

Department of Public Works and Highways

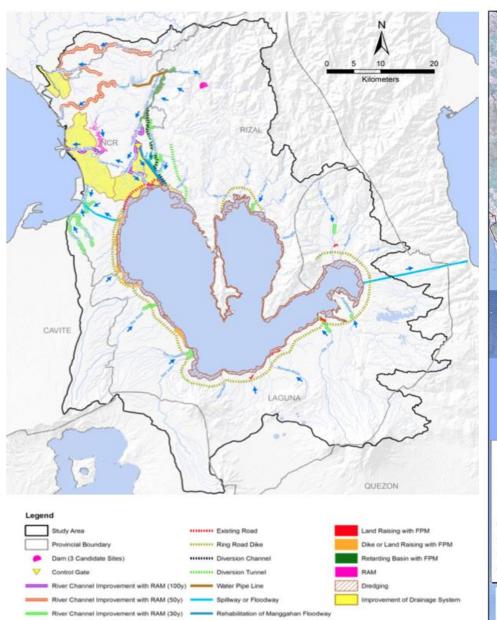
In cooperation with Laguna Lake Development Authority

Laguna Lakeshore Expressway- Dike Project (LLEDP)

A Public- Private Partnership Project

Presentation to UK Transport Solutions

September 18, 2014 New World Hotel, Makati City



OVERVIEW OF THE PROJECT

LLEDP is consistent with both Master Plans

Master Flood Control Plan

High Standard Highway Master Plan

Proposed HSH* Network in Metro Manila and its 200km Sphere:

ON-GOING: 170.79 km

Project Name	Length (km)	Proj. Cost (Php Bn)	Completion
Tarlac-Pangasinan-La Union Expressway	88.85	18.13	2018
Daang Hari-SLEx Link	4.00	2.01	2014
STAR, Lipa – Batangas , Phase II	19.74	2.32	2015
NAIA Expressway	7.15	12.32	2015
Metro Manila Skyway Stage 3	14.82	26.66	2017
Manila North Expressway and NLEx-SLEx Connector Road	26.27	28.95	2017
Plaridel By-Pass Road, Phase II	9.96	3.43	2017

NEDA BOARD APPROVED: 122.30 km

Project Name	Length (km)	Proj. Cost (Php Bn)	Completion
CALA Expressway (Cavite and Laguna Side)	44.60	35.43	2019
Central Luzon Link Expressway (CLLEx), Phase I (Tarlac-Cabanatuan, Nueva Ecija)	30.70	14.94	2017
Laguna Lakeshore Expressway Dike	47.00	122.81*	2021

PROPOSED (PRIORITY): 93.79 km

Project Name	Length (km)	Proj. Cost (Php Bn)	Completion
Metro Manila Expressway, C-6	58.09	TBD	TBD
CLLEx, Phase II (Cabanatuan-San Jose)	35.70	14.20	TBD

* HSH-High Standard Highway

Background of the Project

- The urgency of the Project was heightened by the intense rains and typhoons during the monsoon season - e.g., Typhoon "Ondoy" in 2009, "Habagat" in 2012 and 2013, Typhoon "Maring" in August 2013
- Objectives:
 - To mitigate flooding in the western coastal communities along Laguna Lake, from Taguig thru Calamba to Los Banos
 - To facilitate traffic flow from Metro Manila to Laguna
 - To generate productive land
 - To optimize use of private sector resources and expertise

COMPONENTS

- 1. Expressway-Dike: 47 kms (2x3 Lanes)
 - 500 meters away from shoreline
 - Taguig to Los Banos
 - 8 Interchanges
 - 16 Bridges, 16 pumping stations
 - Elevation 15.2 m (100-Year flood level)
 - Php 64.9 B (at 2013 prices)

2. Reclamation: 700 hectares

- To enhance revenues for project financing
- 7 Islands (7 x 100 has)
- 450 m wide x 15.6 km long
- 100-150 meter channel
- Php 57.9 B (at 2013 prices)

Without the Project

With the Project

I. FLOOD CONTROL ECONOMIC BENEFITS

A. Reduction in Flood Damages: Php 20.0 B, NPV			
Water level (at western shoreland, 60-year design flood)	Elev. 14.14 m (or 1.64 m above normal lake level)	Elev. 12.50 m (or kept at normal lake level)	
Structures prone to flood damage	(a) 156,010 residential, (b) 1,567 commercial, (c) 3,476 industrial	All structures protected	
Flood damages (Annual average value)	P 8.1 B/yr	P8.1 B/yr damage avoided (Total for 30 Years: P20.0 B, NPV)	
Persons affected	~800,000 persons affected	~800,000 persons no longer affected	
B. Increase in Land Value due to Flood Protection: Php 10.2 B, NPV			
Land value at flood-prone western shoreland (TOTAL AREA PROTECTED: 21.3 sq. km)	P1,000-6,000/sq. m. Total Value: P 77.1 B	P1,330-7,980/sq. m (increase of 33%) Total Value: P 102.7 B	
II. EXPRESSWAY ECONOMIC BENEFITS			
A. Reduction in Vehicle Operating Cost (VOC) : Php 5.4 B, NPV			
VOC per Class 1 vehicle (car)	P10.90-12.79/km	P10.07/km	
VOC per Class 2 vehicle (bus)	P29.82-30.11/km	P18.14/km	
VOC per Class 1 vehicle (truck)	P33.87-39.00/km	P32.80/km	
B. Savings in Travel Time: Php 8.8 B, NPV			
Travel speed	30-45 kph	80 kph	
Travel time	1.33-1.98 mins/km	0.75-0.78 min/km	
III. RECLAMATION ECONOMIC BENEFITS: Php 118.8 B, NPV			
Land asset created due to Reclamation		700 has of Land Asset Created, P118.8 B	
Potential Asset Creation (reclamation) for LLDA		Potential ~ 1,300 has. behind the Dike	

Implementing Agency

• Main Implementing Agency: DPWH

ROW Delivery, DED Approval. Construction Supervision, Coordination with TRB for Toll Operation Certificate and Toll Rates/Adjustments, Expressway-Dike O&M Supervision

 Cooperating Agency for Reclamation: LLDA

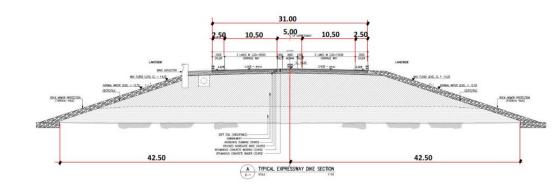
Grant of Authority to Reclaim, Titling of Reclaimed Land

PPP Arrangement

- BTO for Expressway-Dike and BT for Reclamation
- Concessionaire:
 - designs, finances and builds expressway- dike and reclamation
 - transfers expressway-dike to DPWH, and operates it as toll facility for 30 years, including flood control
 - transfers reclaimed land to LLDA, but receives title of portions of reclaimed land as contract payment per Sec.
 6 of BOT Law.

Milestones and Timetable for Next Steps

Activity	Date
Conduct of Feasibility Study	October 2013- February 2014
Review by PPP Center, NEDA, DOF	February- April 2014
NEDA-ICC Approval	21 April 2014
NEDA Board Confirmation	19 June 2014
Publication of Invitation to Pre-Qualify and Bid	03, 08, 15 August 2014
Bid Proposal Submission	06 July 2015
Notice of Award	05 August 2015
Detailed Engineering Design (By Phase)	September 2015-May 2016
Construction (By Phase)*	December 2015- December 2021
Operation and Maintenance of Expressway-Dike	2022-2051


* Stage construction, given phased approvals of detailed designs and phased ROW Delivery

B. FUNCTION AND DESIGN CONSIDERATIONS OF THE DIKE

Design Considerations: **Dike**

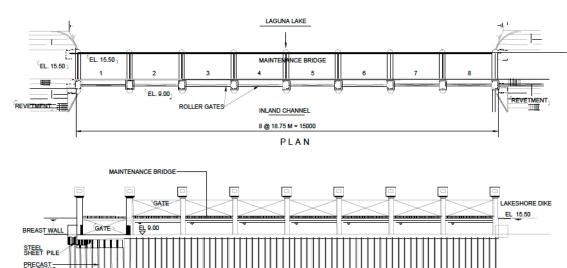
 Prevent backflow of water from the lake

- Height is designed to contain big floods
 - maximum up to 100year floods
 - or lake water reaches elevation 14.2m
- Plus one meter allowance (freeboard) for climate change and contingency

Note: Higher and safer than 60-year design flood levels used in the Metro Manila Flood Control Master Plan

Design Considerations: Crossing Structures (Bridges and Interchanges

16 Bridges along Expressway-Dike

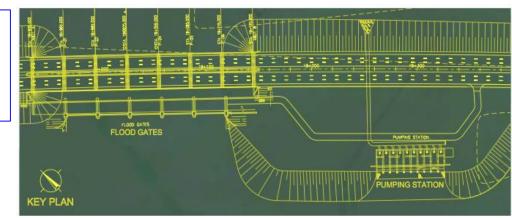

- Number, distribution, locations, and lengths of bridges based on hydraulic simulation model of required waterway openings to accommodate estimated river discharges:
 - Bridges are generally aligned with existing rivers inland
 - 150m or 210m in length each
- Floodgates are located under the bridges, while pumping stations are beside the floodgates and bridges

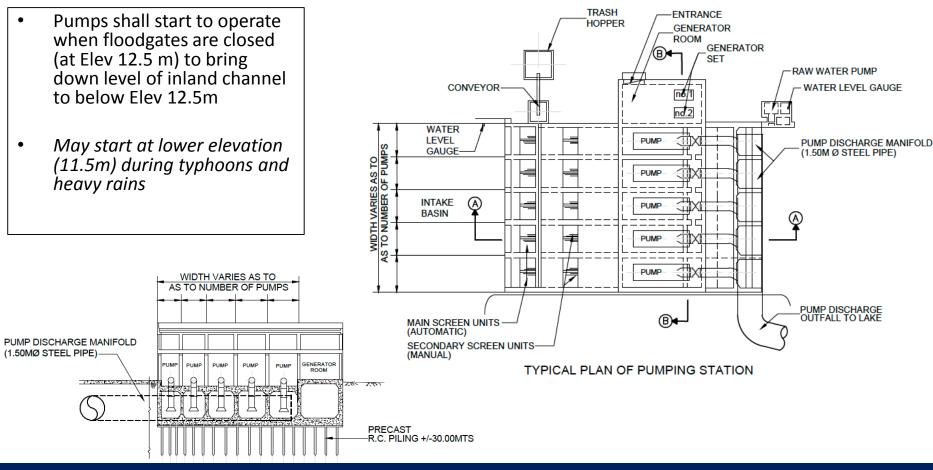
8 Interchanges

With Access Roads

Design Considerations: Floodgates and Pumping Stations

- Prevent backflow of high lakewater into shoreland
- 1 Bridge: 14-15 floodgates below
- Operation of floodgates
 - Opened during dry season or normal weather flow or when lake is below Elev. 12.5 m
 - Allows continuous water circulation
 - Provides access for fishing vessels
 - Closed once lake rises above
 Elevation 12.5m to allow pumps
 to start operating




ELEVATION

Design Considerations: Pumps

- 1 Bridge: 1 Pumping Station
 - 1 station: average of 10 pumps

Design Considerations: Expressway-Dike Alignment

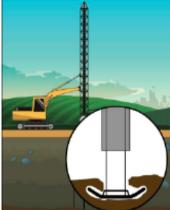
Expressway-Dike alignment is **at least 500m away** from the shoreline

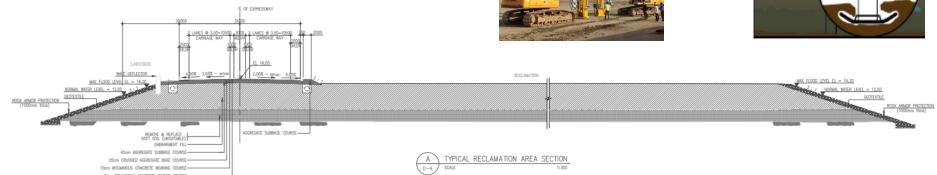
Perspective	Considerations
Engineering	 Provide smooth alignment for a high speed highway (vs. irregular shape of the shoreline)
Environmental	 Provide a channel between the shoreline and the dike which will maintain the fish spawning areas required by LLDA
Socio-economic	 Minimize displacement of communities along the shoreland (vs. onshore alignment)
	 Enable continuous livelihood activities among fisherfolks
Project Financing	 Allow for reclamation component west of the dike necessary to enhance revenues for project financing

Design Considerations: Inland Channels

	100- 150m channel between shoreland and reclamation areas	 200-250m channel between reclamation areas
Perspective	Considerations	Considerations

Engineering/Hydraul ic	 Serve as regulation/ retention pond Temporarily store flood waters from inland to optimize pump operation 	 Extension of existing inland rivers, providing for smooth flow of river waters draining into the lake
Socio-Economic / Environmental	• Opportunity to improve water circulation and increase level of dissolved oxygen to support aquatic life (with the desilting of channel)	 Provides access to the lake for fisherfolks during dry season
Business Economics	 Provide greater flexibility in master planning of the reclaimed area as prime property and enhance its marketability 	


Design Considerations: Reclamation


- Rawland reclamation can be staged starting 4th Qtr of 2015 until 2019
- Installation of Vertical "Wick Drains" technology to accelerate consolidation of reclamation area, which will take 1 year before horizontal development
- Horizontal development (roads, major drainage, water supply) can start 1 year after the consolidation process
 - Can also be staged to synchronize with rawland and consolidation process

Vertical "Wick Drains"

Next Steps

- PPP Center Transaction Advisors through the Project Development and Monitoring Facility (PDMF)
- Investors' Forum
- Pre-Qualification of Potential Bidders

Thank you very much.