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MULTILEVEL MODELLING METHODS

Ian Schagen and Dougal Hutchison

Abstract

Aim

The aim of the chapter is to introduce multilevel modelling as a key methodology for
the analysis of data in comparability studies and show how it can be applied in
different situations and to different data sets.

Definition of comparability

The main definition addressed is that of Cresswell (1996):

Two examinations have comparable standards if two groups of candidates with the same
distributions of ability and prior achievement who attend similar schools with identical
entry policies, are taught by equally competent teachers and are equally motivated,
receive grades which are identically distributed after studying their respective syllabuses
and taking their examinations.

Following the consideration of interaction effects, the chapter suggests limitations
with this definition and suggests consideration of a new and more robust definition.

Comparability methods

Although not a comparability method in the same sense as those described in other
chapters, multilevel modelling underpins the quantitative approaches discussed
elsewhere. It is a statistical modelling tool, derived from multiple regression with the
ability to include within-group clustering at a variety of levels in a unified and
consistent fashion.

History of use

Since its development in the 1980s, multilevel modelling has been applied in a wide
variety of fields, including education, although examination comparability studies
have been in some ways a minority application. Over recent years it has tended to
replace other less sophisticated analysis methods as the preferred statistical approach.
A brief review of studies using multilevel methods is included in the chapter.

Strengths and weaknesses

The main strength of multilevel modelling is its power and flexibility, and ability to
model a wide range of scenarios and situations. As with all modelling, the
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weaknesses lie in the quality of the available data and problems with setting up
models correctly to represent the important underlying relationships.

Conclusion

The main conclusions of the chapter are as follows:

• The advantages of multilevel modelling far outweigh any perceived
disadvantages for this kind of work.

• Modelling should explore all possible aspects of comparability, including
interactions between boards and key measures such as prior attainment.

• Where such interactions are detected, it is not clear that comparability is
maintained – a new definition may be needed to encompass this.

1 Introduction

In this chapter we propose to start from the definition of comparability as given by
Cresswell (1996). In this he states that ‘two examinations have comparable standards
if two groups of candidates with the same distributions of ability and prior
achievement who attend similar schools with identical entry policies, are taught by
equally competent teachers and are equally motivated, receive grades which are
identically distributed after studying their respective syllabuses and taking their
examinations.’ From this starting point, we aim to show how the use of multilevel
modelling techniques can help to investigate comparability understood in this way.

Statistical methods for ensuring comparability may appear to be more objective than
those that rely solely on expert judgements, and in many ways this is true. However
the objectivity is relative, in the sense that all statistical methods rely on a
mathematical model of the underlying situation, and the choice of this model will in
most cases affect the results produced and the conclusions reached. There is therefore
still an important element of judgement involved in the choice of such models, and in
this chapter we aim to inform such judgement with an overview of the range of
statistical models available, mostly based on multilevel analysis (see Goldstein, 2003).

In any comparability analysis we are asking questions of the kind: ‘What are the
differences between these boards/subjects/questions/syllabuses in terms of actual
results achieved compared with expected results?’ It is in the definition of ‘expected
results’ that the statistical model comes in. The complexity of the statistical model
required depends on the data that is available and the assumptions we are able to
make about the relationships between examination outcomes and other factors about
which we have information, and which may affect examination performance.

At the simplest possible level, we could imagine having no other data than the test
scores for two groups of candidates, one of which took Test A and the other Test B.
With no further information, our model might be that both groups were equivalent
simple random samples from the underlying population and then our statistical test
of equivalence would be a two-sample t-test1. In this case, the ‘expected results’ for
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the two groups are assumed identical. This equates to the ‘no nonsense’ definition set
out by Cresswell (1996). Obviously this simple assumption is quite likely to be
falsified, leading to a lack of robustness and validity in this minimal form of
comparability study.

Moving to a more complex and perhaps more reasonable example, let us assume we
still have the two groups doing different examinations, but in this case we have a
great deal more background information on the two groups, including a number of
measures of prior attainment in earlier tests, background information such as the
candidates’ sex, ethnicity and social status (perhaps even parental income), as well as
data about the institutions in which they are studying.2 We now have much more
scope for computing ‘expected results’, based on a complex regression model taking
account of all these factors. We need to be aware, however, that decisions about
which variables to include in a comparability study model are a matter for
judgement, not just a technical issue depending only on the information that happens
to be available.

Once we have reached agreement on which factors should be controlled for, there are
some extra complications we would want to take into account.

• Candidates are grouped into institutions or examination centres – probably there
is more similarity in outcomes between candidates in the same centre than
between centres. Also, relationships with (for example) prior attainment may vary
from centre to centre – the so-called ‘random slopes’ situation.

• There may be interactions between results for the two different tests and
background factors. For example, Test A may produce better results for boys
rather than girls relative to Test B, or one test may have a stronger relationship
with prior attainment than the other. If this is the case, of course, it raises a
number of issues about comparability and whether different ‘adjustments’ should
be made for different groups of candidates to bring the tests into line.

Both the above complications can be taken account of by using a suitably complex
model, with a structure that allows explicitly for these inter-relationships. The use of
multilevel modelling, with which this chapter is largely concerned, will help us to
deal with the first complication above. The second complication can also be dealt
with in the setting up of the model by including suitable interaction terms. The
identification of such potential relationships and the inclusion of them in the model
used are very important elements of any comparability study, and will form a major
part of the theme of this chapter. However, modelling does not solve the interaction
problem, it merely allows us to quantify it. It could be argued that, by the Cresswell
definition, as soon as statistically significant interaction terms are detected then
comparability is violated – since we could find a sub-set of candidates with identical
characteristics but different results in the two examinations.

Throughout this book there are issues that need to be addressed in the course of any
comparability study, and these will not all be rehearsed here. An example, however,
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is the issue of unmeasured factors that are confounded with the differences we are
interested in, the outcomes from the different examinations.

Let us suppose that the Test B syllabus is more attractive to candidates and
encourages a more positive motivation and response to the subject, and hence a
better set of results. In the model we set up, we cannot control for this and must
assume that motivation and response are the same across the two groups. The
comparability study will therefore adjust the results of the unmotivated Test A group
to be equivalent to those of the motivated Test B group. Is this fair? If we were able to
measure motivation and allow for it in the modelling, then Group B would be
acknowledged to have achieved comparatively better results than Group A, and as
the study has not shown this it has actually failed to achieve true comparability
between the examinations rather than the syllabuses. For further discussion, see Jones
(1997).

It is possible to think of other examples where unmeasured confounding factors or
selection effects can lead to misleading results. The only rigorous way in which such
confounding effects can be eliminated is through the adoption of a Randomised
Control Trial (RCT) approach (see Mosteller & Boruch, 2002; Styles, 2006). In this
approach, candidates or centres would be randomly allocated to syllabus A or B and
thus would take the equivalent Test A or Test B. Because of the randomisation,
confounding factors would be equally likely to apply to either test, and if sufficiently
large samples were used it should be possible to carry out a powerful test for the
comparability of the two syllabuses. (Note, however, that this would not overcome
the difficulty set out in the previous paragraph – differential motivation between
syllabuses. This could only be detected by random allocations to examinations as
well as syllabuses, with further administrative and practical difficulties.)

A number of practical and ethical objections could be raised to this particular design
of comparability study. One is that it would be an administrative and logistical
nightmare to assign candidates within the same centre to different syllabuses, and
that only randomisation at the centre level would be at all feasible. This modification
of the RCT design would work also, but would suffer from the problems of
correlations within centres and would thus require a larger sample size to detect a
given difference. Although in theory an RCT ‘randomises away’ all the effects of
related variables, and could therefore be analysed by a simple t-test, in practice the
use of a multilevel model even in this case would be recommended, for two reasons.
One is that it would allow for the effects of measured background factors that were
not completely balanced between the two groups. The other is that it would allow for
the within-centre clustering mentioned above, if randomisation occurred at the centre
level.

Of course, this kind of comparability study never happens, for what may well be
good reasons to do with practicality, customer choice and other pragmatic
considerations. Without going into the arguments in favour of attempting such a
study, for our purposes we shall treat it as an ideal and see to what extent the
examples we shall consider in this chapter fall short of this design. In the meantime,
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let us just list some of the effects that can and cannot be taken into account when
modelling administrative data rather than analysing a full RCT.

The following can be included in a suitable model:

• overall effects of measured background factors on performance, plus non-
linearities in these effects

• interactions between measured factors in their effect on performance

• clustering of candidates within centres

• random variations between centres in the effects of background factors

• interactions between different examinations and background factors.

The following cannot generally be allowed for in modelling:

• options effects – candidates or centres preferentially choosing different
examinations3

• other unmeasured factors, especially those that vary systematically across
syllabuses

• differences between examinations that mean they are testing different constructs,
or mixtures of constructs.

Sophistication of modelling does not guarantee the validity of a comparability study
– on the other hand, unsophisticated models may be missing something critical that
fatally challenges their validity. In this chapter we shall set out some of the features
of complex models and the advantages they can bring, but it will always be
important to bear in mind the caveats and health warnings expressed above.

2 Advantages of using multilevel modelling

A widely used technique in statistics and in research with educational applications is
regression. This explores how a number of variables, described as explanatory
variables, relate to another variable, referred to as a response or outcome variable.
Explanatory variables are also sometimes referred to as independent variables or
predictor variables, and outcome variables are also referred to as dependent
variables. An example would be to predict the score on a later test given knowledge
of earlier test scores.

The earliest and probably still the best known type of regression is known as
Ordinary Least Squares (OLS) regression. In this the outcome Y is assumed to be
some function (often a linear function) of the explanatory variables X, Z; and to take
account of the fact that one does not expect such a relation to be exact, an error or
residual term e is introduced. To distinguish the cases, each one is numbered, using
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the suffix i, so that we get Yi, Xi, Zi and so on. Then a very simple relationship with
one X variable can be written in equation form:

(1)

is described as the intercept and as the slope.

To provide a worked example to illustrate the differences between OLS regression
and multilevel modelling and to show the kinds of analyses that are possible, we
have constructed simulated data with an assumed underlying structure, as follows:

• Twenty candidates in each of twenty centres have GCSE subject results
represented as Uniform Mark Scale4 (UMS) scores (Y) plus a measure of prior
attainment based on Key Stage 3 fine grades5 in the same subject (X).

• There is a linear relationship between X and Y, plus a random error quantity for
each candidate.

• Each centre is classified as either Type A or B; the relationship between X and Y is
in general slightly different for the two types of centre.

• In addition, the relationship between X and Y varies from centre to centre.

The explanatory variable is the Key Stage 3 fine grade (X) and the response variable
is the UMS score (Y). Equation (1) can have values of its coefficients (β0 and β1)
estimated by a standard OLS regression package from the simulated data set; in this
case the estimates are shown below:

(2)

This shows that, on average, for an increase of one point in X, there is a
corresponding increase of approximately 80 points in Y. The figures in brackets are
the standard errors of the coefficients. These indicate the uncertainty in the estimates
due to the fact that they are derived from finite data sets. Assuming the error terms
in the model are Normally distributed (see later), then from the standard error
estimates it is possible to derive ‘confidence intervals’ for the coefficients, such that
there is a specified chance that the true value of each coefficient lies within its given
interval. For example, the coefficient of X has a standard error (SE) of 3.05 – to derive
the 95% confidence interval for this value we multiply by 1.96 and add and subtract
this value from the estimate. This yields an interval from 73.84 to 85.80. The constant
term (–106.93) is the intercept, the expected value of Y if X were to have the value
zero – in practice, not ever attained but a necessary element of the model.

The ei error term in this model is assumed to be independent of the response variable
and the explanatory variables, and to be normally distributed with mean zero.
Explanatory variables do not have to be continuous, so we could include a
categorical variable – for example, to compare Type A and B centres by giving Z a
value of 0 for Type A and 1 for Type B.
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The estimated coefficients corresponding to this extended model are given by

(3)

The 95% confidence interval for the difference between Type A and B centres (taking
account of prior attainment) is –12.69 to 10.35, implying there is no clear evidence
from this analysis of a real difference overall between the two centre types.

This kind of model makes a key assumption that the candidates in the analysis are all
equally representative of candidates in general, and takes no account of the fact that
they are grouped within centres. It is frequently the case, however, that candidates in
the same centre are more similar than they are to candidates in other centres.6 This
means that it is not legitimate to use the standard OLS regression, which assumes
that all units are independent. We could get biased results, in particular for the
standard errors in the coefficients, which could be underestimated by assuming that
all the observations were independent.

The OLS model (1) above assumes that there is no additional information obtained
by knowing the higher-level unit (centre) from which a lower-level unit (candidate)
comes. One possible approach to taking account of this would be to define a set of
‘centre effects’, one per centre, and include these in the OLS model. This obviously
makes the model much more cumbersome, and also assumes that the centre effects
are to be treated as fixed – in other words, we are interested in these values in their
own right, rather than as a general addition to the uncertainty in the modelling. If we
turn to the multilevel modelling approach, these centre effects are treated as random –
we are only interested in their overall effects and the differences they make to the
model as a whole. We shall now consider this approach to the analysis of the same
data. Model (1) can be extended by including a term to take account of the similarity
of items within higher-level units.

(4)

The term uj (‘centre residual’) is assumed to include all those unmeasured factors at a
centre level that influence results for all candidates at the centre; in general we
assume this combined factor is Normally distributed. However, in certain cases such
as modelling binary outcomes (see later) a non-linear model may be required,
although centre residuals may still be assumed to be Normally distributed in the
transformed metric.

Each equation now has two subscripts, i, j, corresponding to candidate and centre.
This means that there is a separate regression for each higher-level unit. In this
equation, because β1 has no j subscript, the relationship between Y and X is the same
in each centre, and these regressions are all parallel. This is an example of multilevel
modelling.
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Estimating the same model as in (3) above, but taking account of within-school
similarities using multilevel modelling, gives:

(5)

There are small differences between the coefficients in the two sets of results, but the
main difference lies in the standard error of the Z coefficient, which has increased
from 5.88 under the OLS estimation to 12.43 under multilevel modelling. This is a
fairly common feature of moving from OLS regression to multilevel modelling:
standard errors for variables that relate to higher-level units tend to increase, due to
the clustering of data within such units. In the above example it makes no difference
to the significance of the coefficient, but it is easily possible to find cases in which this
difference can affect the conclusions drawn from the analysis.

When setting up our example data we said that the relationship between Y and X
was different for the two centre types, and also that it varied from centre to centre. To
see how both these effects can be included in the modelling we will discuss
interactions and random slopes. We have seen that there is no apparent significant
difference between the centre types when we assume the regression lines are parallel;
however, to model a non-parallel situation we need to define an interaction term:

(6)

For Type A centres, the value above is zero; for Type B it introduces a change in the
regression slope against prior attainment. The value 6 is the mean value of X and
ensures that the interaction term is zero on average or ‘centred’. Including this extra
term in the model gives us the following fitted model:

(7)

The coefficient of the interaction term is clearly significant, and this implies that the
two centre types do have different regression slopes: 66.31 for Type A and 93.47 for
Type B. In order to look in more detail at the above model, we need to consider the
so-called ‘random part’ of the model – the variances and covariances between the
various parameters which vary from candidate to candidate and from centre to
centre. In the above model there are only two elements to this, and the estimated
variances and standard errors are set out below:

Between-candidate variance: 2629.5 (190.8)
Between-centre variance (intercept): 609.7 (234.6)

From the above figures we can surmise that variation between centres accounts for
about 19% of the total variance in the outcome, once other factors are allowed for.
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To add an extra complexity to the above model, let us assume that the regression
slopes vary from centre to centre, as well as between centre types. To model this we
assume that the coefficient of X is made of two parts:

(8)

where the first term is the overall fixed part of the coefficient and the second, with
mean zero, is the part that varies from centre to centre. The centre-level covariance
matrix becomes:

Fitting this model to the data gives us the following:

(9)

In order to look in more detail at the above model the random parameters are set out
below, together with the standard errors of the estimates:

Between-candidate variance: 2551.9 (189.9)

Between-centre variance (intercept): 2053.4 (2318.6)

Between-centre variance (slope): 78.8 (70.8)

Centre covariance (intercept/slope): –353.3 (395.3)

From the above, it seems that the standard errors in the slope variance and the
intercept/slope covariance are both close to the estimated values, implying that
neither is statistically significant. To confirm this more rigorously, we should consider
the change in the likelihood (represented in MLwiN by the ‘deviance’) in adding the
random slopes. This gives a change of 3.63, compared with a critical chi-squared
value (5% significance, two degrees of freedom) equal to 5.99. From this, it seems that
this extension to the model does not result in significant random parameters at the
centre level – in particular the assumption of random slopes is not supported by the
data. It should be noted that this does not mean there are no random slopes, but
rather that our data is insufficient to detect them with confidence.

Reverting to model (7) above, Figure 1 shows a graph of expected UMS score (Y)
versus prior attainment (X) for each type of centre. It shows the lines based on the
model results above, plus the ‘actual’ relationships on which the original simulated
data was based.
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Figure 1 Expected outcomes versus prior attainment by centre type (model and actual)

It is clear that we have made a reasonable job of recreating the underlying
relationships from a relatively small amount of data. However, normally we do not
have the luxury of knowing what these relationships should be, and our model
fitting process cannot guarantee that we have uncovered all possible details of the
structure of the data. Models of increasing complexity, with additional terms,
interactions, and random parameters can be created, and this kind of model fitting
relies heavily on the modeller’s insights and judgement rather than explicit rules.
There is no substitute for experience and a deep understanding of the subject matter
when engaged in this kind of activity. In this section we have used simulated data to
illustrate some aspects of the different kinds of models that are possible; in later
sections we will be using real data to illustrate particular applications in examination
comparability studies.

What difference does it make if we do not use multilevel modelling? Some
authorities argue that it is not necessary to use multilevel modelling if the within-
school clustering is sufficiently small. This can be assessed by comparing the variance
at the higher level with that at the lower level; however, in order to assess this it is
necessary to run a multilevel model or equivalent. Even where this holds and the
differences between intercepts are negligible, there is still the possibility that there
will be differences between slopes, so it is advisable at least to investigate the use of
multilevel modelling.

Other approaches include, on the one hand, ignoring the level structure and simply
attaching all variables, no matter what level they arise from, to the lowest-level unit
(in this instance, pupils); or, on the other hand, aggregating lower-level scores, and
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dealing with aggregates (here, schools). The first of these risks giving a highly
exaggerated impression of the effect of higher-level effects. The second is effectively
throwing away data, and largely ignores individual-level pupil differences and
differences in slopes between higher-level units. Also, using this approach means that
the ecological fallacy 7 can give a completely biased and inflated estimate of
individual correlations.

Another approach, which goes some way towards a multilevel approach, carries out
a series of separate OLS regressions, one for each higher-level unit, and then attempts
to model the residuals from each (Burstein, 1980). However, this can give biased
estimation and also loses sight of the essential unity of the data. It can also lead to
excessive numbers of parameters and loss of parsimony, as well as giving no way to
generalise to the population of higher-level units. Multilevel modelling, by treating
every effect at the appropriate level, gives unbiased estimates of standard errors, and
enables the modelling of between-level interactions. Multilevel modelling, generally,
provides a unified treatment for effects at all levels. It is efficient in terms of the
number of parameters to be estimated and allows the extension of existing
generalised linear model techniques by taking account of hierarchical structures in
the data.

The value of using multilevel modelling has been attacked by some writers (for
example Fitz-Gibbon & Tymms, 2002; Gorard, 2003a). While in general they appear to
accept in principle the benefits that may be adduced by using multilevel analysis,
they are unhappy with the widespread use of it on two main grounds: first, that it is
complicated to understand the details, thus potentially alienating users and audience;
second, while apparently implicitly accepting that multilevel modelling is a
technically superior exercise, they argue that it fails to produce any new results, and
that the results are closely correlated with those from Ordinary Least Squares. Gorard
has a number of other theoretical points and these may be assessed in the debate
between Gorard and Fielding & Plewis (Gorard, 2003a, 2003b; Plewis & Fielding,
2003).

The writers of this chapter favour the use of multilevel modelling methods in these
applications and more generally. First, we believe that the objections to the difficulty
of the technique are overstated, and that it is more important that analyses such as
these are carried out to the best of our available techniques – it is more important to
be correct than to appear simple. Second, the main difference arising as a result of
using multilevel methods is not that new real findings are made that would be
otherwise overlooked, but rather that we avoid making findings that are not there.
That said, it is often true that the values of fixed effects found in these analyses will
be similar to those found using OLS regression, although this is not true in all cases.

3 What can be compared using multilevel modelling?

There are many ways in which multilevel modelling techniques (Goldstein, 2003;
Raudenbush & Bryk, 2002) may be used in examination comparability studies. Very
simply, their strengths may be summed up as:
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• they are a type of regression technique used to compare like with like

• they take account of the structure of the education and examination system, and
allow for the fact that candidates within entry centres or teacher groups are likely
to be more similar to each other than to the rest of the population as a whole.

We shall describe the statistical basis of a number of applications. Nothing is said
here at this stage about the realism or otherwise of any assumptions used. Later, we
shall also describe applications to real data, both from our own work and that of
other researchers, and comment on some of the features and assumptions. For this
section of the description, a simple linear model treating the outcome examination
result as a continuous variable is used. Later in this chapter we show how different
types of model can give different results.

3.1 Application 1: Comparing different boards for the same subjects

The characteristics of the pupils taking their exams via different boards may well be
very different, so a number of proposed factors are included in the analysis. The
equation is given by

(10)

where:

= the examination outcomes (assumed to be a continuous variable,
e.g. UMS score) for candidate i in teaching group j in centre k

= the intercept (the expected value of when all variables are
equal to zero)

= the sum of the coefficients for the explanatory variables times the
value of the variables for candidate i in teaching group j in centre
k. Explanatory variables may include prior attainment, sex, age
and other relevant background characteristics.

is an indicator variable for the board q (= 1 if candidate sits board
q, = 0 else)

is the coefficient for board q (the amount by which the expected
scores for board q differ from , when all variables except
board indicators are equal to zero)

= the effect of centre k, assumed Normally distributed with mean
zero

0β
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= the effect of teaching group j in centre k, assumed Normally
distributed with mean zero

= residual error for candidate i in teaching group j in centre k, at
board q, assumed Normally distributed with mean zero and
variance . This allows for a different variance for each board.

In setting up such models, there are two kinds of background variables that can be
included – those which are assumed to be numerical scales (such as previous test
scores), and those which are categorical (such as board taken). To include categorical
variables, we produce a set of binary indicators (taking values 0 or 1) to represent
each category except one. The omitted category is the ‘default’ or ‘base’ category
against which the others are tested. It is important not to include indicators for all
categories, otherwise the model becomes ‘over determined’ and fails to run.

If the coefficients of the are statistically significant, then the results for the boards
are considered as different in overall level.

It is not just the overall levels of attainment that are of interest. The comparative
spread of grades within the boards should also be considered. Thus a board could
give ‘too many’ (however defined) grade A passes, but compensate for this by giving
give ‘too many’ (however defined) grade F, so that while the distribution of grades
was quite different, the mean levels were the same. This can be investigated by
comparing the within-board variances. If there is a statistically significant difference
between the estimated values of for the different boards, that is, for different
values of q, then the spread of grades can differ between boards. This is an example
of ‘complex variance modelling’, which will be discussed in more detail later in the
chapter (see section 6).

A variation of the above application is comparing ‘standard’ and alternative
syllabuses within boards for the same subject. The approach and equations are
the same as those given above, except that the values of q relate to the two
syllabuses.

So far this treatment has dealt with the scenario where the groups of candidates
taking each type of examination are distinct, and we had to attempt to equate
these by taking account of other measured characteristics of the individual. An
alternative is where each candidate takes more than one exam, and thus
performance may be compared more directly (for example, in a variant of the
above, some candidates may be entered for more than one board). This is dealt
with next.
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3.2 Application 2: Comparing results from different boards for the same subjects
taken by the same or overlapping sets of candidates

If some or all of the candidates in the study have taken the two examinations to be
compared, then the analysis is essentially multivariate (see Goldstein, 2003, pp.
139ff). In this situation an additional lowest level (board within candidate) may be
proposed. If we are dealing with a candidate within centre model, and teaching
group is disregarded, then the equation for two boards is given by a three-level
model:

(11)

where:

= the grand mean for board 1

= the grand mean for board 2

= the effect of centre k on board 1

= the effect of centre k on board 2

= the level 2 effect of candidate j in centre k on board 1

= the level 2 effect of candidate j in centre k on board 2.

There is no level 1 variation because of the way the problem has been set up (see
section 4). Because the exams are being taken by the same candidates, and generally
in the same centre, they are assumed to be correlated:

(12)

The covariances indicate a common factor for that board. As such, they are
comparable to an overall within- or between-centres variance for that subject, but
with fixed board-specific factors taken into account.
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If the difference is statistically significant, then the results for the boards are
considered as different in overall level. Similarly, the values of the within-board
variance may be compared at centre level, or at candidate level; or the sum of the two
levels may be compared.

If the assumptions of the model are met, then this is a more powerful model than the
two-sample model considered previously. In principle, it is not necessary to include
any more home background or prior attainment predictor variables, since all
differences between individuals are allowed for in a more powerful fashion than by
attempting to measure them. Other variables may be included, if it is considered that
the contrasts vary with other factors. On the other hand, variables involved in the
pupils’ experience of taking exams, such as number of hours studied per week or
motivation, could be included if available.

This approach will give an average difference between boards for the pupils
involved. For this to be an unbiased estimate of the overall difference between the
boards the candidates would have to be a random sample of all candidates. In fact
this is unlikely, since candidates taking the same subject twice, with different boards,
are likely to be untypical. On a practical level, timetabling issues can prevent
candidates taking the same subjects with different boards under live examination
conditions. This application relates strongly to Chapter 9, on common examinee
methods.

3.3 Application 3: Comparing optional questions within an examination paper

In a sense all questions within an examination paper are optional, to the extent that
pupils may choose to do any sub-set of them. In this situation, a possible multilevel
modelling approach could be similar to that used for comparing boards. The model
could be a three-level one, for example questions within candidates within centres. In
this model questions are treated as fixed effects, as we have a separate model
parameter that is estimated for each question. However, candidates’ responses to
these questions form the bottom-most level and include a random element. If there
were any further or intermediate levels, for example teaching unit within centre, then
a four-level or higher model might be used. This kind of modelling assumes that the
omitted questions form a random pattern (see discussion in Yang et al., 2002).

This illustrates the fact that multilevel models can be used in a whole range of
applications, provided it is possible to cast the situation into terms that can be
analysed in this way. As experience and fluency with manipulating these kinds of
model grows, the analyst will be able to see ways in which more complex situations
become amenable to analysis in this way. Goldstein (2003) contains a range of
different applications of multilevel modelling to social and educational data.

So far we have said nothing about the realism or otherwise of these models and their
inherent assumptions. Later in this chapter, we give some examples of the application
of these models, both from our own research and those of other workers, and discuss
aspects of the modelling assumptions.
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4 Examples of modelling different structures

As we start to consider the use of multilevel modelling in comparability studies, we
need to model two quite different possible structures in the data, depending on the
procedures used in the particular study. There are essentially two data structures that
we need to consider:

1. Separate forms: Each individual in the study completes just one form of
assessment (one board, or syllabus or subject, etc.). Comparability between forms
is therefore evaluated through relationships between outcomes and other
common background factors. These are exemplified in Application 1 in section 3.

2. Multiple forms: Each individual in the study completes more than one of the
forms of assessment being compared, and comparability is evaluated in a more
‘direct’ fashion. These are exemplified in Applications 2 and 3 in section 3.

In this section we will consider how to use multilevel modelling to analyse both
structures, with worked examples.

4.1 Example 1: Separate forms

As an example for this we shall take data from the study into alternate forms of the
GCSE mathematics examination carried out in 2005 (see Stobart et al., 2005). In this
case we shall not consider the alternatives to the existing three-tier structure, but use
data supplied by four different examining boards on results in their three-tier version
of the examination. In addition to the GCSE results for these candidates, information
was available on the centre in which they entered and their Key Stage 3 (KS3) results,
in terms of ‘fine grades’ in all three core subjects.

Results for the three-tier mathematics examination were presented for each candidate
in terms of both grade awarded and Uniform Mark Scale (UMS) score. For this
example, the UMS scores were harmonised to give 60 points per grade (e.g. grade A
= 540 to 600; grade B = 480 to 539; etc.), and these were used as outcomes for the
modelling, on the assumption that they could be treated as essentially numerical
outcomes rather than categorical.

Table 1 shows the basic statistics for the UMS scores for each board, out of the total of
7,347 cases with complete data.

In the model set up to analyse this data we assume a single outcome (UMS score) but
a number of background factors that may affect the outcome. One group relates to
prior attainment, and includes the KS3 mathematics fine grade result for each
candidate, plus (possibly) their KS3 results in English and science. The assumption
here is that, given candidates with equal KS3 results their GCSE outcomes should be,
on average, equivalent irrespective of the board taken. In order to test this
assumption we need to include in the model indicators related to the board taken.
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Table 1 GCSE mathematics UMS scores by board

With this in mind, the variables included in our Model 1 for this example are:

• Cons – a constant term (= 1) whose coefficient represents the intercept on the
vertical axis when all factors are set to zero

• Board B, Board C, Board D – indicators for three of the boards relative to Board
A, the ‘default’

• KS3mfine, KS3efine and KS3sfine – fine grade measures in maths, English and
science.

The outcome for this model was T3umstot, the UMS total score for the three-tier
examination. Before putting the data into the multilevel modelling, an OLS
regression was run using SPSS with the results shown in Table 2.

Table 2 OLS regression coefficients for Example 1 Model 1

* = significant at 5% level

+ Here and in other tables ‘S.E.’ is the standard error of the estimate in the preceding
column

Board Mean UMS score Standard deviation Number of cases

Board A 389.9 102.4 3147

Board B 337.1 56.5 1330

Board C 378.8 93.3 858

Board D 388.5 99.8 2012

Total 378.7 95.9 7347

Variables Estimates from modelling

Name Description Coefficient SE+ Significant?

T3umstot UMS total score Outcome variable

Cons Constant term –136.90 3.99 *

Board B Board B indicator (vs. A) 25.72 1.62 *

Board D Board D indicator (vs. A) 18.53 1.36 *

KS3mfine KS3 maths fine grade 57.26 0.94 *

KS3efine KS3 English fine grade 7.65 0.85 *

KS3sfine KS3 science fine grade 18.85 1.09 *

Board C Board C indicator (vs. A) Omitted – not significant
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The results of this modelling imply that there is no statistically significant difference
between Boards C and A in terms of results controlling for KS3 attainment, but that
both Boards B and D seem to produce higher UMS scores than would have been
predicted for Board A. However, the OLS model takes no account of within-centre
clustering of candidates and the next step is to turn to multilevel modelling to deal
with this. The same basic model was run using MLwiN (Rasbash et al., 2005), and the
results are shown in the equations window from that program reproduced as Figure
2, as well as in Table 3.

Figure 2 MLwiN output for Example 1 Model 1

Figure 2 shows the model fitted to the outcome (variable name ‘t3umstot’), with
estimated coefficients and standard errors. The centre- and candidate-level error
terms are also included, and the random variance estimates of these are also given.
The final line is the ‘deviance’ (–2*log likelihood) and gives a measure of the
extent to which the model explains the data, which can be compared with the
same measure for alternative models. These model parameter estimates are
replicated in Table 3.

In many ways, the results are very similar to those obtained from the OLS analysis
– coefficients are similar in magnitude, and all are clearly significant except for the
Board C effect. However, if we look at the coefficient standard errors (in brackets
in the MLwiN output) we can see some clear differences. The standard errors for
the KS3 fine grades are actually very similar, but for the board variables there are
real differences. The standard errors from the multilevel modelling analysis are
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Table 3 Multilevel modelling coefficients for Example 1 Model 1

* = significant at 5% level

five or six times as large as for the OLS run, due to the fact that these estimates of
board effects are seriously influenced by the clustering of candidates within
centres, all of which take the same board. In this case the increased standard errors
did not affect the significance of the results, but the use of OLS estimates could
lead to incorrect conclusions about the standard errors of the between-board
differences.

In Model 1 the centre-level variance in UMS scores (483.5) is 19% of the total
variance (483.5 + 2072.1), showing that candidates at the same centre are more
similar than candidates at different centres. Model 1 also assumes a fixed
difference between examining boards, once KS3 attainment is taken into account.
However, it may be reasonable to ask if the differences between boards vary for
different levels of prior attainment. To answer this, we set up Model 2 in which we
include interaction terms between examining boards and KS3 maths fine grade. To
simplify the model, we include only maths fine grades – the other two core
subjects do have an impact on UMS score, but this is small compared with KS3
maths.

Three interaction terms are included: Bint, Cint and Dint. In each case the term
is equal to the board indicator (0 or 1) times the KS3 maths fine grade minus its
mean (6.13). Thus a positive interaction term implies that the relation between
outcome and KS3 fine grade is stronger for this board than the default (A), while
a negative interaction implies the reverse. Results for Model 2 are shown in
Table 4.

Variables Estimates from modelling

Name Description Coefficient SE Significant?

T3umstot UMS total score Outcome variable

Cons Constant term –126.12 7.39 *

Board B Board B indicator (vs. A) 28.61 7.70 *

Board C Board C indicator (vs. A) 8.52 9.40

Board D Board D indicator (vs. A) 22.68 8.12 *

KS3mfine KS3 maths fine grade 56.33 0.91 *

KS3efine KS3 English fine grade 6.30 0.84 *

KS3sfine KS3 science fine grade 19.08 1.06 *

Random variances and covariances Estimate SE Significant?

Centre-level random variance 483.50 90.60 *

Candidate-level random variance 2,072.05 34.35 *
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Table 4 Multilevel modelling results for Example 1 Model 2

* = significant at 5% level

The main effects are similar to Model 1, with the Board C indicator non-significant
(and Board B only borderline significant at the 5% level). However, all three
interactions are statistically significant, including Board C. In two cases (Boards B and
C) the interaction is negative; for Board D it is positive. The combined effects of the
main effects and interactions from this model are illustrated in Figure 3, which shows
a plot of the expected UMS scores for different values of KS3 fine grade for each board.

In this case the centre-level variance is 16% of the total variance, implying that part of
the difference between centres can be explained by the examining board interactions.

Figure 3 Expected UMS scores for each board from Example 1 Model 2

Variables Estimates from modelling

Name Description Coefficient SE Significant?

T3umstot UMS total score Outcome variable

Cons Constant term –95.22 7.65 *

Board B Board B indicator (vs. A) 14.12 7.15 *

Board C Board C indicator (vs. A) 10.76 8.65

Board D Board D indicator (vs. A) 28.91 7.43 *

KS3mfine KS3 maths fine grade 75.09 0.81 *

Bint Board B × KS3mfine –22.30 1.86 *

Cint Board C × KS3mfine –7.49 1.73 *

Dint Board D × KS3mfine 5.70 1.36 *

Random variances and covariances Estimate SE Significant?

Centre-level random variance 400.95 76.51 *

Candidate-level random variance 2,163.94 35.87 *
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This model could be developed in a number of different ways, but one possible
addition is to consider the possibility that the relationship between UMS score and
KS3 fine grade may vary from centre to centre, as it appears to vary from board to
board. To model this possibility we need to make the coefficients of KS3 maths fine
grade random at the centre level. If we do this, we get the fitted Model 3 results as
shown in Table 5.

Table 5 Multilevel modelling results for Example 1 Model 3

* = significant at 5% level

Results are similar to Model 2, except that neither Boards B nor C are overall
significantly different from A, and although the overall Board D effect remains
significant this is not true for the Board D interaction term. The variance at the centre
level in the coefficient of KS3 fine grade is estimated as 72.8, equal to a standard
deviation of 8.5, whereas the overall average coefficient is 74.8. This implies there is a
reasonable amount of variation between centres in the relationship between prior
attainment and GCSE results, and not taking this into account can change the
conclusions of the comparability study.

So what have we learned from this example comparability study using separate
forms? In terms of the differences between examining boards the following was
found:

• There are overall differences in the results obtained for certain boards (controlling
for KS3 prior attainment) and those for Board A; there is clear evidence of this for
Board D and less clear evidence for Board B.

Variables Estimates from modelling

Name Description Coefficient SE Significant?

T3umstot UMS total score Outcome variable

Cons Constant term –93.57 17.49 *

Board B Board B indicator (vs. A) 12.72 6.52

Board C Board C indicator (vs. A) 11.03 7.89

Board D Board D indicator (vs. A) 27.85 6.73 *

KS3mfine KS3 maths fine grade 74.80 2.53 *

Bint Board B × KS3mfine –23.35 3.60 *

Cint Board C × KS3mfine –10.05 4.19 *

Dint Board D × KS3mfine 4.73 3.46

Variances and covariances Estimate SE Significant?

Centre-level

Random variance (intercept) 3,487.14 816.97 *

Random variance (KS3mfine) 72.84 18.37 *

Covariance (intercept and KS3mfine) –481.50 120.34 *

Candidate-level random variance 2,122.87 35.32 *
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• The relationship between KS3 prior attainment and final outcome also varies
between examining boards; Boards B and C have significantly less strong
relationships than Board A.

• This relationship also varies between centres, and this variation if not taken into
account may affect the conclusions of our comparability study.

These results should be regarded as indicative, based on the final model fitted. Other
models, or the inclusion of more background information, may change these
conclusions. In terms of what we have learned about the modelling process, we can
say the following:

• OLS regression may give similar coefficients to those obtained from multilevel
modelling, but is likely to underestimate the standard errors if within-centre
clustering is not taken into account. This can affect the conclusions of
comparability studies.

• Interactions to study differential effects for different boards relative to prior
attainment are an important element of such studies and should be included in
the model.

• Random coefficients at the centre level can be fitted in multilevel modelling, and
these can be informative and affect the conclusions of the study.

Interaction terms are, of course, not restricted to multilevel modelling and can be
fitted in other types of model, including OLS. When such models are used it is
important to take account of what they mean in terms of ‘comparability’. In essence
we are saying that comparability needs to be assessed not just at a single point on the
prior attainment scale, but at every point. Two boards may appear comparable on
average, but if one produces higher scores for lower-attaining pupils than the other,
and vice versa for higher-attaining pupils, then comparability is not achieved.

One option is to use the fitted model to standardise or adjust the results of different
boards onto a consistent scale. This would be relatively straightforward when
allowing for board effects, but it is not clear to what extent random coefficients for
each centre should be allowed for. In the main, the results of such comparability
studies are not used to adjust marks or grades retrospectively, but to inform the
grade-setting process for the next round.

Other examples of multilevel modelling applied to this ‘single forms’ scenario can be
found in Baird & Jones (1998) and Pinot de Moira (2000; 2002a).

4.2 Example 2: Multiple forms

In the previous example no candidate took more than one examination, and the
comparison between boards had to be based indirectly on the relationship with prior
attainment. It would seem in principle more powerful to be able to compare boards,
or forms of examination, directly by getting candidates to take more than one form so
that unmeasured differences between candidates can be controlled for. As ever, there

MULTILEVEL MODELLING METHODS

398

QCAChap10CB:Layout 1 11/12/2007 14:08 Page 398



MULTILEVEL MODELLING METHODS

399

are drawbacks with this approach: candidates may be differentially motivated
between forms, or there may be an effect due to the order in which forms are taken
or because of a time gap between taking them. In any case, we need to assume that
the candidates who take both papers are a representative sample of the appropriate
population. However, data from ‘multiple forms’ trials can be analysed in a powerful
way using multilevel modelling, subject to these and other caveats.

As an example for this analysis we shall also take data from the study into alternate
forms of the GCSE mathematics examination carried out in 2005 (see Stobart et al.,
2005), but in this case we will consider data from candidates who attempted two
different alternatives to the three-tier paper, the so-called ‘Pilot’ and ‘Trial’ structures.
In this case the candidates were all from the same board: 7,146 attempted the Pilot
version, 732 the Trial version and 695 did both.

Here we have in some ways a more powerful data set for investigating differences in
standards for two or more different forms of a test, because we have data on identical
individuals who have attempted more than one form. Perhaps the most
straightforward way of comparing standards is to carry out equipercentile equating
using the 695 candidates who did both versions (see Stobart et al., 2005) – Figure 4
shows the resulting equating graph. Note that to simplify the equating procedure we
have divided the UMS score by ten in both forms.

Figure 4 Equating Pilot and Trial versions using common candidates
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This is quite informative, but the estimated confidence intervals (CI) are based on a
relatively simple formula and take no account of clustering within centres. We shall
therefore explore this relationship further, taking account of all available data
including background information on KS3 fine grades and the centres in which the
examinations were taken.

In this case the kind of model we want is multivariate (see Goldstein, 2003, pp. 139ff),
because candidates have more than one outcome to be modelled. We therefore
introduce a lower level below the candidate for a version indicator (1 = Pilot, 2 =
Trial) to enable this to be modelled. In addition we introduce separate indicators
(0/1) for both Pilot and Trial, and include both in the model with separate random
variances. No constant term is included in this case, as we have separate intercepts
for the two forms and a constant would make the model over-determined. Table 6
shows the results for this Model 1 with no background factors.

Table 6 Multilevel modelling results for Example 2 Model 1

* = significant at 5% level

From this it is clear that the two forms have different overall means (342.7 and 296.2)
but similar between-centre variances (2,488 and 2,265). The within-centre variances
are rather different, with the Trial having over twice the variance between candidates
of the Pilot.

Relative relationships with prior attainment were modelled by including KS3 maths
fine grade for both forms, plus an interaction term to see if the relationship was
different for the Trial (interaction term = 0 for Pilot, and KS3 fine grade minus 5.9 for
the Trial)8. However, Figure 4 indicates a possible non-linear relationship between
Pilot and Trial, so non-linearities in the relationship of each with KS3 fine grade were
also included in the model.

Variables Estimates from modelling

Name Description Coefficient SE Significant?

Umstot Total UMS score Outcome variable

Pilot Indicator for Pilot version 342.73 6.87 *

Trial Indicator for Trial version 296.16 8.75 *

Random variances and covariances Estimate SE Significant?

Centre-level

Pilot variance 2,488.11 500.60 *

Trial variance 2,265.31 717.22 *

Pilot/Trial covariance 2,304.91 554.32 *

Candidate-level

Pilot variance 10,007.64 170.84 *

Trial variance 20,674.04 848.43 *

Pilot/Trial covariance 11,772.58 369.73 *
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The full set of variables included in the model is therefore:

Pilot Indicator for Pilot version (random at centre level)
Trial Indicator for Trial version (random at centre level)
KS3mfine KS3 mathematics fine grade (fixed effect)
Verk3int Interaction between version and KS3 fine grade. Set to zero for the Pilot,

and equal to fine grade value minus 5.9 for the Trial (fixed effect)
KS3msq Square of KS3 mathematics fine grade (fixed effect)
Verk3sq Interaction between version and fine grade squared. Set to zero for the

Pilot, and equal to (fine grade minus 5.9) squared for the Trial (fixed effect)

Results for this model are shown in Table 7.

Table 7 Multilevel modelling results for Example 2 Model 2

* = significant at 5% level

In this case the interaction terms are statistically significant, implying the relationship
with prior attainment is different for the two forms. The between-centre variance for
the Trial is now not significant, but the residual within-centre variance for the Trial is
almost four times that for the Pilot. The non-linear terms in KS3 mathematics fine
grade are significant, although the form of the non-linearity is different for the two
versions. Figure 5 illustrates Model 2 in terms of the expected UMS score for each
form as a function of KS3 fine grade.

From the above, there is clearly a mismatch between the two forms for much of the
prior attainment range. This is consistent with Figure 4, although taking prior

Variables Estimates from modelling

Name Description Coefficient SE Significant?

Umstot UMS total score Outcome variable

Pilot Indicator for Pilot version –181.89 12.81 *

Trial Indicator for Trial version –237.25 15.19 *

KS3mfine KS3 maths fine grade 108.17 4.38 *

Verk3int Version × KS3mfine 15.38 2.81 *

KS3msq KS3mfine squared –2.67 0.37 *

Verk3sq Version × KS3msq 7.95 2.03 *

Random variances and covariances Estimate SE Significant?

Centre-level

Pilot variance 321.72 68.19 *

Trial variance 633.23 374.56

Pilot/Trial covariance 333.89 161.20 *

Candidate-level

Pilot variance 2,793.78 47.72 *

Trial variance 10,435.20 519.60 *

Pilot/Trial covariance 3,196.03 172.75 *
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attainment into account clarifies where the main mismatch is. Putting the relationship
with KS3 fine grade random at the school level gives Model 3, shown in Table 8.

Figure 5 Expected UMS scores for each form from Example 2 Model 2

Table 8 Multilevel modelling results for Example 2 Model 3

* = significant at 5% level

Variables Estimates from modelling

Name Description Coefficient SE Significant?

Umstot Total UMS score Outcome variable

Pilot Indicator for Pilot version –162.79 15.74 *

Trial Indicator for Trial version –212.49 17.69 *

KS3mfine KS3 maths fine grade 103.19 4.86 *

Verk3int Version × KS3mfine 16.16 2.81 *

KS3msq KS3mfine squared –2.41 0.41 *

Verk3sq Version × KS3msq 8.00 2.03 *

Random variances and covariances Estimate SE Significant?

Centre-level

Pilot variance 3,440.18 823.15 *

Trial variance 4,530.73 1,377.34 *

KS3mfine variance 72.88 18.71 *

Pilot/Trial covariance 3,848.62 1,003.78 *

Pilot/KS3mfine covariance –487.56 122.60 *

Trial/KS3mfine covariance –562.84 150.95 *

Candidate-level

Pilot variance 2,733.72 46.85 *

Trial variance 10,407.86 519.01 *

Pilot/Trial covariance 3,149.62 171.17 *
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So what have we learned from this example comparability study using multiple
forms?

• There are significant differences between results obtained in the Pilot and Trial
forms, in terms of the relationship with prior attainment. For example, a
candidate with a KS3 fine grade of 6.0 would be expected to score 371 on the Pilot
and 317 on the Trial.

• There are significant non-linearities in the relationship with prior attainment, and
these vary between forms.

• Only at the highest and lowest levels of prior attainment are the two forms
approximately comparable.

• Variation between candidates, controlling for prior attainment, is much higher for
the Trial form than for the Pilot.

• The correlation between Pilot and Trial versions at the centre level is 0.975,
implying that centres tend to perform overall equally well or equally poorly on
both versions.

• The correlation between Pilot and Trial versions at the candidate level is 0.590,
implying that there is a less strong relationship between the two versions for
individual candidates.

• As a result of these differences we would be forced to conclude that the two
forms were not directly comparable.

In terms of what we have learned about the modelling process, we may say:

• Multivariate models require an extra, lowest level to allow multiple outcomes per
candidate.

• Separate indicators for each form can be used, random at all levels above the
lowest, and the constant terms should then be omitted.

• Graphs of expected outcome as a function of prior attainment for the different
forms may be a powerful way of illustrating the comparability or otherwise of
different forms.

In a later section we will return to this data set when we consider complex variance
models.

5 Modelling different outcomes

In the previous section we examined different ways of modelling the structure of the
data in comparability studies, but throughout we assumed that the outcome of
interest could be treated as a continuous numerical variable. However, this is often
not legitimate – examination results can be reported as ordered categorical outcomes
(grades or levels) or just as a binary outcome (pass or fail). The linear models with
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Normally distributed error terms that we have used so far in this chapter are
inappropriate for such outcomes, and in this section we will describe suitable
models, using initially an example from previous literature in the area.

Probably the earliest attempt to compare examination ‘standards’ using multilevel
modelling and the ‘catch all’ definition was the work of Baird & Jones (1998). Other
more recent studies working in a comparable way include Pinot de Moira (2000,
2002a).

In their paper Baird & Jones (1998) compare three different statistical techniques in
the analysis of an inter-board comparability study on 1996 GCSE art and design
(Unendorsed) grades, which was undertaken by the boards themselves on behalf of
the Joint Forum for the GCSE and GCE (Jones et al., 1997). They concluded that
ordered logistic multilevel modelling was the best option, but that it still failed to
deal with the fundamental problems. To quote from their report:

It is argued that ordered logistic multilevel modelling is the most appropriate of the three
forms of statistical analysis for comparability studies using examination grade as the
outcome variable. Although ordered logistic multilevel modelling is considered an
important methodological advance on previous statistical comparability methods, it will
not overcome fundamental problems in any statistical analysis of examination standards.
It is argued that ultimately examination standards cannot be measured statistically
because they are inextricably bound up with the characteristics of the examinations
themselves and the characteristics of the students who sit the examinations.

Baird & Jones (1998)

The Baird & Jones (1998) study is now described in some detail to make the method
clear and to highlight features of interest. A random sample of approximately 1,500
art and design candidates from each of the four English GCSE examining boards,
stratified by centre type, was sent a questionnaire, designed to measure a few of the
key variables expected to have a significant relationship with awarded grades. There
was an approximately 33% response rate to this questionnaire. The variables used in
the analyses included individual responses and responses aggregated to examination
centre level. Variables found to have statistically significant effects in the analyses
were measures of pupil attitudes, plans, gender and background. It was not possible
to obtain a measure of prior attainment for the individual pupils, but an aggregated
ability measure from school league-table information was included.

Three different kinds of statistical methodology were used in the analysis of this
project. These were:

1. Ordinary Least Squares (OLS) linear regression at candidate level treating the
grade outcome as a continuous variable.

2. Linear multilevel modelling treating the grade outcome as a continuous variable.

3. Ordered logistic multilevel modelling considering whether the candidates
succeeded at various grades within the examination. Thus a candidate who gains
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a B grade will be considered as having also gained a C, D or E grade, but not an
A grade. See below for a fuller treatment.

The first two analyses are largely similar to those described previously, so we will not
describe these models in detail. The main focus of interest for us is on the third
model, the ordered logistic multilevel model.

In an ordered logistic model, examination grades are treated as ordered categories,
instead of as numerical values. In this type of analysis, an equation is first found for
the probability that a case is above the first (lowest) category. Following this, an
equation is found for the probability that the case is above the second lowest
category and so on. The response variable in the ordered logistic regression is the
cumulative grade (s) for each candidate i in teaching group j in centre k,

(13)

where:

= the probability the examination grade is s or better

= the intercept for the particular grade s

= the coefficient for the pth explanatory variable

= the value of the pth explanatory variable for candidate i in
teaching group j in centre k for the particular grade s

= the effect of board q

= an indicator that candidate i in teaching group j in centre k is
taking the particular board q

= the effect of centre k for the particular grade s

= the effect of teaching group j in centre k for the particular grade s.

This model investigates the effect of the qth board, assuming this is uniform at all of
the categories. If it is suspected that the difference between boards is greater at some
categories than others then different values can be fitted. For a fuller discussion
of multilevel models for discrete outcomes, see Goldstein (2003, pp. 95ff).

Table 9 shows the results from the three types of analyses side by side. Only an
extract of the results from these tables is shown here: other aspects of the analysis,
not referring directly to the inter-board comparability, are not shown here. Interested
readers should consult Baird & Jones (1998). Four boards are compared. As before, in
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each case, Board 0 is taken as a reference category, and the results for the other
boards are expressed in comparison with these.

The first two columns relate to an OLS analysis. The first column shows the value for
the difference (Board q vs. Board 0), and the second column shows the standard error
for this. An impression of the probability value for these comparisons can be gained
by dividing the difference by the corresponding standard error, and comparing the
result with the 0.05 level for a two-tailed z-distribution. It can be seen that Board 3
appears to have a lower value than Board 0, while there is no statistically significant
difference between Board 0 and the other two boards (Boards 1 and 2). The figures
here relate to the contrasts between Board 0 and the other three boards. There are of
course other contrasts that could be considered, such as Board 1 vs. Board 2. While
this has not been considered specifically it seems quite likely that the contrast
between Board 3 and Board 1 would also be statistically significant. This could be
easily investigated, if required. Comparisons using this method are likely to give
biased estimates of the statistical significance however, since candidates taking their
exams within a single centre are likely to be more similar to each other than are
candidates chosen completely at random.

This problem can be met by the use of multilevel modelling techniques. The results
of this are shown in the third and fourth columns of figures. The standard errors are
all substantially larger than those estimated for the OLS analysis, and largely as a
result, while Board 0 is the lowest, none of the inter-board differences are statistically
significant. In fact, the fitted constants are also different from the results in the OLS
analysis.

Table 9 Comparison of different models on inter-board comparability results

Such results are of general eye-catching interest, but may not be the best way to look
at possible differences. Examination results are awarded by grade and it is generally
considered that the grade awarded is accurate to plus or minus one grade (Newton,
2005). Consequently, the main focus should be on grade borderlines. If there is a
difference between the standards set at just one borderline it is conceivable that this
could give a statistically significant overall mean difference. The process of awarding
a grade combines two processes: first awarding a mark to a script, and then
comparing the mark awarded with the grade boundaries. Only key grades are
considered at award meetings – the rest are set arithmetically. If one examining board

Board
(vs.
Board 0)

OLS results Multilevel
modelling (linear)

results

Multilevel
modelling ordinal

results for Grade A*

Multilevel
modelling ordinal
results for Grade A

Coeff SE Coeff SE Coeff SE Coeff SE

Board 1 0.03 0.09 –0.16 0.20 –1.87 0.59 –0.81 0.34

Board 2 –0.02 0.08 –0.06 0.19 –0.94 0.38 –0.90 0.30

Board 3 –0.17 0.08 –0.16 0.20 –1.17 0.40 –0.63 0.31
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finds that its grading is out of line with others, then it will be concerned to find out
whether this is due to boundary decision-making between grades.

The next analysis reported therefore treats the grade outcome as an ordered
categorical variable. Only the results for the A* borderline and the A borderline are
shown in this chapter, since the inter-board differences at other grade boundaries
were not statistically significant. The last four columns in Table 9 show the results for
these. Taking one example for illustration purposes, the fitted constant for Board 1 for
grade A* is negative, and more than twice its standard error. This figure relates to the
log-odds, ceteribus paribus, of getting this grade from Board 1, compared with those
of getting this grade from Board 0. Transforming to a more intuitive metric, this
means that the odds of getting a result this good in Board 1 are only 15% of those in
Board 0. However, it should be noted that these results are subject to large margins of
error, and that analysis of a data set with good measures of prior attainment at the
individual candidate level might provide different results.

In this section so far we have reported results based in practice on logistic modelling,
where the outcome of interest is a single binary variable (i.e. does the candidate get
grade A* or above, or not?). When looking at comparability over several grade
boundaries, this approach requires the application of a separate model for each
grade. Another approach is to use an ordered categorical multinomial model (see
Goldstein, 2003, pp. 101ff). An example is taken from Stobart et al. (2005), and
considers whether candidates with different levels of KS3 attainment have different
probabilities of getting higher grades in the Pilot compared with the Trial version of
the examination, or vice versa.

An ordered categorical multinomial model (see Goldstein, 2003, p. 104) was fitted
(see also equation (13)), looking at three categories:

1. Trial grade higher than Pilot grade

2. grades the same on two tests

3. Pilot grade higher than Trial grade.

The default category was taken as the first (‘Trial>pilot’), and a model with constant
parameters for KS3 fine grade was fitted, with two levels – school and candidate.
Essentially we are fitting two linked logistic models: one for the grades being the
same on the two tests (‘Same’), and the other for the Pilot grade being higher than
the Trial (‘Pilot>trial’), with the same relationship assumed with prior attainment in
both cases. The full fitted model is shown in Figure 6. This is an example of a more
complex equation window from MLwiN, and one whose features may need more
time to understand. Model parameters are also displayed in tabular form in Table 10.
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Figure 6 Ordered multinomial multilevel model fitted to Trial and Pilot data

Table 10 Multilevel modelling results for ordered multinomial multilevel model
fitted to Trial and Pilot data

Two categories are explicitly featured in the model: ‘Pilot>trial’ and ‘Same’. The
modelled probability for the latter includes the former. In both cases there is a
relationship with prior attainment (‘ks3mfine’) which has the same slope (0.609) in
the logit metric.9

The log-odds for ‘Pilot>trial’ has a constant estimate of –1.667, whereas for the log-
odds of ‘Same’ or ‘Pilot>trial’ the constant estimate is 0.422. The coefficient of
ks3mfine (centred on the value 6.0) is 0.609. Substituting a value of 0.0 for ks3mfine, we
estimate the two log-odds as –1.667 and 0.422 respectively, with corresponding

Variables Estimates from modelling

Name Description Coefficient SE Significant?

Resp Three-category response Outcome variable

Cons.
(>=Same)

Constant term for
contrast between
categories 2 and 1

0.4217 0.2388

Cons.
(>=Pilot>trial)

Constant term for
contrast between
categories 3 and 2

–1.667 0.1092 *

KS3mfine KS3 maths fine grade
(centred on 6.0)

0.6094 0.1196 *

Random variances and covariances Estimate SE Significant?

Centre-level

Random variance 0.8357 0.0085 *
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probabilities of 0.159 and 0.445. By subtraction, we find: P[‘Pilot>trial’] = 0.159;
P[‘Same’] = 0.445; and P[‘Trial>pilot’] = 0.396.

In this case there is a clearly significant random variance at the school level, implying
that the relationship between Pilot and Trial grades does vary from school to school.
Expected results of this model, controlling for KS3 results, are shown in Figure 7.

Figure 7 Probabilities for Pilot and Trial comparison from ordered multinomial
model

This model illustrates that for candidates with lower prior attainment, the Trial
structure seems to be advantageous as they have a higher chance of getting a better
grade on this than on the Pilot. As prior attainment increases, the two systems
become more balanced and the apparent advantage of the Trial disappears.

This kind of ordered categorical model is very powerful, and in principle should be
used more widely. The truth is that our most common examination outcomes (grades
or levels) are actually ordinal in nature, although much of the quantitative analysis
carried out tends to treat them as if they were numerical interval scales.

6 Complex variance models

In the previous two sections we have dealt in some detail with two important aspects
of model selection in comparability studies – modelling the structure of the data and
the outcome of interest. It may seem that modelling the variance structure of the data
is of less importance, but in certain cases false assumptions about this can lead to
incorrect conclusions from the study.
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Let us take as an example the data for Model 1 from section 4, with UMS scores from
four examining boards. In Figure 8 we plot the standard deviation in the UMS score
as a function of the KS3 mathematics level for each board. From this there is some
evidence that the standard deviation (and therefore the variance) in UMS score is not
constant across the KS3 prior ability range, as has been assumed in all the models to
date. It is not clear whether this will affect the conclusions of the modelling, but in a
comparability study this should be checked by including this feature of the data in
the model.

Figure 8 Standard deviation in UMS score versus KS3 level

Goldstein (2003, pp. 63ff) shows how this may be done, by suitable modification of
our models. By introducing a random coefficient of the relevant background
variable at the lowest level of the model, we can generate a quadratic function of
this variable as a model for the pupil-level variance.10 Note that although some of
the coefficients of this function may be described as variances in the output from
the software, they are not and need not be constrained to be non-negative – the
true pupil-level variance is defined by the whole function, not by any of its
elements individually. This means that non-negativity constraints on variance
parameter estimation in the software used need to be relaxed when complex
variances are being fitted.

We will go back to our examples from section 4 to show how these complex
variances can be fitted, starting with Model 1. Table 11 shows the results of setting
prior attainment (ks3mfine) random at the candidate level.
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Table 11 Complex variance model fitted to Example 1 data

* = significant at 5% level

Comparison with Table 5 shows little difference in terms of the main coefficients and
the substantive findings of the modelling. The candidate-level variance matrix now
shows apparently negative variances, but as mentioned above this is not problematic,
as these are not real variances but coefficients in the variance equation:

Pupil-level variance = –253.30 + 2*625.60*ks3mfine –135.66*ks3mfine2 (14)

Figure 9 illustrates the model standard deviations as a function of KS3 fine grade.

A similar complex variance model was fitted to the Example 2 data, by modifying
Model 3 (Table 8) to allow ks3mfine to be random at the candidate level – results are
shown in Table 12.

Again, there is little change in the main coefficients, although this time the
diagonal terms of the candidate-level variance matrix are all positive. The effects
in terms of standard deviation of outcomes as a function of prior attainment are
shown in Figure 10, where the variance models are different for the Pilot and Trial
outcomes.

Variables Estimates from modelling

Name Description Coefficient SE Significant?

T3umstot Total UMS score Outcome variable

Cons Constant term –107.63 17.40 *

Board B Board B indicator (vs. A) 12.78 6.43 *

Board C Board C indicator (vs. A) 10.79 7.77

Board D Board D indicator (vs. A) 28.18 6.61 *

KS3mfine KS3 maths fine grade 76.99 2.58 *

Bint Board B × KS3mfine –36.08 3.71 *

Cint Board C × KS3mfine –11.37 4.23 *

Dint Board D × KS3mfine 3.01 3.55

Random variances and covariances Estimate SE Significant?

Centre-level

Random variance (intercept) 3,555.67 838.27 *

Random variance (KS3mfine) 78.83 19.53 *

Covariance (intercept and KS3mfine) –506.46 125.75 *

Candidate-level

Pseudo variance (intercept) –253.30 690.67

Pseudo variance (KS3mfine) –135.66 15.90 *

Pseudo covariance 625.08 106.00 *

MULTILEVEL MODELLING METHODS

411

QCAChap10CB:Layout 1 11/12/2007 14:08 Page 411



Figure 9 Model candidate-level standard deviation as a function of KS3 level

Table 12 Complex variance model fitted to Example 2 data

* = significant at 5% level

Variables Estimates from modelling

Name Description Coefficient SE Significant?

Umstot Total UMS score Outcome variable

Pilot Indicator for Pilot version –174.66 16.79 *

Trial Indicator for Trial version –224.98 18.73 *

KS3mfine KS3 maths fine grade 107.60 5.05 *

Verk3int Version × KS3mfine 15.71 2.77 *

KS3msq KS3mfine squared –2.82 0.41 *

Verk3sq Version × KS3msq 8.86 1.93 *

Random variances and covariances Estimate SE Significant?

Centre-level

Pilot variance 3,561.67 868.31 *

Trial variance 4,696.08 1,473.47 *

KS3mfine variance 79.00 20.17 *

Pilot/trial covariance 3,976.98 1,061.92 *

Pilot/KS3mfine covariance –516.00 130.78 *

Trial/KS3mfine covariance –592.32 161.35 *

Candidate-level

Pilot (pseudo) variance 10,299.57 1,015.93 *

Trial (pseudo) variance 10,208.55 1,601.44 *

KS3mfine (pseudo) covariance 86.87 24.47 *

Pilot/trial (pseudo) covariance 6,758.68 1,136.35 *

Pilot/KS3mfine (pseudo) covariance –907.79 159.03 *

Trial/Ks3mfine (pseudo) covariance –240.69 170.78 *
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Figure 10 Model 2 standard deviations as function of KS3 level (modelled)

The assumption of constant variance is one which is frequently made when
modelling comparability study data, but it should always be critically evaluated,
either by exploratory data analysis and/or by allowing for non-constant variance in
the modelling. If this is not done, there is the potential for misleading results to be
obtained and for the findings of the model study to be challenged.

7 Review of existing studies

In this section we will pause in our development of multilevel techniques in order to
summarise and review existing comparability studies that have used this approach in
order to address Cresswell’s (1996) ‘catch-all’ definition, described in the
introduction. This is a pretty ambitious definition, but there have been a number of
studies that have at least tried to model its requirements statistically, though Baird &
Jones (1998) admit that ‘research can only approximate the “catch-all” definition, as
the researcher does not have access to measurements of all of the factors which
influence examination performance’. Problems and issues are discussed in detail in
Baird & Jones (1998) so they will be touched on only briefly here, using their
terminology. First, there is the problem of measurement, one aspect of which is the
assumption that the relation between the ability measure and the examination
outcome is the same for each syllabus or board. Second, there is the problem of
interactions of independent variables with syllabus or board, when, for example, girls
do better in one examination than boys, but not in another. The third problem
touched on is that of extrication: it could arise if one syllabus or board were more
attractive than another, and increased the motivation of the pupils involved, so that
difficulty and motivation were confounded.
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A number of studies have been conducted using multilevel modelling by or on
behalf of the examining boards or the QCA. They are too numerous to mention
individually in the relatively short space of this chapter, but a selection showing
the techniques involved is now considered. The studies we cover here include
Baird & Jones (1998), Pinot de Moira (2000; 2002a; 2003), Jones et al. (1997), Tymms
& Vincent (1995), Bell & Dexter (2000). We compare how effective these are likely
to be in operationalising the Cresswell definition. Two main aspects are
considered: first the techniques employed, and second the predictor variables
used.

7.1 Techniques used

In reviewing this type of work we consider that it is especially important to bear
in mind the practical applications as well as any theoretical considerations, and a
comment on how boards arrive at final grades is relevant. Each examination for
each board is scored to give a total number of marks (although there are some
recent developments in the use of IRT methods). Each board then organises
meetings to convert these marks into grades, which are the major currency in the
public examination world. These meetings determine the boundary point in terms
of score for major cut-points: for example, F/G, C/D and A/B for GCSE. An
interpolation procedure is then used in determining the grades between these
boundaries.

Baird & Jones (1998), as described earlier (Table 9), compared three techniques in
their investigation: Ordinary Least Squares at candidate level, treating the (ordinal)
grade outcome as a continuous variable; a multilevel model also treating grades as
continuous; and a multilevel ordinal multinomial model. In the two multilevel
analyses, candidates were nested within teacher groups, which were nested within
centres. Baird & Jones did not investigate the possibility of doing a series of
dichotomous outcome logistic investigations, stating only that ‘Ordered logistic
modelling is the most appropriate method for the analysis of examination grades’ (p.
15). Bell & Dexter (2000), however, also compared a series of binary ordered logistic
models.

Probably the main objection to multilevel modelling (MLM) on the part of critics
is that it is more complex to execute and understand than OLS. It is generally
considered that where OLS and MLM results differ, the latter are to be preferred.
In their example, Baird & Jones showed that the continuous multilevel model was
preferable to the OLS model since OLS found a difference in level between
boards, but no difference in spread, while linear MLM found the opposite – no
difference in levels, but differences in spread. Since, as noted earlier, the main
focus of examination results, both in reporting and in ‘fixing’ any apparent
problems lies in the actual grades awarded, it makes good sense to concentrate on
grades and use an ordinal model. This model focused the locus of the differences
to one particular boundary, that between A and A* for one board. This seems to
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show that ordinal regression is superior to continuous variable regression in this
instance.

Another possibility is that, instead of carrying out a single ordinal variable regression
including all of the levels, one carries out a series of binary logistic analyses,
concentrating on each of the relevant boundaries in turn. Bell & Dexter (2000)
considered that this approach was preferable because ‘the results are much simpler
and more interpretable for less experienced users’. In general, a principle in statistics
is to borrow strength from adjacent observations to supplement sparser data. It
should be noted that that using a single ordered model rather than a set of binary
splits means that we have a single random effect for each centre rather than a series
of unrelated ones from each binary analysis that may not even be mutually
consistent. However, in this example, where a substantial amount of data is available
and we are not certain that mechanisms will be the same from one boundary to
another, we agree that it can make more sense to carry out the analyses as parallel
but separate exercises.

Comparative analyses assume that the ‘same’ process is taking place for all
examination entrants. In practice, however, some cases appear to be outliers from the
rest. In some instances the data are obviously errors, for example mis-transcriptions,
but in other situations they may arise because they represent a different population
or process. Errors and missing data may be corrected if it is obvious what the correct
value should be. Otherwise the missing or erroneous data may be imputed, or the
whole case excluded. Either of these procedures has to be carried out with care.
Alternatively, it may be that such apparently anomalous outliers do not represent a
problem with the recording of the data, but are indicative of the existence of a
separate population. Bell et al. (2004) quote an example where apparently anomalous
data arose as a result of ‘mature’ entrants. They found that it was possible to extend
the model to take account of these, but the resulting model proved to be relatively
complex. They found that simpler models arose by analysing the two populations
separately.

7.2 Predictor variables included

This section has benefited from the theoretical papers of Bell & Dexter (2000) and
Pinot de Moira (2002b). If the average performance on an examination for one board
is higher than that on another, it is not necessarily the case that the first examination
is ‘easier’. The first possible explanation is that one group of pupils is simply better
on that topic on the day, and that tested on another occasion, or in different
circumstances, this difference might disappear.

Another alternative explanation is that the two groups of pupils taking the exams are
different in some important relevant way. One can take account of this by carrying
out some kind of regression, as described in this chapter, and including some
measure of ability. The boards have carried out or commissioned a number of studies
and we now describe the type of data used in a representative selection of these.
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Bell & Dexter (2000) distinguish between prior, concurrent and subsequent
attainment (though somewhat confusingly they refer to them all as ‘outcomes’).
They state that ‘the word outcomes has been deliberately chosen so that it covers
the results of a wide range of measures including tests of aptitude, achievement,
subsequent job performance’. According to Bell & Dexter (2000), prior attainment
could include Key Stage 3 scores for GCSE, or GCSE score for A level, while a
concurrent measure could be a test to measure ‘general ability’, ‘aptitude’, or
‘calibre’, or a subject-based reference test, or a common element included as part
of all examinations. Bell & Dexter also include subsequent attainment, but this
may be thought to measure the rather different characteristics of usefulness and
relevance.

Most studies aiming to use a measure of ability have used a measure of prior
ability, though Dexter & Massey (2000) and While & Fowles (2000) have used
some kind of concurrent measure of attainment. Each of these studies raised some
questions11. While & Fowles used a common element of a mathematics tests. This
was, however, a coursework aspect for all but one of the boards involved. This is
unfortunate, in that it seems likely that coursework may be a less ‘pure’ measure
of attainment, since there is the possibility of parental input to any such work.
Further, even if it is accepted that this is not a problem, or at least that it is a
comparable problem for all, the fact that one of the boards did not treat it as
coursework means that this common element is not comparable for this board.
Finally, and to an outsider really rather surprisingly, given that this was planned
to be a comparability exercise, while four of the boards agreed a common
grading, the remainder were unable to concur. Dexter & Massey used a
calibration test containing verbal, spatial and numerical reasoning in a study
comparing GCSE and IGCSE (International GCSE) results for a number of
subjects. Newbould & Massey (1979, cited in Dexter & Massey, 2000) discuss
whether to use a general or a subject-based calibration test, and advocate the
former since the latter is more likely to be differentially biased against some of
the syllabuses being compared.

The value of using a measure of attainment as a term in the regression is dependent
on the degree of relationship between that measure and the outcome. A test of
academic attainment or ‘general ability’ may well do a good job in allowing for prior
differences for exams in (for example) English or mathematics, but is likely to be of
less value for art or physical education. In the extreme, if there is no relation between
the test and the outcome, the attempted adjustment will be ineffectual. Dexter &
Massey suggest that this may be less of a problem than might first be imagined, since
correlations between their general ability test and outcomes in the six ‘most popular’
examination subjects range between 0.56 and 0.74: even art and design grades
correlated 0.53 with the calibration test, though it should be noted that this means
that less than 30% of the variance in the examination grade is accounted for by the
calibration test.
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A further complication potentially arises if there is an interaction between
examination type and ability. In this situation the difference between examinations
will vary over the ability scale. A single ‘difference’ factor may be produced by
producing an average of the differences, but it may be preferable to show the entire
picture in graphical form (see, for example, Figure 3 in this chapter).

Additional complications arise if one tries to allow for other possible background
factors. For example, if girls do better at GCSE on one topic than boys after allowing
for KS3 attainment, and there are more girls on one examination than on another,
what exactly are we doing if we allow for this statistically? It may be appropriate to
reweight the sample so that equal proportions of boys and girls are present in the
weighted sample, or include a gender term in the model, which has a comparable
effect. There is a danger that doing so will disguise an important phenomenon,
namely that boys who have done as well as girls up to Key Stage 3, are now finding
themselves less successful. Is the examination biased against them, or is the
curriculum in schools failing to hold their attention, or is there some other reason?
Similar considerations apply also to such factors as ethnic background or type of
centre attended (independent school, type of state school, etc.). It is important to bear
in mind that simply because these techniques are statistical, this does not mean that
they are all value-neutral.

Table 13 shows in tabular form the extent to which a range of ‘typical’ studies were
able to meet the conditions of the Cresswell definition in terms of allowing for
relevant background characteristics.

Most of the studies have some kind of individual-level measure of ability or
attainment, though not all of these even have this: for example Jones et al. (1997)
and Pinot de Moira (2000) have some correlates of attainment, such as reported
age planning to leave school, and Baird & Jones (1998) have prior attainment
measures aggregated to centre level only. It is very likely that the predictive ability
of the different measures of prior attainment used in these studies will vary,
especially between subjects (see Pinot de Moira, 2002a; Dexter & Massey, 2000).
None of the studies appears to have any information on school entry policy
(except for While & Fowles, who considered tiered entry), or the competence of
their teachers.

A few of the studies make an effort to obtain some measure of motivation, though
this can prove problematic. While & Fowles (2000) described some of the difficulties
in attempting to produce a good measure of attitudes. Such information did not
already exist, and they were forced to ask the examination centres to distribute
questionnaires to candidates taking exams. In their own words, ‘a high proportion of
centres failed to distribute (the questionnaire), and some of the candidates who did
return it gave some questionable responses, thus calling into question the reliability
of the questionnaire data’.
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Table 13 Comparability studies and the Cresswell definition

Key to pupil variable abbreviations:
Male/female Male/female differences
FSM Eligibility for free school meals

*Key to references:
(1) Pinot de Moira (2000) (6) Jones, Baird and Arlett (1997)
(2) Bell and Dexter (2000) (7) While and Fowles (2000)
(3) Pinot de Moira (2003) (8) Al-Bayatti (2005)
(4) Pinot de Moira (2002a) (9) Dexter and Massey (2000)
(5) Tymms and Vincent (1995) (10) Baird and Jones (1998)

It is clear from Table 13 that none of these studies comes near meeting the criteria for
properly assessing comparability under the Cresswell definition. Certainly

Subject Level and
date

Outcome
scale

Ability
measure

Motiv-
ation

Other pupil
variables

Refer-
ences*

Notes

English GCSE 1998 Dichotomous
Some
correlates

Some Some (1)

English GCSE 1998 Dichotomous KS3 English Some (1)

English GCSE 1998
Grades as
continuous

KS3 total (2)

Business
A/Voc
A
2002

Dichotomous Mean GCSE Male/female (3), (4) Also 2001

Chemistry
A level
2002

Dichotomous Mean GCSE Male/female (3), (4) Also 2001

Geography
A level
2002

Dichotomous Mean GCSE Male/female (3), (4) Also 2001

Health Care AVCE 2002 Dichotomous Mean GCSE Male/female (3), (4) Also 2001

12 subjects
A level
1993

Grades as
continuous

Mean GCSE
‘ability’

Male/female (5) 12 studies

Art GCSE 1996
Grades as
continuous

Some
correlates

Yes
Male/female,
FSM,
homework

(6)

Maths GCSE 1998 Dichotomous
Common
test element

Yes
Male/female,
homework

(7)

Considered
tiering;
problems
with response
rates

French GCSE 2004 Dichotomous KS3
Male/
female

(8)
Convergence
problems

9 subjects GCSE
Grades as
continuous

Anchor test
Male/female,
language

(9)

Art & Design GCSE 1998
Continuous
and ordinal

Aggregated
measures

Some
Male/
female, FSM,
homework

(10)
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sophisticated models are being employed to carry out the analyses, but this is going
to be of little practical value if the underlying data is weak. If this area of application
is to continue, then the work so far should be used as a jumping-off point for
devising more rigorous investigations. It may be that some aspects of the factors to
be allowed for are less critical, but it will be important for credibility to provide a
valid justification for not including these.

All the above studies were selected because of their use of multilevel techniques, but
it can be seen that this approach to modelling is not a sufficient condition for a fully
effective comparability study. It could be argued that it is a necessary condition, but
the study as a whole needs to be carefully designed in order to meet the challenge set
by the Cresswell definition of comparability.

8 Practicalities

In this section we shall deal with:

1. software packages

2. acquiring suitable data

3. pitfalls and problems.

8.1 Software packages

When running multilevel modelling it will normally be necessary to acquire a
specialist software package that is capable of dealing with all the necessary
complexities of the modelling. Some general-purpose packages (e.g. SPSS, SAS, S+
and STATA) are now starting to include multilevel modelling modules, and new
software is continually appearing in this area. For example, the WinBUGS software
(Bayesian inference Using Gibbs Sampling) provides flexible software for the
Bayesian analysis of complex statistical models using Markov chain Monte Carlo
(MCMC) methods12. There are two specialist packages that have been widely used
over a long period: MLwiN and HLM.

MLwiN was developed by the Centre for Multilevel Modelling at the Institute of
Education, University of London13 (see Rasbash et al., 2002; 2004). It provides data-
entry and manipulation facilities, a graphical interface, a range of options for
estimation, a facility for displaying models in terms of equations and fitted parameters
(see screen shots within this chapter) and a command interface that replicates the
structure of the earlier DOS-based version, MLn. The latest version, MLwiN 2.0, has a
number of additional features including the ability to fit more complex models, such as
ordered and unordered multinomial models. The program can fit up to five levels of
hierarchy, and the size of data set that can be handled appears to be limited only by the
capacity of the machine on which it is run. The authors have run four-level models
with up to two million cases successfully in MLwiN.

HLM14 (see Raudenbush et al., 2001) is probably more used in North America than in
the UK, but is also a powerful multilevel modelling package with a range of facilities
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including data input, graphical displays, and logistic and multinomial modelling
capabilities. The development of the program started as a two-level concept,
although it now supports three levels. The main conceptual difference between the
two packages is that, whereas MLwiN requires the model to be specified as a single
entity encompassing all levels, HLM allows the user to specify the models for
different levels separately. In some ways this can aid accessibility to the user and the
ease with which results, including complex interactions, can be described to a non-
technical audience. It is probably the case, however, that in the UK MLwiN is better
understood and there is a greater community of support than for HLM. Another new
package, which supports multilevel modelling in addition to a range of other
modelling options is Mplus (see http://www.statmodel.com).

8.2 Acquiring suitable data

No comparability study is possible without suitable data, and for multilevel
modelling to be used successfully this data needs to be comprehensive, accurate,
representative and to contain all relevant variables, including the information needed
to define the levels in the data (such as centre identifiers). Good data on background
factors that are likely to be strongly related to outcomes (e.g. prior attainment) is
essential, in order to ensure that we are comparing ‘like with like’.

From the above remarks about packages, it would seem that in most cases software
packages are able to cope with all available cases, so there is no merit in sampling
cases for modelling – the whole dataset can be included in the analysis. However,
when planning data collection it may be necessary to give consideration to sampling
issues. Power calculations to determine suitable sample sizes to detect specified
differences are important, but should take account of the clustering of candidates
within centres and hence the design effect. Estimates of the effects of such clustering
from previous studies may help to inform such calculations.

It is likely that the sampling will be done at the centre level, in which case it is
important that the centres chosen are sampled randomly, probably using a stratified
sampling technique that ensures they are representative in terms of important centre
characteristics. If all candidates, or a fixed proportion per centre, are selected then the
resulting sample will be self-weighting at the candidate level. However, if a fixed
number per centre are selected, candidates in larger centres will be under-represented
and consideration may need to be given to sampling with probability proportional to
size to compensate for this. If there is strong clustering within centres (i.e. the centre-
level variance is statistically significant compared with the candidate-level variance)
then it becomes more important to get a reasonable number and spread of centres,
rather than a large number of candidates per centre.

8.3 Pitfalls and problems

From all the above, some of the pitfalls and problems that may be encountered are
fairly clear. These include:

• inadequate or insufficient data, or data that is biased in some way
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• failure to collect suitable information, such as measures of prior attainment

• analysis that is superficial, or does not adequately model the structure of the data

• software failures, including failure to converge

• misinterpretation of the results of the modelling.

All these and other problems are controllable, but need appropriate planning, time
and assistance when required. In our experience the best guard against most of these
is collegiality – a community of practice that has a wide range of experience and
expertise in these areas and can work as part of a team to ensure that problems do
not arise or can be dealt with effectively when they do.

9 Conclusions

In this chapter we have tried to show many of the options that are available when
analysing comparability study data using multilevel modelling. The challenge for the
researcher is to select the appropriate model to fit the structure of the study and the
type of outcome that is being modelled. Wrong choices can give misleading results,
and we would strongly advise the use of variant approaches to the same data in
order to obtain some idea of the sensitivity of the main results to the modelling
assumptions being made.

There are big issues, discussed elsewhere in this book, which also impinge on the
task of analysing comparability study data. One of the big issues is the purpose of
the study. The vast majority of studies are carried out after the event, when
candidates have been awarded results and the main rationale for the study is to show
that results from different boards or whatever are in fact comparable. In this case, the
main outcome must be to test the null hypothesis: ‘Results from different boards are
comparable’; if this is rejected there is no immediate action that can be taken, except
to use the results to inform standard setting for the next cohort. Information on the
exact degree and type of lack of comparability will be interesting, and perhaps useful
for the future, but cannot directly affect outcomes.

An alternative scenario is one in which the results of a study are used to rescale
results onto a common and consistent metric, for example to provide measures of
school performance. Something like this happens in setting standards for National
Curriculum tests, where pre-test data on the new test is used to compare with the
results on the previous test and the outcomes of this analysis inform the setting of
levels on the new test. In this kind of scenario the important question is not
whether there is comparability, but the exact nature of the relationships
determined from the model and the degree of confidence in those relationships.
Details of the exact models fitted become much more important in this case, as
does the need for some kind of ‘sensitivity analysis’. However, even the most
careful modelling requires to be interpreted in the light of the purposes of the
study, the provenance of the data and the unmeasured influences that may be
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operating. Analysing data of this kind is partly an art as well as a science, and no
single model is likely to give us the full picture.

At this stage it is probably worth returning to the original Cresswell definition of
comparability that we began with – how have our discussions in this chapter
influenced our approach to this? It has to be said that the use of sophisticated
modelling techniques on examining data has revealed some potential inadequacies
in this supposed ‘catch-all’ definition. This has mainly been shown by the
existence of interactions between examining boards and measures of prior
attainment in some examples. It is arguable that, under Cresswell’s definition, it
might be possible to find two samples of pupils for which the examinations are
comparable despite the significant interactions. However, at the same time it
would be possible to selectively enter pupils for different boards in order to
enhance their outcomes. So, are the examining boards comparable or not? We
would argue that such interactions are prima facie evidence for lack of
comparability, and a new definition is required that rules them out. We would
suggest something along the lines of:

Two examinations have comparable standards, if for all potential groups of candidates, it
is not possible to selectively enter individuals for one examination or another, based on
measured background information, in such a way as to improve significantly their
outcomes.

Finally, what can we say about the advantages of using multilevel modelling in this
kind of work? It is clear to us that the advantages of using this methodology in
comparability studies far outweigh any perceived disadvantages. These advantages
include:

• a unified system that encompasses other models (e.g. OLS) while allowing for
hierarchical clustering

• powerful and integrated software that can fit a range of models

• the ability to allow for complicating factors, including interactions, random
coefficients and complex variances, in a coherent and efficient way

• efficiency of estimation, with fewer parameters required than in alternative
approaches.

Overall it is true that multilevel modelling is a powerful tool for the analysis of
comparability study data, and without it the work in this area would be seriously
hampered.

Endnotes

1 In principle, assuming the normality of the outcome distributions – however, the
Central Limit Theorem should ensure this is a valid test for most distributions
with reasonable sample sizes.
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2 The so-called ‘delta method’ (see Eason, 1995) is an early example of a crude
adjustment procedure designed to detect such relationships.

3 Although in some circumstances it may be possible to model options effects and
include these in a comparability study.

4 Uniform Mark Scale (UMS) scores are based on the grade awarded and the total
mark received in the examination, in such a way that the grade boundaries are
defined consistently at the same UMS value. See Chapter 3 for a discussion of
UMS.

5 Key Stage 3 ‘fine grades’ are derived from scores obtained from the examinations
taken, mapped on to the National Curriculum levels awarded and put on a scale
such that one level = 6 points.

6 It can be argued that this within-centre or within-school homogeneity effect is a
consequence of selection effects, teaching, social ordering, etc. Although it is not
inevitable with educational data sets, it is sufficiently common that it should be
taken into account when setting up models in this field.

7 When a correlation between two quantities is estimated using aggregated data,
such as school-level mean scores, this can give a completely different result from
estimating the same quantity on individuals, such as pupils. If the ‘aggregated’
correlation is taken as an indicator of the individual correlation, then this is
described as the ecological fallacy (Robinson, 1950).

8 5.9 is the mean value of prior attainment – it is subtracted in the interaction in
order to ensure it is centred about zero.

9 The logit metric allows us to model probabilities with linear functions, using the
transformation logit(x) = ln(x/(1–x)) where 0 < x < 1.

10 For full technical details, refer to Goldstein (2003).

11 See Chapter 9 for a fuller discussion of prior and concurrent measures.

12 See http://www.mrc-bsu.cam.ac.uk/bugs/

13 Note that the Centre for Modelling is now located at Bristol University. See
http://www.cmm.bristol.ac.uk/, which also contains a review of relevant
software.

14 See http://www.ssicentral.com/hlm/index.html
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Ian Schagen and Dougal Hutchison open their chapter by correctly warning against
the assumption that statistical modelling provides objectivity. They describe model-
fitting as an art rather than a science where ‘there is no substitute for experience and
a deep understanding of the subject matter’. While this is indisputably true, the
element of subjectivity in any statistical analysis extends beyond the choice of model,
the formulation of dependent variable, the decision to include given independent
variables and the sampling of data. Even for a technically sound model, the findings
are only valid to the extent they are interpreted legitimately.

In the literature a naïve faith in statistical significance testing is blamed for creating
the illusion of much sought-after objectivity in research work (Schmidt, 1996). The
system where a null hypothesis is defined and then rejected whenever the probability
of being wrong in that decision is less than some critical value is appealing in the
sense that it is rule-based. In his paper of 1951, Yates lamented the emphasis placed
upon tests of significance suggesting they are often regarded as the ‘ultimate
objective’. As Tukey (1991) observed, however, a null hypothesis is always false at
some level of decimal places; adding an element of futility to such an objective.
Cohen (1990) made the same argument more forcefully:

If [the null hypothesis] is false, even to a tiny degree, it must be the case that a large
enough sample will produce a significant result and lead to its rejection. So if the null
hypothesis is always false, what is the big deal about rejecting it?

The abundance of candidate-level data for national examinations in England brings
Cohen’s observations into sharp focus when considering the interpretation of
comparability. Carver (1978) writes that ‘statistical significance ordinarily depends on
how many subjects are used in the research’. The larger the sample size, the smaller the
difference between effects which will be detected as statistically significant. In the
context of national examinations, where data are plentiful, it seems sensible that the
modelling and comparison of standards should not rely solely on statistical significance
testing. It has long been argued that the magnitude of the difference between effects, or
effect size, is of much greater practical significance (Cohen, 1988; Kirk, 1996).

Consider a study of GCSE English which used a sample of data to compare the grading
standards applied between awarding bodies (Pinot de Moira, 2000). A logistic
multilevel model was fitted to data to determine the probability of exceeding the
foundation tier grade C threshold dependent upon awarding body of entry. There were
6,651 candidates nested within 111 centres. The resultant model suggested no overall
statistically significant difference in grading dependent upon awarding body (Table 1).
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Of real interest to the educational practitioner, however, should be the magnitude of
the difference in grading standards between awarding bodies.

Table 1 Estimates for the two-level logistic model describing the log odds of a GCSE
English candidate exceeding the foundation tier grade C threshold

(Awarding body 1 is set as the base category.)

In their introduction to multilevel modelling, Snijders and Bosker (1999) describe
effect size as an approximate relationship between the standard error of an effect, the
power of the test and the significance level (Equation 1).

(1)

Where z1–α is a z score associated with the significance level of α and z1–β‚ is the z
score associated with a given power 1–β 1. The z scores are derived from the standard
normal distribution. For the purposes of inter-awarding comparability, let us define:

Where γΑ is the parameter estimate for awarding body A which is greater than γΒ the
parameter estimate for awarding body B.

In the current context, therefore, effect size is described as the difference between two
awarding bodies in the log odds of exceeding a given grade threshold. Using the model
displayed in Table 1 for illustration, the standard error associated with the awarding
body effects can be estimated as approximately 0.4. From Equation 1 the effect size
which would be detected at a significance level α = 0.05 and power 1–β = 0.8 would be
approximately 0.996. Such a statistic has little useful meaning but, because the model
is logistic, the effect size can be transformed to be expressed in terms of a probability.
Expressed as a difference in the probability of exceeding a grade threshold, effect size
becomes a statistic with practical utility.

Joint

β se p χ2 p

Fixed
Effects

Constant 1.245 0.287 0.000

English Key Stage 3 result 1.008 0.062 0.000

Mean mathematics & science Key Stage 3 result 0.188 0.069 0.007

Mean GCSE result 1.296 0.061 0.000

Female 0.668 0.084 0.000

Awarding Body 2 –0.914 0.348 0.009 8.821 0.066

Awarding Body 3 –0.558 0.344 0.105

Awarding Body 4 –0.783 0.322 0.015

Awarding Body 5 –0.433 0.345 0.210

Random Effects Centre level 0.658 0.119 0.000
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Where p is the probability of exceeding a given grade threshold
δ is the difference in probability of exceeding a given grade

threshold between awarding bodies B and A
se (γ) is now defined as an approximation of the standard error

associated with the awarding body parameter estimates

The minimum difference between awarding bodies that would be detected as
statistically significant is estimated thus,

Where

For the GCSE English multilevel model (Table 1), the minimum detectable difference
between awarding bodies would be described by the solid curved line in Figure 1.
Figure 1 also describes the relationship between δ and p for other values of se (γ) where
α=0.05 and 1–β=0.8.

Figure 1 The relationship between δ and p for a logistic model with varying values of
se(γ) where the significance level a=0.05 and power 1–β=0.8

Among the candidates included in the multilevel model just over 20% were awarded
a grade C. An initial estimate of the probability of exceeding the grade C threshold
would therefore be 0.2 with the minimum statistically detectable difference between
awarding bodies also being 0.2 (see Figure 1). While the statistical significance tests

×
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flagged no overall differences between the awarding bodies (Table 1), the subsequent
analysis of effect size suggests that differences of up to 20% in the award of grade C
between award bodies would be regarded as statistically non-significant. However, a
difference of such magnitude would clearly be unacceptable, not least because the
specifications and the awarding processes would lack face validity and, therefore,
lose credibility in the eyes of the public.

The process of evaluating effect size allows a translation of the statistical outcomes
from a complex model into terms to which those involved in standard-setting can
relate. Even though an effect size expressed as a probability provides more
information about comparability than an unqualified statistical test, standards in
national examinations are set by determining boundary marks for each of the
contributing components. An effective assessment of comparability between
awarding bodies would require reference to the mark scale in order to fulfil a remit of
advising awarding committees of any necessary remedial action.

The extent to which comparability between national examinations can be expected is,
however, limited by the fact that most are marked on a discrete ordinal scale and
marking is completed before determination of grade boundaries. It would therefore
be unrealistic to expect that grading standards could be exactly the same between
awarding bodies (an interesting observation when considered alongside Tukey’s
(1991) assertion that a null hypothesis is always false at some level of decimal places).
With a large enough sample and small enough mark range, it is possible to conceive
of a situation where a one-mark increase in the positioning of a grade boundary
applied by an awarding body could mean that the grading standards of that
awarding body changed from statistically significantly lenient to statistically
significantly severe. Delap (1992) discussed this matter in the context of grade award
meetings and the maintenance of year-on-year grading standards.

Empirically, it is possible to explore the statistical sensitivity of grading standards to
a mark scale which is discrete. Returning to the GCSE English data, the grade C
boundary for Awarding Body 5 was determined as 105 in the award meeting. Figure 2
illustrates the effect that repositioning this boundary would have had on the joint
statistical test applied to assess comparability of the GCSE English specifications.
Given a naïve assumption that comparability is assured if the p-value is more than
0.05, a grade boundary placed in the range 105–108 would lead to the conclusion that
grading standards are aligned. These ‘satisfactory’ extremes of grade C boundary
would award between 31.3% and 25.8% of candidates a grade C.

Rather than accepting that grading standards are aligned with grade boundaries in the
range 105–108, a judgement is required as to whether the extremes exceeding the
grade threshold are defensible. When setting grade boundaries to maintain year-on-
year comparability some awarding bodies have derived acceptable deviances, in
percentage terms, between years. All other things being equal, for large-entry subjects,
the percentage of candidates exceeding a given grade threshold is not expected to
vary from the previous year by more than 2%. Further work would be needed to
establish whether the use of such acceptable deviances could be extended to between-
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Figure 2 Test of the null hypothesis that there is no difference between the grading
standards applied by awarding bodies dependent upon the grade C subject
boundary mark applied to the awarding body specification

awarding body comparability. However, it is contextual information of this nature
which should be fed into the design and interpretation of a model of
comparability. Indeed a retrospective look at effect size might never be needed
were an educational researcher more often afforded the luxury of a controlled
experiment where data could be sampled to target a particular hypothesis and
power calculations could be performed in advance of any analysis. Instead, inter-
awarding body comparability studies are largely based on opportunity samples
with missing data and self-selected entry patterns. It is essential, therefore, that the
limitations of any data are explored both before and after analysis and that, to be
of practical value, model outcomes are related to the measurement scale where
remedial action can be effected.

As Ian Schagen and Dougal Hutchison correctly conclude ‘the challenge for the
researcher is to select the appropriate model to fit the structure of the study and the
type of outcome that is being modelled’. Implicit within this challenge must be the
understanding that outcome should be presented in terms that are relevant to the
target audience (Schagen, 2004). Consequently, when discussing the findings from an
ordered categorical multilevel model (Table 5), for example, the authors helpfully
transform their findings to an ‘intuitive metric’.

When considering comparability in the national examinations of England, the
researcher must go beyond presenting the headline news, which in itself might be
misleading, to suggest to awarding committees appropriate remedial action.
Furthermore, it should be recognised that the cocktail of large datasets and small
mark ranges, available for national comparability studies, makes blind acceptance of
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statistical hypothesis testing a risky business. The researcher would do well to heed
the advice given by Reese (2004):

Calculating statistical significance is a tool, a step in the process of analysis. The
interpretation of a result requires the researcher’s knowledge, in particular to put new
data into the context of previous scientific knowledge.

The modelling techniques presented in Chapter 10, and indeed throughout the rest of
the book, provide powerful instruments with which to describe data but, without
valid interpretation and contextualisation, the statistics produced are utterly
redundant in a practical sense.

Endnote

1 The significance level of a statistical test is the probability (α) of wrongly rejecting
the null hypothesis if it is actually true (Type I error). The power of a statistical
test is the probability (1–β) that it will correctly reject the null hypothesis if it is
actually false.
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There can be no doubt that Hierarchical Linear Models (aka multilevel models,
MLMs) represent a major advance and that they have solved some key statistical
problems through the use of clever algorithms and modern computing power. They
have provided useful new perspectives and they rightly continue to be at the
forefront of some aspects of educational research. But they have not been accepted
without question; see, for example, Fitz-Gibbon (1997); De Leeuw and Kreft (1995);
Gorard (2003a; 2003b; 2004; 2007). There have also been staunch defences; see, for
example, Plewis and Fielding (2003). Space does not permit a full discussion but five
broad issues are set out below to indicate some key points.

When should multilevel models be used?

A number of researchers have carried out studies in which they have analysed data
using traditional methods only to find that in order to get published they have been
required to use multilevel models. When doing as they were told and getting their
papers published, they discovered that the newly analysed results hardly differed
from the original.

Schagen and Hutchison state that because Ordinary Least Squares (OLS) approaches
assume that the units are independent the OLS results will give ‘biased estimates of
the statistical significance’. This must be true, but that is not the point. The question
is ‘how big is the bias?’ This was extensively investigated as part of The Value Added
National Project (see, for example, Trower & Vincent, 1995) and the findings
summarised in Fitz-Gibbon (1997). Not only were the regression coefficients identical
to all intents and purposes but the OLS and MLM ‘school effects’ were found to
correlate around 0.99 with one another. This held when the analyses involved both
linear or curvilinear relationships and single or multiple predictors. But, it is argued,
a primary advantage of MLMs is that the errors are better estimated than in OLS
regression. Again this must be true but how big is the difference? Tymms (in Fitz-
Gibbon, 1997, p. 110) found ‘little difference’ between the errors on the coefficients in
OLS regressions and MLMs. He also found almost identical estimates of errors on the
residuals from the two procedures. This was not the case in the example shown by
Schagen and Hutchison. Under what circumstances are important differences found?

Given a choice between a simple approach and a more complex analysis it could be
argued that one should always go for an MLM since, as Schagen and Hutchison note,
that is the standard against which other analyses will be judged. But there is the
matter of communication. They state ‘we believe that the objections to the difficulty
of the technique are overstated’. Have they successfully explained variance at the
second level to a politician or a journalist?
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They also write ‘it is more important to be correct than to appear simple’. But the
issue may not be a choice between such stark alternatives and it seems reasonable to
ask what amount of clustering ensures that traditional approaches are misleading.
Clearly the lower the intra-class correlation the less the importance of explicitly
modelling the clustering; the key question is about the degree to which the results of
analyses might mislead. Indeed, Kennedy and Mandeville (2000) state ‘the question
of when to use multilevel modelling is an important one.’

Complexity

Can a model be too complex? Assuming that we do have situations where the
clustering is large enough to mean that it makes sense to use MLMs, the models
themselves can become exceedingly complex. There can be several levels with cross-
classification, interactions, and any or all variables used at the lower levels can
reappear at a higher level in some aggregate form. Such models can become
extremely difficult to construct, understand and interpret. But is it possible for a
model to become too complex? The well-respected statistician Steve Raudenbush
(1994) advises on the need for ‘parsimonious pre-specified models’. He does this
because of the ‘precariousness of knowledge based on exploratory analyses using
trimmed models and retrospective explanation’. Not only are MLMs statements of a
theoretical position but they also tend to be isolated and self-referential. This leads to
the question ‘when does the model become so complex it becomes impossible to
gainsay?’ This asks about the falsifiability of the chosen model which is in some
senses a theory. In the same way that Popper (1963) writes about the falsifiability of
scientific theories, we should ask about the falsifiability of multilevel models.

Terminology

Within the reports of MLMs the writing often involves words as such as ‘effects’,
‘explanation’ and ‘impact’. Schagen and Hutchison use the phrases, ‘the model
explains the data’, ‘Board C effect’ and ‘do have an impact on’. These are misleading
terminologies as they all imply causal relationship. Occasionally, very occasionally,
MLMs are used to analyse the data from randomised control trials (see, for example,
Tymms and Merrell, 2006), but most commonly MLMs deal with passive
observational data. As Kennedy and Mandeville (2000) note ‘for purposes of drawing
inferences about school effects students would be randomly assigned to schools and
schools would be randomly assigned to process conditions’. Naturally, the
sophisticated users of MLMs are aware of the issue but they do little to discourage
the use of the established terminology.

How can the causally-laden words often used in statistics be discouraged?

Errors on predictors

In OLS regression and in MLMs, except where dummy variables are used, there are
errors on the predictors, and yet the errors are assumed to be non-existent. This can
lead to problems. If, for example, attainment were modelled using socio-economic
status as a predictor at the pupil level and at another level, perhaps the board level,
using the average socio-economic status, then it is quite likely that a significant
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compositional effect would be found. But that compositional effect would inevitably
appear because of the error of measurement in the predictor. Indeed the extent to
which the predictor is measured with error can be used to indicate the extent to
which a compositional effect will appear. This phantom effect is a consequence of one
of the assumptions of multilevel models. The difficulty was established before the
advent of MLMs (Hauser, 1970) but has been demonstrated more recently using
MLwiN (Harker and Tymms, 2004).

Bias from shrinkage

When constructing MLMs there is a danger that unstable relationships can appear at
the second, or higher, levels because very small units can produce wild results. To get
round this the results at the higher levels are shrunk in proportion to the reliability of
their measurement. This produces more stable models; however, the shrinking
introduces bias. A very small unit with a genuinely high or low value is artificially
shrunk towards the mean, hiding its true colours. Comparability studies will not
usually need to worry about this issue but it could arise if small samples are being
analysed or when the standards adopted for a less popular syllabus from one
awarding body are being assessed.
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Response to Anne Pinot de Moira

To a large extent we agree with the comments about statistical significance. It is
not enough for something to be statistically significant – the size of the effect is
important. See, for example, Schagen and Elliot (2004) for a discussion of effect
sizes in educational research. However, effect sizes and significance tests are not
mutually incompatible: the latter attempts to answer the question ‘is there
evidence for a difference due to something other than chance?’ while the former
addresses the question: ‘how big is the difference and does it matter?’ Both are
important in comparability studies, and can be addressed through multilevel
analysis.

The comment about using ‘statistically significant’ rather than just ‘significant’ is
probably good practice. However it can turn out very cumbersome, and it is often
more elegant to say, for example, ‘significantly different’ than ‘statistically
significantly different’. Given that our chapter is very technical, we feel that it is
reasonable to assume that readers will not confuse the technical use of the word with
the common English usage.

We agree with the final comment about the need for valid interpretation and
contextualisation, alongside powerful and appropriate modelling tools and high
quality data.

Response to Peter Tymms

Peter Tymms takes a more general overview of the value and application of
multilevel modelling, and queries some of our justifications for advocating its use
in the comparison of examining boards. Most of his comments are unexceptionable
but some criticisms are more general in their focus than the current application. In
many ways we are inclined to feel that the confrontation between Ordinary Least
Squares (OLS) or logistic regression on the one hand and multilevel modelling
(MLM) is more apparent than real. In fact, it is possible to consider OLS to be a
special case of MLM, with zero variance at higher levels, in much the same way as
a strictly hierarchical model could be considered a special case of a model with
nested and crossed variance components. Each has its place, and can provide
valuable information, and one has to balance statistical soundness, ease of use,
and computing feasibility.
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A cautious statistician would usually want to test the hypothesis that higher level
variances were zero before proceeding further, which would mean running the
MLM anyway – and then why not proceed in this way, especially if the
hypothesis is rejected? Tymms’ convention that MLM is significantly more
complex to run than OLS is not really true with modern software. MLM is
certainly more powerful and can fit more complex models in situations where
they are needed.

It is generally accepted that the fixed coefficients in a variance component model will
be close to those in an OLS model, though they will not generally be completely the
same. However one finds that the standard errors of fixed coefficients in MLM,
especially those of variables at higher levels, will typically be larger, and in some
cases substantially larger, than those of OLS models, and thus coefficients are less
likely to be statistically significant. In a sense in this situation therefore it is less a
question of MLM finding new effects, but rather of MLM not finding effects that are
not there.

Modelling is never an exact science, but a balancing act between parsimony and
fitting the data well. The chapter is not intended to present a precise recipe for
carrying out comparability studies, but to show what models are possible and the
consequences of omitting certain elements from the model, for example higher level
variances or random slopes. Communicating the results of any sort of model may
well be a challenge, but key elements should not be omitted because of this. Simple
formulations can often be found to explain, for example, higher level variances: for
example, ‘84% of the variation in the results was between pupils in the same schools,
and 16% due to differences between schools’.

As Tymms points out, at some value of intra-class correlation the OLS and MLM
models are likely to give very similar results. What this value is will vary from case
to case. Even if we knew this critical value, we would then need to run an analysis to
determine the intra-class correlation for our data before deciding to opt for OLS or
MLM. Busy statisticians such as ourselves prefer to eliminate this extra work and go
into MLM which will estimate all the required parameters and give the same results
as OLS if the intra-class correlation is effectively zero.

To a large extent, choice between examining boards at the level of individual
subjects is a school-level decision. In this connection Anne Pinot de Moira’s
illustration of an inter-board comparison in her comment on our paper is highly
relevant. One’s first reaction is that a sample of over 6,000 is going to be big
enough to identify any phenomenon that is actually of any real world importance.
However, since the board decision is more nearly a school-level one than an
individual one, it turns out that using MLM probably makes a substantial
difference. She has very kindly agreed to re-run the analyses from her
commentary, using a non-hierarchical model, and the relevant part of the results is
shown in Table 1.
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Table 1 Non-hierarchical modelling of data from commentary by Pinot de Moira

Columns 2 and 3 correspond to the results in the table in her commentary, run using
MLM, and 5 and 6 are the corresponding results using a non-hierarchical model. It
can be seen that there are some differences in the β coefficients for the awarding
bodies between the two analyses. More important in this context however is the
difference in size of the standard errors of these coefficients, which are very much
larger in the MLM than in the OLS analysis. The results in the OLS analysis are thus
highly significant statistically, while those in the more appropriate MLM are not.

Our exposition of the benefits of MLM did not confine itself to simple fixed inter-
board differences. An important aspect of inter-board differences lies in the fact that
they vary between subgroups, between schools and over ability ranges, and this
formed an important part of the examining boards’ contention that there was no
‘quick fix’ of apparent differences between subjects (see Newton, 1997, for a
discussion of this point). We believe that MLM is the appropriate statistical technique
for addressing questions of this type.

Tymms also mentions that there is little difference between the estimated standard
errors for school residuals using OLS and MLM, which may or may not be true, but
does not appear relevant to our exposition. He also comments that apparent
aggregated school-level effects may be due to a biasing effect of measurement error.
This is certainly true (see Hutchison, 2007, for an extensive exposition) but again is
not particularly relevant. Finally he refers to the discussion on whether shrunken
residuals should be used for second or higher level units (for example, in these
applications, schools or examination centres) – again, an interesting point for
discussion, but not relevant here. These last three points indeed appear to have
strayed in from some other paper.

Finally we confess that in writing the chapter we did on occasions use terminology
which could be interpreted causally, and this is something which ideally should be
avoided. It is not always possible to find circumlocutions which avoid this without
becoming clunky and interrupting the flow of an argument, but this is clearly an area
where we need to improve our language and the way we use it.

MLM Analysis OLS Analysis

Exam board effects β Se χ2 β Se χ2

Awarding Body 2 –0.914 0.348

8.821

(P=0.066)

–0.558 0.136

35.427

(P=0.000)

Awarding Body 3 –0.558 0.344 –0.304 0.132

Awarding Body 4 –0.783 0.322 –0.558 0.120

Awarding Body 5 –0.433 0.345 –0.147 0.125
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