

**FUNDED BY BIS** 



# Development of advanced PCR methods for testing the authenticity of herbs and spices





# Development of advanced PCR methods for testing the authenticity of herbs and spices

 Potential adulteration of spices with allergenic nut species

#### **Overview**



- Introduction
  - Food allergies
  - Recent UK Government Chemist cases
- Case 1: Cumin
- Case 2: Paprika
- New technologies
- Summary



#### Introduction



#### Background

- Food allergies represent a definite threat to the general health and wellbeing of those affected, placing increasing pressure on food producers and regulatory authorities to test for their presence
- In 2015 a number of food products containing cumin were subject to withdrawal from the international market because of alleged adulteration with peanut and almond material
- Two samples (cumin and paprika) of herbs and spices were referred to the Government Chemist for analysis in order to identify the potential presence of nut material



#### Introduction continued



#### GC response

- Application of ELISA, mass spectrometry and molecular biology approaches to investigate the potential adulteration of cumin and paprika samples with nut material
- Development of novel real-time PCR assays for the detection of *Prunus* nut species

#### **Government Chemist**

#### **Statutory function**

"an independent and impartial referee analyst, authorised analyst and analyst by reference to or pursuant to certain legislation"

#### **Advisory function**

"a source of <u>advice</u> for HM

<u>Government and the wider analytical</u>

<u>community</u> on the analytical chemistry
implications on matters of policy and of
standards and of regulations"



# Case1:Cumin



# **Cumin case background**





# Oct 2014

- Oct 2014, Canadian Food Inspection Agency
  - Random tests for allergens revealed undeclared peanut & almond protein in products containing cumin
- EU Labelling Directives (e.g. 1169/2011) allergenic foods that must be labelled



- A risk for individuals allergic to almond
- FSA (UK) issued recalls in Jan/Feb 2015 regarding almond protein in cumin and mixes for ready meals

#### Jan/ Feb 2015

- Denmark, Sweden & Norway issued alerts / recalls shortly afterwards
- None of the tests detected peanut proteins at levels that would require allergen labelling (FSA)
- Widespread recalls of N. America specific cumin products (Feb 2015)

# **Cumin case background continued**



# Feb **2015**

 Sample of cumin referred to the Government Chemist by the FSA in Feb 2015



# **Mar 2015**

- March 2015, UK company subject to recall of the cumin product
  - Mahaleb was possibly the origin of the ELISA almond positives

# April 2015, Canadian Food Inspection Agency rescinded ~ 25 product recalls

# April 2015

- "... new evidence regarding the cross-reactivity of mahaleb, a spice obtained from a specific species (*Prunus mahaleb*) of cherry seeds, with the almond allergen test kit. It is highly likely that the positive sample results for the ground cumin and cumin-containing products were due to mahaleb contamination and not almond."

#### **RASFF** notifications





#### Almond and mahaleb



- Members of the large 'Prunus' genus
- Prunus includes drupes (stone fruit) capable of producing kernels
  - Almond, Prunus dulcis
  - Apricot, Prunus armeniaca
  - Cherry, Prunus avium
  - Peach, Prunus persica
  - Mahaleb, *Prunus mahaleb*
- Typical approach for the detection of almond
  - ELISA immunoassay (protein)
  - A number of commercially available "almond" ELISA kits can suffer from significant cross-reactivity issues
- Little known Prunus mahaleb
  - Species of cherry tree (native to the Mediterranean)
  - Seeds used for spice



# **Analytical strategy**



- Referred sample
  - "Ground cumin"
- GC multi-disciplinary approach taken
  - ELISA
  - Mass spectrometry
  - Advanced DNA techniques
- Appropriate control materials
- Develop novel assays/approaches as required



Ground cumin sample

# **ELISA** and MS approaches



#### ELISA

- Three different commercial kits evaluated with common Prunus species
- Cross reactivity observed
- A protein indicative of the Prunus genus was detected in referee sample

#### MS

- No unique peptides characteristic of almond detected
- Peptides characteristic of mahaleb detected



# **DNA** approach – real time PCR



- Limited available tests
- Search of DNA sequences on publically available DNA databases:
  - National Center for Biotechnology Information (NCBI)
     GenBank
  - Barcode Of Life Database (BOLD)
- Considerable DNA sequence similarity between all species within the Prunus genus
- Internal Transcribed Spacer (ITS) region identified as a potential target
  - DNA spacer between rRNA subunit genes

# **Novel assay development**



- P. mahaleb species specific real time PCR assay
- Main features
  - Based on common hydrolysis probe real time PCR format
  - Non proprietary
  - Good analytical specificity and sensitivity
- Applied to referee sample

Typical real time PCR results







| Specimen                                    | Amplification    | C <sub>q</sub> ± SD                                                        |
|---------------------------------------------|------------------|----------------------------------------------------------------------------|
| Almond kernel                               | No amplification | Not applicable                                                             |
| Apricot kernel                              | No amplification | Not applicable                                                             |
| Peach kernel                                | No amplification | Not applicable                                                             |
| Cumin                                       | No amplification | Not applicable                                                             |
| Extraction blanks (n = 4)                   | No amplification | Not applicable                                                             |
| Mahaleb kernel                              | Amplification    | 17.87 ± 0.06                                                               |
| Referee sample (4 independent extns)        | Amplification    | $30.39 \pm 0.10$ ; $30.14 \pm 0.07$<br>$30.40 \pm 0.04$ ; $30.12 \pm 0.15$ |
| Referee sample (1:10) (4 independent extns) | Amplification    | $33.49 \pm 0.34$ ; $33.58 \pm 0.14$<br>$34.04 \pm 0.22$ ; $33.65 \pm 0.25$ |
| 1% DNA:DNA mahaleb:cumin                    | Amplification    | 23.10 ± 0.14                                                               |

LGC

- P. mahaleb DNA specifically detected
- No cross reactivity observed
- Confirmed the presence of mahaleb



### **Case 1 Summary**



- In isolation, none of the applied techniques could answer whether almond or mahaleb (or both) were present in the referee sample
- In combination, the techniques provided strong evidence of the presence of mahaleb rather than almond
- DNA approach was crucial in the correct identification of the adulterant *Prunus mahaleb*
- Conclusion: the referred sample contained Prunus protein and DNA the origin of which was consistent with mahaleb rather than almond
- Method has been submitted as a peer reviewed paper



# Case 2: Paprika



# Paprika case background



- August 2015: a sample of paprika was referred to the Government Chemist by the Food Standards Agency
- Reports/evidence that almond, a species known to be an allergy risk for some individuals, was thought to be present in the sample
- Product did not enter the UK food chain





# Paprika case background



- The Government Chemist was asked if it was possible to tell whether almond or mahaleb (or both) was present in the referred sample of paprika
- This required further investigation of the analytical methods previously developed for mahaleb in cumin to ensure they were applicable in paprika
  - ELISA
  - Mass spectrometry
  - P. mahaleb specific real time PCR test



# **Analytical findings**



- ELISA and MS confirmed the referred sample contain Prunus species proteins
  - No mahaleb specific peptide signatures seen
  - Significant amount of Prunus protein(s) present in the referred sample
- Mahaleb real time PCR assay
  - Mahaleb DNA was not detected (LOD of <1 ppm)</li>
- Prunus protein(s) found: not on label potential allergen risk
  - Likely to be almond (common Prunus species)
  - Case closed?

# **Development of a novel Prunus assay**



- Mahaleb real-time PCR assay:
  - Primers (generic to Prunus genus)
  - Probe (provided specificity to mahaleb assay)
- Removal of the probe:
  - Assay will amplify any Prunus species
  - Remove the fluorescent moiety, so how to detect?
- DNA melt analysis approach
  - dsDNA intercalating dye (high sensitivity), e.g. EvaGreen®
  - PCR products identified by melt profile



# **DNA** melt-curve analysis



- Principle
  - PCR amplification of target
  - Slowly heat up dsDNA PCR product, the dsDNA will begin to dissociate (un-wind) into its component ssDNA form
- When the dsDNA "melts" a net-change (drop) in fluorescence is seen when a dsDNA intercalating dye (e.g. EvaGreen®) is present
- The point at which the dsDNA "melts" is dependent upon
  - Size of amplicon
  - Nucleotide composition
- Approach applied to the referred sample

#### **Results - controls**





3.500 E-1 3.000 E-1 2.500 E-1 2.000 E-1 Probable primer artefacts (~75 °C) 1.500 E-1 5.000 E-2 Detector: SYBR → Plot: Derivative → Step: Stage 3, step 3 →

**Prunus species controls** 

**Negative and peanut controls** 

# Results – test samples





Paprika-based referred sample and almond controls

- All of the Prunus species (peach, apricot, mahaleb and almond) amplified
- Two distinct peaks were present in the dissociation plots of the referred sample
  - One peak consistent with almond
  - Other peak not consistent with any of the control samples currently studied





**Conclusion** - a profile had been generated from the referred sample which was consistent with

- Almond being present
- ... and a second Prunus like species has been detected
- Sample considered non compliant with relevant UK/EU labelling legislation

### **Case 2 Summary**



- ELISA continued application for screening for the authenticity of spices
  - Limitations in terms of cross-reactivity with many members of the Prunus family
- Mass spectrometry
  - No mahaleb specific peptide signatures seen
  - Peptides characteristic of Prunus species (almond) observed



- Real-time PCR
  - No detectable presence of mahaleb; almond confirmed
- DNA melt-curve analysis
  - Demonstrated that it can detect DNA from specific Prunus species
  - Multi-analyte capability
- Non-compliant with relevant food labelling legislation
- In isolation, none of the applied techniques could answer, in a forensically robust manner, the question of whether almond or mahaleb or both were present in the cumin
  - DNA provided best evidence of the particular species present
- Method has been submitted as a peer reviewed paper

### **Further information - GOV.UK news stories**





https://www.gov.uk/government/news/cumin-analysis-dna-test-for-mahaleb-developed



https://www.gov.uk/government/news/paprika-referee-sample-further-testing-identifies-almond-present



# Novel technologies

# **Multispectral** imaging



- Multispectral Imaging (MSI) uses the simultaneous measurement of both:
  - Reflected light across a broad range of wavelengths
  - An order of spatial magnitude



 . . . to allow fast and accurate determination of surface colour, texture and chemical composition of ingredients

MSI

Approach

- Advantages:
  - Rapid
  - Non-destructive
  - Contact free
  - Highly automated
  - Limited requirement for specialist training
  - Multi-analyte
  - Range of applications, e.g. food authenticity



# **Application of MSI to herbs and spices testing - Oregano**





31



# Overall summary

### **Summary**



- Food allergies represent a definite threat to the general health and wellbeing
- In 2015, two samples of herbs and spices were referred to the Government Chemist for analysis
- Multi disciplinary approach (ELISA, MS, DNA)
  - Prunus nut species identified
  - DNA provided species identification
  - Novel molecular tests developed targeting P. mahaleb and the Prunus genus
- New analytical approaches and technologies offer enhanced capabilities within the spice and herb testing sector

# **Acknowledgements**



- LGC
  - Malcolm Burns
  - Michael Walker
  - Laurie Hall
  - Kirstin Gray
- Government Chemist programme 2014-2017
- Department for Business Innovation and Skills (BIS)
- UK Food Standards Agency (FSA)







**FUNDED BY BIS** 

