clay lens 3.50-10.50 m Becoming medium dense te		
- - 4.20-4.65 - 4.20 - 4.20-4.65 - -	SPT C D 14 B 15	N=50 (6,7/9,15,22,4) Pen 8	4.20	0.00	very dense		4 9
- - - 5.20-5.65 - 5.20 - 5.20-5.65 - -	SPT C D 16 B 17	N=46 (4,6/9,11,12,14)	5.20	0.00			
 - 6.20-6.65 - 6.20 - 6.20-6.65 	SPT C D 18 B 19	N=44 (4,7/9,11,11,13)	6.20	0.00		(8.80)	
7.70-8.15 7.70 7.70 7.70-8.15	SPT C D 20 B 21	N=40 (3,5/7,9,11,13)	7.70	0.00			10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
- - - - 9.20-9.65 - 9.20-9.65 - -	SPT C D 22 B 23	N=36 (4,6/8,8,9,11)	9.20	0.00			· · · · · · · · · · · · · · · · · · ·
Depth	Type & No	Records	Date Casing	Time Water	Stratum continues to 10.50 m	<u> </u>	
Groundwater Entr No. Struck Po (m) None observed (ries Ist strike behav see Key Shee	iour >t)	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanationabbreviations see ker levels in metres. Stratin depth column. Scale 1:50	on of symbols a y sheet. All dep atum thickness g (c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6414/092013 13:11:52	Project Project No Carried or	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole S	BH7 heet 1 of 2

Drilled PW Logged KS Checked SM	Start 22/01/2013 End 24/01/2013	Equipment, Methods a Hand excavated inspecti boring from 1.2 m with D	n d Remarks on pit from G ando 3000.	aL to 1.2m	depth. Cable percussive	Ground Level Coordinates National Grid Chainage	
Samples a	nd Tests				Strata		
Depth	Type & No	Records	Date	Time	Description	Depth, Level	Legend Backfill/
 	SPT C	N=12 (1.2/3.3.3.3)	10.70	7.50	Image: Continued from sheet () Medium dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	10.50	
- 10.70 - 10.70-11.15 	D 24 B 25	N 22 /1 5/7 6 5 5	12.20	0.00	gravelly SAND. Gravel is fine to medium, subangular to rounded of flint. (GLACIAL DEPOSITS)	(2.30)	
- 12.20-12.65 - 12.20 - 12.20-12.65 	D 26 B 27 D 28 B 29	N≊∠3 (1,9/7,0,3,3)	12.20	9.00	Stiff bluish grey slightly sandy, slightly gravelly CLAY. Sand is fine to medium. Gravel is fine to coarse,	12.80	· · · · · · · · · · · · · · · · · · ·
- 13.70-14.15 	U 30 D 31	52 blows			(GLACIAL DEPOSITS)	(3.00)	
- - - - - - - - - - - - - - - - - - -	SPT S D 32 D 33 B 34 D 35 B 36	N=48 (4,6/8,10,14,16)	13.00	damp	15.50-15.80 m Becoming brown Dense yellowish brown slightly gravelly SAND. Sand is fine to medium. Gravel is fine, rounded to subrounded of flint.	15.80	
16.70-17.15 16.70-17.15	SPT S B 37	N=32 (2,4/5,8,9,10)	16.70	15.00	(GLACIAL DEPOSITS)	(2.00)	
- 17.80 - 18.20-18.65 - 18.20 - 18.20 - 18.20	D 38 SPT C D 39 B 40	N=25 (1,2/4,6,7,8)	18.20	16.50	Medium dense yellowish brown slightly sandy GRAVEL. Gravel is fine to coarse, subangular to rounded of flint. (GLACIAL DEPOSITS)	17.80	
 	D 41 B 42				Very weak yellowish white fine grained CHALK. (UPPER CHALK)	19.20 (0.80)	
Depth	Type & No	Records	Date Casing	Time Water	EXPLORATORY HOLE ENDS AT 20.00 m		
Groundwater Entr No. Struck Po (m) None observed (ries ost strike behav (see Key Shee	iour >t)	Depth s	ealed (m)	Depth Related Remarks * From to (m)	Chiselling Depths (m)	Time Tools used
Notes: For explanational see ken levels in metres. Strain depth column. Scale 1:50	on of symbols at by sheet. All dep atum thickness g (c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6414/09/2013 13:11:53	Project Project N Carried o	o. ut for	Coursers Farm, Colney Heath, Hertfordshire 22056 Agrivert Limited	Borehole St	BH7 neet 2 of 2

Logged SM Checked PE	Start 14/11/2012 End 14/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m A Length 2.00 m C + 135 (Deg)	Ground Level Coordinates National Grid Chainage		
Samples a	nd Tests		Strata				
Depth	Type & No.	Date	Desc	Depth, Level	Legend	Backfill/	
0.05 	ES 1		(TOPSOIL) Grass over dark brown, sandy, gravelly C is subangular to rounded, fine to coarse of (MADE GROUND) Soft to firm brown, slightly gravelly CLAY subangular to rounded, fine to coarse of (MADE GROUND) Soft to stiff greyish brown, sandy, gravell CLAY with pockets (up to 0.5 m diameter	LAY. Gravel of flint.	0.20 (0.60) 0.80		
			brown clay. Angular to rounded, fine to ca and cobbles of concrete, brick, wood, tan plastic and metal.	barse gravel nacadam, - - - - - - - - - - - - - - - - - - -	(2.10)		
- 2.70 	ES 2		EXPLORATORY HOLE ENDS AT	- - - 2.90 m	2.90		
				-			
 Depth	Type & No.	Records Date					
Groundwater Entrie No. Struck Post Str (m) None observed (se	es ike Behaviour ee Key Sheet)		Depth Related Remarks * From to (m)		Stability Stat Shoring Nor Weather	ne	
Notes: For explanation abbreviations see ke levels in metres. Stra in depth column. Scale 1:25	on of symbols a by sheet. All dep atum thickness ((c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6.4812/03/2013 15:10:58	Project Coursers Farm, Colney He Project No. 22056 Carried out for Agrivert Limited	ath, Hertfordshire	Trial Pit Sh	TP1 eet 1 of 1	

	1.	Cauloment Methode	and Banandra	Dimensions and Orientation	Creating Laura	Concerne.		
Logged SM	Start 14/11/2012	7 Tonne Mini-Digger	and Remarks		Coordinates			
Checked PE	End 14/11/2012	Machine dug		Length 2.00 m ^D ^B → 100 (Deg)	National Grid			
				c	Chanage			
Samples a	nd Tests		Strata					
Depth	Type & No.	Date Becords	Desci	iption	Depth, Level (Thickness)	Legend Backfill		
			(TOPSOIL)		(***********			
-			Grass over dark brown, slightly sandy, slightly cravel is subangular to re	ghtly -				
—			to medium of flint.		(0.40)	\times		
-				-		\times		
-			(MADE GROUND)		0.40	$\hat{\mathbf{X}}$		
_			Orangish brown, sandy, clayey GRAVEL.	Gravel is	(0.30)	\times		
_				-		\times		
_			(MADE GROUND)		0.70	\times		
			Soft to stiff greyish brown, sandy, gravell CLAY with pockets (up to 0.5 m diameter	y cobbley -		\times		
_			brown clay. Angular to rounded, fine to co	parse gravel		\times		
			and cobbles of concrete, brick, wood, tarr plastic and metal	nacadam,		\times		
_						\times		
- 120	ES 1					XXX		
- 1.50	E0 1					\times		
L				-		\times		
_				-		$\langle \times \rangle$		
				-		\otimes		
				-		\otimes		
				-		\times		
				-		\times		
_				_	(2.70)	\times		
_						XXX		
						\times		
_				_		XXX		
						\times		
_						\times		
						\times		
						\times		
						\times		
						\times		
- 310	ES 2			-		\times		
_				-		XXX		
_				-		XXX		
_					3 40	$\propto \times$		
-			EXPLORATORY HOLE ENDS AT	3.40 m	0.10			
-				-				
_				-				
L				-				
L				-				
_				_				
_				-				
-				-				
-				-	-			
-				-				
-				-	-			
-				-	-			
-				-	-			
L				-	-			
F				-	-			
	Town A No.	Records						
Groundwater Entrie	i ype & No. es	Date	Depth Related Remarks *		Stability Stal	ble		
No. Struck Post Str (m)	IKE BENAVIOUR		From to (m)					
None observed (se	e Key Sheet)				Shoring Nor	e		
					Weather			
Notes: For explanation	on of symbols a	nd	Project Courcers Form Colocy He	ath Hertfordshire	Trial D'1			
abbreviations see ke levels in metres. Stra	ey sheet. All dep atum thickness of	ths and reduced given in brackets	Draiget No. 20055		i riai Pit	тро		
in depth column.	(c)) ESG www.esg.co.uk	Project No. 22056 Carried out for Agrivert Limited					
Scale 1:25	42	26.4812/03/2013 15:11:00			Sheet 1 of 1			

Logged SM Checked PE	Start 14/11/2012 End 14/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m A Length 2.00 m D C B 100 (Deg)	Ground Level Coordinates National Grid Chainage		-
Samples a	Ind Tests		Strata				
Depth	Type & No.	Date	Descr	iption	Depth, Level	Legend	3ackfill/
Depth	Type & No. ES 1 ES 2	Date Records	Descr (TOPSOIL) Grass over dark brown, sandy, slightly gra Gravel is subangular to rounded, fine to c flint. (MADE GROUND) Firm to stiff, light brown, slightly sandy, sl gravelly CLAY. Gravel is subangular to ro to medium of flint. (MADE GROUND) Soft to stiff greyish brown, sandy, gravell CLAY with pockets (up to 0.5 m diameter brown clay. Angular to rounded, fine to cc and cobbles of concrete, brick, wood, tarr plastic and metal. Firm light brown slightly sandy CLAY. (Possibly GLACIAL DEPOSITS) EXPLORATORY HOLE ENDS AT 3	iption avelly CLAY. oarse of ightly unded, fine y cobbley) of firm arse gravel nacadam,	Depth, <i>Level</i> (Thickness) 0.50 (0.60) 1.10 (2.20) 3.30 3.40		Backfill/
	Type & No. es ike Behaviour se Key Sheet)	Records Date	Depth Related Remarks * From to (m)	-	Stability Stat Shoring Non Weather	e	
Notes: For explanation abbreviations see ke levels in metres. Stra in depth column. Scale 1:25	on of symbols an y sheet. All dep atum thickness c (c)	nd ths and reduced given in brackets ESG www.esg.co.uk	Project Coursers Farm, Colney Her Project No. 22056 Carried out for Agrivert Limited	ath, Hertfordshire	Trial Pit	TP3 eet 1 of 1	

Logged SM Checked PE	Start 14/11/2012 End 14/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m Length 2.00 m □ C B → 020 (Deg)	Ground Level Coordinates National Grid Chainage		:
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Becords	Desc	ription	Depth, Level (Thickness)	Legend	Backfill/
Depth - <td>ES 1</td> <td>Date Records</td> <td>Circleta (TOPSOIL) Grass over dark brown sandy, gravelly Cl subangular to rounded, fine to coarse of the (MADE GROUND) Soft to firm, brown, sandy, gravelly cobble with pockets (up to 0.5 m diameter) of firr clay. Angular to rounded, fine to coarse of cobbles of concrete, brick and tarmacada EXPLORATORY HOLE ENDS AT EXPLORATORY HOLE ENDS AT Depth Related Remarks*</td> <td>ription LAY. Gravel is fint. Pey CLAY Thrown Pravel and The second seco</td> <td>Depth, Level (Thickness) (0.40) 0.40 (1.40) 11.80</td> <td>Legend</td> <td>Backfill/ Instruments</td>	ES 1	Date Records	Circleta (TOPSOIL) Grass over dark brown sandy, gravelly Cl subangular to rounded, fine to coarse of the (MADE GROUND) Soft to firm, brown, sandy, gravelly cobble with pockets (up to 0.5 m diameter) of firr clay. Angular to rounded, fine to coarse of cobbles of concrete, brick and tarmacada EXPLORATORY HOLE ENDS AT EXPLORATORY HOLE ENDS AT Depth Related Remarks*	ription LAY. Gravel is fint. Pey CLAY Thrown Pravel and The second seco	Depth, Level (Thickness) (0.40) 0.40 (1.40) 11.80	Legend	Backfill/ Instruments
(m)	INE DENAVIOUR		From to (m)				
None observed (see Key Sheet)					Shoring Non Weather	e	
Notes: For explanations see keep	on of symbols a y sheet. All dep	nd ths and reduced	Project Coursers Farm, Colney He	ath, Hertfordshire	Trial Pit		
levels in metres. Stra in depth column.	itum thickness of	given in brackets	Project No. 22056			TP4	
Scale 1:25	(C 42	ESG www.esg.co.uk	Carried out for Agrivert Limited		Sh	eet 1 of 1	

Longod CM	Start	Equipment, Methods	and Remarks	Dimensions and Orientation	Ground Level	-	
Checked PE	13/11/2012 End	7 Tonne Mini-Digger Machine dug		Width 0.60 m A B A 135 (Deg)	Coordinates National Grid		-
13/11/2012				Lengtri 2.00 m c	Chainage		
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Records	Descri	iption	Depth, Level (Thickness)	Legend	Backfill/ Instruments
Depth	Type & No.	Date Records	(TOPSOIL) Grass over dark brown, sandy, gravelly Cl is subangular to rounded, fine to coarse o (MADE GROUND) Orangish brown, sandy, clayey GRAVEL. angular to rounded, fine to coarse of flint. (MADE GROUND) Soft to stiff greyish brown, sandy, gravelly CLAY with pockets (up to 0.5 m diameter) brown clay. Angular to rounded, fine to co and cobbles of concrete, brick, wood, tam plastic and metal.	iption LAY. Gravel - f flint Gravel is - y cobbley - i of firm - iarse gravel nacadam,	(0.60) (0.60) (0.30) 0.90 (1.90)	Legend	Backli
- - - 2.50 - - - -	ES 2		Orangish brown, slightly clayey, sandy GF is angular to rounded, fine to coarse of flir (Possibly GLACIAL DEPOSITS) EXPLORATORY HOLE ENDS AT 3		2.80 (0.30) 3.10		
	Turns & Mo	Records		- - - - - - - - - - - - - - - - - - -			
Depth	Type & No.	Date					
Groundwater Entries No. Struck Post Strike Behaviour (m) None observed (see Key Sheet)			Depth Related Remarks * From to (m)		Stability Stable Shoring None Weather		
Notes: For explanation	on of symbols a	nd	Project Coursers Farm, Colney Hea	ath, Hertfordshire	Trial Pit		
levels in metres. Stratum thickness given in brackets in depth column. Scale 1:25 426.4820032013 15:11:05			Project No. 22056 Carried out for Agrivert Limited		Sh	TP5 eet 1 of 1	

Logged SM Checked PE	Start 13/11/2012 End 13/11/2012	Equipment, Methods and Remarks 7 Tonne Mini-Digger Machine dug		Dimensions and Orientation Width 0.60 m Length 2.00 m C B C B C B C C C C C Coordinates National Grid Chaines Chaines Chaines Coordinates National Grid Chaines C		-	
Samples a	nd Tests		Strata				
Depth	Type & No.	Date	Desc	ription	Depth, Level	Legend	Backfill/
- 0.30 	ES 1	Records	(TOPSOIL) Grass over dark brown, sandy, gravelly (is subangular to rounded, fine to coarse (MADE GROUND) Orangish brown, sandy GRAVEL. Grave rounded, fine to coarse of flint. (MADE GROUND) Soft to stiff greyish brown, sandy, gravel CLAY with pockets (up to 0.5 m diamete brown clay. Angular to rounded, fine to c and cobbles of concrete, brick, wood, tar plastic and metal.	CLAY. Gravel	(Thickness) (0.40) 0.40 (0.40) 0.80		
- - - - - - 2.60 - - - -	ES 2			-	(2.50)		
- - - - - - - - - - - - - - - - - - -	Type & No. es rike Behaviour	Records Date	EXPLORATORY HOLE ENDS AT	3.30 m	Stability Stal	ble	
(m) None observed (see Key Sheet)					Shoring None Weather		
Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Scale 1:25 (c) ESG www.esg.co.uk 426.4812/032013 15:11:06			Project Coursers Farm, Colney Heath, Hertfordshire Project No. 22056 Carried out for Agrivert Limited		Trial Pit TP6 Sheet 1 of 1		

Logged SM Checked PE	Start 13/11/2012 End 13/11/2012	Equipment, Methods and Remarks 7 Tonne Mini-Digger Machine dug		Dimensions and Orientation Width 0.60 m Length 2.00 m C B → 100 (Deg)	Ground Level Coordinates National Grid Chainage	-	
Samples and Tests			Strata				
Depth	Type & No.	Date	Desc	ription	Depth, Level	Legend	Backfill/
Depth	ES 1	Date Records	(TOPSOIL) Grass over dark brown, sandy, gravelly C is subangular to rounded, fine to coarse of (MADE GROUND) Orangish brown, sandy GRAVEL. Gravel rounded, fine to coarse of flint. (MADE GROUND) Soft to stiff greyish brown, sandy, gravell CLAY with pockets (up to 0.5 m diameter brown clay. Angular to rounded, fine to co and cobbles of concrete, brick, wood, tarn plastic and metal.	iption LAY. Gravel if flint.	(0.50) 0.50 (0.50) 1.00 (2.50) 3.50	Legend	Backill/
	Type & No. Is ike Behaviour e Key Sheet)	Records Date	Depth Related Remarks * From to (m)	-	Stability State Shoring Non Weather	e	
Notes: For explanatic abbreviations see ke levels in metres. Stra in depth column. Scale 1:25	on of symbols a y sheet. All dep atum thickness of (c 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk	Project Coursers Farm, Colney He Project No. 22056 Carried out for Agrivert Limited	ath, Hertfordshire	Trial Pit	TP7 eet 1 of 1	

Logged SM Checked PE	Start 13/11/2012 End 13/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m a b b b b b b b b b b b b b b b b b b	Ground Level Coordinates National Grid Chainage		-
Samples a	nd Tests		Strata	c			
Denth		Date	Desc	ription	Depth, Level	Legend	Backfill/
Depth	ES 2	Date Records	(TOPSOIL) Grass over dark brown, sandy, gravelly C is subangular to rounded, fine to coarse of (MADE GROUND) Firm orangish brown, sandy, gravelly CL/ subangular to rounded, fine to coarse of (MADE GROUND) Soft to stiff brown, sandy, gravelly cobble with pockets (up to 0.5 m diameter) of fir clay. Angular to rounded, fine to coarse of cobbles of concrete, brick and tarmacada	ription	Depth, <i>Level</i> (Thickness) 0.20 (0.40) 0.60 (2.20)	Legend	Backfill/ Instrument
	Type & No.	Records Date	EXPLORATORY HOLE ENDS AT	2.80 m	2.80 Stability Stat		
Notes: For explanation of symbols and abbreviations see key sheet. All depths and reduced levels in metres. Stratum thickness given in brackets in depth column. Scale 1.25 (c) ESG www.esg.co.uk		nd ths and reduced jiven in brackets ESG www.esg.co.uk	Project Coursers Farm, Colney Heath, Hertfordshire Project No. 22056 Carried out for Agrivert Limited		Trial Pit TP8 Sheet 1 of 1		

Logged SM Checked PE	Start 13/11/2012 End 13/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m Length 2.00 m C 080 (Deg)	Ground Level Coordinates National Grid Chainage		-
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend	Backfill/ Instruments
- 0.10 - - - - -	ES 1		(TOPSOIL) Grass over dark brown, sandy, very grave Gravel is subangular to rounded, fine to o flint. (MADE GROUND) Soft to firm brown, sandy, very gravelly C is subangular to rounded, fine to coarse o	elly CLAY. coarse of CLAY. Gravel of flint.	0.20 (0.70)		
-			Orangish brown, sandy GRAVEL. Gravel rounded, fine to coarse of flint. (Possibly GLACIAL DEPOSITS)	is angular to	0.90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-				-	(0.70)	4. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	
			EXPLORATORY HOLE ENDS AT	1.60 m	1.60		
Depth	Type & No.	Records Date					
Groundwater Entrie No. Struck Post Stri (m) None observed (se	es ike Behaviour ee Key Sheet)		Depth Related Remarks * From to (m)		Stability Sta Shoring Nor Weather	ble	
Notes: For explanatic abbreviations see ke levels in metres. Stra in depth column. Scale 1:25	on of symbols at y sheet. All dep atum thickness g (c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6.4812/03/2013 15:11:11	Project Coursers Farm, Colney He Project No. 22056 Carried out for Agrivert Limited	ath, Hertfordshire	Trial Pit Sh	TP9 eet 1 of 1	
Trial Pit Log

Logged SM Checked PE	Start 13/11/2012 End 13/11/2012	Equipment, Methods 7 Tonne Mini-Digger Machine dug	and Remarks	Dimensions and Orientation Width 0.60 m a length 2.00 m b c 165 (Deg)	Ground Level Coordinates National Grid Chainage		-
Samples a	nd Tests		Strata				
Depth	Type & No.	Date Records	Desc	ription	Depth, Level (Thickness)	Legend	Backfill/
- 0.10 - - - - - 0.70	ES 1 ES 2		(TOPSOIL) Grass over dark brown, sandy, gravelly (is subangular to rounded, fine to coarse of (MADE GROUND) Soft to firm brown, sandy, gravelly CLAY subangular to rounded, fine to coarse of (MADE GROUND) Soft to stiff greyish brown, sandy, gravel	CLAY. Gravel	0.25 (0.35) 0.60		
	ES 3		CLAY with pockets (up to 0.5 m diameter brown clay. Angular to rounded, fine to c and cobbles of concrete, brick, wood, tar plastic, glass and metal.	jo of firm	(3.00)		
	Type & No.	Records	EXPLORATORY HOLE ENDS AT	3.60 m			
Groundwater Entrid No. Struck Post Str (m) None observed (se	es rike Behaviour	Date	Depth Related Remarks * From to (m)		Stability Stat Shoring Non Weather	l l	
Notes: For explanati abbreviations see ke levels in metres. Stra in depth column. Scale 1:25	ion of symbols a ey sheet. All dep atum thickness c (c) 42	nd ths and reduced jiven in brackets ESG www.esg.co.uk 6.4812/03/2013 15:11:12	Project Coursers Farm, Colney He Project No. 22056 Carried out for Agrivert Limited	ath, Hertfordshire	Trial Pit	FP10 eet 1 of 1	

APPENDIX B

CHEMICAL LABORATORY TESTING RESULTS

Soil Chemical Testing Results	B1
Leachate Chemical Testing Results	B2

APPENDIX B1 SOIL CHEMICAL TESTING RESULTS Our Ref: EFS/128590M (Ver. 2) Your Ref: 22056

December 20, 2012

Mr S Mason ESG Geoenvironmental Consulting Glossop House Hogwood Lane Wokingham Berkshire RG40 4QW

ESG Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Mr S Mason

Dear Mr Mason

Soil Sample Analysis - Coursers Farm, Colney Heath

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 28/12/12 when they will be discarded. Please call 01283 554500 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

Estab.

J Elstub <u>Project Co-ordinator</u> 01283 554500

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/128590M (Ver. 2)

ESG Geoenvironmental Consulting Glossop House Hogwood Lane Wokingham Berkshire RG40 4QW

Site: Coursers Farm, Colney Heath

The 17 samples described in this report were registered for analysis by ESG on 16-Nov-2012. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 20-Dec-2012

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS or MCERTS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Pages 2 to 3) Table of PAH (MS-SIM) (80) Results (Pages 4 to 10) Table of PCB Congener (12) Results (Page 11) Table of SVOC Results (Pages 12 to 14) Table of TPH Texas banding (std) (Page 15) GC-FID Chromatograms (Pages 16 to 25) Table of VOC (HSA) Results (Pages 26 to 28) Table of Asbestos Screening Results (Pages 29 to 30) Analytical and Deviating Sample Overview (Pages 31 to 34) Table of Method Descriptions (Page 35) Table of Report Notes (Page 36) Table of Sample Descriptions (Appendix A Page 1 of 1)

On behalf of ESG : Declan Burns

Operations Director Laboratory and Analytical Business Date of Issue: 20-Dec-2012

Accreditation Codes: **N** (Not Accredited), **U** (UKAS), **UM** (UKAS & MCERTS) Tests marked '^' have been subcontracted to another laboratory. (NVM) - denotes the sample matrix is dissimilar to matrices upon which the MCERTS validation was based, and is therefore not accredited for MCERTS. All results are reported on a dry weight basis at 105°C unless otherwise stated. (except QC samples) ESG accepts no responsibility for any sampling not carried out by our personnel.

	Method	Units : I Codes :	mg/kg GROHSA	mg/kg ICPMSS	pH Units PHSOIL	mg/kg SFAPI	mg/kg SFAPI	% Sub002	Sub002a	% TMSS								
	Method Reporting	JLimits :	0.2	0.3	0.2	1.2	1.6	0.7	0.5	2	0.5	16		0.5	0.5	0.001		0.2
	Accreditati	ion Code:	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	UM	U	U	U	U
LAB ID Number CL/	Client Sample Description	Sample Date	GRO	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID and Quant (1 to 3)	^Asbestos Screen	Tot.Moisture @ 105C
1282429	TP1 ES 1 0.5	14-Nov-12		11.0	0.44	29.3	15.2	19.3	<0.6	24.4	<0.6	51	7.7		<0.7			24.7
1282430	TP1 ES 2 2.7	14-Nov-12												<0.6	<0.6		NAIIS	19.6
1282445	TP10 ES 2 0.3	13-Nov-12	<0.2	31.6	0.40	23.8	34.7	77.5	<0.52	32.1	<0.5	140.1	7.9	<0.6	<0.6			19.8
1282444	TP10 ES 1 0.7	13-Nov-12												<0.6		<0.001	CH AM	20.4
1282431	TP2 ES 1 1.3	14-Nov-12	0.67											<0.6	<0.6			19.8
1282432	TP2 ES 2 3.1	14-Nov-12		11.6	0.32	34.3	20.9	52.0	<0.52	24.6	0.7	75.2	8.5					23.9
1282433	TP3 ES 1 0.1	14-Nov-12	0.32															19.0
1282434	TP3 ES 2 3.2	14-Nov-12		11	0.39	20.5	33.1	161	<0.51	17.7	<0.5	135.4	8.2	<0.6	<0.6		NAIIS	15.0
1282435	TP4 ES 1 1.1	14-Nov-12		10.9	0.25	38.9	23.4	47	<0.5	24.8	0.5	81.8	9.7	<0.7	<0.7		NAIIS	25.9
1282436	TP5 ES 1 1.0	13-Nov-12	<0.3	13.1	0.27	36.2	18.7	36.1	<0.51	25	<0.5	78.0	8.3		<0.6			21.8
1282437	TP5 ES 2 2.5	13-Nov-12												<0.6			NAIIS	22.4
1282438	TP6 ES 2 2.6	13-Nov-12		12.2	0.3	43.4	21.7	87.0	<0.50	31.7	0.6	79.9	8.4	<0.6	<0.6			22.3
1282439	TP7 ES 1 1.1	13-Nov-12	<0.3											<0.7				23.7
1282440	TP7 ES 2 3.2	13-Nov-12		11.0	0.25	30.1	19	41.9	<0.5	23.2	<0.5	73.3	8.8		<0.7		NAIIS	23.2
1282441	TP8 ES 1 0.4	13-Nov-12	<0.2															14.3
1282442	TP8 ES 2 2.4	13-Nov-12	<0.3	14.2	0.32	29.0	33.9	243.5	<0.55	22.6	<0.6	153.1	9.0	<0.6	<0.6		NAIIS	22.7
1282443	TP9 ES 1 0.1	13-Nov-12		9.3	0.2	16.9	14.4	42.8	<0.5	11	0.5	53.7	7.7					14.1
	ESG 🔗		Client Name ESG Geoenvironmental Consulting Soil Sample Analysis															
	Environmental Scientifics Group		Contact		IVIT 5 IVIAS	ion						Data Brit	ated		21	-Dec-2012		
	Burton-on-Trent Staffordshire DE15 0V7											Date Fill	lumbor		20 EE	S/120500M		
				С	ourse	ers Fa	ırm, C	Colney	v Heat	th						3/12039011		
	I eI +44 (0) 1283 554400	Z83 554400 Table Number 1																
	Fax +44 (0) 1283 554422																	

	Mothor	Units :	mg/kg	mg/kg	µg/kg	mg/kg	mg/kg	mg/kg	% M/M	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	µg/kg	mg/kg	
	Method Reporting	g Limits :	10	10	VUCHSAS	0.1	FUBUSEUDAR	3000101303	0.02	10	10	10	20	10	10	PARIVISUS	
	Accreditat	ion Code:	UM			Ν			Ν	UM	UM	UM	UM	UM	UM		
LAB ID Number CL/	Client Sample Description	Sample Date	TPH by GCFID (AR)	TPH Carbon Banding.	VOC HSA-GCMS	Chromium vi:	PCB-12 Congeners Analysis	SVOC by GCMS (AR)	Total Organic Carbon	Benzene	Toluene	Ethyl Benzene	Xylenes	m/p Xylenes	o Xylene	PAH (16) by GCMS	
1282429	TP1 ES 1 0.5	14-Nov-12				<0.1										Req	
1282430	TP1 ES 2 2.7	14-Nov-12	165	Req				Req	1.08								
1282445	TP10 ES 2 0.3	13-Nov-12	298	Req		<0.1			1.85	<12	<12	<12	<25	<12	<12	Req	
1282444	TP10 ES 1 0.7	13-Nov-12	85	Req			Req	Req									
1282431	TP2 ES 1 1.3	14-Nov-12	37	Req						<12	<12	<12	<25	<12	<12		
1282432	TP2 ES 2 3.1	14-Nov-12			Req	<0.1	Req									Req	
1282433	TP3 ES 1 0.1	14-Nov-12	37	Req						<12	<12	<12	<25	<12	<12		
1282434	TP3 ES 2 3.2	14-Nov-12				<0.1											
1282435	TP4 ES 1 1.1	14-Nov-12															
1282436	TP5 ES 1 1.0	13-Nov-12	207	Req					1.33	<13	<13	<13	<26	<13	<13	Req	
1282437	TP5 ES 2 2.5	13-Nov-12			Req			Req									
1282438	TP6 ES 2 2.6	13-Nov-12	272	Req		<0.1	Req		0.93								
1282439	TP7 ES 1 1.1	13-Nov-12	229	Req					1.98	<13	<13	<13	<26	<13	<13	Req	
1282440	TP7 ES 2 3.2	13-Nov-12			Req	<0.1											
1282441	TP8 ES 1 0.4	13-Nov-12	46	Req						<12	<12	<12	<23	<12	<12		
1282442	TP8 ES 2 2.4	13-Nov-12	282	Req		<0.1				<13	<13	<13	<26	<13	<13	Req	
1282443	TP9 ES 1 0.1	13-Nov-12														Req	
	ESG Environmental Scientifics Group Bretby Business Park, Ashby Road	Signature Client Name ESG Geoenvironmental Consulting Soil Sample Analysis Contact Mr S Mason Date Printed 20-Dec-2012															
	Burton-on-Trent, Staffordshire, DE15 0YZ Coursers Farm, Colney Heath Report Number EFS/128590M Tel +44 (0) 1283 554400 Table Number 1																
	Burton-on-Trent, Staffordshire, DE15 0YZ Tel +44 (0) 1283 554400 Fax +44 (0) 1283 554422			C	ourse	ers Fa	nrm, C	Colney	y Heat	th		Report N Table Nu	lumber ımber		EF	S/128590M 1	

Customer and Site Details:	ESG Geoenvironmental C	onsulting: Coursers Farm, Colr	ney Heath
Sample Details:	TP1 ES 1 0.5	Job Number:	S12_8590M
LIMS ID Number:	CL1282429	Date Booked in:	16-Nov-12
QC Batch Number:	121033	Date Extracted:	20-Nov-12
Quantitation File:	Initial Calibration	Date Analysed:	21-Nov-12
Directory:	12_PAH.MS14\	Matrix:	Soil
Dilution:	1.0	Ext Method:	Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code
Naphthalene	91-20-3	-	< 0.11	-	UM
Acenaphthylene	208-96-8	-	< 0.11	-	U
Acenaphthene	83-32-9	-	< 0.11	-	UM
Fluorene	86-73-7	-	< 0.11	-	UM
Phenanthrene	85-01-8	-	< 0.11	-	UM
Anthracene	120-12-7	-	< 0.11	-	U
Fluoranthene	206-44-0	-	< 0.11	-	UM
Pyrene	129-00-0	-	< 0.11	-	UM
Benzo[a]anthracene	56-55-3	-	< 0.11	-	UM
Chrysene	218-01-9	-	< 0.11	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.11	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.11	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.11	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.11	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.11	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.11	-	UM
Total (USEPA16) PAHs	-	-	< 1.70	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	83
Acenaphthene-d10	78
Phenanthrene-d10	78
Chrysene-d12	69
Perylene-d12	66

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	102
Terphenyl-d14	101

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath Sample Details: Job Number: TP2 ES 2 3.1 S12_8590M LIMS ID Number: Date Booked in: CL1282432 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 **Quantitation File: Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
_		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.11	-	UM
Acenaphthylene	208-96-8	-	< 0.11	-	U
Acenaphthene	83-32-9	4.55	0.28	95	UM
Fluorene	86-73-7	4.94	0.21	94	UM
Phenanthrene	85-01-8	5.80	1.46	98	UM
Anthracene	120-12-7	5.85	0.34	98	U
Fluoranthene	206-44-0	7.15	0.96	95	UM
Pyrene	129-00-0	7.44	0.83	92	UM
Benzo[a]anthracene	56-55-3	9.12	0.34	96	UM
Chrysene	218-01-9	9.17	0.41	96	UM
Benzo[b]fluoranthene	205-99-2	10.65	0.32	96	UM
Benzo[k]fluoranthene	207-08-9	10.67	0.24	93	UM
Benzo[a]pyrene	50-32-8	11.08	0.28	96	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.45	0.16	81	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.11	-	UM
Benzo[g,h,i]perylene	191-24-2	12.75	0.17	76	UM
Total (USEPA16) PAHs	-	-	< 6.29	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	84
Acenaphthene-d10	77
Phenanthrene-d10	75
Chrysene-d12	76
Perylene-d12	78

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	102

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath Sample Details: Job Number: TP5 ES 1 1.0 S12_8590M LIMS ID Number: Date Booked in: CL1282436 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 **Quantitation File: Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
_		(min)	mg/kg		code
Naphthalene	91-20-3	3.38	0.10	95	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	5.80	0.52	97	UM
Anthracene	120-12-7	5.85	0.20	99	U
Fluoranthene	206-44-0	7.15	0.92	80	UM
Pyrene	129-00-0	7.44	0.90	90	UM
Benzo[a]anthracene	56-55-3	9.12	0.43	95	UM
Chrysene	218-01-9	9.17	0.55	96	UM
Benzo[b]fluoranthene	205-99-2	10.65	0.59	77	UM
Benzo[k]fluoranthene	207-08-9	10.68	0.33	93	UM
Benzo[a]pyrene	50-32-8	11.08	0.47	96	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.45	0.31	99	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.10	-	UM
Benzo[g,h,i]perylene	191-24-2	12.75	0.36	99	UM
Total (USEPA16) PAHs	-	-	< 6.10	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	83
Acenaphthene-d10	78
Phenanthrene-d10	75
Chrysene-d12	74
Perylene-d12	75

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	103

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath Sample Details: Job Number: TP7 ES 1 1.1 S12_8590M LIMS ID Number: Date Booked in: CL1282439 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 **Quantitation File: Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.10	-	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	-	< 0.10	-	UM
Fluorene	86-73-7	-	< 0.10	-	UM
Phenanthrene	85-01-8	5.80	0.46	98	UM
Anthracene	120-12-7	5.85	0.31	90	U
Fluoranthene	206-44-0	7.15	2.94	97	UM
Pyrene	129-00-0	7.44	3.63	91	UM
Benzo[a]anthracene	56-55-3	9.12	2.40	97	UM
Chrysene	218-01-9	9.17	2.87	96	UM
Benzo[b]fluoranthene	205-99-2	10.65	4.20	99	UM
Benzo[k]fluoranthene	207-08-9	10.68	2.10	94	UM
Benzo[a]pyrene	50-32-8	11.07	3.29	98	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.45	2.14	93	UM
Dibenzo[a,h]anthracene	53-70-3	12.47	0.50	77	UM
Benzo[g,h,i]perylene	191-24-2	12.75	2.19	98	UM
Total (USEPA16) PAHs	-	-	< 27.42	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	80
Acenaphthene-d10	75
Phenanthrene-d10	71
Chrysene-d12	71
Perylene-d12	75

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	102

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath Sample Details: Job Number: TP8 ES 2 2.4 S12_8590M LIMS ID Number: Date Booked in: CL1282442 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 Quantitation File: **Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
_		(min)	mg/kg		code
Naphthalene	91-20-3	3.38	0.10	92	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	4.55	0.14	92	UM
Fluorene	86-73-7	4.94	0.10	96	UM
Phenanthrene	85-01-8	5.80	0.88	99	UM
Anthracene	120-12-7	5.85	0.30	97	U
Fluoranthene	206-44-0	7.15	1.32	97	UM
Pyrene	129-00-0	7.44	1.25	91	UM
Benzo[a]anthracene	56-55-3	9.12	0.60	94	UM
Chrysene	218-01-9	9.17	0.80	97	UM
Benzo[b]fluoranthene	205-99-2	10.65	0.88	82	UM
Benzo[k]fluoranthene	207-08-9	10.68	0.45	86	UM
Benzo[a]pyrene	50-32-8	11.08	0.66	93	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.45	0.45	93	UM
Dibenzo[a,h]anthracene	53-70-3	12.47	0.12	57	UM
Benzo[g,h,i]perylene	191-24-2	12.75	0.50	100	UM
Total (USEPA16) PAHs	-	-	< 8.78	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	82
Acenaphthene-d10	77
Phenanthrene-d10	75
Chrysene-d12	69
Perylene-d12	70

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	100
Terphenyl-d14	105

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath Sample Details: Job Number: TP9 ES 1 0.1 S12_8590M LIMS ID Number: Date Booked in: CL1282443 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 **Quantitation File: Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
_		(min)	mg/kg		code
Naphthalene	91-20-3	-	< 0.09	-	UM
Acenaphthylene	208-96-8	-	< 0.09	-	U
Acenaphthene	83-32-9	-	< 0.09	-	UM
Fluorene	86-73-7	-	< 0.09	-	UM
Phenanthrene	85-01-8	-	< 0.09	-	UM
Anthracene	120-12-7	-	< 0.09	-	U
Fluoranthene	206-44-0	7.15	0.10	66	UM
Pyrene	129-00-0	7.44	0.10	М	UM
Benzo[a]anthracene	56-55-3	-	< 0.09	-	UM
Chrysene	218-01-9	-	< 0.09	-	UM
Benzo[b]fluoranthene	205-99-2	-	< 0.09	-	UM
Benzo[k]fluoranthene	207-08-9	-	< 0.09	-	UM
Benzo[a]pyrene	50-32-8	-	< 0.09	-	UM
Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.09	-	UM
Dibenzo[a,h]anthracene	53-70-3	-	< 0.09	-	UM
Benzo[g,h,i]perylene	191-24-2	-	< 0.09	-	UM
Total (USEPA16) PAHs	-	-	< 1.53	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	82
Acenaphthene-d10	77
Phenanthrene-d10	77
Chrysene-d12	66
Perylene-d12	64

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	97

Concentrations are reported on a dry weight basis.

Customer and Site Details: ESG Geoenvironmental Consulting: Coursers Farm, Colney Heath TP10 ES 2 0.3 Sample Details: Job Number: S12_8590M LIMS ID Number: Date Booked in: CL1282445 16-Nov-12 QC Batch Number: 121033 Date Extracted: 20-Nov-12 **Quantitation File: Initial Calibration** Date Analysed: 21-Nov-12 Directory: 12 PAH.MS14 Matrix: Soil Dilution: 1.0 Ext Method: Ultrasonic

Accredited?: Yes

Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.
		(min)	mg/kg		code
Naphthalene	91-20-3	3.38	0.30	98	UM
Acenaphthylene	208-96-8	-	< 0.10	-	U
Acenaphthene	83-32-9	4.55	0.24	94	UM
Fluorene	86-73-7	4.94	0.14	93	UM
Phenanthrene	85-01-8	5.80	1.01	99	UM
Anthracene	120-12-7	5.85	0.30	96	U
Fluoranthene	206-44-0	7.15	1.70	97	UM
Pyrene	129-00-0	7.44	1.70	92	UM
Benzo[a]anthracene	56-55-3	9.12	0.90	94	UM
Chrysene	218-01-9	9.17	1.05	100	UM
Benzo[b]fluoranthene	205-99-2	10.65	1.26	95	UM
Benzo[k]fluoranthene	207-08-9	10.68	0.50	92	UM
Benzo[a]pyrene	50-32-8	11.08	0.92	96	UM
Indeno[1,2,3-cd]pyrene	193-39-5	12.45	0.67	100	UM
Dibenzo[a,h]anthracene	53-70-3	12.47	0.15	57	UM
Benzo[g,h,i]perylene	191-24-2	12.75	0.77	99	UM
Total (USEPA16) PAHs	-	-	< 11.80	-	N

"M" denotes that % fit has been manually interpreted

Internal Standards	% Area
1,4-Dichlorobenzene-d4	NA
Naphthalene-d8	80
Acenaphthene-d10	76
Phenanthrene-d10	78
Chrysene-d12	75
Perylene-d12	77

Surrogates	% Rec
Nitrobenzene-d5	NA
2-Fluorobiphenyl	99
Terphenyl-d14	99

Concentrations are reported on a dry weight basis.

Polychlorinated Biphenyls (congeners)

Customer and Site Details: Job Number: QC Batch Number: Directory: Method: Accreditation code:	ESG Geoenvironmental Cons S12_8590M 120306 1127PCB.GC8 Ultrasonic N	ulting: Cours	ers Farm, C	Colney Heath	1					Matrix: Date Book Date Extra Date Analy	Soil ed in: cted: /sed:	Si 16-Ni 27-Ni 28-Ni	oil ov-12 ov-12 ov-12
						Conce	ntration,	(µg/kg)					
Sample ID	Customer ID	PCB 81	PCB 77	PCB 123	PCB 118	PCB 114	PCB 105	PCB 126	PCB 167	PCB 156	PCB 157	PCB 169	PCB 189
* CL1282432	TP2 ES 2 3.1	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2	<5.2
CL1282438	TP6 ES 2 2.6	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
CL1282444	TP10 ES 1 0.7	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3	<6.3
												<u> </u>	
												<u> </u>	
												<u> </u>	
		-											
												 	
												 	
												<u> </u>	
												<u> </u>	

Semi-Volatile Organic Compounds

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	ESG Geoenvironmenta TP1 ES 2 2.7 CL1282430 S12_8590M	al Consulting:	Coursers Farm, Colney H Date Booked in: Date Extracted: Date Analysed:	eath 16-Nov-12 22-Nov-12 23-Nov-12		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic AB 22SVOC.MS20\	1122_CCC2.	QC Batch Number: Multiplier: Dilution Factor: DGPC (Y/N)	208 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr code
Phenol	108-95-2	-	< 2.0	-	N	2,4-Dinitrophenol	51-28-5	-	< 1.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 2.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	-	< 0.2	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	N	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 2.0	-	N	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	N	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	N	Phenanthrene	85-01-8	10.88	0.2	99	N
2-Nitrophenol	88-75-5	-	< 2.0	-	Ν	Anthracene	120-12-7	-	< 0.2	-	N
2,4-Dimethylphenol	105-67-9	-	< 2.0	-	Ν	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0	-	< 12.0	-	N	Fluoranthene	206-44-0	12.71	0.5	100	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	13.05	0.5	81	N
2,4-Dichlorophenol	120-83-2	-	< 2.0	-	Ν	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	Ν	Benzo[a]anthracene	56-55-3	-	< 0.2	-	N
Naphthalene	91-20-3	-	< 0.2	-	N	Chrysene	218-01-9	15.02	0.2	100	N
4-Chlorophenol	106-48-9	-	< 2.0	-	Ν	3,3'-Dichlorobenzidine	91-94-1	-	< 2.0	-	N
4-Chloroaniline	106-47-8	-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.2	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	Ν	Benzo[b]fluoranthene	205-99-2	16.59	0.4	100	N
2-Methylnaphthalene	91-57-6	-	< 0.2	-	N	Benzo[k]fluoranthene	207-08-9	-	< 0.2	-	Ν
1-Methylnaphthalene	90-12-0	-	< 0.2	-	Ν	Benzo[a]pyrene	50-32-8	17.03	0.2	100	N
Hexachlorocyclopentadiene	77-47-4	-	< 0.6	-	Ν	Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.2	-	N
2,4,6-Trichlorophenol	88-06-2	-	< 2.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.2	-	N
2,4,5-Trichlorophenol	95-95-4	-	< 2.0	-	Ν	Benzo[g,h,i]perylene	191-24-2	-	< 0.2	-	N
2-Chloronaphthalene	91-58-7	-	< 0.2	-	N		"M" denotes that %	6 fit has been	manually interpreted		-
Biphenyl	92-52-4	-	< 0.2	-	N			_			
Diphenyl ether	101-84-8	-	< 0.2	-	N	Internal Standards	% Area		Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.6	-	N	1,4-Dichlorobenzene-d4	95		2-Fluorophenol	70	
Acenaphthylene	208-96-8	-	< 0.2	-	Ν	Naphthalene-d8	88		Phenol-d5	65	
Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	84	1	Nitrobenzene-d5	66	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	N	Phenanthrene-d10	81		2-Fluorobiphenyl	64	
Acenaphthene	83-32-9	-	< 0.2	-	N	Chrysene-d12	77		2,4,6-Tribromophenol	60	
3-Nitroaniline	99-09-2	-	< 0.6	-	N	Pervlene-d12	81	1	Terphenyl-d14	71	

This analysis was conducted on an 'As Recieved' basis.

Concentrations are reported on a dry weight basis.

Semi-Volatile Organic Compounds

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	ESG Geoenvironment: TP5 ES 2 2.5 CL1282437 S12_8590M	al Consulting: (Coursers Farm, Colney H Date Booked in: Date Extracted: Date Analysed:	eath 16-Nov-12 22-Nov-12 23-Nov-12		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic AB 22SVOC.MS20\	1122_CCC2.	QC Batch Number: Multiplier: Dilution Factor: D GPC (Y/N)	208 0.2 1 N	
Target Compounds	CAS #	R.T. (min)	Concentration mg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T.	Concentration mg/kg	% Fit	Accr. code
Phenol	108-95-2	-	< 3.0	-	N	2.4-Dinitrophenol	51-28-5	-	< 1.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 3.0	-	N	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	N	Fluorene	86-73-7	-	< 0.3	-	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	N	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	N	4-Nitroaniline	100-01-6	-	< 0.6	-	N
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	N	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 3.0	-	N	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	N	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	N	Phenanthrene	85-01-8	-	< 0.3	-	N
2-Nitrophenol	88-75-5	-	< 3.0	-	N	Anthracene	120-12-7	-	< 0.3	-	N
2,4-Dimethylphenol	105-67-9	-	< 3.0	-	N	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0	-	< 13.0	-	N	Fluoranthene	206-44-0	-	< 0.3	-	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	-	< 0.3	-	N
2,4-Dichlorophenol	120-83-2	-	< 3.0	-	Ν	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	Ν	Benzo[a]anthracene	56-55-3	-	< 0.3	-	N
Naphthalene	91-20-3	-	< 0.3	-	N	Chrysene	218-01-9	-	< 0.3	-	N
4-Chlorophenol	106-48-9	-	< 3.0	-	N	3,3'-Dichlorobenzidine	91-94-1	-	< 3.0	-	N
4-Chloroaniline	106-47-8	-	< 0.6	-	N	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.3	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	Ν	Benzo[b]fluoranthene	205-99-2	-	< 0.3	-	N
2-Methylnaphthalene	91-57-6	-	< 0.3	-	Ν	Benzo[k]fluoranthene	207-08-9	-	< 0.3	-	N
1-Methylnaphthalene	90-12-0	-	< 0.3	-	Ν	Benzo[a]pyrene	50-32-8	-	< 0.3	-	N
Hexachlorocyclopentadiene	77-47-4	-	< 0.6	-	N	Indeno[1,2,3-cd]pyrene	193-39-5	-	< 0.3	-	N
2,4,6-Trichlorophenol	88-06-2	-	< 3.0	-	N	Dibenzo[a,h]anthracene	53-70-3	-	< 0.3	-	N
2,4,5-Trichlorophenol	95-95-4	-	< 3.0	-	N	Benzo[g,h,i]perylene	191-24-2	-	< 0.3	-	N
2-Chloronaphthalene	91-58-7	-	< 0.3	-	N		"M" denotes that %	6 fit has been	manually interpreted		-
Biphenyl	92-52-4	-	< 0.3	-	Ν			_			
Diphenyl ether	101-84-8	-	< 0.3	-	N	Internal Standards	% Area		Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.6	-	N	1,4-Dichlorobenzene-d4	94		2-Fluorophenol	75	
Acenaphthylene	208-96-8	-	< 0.3	-	N	Naphthalene-d8	88]	Phenol-d5	68	
Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	92]	Nitrobenzene-d5	69	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	N	Phenanthrene-d10	99		2-Fluorobiphenyl	68	
Acenaphthene	83-32-9	-	< 0.3	-	N	Chrysene-d12	94		2,4,6-Tribromophenol	62	
3-Nitroaniline	99-09-2	-	< 0.6	-	N	Pervlene-d12	105		Terphenyl-d14	71	

This analysis was conducted on an 'As Recieved' basis.

Concentrations are reported on a dry weight basis.

Semi-Volatile Organic Compounds

				Accr	edited?:	No					
Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	ESG Geoenvironment TP10 ES 1 0.7 CL1282444 S12_8590M	al Consulting:	Coursers Farm, Colney H Date Booked in: Date Extracted: Date Analysed:	leath 16-Nov-12 22-Nov-12 23-Nov-12		Matrix: Ext Method: Operator: Directory/Quant File:	Soil Ultrasonic AB 22SVOC.MS20\	1122_CCC2	QC Batch Number: Multiplier: Dilution Factor: .DGPC (Y/N)	208 0.2 1 N	
Target Compounds	CAS #	R.T.	Concentration	% Fit	Accr.	Target Compounds	CAS #	R.T.	Concentration	% Fit	Acci
U		(min)	mg/kg		code	U			mg/kg		code
Phenol	108-95-2	-	< 3.0	-	N	2,4-Dinitrophenol	51-28-5	-	< 1.0	-	N
bis(2-Chloroethyl)ether	111-44-4	-	< 0.6	-	N	Dibenzofuran	132-64-9	-	< 0.6	-	N
2-Chlorophenol	95-57-8	-	< 3.0	-	Ν	4-Nitrophenol	100-02-7	-	< 6.0	-	N
1,3-Dichlorobenzene	541-73-1	-	< 0.6	-	N	2,4-Dinitrotoluene	121-14-2	-	< 0.6	-	N
1,4-Dichlorobenzene	106-46-7	-	< 0.6	-	Ν	Fluorene	86-73-7	9.51	0.8	98	N
Benzyl alcohol	100-51-6	-	< 0.6	-	N	Diethylphthalate	84-66-2	-	< 0.6	-	N
1,2-Dichlorobenzene	95-50-1	-	< 0.6	-	N	4-Chlorophenyl-phenylether	7005-72-3	-	< 0.6	-	N
2-Methylphenol	95-48-7	-	< 0.6	-	Ν	4,6-Dinitro-2-methylphenol	534-52-1	-	< 6.0	-	N
bis(2-Chloroisopropyl)ether	108-60-1	-	< 0.6	-	Ν	4-Nitroaniline	100-01-6	-	< 0.6	-	Ν
Hexachloroethane	67-72-1	-	< 0.6	-	N	N-Nitrosodiphenylamine	86-30-6	-	< 0.6	-	N
N-Nitroso-di-n-propylamine	621-64-7	-	< 0.6	-	Ν	4-Bromophenyl-phenylether	101-55-3	-	< 0.6	-	N
3- & 4-Methylphenol	108-39-4/106-44-5	-	< 3.0	-	Ν	Hexachlorobenzene	118-74-1	-	< 0.6	-	N
Nitrobenzene	98-95-3	-	< 0.6	-	Ν	Pentachlorophenol	87-86-5	-	< 6.0	-	N
Isophorone	78-59-1	-	< 0.6	-	Ν	Phenanthrene	85-01-8	10.88	2.9	100	N
2-Nitrophenol	88-75-5	-	< 3.0	-	N	Anthracene	120-12-7	10.96	0.9	95	N
2,4-Dimethylphenol	105-67-9	-	< 3.0	-	Ν	Di-n-butylphthalate	84-74-2	-	< 0.6	-	N
Benzoic Acid	65-85-0	-	< 13.0	-	N	Fluoranthene	206-44-0	12.71	4.0	100	N
bis(2-Chloroethoxy)methane	111-91-1	-	< 0.6	-	N	Pyrene	129-00-0	13.05	3.1	82	N
2,4-Dichlorophenol	120-83-2	-	< 3.0	-	Ν	Butylbenzylphthalate	85-68-7	-	< 0.6	-	N
1,2,4-Trichlorobenzene	120-82-1	-	< 0.6	-	N	Benzo[a]anthracene	56-55-3	14.97	1.9	100	N
Naphthalene	91-20-3	6.84	0.6	99	N	Chrysene	218-01-9	15.02	1.5	100	N
4-Chlorophenol	106-48-9	-	< 3.0	-	Ν	3,3'-Dichlorobenzidine	91-94-1	-	< 3.0	-	N
4-Chloroaniline	106-47-8	-	< 0.6	-	Ν	bis(2-Ethylhexyl)phthalate	117-81-7	-	< 0.6	-	N
Hexachlorobutadiene	87-68-3	-	< 0.6	-	N	Di-n-octylphthalate	117-84-0	-	< 0.3	-	N
4-Chloro-3-methylphenol	59-50-7	-	< 0.6	-	N	Benzo[b]fluoranthene	205-99-2	16.59	2.0	100	N
2-Methylnaphthalene	91-57-6	7.57	0.5	92	N	Benzo[k]fluoranthene	207-08-9	16.62	0.8	100	N
1-Methylnaphthalene	90-12-0	7.67	0.4	96	N	Benzo[a]pyrene	50-32-8	17.03	1.6	100	N
Hexachlorocyclopentadiene	77-47-4	-	< 0.6	-	N	Indeno[1,2,3-cd]pyrene	193-39-5	18.45	1.0	100	N
2,4,6-Trichlorophenol	88-06-2	-	< 3.0	-	N	Dibenzo[a,h]anthracene	53-70-3	18.47	0.3	100	N
2,4,5-Trichlorophenol	95-95-4	-	< 3.0	-	Ν	Benzo[g,h,i]perylene	191-24-2	18.78	1.0	97	Ν
2-Chloronaphthalene	91-58-7	-	< 0.3	-	Ν		"M" denotes that %	6 fit has been	manually interpreted		
Biphenyl	92-52-4	-	< 0.3	-	Ν			_			
Diphenyl ether	101-84-8	-	< 0.3	-	Ν	Internal Standards	% Area		Surrogates	% Rec	
2-Nitroaniline	88-74-4	-	< 0.6	-	Ν	1,4-Dichlorobenzene-d4	97		2-Fluorophenol	69	
Acenaphthylene	208-96-8	-	< 0.3	-	N	Naphthalene-d8	92		Phenol-d5	71	
Dimethylphthalate	131-11-3	-	< 0.6	-	N	Acenaphthene-d10	97		Nitrobenzene-d5	73	
2,6-Dinitrotoluene	606-20-2	-	< 0.6	-	N	Phenanthrene-d10	99		2-Fluorobiphenyl	73	
Acenaphthene	83-32-9	8.82	0.8	97	Ν	Chrysene-d12	100		2,4,6-Tribromophenol	64	
3-Nitroaniline	99-09-2	-	< 0.6	-	N	Pervlene-d12	111		Terphenyl-d14	76	

This analysis was conducted on an 'As Recieved' basis.

Concentrations are reported on a dry weight basis.

Total Petroleum Hydrocarbons (TPH) Carbon Ranges

Customer and Site Details: Job Number: QC Batch Number: Directory: Method: Accreditation code:	ESG Geoenvironmental Consulting : S12_8590M 121033 D:\TES\DATA\11\1120TPH_GC14\11 Ultra Sonic U	Coursers Farm, Colney He	Matrix: Date Booked in: Date Extracted: Date Analysed:	Soil 16-Nov-12 20-Nov-12 20-Nov-12, 16:38:15		
			Concentra	ation, (mg/kg) - a	s dry weight.	
Sample ID	Client ID	>C8 - C10	>C10 - C12	>C12 - C16	>C16 - C21	>C21 - C35
CL1282430	TP1 ES 2 2.7	<2	<2	6.52	25.6	96.9
CL1282431	TP2 ES 1 1.3	<2	<2	<2	3.53	27.7
CL1282433	TP3 ES 1 0.1	<2	<2	<2	2.69	26.7
CL1282436	TP5 ES 1 1.0	<3	<3	3.41	14.8	143
CL1282438	TP6 ES 2 2.6	<3	4	24.8	55.1	142
CL1282439	TP7 ES 1 1.1	<3	<3	<3	17.6	174
CL1282441	TP8 ES 1 0.4	<2	<2	<2	2.54	34.3
CL1282442	TP8 ES 2 2.4	<3	<3	15	45.4	168
CL1282444	TP10 ES 1 0.7	<3	<3	<3	8.44	59.2
CL1282445	TP10 ES 2 0.3	<2	2.66	11	36.5	185

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 16 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

FID1 /	A, Front Sigr	nal (007F1001.D)							
PA									
1000 -									
				1					
800 -									
-									
-									
600 -									
888									
400 -									
_									
200 -									
		1 11							
	h				malan				
0		1	2		3	4		5	min
Sample ID:		CI 1282/31			h Numbor:	S12 8500M			
		011202431		10					
Multiplier:		8		Cl	ient:	ESG Geoenvi	ronmental Consulting	3	
Dilution:		1		Sit	te:	Coursers Far	m. Colnev Heath		
A annialtion Math	a al.				ieri Comula Defi				
Acquisition Metho	ba:	SUL_KUNF.M		CI	ient Sample Ref:	TPZ ES 11.3			
Acquisition Date/	Time:	20-Nov-12, 14:42	2:23						
Datafilo:			1120TPH CC14/11	2012 201	12-11-20 12-40-42				
		D.IILOUATAIT	\11201F11_GC14\11	2012 20	12-11-20 12-49-42				

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 17 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 18 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 19 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 20 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 21 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 22 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 23 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 24 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

EFS/128590M Ver. 2Where individual results are flagged see report notes for status.Page 25 of 36Results corrected to dry weight at 105°C where appr opriate, in accordance with the MCERTS standard.

Volatile Organic Compounds by HSA-GCMS

Accredited?: Yes

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	ESG Geoenvironme TP2 ES 2 3.1 CL1282432 S12_8590M	ental Consulting	g: Coursers Farm, Colney H	eath		Directory/Quant file: Date Booked in: Date Analysed: Operator:	121VOC_MS19\ 16-Nov-12 21-Nov-12 TP	Initial Calibration	n Matrix: Method: Multiplier: Position:	Soil Headspace 1 16	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	-	< 3	-	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	-	< 1	-	UM
Vinyl Chloride	75-01-4 **	-	< 1	-	N	Bromoform	75-25-2	5.88	3	М	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3 **	-	< 3	-	N	1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48 *	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	6.08	1	М	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 7	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.22	4	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	-	< 1	-	UM
Benzene	71-43-2	-	< 1	-	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	4.58	33	93	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 *	-	< 4	-	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 3	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3	7.26	112	68	UM
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6	-	< 4	-	UM
Toluene	108-88-3	-	< 7	-	UM		Concentrations a	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	С	ompounds marked	** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that "	% fit has been ma	anually interpreted		
Tetrachloroethene	127-18-4	5.28	8	М	UM		This analysis was c	onducted on an '	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.13	100	Dibromofluoromethane	102	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.47	99	Toluene-d8	97	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.58	92		•	
Ethylbenzene	100-41-4	-	< 3	-	UM	Bromofluorobenzene	5.97	82			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.37	74			
m and p-Xylene	108-38-3/106-42-3	-	< 5	-	UM	Naphthalene-d8	7.25	39			

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Volatile Organic Compounds by HSA-GCMS

Accredited?: Yes

Job Number: 512_8590M Operator: 1P Position: 17		
Target Compounds CAS # R.T. Concentration % Fit Accr. Target Compounds CAS # R.T. Concentration (min.) µg/kg code code (min.) µg/kg	% Fit	Accr. code
Dichlorodifluoromethane 75-71-8 ** - < 1 - N o-Xylene 95-47-6 - < 3	-	UM
Chloromethane 74-87-3 * - < 4 - N Styrene 100-42-5 - < 1	-	UM
Vinyl Chloride 75-01-4 ** - <1 - N Bromoform 75-25-2 5.89 3	М	UM
Bromomethane 74-83-9 - < 1 - UM iso-Propylbenzene 98-82-8 - < 1	-	UM
Chloroethane 75-00-3 ** - < 3 - N 1,1,2,2-Tetrachloroethane 79-34-5 ** - < 1	-	N
Trichlorofluoromethane 75-69-4 - < 1 - Propylbenzene 103-65-1 - < 1	-	UM
1,1-Dichloroethene 75-35-48 * - < 1 - N Brondenzene 108-86-1 - < 1	-	UM
trans 1,2-Dichloroethene 156-60-5 - < 1 - UM 1,2,3-Trichloropropane 96-18-4 - < 1	-	UM
1,1-Dichloroethane 75-34-3 - < 1 - UM 2-Chlorotoluene 95-49-8 - < 1	-	UM
MTBE 1634-04-4 - <1 - UM 1,3,5-Trimethylbenzene 108-67-8 6.08 1	М	UM
2.2-Dichloropropane 594-20-7 - < 1 - UM 4-Chlorotoluene 106-43-4 - < 1	-	UM
cis 1.2-Dichloroethene 156-59-2 - < 6 - UM tert-Butylbenzene 98-06-6 - < 1	-	UM
Bromochloromethane 74-97-5 - < 1 - UM 1.2.4-Trimethylbenzene 95-63-6 6.22 4	М	UM
Chloroform 67-66-3 - < 1 - VM sec-Butylbenzene 135-98-8 - < 1	-	UM
1.1.1-Trichloroethane 71-55-6 - < 1 - UM p-Isopropyltoluene 99-87-6 - < 1	-	UM
Carbon Tetrachloride 56-23-5 - < 1 - UM 1.3-Dichlorobenzene 541-73-1 - < 1		UM
1.1-Dichloropropene 563-58-6 - < 1 - UM 1.4-Dichlorobenzene 106-46-7 - < 1	-	UM
Benzene 71-43-2 - <1 - UM n-Butvlbenzene 104-51-8 * - <1		N
1.2-Dichloroethane 107-06-2 - < 1 - UM 1.2-Dichlorobenzene 95-50-1 - < 1	-	UM
Trichloroethene 79-01-6 4.58 3 M UM 1.2-Dibromo-3-chloropropane 96-12-8 - <1		UM
1.2-Dichloropropane 78-87-5 - < 1 - UM 1.2.4-Trichlorobenzene 120-82-1 * - < 4	-	N
Dibromomethane 74-95-3 - < 1 - UM Hexachlorobutadiene 87-68-3 ** - < 3	-	N
Bromodichloromethane 75-27-4 - <1 - UM Naphthalene 91-20-3 7.27 76	68	UM
cis 1.3-Dichloropropene 10061-01-5 - < 1 - UM 1.2.3-Trichlorobenzene 87-61-6 - < 4	-	UM
Toluene 108-88-3 - < 6 - UM Concentrations are reported on a dry weight basis		
trans 1,3-Dichloropropene 10061-02-6 - < 1 - UM Compounds marked ** are not UKAS or Mcerts accredited		
1,1,2-Trichloroethane 79-00-5 - < 1 UM "M" denotes that % fit has been manually interpreted		
Tetrachloroethene 127-18-4 5.28 10 M UM This analysis was conducted on an 'As Recieved' basis.		
1,3-Dichloropropane 142-28-9 - < 1 - UM Internal standards R.T. Area % Surrogates	% Rec	
Dibromochloromethane 124-48-1 - < 1 - UM Pentafluorobenzene 4.13 98 Dibromofluoromethane	106	_
1,2-Dibromoethane 106-93-4 - <1 - UM 1,4-Difluorobenzene 4,47 96 Toluene-d8	97	
Chlorobenzene 108-90-7 - <1 - UM Chlorobenzene-d5 5.58 89		
Ethylbenzene 100-41-4 - <3 - UM Bromofluorobenzene 5.97 78		
1.1.1.2-Tetrachloroethane 630-20-6 - < 1 - UM 1.4-Dichlorobenzene-d4 6.37 66		
m and p-Xylene 108-38-3/106-42-3 - <5 - UM Naphthalene-d8 7.25 35		

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

Volatile Organic Compounds by HSA-GCMS

Accredited?: Yes

Customer and Site Details: Sample Details: LIMS ID Number: Job Number:	ESG Geoenvironme TP7 ES 2 3.2 CL1282440 S12_8590M	ental Consulting	g: Coursers Farm, Colney H	eath		Directory/Quant file: Date Booked in: Date Analysed: Operator:	121VOC_MS19\ 16-Nov-12 21-Nov-12 TP	Initial Calibration	n Matrix: Method: Multiplier: Position:	Soil Headspace 1 18	
Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code	Target Compounds	CAS #	R.T. (min.)	Concentration µg/kg	% Fit	Accr. code
Dichlorodifluoromethane	75-71-8 **	-	< 1	-	N	o-Xylene	95-47-6	-	< 3	-	UM
Chloromethane	74-87-3 *	-	< 4	-	N	Styrene	100-42-5	-	< 1	-	UM
Vinyl Chloride	75-01-4 **	-	< 1	-	N	Bromoform	75-25-2	5.88	3	М	UM
Bromomethane	74-83-9	-	< 1	-	UM	iso-Propylbenzene	98-82-8	-	< 1	-	UM
Chloroethane	75-00-3 **	-	< 3	-	N	1,1,2,2-Tetrachloroethane	79-34-5 **	-	< 1	-	N
Trichlorofluoromethane	75-69-4	-	< 1	-	UM	Propylbenzene	103-65-1	-	< 1	-	UM
1,1-Dichloroethene	75-35-48 *	-	< 1	-	N	Bromobenzene	108-86-1	-	< 1	-	UM
trans 1,2-Dichloroethene	156-60-5	-	< 1	-	UM	1,2,3-Trichloropropane	96-18-4	-	< 1	-	UM
1,1-Dichloroethane	75-34-3	-	< 1	-	UM	2-Chlorotoluene	95-49-8	-	< 1	-	UM
MTBE	1634-04-4	-	< 1	-	UM	1,3,5-Trimethylbenzene	108-67-8	-	< 1	-	UM
2,2-Dichloropropane	594-20-7	-	< 1	-	UM	4-Chlorotoluene	106-43-4	-	< 1	-	UM
cis 1,2-Dichloroethene	156-59-2	-	< 7	-	UM	tert-Butylbenzene	98-06-6	-	< 1	-	UM
Bromochloromethane	74-97-5	-	< 1	-	UM	1,2,4-Trimethylbenzene	95-63-6	6.22	1	М	UM
Chloroform	67-66-3	-	< 1	-	UM	sec-Butylbenzene	135-98-8	-	< 1	-	UM
1,1,1-Trichloroethane	71-55-6	-	< 1	-	UM	p-Isopropyltoluene	99-87-6	-	< 1	-	UM
Carbon Tetrachloride	56-23-5	-	< 1	-	UM	1,3-Dichlorobenzene	541-73-1	-	< 1	-	UM
1,1-Dichloropropene	563-58-6	-	< 1	-	UM	1,4-Dichlorobenzene	106-46-7	-	< 1	-	UM
Benzene	71-43-2	-	< 1	-	UM	n-Butylbenzene	104-51-8 *	-	< 1	-	N
1,2-Dichloroethane	107-06-2	-	< 1	-	UM	1,2-Dichlorobenzene	95-50-1	-	< 1	-	UM
Trichloroethene	79-01-6	-	< 1	-	UM	1,2-Dibromo-3-chloropropane	96-12-8	-	< 1	-	UM
1,2-Dichloropropane	78-87-5	-	< 1	-	UM	1,2,4-Trichlorobenzene	120-82-1 *	-	< 4	-	N
Dibromomethane	74-95-3	-	< 1	-	UM	Hexachlorobutadiene	87-68-3 **	-	< 3	-	N
Bromodichloromethane	75-27-4	-	< 1	-	UM	Naphthalene	91-20-3	7.26	14	М	UM
cis 1,3-Dichloropropene	10061-01-5	-	< 1	-	UM	1,2,3-Trichlorobenzene	87-61-6	-	< 4	-	UM
Toluene	108-88-3	-	< 7	-	UM		Concentrations a	are reported on a	dry weight basis		
trans 1,3-Dichloropropene	10061-02-6	-	< 1	-	UM	С	ompounds marked	** are not UKAS	or Mcerts accredited		
1,1,2-Trichloroethane	79-00-5	-	< 1	-	UM		"M" denotes that "	% fit has been ma	anually interpreted		
Tetrachloroethene	127-18-4	5.28	5	М	UM		This analysis was c	onducted on an '	As Recieved' basis.		
1,3-Dichloropropane	142-28-9	-	< 1	-	UM	Internal standards	R.T.	Area %	Surrogates	% Rec	
Dibromochloromethane	124-48-1	-	< 1	-	UM	Pentafluorobenzene	4.13	96	Dibromofluoromethane	104	
1,2-Dibromoethane	106-93-4	-	< 1	-	UM	1,4-Difluorobenzene	4.47	96	Toluene-d8	99	
Chlorobenzene	108-90-7	-	< 1	-	UM	Chlorobenzene-d5	5.58	92			
Ethylbenzene	100-41-4	-	< 3	-	UM	Bromofluorobenzene	5.97	86			
1,1,1,2-Tetrachloroethane	630-20-6	-	< 1	-	UM	1,4-Dichlorobenzene-d4	6.37	83			
m and p-Xylene	108-38-3/106-42-3	-	< 5	-	UM	Naphthalene-d8	7.25	59			

Note: Volatile compounds degrade with time, and this may affect the integrity of the data depending on the timescale between sampling and analysis. It is recommended that analysis takes place within 7 days of sampling.

FSC.		AS	BESTOS A	NALYSIS		Detection limit of Method SCI-ASB-020 is 0.001%							
A	sbesto	s Limited	ES	G Asbestos li	mited Certific	cate of Analysis	s for Asbestos	in Soils		Sampling has been	carried out by client		
Oliont				nmantal Chan	iotr /				1089				
Client:					listry	abby Deed Durt		Page 1 of 1	ANO-0488-5401				
Address.	tion of:		Etwall Hous	e, Bretby Busi	ness Park, As	snby Road, Burr	on upon Trent		Poport Date: 27/11/2012				
Site Address			Coursers Es	rm Colney H	eath			Project Number:	\$128590				
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)	Weight of <2mm Fraction (g)	Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Asbestos by weight of Total Dried Sample	/	Asbestos Fibre Ty	pes Identified		
CL/1282430	14/11/12	TP1 2.7	27/11/2012					Screen Only		No Asbestos Identi	fied In Sample		
CL/1282434	14/11/12	TP3 3.2	27/11/2012					Screen Only		No Asbestos Identi	fied In Sample		
CL/1282435	14/11/12	TP4 1.1	27/11/2012					Screen Only		No Asbestos Identi	fied In Sample		
CL/1282437	13/11/12	TP5 2.5	27/11/2012					Screen Only		No Asbestos Identi	fied In Sample		
CL/1282440	13/11/12	TP7 3.2	27/11/2012					Screen Only		No Asbestos Identified In Sample			
CL/1282442	13/11/12	TP8 2.4	27/11/2012	27/11/2012 Screen Only					No Asbestos Identi	fied In Sample			
CL/1282444	13/11/12	TP10 0.7	27/11/2012					Screen & ID		Amosite/Chrysotile	e - Free Fibres		
											Authorised Signatory		
Ka		NAACR = Not Analysed at	Clients Request		NAIIS = No Asi	bestos Identified in	n Sample (Screen	s Only)	Name:	Andrew Elsby			
n.e	eys		NADIS = No Asbestos Detected in Sample (ID & Quant Only) Position: Regional Manager							MAS			
The sample analysis for the above results was carried out using the procedures detailed in ESG Asbestos Limited in house method (SCI-ASB-020) based on HSE document MDHS 90 - Asbestos Contaminated Land - Draft 5 - November 1997 (withdrawn). Fibre identification was carried out using ESG Asbestos Limited in house method of transmitted/polarised light microscopy and centre stop dispersion staining (SCI-ASB-007), based on HSE's HSG 248. The analysis of fine fraction for asbestos content only includes fibres and does not discriminate non-asbestos fibres. All fibres are assumed, unless specified, to be amphiboles. All tests were carried out at ESG Asbestos Laboratory, Ashbourne House, Bretby Business Park, Ashby Road, Burton-upon-Trent, Staffordshire. DE15 0XD, UKAS Laboratory Number 1089.													

ESG Asbestos Limited is a wholly owned subsidiary of Environmental Scientifics Group Limited (ESG), registered in England and Wales, registered company 04951688.

	SC.	ASE	BESTOS A	NALYSIS	RESULTS	SOIL ANA		Detection limit of Method SCI-AS						
Asb	estos L	imited	ESG	Asbestos lir	nited Certific	ate of Analysis	for Asbestos i		Sampling has been carried out by client					
			-						1089					
Client:			Environment	al Scientifics (Group			Page 1 of 1						
Address:			Etwall House	e, Bretby Busir	ness Park, Bu	rton-on-Trent D	E15 0YZ	Report No:	ANO-0503-1865					
For the attention of:			ESG Geoen	vironmental Co	onsulting			Report Date:	20/12/2012					
Site Address:			Coursers Fa	m, Colney He	ath		1	n	Project Number:	S128590				
Sample Number	Sample Date	Sample Location	Test Date	Total Sample Dry Weight (g)	Weight of <2mm Fraction (g)	Asbestos(g) in >8mm+>2mm	Asbestos(g) in <2mm	% Asbestos by weight of Total Dried Sample	,	Asbestos Fibre Ty	rpes Identified			
CL/1282444	13/11/2012	TP10 0.7	20/12/2012	1022.8	756.3	0.0022	0.0016	<0.001	Chr	Amphiboles in Fines				
NAACR = Not Analysed a		t Clients Request		NAIIS = No Asl	bestos Identified in	n Sample (Screens	only)	Name:	Andrew Elsby	Authorised Signatory:				
Keys					NADIS =	No Asbestos Detec	ted in Sample (ID &	Quant Only)	Position:	Regional Manager	Alles			
The sample and identification wa does not discrin Laboratory Num	alysis for the above is carried out using ninate non-asbesto ober 1089	results was carried out using the proce ESG Asbestos Limited in house metho s fibres. All fibres are assumed, unless	dures detailed in l d of transmitted/p specified, to be a	ESG Asbestos Li olarised light mic mphiboles. All te	mited in house r roscopy and cer ests were carried	nethod (SCI-ASB-0 htre stop dispersion I out at ESG Asbes	20) based on HSE staining (SCI-ASB- tos Laboratory, Ash	document MDHS 9 007), based on HS bourne House, Bre	00 - Asbestos Contamin E's HSG 248. The ana atby Business Park, Ash	ated Land - Draft 5 - No lysis of fine fraction for a by Road, Burton-upon-	vember 1997 (withdrawn). Fibre usbestos content only includes fibres and Frent, Staffordshire. DE15 0XD, UKAS			

SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

ESG Geoenvironmental Consulting Customer **Coursers Farm, Colney Heath** Site **Report No**

being processed in the laboratory.

requested.

In this instance please contact the laboratory immediately should

you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally

Consignment No S32178 Date Logged 16-Nov-2012

S128590

Report Due 17-Dec-2012

		MethodID	3TEXHSA	EN Leachate	CustServ	GROHSA	CPMSS	IC PMSS							KONECR	MCertS	PAHMSUS	CBUSECDAR	PHSOIL	SFAPI		Sub002	Sub002a	SVOCMSUS	TMSS	TPHFIDUS	
ID Number	Description	Sampled	BTEX-HSA Analysis	CEN Leac(P)C	Report B	GRO	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Chromium vi:	MCertS Analysis	PAH (16) by GCMS	PCB-12 Congeners Analysis	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID and Quant (1 to 3)	[^] Asbestos Screen	SVOC by GCMS (AR)	Tot.Moisture @ 105C	TPH by GCFID (AR)
· · · · · · · · · · · · · · · · · · ·	to ISO17025	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓		✓	✓	
CL/1282429	TP1 0.5	14/11/12																									
CL/1282430	TP1 2.7	14/11/12																									
CL/1282431	TP2 1.3	14/11/12																									
CL/1282432	TP2 3.1	14/11/12																									
CL/1282433	TP3 0.1	14/11/12																									
CL/1282434	TP3 3.2	14/11/12																									
CL/1282435	TP4 1.1	14/11/12																									
CL/1282436	TP5 1.0	13/11/12																									
CL/1282437	TP5 2.5	13/11/12									1																
CL/1282438	TP6 2.6	13/11/12																									
CL/1282439	TP7 1.1	13/11/12								I																	
CL/1282440	TP7 3.2	13/11/12																	1								
CL/1282441	TP8 0.4	13/11/12																	1		1		1				
CL /1000110	TP8 2.4	13/11/12																									
UL/1202442		13/11/12																				i i		1			

- The sample was received without the correct preservation for this analysis
- С Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- Е Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analysis Required

- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted

EFS/128590M Ver. 2 Where individual results are flagged see report notes for status. Page 31 of 36 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S128590

ESG Geoenvironmental Consulting Customer Consignment No S32178 **Coursers Farm, Colney Heath** Site Date Logged 16-Nov-2012 **Report No** S128590 Report Due 17-Dec-2012 VOCHSA WSLM59 MethodID ŦPH **Total Organic Carbon** VOC HSA-GCMS Carbon **ID Number** Description Sampled Banding Accredited to ISO17025 ✓ < CL/1282429 TP1 0.5 14/11/12 CL/1282430 TP1 2.7 14/11/12 CL/1282431 TP2 1.3 14/11/12 CL/1282432 TP2 3.1 14/11/12 CL/1282433 TP3 0.1 14/11/12 CL/1282434 TP3 3.2 14/11/12 CL/1282435 TP4 1.1 14/11/12 CL/1282436 TP5 1.0 13/11/12 CL/1282437 TP5 2.5 13/11/12 CL/1282438 TP6 2.6 13/11/12 TP7 1.1 13/11/12 CL/1282439 CL/1282440 TP7 3.2 13/11/12 CL/1282441 TP8 0.4 13/11/12 CL/1282442 TP8 2.4 13/11/12 CL/1282443 TP9 0.1 13/11/12 Note: For analysis where the scheduled turnaround is greater than Deviating Sample Key

the holding time we will do our utmost to prioritise these samples. However, it is possible that samples could become deviant whilst being processed in the laboratory.

In this instance please contact the laboratory immediately should you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally requested.

A The sample was received in an inappropriate container for this analysis

- в The sample was received without the correct preservation for this analysis
- С Headspace present in the sample container
- D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
- F Sample processing did not commence within the appropriate holding time

Requested Analysis Key

Analvsis Required

- Analysis dependant upon trigger result Note: due date may be affected if triggered
- No analysis scheduled
- Analysis Subcontracted

EFS/128590M Ver. 2 Where individual results are flagged see report notes for status. Page 32 of 36 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.
SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S128590

CustomerESG Geoenvironmental ConsultingSiteCoursers Farm, Colney HeathReport NoS128590

Consignment No S32178 Date Logged 16-Nov-2012

Report Due 17-Dec-2012

		MethodID	BTEXHSA	CEN Leachate	CustServ	GROHSA	ICPMSS									KONECR	MCertS	PAHMSUS	PCBUSECDAR	PHSOIL	SFAPI		Sub002	Sub002a	SVOCMSUS	TMSS	TPHFIDUS	
ID Number	Description	Sampled	BTEX-HSA Analysis	CEN Leac(P)C	Report B	GRO	Arsenic (MS)	Cadmium (MS)	Chromium (MS)	Copper (MS)	Lead (MS)	Mercury (MS)	Nickel (MS)	Selenium (MS)	Zinc (MS)	Chromium vi:	MCertS Analysis	PAH (16) by GCMS	PCB-12 Congeners Analysis	pH units (AR)	Cyanide(Total) (AR)	Phenol Index.(AR)	^Asbestos ID and Quant (1 to 3)	[^] Asbestos Screen	SVOC by GCMS (AR)	Tot.Moisture @ 105C	TPH by GCFID (AR)	
	Accredited	to ISO17025	✓			✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓		✓	✓	✓	✓	✓		✓	✓	
CL/1282444	TP10 0.7	13/11/12																										
CL/1282445	TP10 0.3	13/11/12																										

Note: For analysis where the scheduled turnaround is greater than	Deviating Sample Key
the holding time we will do our utmost to prioritise these samples.	A The sample was received in an inappropriate container for this analysis
However, it is possible that samples could become deviant whilst	B The sample was received without the correct preservation for this analysis
being processed in the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should	E Sample processing did not commence within the appropriate holding time
you wish to discuss how you would like us to proceed. If you do	Requested Analysis Key
not respond within 24 hours, we will proceed as originally	Analysis Required
requested.	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted

EFS/128590M Ver. 2 Where individual results are flagged see report notes for status. Page 33 of 36 he integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

S128590

Customer Site Report No	ESG Geoenvironmenta Coursers Farm, Colne S128590	al Consulting / Heath]			Consignment No S32178 Date Logged 16-Nov-2012 Report Due 17-Dec-2012
		MethodID	TPHFIDUS	VOCHSAS	WSLM59	i
ID Number	Description	Sampled	TPH Carbon Banding.	VOC HSA-GCMS	Total Organic Carbon	
	Accredit	ed to ISO17025	✓	 ✓ 		
CL/1282444	TP10 0.7	13/11/12	2			
CL/1282445	TP10 0.3	13/11/12	2			

Note: For analysis where the scheduled turnaround is greater than	Deviating Sample Key
the holding time we will do our utmost to prioritise these samples.	A The sample was received in an inappropriate container for this analysis
However, it is possible that samples could become deviant whilst	B The sample was received without the correct preservation for this analysis
being processed in the laboratory.	C Headspace present in the sample container
	D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
In this instance please contact the laboratory immediately should	E Sample processing did not commence within the appropriate holding time
you wish to discuss how you would like us to proceed. If you do	Requested Analysis Key
not respond within 24 hours, we will proceed as originally	Analysis Required
requested.	Analysis dependant upon trigger result - Note: due date may be affected if triggered
	No analysis scheduled
	Analysis Subcontracted

EFS/128590M Ver. 2 Where individual results are flagged see report notes for status. Page 34 of 36^{the} integrity of data for samples/analysis that have been categorised as Deviating may be compromised. Data may not be representative of the sample at the time of sampling.

Method Descriptions

Matrix	MethodID	Analysis Basis	Method Description
Soil	BTEXHSA	As Received	Determination of Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) by Headspace GCFID
Soil	GROHSA	As Received	Determination of Total Gasoline Range Organics Hydrocarbons (GRO) by Headspace GCFID
Soil	ICPMSS	Air Dried	Determination of Metals in soil samples by aqua regia digestion followed by ICPMS
Soil	KONECR	Air Dried	Determination of Chromium vi in soil samples by water extraction followed by colorimetric detection
Soil	PAHMSUS	As Received	Determination of Polycyclic Aromatic Hydrocarbons (PAH) by hexane/acetone extraction followed by GCMS detection
Soil	PCBUSECDAR	As Received	Determination of Polychlorinated Biphenyl (PCB) congeners/aroclors by hexane/acetone extraction followed by GCECD detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using pH probe.
Soil	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Soil	SubCon*	*	Contact Laboratory for details of the methodology used by the sub- contractor.
Soil	SVOCMSUS	As Received	Determination of Semi Volatile Organic Compounds in soil samples by Dichloromethane/Acetone extraction followed by GCMS detection
Soil	TMSS	As Received	Determination of the Total Moisture content at 105°C by loss on oven drying gravimetric analysis
Soil	TPHFIDUS	As Received	Determination of hexane/acetone extractable Hydrocarbons in soil with GCFID detection.
Soil	VOCHSAS	As Received	Determination of Volatile Organic Compounds (VOC) by Headspace GCMS
Soil	WSLM59	Air Dried	Determination of Organic Carbon in soil using sulphurous Acid digestion followed by high temperature combustion and IR detection

Report Notes

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
- All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity. - Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **Nil**: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample NADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

 $\ensuremath{\text{NS}}$ Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory.

Sample Descriptions

Client : ESG Geoenvironmental Consulting

Site : Coursers Farm, Colney Heath

Report Number : S12_8590M

Note: major constituent in upper case

Lab ID Number	Client ID	Description
CL/1282429	TP1 ES 1 0.5	Brown Gravel CLAY
CL/1282430	TP1 ES 2 2.7	Brown Stone CLAY
CL/1282431	TP2 ES 1 1.3	Brown Stone CLAY
CL/1282432	TP2 ES 2 3.1	Brown Stone CLAY
CL/1282433	TP3 ES 1 0.1	Brown SILT
CL/1282434	TP3 ES 2 3.2	Brown Gravel SILT
CL/1282435	TP4 ES 1 1.1	Brown Stone CLAY
CL/1282436	TP5 ES 1 1.0	Brown Stone CLAY
CL/1282437	TP5 ES 2 2.5	Brown Gravel CLAY
CL/1282438	TP6 ES 2 2.6	Brown Stone CLAY
CL/1282439	TP7 ES 1 1.1	Brown Gravel CLAY
CL/1282440	TP7 ES 2 3.2	Brown Stone CLAY
CL/1282441	TP8 ES 1 0.4	Brown Gravel CLAY
CL/1282442	TP8 ES 2 2.4	Brown Stone SILT
CL/1282443	TP9 ES 1 0.1	Brown Stone SILT
CL/1282444	TP10 ES 1 0.7	Brown Stone CLAY
CL/1282445	TP10 ES 2 0.3	Grey Stone SILT

APPENDIX B2 LEACHATE CHEMICAL TESTING RESULTS Our Ref: EXR/146626 (Ver. 1) Your Ref: 22056

November 29, 2012

Mr S Mason ESG Geoenvironmental Consulting Glossop House Hogwood Lane Wokingham Berkshire RG40 4QW

ESG Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Mr S Mason

Dear Mr Mason

CEN Leachate 10:1 - Coursers Farm, Colney Heath

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

Estab.

J Elstub <u>Project Co-ordinator</u> 01283 554500

TEST REPORT CEN LEACHATE 10:1

Report No. EXR/146626 (Ver. 1)

ESG Geoenvironmental Consulting Glossop House Hogwood Lane Wokingham Berkshire RG40 4QW

Site: Coursers Farm, Colney Heath

The 5 samples described in this report were registered for analysis by ESG on 16-Nov-2012. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 29-Nov-2012

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Analytical and Deviating Sample Overview (Page 3) Table of Method Descriptions (Page 4) Table of Report Notes (Page 5)

On behalf of ESG : Declan Burns

Operations Director Laboratory and Analytical Business Date of Issue: 29-Nov-2012

Tests marked '^' have been subcontracted to another laboratory.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	pH units	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		
	Method	Codes :	WSLM3	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	ICPMSW	KONENS	SFAPI		
	Method Reporting	J LIMITS :	Voc	0.001 Voc	0.001 Xoc	0.0001 Xoc	0.001 Xoc	0.001 Xoc	0.002 Voc	0.001 Xoc	0.0001 Voc	0.001	0.01 Xoc	0.02 Xoc		
	UKAS ACC	realled :	Tes	162	162	Tes	162	162	162	162	Tes	Tes	Tes	Tes		
LAB ID Number EX/	Client Sample Description	Sample Date	pH units w	Nickel as Ni (Dissolved)	Chromium as Cr (Dissolved)	Cadmium as Cd (Dissolved)	Copper as Cu (Dissolved)	Lead as Pb (Dissolved)	Zinc as Zn (Dissolved)	Arsenic as As (Dissolved)	Mercury as Hg (Dissolved)	Selenium as Se (Dissolved)	Chromium VI as Cr	Cyanide (Free) as CN		
1340699	TP2 1.3	14-Nov-12	9.2	0.003	<0.001	<0.0001	0.016	0.002	0.031	0.005	<0.0001	0.001	<0.01	<0.02		
1340700	TP3 3.2	14-Nov-12	8.3	0.005	0.001	<0.0001	0.016	0.002	0.011	0.008	<0.0001	0.001	<0.01	<0.02		
1340701	TP5 1.0	13-Nov-12	8.3	0.004	0.002	0.0006	0.01	0.009	0.123	0.002	<0.0001	<0.001	<0.01	<0.02		
1340702	TP7 3.2	13-Nov-12	8.1	0.003	0.002	<0.0001	0.01	0.002	0.013	0.005	<0.0001	0.002	<0.01	<0.02		
1340703	TP10 0.3	13-Nov-12	8.1	0.005	0.001	<0.0001	0.021	0.004	0.041	0.007	<0.0001	<0.001	<0.01	<0.02		
	ESG 🔗		Client Name ESG Geoenvironmental Consulting CEN Leachate 10:1													
	Environmental Scientifics Group															
	Burton-on-Trent, Statfordshire, DE15 0YZ			С	ourse	ers Fa	ırm. C	Colney	/ Heat	th		Report N	umper	E	XK/146626	
	Tel +44 (0) 1283 554400						, ·	.	,			Table Nu	umber		1	
	Fax +44 (0) 1283 554422															

WATER Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

W146626

Customer **ESG Geoenvironmental Consulting** Site **Coursers Farm, Colney Heath Report No** W146626

Consignment No S32178 Date Logged 16-Nov-2012

							Repo	ort Du	e 29-	Nov-2	2012					
		MethodID	CUSTSERV	ICPMSW									KONENS	LeachPrep	SFAPI	WSLM3
ID Number	Description	Sampled	Report B (CENC)	Nickel as Ni MS (Dissolved)	Chromium as Cr MS (Dissolved)	Cadmium as Cd MS (Dissolved)	Copper as Cu MS (Dissolved)	Lead as Pb MS (Dissolved)	Zinc as Zn MS (Dissolved)	Arsenic as As MS (Dissolved)	Mercury as Hg MS (Dissolved)	Selenium as Se MS (Dissolved)	Chromium VI. as Cr (Kone)	Leachate Prep	Cyanide (Free) as CN SFA	pH units
	Accredited	to ISO17025		✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓
EX/1340699	TP2 1.3	14/11/12														
EX/1340700	TP3 3.2	14/11/12														
EX/1340701	TP5 1.0	13/11/12														
EX/1340702	TP7 3.2	13/11/12														
EX/1340703	TP10 0.3	13/11/12														

Note: For analysis where the Report Due date is greater than 7	l	Deviating Sample Key
days (PAH, Pesticides, PCB, Phenols, Herbicides) or 3 days (BOD)	/	A The sample was received in an inappropriate container for this analysis
after the sampling date, although we will do our utmost to prioritise	E	3 The sample was received without the correct preservation for this analysis
your samples, they may become deviant whilst being processed in	(C Headspace present in the sample container
the Laboratory.	[D The sampling date was not supplied so holding time may be compromised - applicable to all analysis
	I	Sample processing did not commence within the appropriate holding time
In this instance, please contact the Laboratory immediately should		Requested Analysis Key
you wish to discuss how you would like us to proceed. If you do		Analysis Required
not respond within 24 hours, we will proceed as originally		Analysis dependant upon trigger result - Note: due date may be affected if triggered
requested.		No analysis scheduled
	/	Analysis Subcontracted

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Water	ICPMSW	As Received	Direct quantitative determination of Metals in water samples using
			ICPMS
Water	KONENS	As Received	Direct analysis using discrete colorimetric analysis
Water	SFAPI	As Received	Segmented flow analysis with colorimetric detection
Water	WSLM3	As Received	Determination of the pH of water samples by pH probe

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
- All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity. Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **Nil**: Where "Nil" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample NADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

 $\ensuremath{\text{NS}}$ Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory. APPENDIX C GEOTECHNICAL LABORATORY TESTING RESULTS

DOCUMENT TRANSMITTAL SHEET

ESG	Ø
Environmental Sci	entifics Group

То	Peter Eldred
Address	ESG
	Wokingham
Email	
Fax	
Tel No.	
From	Clive Marshall
Address	ESG
	Doncaster
Despatch Date	01-Mar
Project Name	COURSERS FARM
Project Number	22056

METHOD OF DESPATCH										
POST										
FAX										
EMAIL	*									

Issuer Name:

C Marshall

Issuer Signature:

Call.

Document Title Issue No. No. of Pages Comments 1 25 Complete Lab Results

Please sign and return to confirm receipt.

Signed:	Doto
Name:	Dale

Project Name

Project No.

22056

COURSERS FARM

Details of Report Contents

Tests in the following list marked * are not UKAS accredited

ITEM	Sheet Nos							
Covering letter	page(s) 1 to 1							
Contents	page(s) 1 to 1							

SOIL TESTS					
Index Properties - Summary of Results	INDX	1	to	1	
UU triaxial compression test - Summary of Res	sults UUSUM	1	to	1	
Particle Size Distribution Analyses	PSD	1	to	9	
California Bearing Ratio - single test	CBR	1	to	7	
One Dimensional Consolidation test - Oedomo	eter OED	1	to	5	
END OF REPORT					
ESG C	Total number of pages in this report		25]

INDEX PROPERTIES - SUMMARY OF RESULTS														
Project No	Project Name													
22056	22056 Coursers Farm, Colney Heath, Hertfordshire													
		Samp	ole			р	p_{d}	w	< 425	WL	W _P	I _P	p _s	
Hole No.	No	Depth (m)			Soil Description				µm sieve					Remarks
	INO.	from	to	type		Mg	g/m ³	%	%	%	%		Mg/m ³	
BH1	3	1.50	1.95	U	Firm yellowish brown slightly sandy slightly gravelly CLAY with flint.			13	58 s	39 a	17	22		
BH1	11	7.20		D	Brown slightly sandy CLAY.			32	100 n	68 a	24	44		
BH1	13	7.50	7.95	U	Firm yellowish brown sandy gravelly CLAY with flint becoming yellowish brown gravelly			16	47 s	31 a	15	16		
BH1	16	8.71		D	Brownish grey slightly sandy slightly gravelly silty CLAY.			24	98 n	35 a	20	15		
BH1	23	15.00	15.45	D	Grey slightly sandy slightly gravelly CLAY. Gravel is chalk.			16	94 s	46 a	18	28		
BH2	4	1.50	1.95	U	Firm yellowish brown slightly sandy silty CLAY.			23	100 n	34 a	19	15		
BH2	7	2.50	2.95	D	Brown slightly sandy slightly gravelly CLAY.			19	98 n	35 a	18	17		
BH2	12	7.50	7.95	U	Firm to stiff orangish brown and grey slightly sandy CLAY.			30	100 n	65 a	27	38		
BH2	14	8.20		D	Brown slightly sandy gravelly CLAY.			17	49 s	35 a	17	18		
BH2	19	14.50		D	Grey and brown slightly sandy slightly gravelly CLAY.			19	99 n	41 a	14	27		
BH3	4	1.50	1.95	U	Firm yellowish brown slightly sandy slightly gravelly slity CLAY.			21	98 n	35 a	18	17		
BH3	6	2.25		D	Brown slightly sandy slightly gravelly CLAY.			21	98 n	37 a	18	19		
BH3	12	7.50	7.95	U	Orangish brown slightly gravelly SAND.			8.0	35 s	24 b	NP			
BH3	22	16.50	16.95	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY.			18	87 s	48 a	19	29		
BH4	4	1.50	1.95	U	Soft orangish brown slightly sandy slightly gravelly CLAY.			22	96 n	40 a	19	21		
BH4	8	6.00	6.45	В	Multicoloured slightly sandy slightly gravelly CLAY.			31	69 s	81 a	29	52		
BH4	13	13.50	13.95	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY with chalk.			17	95 s	49 a	19	30		
BH4	15	15.00	15.45	D	Grey slightly sandy slightly gravelly CLAY. Gravel is chalk.			15	89 s	44 a	16	28		
BH5	13	13.50	13.95	U	Very stiff brownish grey slightly sandy slightly gravelly CLAY. Gravel is mainly			15	89 s	46 a	18	28		
BH5	15	14.50		D	Grey slightly sandy slightly gravelly CLAY with chalk.			15	89 s	46 a	17	29		
BH6	12	12.00	12.45	U	Very stiff brownish grey slightly sandy slightly gravelly CLAY. Gravel contains			16	92 s	49 a	18	31		
BH6	15	13.50	13.95	D	Grey slightly sandy slightly gravelly CLAY with chalk.			14	89 s	45 a	17	28		
BH6	17	15.00	15.45	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY.			12	80 s	50 a	18	32		
BH7	3	0.50		D	Brown slightly sandy slightly gravelly CLAY.			7.4	46 s	30 a	17	13		
BH7	30	13.70	14.15	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is mainly			17	94 s	49 a	19	30		
BH7	32	15.20	15.65	D	Brown slightly sandy slightly gravelly CLAY. Gravel is chalk.			16	88 s	48 a	19	29		
General notes:	All above t	tests carrie	ed out to E	3S1377	: 1990 unless annotated otherwise. See indivi	dual tes	t reports	s for furt	ther deta	ills.	nrenor	ration		n narticle density
ney :	p pa	dry densi	ыц, iinea itv	I	a 4 point cone test	vv _P	riastic	urnit lastic		n from	natural	soil		μ_s particle density -0 = 0as jar
	W	moisture	content		b 1 point cone test	I _P	Plasticit	y Index		s sieve	ed spec	imen		-p = small pyknometer
QA Ref	line.	C	-	1	2									Table
SLR 1 Rev 91 Mar 12	Envir	S	Scien	tifics	Group			F	Printec	1:01/03	8/2013	3 11:5	9	INDX 1

UNCONSOLIDATED UNDRAINED TRIAXIAL COMPRESSION TESTS WITHOUT MEASUREMENT OF PORE PRESSURE - SUMMARY OF RESULTS

Project No	Project Name															
22056	Coursers Farm, Colney Heath, Hertfordshire															
		Sam	ple			Der	nsity	w	Test	Dia.	ó ₃	At fail	ure / er	nd of st	age	
Hole No.		Dept	h (m)		Soil Description	bulk	dry		type			Axial strain	ó ó.	C	M	Remarks
	No.	from	to	type		Duik	3	0/					01 03	υ	D	
BH1	3	1.50	1.95	U	Firm yellowish brown slightly sandy slightly gravelly CLAY with flint.	2.21	/m 1.96	% 13	UU	mm 105.6	кРа 30	% 19.7	кРа 99	кРа 49	P	
BH2	4	1.50	1.95	U	Firm yellowish brown slightly sandy silty CLAY.	2.06	1.68	23	UU	103.9	30	17.3	79	39	Ρ	
BH2	12	7.50	7.95	U	Firm to stiff orangish brown and grey slightly sandy CLAY.	1.94	1.49	30	UU	105.4	150	13.8	115	58	Ρ	
ВНЗ	4	1.50	1.95	U	Firm yellowish brown slightly sandy slightly gravelly silty CLAY.	2.12	1.75	21	UU	104.2	30	19.3	63	31	Ρ	
внз	22	16.50	16.95	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY.	2.18	1.84	18	UU	105.9	330	19.8	388	194	Ρ	
BH4	4	1.50	1.95	U	Soft orangish brown slightly sandy slightly gravelly CLAY.	2.04	1.68	22	UU	104.5	30	16.8	91	46	Ρ	
BH4	13	13.50	13.95	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY with chalk.	2.15	1.83	17	UU	105.6	270	19.7	458	229	С	
BH5	13	13.50	13.95	U	Very stiff brownish grey slightly sandy slightly gravelly CLAY. Gravel is mainly chalk.	2.14	1.86	15	UU	105.6	270	19.8	565	282	с	
BH6	12	12.00	12.45	U	Very stiff brownish grey slightly sandy slightly gravelly CLAY. Gravel contains chalk.	2.19	1.88	16	UU	105.1	240	19.8	425	213	С	
BH6	17	15.00	15.45	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY.	2.14	1.91	12	UU	106.2	300	19.8	567	284	С	
BH7	30	13.70	14.15	U	Very stiff greyish brown slightly sandy slightly gravelly CLAY. Gravel is mainly chalk.	2.14	1.83	17	UU	105.3	270	9.9	573	286	В	
General notes: Tests carried out in accordance with BS1377; Part 7: 1990, clause 8 for single stage, clause 9 for multistage tests. Specimens nominally 2:1 height																
Legend	UU - single stage test (may be in sets of specimens) δ_3 cell pr							I pressure Mode of failure P plastic							plastic	
$v_1 - v_3$ deviator stress B brittle								brittle								
QA Ref SLR 2 Rev 71 Mar 12	Env	S		icient	ifics Croup	U U		unutall		Printe	d:01/	03/20)13 1 [,]	1:59	0	Table UUSUM 1

Our Ref: EFS/130742 (Ver. 1) Your Ref: 22056

February 18, 2013

Mr S Mason ESG Geoenvironmental Consulting Glossop House Hogwood Lane Finchampstead Berkshire RG40 4QW

ESG Bretby Business Park Ashby Road Burton-on-Trent Staffordshire DE15 0YZ

Telephone: 01283 554400 Facsimile: 01283 554422

For the attention of Mr S Mason

Dear Mr Mason

Soil Sample Analysis - Coursers Farm, Colney Heath

Samples from the above site have been analysed in accordance with the schedule supplied. The sample details and the results of analyses for these samples are given in the appended report.

An invoice for this work will follow under a separate cover.

Where appropriate the samples will be kept until 19/03/13 when they will be discarded. Please call 01283 554493 for an extension of this date.

Please be aware that our policy for the retention of paper based laboratory records and analysis reports is 6 years.

The work was carried out in accordance with Environmental Scientifics Group Ltd (Laboratory and Analytical) Standard Terms and Conditions of Contract.

If I can be of any further assistance please do not hesitate to contact me.

Yours sincerely

for ESG

C Higgins-Jones <u>Project Co-ordinator</u> 01283 554493

TEST REPORT SOIL SAMPLE ANALYSIS

Report No. EFS/130742 (Ver. 1)

ESG Geoenvironmental Consulting Glossop House Hogwood Lane Finchampstead Berkshire RG40 4QW

Site: Coursers Farm, Colney Heath

The 12 samples described in this report were registered for analysis by ESG on 05-Feb-2013. This report supersedes any versions previously issued by the laboratory.

The analysis was completed by: 18-Feb-2013

Tests where the accreditation is set to N or No, and any individual data items marked with a * are not UKAS accredited Any opinions or interpretations expressed herein are outside the scope of any UKAS accreditation held by ESG.

The following tables are contained in this report:

Table 1 Main Analysis Results (Page 2) Analytical and Deviating Sample Overview (Page 3) Table of Method Descriptions (Page 4) Table of Report Notes (Page 5)

On behalf of ESG : Declan Burns

Operations Director Laboratory and Analytical Business Date of Issue: 18-Feb-2013

Tests marked '^' have been subcontracted to another laboratory.

ESG accepts no responsibility for any sampling not carried out by our personnel.

		Units :	mg/kg	mg/l	pH Units	mg/l	mg/l	mg/l	mg/kg	%					
	Method	Codes :	ICPACIDS	ICPWSS	PHSOIL	ICPBRE	KONECL	KoneNO3	KONENS	TSBRE1					
	Method Reporting	J LIMITS :	20 Xoc	10 Voc	Voc	0.0001 No	1 No	0.2 No	0.5 No	0.005 No					
	UKAS ACC	reulleu .	165	162	162	INU	NU	INU	INU	INU					
LAB ID Number CL/	Client Sample Description	Sample Date	SO4 (acid sol)	SO4 (H2O sol) mg/l	pH units (AR)	Magnesium (BRE)	Chloride:(2:1)	Nitrate (2:1): mg/l	Ammoniacal Nitrogen:	Total Sulphur.					
1303177	BH1 D 1 0.05	17-Jan-13	515	17	7.4	0.0017	10	2.9	12.3	0.043					
1303178	BH1 B 5 3.5	18-Jan-13	55	26	7.8	0.0019	6	0.3	2.1	0.024					
1303179	BH2 D 5 2.0	25-Jan-13	184	24	7.9	0.0013	8	0.3	2.9	0.019					
1303180	BH2 D 11 7.2	25-Jan-13	169	<10	7.9	0.0029	11	0.7	15.7	0.015					
1303181	BH3 D 1 0.05	08-Jan-13	423	47	7.2	0.0026	5	<0.2	7.3	0.026					
1303182	BH3 D 21 16.0	10-Jan-13	1430	376	8.3	0.0020	9	0.7	7.7	0.658					
1303183	BH4 D 3 1.25	26-Jan-13	247	45	7.7	0.0015	8	<0.2	4.9	0.029					
1303184	BH5 D 1 0.05	16-Jan-13	413	24	8.1	0.0020	6	<0.2	7.5	0.027					
1303185	BH5 B 6 4.5	16-Jan-13	61	16	8.1	0.0023	12	1.6	1.4	0.018					
1303186	BH6 B 2 0.5	14-Jan-13	312	16	7.6	0.0043	23	<0.2	4.9	0.018					
1303187	BH7 D 5 1.2	22-Jan-13	102	15	8.5	0.0020	5	0.7	2.1	0.008					
1303188	BH7 D 33 15.5	24-Jan-13	229	30	9.0	0.0023	5	7.3	4.4	0.032					
ESG @@ Client Name ESG Geoen Contact Mr S Mason			eoenviro	nmental	Consultir	ng			Soil Sa	mple Analysis	5				
	Environmental Scientifics Group Bretby Business Park, Ashby Road										Date Pri	nted	1	8-Feb-2013	
1	Burton-on-Trent, Staffordshire, DE15 0YZ			~			-			I.	Report N	lumber	E	FS/130742	
	Tel +44 (0) 1283 554400			C	ourse	ers ⊢a	irm, C	oiney	/ Heat	n	Table Nu	umber		1	
	Fax +44 (0) 1283 554422														

SOIL Analysis

ESG Environmental Chemistry Analytical and Deviating Sample Overview

Customer ESG Geoenvironmental Consulting **Coursers Farm, Colney Heath** Site **Report No** S130742

Consignment No S33391 Date Logged 05-Feb-2013

							Repo	ort Du	<u>e 18-</u>	Feb-2	013	
		MethodID	CustServ	ICPACIDS	ICPBRE	ICPWSS	KONECL	KoneNO3	KONENS	PHSOIL	TSBRE1	
ID Number	Description	Sampled	Report B	SO4 (acid sol)	Magnesium (BRE)	SO4 (H2O sol) mg/l	Chloride:(2:1)	Nitrate (2:1): mg/l	Ammoniacal Nitrogen:	pH units (AR)	Total Sulphur.	
	Accredited	to ISO17025		✓		✓				✓		
CL/1303177	BH1 0.05	17/01/13										
CL/1303178	BH1 3.50	18/01/13										
CL/1303179	BH2 2.00	25/01/13										
CL/1303180	BH2 7.20	25/01/13										
CL/1303181	BH3 0.05	08/01/13										
CL/1303182	BH3 16.00	10/01/13										
CL/1303183	BH4 1.25	26/01/13										
CL/1303184	BH5 0.05	16/01/13										
CL/1303185	BH5 4.50	16/01/13										
CL/1303186	BH6 0.50	14/01/13										
CL/1303187	BH7 1.20	22/01/13										
CL/1303188	BH7 15.50	24/01/13										

Note: For analysis where the scheduled turnaround is greater than Deviating Sample Key the holding time we will do our utmost to prioritise these samples. А The sample was received in an inappropriate container for this analysis в However, it is possible that samples could become deviant whilst The sample was received without the correct preservation for this analysis С Headspace present in the sample container being processed in the laboratory. D The sampling date was not supplied so holding time may be compromised - applicable to all analysis F Sample processing did not commence within the appropriate holding time In this instance please contact the laboratory immediately should Requested Analysis Key you wish to discuss how you would like us to proceed. If you do not respond within 24 hours, we will proceed as originally Analysis Required Analysis dependant upon trigger result - Note: due date may be affected if triggered requested. No analysis scheduled Analysis Subcontracted

Method Descriptions

Matrix	MethodID	Analysis	Method Description
		Basis	
Soil	ICPACIDS	Air Dried	Determination of Total Sulphate in soil samples by Hydrochloric
			Acid extraction followed by ICPOES detection
Soil	ICPBRE	Air Dried	Determination of Magnesium (BRE) in soil samples by water
			extraction followed by ICPOES detection
Soil	ICPWSS	Air Dried	Determination of Water Soluble Sulphate in soil samples by water
			extraction followed by ICPOES detection
Soil	KONECL	Air Dried	Determination of Chloride in Soil using water extraction at the
			stated water:soil ratio, discrete colorimetric detection
Soil	KoneNO3	Air Dried	Determination of Nitrate in soil samples by water extraction followed
			by colorimetric detection
Soil	KONENS	Air Dried	Determination of Ammonium in Soil using Potassium Chloride
			extraction, discrete colorimetric detection
Soil	PHSOIL	As Received	Determination of pH of 2.5:1 deionised water to soil extracts using
			pH probe.
Soil	TSBRE1	Air Dried	Determination of Total Carbon and/or Total Sulphur in solid
			samples by high temperature combustion/infrared detection

Generic Notes

Soil/Solid Analysis

Unless stated otherwise,

- Results expressed as mg/kg have been calculated on the basis indicated in the Method Description table.
- All results on MCERTS reports are reported on a 105°C dry weight basis with the exception of pH and conductivity. Sulphate analysis not conducted in accordance with BS1377
- Water Soluble Sulphate is on a 2:1 water:soil extract

Waters Analysis

Unless stated otherwise results are expressed as mg/l **NiI**: Where "NiI" has been entered against Total Alkalinity or Total Acidity this indicates that a measurement was not required due to the inherent pH of the sample.

Oil analysis specific

Unless stated otherwise,

- Results are expressed as mg/kg
- SG is expressed as g/cm³@ 15°C

Gas (Tedlar bag) Analysis

Unless stated otherwise, results are expressed as ug/I

Asbestos Analysis

CH Denotes Chrysotile CR Denotes Crocidolite AM Denotes Amosite NAIIS No Asbestos Identified in Sample NADIS No Asbestos Detected In Sample

Symbol Reference

^ Sub-contracted analysis.

\$\$ Unable to analyse due to the nature of the sample

- ¶ Samples submitted for this analyte were not preserved on site in accordance with laboratory protocols.
- This may have resulted in deterioration of the sample(s) during transit to the laboratory.

Consequently the reported data may not represent the concentration of the target analyte present in the sample at the time of sampling

¥ Results for guidance only due to possible interference

& Blank corrected result

I.S Insufficient sample to complete requested analysis

I.S(g) Insufficient sample to re-analyse, results for guidance only

Intf Unable to analyse due to interferences

N.D Not determined N.Det Not detected

 $\ensuremath{\text{NS}}$ Information Not Supplied

 $\ensuremath{\text{Req}}$ Analysis requested, see attached sheets for results

- **P** Raised detection limit due to nature of the sample
- * All accreditation has been removed by the laboratory for this result

‡ MCERTS accreditation has been removed for this result

Note: The Laboratory may only claim that data is accredited when all of the requirements of our Quality System have been met. Where these requirements have not been met the laboratory may elect to include the data in its final report and remove the accreditation from individual data items if it believes that the validity of the data has not been affected. If further details are required of the circumstances which have led to the removal of accreditation then please do not hesitate to contact the laboratory. APPENDIX D HORTICULTURAL LABORATORY TESTING RESULTS

	Certificat	te o	of Ana	lysis				
Client :	Agrivert Limited			Our Ref.	:	22056		
Date Sampled :	13 and 14-Nov-12	2		Date	:	23-Nov-12		
Suite ID :	LP1 - Topsoil			Sampled by	· :	ESG		
Site Details : Coursers Fa	arm, Colney Heath,	Hertfo	rdshire					
Soil Sample Reference	TPS	3	TP10					
Particle Size Distribution	(USDA Classific	cation)						
Clay (<0.002mm)	% 29	9	27					
Silt (0.002-0.05mm)	% 49	9	43	-				
Sand (0.05-2.0mm)	% 22	2	30					
Textural Class	CL		CL					
Stone Content (Dry Weight Basi	s)							
Stones 2-20mm	%w/w 1.6	6	8					
Stones 20-50mm	%w/w 3	3	12					
Stones >50mm	%w/w (D	0					
Soil Reaction & Soluble Salts								
pH Value †	units 6.3	3	6.2					
Electrical Conductivity (Water)†	μS/cm 116	6	130]				
Organic Matter & Nutrient Statu	s							
Organic Matter*	% 3.7	7 M	3.9 M					
Total Nitrogen	% 0.14	4 ×	0.17 M					
Extractable Phosphorous	mg/kg 15	5 ×	28 M	1				
Extractable Potassium	mg/kg 307	7 ✓	407 ✓					
Extractable Magnesium	mg/kg 47	7 ×	59 M					
Notes:		† 1:2.5	water extract		*	Walkley-Black		
pH & EC Value Organic Matter & Nu	utrient Status	USDA	Soil Texture C	Classification				
Acid No Improvement	required	C	Clay	7	ZC	Silty Clay		
Alkaline M May benefit from	improvement	SC	Sandy Clay	Z	ZCL	Silty Clay Loam		
Low salinity	ommended	CL	Clay Loam	L	-	Loam		
		SL	Sandy Loam	Z	ZL	Silt Loam		
		SCL	Sandy Clay Lo	oam S	S	Sand		
See report comments		LS	Loamy Sand	Z	Z	Silt		
Coding/interpretations	comments are valid on	nly when	viewed in acco	rdance with the	asso	ciated report		
Sam	ple(s) were analysed at	the UKA	S accredited la	boratory of NRM	M			

ESG. Glossop House, Hogwood Ln, Wokingham, Berks. RG40 4QW. Tel: 0118 932 4453 Fax: 0118 932 8383

	Certificate of	of Analysi	S	
Client : Date Sampled : Suite ID : Site Details : Coursers F	Agrivert Limited 13-Nov-12 LP7 - Subsoil arm, Colney Heath, Hertf	Our Re Date Sample ordshire	ef. : : ed by :	22056 23-Nov-12 ESG
Soil Sample Reference	TP9			
Sample Depth (m bgl)	0.4			
Particle Size Distribution	(USDA Classification)		
Clay (<0.002mm) Silt (0.002-0.05mm) Sand (0.05-2.0mm)	% 27 % 29 % 44			
Stones 2-20mm Stones 20-50mm Stones >50mm	%w/w 14.1 %w/w 14.2 %w/w 4.3			
Soil Reaction & Soluble Salts				
pH Value † Electrical Conductivity (Water) [.]	units 7.7 μS/cm 222			
Organic Matter Status				
Organic Matter*	% 0.5 L			
Notes:	† 1:2	.5 water extract	*	Walkley-Black
pH & EC Value Organic Matter	USD	A Soil Texture Classifica	tion	
Acid L Low	C	Clay	ZC	Silty Clay
Alkaline M Moderate	SC	Sandy Clay	ZCL	Silty Clay Loam
Low salinity	CL	Clay Loam	L	Loam
	SL	Sandy Loam	۲L	Sill LOAM
See report comments	50L I.S.	Loamy Sand	3 7	Silt
				cisted uppert
	s/comments are valid only whe		iui ine asso	ciated report
Sam	ple(s) were analysed by the UK	AS accredited laboratory	of NRM	

ESG. Glossop House, Hogwood Ln, Wokingham, Berks. RG40 4QW. Tel: 0118 932 4453 Fax: 0118 932 8383

APPENDIX E PLATES

Plate 1 Looking north over the site from the south east bund.

Plate 2 TP1 arisings.

Notes.	
Photographs of	site and trial pit s

Project Proiect No. Carried out for Coursers Farm, Colney Heath, Hertfordshire 22056/GI Agrivert Limited

Plate 3 TP1 Topsoil overlying Made Ground.

Plate 4 TP2 arisings – topsoil left, subsoil front right and Made Ground rear right.

Notes: Photographs of site and trial pit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Project No. Carried out for	22056/GI Agrivert Limited	Sheet 2 of 7

Plate 5 TP2 Topsoil overlying subsoil overlying Made Ground.

Plate 6 TP3, Made Ground extended to 1.5 m below the surrounding ground level.

Notes: Photographs of site and trial pit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Proiect No. Carried out for	22056/GI Agrivert Limited	Sheet 3 of 7

Plate 7. TP4 Made Ground with cobbles of brick, concrete and bitumen and inclusions of metal and plastic.

Plate 8. TP5 Made Ground arisings with black organic staining.

Notes: Photographs of site and trial pit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Proiect No. Carried out for	22056/GI Agrivert Limited	Sheet 4 of 7

Plate 9. TP5 Glacial Deposits were encountered below the Made Ground at 1.5 m below the surrounding ground level.

Plate 10. TP6 arisings.

Notes: Photographs of site and trial nit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Proiect No. Carried out for	22056/GI Agrivert Limited	Sheet 5 of 7

Plate 11. TP7, Made Ground including cobbles of brick, concrete, chalk, breeze block and wood.

Plate 12. TP9 located just outside the base of the southern bund did not encounter Made Ground.

Notes: Photographs of site and trial pit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Proiect No. Carried out for	22056/GI Agrivert Limited	Sheet 6 of 7

Plate 13. TP10 Made Ground with cobbles of brick, concrete, wood, chalk and inclusions of hard and soft plastic.

Plate 14. TP10 Made Ground arisings.

Notes: Photographs of site and trial pit s	Project	Coursers Farm, Colney Heath, Hertfordshire	
	Project No. Carried out for	22056/GI Agrivert Limited	Sheet 7 of 7

Proposed Anaerobic Digestion Facility - Land at Coursers Farm, Colney Heath, Hertfordshire

Extended Phase 1 Habitat Survey

Prepared by: The Environmental Dimension Partnership (EDP)

On behalf of: Agrivert Ltd

January 2012 Report Reference EDP1421_02b

For EDP use Report no. C_EDP1421_02b

Author Approved QA Date Ryan Stead Jim Mullholland Claire Millington 03 January 2012

Contents

Section 1	Introduction	1
Section 2	Methodology	3
Section 3	Summary of Findings	5
Section 4	Discussion and Recommendations1	3
Section 5	Summary and Conclusions1	7

Appendices

Appendix EDP 1	Site Plan & Indicative Landscaping
Appendix EDP 2	Desk Study Data
Appendix EDP 3	Extended Phase 1 Habitat Survey Target Notes
Plan	

Plan EDP 1Extended Phase 1 Habitat Plan
(EDP1421/01a 3 August 2011 TB/RS)

Section 1 Introduction

- 1.1 The Environmental Dimension Partnership (EDP) have been instructed by Agrivert Ltd to undertake an extended Phase 1 Habitat Survey on land at Coursers Farm in Hertfordshire with regards to the proposals (as set out in sections 1.5-1.7 below). The site is located approximately 2km north of junction 22 of the M25 motorway and is centered at Ordnance Survey Grid Reference (OSGR) TL 203 044. The site covers an area of approximately 3.8 hectares (ha). The site is located within the administrative area of Hertsmere Borough Council (HBC).
- 1.2 The findings of this survey have been reviewed in light of relevant legislation, planning policy and biodiversity contextual information. The key findings and recommendations are set out in **Section 4**.

The Site

- 1.3 The site is in use as two grazed fields, one horse paddock and pond within a further horse paddock, adjacent to the main buildings of Coursers Farm, which comprises farm buildings and equestrian paddocks. It is currently used as livestock grazing and for the storage of inert material in the form of screening bunds. Within the proposed site there is a pond near the access with Coursers Road, and Tyttenhanger Stream is located along the southern boundary of the grazing field in which the site is located. The site is situated within a landscape dominated by pasture and arable fields, with a good network of hedgerows. Tyttenhanger Quarry is immediately adjacent to the west of the site, and is in use as a gravel extraction facility, operated by Lafarge Aggregates.
- 1.4 A Phase 1 Habitat survey in support of an application in January 2007 has been undertaken on the adjacent quarry site, which confirmed the presence of great crested newts (*Triturus cristatus*). There is currently permanent newt exclusion fencing surrounding the north eastern corner of the quarry which borders the Coursers Farm site.

The Proposals

1.5 The site is proposed for a development scheme which involves the construction of five storage tanks, three digestion tanks, a site office and reception building and ancillary development including an internal access road from Coursers Farm site (see Site Plan & Indicative Landscaping at **Appendix EDP 1**).

- 1.6 The proposed development will share the current vehicular access onto Coursers Road, however the traffic survey has identified that a length of hedgerow along the northern boundary of the site will require removal in order to improve visibility splays. This vegetation removal is also likely to include two trees.
- 1.7 The proposed development falls within the requirements of the Town and Country Planning (Environmental Impact Assessment) (England and Wales) Regulations 1999 as a Schedule 2 project. However, a Screening Opinion adopted by Hertfordshire County Council (HCC) concluded that the scheme is not considered an EIA development. This report therefore does not constitute a full ecological 'environmental impact assessment' of the proposed development of the site.

Section 2 Methodology

Desk Study

- 2.1 A desk study was undertaken which involved searching the Multi-Agency Geographic Information for the Countryside (MAGIC) website¹ and contacting Hertfordshire Biological Records Centre (HBRC). Information on the following was requested from HBRC:
 - Internationally designated sites within 5km;
 - National and county-level designated sites within 2km;
 - Notable/ protected species within 1km; and
 - UK Biodiversity Action plan (BAP) habitats within 500m.
- 2.2 The London, Essex and Hertfordshire Amphibian and Reptile Trust were also contacted as records for great crested newt were known to exist for the adjacent quarry site.
- 2.3 Following the completion of the extended Phase 1 Habitat Survey, Dr Jenny Jones the County Recorder for Mammals was contacted regarding water vole (*Arvicola terrestris*) records.

Field Survey

- 2.4 The extended Phase 1 Habitat Survey was completed on the 8th March 2011. The weather conditions during the survey were sunny and dry, with a light breeze. The ambient temperature was approximately 14°C. The survey was undertaken with reference to published guidelines (JNCC, 2003) and included observations with respect to protected species and an assessment of the potential for the study area to support such species including breeding birds, badgers, bats and great crested newts. The vegetation was mapped and Target Notes were prepared on features of particular ecological interest.
- 2.5 Late March/early April is considered to be the start of the optimal season for undertaking this type of survey, and as such the list of species generated from the survey should not be taken as a comprehensive inventory for the study area. However, due to the management of the fields and nature of the habitats mapped, it is not considered that the survey date is a constraint on the information gathered for this report.

¹ www.magic.gov.uk

This page has been left blank intentionally

Section 3 Summary of Findings

Desk Study

Statutory Designated Sites for Nature Conservation

- 3.1 The proposed development site is not covered by any statutory nature conservation designations. There are no internationally designated sites present within 5km, however there are two statutorily designated sites within a 2km radius. These are summarised below, and a map illustrating their distribution in relation to the site is located in **Appendix EDP 2** of this report:
 - Redwell Wood Site of Special Scientific Interest (SSSI) is a broadleaved, mixed and yew woodland situated within 2km of the site; and
 - Colney Heath Local Nature Reserve (LNR) contains a remnant of the heath vegetation community that used to be extensive in Hertfordshire, and is located within 0.5km of the site boundary.
- 3.2 No other statutory designated sites found within the 5km search radius.

Non-statutory Designated Sites for Nature Conservation

3.3 The desk study has identified 28 Local Wildlife Sites within a 2km radius of the site. The sites are summarised in **Table EDP 1**; and full descriptions with a distribution map are contained within the HBRC data within **Appendix EDP 2**.

Name	Grid	Description
	Reference	
Smallford Pit	TL195068	An infilled former gravel pit with well developed
		secondary grassland, areas of standing water, a pond
		and fishing lake.
Knight's Wood	TL185055	Ancient semi-natural woodland, dominated by
		Pedunculate Oak (<i>Quercus robur</i>).
Tyttenhanger	TL190050	Sand and gravel pits, many of which have been flooded
Gravel Pits		and are an important area for breeding waders.
St. Mark's	TL197061	Churchyard and graveyard supporting unimproved
Churchyard		neutral to acid grassland.
and Graveyard		
River Colne,	TL194055	A section of the River Colne which is important for

Proposed Anaerobic Digestion Facility – Land at Coursers Farm, Colney Heath, Hertfordshire Extended Phase 1 Habitat Survey C_EDP1421_02b

SW of Colney		invertebrates.
	TI 10.0C	Duildings and an impaction where for much shad an arise
SL. Mark S	1119-06-	Buildings and environs important for protected species.
Close, London		A mospic of poutral, acid and marshy grasslands, plus
	1203036	A mosaic of neutral, actuality marshy grassianus, pius
Collogy Llogth		Linimproved pourtral to acid grasslands along the Diver
Farm Meadows	11207055	Colne.
Sleapshyde	TL203064	A gravel pit which has been restored to an amenity/
Gravel Pit		wildlife park and now supports a mosaic of habitats,
		including open water, wet neutral grassland, tall herb,
		scattered scrub and plantation.
Bush Wood	TL224054	Ancient semi-natural woodland, dominated by
		Pedunculate Oak and Hornbeam (Carpinus betulus).
Tollgate Wood	TL216055	Broadleaved woodland dominated by Pedunculate Oak and Ash (<i>Fraxinus excelsior</i>).
Frederick's	TL207051	Mosaic site of secondary woodland and remnant heath/
Wood		acid grassland.
Coppice Wood	TL184048	Ancient semi-natural Pedunculate Oak/ Hornbeam
		coppice-with-standards woodland.
The New	TL199047	Old woodland with Pedunculate Oak and Ash canopy.
Plantation		
River Colne by	TL186040	Section of the River Colne with well vegetated banks
Bowmansgreen		and good communities of emergent aquatic vegetation.
Farm		
Walsingham	TL215039	Part ancient semi-natural Pedunculate Oak/ Hornbeam
Wood		woodland.
Cobs Ash	TL213032	Ancient semi-natural Pedunculate Oak/ Hornbeam coppice woodland.
Cangsley Grove	TL218034	Ancient semi-natural Pedunculate Oak/ Hornbeam
		woodland.
Round Wood	TL211031	Ancient semi-natural Pedunculate Oak/ Hornbeam
		woodland.
Scrubby	TL207048	Unimproved acid grassland with scattered Hawthorn
grassland by		(Crataegus monogyna) patches.
Frederick's		
Wood		
Shenley Lodge	TL201024	Ancient semi-natural woodland of Pedunculate Oak/
Farm Wood		Ash with Hazel (Coryllus avellana) coppice.
Potwells	TL216030	Wet acidic grassland and scrub
North Mymms	TL217047	Parkland of semi-improved neutral grassland with
Park		frequent planted trees.
North Mymms	TL221044	Churchyard with old neutral grassland and scattered
Churchyard		ornamental trees.
North Mymms	TL21-04-	Buildings and environs important for protected species.

Proposed Anaerobic Digestion Facility – Land at Coursers Farm, Colney Heath, Hertfordshire Extended Phase 1 Habitat Survey C_EDP1421_02b

Park Area		
North Mymms	TL21-03-	Icehouse and environs important for protected species.
Icehouse		
Coursers Farm	TL20-04-	Buildings and environs important for protected species.
Area		
Coursers Road	TL20-03-	Hedgerow and ditch on Coursers farm important for
Gravel Pit		breeding Tree Sparrow (Passer montanus), a Local
		Biodiversity Action Plan Species

Table EDP 1: Non-statutory Designations within 2km of the site.

3.4 An Ancient Woodland Inventory site also lies within 300m of the Coursers Farm site boundary.

Protected/Notable Species

Bats

3.5 A number of bat records were returned by HBRC as within 1km of the site. Species recorded include brown long-eared (*Plecotus auritus*), Natterer's (*Myotis nattereri*) and pipistrelle species (*Pipistrellus* sp.).

Other Mammals

3.6 There are records of badger (*Meles meles*) and water vole within 1km of the site. Dormice (*Muscardinus avellanarius*) have been recorded within 2km of the site.

Birds

3.7 There are several records of tree sparrow in the vicinity of Coursers Farm. This species has a Local Biodiversity Action Plan and in addition an important breeding area has been identified for tree sparrows located at Coursers Gravel Pit. The tree sparrow is listed as having the highest conservation concern, being categorised as a Red List Species within the UK.

Amphibians and Reptiles

- 3.8 There are records for common lizard (*Lacerta vivipara*) and grass snake (*Natrix natrix*) within 1km of the site, and whilst HBRC and the London, Essex and Hertfordshire Amphibian and Reptile Trust hold no records of great crested newts within 1km, several have been recorded within 5km of the proposed development. However, it is understood that this species has been recorded on the adjacent site managed by Lafarge Aggregates.
- 3.9 No existing records of protected or notable species were located within the site.

Field Survey

Habitats

3.10 The distribution of the key habitats is illustrated on the Habitat Features Plan (**EDP 1421/01**), which accompanies this report, and this should be read in conjunction with the following habitat descriptions.

Improved grassland

3.11 The majority of the site is dominated by improved grassland (Target Note 9 Appendix EDP 3). The larger field making up the site is sheep grazed and found to contain a close cropped sward with low species diversity. A horse paddock (Target Note 11 Appendix EDP 3) to the east of the site within Coursers Farm was also noted as supporting improved grassland.

Species-poor semi-improved grassland

3.12 The field (Target Note 4 **Appendix EDP 3**) located in the northern section of the site was found to be slightly less improved and more rank in it's nature.

Amenity grassland

3.13 Small areas of amenity grassland (Target Note 5 **Appendix EDP 3**) were noted within the site boundary at the entrance to the Coursers Farm complex. These were found to be well mown and contained a short sward with a limited number of forb species.

Hedgerow

3.14 A species-poor short hedgerow (Target Note 3 **Appendix EDP 3**) dominated by hawthorn and blackthorn was mapped along the northern boundary of the site adjacent to Coursers Road. This feature was noted to be gappy in places and in poor condition.

Open Water (Ponds)

3.15 The survey noted two ponds within the site boundary. One pond (Target Note 7 **Appendix EDP 3**) is located adjacent to the entrance of the farm access road. This is the larger of the two ponds. It supported a wide band of marginal planting (mostly variegated reed canary-grass (*Phalaris arundinaceavariagata*), and appeared to be a well established habitat.

- 3.16 The smaller pond (Target Note 8 **Appendix EDP 3**) was found to support little in the way of either aquatic or marginal vegetation and appeared to be a relatively recently created feature.
- 3.17 Three further ponds (Target Notes 15 **Appendix EDP 3**) were noted following the completion of the extended Phase 1 Habitat survey. The first was a small pond located in the corner of the field opposite the site, across Coursers Road. A further two ponds were found to the east of the site within the farm complex.

Running Water (wet ditch)

- 3.18 The ditches that run along the western and southern boundaries were found to be a mixture of dry and wet habitats. The northern end of the western boundary ditch was found to be dry and supported rank grasses along with limited forb species. At the southern end the ditch was wet containing approximately 5-10cm of water. Plant species within the inundated length were similar to those in the northern section.
- 3.19 Located to the south of the site, Tittenhanger Stream (Target Note 14 **Appendix EDP 3**) drains from west to east. At the time of the survey the water within this ditch reached a maximum depth of approximately 10cm. The ditch was confined by tall, steep grassy banks.

Scattered Scrub

3.20 A small area of scattered scrub (Target Note 2 **Appendix EDP 3**) dominated by bramble and hawthorn was mapped in the north west corner of the site.

Mature trees

3.21 No mature trees were mapped within the site boundary; however, two large oak trees (one at Target Note 6 and one close to Target Note 1 **Appendix EDP 3**) were noted adjacent to either side of the northern section of the site. No further trees were mapped.

Buildings

3.22 No buildings are present within the site boundary, however there are numerous large agricultural sheds (Target Note 12 **Appendix EDP 3**) located adjacent to the site within the Coursers Farm complex. In addition at least two residential properties are located within 150m of the eastern boundary of the site.

Hardstanding

3.23 Coursers Road to the north and the access road into Coursers Farm are located along the northern and eastern boundaries respectively. There are also numerous tarmac roads, hardstanding access tracks and yards which are located within the Coursers Farm complex (Target Note 13 **Appendix EDP 3**).

Arable

3.24 A large arable field was mapped to the south of Tittenhanger Stream.

Protected/Notable Species

Bats

3.25 As the site consists of open fields it does not support any opportunities for roosting bats. It offers limited opportunities for both foraging and commuting bats, as no significant boundary hedgerows or lines of vegetation are present.

Badgers

3.26 A single hole (close to Target Note 3) was identified within the base of the hedgerow adjacent to the main road along the northern boundary of the site. The hole showed no signs of occupation by badgers, and was surrounded by a number of active rabbit holes. No other evidence of badger field signs were noted within the survey. However the initial survey noted this as a potential single hole non-active badger sett.

Water voles

- 3.27 The ditches along the western boundary and to the south of the site were noted as having limited potential for water vole. At the time of the survey the majority of the western ditch was found to be dry, and therefore unsuitable for this species. However, water was noted to be flowing slowly within the ditch on to the south (Tyttenhanger Stream), at a depth of up to approximately 10cm.
- 3.28 A small number of mammal footprints were noted within the mud adjacent to this water course. These were not fresh, but at the time of survey were assessed as possible water vole field signs. Numerous holes were also noted within the ditch banks in this area. No other sign (such as feeding stations, droppings etc) of water vole were noted.

Dormice

3.29 Although the wider countryside contains suitable habitats (such as woodland and a good hedgerow network), the site itself has limited opportunities for this species. The species poor roadside hedgerow on the northern boundary of the site is the only habitat which offers anything close to suitable dormouse habitat.

Breeding Birds

3.30 Due to the lack of nesting opportunities, the site is unlikely to support a significant number or diversity of breeding birds. The roadside hedgerow is likely to provide the only opportunity for breeding birds within the site.

Amphibians and Reptiles

- 3.31 The pond located within the site (Target Note 8 **Appendix EDP 3**) supported little aquatic or marginal vegetation, and appeared to offer only limited opportunities for breeding great crested newts. However, the larger pond within the site located adjacent to the site (Target Note 7 **Appendix EDP 3**) close to the current farm access road, showed significant amounts of both aquatic and marginal vegetation, and as such appeared to offer a close to optimal conditions for breeding great crested newts.
- 3.32 Ongoing surveys have identified that all five ponds support great crested newts. These surveys are scheduled to be completed by mid-June 2011.
- 3.33 Due to the current grazing management of the fields, the site does not currently offer any suitable habitat for reptiles. However, the adjacent ditches along the western boundary and to the south of the site may offer useful foraging habitat and connection corridors for grass snakes.

This page has been left blank intentionally.

Section 4 Discussion and Recommendations

4.1 This section discusses the findings as set out in **Section 3** in relation to relevant planning policy and legislative considerations and sets out our recommendations in relation to these findings and the scheme.

The Proposals

- 4.2 It is understood that the proposals for the site include the following:
 - The recontouring of the site and removal of the small field pond within the improved grassland; and
 - The construction of five storage tanks, three digestion tanks a site office and reception building and ancillary development.

Legislation and Policy

4.3 Hertsmere Borough Council has set out in its revised 2010 Core Strategy 'Hertsmere Local Development Plan Document' a number of policies that are aimed to guide development within the Borough. Policy CS12 Protection and enhancement of the natural environment is the most relevant policy for ecology. This policy states that..."*All development proposals must conserve and enhance the natural environment of the Borough, including biodiversity, protected trees, landscape character and sites of ecological and geological value, in order to maintain and improve environmental quality. Proposals should provide opportunities for habitat creation and enhancement throughout the life of a development."*

Assessment

Designated Sites

4.4 The Local Wildlife Sites in closest proximity of the proposed development site include Frederick's Wood, which is an area of secondary woodland; the scrubby grassland site adjacent to it; and also The New Plantation, an area of old oak and ash woodland. 4.5 Due to the reasons for their designation and the fact that the proposed development will not result in the increased recreational use of these sites, it is not expected that they will suffer any significant adverse impact through the development proposals.

Protected and Notable Species

Bats

4.6 The site holds limited opportunities for foraging or commuting bats. There are no features that offer roosting opportunities for bats within the site. It is therefore considered that the proposed development of the site will not have an adverse effect on the local bat population.

Badgers

4.7 As a potential badger sett has been noted on the northern boundary of the site, it is recommended that this is investigated further. A survey should be conducted to establish the use of this single hole and therefore what effect the proposed development may have on the local badger population.

Water voles

4.8 Limited habitat for water vole was noted on the boundaries of the site. Several small mammal footprints were recorded in the ditch to the south of the site. As such it is recommended that a water vole survey of these areas is conducted by a suitability experienced ecologist, to establish whether this species will experience any adverse effects through the development proposals.

Dormice

4.9 Due to the general unsuitability of the habitat on site no further survey is recommended for dormice.

Birds

- 4.10 Breeding birds, their nests, eggs and young are protected under the Wildlife and Countryside Act 1981 (as amended).
- 4.11 The site was assessed as containing limited habitat that was suitable for nesting birds. As a general recommendation, features with potential for supporting breeding birds should not be removed between February to August, inclusive, unless breeding birds are confirmed absent by a suitably qualified ecologist within five working days of the works commencing.

- 4.12 Should breeding birds, their nests, eggs and/or young be found during this period, no works will commence until the breeding has ceased. This is normally defined as when the young have fledged and are no longer dependent on the nest.
- 4.13 With respect to enhancement opportunities, it is recommended that any new landscape planting should include medium to long-term opportunities for nesting sites (e.g. the inclusion of hedge and shrub planting) and should include a high diversity of native fruit and nut bearing trees and shrubs within the planting schedule (see Landscape Assessment report).

Amphibians and Reptiles

- 4.14 Great crested newts and their places of refuge are subject to protection under the Wildlife and Countryside Act 1981, as amended, the Conservation (Natural Habitats &c.) Regulations 2010, and the Countryside and Rights of Way Act 2000. They are considered to be European Protected Species, which is the highest level of protection afforded to species in the United Kingdom.
- 4.15 A detailed schedule of surveys have been undertaken which have identified great crested newts within the pond on site. The information from these surveys will give an estimated population class for the great crested newts present on site. The current proposals indicate that the pond is to be lost and a replacement pond constructed. Due to the low quality habitat the current pond offers great crested newts, it is likely that the proposed pond can be created to include a much more beneficial habitat for the newt population within and around the site. Detailed recommendations are given in the separate great crested newt report **EDP1421_03b**.
- 4.16 All species of reptile are protected from intentional or reckless harm under the Wildlife and Countryside Act (1981, as amended). In addition, certain species of reptile receive a higher level of protection and/or are subject to specific action through the UK BAP.
- 4.17 No potential reptile habitat was identified on site. The potential for the ditches to support grass snakes has been highlighted, however the development proposals will not have a direct effect on these areas and therefore if reptiles are indeed present, it is unlikely that they will be subject to any adverse impacts through the implementation of the development proposals.
Section 5 Summary and Conclusions

- 5.1 EDP has been commissioned by Agrivert Ltd to undertake an extended Phase 1 Habitat Survey of a site at Coursers Farm, Hertfordshire. A detailed field survey was undertaken by an appropriately experienced Ecologist on 8th March 2011.
- 5.2 The development proposals are not likely to have an adverse impact on any of the designated sites identified within the desk study. The survey found no notable habitats within the site. The presence of great crested newts has been confirmed in the two ponds within the site. The site has limited potential to support breeding birds within the scrub and hedgerow. No other protected or notable species are likely to be affected by the development proposals.
- 5.3 Once the great crested newt surveys have been completed a suitable mitigation strategy will be drawn up in order to ensure that the proposals have minimal affect on this species.

Appendix EDP 1 Site Plan & Indicative Landscaping

Appendix EDP 2 Desk Study Data

KEY INTERNATIONAL, NATIONAL & LOCAL SITE DESIGNATIONS

Statutory designations

RAMSAR

Ramsar sites are designated under the Convention on Wetlands of International Importance especially as Waterfowl Habitat. Wetlands are designated, protected and promoted in order to stem the progressive encroachment on and loss of wetlands, which are broadly defined to include marsh, fen, peatland and water.

There is 1 Ramsar site in Hertfordshire. All designated Ramsar sites are SSSIs.

Special Area of Conservation (SAC)

Special Areas of Conservation are sites designated by Member States under the EC Habitats Directive. The aim is to establish a European network of important high quality conservation sites that will make a significant contribution to conserving habitats and species considered to be most in need of conservation at a European level.

There are 2 SAC sites in Hertfordshire.

Special Protection Area (SPA)

Special Protection Areas are designated under the EC Birds Directive, to conserve the habitat of certain rare or vulnerable birds and regularly occurring migratory birds. Any significant pollution or disturbance to or deterioration of these sites has to be avoided. There is 1 SPA site in Hertfordshire, All designated SPAs are SSSIs.

National Nature Reserve (NNR)

National Nature Reserves are statutory reserves established for the nation under the Wildlife and Countryside Act, 1981. NNRs may be owned by relevant national body (e.g. Natural England in England) or established by agreement; a few are owned and managed by nonstatutory bodies. NNRs cover a selection of the most important sites for nature conservation in the UK. There is 1 NNR in Hertfordshire.

Site of Special Scientific Interest (SSSI)

Sites of Special Scientific Interest are areas notified under the Wildlife and Countryside Act, 1981, as being of 'special interest for nature conservation'. They represent the finest sites for wildlife and natural features in Great Britain supporting many characteristic, rare and endangered species, habitats and natural features. Notification as a SSSI is primarily a legal mechanism organised by Natural England and selected according to specific criteria. The *Guidelines for the Selection of Biological SSSIs*, published in 1989 by the Joint Nature Conservancy Council, set down the selection criteria for both biological and geological SSSIs. There are 43 SSSIs in Hertfordshire.

Area of Outstanding Natural Beauty (AONB)

AONBs are nationally important landscapes that are not National Parks, designated by the Countryside Agency to aid their protection and management. An AONB cannot be included in a simplified planning zone and it is not promoted for active recreation such as a National Parks. The AONB in Hertfordshire has an associated body concerned with the area's conservation. There is 1 AONB in Hertfordshire.

Local Nature Reserve (LNR)

Land owned, leased or managed by Local Authorities and designated under the National Parks and Access to the Countryside Act. A site of some nature conservation value managed for educational objectives - no need for SSSI status. Some reserves are managed by a nonstatutory body. Local authorities have the power to pass bylaws controlling (e.g.) access, special protection measures. There are 36 LNRs in Hertfordshire.

Non-statutory Site designations

Local Wildlife Site / Wildlife Sites

Local Wildlife Sites are non-statutory sites designated at a county level as being of conservation importance and often recognised in Local authority development plans. The aim of this identification is to protect such sites from land management changes, which may lessen their nature conservation interest, and to encourage sensitive management to maintain and enhance their importance. Although WS have no statutory protection they need to be considered in the planning process through Planning Policy Guidance like PPG9 which refers to the Town & Country Planning Act 1990 Section 30. This states that nature conservation issues should be included in the surveys of local authority areas to ensure that the plans are based on fully adequate information about local species, habitats, geology and landform. Plans should be concerned not only with designated areas but also with other land of conservation value and the possible provision of new habitats.

There are 1954 Local Wildlife Sites in Hertfordshire (December 2009)

Regionally Important Geological / Geomorphological Site (RIGS)

Regionally Important Geological/Geomorphological Sites are non-statutory earth science sites. The RIGS networks are locally based voluntary groups drawing on both professional and interest groups identifying sites using a methodical and rational approach. RIGS are analogous to non-statutory biological sites - they are not a second tier but sites of regionally or local importance in their own right. There are 21 RIGS in Hertfordshire.

Ancient woodland

Ancient Woodland is land that has had a continuous woodland cover since at least 1600 AD and has only been cleared for underwood or timber production. It can be placed in two categories:

<u>Ancient Semi-natural Woodland (ASNW)</u> – woodland that retains a native tree and shrub cover that has not been planted, although it may have been managed by coppicing or felling and allowed to regenerate naturally. This covers all stands of ancient woodland which do not obviously originate from planting.

<u>Ancient replanted Woodland (AWS</u> - ancient woodland site or PAWS - plantation on ancient woodland site) – woodland where the original tree cover has been felled and replaced by planting, often with conifers and usually this century.

There are 657 ASNW, AWS and PAWS in Hertfordshire.

Ecology Database Site (EDS) / Ecosites

These sites are considered to be of significance for their wildlife and/or geological features in at least a local context. They are sites with some semi-natural habitat features and/or species interest and are supported by data held in the Hertfordshire Biological Records Centre database. There are about 3000 Ecosites in Hertfordshire (Dec 2009).

Statutory sites

STATUS	NAME	GRID	AREA (ha)	SITE REFERENCE
LNR	Colney Heath	TL202058	22.603	69/001
SSSI	Redwell Wood	TL212025	52.601	78/011

	Wildlife Sites Report								
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION				
68/003	Smallford Pit	TL195068	61.35	1997	A largely infilled former gravel pit supporting well developed secondary grassland along with some former old acid/neutral grassland remnants. Additional habitats include numerous hollows supporting seasonal and more permanent areas of standing water, a pond and a fishing lake. A small brook also runs through the site. The majority of the grassland has developed naturally on the site and is rough and relatively species-poor. Perennial Rye-grass (Lolium perenne) occurs in the sward in places where attempts were made to restore the site. However, overall, a reasonably diverse grassland flora has been recorded, though many of these are ruderal species. Species recorded include Bird's-foot Trefoil (Lotus corniculatus), Lesser Stitchwort (Stellaria graminea), Meadow Buttercup (Ranunculus acris), Common Sorrel (Rumex acetosa), Germander Speedwell (Veronica chamaedrys) and Oxeye Daisy (Leucanthemum vulgare). Pyramidal Orchid (Anacamptis pyramidalis) and Bee Orchid (Ophrys apifera) have been recorded in the north of the site. Remnants of old undisturbed acid/neutral grassland survive to the perimeter of the site and support species such as Red Fescue (Festuca rubra), Common Bent (Agrostis capillaris), Common Sorrel, Agrimony (Agrimonia eupatoria), Meadow Buttercup, Common Knapweed (Centaurea nigra), Sheep's Sorrel (Rumex acetosella) and Lady's Bedstraw (Galium verum). Within the ephemeral/open water habitats a wide range of aquatic/wetland flora has been recorded, including several uncommon species, such as Fan-leaved Water Crowfoot (Ranunculus circinatus), Spiked Water-milfoil (Myriophyllum spicatum), Horned Pondweed (Zannichellia palustris), Lesser Bulrush (Typha angustifolia), Lesser Spearwort (Ranunculus flammula), Common Spike-rush (Eleocharis palustris) and Water-plantain (Alisma plantago-aquatica). There is a good variety of self sown and planted trees and shrubs, particularly around the periphery of the site. The site is important for invertebrates, such as butterflies and dragonflies, birds, reptiles and also				
68/021	Knight's Wood	TL185055	2.11	1997	Ancient semi-natural woodland with Pedunculate Oak (Quercus robur) dominant in the canopy plus occasional Ash (Fraxinus excelsior) and Wild Cherry (Prunus avium). The canopy also contains small amounts of other species including Holly				

	Wildlife Sites Report							
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION			
					(Ilex aquifolium), Field Maple (Acer campestre), Hornbeam (Carpinus betulus), Silver Birch (Betula pendula) and Crab Apple (Malus sylvestris). Old Hazel (Corylus avellana) coppice is dominant in the shrub layer. The ground flora is dominated by Bluebell (Hyacinthoides non-scripta) and Bramble (Rubus fruticosus agg.). Other species recorded include Broad Buckler-fern (Dryopteris dilatata), Wood Millet (Milium effusum) and Wood Meadow-grass (Poa nemoralis). Remnant ditches and hedge banks are present around the wood margin and there is a small pond in the north-east corner. Wildlife Site criteria: Ancient Woodland Inventory site; woodland indicators.			
68/022	Tyttenhanger Gravel Pits	TL190050	61.93	1997	Former agricultural and park land adjacent to the River Colne supporting an area of sand and gravel pits, many of which are flooded. It is a complex site which has been partly restored. The range of habitats include large lakes, exposed sand banks, semi-natural neutral grassland, areas of unimproved acid grassland which may be remnants of the original heathland, scrub and broadleaf woodland. The sand pits form the largest and most important site for sandy ground bees and wasps in Hertfordshire with several nationally notable/rare species recorded. The site is also important for other invertebrates including species of spider unknown elsewhere in Hertfordshire. The flooded pits are regarded as a prime regional site for breeding waders and the site generally is very important for birds. The site also supports protected mammal and reptile species. Wildlife Site criteria: Species.			
68/050	St. Mark's Churchyard & Graveyard	TL197061	0.41	1997	Churchyard and graveyard supporting old unimproved neutral to somewhat acid grassland with species recorded including Red Fescue (Festuca rubra), Meadow Foxtail (Alopecurus pratensis), Field Wood-rush (Luzula campestris), Common Knapweed (Centaurea nigra), Pignut (Conopodium majus), Sheep's Sorrel (Rumex acetosella), Common Sorrel (Rumex acetosa), Oxeye Daisy (Leucanthemum vulgare), Lady's Smock (Cardamine pratensis), Meadow Buttercup (Ranunculus acris) and Betony (Betonica officinalis). Hedgerows and trees surrounds the two areas, with Bluebell (Hyacinthoides non-scripta) recorded beneath the trees along the eastern boundary of the churchyard. Wildlife Site criteria: Grassland indicators.			
68/070	River Colne, SW of Colney Heath	TL194055	0.98	2000	Section of the River Colne important for invertebrates, supporting a range of dragonflies. Wildlife Site criteria: Species.			

	Wildlife Sites Report							
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION			
68/097	St. Mark's Close, London Colney	TL19-06-	0	2003	Building and environs important for protected species. Wildlife Site criteria: Species.			
69/001	Colney Heath Common	TL203058	23.32	1997	Colney Heath common and a stretch of the River Colne. The common is of special interest supporting a remnant of Hertfordshire's once extensive heathland. Its mosaic of neutral, acid and marshy grasslands, heathland, scrub and riverine habitats collectively support a diverse flora, including several species scarce or locally distributed in the county. Plant species recorded, which are of particular note, include Heath Spotted-orchid (Dactylorhiza maculate), Southern Marsh Orchid, (Dactylorhiza praetermissa), Bird's-foot (Cornithopus perpusillus), Blinks (Montia Fontana), Petty Whin (Genista anglica), Dwarf Gorse (Ulex minor) and, in the River Colne, Opposite-leaved Pondweed (Groenlandia densa). The site is important for invertebrates with a good diversity of butterflies and dragonflies recorded. The open heath is also important for vertebrates, providing an important feeding ground for a variety of birds. Common Lizard (Lacerta vivipara), Grass Snake (Natrix natrix) and Water Vole (Arvicola amphibius) have been recorded from the site. Wildlife Site criteria: Grassland criteria; Species.			
69/002	Colney Heath Farm Meadows	TL207055	4.95	1997	A mosaic of old unimproved neutral to acid grasslands along the River Colne, which forms part of a larger complex of heathland/wetland sites in the area. Plant species recorded include Sweet Vernal-grass (Anthoxanthum odoratum), Common Knapweed (Centaurea nigra), Pignut (Conopodium majus), Lady's Bedstraw (Galium verum), Meadow Vetchling (Lathyrus pratensis), Oxeye Daisy (Leucanthemum vulgare), Field Wood-rush (Luzula campestris), Meadow Buttercup (Ranunculus acris), Common Sorrel (Rumex acetosa), Sheep's Sorrel (Rumex acetosella), Bird's-foot Trefoil (Lotus corniculatus), Salad Burnet (Sanguisorba minor) and Common Lady's-mantle (Alchemilla filicaulis spp. vestita) - a scarce species in Hertfordshire. The lower lying areas are dominated by tall grasses typical of damp ground and the habitat supports a range of wetland species. A pond is also present in one of the fields surrounded by Alder (Alnus glutinosa) and willow (Salix sp.). Other habitats include a scrub-lined ditch, an Alder plantation along the River Colne and a hedge dominated by Hawthorn (Crataegus monogyna) and elm (Ulmus sp.). Wildlife Site criteria: Grassland			

	Wildlife Sites Report							
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION			
					indicators.			
69/003	Sleapshyde Gravel Pit	TL203064	24.16	1997	Former gravel pit restored to an amenity/wildlife park. The area supports a mosaic of habitats with open water, wet neutral grassland, tall herbs, scattered scrub and plantation. Species recorded in the grassland include Common Knapweed (Centaurea nigra), Red Fescue (Festuca rubra), Meadow Buttercup (Ranunculus acris), Bulbous Buttercup (Ranunculus bulbosus), Common Sorrel (Rumex acetosa), Common Spotted-orchid (Dactylorhiza fuchsii) and Oxeye Daisy (Leucanthemum vulgare). A flooded pit and connecting stream support bank side trees and scrub, including Hawthorn (Crataegus monogyna), Goat Willow (Salix caprea) and White Willow (Salix alba). Species such as Remote Sedge (Carex remota), Lesser Pond-sedge (Carex acutiformis), Meadowsweet (Filipendula ulmaria), Gypsywort (Lycopus europaeus), Water Mint (Mentha aquatica) and Yellow Water-lily (Nuphar lutea) have been recorded along the margins and in the open water. The site has ornithological interest and a good diversity of dragonflies has been noted. Wildlife Site criteria: Grassland indicators; fen and swamp indicators.			
69/009	Bush Wood	TL224054	14.02	2000	Ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) woodland composed of Hornbeam coppice throughout with some Pedunculate Oak, Ash (Fraxinus excelsior) and Hornbeam standards. Areas with Hazel (Corylus avellana), Field Maple (Acer campestre) and Ash coppice are also present. The south-west corner is mainly Pedunculate Oak and Silver Birch (Betula pendula) scrub. The ground flora is mostly Bramble (Rubus fruticosus agg.) mixed with grasses. Indicator species recorded include Bluebell (Hyacinthoides non-scripta), Dog's Mercury (Mercurialis perennis), Remote Sedge (Carex remota), Wood Sorrel (Oxalis acetosella), Wood Millet (Milium effusum) and Broad Buckler-fern (Dryopteris dilatata). Remnant boundary hedge banks and ditches, ponds and wide rides add to the habitat diversity. Wildlife Site criteria: Ancient Woodland Inventory site; woodland indicators.			
69/019	Tollgate Wood	TL216055	4.47	2000	Old, probably secondary, broadleaved woodland supporting a high canopy of principally Pedunculate Oak (Quercus robur) and Ash (Fraxinus excelsior) with the occasional coppiced Hazel (Corylus avellana), Hornbeam (Carpinus betulus) and			

	Wildlife Sites Report							
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION			
					Field Maple (Acer campestre) plus Birch (Betula spp.), Hawthorn (Crataegus monogyna) and Blackthorn (Prunus spinosa). Grasses, mainly Yorkshire Fog (Holcus lanatus) and Creeping Soft-grass (Holcus mollis), are dominant below but several woodland indicators have been recorded such as Bluebell (Hyacinthoides non-scripta), Broad Buckler-fern (Dryopteris dilatata), Remote Sedge (Carex remota), Dog's Mercury (Mercurialis perennis) and Three-nerved Sandwort (Moehringia trinervia). A pond remnant is present in the east and rough clearings below power lines. Wildlife Site criteria: Old secondary woodland with a semi-natural canopy and varied structure; wood present on Bryant (1822); >2 ha; woodland indicators.			
69/043	Frederick's Wood	TL207051	10.22	1997	Mature plantation on old heathland/acid grassland with Scots Pine (Pinus sylvestris) in the north and Ash (Fraxinus excelsior) with Sweet Chestnut (Castanea sativa) in the south plus locally dominant Silver Birch (Betula pendula) and Sycamore (Acer pseudoplatanus). The conifer plantation is generally very open below with scattered acid indicators on the ground. The broadleaved part is very scrubby below with Elder (Sambucus nigra) and Hawthorn (Crataegus monogyna) and Sycamore saplings. The ground flora supports woodland indicators such as Bluebell (Hyacinthoides non-scripta), Broad Buckler-fern (Dryopteris dilatata), Dog's Mercury (Mercurialis perennis), Dog's Mercury and Wood Sage (Teucrium scorodonia). A bank and ditch feature along the west boundary supports Pedunculate Oak (Quercus robur) standards with Hornbeam (Carpinus betulus), Hazel (Corylus avellana) and Hawthorn. Indicators of acid conditions include Bracken (Pteridium aquilinum), Heath Bedstraw (Galium saxatile) and Sheep's Sorrel (Rumex acetosella). Rides and clearings in the wood add further habitat diversity. Wildlife Site criteria: Mosaic site of secondary woodland with woodland indicators and remnant heathland/acid grassland.			
77/005	Coppice Wood	TL184048	7.98	1997	Ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) coppice-with-standards woodland with frequent Hornbeam and Hazel (Corylus avellana) coppice plus Wild Cherry (Prunus avium) and some Ash (Fraxinus excelsior). The shrub layer is very scattered. Bluebell (Hyacinthoides non-scripta) is abundant in the ground layer which is moderately species diverse.			

	Wildlife Sites Report							
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION			
					Other woodland indicators recorded include Wood Anemone (Anemone nemorosa), Broad Buckler-fern (Dryopteris dilatata), Wood Melick (Melica uniflora), Wood Sorrel (Oxalis acetosella) and Wood Meadow-grass (Poa nemoralis). Banks with remnant of old laid hedges, including Hornbeam, are present to the boundary and several dells and small ponds add to the habitat diversity. Wildlife Site criteria: Ancient Woodland Inventory site; woodland indicators.			
77/043	The New Plantation	TL199047	4.95	1997	Old woodland with a canopy typically of tall Pedunculate Oak (Quercus robur) standards with Ash (Fraxinus excelsior) and the occasional Hornbeam (Carpinus betulus) (mainly standards), most frequent around the perimeter, and planted Sweet Chestnut (Castanea sativa). A small section in the south has been replanted with Wild Cherry (Prunus avium) and a few Ash. The ground flora supports frequent Bluebell (Hyacinthoides non-scripta) and Wood Meadow-grass (Poa nemoralis) plus Pill Sedge (Carex pilulifera), a plant of heathy soils, has also been recorded. The wood is surrounded by hedges with some old laid Hornbeam. Wildlife Site criteria: Old secondary woodland with a semi-natural canopy and varied structure; part (south) shown on Bryant (1822); >2 ha.			
77/053	River Colne by Bowmansgreen Farm	TL186040	0.99	1997	Section of the River Colne supporting well vegetated banks and good communities of emergent aquatic vegetation. Water Voles (Arvicola amphibius) have been recorded on this stretch of river. Wildlife Site criteria: Species.			
78/008	Walsingham Wood	TL215039	36.71	1997	Part ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) woodland with areas cleared and replanted with conifer and broadleaf species. Hornbeam is present throughout the semi-natural canopy as coppice or as standards. Other trees present include Pedunculate Oak (Quercus robur), Ash (Fraxinus excelsior), Silver Birch (Betula pendula), Beech (Fagus sylvatica) and Wild Cherry (Prunus avium). Some Hazel (Corylus avellana) coppice is also present. The ground flora supports woodland indicators including abundant Bluebell (Hyacinthoides non-scripta). Other species recorded include Wood Sorrel (Oxalis acetosella), Broad Buckler-fern (Dryopteris dilatata) and Yellow Pimpernel (Lysimachia nemorum). The northern part of the site is part felled secondary woodland with much Sycamore (Acer pseudoplatanus) or mixed plantation and Nettle-leaved Bellflower (Campanula trachelium) and Common Twayblade (Neottia			

	Wildlife Sites Report								
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION				
					ovata) have been recorded here. Wildlife Site criteria: Part Ancient Woodland Inventory site with restorable elements of its previous semi-natural character including some semi-natural canopy and ancient features; woodland indicators.				
78/009	Cobs Ash	TL213032	18.69	1997	Ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) coppice woodland with some mixed plantation in the south, of Red Oak (Quercus rubra) and Norway Spruce (Picea abies). There is also some Hazel (Corylus avellana) coppice. The ground is recorded as wet with abundant mosses, Bramble (Rubus fruticosus agg.) and Bracken (Pteridium aquilinum) and several woodland indicators including Bluebell (Hyacinthoides non-scripta), Broad Bucklerfern (Dryopteris dilatata), Wood Sage (Teucrium scorodonia) (Circaea lutetiana) and Enchanter's Nightshade. Wildlife Site criteria: Ancient Woodland Inventory site.				
78/010	Cangsley Grove	TL218034	16.44	1997	Ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) woodland with Hornbeam coppice dominant within the main part of the wood. Pedunculate Oak standards, included some planting, are frequent. Silver Birch (Betula pendula), Ash (Fraxinus excelsior) and coppiced Hazel (Corylus avellana) are also present. A largely clear felled area to the north-west supports regenerating/replanted trees. The ground flora supports mainly Bramble (Rubus fruticosus agg.), Bracken (Pteridium aquilinum) and Bluebell (Hyacinthoides non-scripta). Other species recorded include Dog's Mercury (Mercurialis perennis), Enchanter's Nightshade (Circaea lutetiana) and Wood Sage (Teucrium scorodonia). Wildlife Site criteria: Ancient Woodland Inventory site.				
78/017	Round Wood	TL211031	2.53	1997	Ancient semi-natural Pedunculate Oak (Quercus robur)/Hornbeam (Carpinus betulus) woodland of mainly Hornbeam coppice with Oak standards. A little Hazel (Corylus avellana) coppice is also present. Midland Hawthorn (Crataegus laevigata) occurs along the wood margin. The ground flora is dominated by Bluebell (Hyacinthoides non-scripta). A bank and ditch is present to the south-west and east facing boundaries and supports Hawthorn (Crataegus monogyna) and Blackthorn (Prunus spinosa) hedges with some mature Pedunculate Oak. Wildlife Site criteria: Ancient Woodland Inventory site.				
78/031	Scrubby Grassland	TL207048	2.04	1997	Area of unimproved acid grassland with some scattered to dense patches of				

	Wildlife Sites Report								
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION				
	by Frederick's Wood				Hawthorn (Crataegus monogyna). The acid grassland supports a good mix of grasses and herbs including Sweet Vernal-grass (Anthoxanthum odoratum), Common Bent (Agrostis capillaris), Red Fescue (Festuca rubra), Sheep's Sorrel (Rumex acetosella), Lady's Bedstraw (Galium verum), Lesser Stitchwort (Stellaria graminea) and Bird's-foot Trefoil (Lotus corniculatus). Wildlife Site criteria: Grassland indicators.				
78/033	Shenley Lodge Farm Wood	TL201024	4.24	1997	Ancient semi-natural woodland of Pedunculate Oak (Quercus robur)/Ash (Fraxinus excelsior) with Hazel (Corylus avellana) coppice. There is abundant Wych Elm (Ulmus glabra) in the understorey and significant Sycamore (Acer pseudoplatanus) invasion, particularly in the northern extension of the wood. The ground flora supports woodland indicators, predominantly Bluebell (Hyacinthoides non-scripta) and Dog's Mercury (Mercurialis perennis). Other species recorded include Wood Anemone (Anemone nemorosa), Giant Fescue (Festuca gigantea) and Yellow Archangel (Lamiastrum galeobdolon). The north part of the wood is a linear hollow. Wildlife Site criteria: Ancient woodland with a semi-natural canopy and field evidence suggesting an ancient origin; shown on Bryant (1822); woodland indicators.				
78/043	Potwells	TL216030	20.61	1997	Secondary wet acidic grassland (set-aside) and scrub on former acid grassland. There are also patches of plant species associated with calcareous soils. The site is crossed by Bramble (Rubus fruticosus agg.) lined ditches and there is a swallow hole in the east. Wild Service-tree (Sorbus torminalis) and Hares (Lepus europaeus) has been recorded from the site along with a good diversity of butterflies and birds. Wildlife Site criteria: Grassland indicators, Species.				
78/079	North Mymms Park	TL217047	24.67	1997	Parkland of semi-improved neutral grassland with frequent planted trees, either as singles or in clumps. The sward varies somewhat in species mix and diversity and is of most interest in the north-central area. Species recorded include Sweet Vernal-grass (Anthoxanthum odoratum), Lady's Bedstraw (Galium verum), Pignut (Conopodium majus), Field Wood-rush (Luzula campestris), Bulbous Buttercup (Ranunculus bulbosus) and Bird's-foot Trefoil (Lotus corniculatus). There are small ponds along the north-eastern edge. Wildlife Site criteria: Grassland indicators.				
78/082	North Mymms	TL221044	0.62	2000	Churchyard with old neutral grassland supporting a good diversity of grasses and				

	Wildlife Sites Report									
SITE REFERENCE	NAME	GRID REFERENCE	AREA(ha)	RATIFIED	DESCRIPTION					
	Churchyard				herbs with some scattered ornamental trees. Species recorded in the sward include Sweet Vernal-grass (Anthoxanthum odoratum), Meadow Foxtail (Alopecurus pratensis), Red Fescue (Festuca rubra), Common Knapweed (Centaurea nigra), Bird's-foot Trefoil (Lotus corniculatus), Field Wood-rush (Luzula campestris), Common Sorrel (Rumex acetosa), Burnet-saxifrage (Pimpinella saxifraga) and Lady's Bedstraw (Galium verum). Other species of note recorded on the site include Spring Beauty (Claytonia perfoliata) and Wall Rue (Asplenium ruta-muraria). Wildlife Site criteria: Grassland indicators.					
78/084	North Mymms Park Area	TL21-04-	0	1997	Buildings and environs important for protected species. Wildlife Site criteria: Species.					
78/086	North Mymms Icehouse	TL21-03-	0	1997	Icehouse and environs important for protected species. Wildlife Site criteria: Species.					
78/104	Coursers Farm Area	TL20-04-	0	2002	Building and environs important for protected species. Wildlife Site criteria: Species.					
78/108	Coursers Road Gravel Pit	TL20-03-	0	2006	Hedgerow and ditch on Coursers Farm important for breeding Tree Sparrow (Passer montanus), a Local Biodiversity Action Plan species. Wildlife Site criteria: Species.					

Ancient Woodland Inventory sites

NAME	WOOD TYPE	AREA (ha)
Bush Wood, North Mymms	Ancient Semi-natural Woodland	13.80
Cangsley Grove	Ancient Semi-natural Woodland	14.63
Cangsley Grove (replanted)	Ancient Replanted Woodland	1.54
Cobs Ash	Ancient Semi-natural Woodland	17.41
Cobs Ash (replanted)	Ancient Replanted Woodland	3.59
Coppice Wood	Ancient Semi-natural Woodland	7.82
Hawkshead Wood (replanted)	Ancient Replanted Woodland	98.60
Knight's Wood	Ancient Semi-natural Woodland	1.88
Walsingham Wood	Ancient Semi-natural Woodland	12.36
Walsingham Wood (replanted)	Ancient Replanted Woodland	8.49

Species records with international designations

SPECIES	YEAR GRID	1 Km	SITE	PROTECTED	BAP	LBAP
Brown Long-Eared Bat	1997	TL1505	Sopwell Mill Hotel Area	1	1	0
Brown Long-Eared Bat	1997	TL1505	Sopwell Mill Hotel Area	1	1	0
Brown Long-Eared Bat	1998	TL1607	Verulam School	1	1	0
Brown Long-Eared Bat	1998	TL1607	Verulam School	1	1	0
Brown Long-Eared Bat	2002	TL1808	Coopers Green Lane	1	1	0
Brown Long-Eared Bat	2002	TL1808	St Albans, Cooper Lane	1	1	0
Brown Long-Eared Bat	2003	TL1801	Shenleybury	1	1	0
Brown Long-Eared Bat	2003	TL1906	St Marks Close, Colney Heath	1	1	0
Brown Long-Eared Bat	1988	TL2104	North Mymms Park	1	1	0
Brown Long-Eared Bat	1997	TL2007	Smallford, Pope Field Farm Area	1	1	0
Brown Long-Eared Bat	1997	TL2007	Smallford, Pope Field Farm Area	1	1	0
Brown Long-Eared Bat	1992	TL2002	Shenley Lodge Area	1	1	0
Brown Long-Eared Bat	1995	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1996	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1997	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1998	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1993	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1993	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1994	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1992	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1991	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	2001	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	2002	TL2001	Shenley Quarry and Ponds	1	1	0
Brown Long-Eared Bat	1999	TL2006	Sleapshyde Farm Area	1	1	0
Brown Long-Eared Bat	2002	TL2004	Coursers Farm Area	1	1	0
Brown Long-Eared Bat	2002	TL2004	Coursers Farm Area	1	1	0
Brown Long-Eared Bat	1995	TL2000	Ravenscroft Farm Area	1	1	0
Brown Long-Eared Bat	1996	TL2104	North Mymms Park Area	1	1	0
Brown Long-Eared Bat	1996	TL2104	North Mymms Park Area	1	1	0
Brown Long-Eared Bat	1996	TL2104	North Mymms Park Area	1	1	0
Brown Long-Eared Bat	1996	TL2104	North Mymms Park Area	1	1	0
Brown Long-Eared Bat	1989	TL2207	Chantry Lane Wood and Dene Hole	1	1	0
Brown Long-Eared Bat	1989	TL2207	Chantry Lane Wood and Dene Hole	1	1	0

Brown Long-Eared Bat	1996	TL2207 Hatfield, Foxglove Close	1	1	0
Brown Long-Eared Bat	2002	TL2208 Howe Dell School	1	1	0
Brown Long-Eared Bat	2002	TL2208 Howe Dell School	1	1	0
Brown Long-Eared Bat	2003	TL2208 Howe Dell School	1	1	0
Brown Long-Eared Bat	1994	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1994	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1994	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1994	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1994	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1993	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1993	TL2308 Hatfield House Area	1	1	0
Brown Long-Eared Bat	1992	TL2403 Bluebridge Avenue, Brookmans Park	1	1	0
Brown Long-Eared Bat	1996	TL2403 Gobions Wood	1	1	0
Brown Long-Eared Bat	2000	TL2205 Dellsome Lane	1	1	0
Brown Long-Eared Bat	2000	TL2205 Dellsome Lane	1	1	0
Chiroptera (Bat)	2001	TL1606 St Albans, Guildford Road	1	0	0
Chiroptera (Bat)	1998	TL1705 Tyttenhanger, Highfield Lane	1	0	0
Chiroptera (Bat)	2000	TL1907 Oaklands College, East Drive	1	0	0
Chiroptera (Bat)	2001	TL1900 Mimms Lane, Shenley	1	0	0
Chiroptera (Bat)	1992	TL1906 Colney Heath Church Area	1	0	0
Chiroptera (Bat)	1994	TL2000 TL20A	1	0	0
Chiroptera (Bat)	2000	TL2002 Shenley Lodge Area	1	0	0
Chiroptera (Bat)	2000	TL2002 Shenley Manor Lodge School	1	0	0
Chiroptera (Bat)	1998	TL2001 Shenley Quarry and Ponds	1	0	0
Chiroptera (Bat)	1995	TL2001 Shenley Quarry and Ponds	1	0	0
Chiroptera (Bat)	1995	TL2001 Shenley Quarry and Ponds	1	0	0
Chiroptera (Bat)	1996	TL2001 Shenley Quarry and Ponds	1	0	0
Chiroptera (Bat)	2002	TL2001 Shenley Quarry and Ponds	1	0	0
Chiroptera (Bat)	1989	TL2103 North Mymms Area	1	0	0
Chiroptera (Bat)	1996	TL2100 Clair Hall Manor Area	1	0	0
Chiroptera (Bat)	2000	TL2207 Hatfield, Bulrush Close	1	0	0
Chiroptera (Bat)	1997	TL2207 Hatfield, Bullrush Close	1	0	0
Chiroptera (Bat)	2002	TL2208 Hatfield, Link Walk	1	0	0
Chiroptera (Bat)	2001	TL2205 Welham Green, Welham Manor	1	0	0
Chiroptera (Bat)	2002	TL2305 Welham Green, Huggins Lane	1	0	0
Daubenton Bat	1998	TL2001 Shenley Quarry and Ponds	1	0	0

Daubenton Bat	1991	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1993	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1994	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1990	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1992	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1990	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1995	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1996	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1996	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1997	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1993	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	1993	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2004	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2004	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2002	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2001	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2003	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2002	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2003	TL2001 Shenley Quarry and Ponds	1	0	0
Daubenton Bat	2002	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2004	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2001	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2002	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2004	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2001	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2003	TL2403 Gobions Wood	1	0	0
Daubenton Bat	1998	TL2403 Gobions Wood	1	0	0
Daubenton Bat	1995	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2000	TL2403 Gobions Wood	1	0	0
Daubenton Bat	1996	TL2403 Gobions Wood	1	0	0
Daubenton Bat	2003	TL2403 Gobions Wood	1	0	0
Daubenton Bat	1992	TL2403 Gobions Wood	1	0	0
Natterer's Bat	2001	TL1907 Smallford Station Road	1	0	1
Natterer's Bat	1994	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1991	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1992	TL2001 Shenley Quarry and Ponds	1	0	1

Natterer's Bat	1996	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1993	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1995	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1996	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1993	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1990	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1998	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1991	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1992	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1997	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2004	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2002	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2003	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2003	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2001	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2002	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	2004	TL2001 Shenley Quarry and Ponds	1	0	1
Natterer's Bat	1999	TL2006 Sleapshyde Farm Area	1	0	1
Natterer's Bat	2004	TL2403 Gobions Wood	1	0	1
Natterer's Bat	2001	TL2403 Gobions Wood	1	0	1
Natterer's Bat	2001	TL2403 Gobions Wood	1	0	1
Natterer's Bat	1996	TL2403 Gobions Wood	1	0	1
Natterer's Bat	2003	TL2403 Gobions Wood	1	0	1
Natterer's Bat	2003	TL2403 Gobions Wood	1	0	1
Noctule Bat	2002	TL2204 Home Farm Area, North Mymms	1	1	0
Pipistrelle 45 Khz Bat	2002	TL2008 Hatfield, Bramble Road	1	1	0
Pipistrelle 45 Khz Bat	2002	TL2204 Home Farm, North Mymms	1	1	0
Pipistrelle 45 Khz Bat	2002	TL2208 Howe Dell School	1	1	0
Pipistrelle 55 Khz Bat	1998	TL2303 Warrengate Road	1	0	0
Pipistrelle 55 Khz Bat	1998	TL2303 Warrengate Road	1	0	0
Pipistrelle Bat	1996	TL1506 St Albans, Cunningham Avenue	1	0	0
Pipistrelle Bat	1996	TL1506 St Albans, Cunningham Avenue	1	0	0
Pipistrelle Bat	1997	TL1505 Sopwell Mill Hotel Areas	1	0	0
Pipistrelle Bat	1997	TL1505 Sopwell Mill Hotel Areas	1	0	0
Pipistrelle Bat	1996	TL1506 St Albans, Cunningham Avenue	1	0	0
Pipistrelle Bat	1996	TL1506 St Albans, Cunningham Avenue	1	0	0

Bat	1988	TL1506 S	St Albans, Cunningham Avenue	1	0	0
Bat	1998	TL1706 H	Highfield Park, Hill End Hospital	1	0	0
Bat	2002	TL1706 H	Hixberry Lane, Butterwick Centre	1	0	0
Bat	2002	TL1706 H	Hixberry Lane, Butterwick Centre	1	0	0
Bat	1988	TL1707 (Gresford Close, St Albans	1	0	0
Bat	1989	TL1707 \$	St Albans	1	0	0
Bat	1986	TL1806 (Colney Heath Lane, St Albans	1	0	0
Bat	2003	TL1906 S	St Marks Close, Colney Heath	1	0	0
Bat	1999	TL2000 (Catherine Bourne Farm Area	1	0	0
Bat	1997	TL2001 S	Shenley Quarry and Ponds	1	0	0
Bat	1999	TL2006 S	Sleapshyde Farm Area	1	0	0
Bat	1997	TL2005 (Colney Heath, Hall Gardens	1	0	0
Bat	1990	TL2005 H	Hall Gardens, Colney Heath	1	0	0
Bat	1990	TL2005 H	Hall Gardens, Colney Heath	1	0	0
Bat	1989	TL2005 (Colney Heath, Hall Gardens	1	0	0
Bat	1998	TL2102 E	Blackhorse Lane	1	0	0
Bat	1998	TL2102 E	Blackhorse Lane	1	0	0
Bat	1993	TL2106 F	Robins Way, Hatfield	1	0	0
Bat	1993	TL2106 F	Robins Way, Hatfield	1	0	0
Bat	1996	TL2208 H	Hatfield, Brior Wood	1	0	0
Bat	1994	TL2207 H	Hatfield, 10 Cheviots	1	0	0
Bat	1994	TL2207 (Chantry Lane Wood and Dene Hole	1	0	0
Bat	1989	TL2207 (Chantry Lane Wood and Dene Hole	1	0	0
Bat	1989	TL2207 (Chantry Lane Wood and Dene Hole	1	0	0
Bat	2001	TL2207 H	Hatfield, Thrush Avenue	1	0	0
Bat	2002	TL2208 H	Howe Dell School	1	0	0
Bat	1995	TL2204 N	North Mimms	1	0	0
Bat	1995	TL2205 N	North Mimms, Dixons Hill Close	1	0	0
Bat	1998	TL2303 M	Mimmshall Brook, Water End	1	0	0
Bat	1998	TL2303 M	Mimmshall Brook, Water End	1	0	0
Bat	2002	TL2306 N	North Mymms Marshmoor Works	1	0	0
Bat	1994	TL2308 H	Hatfield House Area	1	0	0
Bat	1994	TL2308 H	Hatfield House Area	1	0	0
Bat	1994	TL2308 H	Hatfield House Area	1	0	0
Bat	1993	TL2308 H	Hatfield House Area	1	0	0
Bat	1991	TL2303 H	Hawkshead Lane, North Mymms	1	0	0
	Bat Bat Bat Bat Bat Bat Bat Bat Bat Bat	Bat1988Bat2002Bat2002Bat1988Bat1989Bat1986Bat2003Bat1999Bat1997Bat1997Bat1997Bat1997Bat1997Bat1997Bat1997Bat1997Bat1997Bat1998Bat1989Bat1998Bat1998Bat1993Bat1994Bat1994Bat1989Bat2001Bat2002Bat1995Bat1995Bat1998Bat1998Bat1998Bat1994Bat1995Bat1994 <td>Bat 1988 TL1506 Bat 2002 TL1706 Bat 2002 TL1706 Bat 2002 TL1706 Bat 1988 TL1707 Bat 1989 TL1707 Bat 1989 TL1707 Bat 1986 TL806 Bat 1986 TL1806 Bat 1997 TL2001 Bat 1997 TL2001 Bat 1997 TL2005 Bat 1997 TL2005 Bat 1990 TL2005 Bat 1993 TL2005 Bat 1998 TL2005 Bat 1993 TL2005 Bat 1993 TL207 Bat 1994 TL2207 Bat 1994 TL2207 Bat <t< td=""><td>Bat1988TL1506St Albans, Cunningham AvenueBat1998TL1706Highfield Park, Hill End HospitalBat2002TL1706Hixberry Lane, Butterwick CentreBat1988TL1707Gresford Close, St AlbansBat1988TL1707St AlbansBat1986TL1806Colney Heath Lane, St AlbansBat1989TL2000Catherine Bourne Farm AreaBat1999TL2000Catherine Bourne Farm AreaBat1999TL2000St Marks Close, Colney HeathBat1999TL2000Catherine Bourne Farm AreaBat1999TL2005Colney Heath, Hall GardensBat1999TL2005Colney Heath, Hall GardensBat1990TL2005Hall Gardens, Colney HeathBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1993TL2106Robins Way, HatfieldBat1993TL2106Robins Way, HatfieldBat1994TL2207Chantry Lane Wood and Dene HoleBat1996TL2207Chantry Lane</td><td>Bat 1988 TL1506 St Albans, Cunningham Avenue 1 Bat 1998 TL1706 Highfield Park, Hill End Hospital 1 Bat 2002 TL1706 Hixberry Lane, Butterwick Centre 1 Bat 1988 TL1707 Gresford Close, St Albans 1 Bat 1988 TL1707 St Albans 1 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 Bat 1998 TL2000 St Marks Close, Colney Heath 1 Bat 1999 TL2000 Catherine Bourne Farm Area 1 Bat 1999 TL2000 Steapshyde Farm Area 1 Bat 1997 TL2005 Colney Heath, Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2102 Backhorse</td><td>Bat 1988 TL1506 St Albans, Cunningham Avenue 1 0 Bat 1998 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 2002 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 1988 TL1707 Gresford Close, St Albans 1 0 Bat 1988 TL1707 St Albans 1 0 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 0 Bat 1986 TL2000 Catherine Bourne Farm Area 1 0 Bat 1999 TL2000 Shenley Quarry and Ponds 1 0 Bat 1999 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1997 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath,</td></t<></td>	Bat 1988 TL1506 Bat 2002 TL1706 Bat 2002 TL1706 Bat 2002 TL1706 Bat 1988 TL1707 Bat 1989 TL1707 Bat 1989 TL1707 Bat 1986 TL806 Bat 1986 TL1806 Bat 1997 TL2001 Bat 1997 TL2001 Bat 1997 TL2005 Bat 1997 TL2005 Bat 1990 TL2005 Bat 1993 TL2005 Bat 1998 TL2005 Bat 1993 TL2005 Bat 1993 TL207 Bat 1994 TL2207 Bat 1994 TL2207 Bat <t< td=""><td>Bat1988TL1506St Albans, Cunningham AvenueBat1998TL1706Highfield Park, Hill End HospitalBat2002TL1706Hixberry Lane, Butterwick CentreBat1988TL1707Gresford Close, St AlbansBat1988TL1707St AlbansBat1986TL1806Colney Heath Lane, St AlbansBat1989TL2000Catherine Bourne Farm AreaBat1999TL2000Catherine Bourne Farm AreaBat1999TL2000St Marks Close, Colney HeathBat1999TL2000Catherine Bourne Farm AreaBat1999TL2005Colney Heath, Hall GardensBat1999TL2005Colney Heath, Hall GardensBat1990TL2005Hall Gardens, Colney HeathBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1993TL2106Robins Way, HatfieldBat1993TL2106Robins Way, HatfieldBat1994TL2207Chantry Lane Wood and Dene HoleBat1996TL2207Chantry Lane</td><td>Bat 1988 TL1506 St Albans, Cunningham Avenue 1 Bat 1998 TL1706 Highfield Park, Hill End Hospital 1 Bat 2002 TL1706 Hixberry Lane, Butterwick Centre 1 Bat 1988 TL1707 Gresford Close, St Albans 1 Bat 1988 TL1707 St Albans 1 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 Bat 1998 TL2000 St Marks Close, Colney Heath 1 Bat 1999 TL2000 Catherine Bourne Farm Area 1 Bat 1999 TL2000 Steapshyde Farm Area 1 Bat 1997 TL2005 Colney Heath, Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2102 Backhorse</td><td>Bat 1988 TL1506 St Albans, Cunningham Avenue 1 0 Bat 1998 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 2002 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 1988 TL1707 Gresford Close, St Albans 1 0 Bat 1988 TL1707 St Albans 1 0 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 0 Bat 1986 TL2000 Catherine Bourne Farm Area 1 0 Bat 1999 TL2000 Shenley Quarry and Ponds 1 0 Bat 1999 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1997 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath,</td></t<>	Bat1988TL1506St Albans, Cunningham AvenueBat1998TL1706Highfield Park, Hill End HospitalBat2002TL1706Hixberry Lane, Butterwick CentreBat1988TL1707Gresford Close, St AlbansBat1988TL1707St AlbansBat1986TL1806Colney Heath Lane, St AlbansBat1989TL2000Catherine Bourne Farm AreaBat1999TL2000Catherine Bourne Farm AreaBat1999TL2000St Marks Close, Colney HeathBat1999TL2000Catherine Bourne Farm AreaBat1999TL2005Colney Heath, Hall GardensBat1999TL2005Colney Heath, Hall GardensBat1990TL2005Hall Gardens, Colney HeathBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1990TL2005Colney Heath, Hall GardensBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1998TL2102Blackhorse LaneBat1993TL2106Robins Way, HatfieldBat1993TL2106Robins Way, HatfieldBat1994TL2207Chantry Lane Wood and Dene HoleBat1996TL2207Chantry Lane	Bat 1988 TL1506 St Albans, Cunningham Avenue 1 Bat 1998 TL1706 Highfield Park, Hill End Hospital 1 Bat 2002 TL1706 Hixberry Lane, Butterwick Centre 1 Bat 1988 TL1707 Gresford Close, St Albans 1 Bat 1988 TL1707 St Albans 1 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 Bat 1998 TL2000 St Marks Close, Colney Heath 1 Bat 1999 TL2000 Catherine Bourne Farm Area 1 Bat 1999 TL2000 Steapshyde Farm Area 1 Bat 1997 TL2005 Colney Heath, Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 Bat 1990 TL2102 Backhorse	Bat 1988 TL1506 St Albans, Cunningham Avenue 1 0 Bat 1998 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 2002 TL1706 Hikberry Lane, Butterwick Centre 1 0 Bat 1988 TL1707 Gresford Close, St Albans 1 0 Bat 1988 TL1707 St Albans 1 0 Bat 1986 TL1806 Colney Heath Lane, St Albans 1 0 Bat 1986 TL2000 Catherine Bourne Farm Area 1 0 Bat 1999 TL2000 Shenley Quarry and Ponds 1 0 Bat 1999 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1997 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Hall Gardens, Colney Heath 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath, Hall Gardens 1 0 Bat 1990 TL2005 Colney Heath,

Pipistrelle Bat	1995	TL2404	Brookmans Park, Moffats Lane	1	0	0
Pipistrelle Bat	1991	TL2404	Peplins Way, Brookmans Park	1	0	0
Pipistrelle Bat	1994	TL2404	Brookmans Park, Bradmore Way	1	0	0
Pipistrelle Bat	1997	TL2404	Brookmans Park, Bradmore Way	1	0	0
Pipistrelle Bat	1998	TL2404	Brookmans Park, Brookmans Avenue	1	0	0
Pipistrelle Bat	1998	TL1607	Verulam School	1	0	0
Serotine Bat	1993	TL2308	Hatfield House Area	1	0	0
Unidentified Bat	2001	TL2001	Shenley Quarry and Ponds	1	0	0
Unidentified Bat	2004	TL2001	Shenley Quarry and Ponds	1	0	0
Unidentified Bat	2001	TL2403	Gobions Wood	1	0	0
Whiskered Bat	1998	TL2303	Mimmshall Brook, Water End	1	0	0
Water Vole	1977 TL203058	TL2005	Colney Heath	1	1	1
Water Vole	1987 TL240080	TL2408	TL20P	1	1	1
Water Vole	1989 TL231021	TL2302	Mimmshall Brook by Mimms Hall	1	1	1
Water Vole	1992 TL186042	TL1804	River Colne by Bowmansgreen Farm	1	1	1
Water Vole	1993 TL186042	TL1804	River Colne by Bowmansgreen Farm	1	1	1
Water Vole	1996 TL186040	TL1804	River Colne by Bowmansgreen Farm	1	1	1
Water Vole	1996 TL231021	TL2302	Mimmshall Brook by Mimms Hall	1	1	1
Water Vole	1997 TL182037	TL1803	River Colne NE of Nature Reserve	1	1	1
Water Vole	1997 TL186040	TL1804	River Colne by Bowmansgreen Farm	1	1	1
Water Vole	1997 TL197058	TL1905	TL10X	1	1	1
Water Vole	1998 TL200058	TL2005	Colney Heath	1	1	1
Great Crested Newt	1986 TL194072	TL1907	Land near Smallford Nurseries	1	1	1
Great Crested Newt	1986 TL181050	TL1805	Tyttenhanger Lane Copse and Pond	1	1	1
Great Crested Newt	1983 TL195068	TL1906	Smallford Gravel Pits	1	1	1
Great Crested Newt	1986 TL195068	TL1906	Smallford Gravel Pits	1	1	1
Great Crested Newt	1986 TL190003	TL1900	Twin Pines, Shenley	1	1	1
Great Crested Newt	1986 TL179053	TL1705	Highfield Hall Ponds	1	1	1
Great Crested Newt	1986 TL183060	TL1806	Tyttenhanger Lane Pond	1	1	1
Great Crested Newt	1986 TL227064	TL2206	Travellers Lane Grassland and Ponds	1	1	1
Great Crested Newt	1988 TL168058	TL1605	Francis Bacon School	1	1	1
Great Crested Newt	1997 TL187083	TL1808	small pond, Oaklands Gravel Pit	1	1	1
Great Crested Newt	1998	TL2206	Travellers Lane Grassland and Ponds	1	1	1
Great Crested Newt	1998	TL1705	Highfield Hall Area	1	1	1
Great Crested Newt	1998	TL1805	Hill End Farm Area	1	1	1
Great Crested Newt	1998	TL1805	Barley Mo Lane	1	1	1

Great Crested Newt	1998	TL1602	Harper Lane Gravel Pit	1	1	-
Great Crested Newt	1973 TL203013	TL2001	Dovers Green, Shenley Quarry	1	1	-
Great Crested Newt	1977 TL229083	TL2208	Howe Dell School	1	1	-
Great Crested Newt	2001 TL242045	TL2404	Piplins Way, Brookmans Park	1	1	-
Great Crested Newt	2002	TL2208	Howe Dell School	1	1	-
Great Crested Newt	2001	TL2206	New Barnfield Meadow	1	1	-
Great Crested Newt	1993 TL164026	TL1602	Old Parkbury Fishing Lakes	1	1	-
Otter	1967 TL20P	TL2000		1	1	-
Otter	2004 TL177034	TL1703		1	1	-
Otter	2004 TL181035	TL1803	Colne Broad Colney	1	1	-
Dormouse	1994 TL218034	TL2103	Cangsley Grove	1	1	-
Dormouse	1975 TL213077	TL2107	Hatfield, Watery Lane	1	1	-

Species records with National and Local designations

SPECIES	YEAR (GRID	1 Km	SITE	PROTECTED	BAP	LBAP
Badger	1995		TL1804	Tyttenhanger Gravel Pit	1	0	0
Badger	1986		TL2003	Small Wood N.W. of Redwell	1	0	0
Grass Snake	1997 -	TL190050	TL1905	Tyttenhanger Gravel Pit - central causeway	1	1	0
Grass Snake	1985 -	TL200060	TL2006	TL20D	1	1	0
Grass Snake	1998 -	TL203057	TL2005	Colney Heath - River Colne section	1	1	0
Grass Snake	1998 -	TL203057	TL2005	Colney Heath - River Colne section	1	1	0
Grass Snake	1999 -	TL203058	TL2005	Colney Heath	1	1	0
Grass Snake	1985 -	TL203058	TL2005	Colney Heath	1	1	0
Grass Snake	2004 -	TL203058	TL2005	Colney Heath - The Warren	1	1	0
Lizard	1988 -	TL203058	TL2005	Colney Heath	1	1	0
Lizard	1988 -	TL203058	TL2005	Colney Heath	1	1	0
Palmate Newt	1999 -	TL186055	TL1805	pond, Knights Wood	0	0	0
Cornflower	1887 -	TL200060	TL2006	Between Roe Green & Roe Stock., TL20D	0	1	1
Cornflower	1999 -	TL203058	TL2005	disturbed pipeline, Colney Heath	0	1	1
Cornflower	1989 -	TL200060	TL2006	Johnsons Spring Field, TL20D	0	1	1
Tree Sparrow	2004 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2006 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2007 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2008 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2008 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2007 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2006 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2005 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2004 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2003 -	TL1904	TL1904	Tyttenhanger Farm Area	0	1	1
Tree Sparrow	2002 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2005 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2003 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2001 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	2000 -	TL2003	TL2003	Coursers Farm Area	0	1	1
Tree Sparrow	1999 -	TL2003	TL2003	Coursers Farm Area	0	1	1

Veteran & Mature Tree records

SPECIES	SURVEY DATE	GIRTH (cm) SITE		ADDRESS	CONTEXT	EASTING	NORTHING	RECORD NUMBER
Oak	30/08/2000	405 North Min	mms Park	North Mimms	PL, Parkland	522080	204250	720
Hornbeam	30/08/2000	330 North Mir	mms Park	Walsingham Wood, North Mimms	WL, Woodland	521500	203770	721
Sweet chestnut	30/08/2000	480 North Mir	mms Park	North Mimms	WL, Woodland	521400	204400	722
Beech	30/08/2000	480 North Mir	mms Park	North Mimms	PL, Parkland	521500	204400	723
Oak	30/08/2000	440 North Mir	mms Park	North Mimms	PL, Parkland	521580	204440	724
Oak	05/09/2000	480 North Mir	mms Park	North Mimms	WE, Wood Edge	521750	203750	725
Oak	05/09/2000	580 North Mir	mms Park	North Mimms	X, Other	521650	203600	726
Oak	05/09/2000	440 North Mir	mms Park	North Mimms	PL, Parkland	522100	204300	727
Oak	05/09/2000	476 North Mir	mms Park	North Mimms	PL, Parkland	522050	204200	728
Oak	05/09/2000	490 North Mir	mms Park	North Mimms	PL, Parkland	521990	204190	729
Oak	05/09/2000	580 North Mir	mms Park	North Mimms	PL, Parkland	521950	204300	730
Holly	30/08/2000	150 North Mir	mms Park	Walsingham Wood, North Mimms	WL, Woodland	521200	204200	732
Lime species	05/09/2000	480 North Mir	mms Park	North Mimms	PL, Parkland	522020	204400	731

Appendix EDP 3 Extended Phase 1 Habitat Survey Target Notes

- 1. Large soil bunds in adjacent land managed by Lafarge Aggregates.
- 2. Small area of scrub surrounding electricity sub-station dominated by bramble and hawthorn.
- 3. A species-poor short hedgerow dominated by hawthorn and blackthorn is located along the northern boundary of the site adjacent to Coursers Road. This feature was noted to be gappy in places and in poor condition.
- 4. A field supporting species-poor semi-improved grassland, used as a paddock for horses.
- 5. Small areas of amenity grassland located at the entrance to the Coursers Farm complex. These were found to be well mown and contained a short sward with a limited number of forb species.
- 6. Mature oak tree located outside of the site boundary.
- 7. An off-site pond was noted adjacent to the entrance of the farm access road. This pond supported a wide band of marginal planting which is dominated by variegated reed canary-grass, and appeared to be a well-established habitat.
- 8. Small pond located within the site boundary supporting little in the way of either aquatic or marginal vegetation. This pond appeared to be a relatively recently created feature.
- 9. The majority of the site is dominated by improved grassland. The larger field making up the site was found to be sheep grazed and supported a close cropped sward with low species diversity.
- 10. An open area of sparsely vegetated land located adjacent to the site boundary on the land managed by Lafarge Aggregates.
- 11. A horse paddock to the east of the site located within Coursers Farm (but outside of the site boundary) was also noted as containing improved grassland.
- 12. Large agricultural sheds within the Coursers Farm complex located adjacent to the site.
- 13. Hardstanding yard located adjacent to the site, used for equipment storage.
- 14. The ditches located along the western and southern boundaries were found to be a mixture of dry and wet habitats. The northern end of the western boundary ditch was found to be dry and supported rank grasses along with limited forb species. At its southern end the ditch was wet but contained approximately 5-10cm of water. Plant species within the inundated length were similar to those in the northern section. Along the southern boundary of the site, Tittenhanger Stream flows from west to east. At the time of the survey the stream contained a maximum of approximately 10cm of water. The stream was confined by tall, steep grassy banks and a number of holes were noted that had the potential to have been excavated by water voles.
- 15. Three further ponds were noted following the completion of the extended Phase 1 Habitat survey. The first was a small pond located in the corner of the field opposite the site, across Coursers Road. A further two ponds were found to the east of the site within the farm complex. These ponds will be described fully in the separate great crested newt report.

Plan

Plan EDP 1Extended Phase 1 Habitat Plan
(EDP1421/01a 3 August 2011 TB/RS)

North London Anaerobic Digestion Facility

Site Environmental Permit: Non-Technical Summary

February 2016

1. Reception

Solid Waste

Solid waste is delivered to the site in a wide range of RCV's and bulkers. The delivery vehicle enters the site and registers its waste and the source as it is weighed over the weighbridge. It then proceeds to the enclosed Reception Building where access is gained through high speed doors. The doors close automatically after the vehicle has entered the building, ensuring any odour is captured within the building and treated through the scrubber and biofilter.

Solid waste is handled in a different manner to liquid wastes because of its drier consistency and potential contamination, e.g. plastics. Solid waste is tipped into a reception bunker with a moving floor. Once the solid waste has been tipped, the moving floor conveys the solid waste to a screw conveyor. This transports the material into the macerator, which removes contaminants and reduces particle size. Once the load has been tipped, the vehicle then passes through a decontamination area and exits through another high speed door. The high speed door closes and the reception building regains negative air pressure.

Liquid Waste

Liquid waste is delivered in a tanker, entering the site over the weighbridge in the same manner as the solid waste. The tanker then enters the Reception Building which is bunded and connects to a discharge pipeline within the reception building and commences discharge to one of two storage tanks depending on viscosity. High viscosity liquids are discharged to a 450m³ tank and low viscosity liquids to a 250 m³ tank. Odours from delivering tankers are extracted from the building and treated through the scrubber and biofilter. Once the load has been discharged, the tanker passes through a decontamination area and exits through the next high speed door. The high speed door closes and the reception building regains negative air pressure.

Biofilter and Wet Scrubber

The main body of the reception building is kept slightly below atmospheric air pressure. The air is treated through a wet scrubber and biofilter before venting to the atmosphere. The liquid waste storage tanks and mixing tank, used to contain the wastes at the front end, are located underground and are connected directly to the extraction system to prevent odour release into the building or to the outside.

Energy Crop

Stabilising energy crop silage is stored on site in a silage clamp and is delivered to the energy crop feed bunker by loading shovel. The crop bunker is located next to the primary digesters and comprises a moving floor and screw conveyor system. This feeds the silage into the primary digesters, providing a controlled feed only as required. Occasional silage feed can help to balance the digester biology, as well as providing a good source of energy.

2. Pre-Treatment

Pre-treatment and Blending

Pre-treatment is the most important phase to ensure problem-free and stable digestion in order to produce high gas yields, particularly when dealing with contaminated materials and animal by-products.

1. Screening

The solid waste may contain contaminants such as plastics and soft food waste packaging (inevitable in commercial and kerbside collected waste). It is undesirable for this material to enter the digester; therefore all material from the solid waste bunker is fed into the macerator. This specialist machine serves three purposes:

- Opening of soft and hard packaging, including plastics, paper, tins and glass;
- Removing plastics and other soft packaging via a separate contras discharge chute; and
- Reducing the particle size of all the material to below 12mm in one plane, to ensure maximum efficiency in gas release and ABPR compliance.

The resultant thick, organic soup is pumped into a settling and mixing tank, where the small pieces of heavy contaminants (e.g. glass, grit, metals) settle out by gravity.

2. Mixing

Liquid wastes are added directly to the mixing tank, where the organic soup is stored. The rate at which liquid waste is added will vary with the composition and dry matter of the solid waste. The higher moisture content and reduced viscosity enable the heavy contaminants to settle in the mixing tank to provide a de-gritting stage. This tank is periodically emptied by specialist contractors.

3. Control by Blending

Anaerobic conditions can be maintained and controlled by carefully blending the input material. Regular sampling and analysis from the primary and secondary digesters allows criteria such as pH levels and organic loading rates to be maintained at optimum levels. Feed-stocks are balanced to prevent inhibition of the biology and control gas production rates.

The facility is designed to accept a wide variety of wastes. To complement this, silage is used as a moderating feedstock. As well as providing stabilisation properties, silage also produces good gas yields and therefore a source of energy if waste inputs are not available (such as on public holidays).

3. Digestion

Digestion

The first phase of digestion is completed in the primary digesters. This is where 70% of the biogas is extracted. Each digester has a capacity of circa 5,700m³ and is stirred by propeller stirrers.

The digester is heated by a hot water system comprising stainless steel coils attached to the inside of the concrete tank walls. The hot water is heated by the CHP heat exchanger. As the biogas is released it is stored in the void above the digestion mass and is sealed by a twin membrane roof. The gas is kept at a low pressure by a moving roof membrane that fills and empties as the biogas levels rise and fall. The outer membrane of the digester is constantly air inflated and does not move, protecting the inner membrane elements from the weather.

The stirrers operate on a periodic basis in order to keep the digester contents moving sufficiently to ensure that the mix optimises biogas yield, but without excessive energy usage. The stirrer motors and gearboxes are outside the tank and can easily be maintained. Should the internal parts of one stirrer fail, the process is maintained by the other stirrers when, ultimately during a planned shutdown, they are able to be replaced with minimal disruption to the process. The digester would be isolated during this process.

The substrate is displaced from the primary digesters by the pumping regime and fed into the secondary digesters where approximately 20% of the biogas is extracted.

The substrate in the secondary digesters is stirred, but with less intensity than the primary digesters. All digestion and storage tanks serve as gas holders. There is sufficient storage within the top of each tank for several hours of un-replenished production of biogas. In reality, the ongoing biogas production means that the gas available to the engines, if all feeding were to stop, would be sufficient to last for several days, but at reduced levels.

4. Pasteurisation

Pasteurisation of the substrate is carried out in order to kill bacteria and achieve compliance with Animal By-Product Regulations (ABPR). To be compliant, all animal by-product material must be reduced to a particle size of below 12mm in one plane (which is achieved in the macerator system) and held at a temperature of 70°C for one hour. It is acceptable to carry out pasteurisation either pre- or post-digestion, providing all animal by-products are pasteurised in the process. However, Agrivert chooses to employ post-digestion pasteurisation with the following advantages:

- All feedstock within the plant, including energy crop silage (which is added directly to the digester, separately from the food waste), is pasteurised, which is best practice for achieving PAS110 and QP approval.
- The digestion process will eliminate many pathogens that may be present in the organic waste feedstock, reducing the burden on the pasteurisation stage.
- The waste material will be heated in the digester to >40°C, so less time and energy will be required to raise the temperature to >70°C for pasteurisation.
- If a problem were to arise with the pasteurisation system, the digesters would continue to operate normally (receiving waste) until the problem was resolved.

The material from the secondary digester tanks is introduced into one of the pasteurisation tanks in batches of approximately 30m³. The substrate material pumped into the primary digesters passes through a heat exchanger to receive heat from the outgoing material from the pasteuriser. Batching ensures that nothing is despatched to final storage without being fully pasteurised.

The pasteurisation tanks are heated using the hot water from the CHP engines' heat exchanger system. This water enters the pasteuriser water jacket at between 85-92°C. Once the contents are at + 70°C, the tank is held at this temperature for a minimum of 1 hour. An auxiliary boiler will be available to ensure ABPR is always achieved during commissioning and in the unlikely event of two CHP engine units failing.

The automated system ensures that waste does not leave the pasteurisation tanks until temperature has been achieved for the required time. This is recorded automatically and can be audited by the Animal Health Department at any time.

There are three temperature probes inside each of the pasteurisers to monitor the temperature and ensure temperature is achieved throughout the mass for the entire period. Each pasteuriser is equipped with a stirrer which ensures the batch is homogeneous, ensuring no cool zones are able to develop.

Once temperature has been achieved, the batch then passes onto the storage tank via a heat exchanger to cool it down, while at the same time heating up the substrate material on its way to the digesters.

Sampling points for ABPR purposes are provided at the inlets and outlets of the pasteurisation stage.

ABPR represents such a critical element of the process that the pasteurisation tanks consist of duty and assist / standby pasteurisation tanks.

5. Energy Production

Energy Production

The biogas produced by the digesters is naturally high in sulphides. Sulphides are a problem for gas engines and must be reduced where possible. The first stage of reduction is carried out within the digesters where there are three forms of sulphide control:

- Small and controlled amounts of oxygen are pumped into the biogas store, in order to oxidise some of the sulphides;
- Ferrous Chloride is added periodically to the digester to enable the sulphides to become iron sulphates and be removed in solid form.
- A net is suspended across the top of the digesting liquid on which sulphur crystals grow. As they gain sufficient weight, they fall from the net into the liquid and remain in their solid form rather than exiting the digester as a gas. This elemental sulphur which drops into the digestate improves its fertiliser value.

Once these three stages have been completed, the biogas has had a significant reduction in overall sulphur content and is normally ready for use in the gas engine. However, to ensure optimised levels of sulphur, all biogas is also 'scrubbed' through an activated carbon filter.

In order to avoid wetting the carbon which shortens its life, the biogas is dehumidified to remove condensate before entering the filter. Prior to combustion in the CHP engine the biogas is compressed to a constant pressure so that the control system operates consistently.

The Gas Engine

The gas engines are sized to operate at maximum efficiency and to create the necessary power. Such gas engines are very reliable but have comprehensive maintenance agreements in place to minimise downtime. The gas engine receives the biogas and uses it as a fuel in powering a conventional generator unit to produce electricity at 415 volts. The output of the generator is dependent on the draw of biogas (and the resulting rpm of the gas engine). Should there be too much biogas for the gas storage and the gas engine, then it is flared at a remote flare stack. If this is a persistent issue, then additional gas engines can be added to increase electricity production.

The hot water from the gas engine cooling system and exhaust gas heat exchanger is used to heat the pasteurisation tanks, to keep the digesters at the required temperature for mesophilic digestion, and to keep the digester gas pressure relief values from freezing on cold days

Excess heat can be utilised in a variety of manners dependent upon location. Surplus heat can be cooled through standard cooling radiators. The gas engine exhaust is piped through a flue that rises on the outside of the insulated container. The noise of the gas engine is suppressed within the sound insulated engine container. The power generated by the gas engine is transmitted directly to the National Grid via transformers and a high voltage connection.

6. Digestate Storage And Recycling

Digestate Storage and Recycling

Storage

The storage tank plus the two secondary digesters have sufficient capacity to give 10 weeks' storage within the process. The digesters and storage tanks are fitted with gas roofs to provide gas storage, thereby maximising and stabilising energy production.

Recycling

Sealed tankers are used to transport the digestate end product from the site to be spread to land or to farm lagoons for storage.

When the season and weather are suitable for recycling to land (respecting the Nitrate Directive), the digestate is applied using specialised spreaders.

Application rates are strictly monitored in accordance with the requirements of the crop, and to comply with the Nitrate Vulnerable Zone (NVZ) regulations. The digestate is a valuable bio-fertiliser, with a higher rate of first year nitrogen availability than many ordinary chemical fertilisers. It also contains valuable sources of potash and phosphate. The main spreading seasons are in the spring, the late summer and autumn. This is to coincide with the cropping windows where nutrients are most required and soil conditions are most appropriate.