Assessing new nuclear power station designs Generic design assessment of Hitachi-GE's Advanced Boiling Water Reactor Assessment report - AR04 Gaseous waste We are the Environment Agency. We protect and improve the environment. Acting to reduce the impacts of a changing climate on people and wildlife is at the heart of everything we do. We reduce the risks to people, properties and businesses from flooding and coastal erosion. We protect and improve the quality of water, making sure there is enough for people, businesses, agriculture and the environment. Our work helps to ensure people can enjoy the water environment through angling and navigation. We look after land quality, promote sustainable land management and help protect and enhance wildlife habitats. And we work closely with businesses to help them comply with environmental regulations. We can't do this alone. We work with government, local councils, businesses, civil society groups and communities to make our environment a better place for people and wildlife. Natural Resources Wales is the largest Welsh Government Sponsored Body - employing 1,900 staff across Wales. We were formed in April 2013, largely taking over the functions of the Countryside Council for Wales, Forestry Commission Wales and the Environment Agency in Wales, as well as certain Welsh Government functions. - Adviser: principal adviser to Welsh Government, and adviser to industry and the wider public and voluntary sector, and communicator about issues relating to the environment and its natural resources - Regulator: protecting people and the environment including marine, forest and waste industries, and prosecuting those who breach the regulations that we are responsible for - Designator: for Sites of Special Scientific Interest – areas of particular value for their wildlife or geology, Areas of Outstanding Natural Beauty (AONBs), and National Parks, as well as declaring National Nature Reserves - Responder: to some 9,000 reported environmental incidents a year as a Category 1 emergency responder - Statutory consultee: to some 9,000 planning applications a year - Manager/Operator: managing seven per cent of Wales' land area including woodlands, National Nature Reserves, water and flood defences, and operating our visitor centres, recreation facilities, hatcheries and a laboratory - Partner, Educator and Enabler: key collaborator with the public, private and voluntary sectors, providing grant aid, and helping a wide range of people use the environment as a learning resource; acting as a catalyst for others' work - Evidence gatherer: monitoring our environment, commissioning and undertaking research, developing our knowledge, and being a public records body - Employer: of almost 1,900 staff, as well as supporting other employment through contract work. #### Published by: Environment Agency Horizon house, Deanery Road, Bristol BS1 5AH Email: enquiries@environmentagency.gov.uk www.gov.uk/environment-agency from our publications catalogue: www.gov.uk/government/publications Further copies of this report are available or our National Customer Contact Centre: T: 03708 506506 Email: enquiries@environment-agency.gov.uk. © Environment Agency 2016 All rights reserved. This document may be reproduced with prior permission of the Environment Agency. # **Executive summary** # Protective status This document contains no sensitive nuclear information. # Process and Information Document¹ The following section of Table 1 in our process and information document (P&ID) (Environment Agency, 2013) is relevant to this assessment: Item 5: Quantification of radioactive waste disposals. Provide quantitative estimates for normal operation of discharges of gaseous and aqueous radioactive wastes and provide proposed limits for gaseous and aqueous discharges. #### Radioactive Substances Regulation Environmental Principles² The following principle (Environment Agency, 2010) is relevant to this assessment: RSMDP12 – limits and levels on discharges. Limits and levels should be established on the quantities of radioactivity that can be discharged into the environment where these are necessary to secure proper protection of human health and the environment. #### Report author Dr Claire Cailes This report presents the findings of the assessment of information relating to gaseous radioactive discharges and proposed gaseous discharge limits that Hitachi-GE provided for the UK ABWR design, submitted to the Environment Agency under the generic design assessment (GDA) process. This report considers submissions received up to and including 8 July 2016. During our assessment we raised one Regulatory Issue (RI), 2 Regulatory Observations (ROs) and 7 Regulatory Queries (RQs) related to gaseous radioactive discharges and proposed limits. We conclude that Hitachi-GE has provided us with information on estimated gaseous discharges and proposed limits, and that it is clear how it has derived these discharge estimates and that the estimates are supported by suitable evidence. We conclude that the proposed annual gaseous discharge limits for the UK ABWR are derived in a way that is consistent with our guidance and are of an appropriate order of magnitude. We conclude that the gaseous discharges from the UK ABWR should not exceed those of comparable power stations across the world, and will be capable of meeting the limits set out below (Table 1): ¹ Process and Information Document for Generic Assessment of Candidate Nuclear Power Plant Designs, Version 2, Environment Agency, March 2013. http://webarchive.nationalarchives.gov.uk/20151009003754/https://www.gov.uk/government/publications/assessment-of-candidate-nuclear-power-plant-designs ² Regulatory Guidance Series, No RSR 1: Radioactive Substances Regulation – Environmental Principles, Version 2, Environment Agency, April 2010. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/296388/geho0709bgsb-e-e.pdf Table 1. Proposed annual limits for gaseous discharges from the UK ABWR | Radionuclide or radionuclide group | Proposed annual limit for UK ABWR (Bq) | |------------------------------------|--| | Argon-41 (Ar-41) | 5.2E+12 | | Carbon-14 (C-14) | 1.7E+12 | | Tritium (H-3) | 1.0E+13 | | Noble gases (excluding argon-41) | 2.2E+11 | At the time of writing (5 August 2016), RI-ABWR-0001 and RO-ABWR-0006, related to the radioactive source term for the UK ABWR, remain open, and there is a small risk that the UK ABWR source term for GDA may change. Therefore, we have identified the following potential GDA Issue: Potential GDA Issue 2 – Source terms for the UK ABWR. We require Hitachi-GE to provide a suitable and sufficient definition and justification for the radioactive source terms in the UK ABWR during normal operations No Assessment Findings (AFs) have been identified during this assessment. # Contents | Executive summary | 4 | |---|----| | Contents | 6 | | 1. Introduction | 7 | | 1.1. Scope of this assessment | 7 | | 1.2. Statute, policy, guidance and requirements | 7 | | 2. Design summary: gaseous discharges from UK ABWR | 8 | | 2.1. Off-gas system | 9 | | 2.2. Heating, ventilation and air-conditioning system | 9 | | 2.3. Turbine gland steam system | 10 | | 2.4. Estimated gaseous discharges and proposed limits | 10 | | 3. Assessment | 12 | | 3.1. Assessment methodology | 12 | | 3.2. Assessment objectives | 13 | | 3.3. Hitachi-GE documentation | 13 | | 3.4. Our assessment | 14 | | 3.5. Assessment results | 16 | | 4. Compliance with Environment Agency requirements | 26 | | 5. Public comments | 26 | | 6. Conclusion | 27 | | References | 28 | | List of abbreviations | 30 | # 1. Introduction This assessment considers the information that Hitachi-GE provided for its UK ABWR design. This report considers submissions received up to and including 8 July 2016. This assessment considers the gaseous radioactive discharges and proposed gaseous discharge limits that Hitachi-GE provided for the UK ABWR design. The assessment aims to establish whether the design could be operated in England and Wales in line with UK statute, policy and guidance on radioactive waste, or if changes to the design are required. The assessment also aims to identify any areas where not enough information has been provided in GDA, and any issues that should be taken forward to be considered at the site-specific permitting stage. Any potential GDA Issues related to gaseous radioactive discharges, which Hitachi-GE would need to address before the end of the GDA process, are also set out in this report. We expect new nuclear power plants to use best available techniques (BAT) to prevent and, where that is not practicable, minimise the creation of radioactive wastes, and to minimise the impact of discharges of radioactive waste on the environment. We have considered the application of BAT for the UK ABWR design, including BAT for gaseous radioactive discharges, in another assessment report (Environment Agency, 2016a). Our consideration as to the acceptability of proposed discharges will be carried forward into our radiological impact assessment, both in terms of impact on members of the public and non-human species, for which we have written separate assessment reports (Environment Agency, 2016b, 2016c). We have assessed the aqueous radioactive discharges and proposed limits for the UK ABWR; details of this assessment can be found in a separate assessment report (Environment Agency, 2016d). ## 1.1. Scope of this assessment This assessment considers gaseous radioactive waste arisings from all aspects of normal operation, for example, at power, start-up, shut-down, outage, and discharges resulting from any other events expected to occur during the lifetime of the reactors ('expected events'). This
assessment report does not cover gaseous radioactive waste arising from decommissioning at the end of the reactor life cycle. Our assessment of the UK ABWR decommissioning strategy is the subject of a separate assessment report (Environment Agency, 2016e). The information Hitachi-GE provided does not consider discharges to the atmosphere from the service building. The structure of the service building is defined in GDA, but the services are not fully defined at this stage. Therefore, the details of the discharges from the service building will not be known until site-permitting stage. Any future operator will need to quantify discharges to the atmosphere from the service building. Hitachi-GE states that initial assessment of the gaseous discharges from the service building shows that these would be negligible. In addition, discharges from the dry solid low level waste (LLW) processing facility, the intermediate level waste (ILW) store and interim spent fuel store are not provided. These facilities are at concept design stage only. Any future operator will need to quantify discharges to the atmosphere from these facilities. Hitachi-GE states that the discharges from these facilities are expected to be a small fraction of the overall site discharges. # 1.2. Statute, policy, guidance and requirements In our process and information document (P&ID) (Environment Agency, 2013), we set out our requirements to a requesting party (RP); the RP in this case is Hitachi-GE. Hitachi-GE is required to: - provide quantitative estimates for normal operation of discharges of gaseous waste - · provide estimates for monthly discharges: - o on an individual radionuclides basis for significant radionuclides - on a group basis for other radionuclides - via each discharge point and discharge route - clearly show the contribution to gaseous discharges that each constituent aspect of normal operations makes including: - routine operation - start-up and shutdown - maintenance and testing - infrequent but necessary aspects of operation, for example, plant wash-out; and the foreseeable, undesired deviations from planned operation consistent with the use of BAT, for example, occasional fuel pin failures ('expected events') - support gaseous discharge estimates with performance data from similar facilities and explain, where relevant, how changes in design or operation from those facilities affect the expected discharges - demonstrate that discharges and waste arisings will not exceed those of comparable power stations across the world - provide proposed limits for gaseous discharges (on a rolling 12-month basis) and explain how these limits were derived The P&ID (Environment Agency, 2013) provides more detail on what constitutes 'normal operation' and 'significant radionuclides'. Normal operation includes the operational fluctuations, trends and events that are expected to occur over the lifetime of the facility, such as start-up, shutdown, maintenance etc. It does not include increase discharges arising from other events, inconsistent with the use of BAT, such as accidents, inadequate maintenance, and inadequate operation. Significant radionuclides are those which: - · are significant in terms of the radiological impact for people or non-human species - are significant in terms of the quantity of radioactivity discharged - have long half-lives, may persist and/or accumulate in the environment, and may contribute significantly to collective dose - are significant indicators of facility performance and process control We published our Radioactive Substances Regulation Environmental Principles (REPs) in 2010 (Environment Agency, 2010). The REP that is most relevant to assessing gaseous discharges is: RSMDP12 – limits and levels on discharges. Limits and levels should be established on the quantities of radioactivity that can be discharged into the environment where these are necessary to secure proper protection of human health and the environment. # 2. Design summary: gaseous discharges from UK ABWR The UK ABWR discharges gaseous radioactive waste into the environment via the main stack located on the reactor building. Gaseous waste reaches the stack via one of 3 routes, via the off- gas system (OG), via the heating, ventilation and air conditioning system (HVAC) or via the turbine gland steam system (TGS). Radionuclides discharged to the environment as gaseous waste are produced by 3 mechanisms within the reactor core: - fission products produced from fission of tramp uranium or from leakage from fuel pin failure - corrosion products produced from materials dissolved into the reactor water or particulates arising from wear and tear of the reactor - activation products produced by neutron activation of water Hitachi-GE has considered gaseous discharges arising from all modes of normal operation: start-up, at power, shutdown, outage and discharges resulting from any other events expected to occur during the lifetime of the reactor ('expected events'). Hitachi-GE identified one expected event for the UK ABWR, which was fuel pin failure. Information and assessment of aspects related to application of BAT for gaseous discharges can be found in another assessment concerned with the assessment of BAT for the UK ABWR design (Environment Agency, 2016a). ## 2.1. Off-gas system The steam that leaves the reactor and travels to the turbines contains radionuclides. As the steam is condensed in the condenser, most radionuclides are also condensed and contained within the reactor water/steam circuit. However, some do not condense and instead enter the OG before being released to the atmosphere as gaseous radioactive discharges. Abatement techniques used in the OG reduce the amount of radionuclides that are discharged into the environment. Radioactive gases are delayed within the OG to enable those with short half-lives to decay before being discharged. Also, radioactive gases are filtered to remove particulate matter before being discharged. At present there are no practicable techniques for abatement of carbon-14, and this is discharged to the environment from the stack via the OG. The OG contains 4 charcoal beds which the radioactive gases are passed through. The charcoal beds adsorb radioactive noble gases, allowing those radionuclides with short half-lives to decay within the OG rather than being discharged to the environment. Hitachi-GE states that the charcoal beds hold up isotopes of xenon for 30 days and isotopes of krypton for 40 hours, which reduces discharges of radioactive krypton and xenon to the environment by 99.997%. Radioactive argon is also held up by the delay beds for 7 hours, which reduces discharges of radioactive argon by 93%. lodine radionuclides are largely condensed and remain in the reactor circuit. Any iodine radionuclides that reach the OG are held up by the delay beds, reducing the amount that are discharged into the environment via this route to very low levels. Tritium is largely removed from the OG gaseous waste stream by the OG recombiner and condenser. The recombiner joins hydrogen and oxygen to create water, which is condensed and returns to the condensate storage tank (CST) to be reused within the plant. Gaseous radioactive discharges are released from the stack via the OG during start-up, at power, and shutdown. However, during outage, the turbine and condenser are isolated from the reactor by closure of the main steam isolation valves. Therefore, there are no discharges via the OG during outage. # 2.2. Heating, ventilation and air-conditioning system The HVAC maintains negative pressure in areas containing radioactivity by constantly drawing in air from around the plant, and discharging it to the atmosphere. This reduces uncontrolled releases of radioactivity through doors, windows and gaps. The HVAC is operational during all stages of normal operation, including outage. The UK ABWR employs high efficiency particulate air (HEPA) filters to reduce the amount of particulates in gaseous waste being discharged into the environment. Tritium and iodine radionuclides are discharged from the stack via the HVAC route. ## 2.3. Turbine gland steam system The TGS supplies sealing steam to the high pressure and low pressure turbine glands – the gaps between the rotating shaft of the turbine, and the turbine casing. The sealing steam is supplied to the high pressure turbine gland to prevent the release of reactor water and steam from the turbine to the turbine building, as the high pressure turbine internal pressure is positive compared with the turbine gland. The sealing steam is supplied to the low pressure turbine to prevent air leaking into the main condenser, as the low pressure turbine internal pressure is negative compared with the turbine gland. The steam used in the TGS is generated from liquid in the CST which contains radionuclides. After the steam has passed through the turbine glands, it is condensed. Any radionuclides that do not condense, and instead remain in the gaseous phase, are discharged into the environment via the main stack. Tritium and iodine radionuclides are discharged to the environment from the TGS. Particulates are also discharged, although HEPA filters are used to reduce these. For the purposes of estimating discharges, Hitachi-GE assumes that 100% of carbon-14 is partitioned into the gaseous phase and released from the stack via the OG. Therefore, Hitachi-GE assumes that there is no carbon-14 in the CST and so there are assumed to be no discharges of carbon-14 via the TGS. We discuss the assumption that no carbon-14 remains in the liquid phase further in our assessment reports concerned with aqueous radioactive discharges (Environment Agency, 2016d) and BAT (Environment Agency, 2016a). Discharges from the TGS occur during start-up, at power and shutdown. There are no discharges from the TGS during outage as the turbine does not operate during outage. ### 2.4. Estimated gaseous discharges and
proposed limits Hitachi-GE has provided us with information on the estimated annual gaseous discharges in generic environmental permit (GEP) Revision F 'Quantification of discharges and limits', Table 7.1-8 (Hitachi-GE, 2016). In addition, the estimated discharges from a fuel-pin failure is provided in GEP Revision F 'Quantification of discharges and limits', Table 7.1-10 (Hitachi-GE, 2016). Hitachi-GE has identified some radionuclides as 'significant' for gaseous discharges to the environment and, therefore, important in any future site-specific permitting. Significant radionuclides are those that are discharged in large quantities, those with the biggest impact on members of the public and the environment, those that are indicators of plant performance or those that are listed in the European Commission recommendations (EC, 2004). The main gaseous discharges, in terms of amount discharged into the environment, are noble gases (argon-41 and isotopes of xenon and krypton), carbon-14 and tritium (H-3). Iodine radionuclides and some radioactive particulates are discharged from the stack in smaller amounts. Hitachi-GE has provided us with proposed annual rolling limits for discharges of gaseous radioactive waste from the UK ABWR (Table 2). Annual limits are proposed for significant radionuclides, and are based on annual discharge estimates for normal operation plus discharges resulting from fuel pin failure. Hitachi-GE has conservatively based its annual discharge limits on the assumption of one fuel pin failure in any 12 months; Hitachi-GE states that the actual rate of fuel pin failure is expected to be much lower. Hitachi-GE assumes that elevated gaseous discharges continue for 14 days until power suppression isolates the failed fuel pin. Table 2: Annual rolling limits for gaseous radioactive waste discharged from the UK ABWR, as proposed by Hitachi-GE | Radionuclide or radionuclide group | Proposed annual limit for the UK ABWR (Bq) | |------------------------------------|--| | Argon-41(Ar-41) | 5.2E+12 | | Carbon-14 (C-14) | 1.7E+12 | | Tritium (H-3) | 1.0E+13 | | Noble gases (excluding argon-41) | 2.2E+11 | The proposed annual limits include a headroom factor that is applied to the discharges from normal operation. The headroom factor for each radionuclide or radionuclide group has been derived based on the variability of data used to estimate the gaseous discharges; the headroom factors for significant radionuclides range from 1.9 to 3.8. Hitachi-GE has taken into account our guidance on limit setting (Environment Agency, 2012) when deriving the gaseous discharge limits for the UK ABWR. Estimated annual discharges of radionuclides and proposed annual limits provided by Hitachi-GE are shown in Table 3. The proposed annual limit for noble gases, excluding argon-41, is the sum of the proposed limits for the individual krypton and xenon isotopes. Table 3: Annual discharges of radionuclides and associated limits for the UK ABWR, as proposed by Hitachi-GE | Radionuclide | Annual
discharge (Bq) | Headroom
factor | Discharge
from fuel pin
failure (Bq) | Proposed
annual limit
(Bq) | | |--------------------|--|--------------------|--|----------------------------------|--| | H-3 | 2.7E+12 | 3.8 | 0 | 1.0E+13 | | | C-14 | 9.1E+11 | 1.9 | 0 | 1.7E+12 | | | Ar-41 | 1.8E+12 | 2.9 | 0 | 5.2E+12 | | | Kr-85 | 1.0E+08 | 2.1 | 1.1E+09 | 1.3E+09 | | | Kr-85m | 2.3E+09 | | 5.5E+09 | 1.0E+10 | | | Kr-87 | 2.3E+03 | | 5.0E+03 | 9.8E+03 | | | Kr-88 | 1.8E+08 | | 5.5E+08 | 9.3E+08 | | | Xe-131m | 1.4E+08 | | 2.6E+09 | 2.9E+09 | | | Xe-133 | 1.0E+10 | | 1.8E+11 | 2.0E+11 | | | Xe-133m | 1.7E+06 | | 1.4E+07 | 1.8E+07 | | | Xe-135 | 1.7E-11 | | 3.1E-11 | 0* | | | Total for noble ga | Total for noble gases (excluding Ar-41) 2.2E+11 | | | | | ^{*}Hitachi-GE omit discharges of Xe-135 from the calculations for the annual limit for noble gases as the discharges of this radionuclide are small. We also note that the operator will have a range of discharge reporting obligations, above those of the significant nuclides, for example the pollution inventory. This can be achieved through monitoring or by estimation or calculation accompanied by an appropriate level of supporting evidence. # 3. Assessment Hitachi-GE provided its GDA submission to regulators for assessment. This consisted of the generic environmental permit (GEP), pre-construction safety report (PCSR) and supporting documents. ## 3.1. Assessment methodology The basis of our assessment was to: - assess appropriate sections of the GEP and its supporting documents - · assess appropriate sections of the PCSR and its supporting documents - hold technical meetings with Hitachi-GE to discuss the information presented and explain any concerns that we had with that information - raise RQs to clarify our understanding of the information presented - raise ROs and RIs where we believed that information provided was insufficient or unacceptable - · consider the gaseous waste disposal limits proposed for the UK ABWR - · compare gaseous discharges from the UK ABWR to that of other plants around the world - · identify any potential GDA Issues or AFs Leading up to our public consultation, our assessment consisted of 2 stages; initial assessment stage and detailed assessment stage. Hitachi-GE provided its GDA submission to us in December 2013. We carried out our initial assessment and concluded that we needed additional information and improved clarity on some aspects of the submission. Together with the Office for Nuclear Regulation (ONR), we raised one RO on Hitachi-GE concerning source terms for the UK ABWR design. We also raised 2 RQs that are relevant to this report. Hitachi-GE submitted its updated submission in August 2014 and we carried out our detailed assessment. Together with ONR, we raised one RI on Hitachi-GE concerning source terms for the UK ABWR. We also raised one RO concerned with the TGS. Five RQs were also raised that are relevant to this report. A number of other RQs raised during the detailed assessment, concerned the gaseous radioactive waste system and application of BAT. We discuss these further in our assessment report on BAT for the UK ABWR design (Environment Agency, 2016a). In total, we raised one RI, 2 ROs and 7 RQs over the course of our assessment that are relevant to this report (see Section 3.4 for more detail). Hitachi-GE responded to the RQs and we accepted the responses. It reviewed and updated its GEP submission in February 2016 (Revision E) and July 2016 (Revision F) (Hitachi-GE, 2016), and also updated relevant supporting documents, to include information provided in response to the RQs. At the time of writing (5 August 2016), the RI and RO concerned with source terms for the UK ABWR remain open and our assessment of the responses to these is ongoing. The RO on the TGS also remains open. ## 3.2. Assessment objectives This assessment considered if our requirements on gaseous discharges, as listed in the P&ID (Environment Agency, 2013) have been adequately addressed, and aims to answer the following questions: - · Have all sources of gaseous radioactive waste for the UK ABWR been identified? - Have gaseous radioactive discharges from the UK ABWR been presented, and is the derivation of these discharges clear and supported with suitable evidence? - Have the annual gaseous disposal limits for the UK ABWR been proposed, and is the derivation of these limits clear and appropriate? - Do gaseous radioactive discharges from the UK ABWR exceed that of other comparable reactors across the world? #### 3.3. Hitachi-GE documentation The relevant chapters of the GEP and PCSR, plus relevant supporting documents that have been referred to during this assessment are listed in Table 4. In addition, documents Hitachi-GE submitted in response to RQs were also assessed. Table 4: Hitachi-GE submissions referred to for assessment of gaseous radioactive waste disposals | Document reference | Revision | Title | |----------------------|----------|--| | GA91-9901-0019-00001 | A-F | Summary of generic environmental permit applications | | GA91-9901-0025-00001 | A-F | Quantification of discharges and limits | | GA91-9901-0023-00001 | A-F | Demonstration of BAT | | GA91-9201-0003-00353 | 0-2 | Methodology for expected event selection | | GA91-9201-0001-00160 | 0-2 | Topic report on discharge assessment during normal operation | | GA91-9201-0003-00942 | 0-1 | Source term manual general report | | GA91-9201-0003-00863 | 0-2 | Primary source term methodology report | | GA91-9201-0003-00946 | 0-3 | Process source term methodology report | | GA91-9201-0003-00944 | 0-4 | Calculation of process source term value | | GA91-9201-0003-00976 | 0-1 | End user source term methodology report | | GA91-9201-0003-00941 | 0-2 | Nuclide selection by end-user requirement | | GA91-9201-0002-00054 | 3 | Off-gas system basis of safety case | | GA91-9201-0001-00125 | 2 | Topic report on ALARP assessment for off-gas system | | GA91-9101-0101-18003 | В | Generic PCSR Sub-chapter 18.3: off-gas radioactive waste management system | #### 3.4. Our assessment During our initial assessment, we raised one RO and two RQs that were related to gaseous discharges from the UK ABWR. During our detailed assessment, we raised one RI, one RO and 5 RQs that were relevant to gaseous discharges from the UK ABWR. #### 3.4.1. RO, RI and two RQs on source terms for the UK-ABWR We and ONR raised RO-ABWR-0006 on 28 April 2014. Two of the actions under the RO requested the definition and justification of the radiological source terms for the UK ABWR design. We raised this because Hitachi-GE's GDA submission lacked information regarding radionuclides in the UK ABWR during normal operation. The submission also lacked
evidence to support the gaseous and aqueous discharge estimates and proposed limits. We received a resolution plan for this RO on 15 July 2014 and we had regular meetings with Hitachi-GE between July and December 2014. Two reports were submitted to us in January 2015 that both we and ONR assessed. These reports were intended to address the definition and justification of source terms for the UK ABWR. These reports did not meet our expectations, and together with ONR, we provided feedback to Hitachi-GE outlining shortfalls in the reports. We challenged the approach and methodology used to derive the UK ABWR source terms, the limited use of operational experience (OPEX) data from other operating ABWRs and the evidence on which discharge estimates were based. Together with ONR, we escalated the RO to an RI. A workshop was held on 19, 20 and 22 May 2015 at which we and ONR presented our requirements to Hitachi-GE and gave some examples of source terms that we have assessed for other nuclear power plant designers and operators. RI-ABWR-0001 was raised on 3 June 2015. We held regular meetings with ONR and Hitachi-GE from June 2015 to July 2016. Hitachi-GE changed its approach to deriving and justifying source terms for the UK ABWR, using more OPEX data and providing more explanation of the methods used. Between November 2015 and February 2016 we received a number of reports documenting the derivation and justification of the UK ABWR source term. These provided information on the primary source term (radionuclides in the reactor water and steam), process source terms (radionuclides in different downstream systems within the plant) and end-user source terms (which included the source terms for gaseous and aqueous discharges). On 15 January 2016, we raised 2 RQs concerning the source term documentation. RQ-ABWR-0721 was raised on 15 January 2016 and requested more information on how the levels of gaseous discharges that are released during a fuel pin failure were derived. Hitachi-GE responded on 26 February 2016 providing more information on the OPEX used to derive the source terms for fuel pin failure and showing that any gaseous discharges during outage following fuel pin failure would be negligible. We accepted this response. RQ-ABWR-0722 was raised on 15 January 2016 and posed a series of questions about the selection of radionuclides in the source term, including how radionuclides were selected for the source term for gaseous and aqueous discharges. Hitachi-GE responded to this RQ on 26 February 2016. Its response included details of how it had selected the radionuclides for the gaseous and aqueous discharges that is, based on OPEX, dose modelling and European Commission recommendations. We accepted this response. In November 2015, we received a report from Hitachi-GE on source terms for discharges during normal operation, which was updated in February and June 2016. The GEP submission was updated to take account of the updated source term. At the time of writing (5 August 2016), both RI-ABWR-0001 and RO-ABWR-0006 remain open. A workshop was held between 26 and 29 July 2016 to discuss progress in this area. We and ONR agreed that information Hitachi-GE provided in response to RI-ABWR-0001 is now at a standard that meets our regulatory expectations; our technical assessor and ONR inspectors have recommended that RI-ABWR-0001 is closed. Until RI-ABWR-0001 and RO-ABWR-0006 are formally closed, the estimated gaseous and aqueous radioactive discharges, estimated solid radioactive waste arisings, decommissioning source term and radiological impact assessments for GDA could change. We believe that the risk of significant changes to the source term in GDA is low, but if changes did occur, they may affect our draft conclusions on the acceptability of the UK ABWR design. As our assessment in this area is ongoing, we have identified the following potential GDA Issue: Potential GDA Issue 2 – Source terms for the UK ABWR. We require Hitachi-GE to provide a suitable and sufficient definition and justification for the radioactive source terms in the UK ABWR during normal operations #### 3.4.2. Other RQs raised during our assessment RQ-ABWR-0193 was raised on 22 July 2014, asking about the effectiveness of the charcoal adsorbers over the 60-year operational lifetime of the UK ABWR. Hitachi-GE responded on 18 December 2014 stating that the risk of the charcoal deteriorating during the 60-year operational period was sufficiently low and that regular monitoring would take place to ensure that the charcoal beds remained functional. This statement was based on OPEX from 20 plants, only one of which had required replacement of charcoal due to reduced efficiency. We accepted this response. RQ-ABWR-0194 was raised on 22 July 2014, requesting evidence that fuel pin failure was the only expected event for a UK ABWR, taking into account the 60-year operational life of the reactor. Hitachi-GE responded on 29 January 2015 and submitted a supporting document describing its methodology for selecting expected events. This document listed all of the systems within the UK ABWR that contain radioactivity and identified over 160 events that could occur within these systems. The document described how only one of these events, fuel pin failure, is expected to occur during the operational life of the reactor, and would result in the release of radioactivity to the environment. We accepted this response. RQ-ABWR-0355 was raised on 7 January 2015, requesting Hitachi-GE demonstrate that the UK ABWR discharges would not exceed that of comparable power stations from across the world. This is one of our requirements laid out in the P&ID (Environment Agency, 2013). The GEP Revision D submission did not provide any information on this or any commitment to provide it in future GEP revisions. Hitachi-GE responded to this RQ on 11 June 2015, providing some detail on discharges from comparable reactors. However, the response lacked discussion on comparison of the UK ABWR discharges with that of the other reactors, particularly reasons for differences. We provided feedback to Hitachi-GE at a GEP progress meeting held on 28 to 29 July 2015. Hitachi-GE provided more information and improved discussion in the GEP Revision E submission. We accepted this response. We also undertook our own comparison of the UK ABWR discharges with that of other BWRs (see Section 3.5). RQ-ABWR-0803 was raised on 17 March 2016 to ask for clarification on the identification of expected events for the UK ABWR. The response to a previous RQ (RQ-ABWR-0721) had mentioned unplanned shutdown as an expected event. However, the GEP supporting document on expected event selection identified fuel pin failure as the only expected event. Hitachi-GE responded to this RQ on 15 April 2016, stating that unplanned shutdown does not meet the definition of an expected event, as it does not lead to increased discharges to the environment, and that the terminology in the previous RQ response would be clarified. We accepted this response. RQ-ABWR-0850 was raised on 18 April 2016, requesting additional justification for the selection of the headroom factor used to derive the proposed limits for gaseous and aqueous discharges. Hitachi-GE derived the headroom factor for each radionuclide based on the variability of the OPEX data used to derive the source term, and assumed that this variability was linearly related to the expected variability in the discharges. We requested justification to support this assumption and also for some discussion on the quality of the data used to underpin the headroom factor. Hitachi-GE responded on 1 June 2016, explaining the basis for the assumption that variability in OPEX data was linearly related to variability in discharges, and presented graphs showing the distribution of OPEX data. We accepted this response. #### 3.4.3. RO on turbine gland steam system During our detailed assessment of the UK ABWR design, it became apparent that a source of discharges to the atmosphere had been omitted from the submission. This source was the TGS that uses steam, generated from liquid in the CST, to seal the turbine shaft. Together with ONR, we raised RO-ABWR-0071 on 6 June 2016, requesting more information on the TGS, including information on application of BAT and discharges. Hitachi-GE submitted a resolution plan that was accepted by the regulators. Hitachi-GE has submitted information in response to this RO. Hitachi-GE updated the GEP Revision F submission to include discharges from the TGS, therefore these discharges are included in the information assessed for this report and in the proposed gaseous discharge limits. However, at the time of writing (5 August 2016), we have not assessed all the information that Hitachi-GE has provided in response to this RO, and our assessment in this area is ongoing. At the time of writing (5 August 2016), this RO remains open. #### 3.5. Assessment results This section summarises the results of our assessment of the information Hitachi-GE provided with respect to gaseous discharges and proposed limits for the UK ABWR design. We consider each of our assessment objectives in turn. Have all sources of gaseous radioactive waste for the UK ABWR been identified? Hitachi-GE has considered gaseous radioactive waste from all aspects of normal operation, including from fuel pin failure. Radioactive wastes discharged from the stack via the OG, HVAC and TGS have been considered. Hitachi-GE updated its GEP Revision F submission (Hitachi-GE, 2016) to include gaseous discharges from the TGS, and submitted this along with other information in response to RO-ABWR-0071. We are satisfied that discharges from this source have been adequately captured in the submission, although our assessment of accompanying information regarding BAT aspects of this system is ongoing. We have agreed that gaseous discharges from the dry solid LLW processing facility, ILW store, interim
spent fuel store, and service building are out-of-scope for GDA and will need to be considered, as necessary, at the site-specific permitting stage. We conclude that all sources of gaseous radioactive waste have been identified, noting those sources that are out of scope for GDA. Have gaseous radioactive discharges from the UK ABWR been presented and is the derivation of these discharges clear and supported with suitable evidence? Hitachi-GE has presented estimated gaseous discharges for the UK ABWR in GEP Revision F submission 'Quantification of discharges and limits' chapter (Hitachi-GE, 2016). Deriving estimated discharges is part of wider work to define and justify the source terms for the UK ABWR and is currently the subject of RI-ABWR-0001 and RO-ABWR-0006. Hitachi-GE has provided a number of documents in response to this RI and RO. Hitachi-GE has changed its approach and methodology to deriving and justifying the source terms for the UK ABWR, and has made significant improvements in this area following regulatory intervention. Documents provided in response to RI-ABWR-0001 have been accepted by regulators, and closure of this RI has been recommended to the GDA project. We conclude that Hitachi-GE has presented estimates of gaseous discharges for the UK ABWR. It is clear how these discharge estimates have been derived and this is supported by suitable evidence. Until RI-ABWR-0001 and RO-ABWR-0006 are formally closed, the estimated gaseous and aqueous radioactive discharges, estimated solid radioactive waste arisings, decommissioning source term and radiological impact assessments for GDA could change. We believe that the risk of significant changes to the source term in GDA is low, but if changes did occur, they may affect our draft conclusions on the acceptability of the UK ABWR design. As our assessment in this area is ongoing, we have identified the following potential GDA Issue: Potential GDA Issue 2 – Source terms for the UK ABWR. We require Hitachi-GE to provide a suitable and sufficient definition and justification for the radioactive source terms in the UK ABWR during normal operations Have the annual gaseous disposal limits for the UK ABWR been proposed, and is the derivation of these limits clear and appropriate? Hitachi-GE has provided proposed annual gaseous discharge limits for the UK ABWR in the GEP Revision F submission 'Quantification of discharge and limits' chapter (Hitachi-GE, 2016). The limits have been derived by adding a headroom factor onto the estimated discharges. The headroom factor is based on the variability of the data on which the source term is based. Annual limits have been proposed for those radionuclides that Hitachi-GE has identified as significant in gaseous discharges: carbon-14, tritium and noble gases (argon-41 and isotopes of krypton and xenon). We are satisfied that the selection of significant radionuclides is appropriate, and consistent with European Commission recommendations (EC, 2004) and our guidance (Environment Agency, 2012). When permitting a new facility, we recognise that there may be considerable uncertainty regarding the level of discharges to the environment. Therefore, new facilities may have greater headroom than facilities that are already operating. Hitachi-GE has been conservative when estimating gaseous discharges for the UK ABWR. Therefore, we expect gaseous discharges to be lower than those detailed in the GEP. We conclude that gaseous discharge limits for the UK ABWR have been proposed, and that the derivation of these limits is consistent with our guidance and of an appropriate order of magnitude. Do gaseous radioactive discharges from the UK ABWR exceed that of other comparable reactors across the world? Since the beginning of nuclear power generation, regulators have required operators of nuclear power stations to take samples, carry out measurements and determine radioactivity in discharges. These measurements are particularly valuable in confirming what the impact is on the environment and whether there is any impact on the food chain. The main radionuclides or radionuclide groups discharged from nuclear power stations as gaseous waste include: - tritium (H-3) a low energy beta emitting radionuclide with a half-life of 12.3 years - carbon-14 (C-14) a low energy beta emitter with a very long half-life. It can be taken up by crops - noble gases (isotopes of krypton and xenon, and argon-41) beta and gamma emitters. Halflives of noble gases vary from a few minutes to years - iodine radionuclides several radionuclides of iodine are formed during nuclear fission. The most important of these is iodine-131, a beta and gamma emitter with a relatively short half-life of 8 days. It can be deposited in crops and then ingested, or can be deposited on grass which is grazed by cows and subsequently appears in milk - particulates this group includes fission products such as caesium-137 with a half-life of 30 years, and activated corrosion products such as cobalt-60 with a half-life of 5.3 years. We commissioned Public Health England to gather data and information on radioactive discharges from comparable boiling water reactors (BWRs) worldwide. The results of this work are published in a report (Environment Agency, 2016f). The authors obtained discharge data by contacting the relevant operators and regulators, or from publicly available sources. In order to compare discharges between different reactors, the report presents discharges having normalised them to gigabecquerels per gigawatt-hour (GBq/GWeh). Data were normalised based on actual power output for the operating reactors. Data were collected for BWRs in Finland, Germany, Japan, Spain, Sweden, Switzerland and USA. In total, data from 24 BWR stations were collected, although data were not available for all radionuclides for every power station. In order to compare discharges from the UK ABWR with those of other BWRs, the UK ABWR discharges have been normalised to gigabecquerels per gigawatt-hour (GBq/GWeh). Data were normalised based on estimated discharges at full power. Care must be taken not to draw comparisons too closely as there are many uncertainties in the data, including variation in sampling and monitoring techniques between different power stations. #### 3.5.1. Tritium (H-3) Annual gaseous tritium discharges from BWRs range from 3.4E-06 to 1.5 GBq/GWeh. The UK ABWR annual gaseous tritium discharge is 2.3E-01 GBq/GWeh. Data are presented in Table 5 and Figure 1. Table 5: Normalised annual gaseous tritium discharges from BWRs and normalised estimated annual gaseous tritium discharges for the UK ABWR n=number of plants for which data were obtained | | Year | Mean gaseous
(GBq/GWeh) | s H-3 discharge | s n | | |---------|------|----------------------------|-----------------|---------|----| | | | Mean | Minimum | Maximum | | | BWR | 2005 | 1.6E-01 | 6.4E-03 | 5.0E-01 | 15 | | | 2006 | 1.7E-01 | 2.0E-02 | 6.7E-01 | 15 | | | 2007 | 1.5E-01 | 1.3E-02 | 5.6E-01 | 16 | | | 2008 | 1.1E-01 | 1.3E-05 | 3.7E-01 | 16 | | | 2009 | 1.3E-01 | 2.2E-02 | 4.0E-01 | 16 | | | 2010 | 1.4E-01 | 1.9E-02 | 5.6E-01 | 17 | | | 2011 | 1.0E-01 | 3.4E-06 | 3.8E-01 | 17 | | | 2012 | 1.8E-01 | 1.3E-02 | 1.5E+00 | 16 | | | 2013 | 2.1E-01 | 2.4E-03 | 1.5E+00 | 16 | | UK ABWR | | 2.3E-01 | | | | Figure 1: Mean normalised annual gaseous tritium discharges for BWRs 2005 to 2013 Solid pink line shows normalised UK ABWR estimated annual gaseous tritium discharges Estimated annual discharges of gaseous tritium from the UK ABWR are higher than the mean annual discharges of gaseous tritium from other operating BWRs and sit within the upper end of the range of discharge data obtained from other operating BWRs. In its submission, Hitachi-GE suggests that the apparent higher gaseous tritium discharges from the UK ABWR compared with other operating BWRs is due to conservative assumptions that have been made when estimating gaseous discharges. The majority of the tritium discharges reach the stack via the TGS. Hitachi-GE states that, for the purposes of estimating discharges, the steam flow rate of the TGS is assumed to be at a maximum margin; in reality, the flow rate will be lower during plant operation. The assumption of maximum steam flow rate leads to higher estimated discharges via this route. At the time of writing, we are pursuing further explanation from Hitachi-GE for the apparent higher gaseous tritium discharges from the UK ABWR compared with that from other operating BWRs. #### 3.5.2. Noble gases Annual noble gas discharges from BWRs range from 4.8E-06 to 7.9 GBq/GWeh. The UK ABWR estimated annual noble gas discharge with and without fuel pin failure is 1.7E-01 and 1.5E-01 GBq/GWeh respectively. Data are presented in Table 6 and Figure 2. Table 6: Normalised annual noble gas discharges from BWRs and normalised estimated annual noble gas discharges for the UK ABWR n=number of plants for which data were obtained | | Year | Mean noble
(GBq/GWeh | e gas discharges
n) | | n | |---------------------------|--------------|-------------------------|------------------------|---------|----| | | | Mean | Minimum | Maximum | | | BWR | 2005 | 1.5E+00 | 2.7E-02 | 1.6E+01 | 15 | | | 2006 | 1.1E+00 | 1.0E-05 | 7.2E+00 | 17 | | | 2007 | 1.2E+00 | 1.4E-02 | 5.1E+00 | 15 | | | 2008 | 8.0E-01 | 4.8E-06 | 3.5E+00 | 15 | | | 2009 | 1.1E+00 | 5.8E-03 | 7.9E+00 | 14 | | | 2010 | 6.7E-01 | 4.8E-03 | 3.7E+00 | 19 | | | 2011 | 7.5E-01 | 8.1E-04 | 4.6E+00 | 18 | | | 2012 | 8.7E-01 | 3.3E-03 | 7.0E+00 | 15 | | | 2013 | 7.8E-01 | 5.9E-04 | 6.6E+00 | 16 | | UK ABWR (no fuel failure) | | 1.5E-01 | | | | | UK ABWR (with fu | iel failure) | 1.7E-01 | | | | Figure 2: Mean normalised annual noble gas discharges from BWRs 2005 to 2013 Solid pink line shows normalised UK ABWR estimated annual noble gas discharges excluding discharges from fuel pin failure. Dashed purple line shows normalised UK ABWR estimated annual noble gas discharges including
discharges from a failed fuel pin Estimated annual discharges of noble gases from the UK ABWR are lower than the mean annual discharges of noble gases from other operating BWRs and sit at the lower end of the range of data obtained for operating BWRs. #### 3.5.3. lodine radionuclides Annual gaseous discharges of iodine radionuclides from BWRs range from 7.3E-11 to 2.1E-02 GBq/GWeh. The UK ABWR estimated annual gaseous discharge of iodine radionuclides is 2.7E-05 GBq/GWeh. Data are presented in Table 7 and Figure 3. Table 7: Normalised annual gaseous discharges of iodine radionuclides from BWRs and normalised estimated annual gaseous discharges of iodine radionuclides for the UK ABWR n=number of plants for which data were obtained | | Year | | Mean gaseous discharges of iodine radionuclides (GBq/GWeh) | | | |---------|------|---------|--|---------|----| | | | Mean | Minimum | Maximum | | | BWR | 2005 | 8.5E-05 | 7.3E-11 | 8.0E-04 | 17 | | | 2006 | 2.4E-04 | 1.6E-08 | 3.0E-03 | 17 | | | 2007 | 2.0E-04 | 4.7E-09 | 2.3E-03 | 18 | | | 2008 | 8.2E-05 | 1.8E-07 | 6.6E-04 | 14 | | | 2009 | 1.2E-04 | 7.3E-09 | 1.2E-03 | 17 | | | 2010 | 1.3E-03 | 1.1E-07 | 2.1E-02 | 19 | | | 2011 | 2.4E-04 | 6.5E-08 | 3.0E-03 | 22 | | | 2012 | 2.1E-05 | 1.8E-08 | 1.2E-04 | 15 | | | 2013 | 2.9E-05 | 1.4E-07 | 1.3E-04 | 14 | | UK ABWR | - | 2.7E-05 | | | | Estimated annual discharges of gaseous iodine radionuclides from the UK ABWR are lower than the mean annual discharges of gaseous iodine radionuclides from other operating BWRs and sit at the lower end of the range of data obtained for operating BWRs. Figure 3: Mean normalised annual gaseous discharges of iodine radionuclides from BWRs 2005 to 2013 Pink line shows normalised UK ABWR estimated annual gaseous discharges of iodine radionuclides #### 3.5.4. Particulates Annual airborne particulate discharges from BWRs range from 1.3E-13 to 1.6E-04 GBq/GWeh. The UK ABWR estimated annual airborne particulate discharge is 2.1E-08 GBq/GWeh. Data are presented in Table 8 and Figure 4. Estimated annual discharges of airborne particulates from the UK ABWR are lower than the mean annual discharges of airborne particulates from other operating BWRs and sit at the lower end of the range of data obtained for operating BWRs. Table 8: Normalised annual gaseous particulate discharges from BWRs and normalised estimated annual gaseous particulate discharges for the UK ABWR | n=number of plants for which data were obtained | n=number of | plants for | which data | were | obtained | |---|-------------|------------|------------|------|----------| |---|-------------|------------|------------|------|----------| | | Year | Mean gaseous particulate discharges (GBq/GWeh) | | | n | |---------|------|--|---------|---------|----| | | | Mean | Minimum | Maximum | | | BWR | 2005 | 9.1E-06 | 1.7E-08 | 4.8E-05 | 16 | | | 2006 | 1.6E-05 | 2.2E-07 | 1.6E-04 | 15 | | | 2007 | 9.5E-06 | 2.0E-08 | 7.9E-05 | 17 | | | 2008 | 5.7E-06 | 3.9E-09 | 2.7E-05 | 17 | | | 2009 | 1.1E-05 | 2.2E-08 | 3.4E-05 | 16 | | | 2010 | 9.2E-06 | 6.9E-09 | 3.6E-05 | 15 | | | 2011 | 5.7E-06 | 5.0E-09 | 2.2E-05 | 16 | | | 2012 | 4.5E-06 | 1.3E-13 | 2.3E-05 | 16 | | | 2013 | 4.8E-06 | 2.2E-09 | 3.1E-05 | 16 | | UK ABWR | | 2.1E-08 | | | | Figure 4: Mean normalised annual airborne particulate discharges from BWRs 2005 to 2013 Pink line shows normalised UK ABWR estimated annual airborne particulate discharges #### 3.5.5. Carbon-14 Annual gaseous carbon-14 discharges from BWRs range from 5.2E-03 to 1.1E-01 GBq/GWeh. The UK ABWR estimated annual gaseous carbon-14 discharge is 7.7E-02 GBq/GWeh. Data are presented in Table 9 and Figure 5. Table 9: Normalised annual gaseous carbon-14 discharges from BWRs and normalised estimated annual gaseous carbon-14 discharges for the UK ABWR n=number of plants for which data were obtained | | Year | Mean gaseous carbon-14 discharges (GBq/GWeh) | | | n | |---------|------|--|---------|---------|----| | | | Mean | Minimum | Maximum | | | BWR | 2005 | 5.8E-02 | 3.1E-02 | 1.1E-01 | 5 | | | 2006 | 4.6E-02 | 4.1E-03 | 1.0E-01 | 5 | | | 2007 | 7.1E-02 | 4.2E-02 | 1.1E-01 | 6 | | | 2008 | 5.6E-02 | 3.4E-02 | 9.9E-02 | 6 | | | 2009 | 5.9E-02 | 3.7E-02 | 9.0E-02 | 6 | | | 2010 | 5.5E-02 | 3.6E-02 | 1.0E-01 | 17 | | | 2011 | 6.0E-02 | 3.4E-02 | 8.9E-02 | 17 | | | 2012 | 5.7E-02 | 5.2E-03 | 8.3E-02 | 16 | | | 2013 | 6.1E-02 | 1.4E-02 | 8.2E-02 | 16 | | UK ABWR | | 7.7E-02 | | - | | Figure 5: Mean normalised annual gaseous carbon-14 discharges from BWRs 2005 to 2013 Pink line shows normalised UK ABWR estimated annual gaseous carbon-14 discharges Estimated annual discharges of gaseous carbon-14 from the UK ABWR are higher than the mean annual discharges of gaseous carbon-14 from other operating BWRs and sit in the upper end of the range of data obtained for operating BWRs. Hitachi-GE has not provided an explanation as to why the gaseous carbon-14 discharges from the UK ABWR are higher than the mean carbon-14 discharges from other operating BWRs. At the time of writing, we are pursuing this with Hitachi-GE. #### 3.5.6. Conclusion Estimated annual gaseous discharges of noble gases, iodine radionuclides and airborne particulates from the UK ABWR are lower than mean gaseous discharges for other operating BWRs. Estimated annual gaseous discharges of carbon-14 and tritium from the UK ABWR are higher than the mean discharges from other operating BWRs, but still sit within the range of data values obtained for operating BWRs across the world. Hitachi-GE states that the UK ABWR is not significantly better than currently operating BWRs with regards to tritium and carbon-14 discharges, because no viable abatement techniques are available for these radionuclides. This is discussed further in a separate assessment report on the application of BAT (Environment Agency, 2016a). We conclude that gaseous radioactive discharges from the UK ABWR do not exceed those of comparable power stations across the world. # 4. Compliance with Environment Agency requirements **Table 10. Compliance with Environment Agency requirements** | P&ID Table 1 Section or REP | Compliance comments | |---|---| | P&ID Table 1 section 5: Quantification of radioactive waste disposals. Provide quantitative estimates for normal operation of discharges of gaseous and aqueous radioactive wastes. Provide proposed limits for gaseous and aqueous discharges | Hitachi-GE has provided estimates of gaseous radioactive waste disposals for normal operation; how it has derived these estimates is clear and supported by suitable evidence. Hitachi-GE has provided proposed limits for the disposal of gaseous radioactive waste; how it has derived these limits is clear and consistent with our guidance (Environment Agency, 2012). Our assessment of discharges of aqueous radioactive wastes is provided in a separate assessment report (Environment Agency, 2016d). | | RSMDP12 – Limits and levels on discharges: Limits and levels should be established on the quantities of radioactivity that can be discharged into the environment where these are necessary to secure proper protection of human health and the environment | Hitachi-GE has provided proposed limits for
the disposal of gaseous radioactive waste;
how it has derived these limits is clear and
consistent with our guidance (Environment
Agency, 2012). Our assessment of
discharges of aqueous radioactive wastes is
provided in a separate assessment report
(Environment Agency, 2016d) | # 5. Public comments Hitachi-GE received 3 public comments up to 8 July 2016 concerned with gaseous discharges to the environment. On 7 January 2014, Hitachi-GE received a comment asking how the UK ABWR design prevented fission product release into the condenser cooling water and then to atmosphere via cooling towers. Hitachi-GE responded to this comment, stating that, in the UK ABWR design, there is no pathway for fission products to reach the condenser water circulation pipes for release to the environment via that route. In addition, Hitachi-GE stated that the OG is designed to minimise fission product release to the atmosphere by allowing radioactivity to decay prior to release. On 16 February 2016, 2 comments were received concerning errors in diagrams in the PCSR chapter 18 on the OG. Hitachi-GE responded that the errors in the diagrams would be updated in future revisions of the PCSR. # 6. Conclusion We are satisfied that Hitachi-GE has identified all sources of gaseous radioactive waste, noting that gaseous discharges from the dry solid LLW facility, ILW store, interim spent fuel store, and service building are out-of-scope for GDA and will need to be considered, as necessary, at site-specific permitting stage. Hitachi-GE has provided us with estimates of gaseous radioactive discharges for the UK ABWR. We conclude that the derivation of these estimates is appropriate, clear and supported by suitable evidence. We conclude that gaseous discharge limits for the UK ABWR are consistent
with our guidance and of an appropriate order of magnitude. We conclude that the gaseous discharges from the UK ABWR should not exceed those of comparable power stations across the world, and will be capable of meeting the limits set out in Table 11 below: Table 11. Proposed annual limits for gaseous discharges from the UK ABWR | Radionuclide or radionuclide group | Proposed annual limit for the UK ABWR (Bq) | |------------------------------------|--| | Argon-41 (Ar-41) | 5.2E+12 | | Carbon-14 (C-14) | 1.7E+12 | | Tritium (H-3) | 1.0E+13 | | Noble gases (excluding argon-41) | 2.2E+11 | We raised RO-ABWR-0006 and RI-ABWR-0001 on source terms for the UK ABWR. At the time of writing (5 August 2016) RI-ABWR-0001 and RO-ABWR-0006 remain open. Until these are formally closed, the estimated gaseous and aqueous radioactive discharges, estimated solid radioactive waste arisings, decommissioning source term and radiological impact assessments for GDA could change. We believe that the risk of significant changes to the source term in GDA is low, but if changes did occur, they may affect our draft conclusions on the acceptability of the UK ABWR design. As our assessment in this area is ongoing, we have identified the following potential GDA Issue: Potential GDA Issue 2 – Source terms for the UK ABWR. We require Hitachi-GE to provide a suitable and sufficient definition and justification for the radioactive source terms in the UK ABWR during normal operations # References | Author | Reference | |------------------------------|---| | DECC, 2009 | Statutory Guidance to the Environment Agency concerning the regulation of radioactive discharges into the environment. Department of Energy and Climate Change and Welsh Assembly Government, 2009. | | Environment Agency,
2010 | Radioactive Substances Regulation – Environmental Principles, Regulatory Guidance Series No RSR1, Version 2. Environment Agency, 2010. | | Environment Agency,
2012 | Criteria for setting limits in the discharge of radioactive waste from nuclear sites. Version 1. Environment Agency, 2012. | | Environment Agency, 2013 | Process and Information Document for Assessment of Candidate Nuclear Power Plant Designs. Version 2. Environment Agency, 2013. | | | http://webarchive.nationalarchives.gov.uk/20151009003754/https://www.gov.uk/government/publications/assessment-of-candidate-nuclear-power-plant-designs | | Environment Agency,
2016a | Generic design assessment of new nuclear power plant: assessment of best available techniques for Hitachi-GE UK ABWR design. AR03. | | Environment Agency,
2016b | Generic design assessment of new nuclear power plant: assessment of radiological impacts on members of the public for Hitachi-GE UK ABWR design. AR09. | | Environment Agency,
2016c | Generic design assessment of new nuclear power plant: assessment of radiological impacts on non-human species for Hitachi-GE UK ABWR design. AR10. | | Environment Agency,
2016d | Generic design assessment of new nuclear power plant: assessment of aqueous radioactive waste disposal and limits for Hitachi-GE UK ABWR design. AR05. | | Environment Agency,
2016e | Generic design assessment of new nuclear power plant: assessment of solid radioactive waste and spent fuel for Hitachi-GE UK ABWR design. AR06. | | Environment Agency,
2016f | Discharges from Boiling Water Reactors; A review of available discharge data. Environment Agency, 2016. | | EC, 2004 | EU Commission Recommendation 2004/2/Euratom of 18 December 2003 on standardised information on radioactive airborne and liquid discharges into the environment from nuclear power reactors and reprocessing plants in normal operation. | | Author | Reference | |------------------|--| | Hitachi-GE, 2016 | Quantification of discharges and limits, GA91-9901-0025-00001, Revision F. | # List of abbreviations | Abbreviation | Details | |--------------|---| | ABWR | Advance Boiling Water Reactor | | AF | Assessment Finding | | BAT | best available techniques | | BWR | Boiling Water Reactor | | CST | condensate storage tank | | GDA | generic design assessment | | GEP | generic environmental permit | | HEPA | high efficiency particulate air | | HVAC | heating, ventilation and air conditioning system | | ILW | intermediate level waste | | LLW | low level waste | | OG | off-gas system | | ONR | Office for Nuclear Regulation | | OPEX | operational experience | | P&ID | process and information document | | PCSR | pre-construction safety report | | REP | Radioactive Substances Regulation Environmental Principle | | RI | Regulatory Issue | | RO | Regulatory Observation | | RP | Requesting Party | | RQ | Regulatory Query | | Abbreviation | Details | |--------------|-----------------------------------| | TGS | turbine gland steam system | | UK ABWR | UK Advanced Boiling Water Reactor | # NRW Customer Care Centre 0300 065 3000 (Mon-Fri, 9am-5pm) Our Customer Care Centre handles everything from straightforward general enquiries to more complex questions about registering for various permits and can provide information about the following topics: - · water and waste exemptions - lower and Upper Tier Carrier & Broker registrations - hazardous waste registrations - fish net licences - cockling licences - · water resources permit applications - · waste permit applications - water quality permit applications - · permit applications for installations - marine licence applications - · planning applications - · publications #### Email enquiries@naturalresourceswales.gov.uk ### By post Natural Resources Wales c/o Customer Care Centre Ty Cambria 29 Newport Rd Cardiff CF24 0TP # Incident Hotline 0800 80 70 60 (24 hour service) You should use the Incident Hotline to report incidents such as pollution. You can see a full list of the incidents we deal with on our report it page. # Floodline 0345 988 1188 (24 hour service) Contact Floodline for information about flooding. Floodline Type Talk: 0345 602 6340 (for hard of hearing customers). # Would you like to find out more about us or about your environment? Then call us on 03708 506 506 (Monday to Friday, 8am to 6pm) email enquiries@environment-agency.gov.uk or visit our website www.gov.uk/environment-agency incident hotline 0800 807060 (24 hours) floodline 0345 988 1188 (24 hours) Find out about call charges (www.gov.uk/call-charges)