# The High Speed Rail (London – West Midlands) (Greatmoor Railway Sidings Etc.) Order

# Environmental Statement – technical appendices Volume 4.9:

Land quality impact assessment

The High Speed Rail (London – West Midlands) (Greatmoor Railway Sidings Etc.) Order

# Environmental Statement – technical appendices Volume 4.9:

Land quality impact assessment



High Speed Two (HS2) Limited has been tasked by the Department for Transport (DfT) with managing the delivery of a new national high speed rail network. It is a non-departmental public body wholly owned by the DfT.

High Speed Two (HS2) Limited, One Canada Square, Canary Wharf, London E14 5AB

Telephone: 020 7944 4908

General email enquiries: HS2enquiries@hs2.org.uk

Website: www.gov.uk/hs2

A report prepared for High Speed Two (HS2) Limited:









High Speed Two (HS2) Limited has actively considered the needs of blind and partially sighted people in accessing this document. The text will be made available in full on the HS2 website. The text may be freely downloaded and translated by individuals or organisations for conversion into other accessible formats. If you have other needs in this regard please contact High Speed Two (HS2) Limited.

© High Speed Two (HS2) Limited, 2016, except where otherwise stated.

Copyright in the typographical arrangement rests with High Speed Two (HS2) Limited.

This information is licensed under the Open Government Licence v2.0. To view this licence, visit www.nationalarchives.gov.uk/doc/open-government-licence/version/2 **OGL** or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or e-mail: psi@nationalarchives.gsi.gov.uk. Where we have identified any third-party copyright information you will need to obtain permission from the copyright holders concerned.



Printed in Great Britain on paper containing at least 75% recycled fibre.

1

2

## **Contents**

Introduction

Detailed risk assessment

1

2

| 1.2       | Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.2       | Baseline risk assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2.3       | Construction Risk Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.4       | Post-construction Risk Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2.5       | Assessment of temporary (construction) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           | permanent (post-construction) effects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Geologi   | cal SSSI and local geological sites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Referen   | ces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2: Deta   | led risk assessment: Baseline CSM and Qualitative Risk Assessment – Existing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| •         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (Area ref | GRS-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ifill<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| e 6: Cons | truction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •         | ruction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| •         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | <b>3</b> , , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|           | 2.2 2.3 2.4 2.5 Inspection Geologic Mining and Referen Service Service Service Service Grand Gra | 2.2 Baseline risk assessment 2.3 Construction Risk Assessment 2.4 Post-construction Risk Assessment 2.5 Assessment of temporary (construction) and permanent (post-construction) effects Inspections notes and other site data Geological SSSI and local geological sites Mining and minerals data References  of tables 2.1 Sites included in the detailed risk assessment within the Proposed Scheme 2.2 Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Existing Sury Link railway line (Area ref GRS-1) 2.3 Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Calvert land (Area ref GRS-2) 2.4 Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Greatmoor facility (Area ref GRS-3) 2.5 Construction CSM and Qualitative Risk Assessment – Existing Aylesbury Link railway line aref GRS-1) 2.6 Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-1) 3.7 Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-1) 3.8 Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-1) 3.9 Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-1) 3.9 Construction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref GRS-1) 3.0 Construction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref GRS-1) |

| Table 9: Post-Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref   |    |
|-----------------------------------------------------------------------------------------------------|----|
| GRS-2)                                                                                              | 8  |
| Table 10: Post-Construction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Are       | a  |
| ref GRS-3)                                                                                          | C  |
| Table 11: Significance of Impact during Construction and Post Construction – Existing Aylesbury     |    |
| Link railway line (Area ref GRS-1)                                                                  | 2  |
| Table 12: Significance of Impact during Construction and Post Construction – Calvert landfill Pit 6 | ;  |
| (Area ref GRS-2)                                                                                    | 23 |
| Table 13: Significance of Impact during Construction and Post Construction – Greatmoor EfW          |    |
| facility (Area ref GRS-3)                                                                           | 4  |

### 1 Introduction

- 1.1.1 The land quality appendix for the Proposed Scheme comprises:
  - detailed risk assessment (Section 2);
  - inspection notes and other site data (Section 3);
  - geological Sites of Special Scientific Interest (SSSI) and local geological sites (Section 4); and
  - mining and minerals data (Section 5).
- 1.1.2 Maps referred to throughout the land quality appendix are contained in Map ES-17: Land Quality, in Volume 3 of this ES.

#### 2 Detailed risk assessment

#### 1.2 Introduction

- This appendix presents assessments for areas potentially posing a contaminative risk for the Proposed Scheme within the study area. For each site the following data is presented:
  - baseline risk assessment;
  - construction risk assessment;
  - post-construction risk assessment; and
  - assessment of temporary (construction) and permanent (post-construction) effects.
- 2.1.2 This risk assessment incorporates the following assumptions:
  - construction workers are not included as part of this assessment;
  - sites that have been assessed as potentially posing a contaminative risk to the Proposed Scheme have been grouped and considered together where appropriate. It should be noted that some parcels of land may have had several land uses from different epochs;
  - during construction, standard mitigation procedures will be in place in accordance with the draft Code of Construction Practice (CoCP) (see Volume 4.14: Environmental Statement Technical Appendix: Draft CoCP); and
  - during the post-construction condition it is assumed that all required remediation has been undertaken and carried out.
- The sites assessed in this study area are shown in Map ES-17: Land Quality, in Volume 4 of this ES and set out in Table 1.

Table 1: Sites included in the detailed risk assessment within the Proposed Scheme

| Site reference | Name                                 | Table No's.  |
|----------------|--------------------------------------|--------------|
| GRS -1         | Existing Aylesbury Link railway line | 2, 5, 8, 11  |
| GRS -2         | Calvert landfill Pit 6               | 3, 6, 9, 12  |
| GRS -3         | Greatmoor EfW facility               | 4, 7, 10, 13 |

- 2.1.4 Contaminant types included within the risk assessments are based on the Priority Contaminants Report CLR 8. Although withdrawn, this document is still commonly used and is considered as good practice.
- 2.1.5 The remainder of this appendix presents the risk assessment for the sites set out in Table 2 to Table 13. The following acronyms are used in these tables:

- CSM Conceptual Site Model;
- SINC site of importance for nature conservation;
- SSSI Site of Special Scientific Interest; and
- VOC volatile organic compounds.

#### 2.2 Baseline risk assessment

Table 2: Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Existing Aylesbury Link railway line (Area ref GRS-1)

| Source                                                                                                                                           | Receptor                                                                                                                  | Pathway                                                                                   | Probability | Consequence | Risk at baseline without mitigation |
|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------|
| The existing Aylesbury Link railway line  Residual contamination in made ground (e.g. ballast) including heavy metals, fuels, oils and asbestos. | Sensitive land use On-site employees (railway maintenance workers etc.)                                                   | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                  |                                                                                                                           | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                  | Sensitive land use  Off-site workers (farm employees on adjacent land and employees at Greatmoor EfW facility and Calvert | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                  | landfill within 250m) '                                                                                                   | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                  | Controlled waters Secondary A Alluvium aquifer                                                                            | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                  |                                                                                                                           | Surface run off                                                                           | Unlikely    | Medium      | Low                                 |

| Controlled waters  On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                                          | Unlikely | Medium | Low      |
|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|--------|----------|
|                                                                                     | Surface run off                                                                                        | Unlikely | Medium | Low      |
| Ecological Finemere Wood and Sheephouse Wood SSSI                                   | Contact with windblown dusts                                                                           | Unlikely | Minor  | Very low |
|                                                                                     | Lateral migration of contaminants in groundwater.                                                      | Unlikely | Minor  | Very low |
| Property Buildings within 50m                                                       | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely | Minor  | Very low |

Table 3: Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-2)

| Source                                                                              | Receptor                                                                            | Pathway                                                                                   | Probability | Consequence | Risk at baseline without mitigation |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------|
| Calvert landfill Pit 6  Currently accepting spoil and incinerator bottom ash (IBA). | Sensitive land use On-site employees                                                | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                 |
|                                                                                     | Controlled waters Secondary A Alluvium aquifer                                      | Vertical and lateral migration of contaminated groundwater/leachate                       | Unlikely    | Medium      | Low                                 |
|                                                                                     |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                 |
|                                                                                     | Controlled waters  On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                 |
|                                                                                     |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                 |
|                                                                                     | Ecological Finemere Wood and Sheephouse Wood SSSI                                   | Contact with windblown dusts                                                              | Unlikely    | Minor       | Very low                            |
|                                                                                     |                                                                                     | Lateral migration of contaminants in groundwater.                                         | Unlikely    | Minor       | Very low                            |

| Source | Receptor                      | Pathway                                                                                                                    | Probability          | Consequence     | Risk at baseline without mitigation |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-------------------------------------|
|        | Property Buildings within 50m | Gas migration to structures  Direct contact of below ground building structures and services with contaminated groundwater | Unlikely<br>Unlikely | Severe<br>Minor | Low/moderate risk  Very low         |

Table 4: Detailed risk assessment: Baseline CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref GRS-3)

| Source                                                                                                                                                                | Receptor                                                                                                                                           | Pathway                                                                                   | Probability | Consequence | Risk at baseline without mitigation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------|
| Greatmoor EfW facility  Contaminants that could be present during operation potentially arise from imported waste, any chemicals (including fuels) stored on site and | Sensitive land use On-site employees                                                                                                               | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                 |
| IBA. These could include, but are not limited to: heavy metals, organic compounds e.g. oils and inorganic compounds.                                                  |                                                                                                                                                    | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                                       | Sensitive land use  Off-site workers (farm employees on adjacent land and railway workers on the existing Aylesbury Link railway line within 250m) | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                                       |                                                                                                                                                    | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                                       | Controlled waters Secondary A Alluvium aquifer                                                                                                     | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                                       |                                                                                                                                                    | Surface run off                                                                           | Unlikely    | Medium      | Low                                 |
|                                                                                                                                                                       | Controlled waters  Muxwell Brook and off-site surface water culverts                                                                               | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                 |

| Source | Receptor                                          | Pathway                                                                                                | Probability | Consequence | Risk at baseline without mitigation |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|-------------|-------------------------------------|
|        |                                                   | Surface run off                                                                                        | Unlikely    | Medium      | Low                                 |
|        | Ecological Finemere Wood and Sheephouse Wood SSSI | Contact with windblown dusts                                                                           | Unlikely    | Minor       | Very low                            |
|        |                                                   | Lateral migration of contaminants in groundwater.                                                      | Unlikely    | Minor       | Very low                            |
|        | Property Buildings within 50m                     | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely    | Minor       | Very low                            |

#### 2.3 Construction Risk Assessment

Table 5: Construction CSM and Qualitative Risk Assessment – Existing Aylesbury Link railway line (Area ref GRS-1)

| Source                                                                                                                                           | Receptor                                                                            | Pathway                                                                                   | Probability    | Consequence | Risk with construction stage mitigation |
|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------------------|
| The existing Aylesbury Link railway line  Residual contamination in made ground (e.g. ballast) including heavy metals, fuels, oils and asbestos. | Sensitive land use On-site employees (railway maintenance workers etc.)             | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Low likelihood | Medium      | Low/moderate risk                       |
|                                                                                                                                                  |                                                                                     | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Low likelihood | Medium      | Low/moderate risk                       |
|                                                                                                                                                  |                                                                                     | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely       | Medium      | Low                                     |
|                                                                                                                                                  |                                                                                     | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely       | Medium      | Low                                     |
|                                                                                                                                                  | Controlled waters Secondary A Alluvium aquifer                                      | Vertical and lateral migration of contaminated groundwater/leachate                       | Unlikely       | Medium      | Low                                     |
|                                                                                                                                                  |                                                                                     | Surface run off                                                                           | Low likelihood | Medium      | Low/moderate risk                       |
|                                                                                                                                                  | Controlled waters  On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                             | Unlikely       | Medium      | Low                                     |

| Source | Receptor                                          | Pathway                                                                                                | Probability    | Consequence | Risk with construction stage mitigation |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------------|-------------|-----------------------------------------|
|        |                                                   | Surface run off                                                                                        | Low likelihood | Medium      | Low/moderate risk                       |
|        | Ecological Finemere Wood and Sheephouse Wood SSSI | Contact with windblown dusts                                                                           | Unlikely       | Minor       | Very low                                |
|        |                                                   | Lateral migration of contaminants in groundwater.                                                      | Unlikely       | Minor       | Very low                                |
|        | Property Buildings within 50m                     | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely       | Minor       | Very low                                |

Table 6: Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-2)

| Source                                                    | Receptor                                                                            | Pathway                                                                                   | Probability | Consequence | Risk with construction stage mitigation |
|-----------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------|
| Calvert landfill Pit 6  Currently accepting spoil and IBA | Sensitive land use On-site employees                                                | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                     |
|                                                           | Controlled waters Secondary A Alluvium aquifer                                      | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                     |
|                                                           |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                     |
|                                                           | Controlled waters  On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                     |
|                                                           |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                     |
|                                                           | Ecological Finemere Wood and Sheephouse Wood SSSI                                   | Contact with windblown dusts                                                              | Unlikely    | Minor       | Very low                                |
|                                                           |                                                                                     | Lateral migration of contaminants in groundwater.                                         | Unlikely    | Minor       | Very low                                |

| Source | Receptor                      | Pathway                                                                                                                    | Probability          | Consequence     | Risk with construction stage mitigation |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|-----------------------------------------|
|        | Property Buildings within 50m | Gas migration to structures  Direct contact of below ground building structures and services with contaminated groundwater | Unlikely<br>Unlikely | Severe<br>Minor | Low/moderate risk  Very low             |

Table 7: Construction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref GRS-3)

| Source                                                                                                                                                                | Receptor                                                                                                                                           | Pathway                                                                                   | Probability | Consequence | Risk with construction stage mitigation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------|
| Greatmoor EfW facility  Contaminants that could be present during operation potentially arise from imported waste, any chemicals (including fuels) stored on site and | Sensitive land use On-site employees                                                                                                               | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                     |
| IBA. These could include, but are not limited to: heavy metals, organic compounds e.g. oils and inorganic compounds.                                                  |                                                                                                                                                    | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                     |
|                                                                                                                                                                       | Sensitive land use  Off-site workers (farm employees on adjacent land and railway workers on the existing Aylesbury Link railway line within 250m) | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                     |
|                                                                                                                                                                       |                                                                                                                                                    | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                     |
|                                                                                                                                                                       | Controlled waters Secondary A Alluvium aquifer                                                                                                     | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                     |
|                                                                                                                                                                       |                                                                                                                                                    | Surface run off                                                                           | Unlikely    | Medium      | Low                                     |
|                                                                                                                                                                       | Controlled waters  Muxwell Brook and off-site surface                                                                                              | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                     |

| Source | Receptor                                          | Pathway                                                                                                | Probability | Consequence | Risk with construction stage mitigation |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|-------------|-----------------------------------------|
|        | water culverts                                    | Surface run off                                                                                        | Unlikely    | Medium      | Low                                     |
|        | Ecological Finemere Wood and Sheephouse Wood SSSI | Contact with windblown dusts                                                                           | Unlikely    | Minor       | Very low                                |
|        |                                                   | Lateral migration of contaminants in groundwater.                                                      | Unlikely    | Minor       | Very low                                |
|        | Property Buildings within 50m                     | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely    | Minor       | Very low                                |

#### 2.4 Post-construction Risk Assessment

Table 8: Post-Construction CSM and Qualitative Risk Assessment – Existing Aylesbury Link railway line (Area ref GRS-1)

| Source                                                                                                                                                                                        | Receptor                                                                                                    | Pathway                                                                                   | Probability | Consequence | Risk with permanent works mitigation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------|
| ballast) including heavy metals, fuels, oils and asbestos.  Sensitive land use Off-site workers (farm on adjacent land and er Greatmoor EfW facility landfill within 250m)  Controlled waters | Sensitive land use On-site employees (railway maintenance workers etc.)                                     | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                                               |                                                                                                             | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                                               | Off-site workers (farm employees<br>on adjacent land and employees at<br>Greatmoor EfW facility and Calvert | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                                               |                                                                                                             | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                                               | Controlled waters Secondary A Alluvium aquifer                                                              | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                                               |                                                                                                             | Surface run off                                                                           | Unlikely    | Medium      | Low                                  |

| On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                                          | Unlikely | Medium | Low      |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|----------|--------|----------|
|                                                                  | Surface run off                                                                                        | Unlikely | Medium | Low      |
| Ecological Finemere Wood and Sheephouse Wood SSSI                | Contact with windblown dusts                                                                           | Unlikely | Minor  | Very low |
|                                                                  | Lateral migration of contaminants in groundwater.                                                      | Unlikely | Minor  | Very low |
| Property Buildings within 50m                                    | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely | Minor  | Very low |

Table 9: Post-Construction CSM and Qualitative Risk Assessment – Calvert landfill Pit 6 (Area ref GRS-2)

| Source                                                     | Receptor                                                                            | Pathway                                                                                   | Probability | Consequence | Risk with permanent works mitigation |
|------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------|
| Calvert landfill Pit 6  Currently accepting spoil and IBA. | Sensitive land use On-site employees                                                | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                  |
|                                                            | Controlled waters  Secondary A Alluvium aquifer                                     | Vertical and lateral migration of contaminated groundwater/leachate                       | Unlikely    | Medium      | Low                                  |
|                                                            |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                  |
|                                                            | Controlled waters  On-site ponds, Muxwell Brook and off-site surface water culverts | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                  |
|                                                            |                                                                                     | Surface run off                                                                           | Unlikely    | Medium      | Low                                  |
|                                                            | Ecological Finemere Wood and Sheephouse Wood SSSI                                   | Contact with windblown dusts                                                              | Unlikely    | Minor       | Very low                             |
|                                                            |                                                                                     | Lateral migration of contaminants in groundwater.                                         | Unlikely    | Minor       | Very low                             |

| Source | Receptor                      | Pathway                                                                                                                    | Probability          | Consequence     | Risk with permanent works mitigation |
|--------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|--------------------------------------|
|        | Property Buildings within 50m | Gas migration to structures  Direct contact of below ground building structures and services with contaminated groundwater | Unlikely<br>Unlikely | Severe<br>Minor | Low/moderate risk Very low           |

Table 10: Post-Construction CSM and Qualitative Risk Assessment – Greatmoor EfW facility (Area ref GRS-3)

| Source                                                                                                                                                                | Receptor                                                                                                                                | Pathway                                                                                   | Probability | Consequence | Risk with permanent works mitigation |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------|
| Greatmoor EfW facility  Contaminants that could be present during operation potentially arise from imported waste, any chemicals (including fuels) stored on site and | Sensitive land use On-site employees                                                                                                    | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                  |
| IBA. These could include, but are not limited to: heavy metals, organic compounds e.g. oils and inorganic compounds.                                                  |                                                                                                                                         | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                       | Off-site workers (farm employees<br>on adjacent land and railway<br>workers on the existing Aylesbury<br>Link railway line within 250m) | Inhalation/ingestion of or<br>dermal contact with<br>windblown contaminated<br>soils/dust | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                       |                                                                                                                                         | Inhalation of vapours<br>derived from contaminated<br>groundwater/soil                    | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                       | Controlled waters Secondary A Alluvium aquifer                                                                                          | Vertical and lateral<br>migration of contaminated<br>groundwater/leachate                 | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                       |                                                                                                                                         | Surface run off                                                                           | Unlikely    | Medium      | Low                                  |
|                                                                                                                                                                       | Controlled waters  Muxwell Brook and off-site surface water culverts                                                                    | Lateral migration of contaminated groundwater                                             | Unlikely    | Medium      | Low                                  |

| Source | Receptor                                          | Pathway                                                                                                | Probability | Consequence | Risk with permanent works mitigation |
|--------|---------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------|-------------|--------------------------------------|
|        |                                                   | Surface run off                                                                                        | Unlikely    | Medium      | Low                                  |
|        | Ecological Finemere Wood and Sheephouse Wood SSSI | Contact with windblown dusts                                                                           | Unlikely    | Minor       | Very low                             |
|        |                                                   | Lateral migration of contaminants in groundwater.                                                      | Unlikely    | Minor       | Very low                             |
|        | Property Buildings within 50m                     | Direct contact of below<br>ground building structures<br>and services with<br>contaminated groundwater | Unlikely    | Minor       | Very low                             |

#### 2.5 Assessment of temporary (construction) and permanent (post-construction) effects

Table 11: Significance of Impact during Construction and Post Construction – Existing Aylesbury Link railway line (Area ref GRS-1)

| Contaminant linkage                                                                                                                                                 | Baseline Risk | Construction Risk | Post-construction<br>Risk | Construction effects | Post-construction effects |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------|----------------------|---------------------------|
| Exposure of on-site human receptors (workers) to contamination by direct contact, ingestion and inhalation of contaminants in windblown soil/dust.                  | Low           | Low/moderate      | Low                       | Minor adverse effect | Neutral effect            |
| Exposure of on-site human receptors (workers) to inhalation of vapours derived from contaminated soil/groundwater.                                                  | Low           | Low/moderate      | Low                       | Minor adverse effect | Neutral effect            |
| Exposure of off-site human receptors (residential and workers) to contamination by direct contact, ingestion and inhalation of contaminants in windblown soil/dust. | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of off-site human receptors (residential and workers) to inhalation of vapours derived from contaminated soil/groundwater.                                 | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of Secondary A Alluvium aquifer to vertical and lateral migration of contaminated groundwater/leachate.                                                    | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to the Secondary A Alluvium aquifer                                                                                                                 | Low           | Low/moderate      | Low                       | Minor adverse effect | Neutral effect            |
| Exposure of surface water features to vertical and lateral migration of contaminated groundwater/leachate.                                                          | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to surface water features.                                                                                                                          | Low           | Low/moderate      | Low                       | Minor adverse effect | Neutral effect            |
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to contact with                                                                  | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |

| contaminants in windblown dusts.                                                                                                                                  |          |          |          |                |                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|----------|----------------|----------------|
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to lateral migration of contaminants in groundwater.                           | Very low | Very low | Very low | Neutral effect | Neutral effect |
| Exposure of off-site properties (e.g. below ground building structures and services) to direct contact with contaminants in soil and surface water / groundwater. | Very low | Very low | Very low | Neutral effect | Neutral effect |

Table 12: Significance of Impact during Construction and Post Construction – Calvert landfill Pit 6 (Area ref GRS-2)

| Contaminant linkage                                                                                                                                | Baseline Risk | Construction Risk | Post-construction<br>Risk | Construction effects | Post-construction effects |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------|----------------------|---------------------------|
| Exposure of on-site human receptors (workers) to contamination by direct contact, ingestion and inhalation of contaminants in windblown soil/dust. | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of Secondary A Alluvium aquifer to vertical and lateral migration of contaminated groundwater/leachate.                                   | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to the Secondary A Alluvium aquifer                                                                                                | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of surface water features to vertical and lateral migration of contaminated groundwater/leachate.                                         | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to surface water features.                                                                                                         | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to contact with contaminants in windblown dusts.                | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to lateral migration of                                         | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |

| Contaminant linkage                                                                                                                                               | Baseline Risk | Construction Risk | Post-construction<br>Risk | Construction effects | Post-construction effects |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------|----------------------|---------------------------|
| contaminants in groundwater.                                                                                                                                      |               |                   |                           |                      |                           |
| Exposure of off-site properties (e.g. below ground building structures and services) to direct contact with contaminants in soil and surface water / groundwater. | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |

Table 13: Significance of Impact during Construction and Post Construction – Greatmoor EfW facility (Area ref GRS-3)

| Contaminant linkage                                                                                                                                                 | Baseline Risk | Construction Risk | Post-construction<br>Risk | Construction effects | Post-construction effects |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------|----------------------|---------------------------|
| Exposure of on-site human receptors (workers) to contamination by direct contact, ingestion and inhalation of contaminants in windblown soil/dust.                  | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of on-site human receptors (workers) to inhalation of vapours derived from contaminated soil/groundwater.                                                  | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of off-site human receptors (residential and workers) to contamination by direct contact, ingestion and inhalation of contaminants in windblown soil/dust. | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of off-site human receptors (residential and workers) to inhalation of vapours derived from contaminated soil/groundwater.                                 | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of Secondary A Alluvium aquifer to vertical and lateral migration of contaminated groundwater/leachate.                                                    | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to the Secondary A Alluvium aquifer                                                                                                                 | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |

| Contaminant linkage                                                                                                                                               | Baseline Risk | Construction Risk | Post-construction<br>Risk | Construction effects | Post-construction effects |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------|---------------------------|----------------------|---------------------------|
| Exposure of surface water features to vertical and lateral migration of contaminated groundwater/leachate.                                                        | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Surface run off to surface water features.                                                                                                                        | Low           | Low               | Low                       | Neutral effect       | Neutral effect            |
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to contact with contaminants in windblown dusts.                               | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |
| Exposure of off-site ecological receptors (Finemere Wood and Sheephouse Wood SSSI) to lateral migration of contaminants in groundwater.                           | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |
| Exposure of off-site properties (e.g. below ground building structures and services) to direct contact with contaminants in soil and surface water / groundwater. | Very low      | Very low          | Very low                  | Neutral effect       | Neutral effect            |

# 3 Inspections notes and other site data

3.1.1 Information from site walkovers has been taken into account in the Land Quality assessment.

# 4 Geological SSSI and local geological sites

4.1.1 There are no geo-conservation resources identified within the study area.

### 5 Mining and minerals data

- The Buckinghamshire County Council Minerals and Waste Core Strategy
  Development Plan Document (November 2012) confirms that the study area
  is not located within a Minerals Consultation/Safeguarding Area or a Preferred
  Area.
- Reserves of clay deposits are present at the Calvert landfill site to the southwest of the Proposed Scheme. Historically, this material was an important resource used for the production of bricks at the site. Brickwork production ceased at the site in 1991. Consent exists for an extended area of excavation within Calvert landfill Pit 6.

### 6 References

- Buckinghamshire County Council, (2011), Minerals and Waste Core Strategy, Adopted November 2012.
- Defra and Environment Agency, (2002), Potential contaminants for the assessment of land R&D Publication, Bristol, Environment Agency.