Rapid DNA Sequencing for **Food Authentication**

Monee Shamsher

21 June 2016

leatherhead food research

Science Group

science group

Defined by science Inspired by technology Delivering innovation

sagentia

Science, technology & product development

oakland innovation

Technology consultancy for the consumer & industrial sectors

otm

Technology advisory services to the oil & gas industry

leatherhead food research

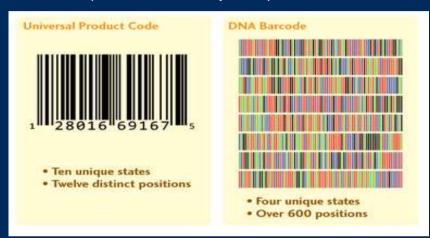
Science & technology advisory services to the food & drinks market

TIME Quotes of the Day

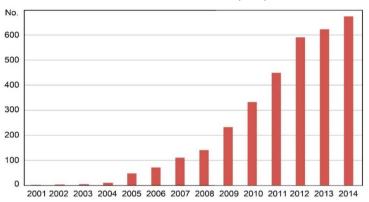
66 If you're paying for white tuna and you're eating tilapia, I think you'd want to know that. 99

August 22, 2008

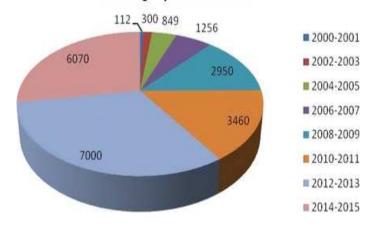
Detecting Food Adulteration


Technique	Number of ref.	Technique	Number of ref.
Sample preparation		Spectroscopic	
Microwave-assisted extraction	384	Mass spectrometry	5030
Headspace	2571	Fluorescence	4807
Solid phase extraction	3866	NMR	3735
Supercritical fluid extraction	680	Infrared	2369
Purge and trap	151	X-ray	2119
Flow injection analysis	393	Ultraviolet	1429
Pressurized liquid extraction	436	Atomic spectroscopy	1046
Microextraction	2201	Electron spectroscopy	1026
Biological		Light scattering	891
Biosensors	750	Circular dichroism	468
PCR	7085	Other	932
Microbiological analysis	416	Rheological	
Recombinant DNA	220	Creep	205
Immunological techniques	3008	Oscillatory shear	203
Others	118	Rheometry	195
Separation		Viscometry	163
Liquid chromatography	8927	Stress relaxation	145
Gas chromatography	4798	Normal stress	32
SDS/PAGE	3227	Thermal	
Capillary electrophoresis	1155	DSC	551
Supercritical fluid chromatography	51	Thermogravimetry	17
LC LC, LC-LC	27	The mochemical	16
GC GC, GC-GC	210	Differential thermal analysis	9
LC-GC	38	Electrochemical	
Radiochemical		Biosensors	750
Radioimmunoassay	96	Voltammetry	532
Isotopic	140	Potentiometry	234
Radiochemical	31	Amperometry	245
Radiometric	18	Polarography	47
Radioisotope	8	Conductometry	43
Radiotracer	5	Coulometry	32
Radiolabelling	2		

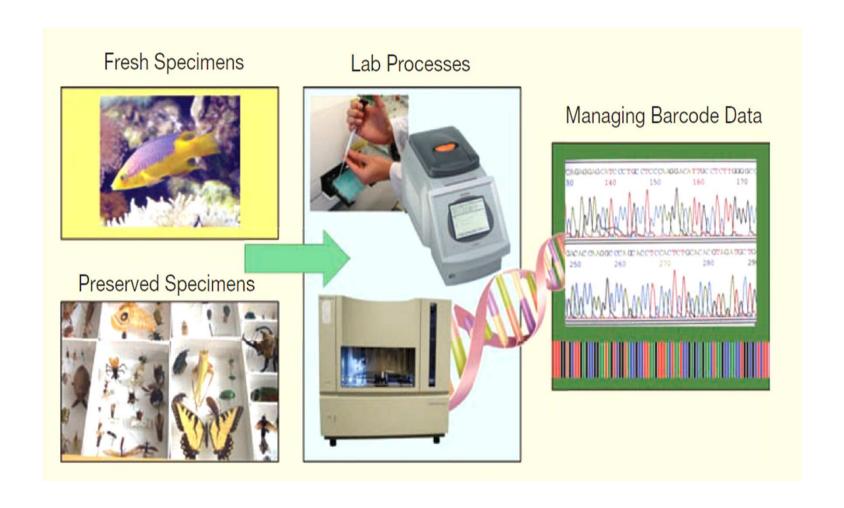
Number of works published in the period 2001–2011 found through a search in the database of Food Science and Technology Abstracts (FSTA) Review Article: Food Analysis: Present, Future, and Foodomics Alejandro Cifuentes 2012


DNA barcoding

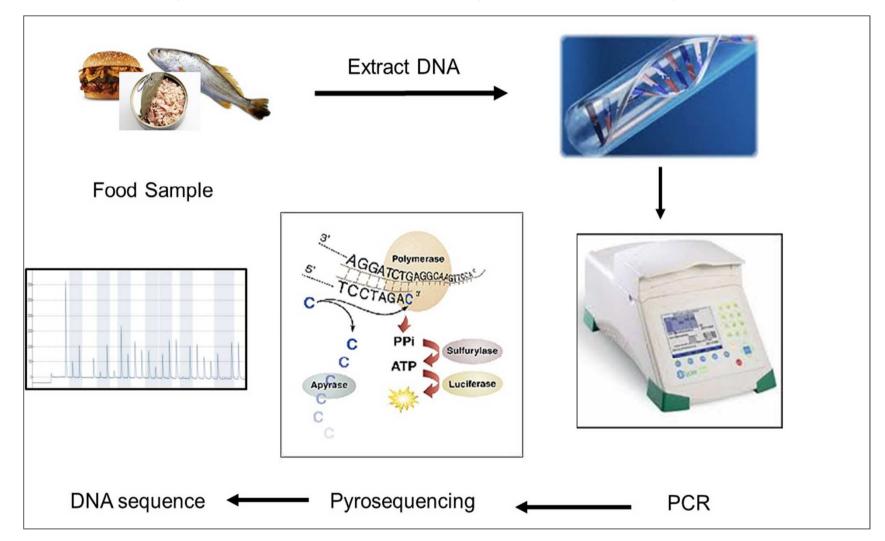
 Genetic fingerprint of a short section of DNA (<1000 base pairs)



- BOLD is a searchable high quality repository of reference sequences for all living species
- Species (breed) identification based on core assumption that DNA sequences are likely more similar to one another within species than between species
- 97% -100% species resolution

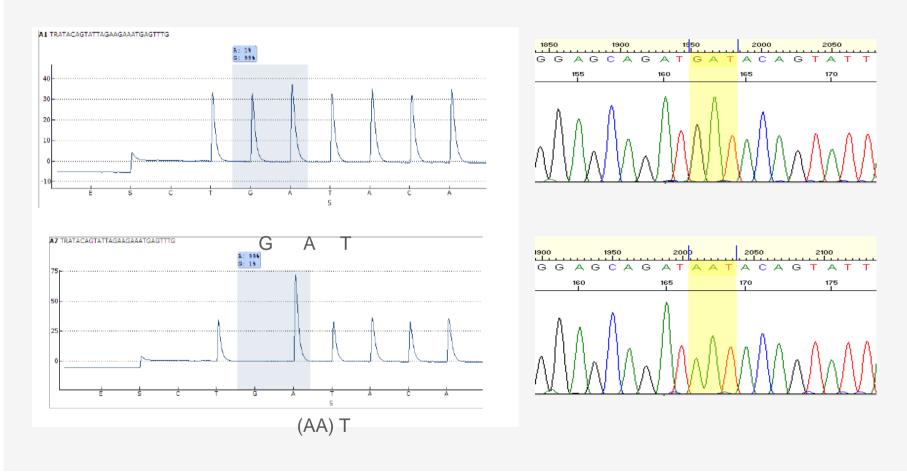

Number of scientific papers found in the database of ISI Web of Science using the keyword "DNA barcoding" Barcaccia, G., Lucchin, M., & Cassandro, M. (2015)

Total number (approx.) of peer reviewed manuscripts using DNA barcoding for plant identification


Processes in DNA Barcoding

CIENTIFIC REPORTS Suk Acc Pu nucleotide substitution(s) in 100 bp minibarcode was specific to St determine species OPEN A DNA Mini-Barcoding System for Authentication of Processed Fish Sa **Products** Received: 17 July 2015 Accepted: 05 October 2015 Published: 30 October 2015

Shadi Shokralla^{1,2}, Rosalee S. Hellberg³, Sara M. Handy⁴, lan King¹ & Mehrdad Hajibabaei¹


ASPECT (Authentication and Speciation Test)

Pyrosequencing for food authentication

Why choose pyrosequencing?

• offers the highest accuracy with readouts of 99.9% for the longest read length which is currently 700 base pairs

Quantitative identification of plant genera in food products using PCR and Pyrosequencing((R)) leatherhead technology food research

Article in Food Control 18(8):921-927 · August 2007

Article

pubs.acs.org/JAFC

Pyrosequencing as a Tool for Rapid Fish Species Identification and **Commercial Fraud Detection**

Cristian De Battisti,**,† Sabrina Marciano,† Cristian Magnabosco,^{‡,⊥} Sara Busato,† Giuseppe Arcangeli,‡ and Giovanni Cattoli[†]

Application of Pyrosequencing® in Food Biodefense

Article in Methods in molecular biology (Clifton, N.J.) 1315:363-75 · June 2015

Development of the ASPECT method

Sample size and DNA extraction

Design of primers

PCR conditions

Pyrosequencing Dispensation sequence

Determining Limit of **Detection (LOD)** for each primer sets

In silico program development for automation of analysis

Sampling

- Homogenous
- Size

DNA extraction efficiency

- adulterant DNA extract at same efficiency
- Admixture of authenticated raw horsemeat in beef background at 0.1, 0.5, 1, 2, 5, 10, 20 and 50% (w/w)
- Numerous commercially available test kits were assessed

200 mg – 2g sample; CTAB method

Development of the ASPECT method

Sample size and DNA extraction

Design of primers

PCR conditions

Pyrosequencing Dispensation sequence

Determining Limit of **Detection (LOD)** for each primer sets

In silico program development for automation of analysis

Conserved PCR and sequencing primers

Aligning sequences to allow discrimination between species

cow goat emu

Optimising cycling conditions

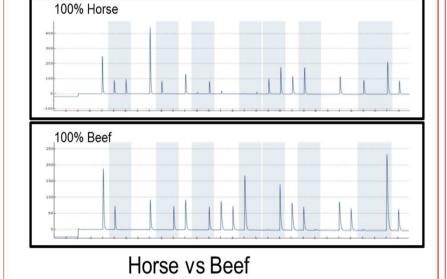
- end point PCR conditions
- Amplicons tested on Lab-on-chip

Universal primer sets for meat/fish

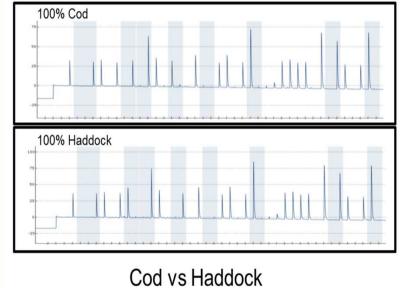
Development of the ASPECT method

Sample size and DNA extraction

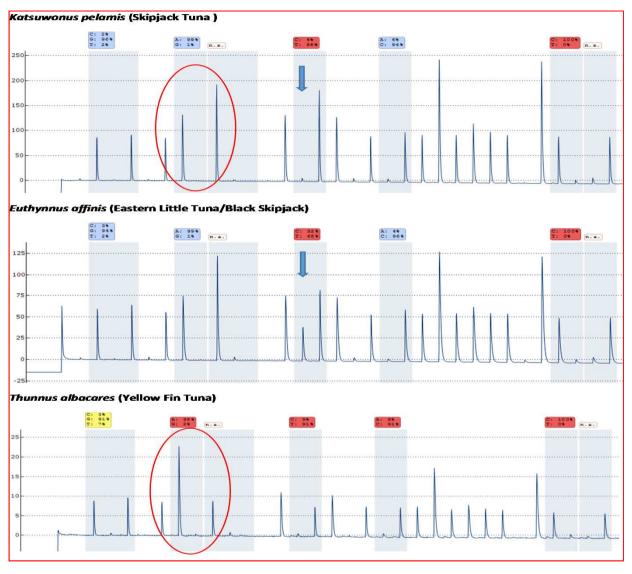
Design of primers


PCR conditions

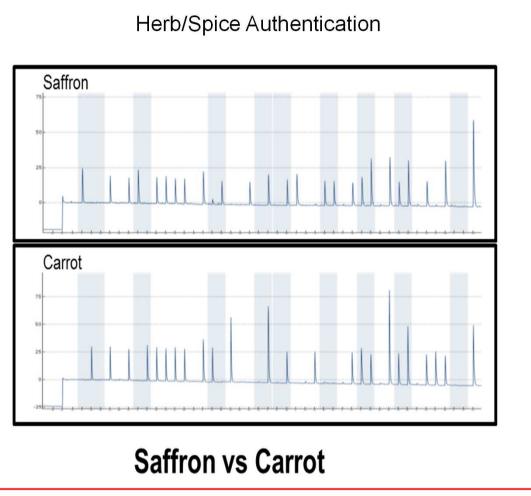
Pyrosequencing Dispensation sequence

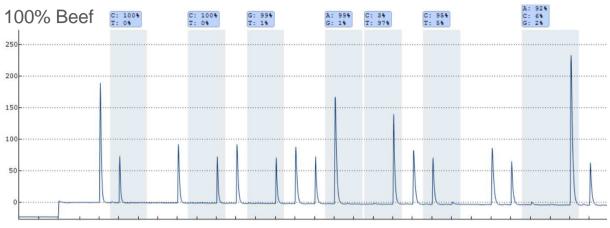

Determining Limit of **Detection (LOD)** for each primer sets

In silico program development for automation of analysis

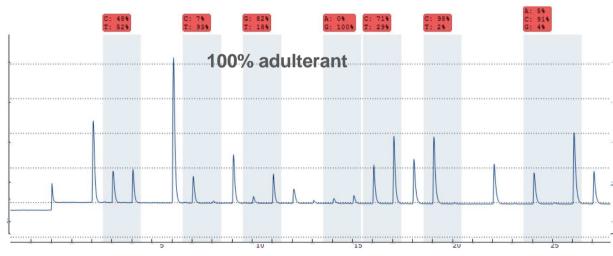


Fish Authentication


Fish Authentication



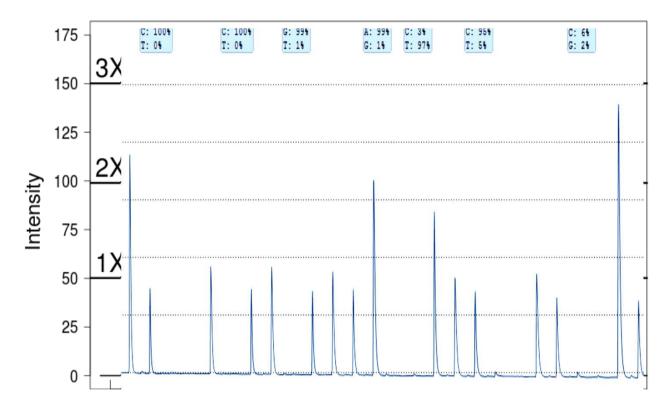
Application to Herbs and Spices

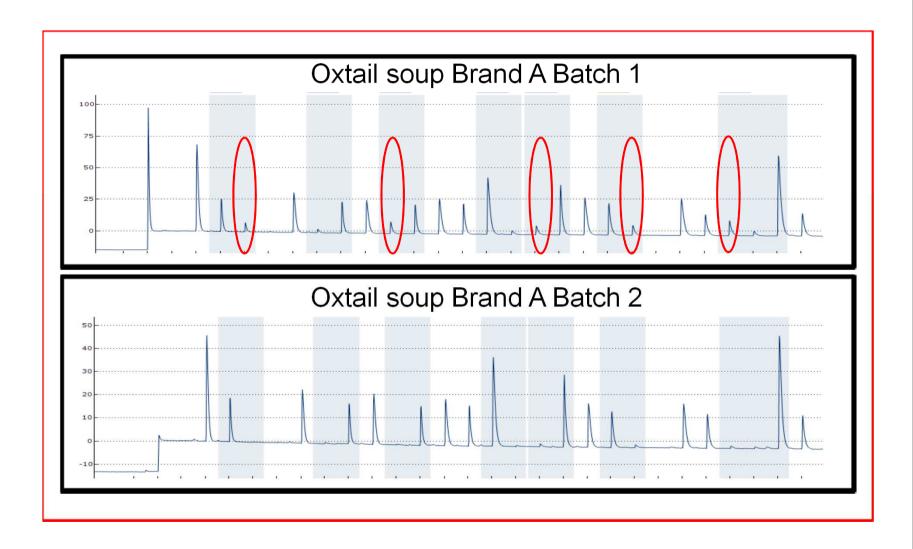


Admixtures of authentic horsemeat in beef 0.1, 0.2, 0.5, 1, 2, 10, 20 and 50% w/w

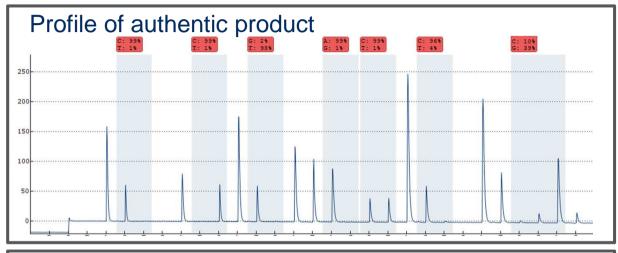
In-house validation and limit of detection (LOD) of ASPECT

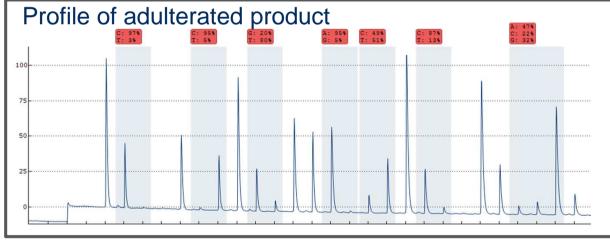
Authenticated horsemeat and beef:


- Admixtures of meat in 0.1, 0.2, 0.5, 1, 2, 10, 20 and 50% w/w
- Mixtures of horse DNA: beef DNA (following DNA extraction)


	SNV#1	SNV#2	SNV#3	SNV#4	SNV#5	SNV#7
Horsemeat in Beef (% w/w)	Mean ± standard deviation for N					
0 % (100 % Beef)	99.4 ± 0.5	98.8 ± 2.3	98.4 ± 1.8	96.9 ± 3.7	93.5 ± 0.5	90.8 ± 2.2
0.1 %	99.0 ± 0.3	98.7 ± 0.6	98.7 ± 0.1	97.8 ± 0.5	94.0 ± 0.3	93.6 ± 0.1
0.2 %	98.4 ± 1.6	98.2 ± 0.6	98.3 ± 0.5	95.1 ± 2.7	89.8 ± 6.0	88.6 ± 2.4
0.5 %	98.7 ± 1.3	98.7 ± 0.8	98.9 ± 0.1	98.1 ± 0.5	94.0 ± 1.5	93.5 ± 0.2
1 %	96.5 ± 0.1	96.6 ± 0.6	98.1 ± 0.5	96.4 ± 0.3	88.1 ± 4.3	86.2 ± 2.3
1/10 dilution of 1 %	96.5 ± 0.1	96.2 ± 0.3	98.2 ± 0.4	95.8 ± 1.0	88.7 ± 3.5	87.5 ± 3.2
1/100 dilution of 1 %	96.3 ± 0.2	96.5 ± 0.3	98.5 ± 0.4	96.5 ± 0.4	86.3 ± 7.1	84.0 ± 1.6
2 %	96.0 ± 0.4	96.1 ± 0.4	98.1 ± 0.4	96.0 ± 1.5	85.5 ± 4.2	85.2 ± 3.5
10 %	84.7 ± 0.8	82.8 ± 0.8	97.4 ± 1.7	95.0 ± 3.4	74.5 ± 6.1	71.5 ± 7.6
20 %	76.1 ± 0.4	72.4 ± 2.3	95.8 ± 2.7	90.9 ± 8.4	58.6 ± 1.3	60.3 ± 5.6
50 %	74.5 ± 0.4	67.9 ± 2.8	96.0 ± 3.3	91.9 ± 6.7	65.4 ± 1.9	54.7 ± 2.2
100 % (100% Horsemeat)	49.4 ± 1.9	7.9 ± 8.0	92.8 ± 6.3	99.9 ± 6.5	32.7 ± 1.7	6.3 ± 6.6

In silico



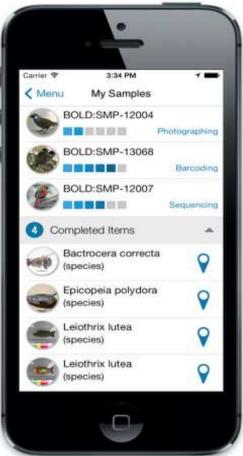

Adulteration in Highly Processed Canned Soup

ASPECT for resolving complex mixtures & identifying unknown adulterants

100 % Lamb DNA

60% Lamb DNA 26% Beef DNA 14% Chicken DNA

ASPECT process is applicable to:


- Meat, fish, crustaceans
- Plants, herbs and spices
- Raw and cooked foods
- Ready meals and highly processed foods (e.g. stock cubes, canned foods, animal foods, sweets and snacks)

Why choose ASPECT

- a unique non targeted DNA based authenticity test
- **ASPECT** process uses pyrosequencing to unambiguously identify any unsuspected adulterants in a single test
- Rapid turnover
- Low cost
- Potential point-of-need device

The Future: Point-of-Need Product integrity, instantly

- Data in seconds to minutes
- Link to reference database
- A taxonomic GPS
- Usable by nonspecialists

Parents

Fraudsters beware!

Mummy, love the tomato pasta sauce you make....

PAST

Red pepper adulterated tomato sauce!!!

FUTURE

Thank you for listening

www.leatherheadfood.com

Epsom

Yew Tree Bottom Road

Epsom KT18 5XT

UK

Phone: +44 (0)1372 376761 help@leatherheadfood.com

Leatherhead

Randalls Way Leatherhead Surrey **KT22 7RY**

UK

Phone: +44 (0)1372 376761 help@leatherheadfood.com

London

48-49 St James's Street

London SW1A 1JT

UK

Phone: +44 (0)207 014 3250 help@leatherheadfood.com